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Active Galactic Nuclei are the most powerful long-lived objects in the universe. They

are thought to harbor supermassive black holes that range from 1 million solar masses to

1000 times that value and possibly greater. Theory and observation are converging on a

model for these objects that involves the conversion of gravitational potential energy of

accreting gas to radiation as well as Poynting flux produced by the interaction of the ro-

tating spacetime and the electromagnetic fields originating in the ionized accretion flow.

The presence of black holes in astrophysics is taking center stage, with the output from

AGN in various forms such as winds and jets influencing the formation and evolution of

the host galaxy. This dissertation addresses some of the basic unanswered questions that

plague our current understanding of how rotating black holes interact with their surround-

ing magnetized accretion disks to produce the enormous observed energy. Two magnetic

configurations are examined. The first involves magnetic fields connecting the black hole

with the inner accretion disk and the other involves large scale magnetic fields thread-

ing the disk and the hole. We study the effects of the former type by establishing the

consequences that magnetic torques between the black hole and the inner accretion disk

have on the energy dissipation profile. We attempt a plausible explanation to the observed

“Deep Minimum” state in the Seyfert galaxy MCG-6-30-15. For the latter type of mag-

netic geometry, we study the effects of the strength of the magnetic field threading the

black hole within the context of the cherished Blandford & Znajek mechanism for black



hole spin energy extraction. We begin by addressing the problem in the non-relativistic

regime where we find that the black hole-threading magnetic field is stronger for greater

disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then

study the problem in full relativity where we show that our Newtonian results are excel-

lent approximations for slowly spinning black holes. We proceed to address the issue of

the spin dependence of the Blandford & Znajek power. The result we choose to highlight

is our finding that given the validity of our assumption for the dynamical behavior of the

so-called plunge region in black hole accretors, rotating black holes produce maximum

Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about

a≈ 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux

is achieved for highest black hole spin.
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Preface

Chapter 2 has been published in essentially this form in the Astrophysical Journal (Garo-

falo & Reynolds, 2005, ApJ, vol. 624, pp.94). Chapter 3 is based on material published

in the Astrophysical Journal (Reynolds, Garofalo & Begelman, 2006, ApJ, vol. 651, pp.

1023). The material presented in Chapter 4 is currently being prepared for submission to

the Astrophysical Journal. An early version of the results of Chapter 2 were presented as

a poster paper (Garofalo & Reynolds) at the “Constellation-X Science Workshop” in New

York in May 2003. The results of Chapter 3 were presented as an oral presentation (Garo-

falo, Reynolds & Begelman) at the “Supermassive Black Holes” conference in Santa Fe,

New Mexico, July 2006.
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Figure 1: An accretion disk and a magnetic field around a black hole. An artist view
taken from the Hubble Space Telescope website.
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Chapter 1

Introduction

Observations reveal the presence of small regions of space appearing point-like to all

current observatories from which enormous quantities of energy are emitted. The most

energetic of these objects reside at the center of galaxies and sometimes outshine the

rest of the galaxy by up to three orders of magnitude. These astronomical powerhouses

are called active galactic nuclei (AGN). Theory and observations have converged on a

paradigm for such objects whose primary components are rotating supermassive black

holes that accrete matter via a surrounding accretion disk.

Much of the observed electromagnetic radiation is thought to be energized, ultimately,

by conversion of the gravitational potential of the accreting matter into radiation. How-

ever, it has been suspected for some time that the rotational energy of the black hole itself

may be an astrophysically important source of energy, especially for the relativistic jets

of plasma that are often seen emanating from black hole systems. Through the seminal

work of Blandford & Znajek (1977), it is thought that the most plausible way that Nature

can tap the rotational energy of a black hole is via large scale magnetic fields that are

generated by currents in the accretion disk and thread the event horizon of the black hole.

The importance of black holes to astrophysics is difficult to exaggerate. On the one

hand, detailed studies of processes close to black holes (including the extraction of black
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hole spin energy via large scale magnetic fields) allow us to test predictions of the General

Theory of Relativity (GR) in its strong-field regime. X-ray observatories are already mak-

ing the first steps in this direction. Currently, there is evidence for the frame-dragging ef-

fects of black hole spin from, for example, X-ray spectroscopic analyses of the iron emis-

sion line from several supermassive black hole accretion disks (Brenneman & Reynolds,

2006). The ultimate development of these observational techniques using future X-ray

observatories (such as NASA’s proposed Constellation-X Observatory) will allow us to

essentially map out the spacetime around these isolated supermassive black holes, and

compare the result to the expected Kerr metric.

On the other hand, the enormous output of energy from an accreting supermassive

black hole can heat the interstellar medium on the scale of the galaxy, influencing the rate

of star formation and thus of the evolution of the host galaxy. Observations during the

last decade have revealed a tight connection between the mass of the supermassive black

hole that lies at the center of a galaxy and the stellar velocity dispersions of stars in the

galaxy’s bulge. More precisely, it is found that

M ≈ 1×108
( σ

200kms−1

)4
M�, (1.1)

whereM is the mass of the central supermassive black hole andσ is the velocity disper-

sion of the galaxy’s bulge measured at the half-light radius (Gebhardt et al. 2000; Fer-

rarese & Merritt 2000). This result, the so-calledM−σ relation, indicates a previously

unrecognized connection between the central supermassive black hole and the properties

of the galaxy on spatial scales orders of magnitude larger than the black hole’s actual

gravitational sphere of influence. Although the details have yet to be fully understood,

the favored scenario for explaining this relation is one in which the accretion of gas onto

the central supermassive black hole accompanies periods of star formation (since both

processes rely on the supply of large amounts of gas). Both electromagnetic radiation and

jets from the accreting supermassive black hole can heat the interstellar medium and act
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to suppress star formation. Numerical simulations suggest that this “AGN feedback” can

readily reproduce theM−σ relationship (see Di Matteo, Springel & Hernquist 2005).

This thesis attempts to shed light on some of the mechanisms behind the large output

of energy from these tiny regions of space. In particular, we focus on the interaction

between the black hole spacetime and the large scale magnetic field that may be key to

jet formation. But before delving into these ideas, we wish to give the reader a sense of

why black holes, accretion disks, and magnetic fields, form the paradigm for the objects

of our study.

1.1 The black hole paradigm for AGN

1.1.1 Basic Considerations

Consider one of these high energy systems producing 1047ergs−1 from a region of space

that light-crossing time arguments constrain to no larger than the Solar System. The

light-crossing time argument goes as follows. The observed emissions from many AGN

are characterized by significant time variability, with typical timescales of hours or less.

Now, any disturbance in the system will propagate at a finite speed less than the speed

of light. This means that it takes a timeδt for the observed emissions to change by a

significant amount, restricting the physical extent of the region producing that emission

to be no larger thanl = cδt. This allows us to use time-variability of AGN emissions to

determine a maximum physical extent to the energy producing region in the AGN and,

as mentioned above, it is not uncommon to find Solar System scale extents as a result.

We note that this argument must be modified in systems where the emission originates

from material moving at relativistic velocities towards us (e.g. Blazars and Gamma-Ray

Bursts).

The enormous sustained luminosities have implications for the mass of the AGN.
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If the radiation pressure exceeds the gravitational force, accreting material gets blown

out and the AGN would quickly turn off. The balance between gravitational force and

radiation pressure gives a limiting value to the sustained luminosity that a mass M can

produce. This limiting luminosity is called the Eddington luminosity. For a pure hydrogen

plasma, the balance between gravity and radiation pressure is expressed as

GMmp

r2 =
LσT

4πcr2 , (1.2)

where we have considered a region far from the black hole where the gravity is New-

tonian and have assumed that the luminosity is emitted isotropically. This expression

follows from the fact that the inertia of the plasma is dominated by the protons whereas

the radiation interacts primarily with the electrons with Thomson cross-sectionσT .

The Eddington luminosity is therefore

LEdd =
4πGMmpc

σT
≈ 1.3×1038 M

M�
ergs−1, (1.3)

whereM� is one solar mass. Thus, AGN with luminosity of 1047ergs−1 require a mass

of 109M�.

Such enormous powers prompts us to consider highly efficient mechanisms of energy

production. The efficiency is characterized by the fraction of accreted rest mass that is

radiated, i.e.L = ηṀc2, whereṀ is the mass accretion rate onto the black hole. The

most efficient mechanism known is matter-antimatter annihilation but it is not believed

that large quantities of anti-matter are present in the universe. The next most efficient

mechanism is accretion onto relativistic objects such as neutron stars and black holes.

Neutron stars have a maximum mass of∼ 2M�, so accretion onto neutron stars cannot

be the central power source in AGN. We are thus led to consider massive black holes.
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1.1.2 Accretion Disks

The earliest models for accretion onto a central object were spherically symmetric (Bondi,

1952). It was quickly realized, however, that any realistic accretion flow will have suffi-

cient angular momentum about the black hole to form a rotationally supported disk. This

lead to the development of the standard non-relativistic accretion disk model of Shakura &

Sunyaev (1973) and its relativistic generalization of Novikov & Thorne (1974). The effi-

ciency of a standard relativistic disk is set by the binding energy at the radius of marginal

stability, inside of which the matter is assumed to plunge into the black hole in an ap-

proximate ballistic manner (i.e. conserving energy and angular momentum). Around a

non-rotating black hole the efficiency is 6% while the efficiency for a maximally spinning

black hole with a prograde disk is 42%.

The dynamics of an accretion disk are almost entirely determined by the transport of

angular momentum in the flow. Assuming Newtonian gravity for illustrative purposes

and a radiatively-efficient geometrically thin disk with small radial pressure gradients so

that gas flows on Keplerian orbits, the specific angular momentum of a parcel about a

black hole of mass M isl =
√

GMr. Thus, for such an element of gas to accrete, it must

lose angular momentum. Until the early 1990’s, the principal uncertainty in disk models

was the mechanism by which matter lost its angular momentum. The resolution of this

problem brings us to the magnetohydrodynamic (MHD) paradigm for accretion flows.

1.1.3 The MHD paradigm

Balbus & Hawley (1991) showed that a powerful MHD instability (previously found by

independently by Vavilov and Chandrasekhar between 1959 and 1961 but not adopted to

solve the disk angular momentum transfer problem) will affect any magnetized ionized

accretion flow. They showed that the instability leads to turbulent fluid motion charac-
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Figure 1.1: Magnetorotational instability producing turbulence leading to accretion. Az-
imuthal cross section of the density in logarithmic scale. Black hole event horizon is on
the left (solid black line). From Reynolds & Fabian (2008).

terized by magnetic field correlations that transport angular momentum outward. To un-

derstand the basic operation of this instability, consider two nearby gas parcels at slightly

different radii, connected via a magnetic field line that for illustrative purposes can be

treated as an elastic band. The gas parcel at smaller radius from the compact object is

orbiting faster than the gas parcel at larger radius. Therefore, there will be a torque pro-

duced by the inner gas parcel on the outer one, giving angular momentum to the latter.

Because the inner gas parcel has lost angular momentum, it spirals further toward smaller

radius and speeds up in its orbital velocity. The outer gas parcel moves further away to

larger radius to satisfy the dynamics resulting from an increase in its angular momen-

tum. The transfer of angular momentum is thus unstable and runs away. This is exactly

what was needed to solve the angular momentum problem in accretion disks. Due to the

generic nature of this instability, it was widely accepted as operating in real accretion

disks. Nowadays, both non-relativistic and GRMHD simulations show that the instability

produces turbulence in accretion flows and that angular momentum is indeed transferred

7



Figure 1.2: A radio/optical composite image of the radio galaxy 3C296. The optical
(blue) component shows starlight from the large elliptical host galaxy. The radio emis-
sion (red) is synchrotron radiation from energetic electrons in the jets produced by the
central AGN.

outward producing accretion onto a central body (Figure1.1). This magnetorotational

instability (MRI) highlights the central role that magnetic processes play in black hole

accretion.

1.2 Black hole jets

In about 10 percent of AGN, the luminous central core is accompanied by oppositely di-

rected beams of relativistic plasma called jets that are directly observed (Figures1.2and
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Figure 1.3: The radio galaxy Cygnus A as seen by the VLA in New Mexico showing the
extended radio lobes extending in both directions over a region of about 500,000 light
years.

1.3). The most prominent radiation from the jets is synchrotron radiation in the radio

band, the signature of relativistic plasma flow through magnetic fields. These jets are

seen to propagate over large distances, in some cases out to Mega-parsec scales. Two

facts suggest that the matter flow in some of these jets is highly relativistic, with bulk

Lorentz factors of up toΓ∼ 10 or more. Firstly, the jets in many AGN are observed to be

one sided (e.g. M87 in Fig.1.4and1.5). It is hard to envisage any process which would

produce intrinsically one-sided jets from a black hole system, thus these observations are

interpreted in terms of special relativistic boosting of the intensity of the approaching jet,

and de-boosting of the intensity of the receding jet. Secondly, high-resolution observa-

tions (e.g. with VLB interferometry in the radio band) reveal features within the central

regions of these jets that appear to move on the plane of the sky at superluminal velocities.

This phenomenon was actually predicted by Rees (1966) on account of observations of

radio-loud AGN and is indicative of relativistic motion along a direction close to our line

of sight.

Many aspects of the acceleration and collimation of these jets remain mysterious.
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Figure 1.4: The radio galaxy M87 showing the one-sided jet, as seen by the Wide Field
Planetary Camera 2 on the Hubble Space Telescope.

Figure 1.5: The M87 jet and host galaxy. Image taken at the Kitt Peak 2.1 meter tele-
scope. M87 is 50 million light-years from Earth.
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However, all successful models for jet formation employ a large scale magnetic field

anchored in the accretion disk and, possibly, the rotating black hole (the hole anchored

field is not, however, intrinsic to the black hole). The rotation of the disk and black hole

can take an initially poloidal field and produce a magnetic “coil”. In generic terms, it is

postulated that the unwinding of the coil acts to gradually accelerate the jet matter to high

velocities, and the magnetic tension forces within the magnetic coil act to collimate the

jet flow.

1.2.1 From stellar mass to supermassive black holes

The black hole accretion disk picture applies on a range of scales starting from stellar

mass systems, such as Cygnus X-1, to the supermassive black hole systems described

above. AGN with powerful jets are referred to as radio-loud because of the prodigious

amounts of radio emission from the jets. Stellar mass accreting black holes are thought

to display the same physics as their larger AGN counterparts, albeit with shorter charac-

teristic timescales and lower powers. In these stellar mass systems, the accreting matter

originates from a companion star (Fig.1.6).

Stellar mass black holes are seen to undergo transitions between well defined states

(characterized, principally, by their X-ray spectrum) that are believed to be driven by

changes in the rate at which matter is accreted. During the so-called low/hard state, these

systems display radio-emitting jets that appear to be scaled down versions of jets from

radio-loud AGN (Fender & Belloni 2004). During this state, the X-ray spectrum suggests

that the accretion disk is a geometrically-thick, optically-thin advection dominated accre-

tion flow (ADAF), a mode of accretion that is only possible when the accretion rate is

much smaller than that needed to produce the Eddington luminosity. However, once the

stellar-mass black hole systems make the transition to the so-called high/soft state, which

is believed to correspond to a more rapidly accreting geometrically-thin disk, jet activity
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Figure 1.6: Artist sketch of a companion donor star providing material for the accretion
disk of a stellar-mass black hole

appears to cease. During the actual transition itself, very powerful relativistic ejections

are sometimes seen (Fender & Belloni 2004). Once the accretion rate declines again, the

system makes a transition back to the low/hard state and the jet activity resumes. These

transitions must be providing important clues about the physics underlying jet formation,

and can be observed in stellar-mass black holes on timescales of days to weeks. Since all

characteristic timescales scale linearly with black hole mass, the same processes in AGN

will take millions of years and thus cannot be observed on a human timescale.
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1.2.2 Theoretical issues

Although the magnetic acceleration and collimation model is becoming increasingly fa-

vored, it is mostly as a result of the exclusion of other possible mechanisms. It has been

shown that both thermal and radiative acceleration models are self-limiting and thus fail

to produce the relativistic outflows observed (Phinney, 1982). The basic uncertainty in

magnetic jet models arises from the fact that there are currently major holes in our under-

standing of how energy is transferred from the magnetic field to plasma, a topic vigorously

pursued in current plasma physics research. Despite these holes in our knowledge, two

magnetic jet models have taken center stage. The first involves large scale field threading

the accretion disk with a field geometry favoring loading of field by disk plasma (Bland-

ford & Payne, 1982). The rotation of the disk leads to a centrifugally driven outflow

of mass resulting from plasma on field lines experiencing greater centrifugal force than

inward gravitational attraction. However, it is unclear whether a Blandford-Payne disk

wind can produce the highly relativistic jets observed. In contrast to this kinetic outflow

mechanism, another magnetically based method for black hole systems involves direct

production of Poynting flux (Blandford & Znajek, 1977). This mechanism extracts the

rotational energy of the black hole via field lines threading the event horizon connected

to distant regions. The field structure connecting the horizon with distant regions gets

twisted as a consequence of the hole’s rotation, producing torsional Alfven waves prop-

agating outward in an attempt to establish rotational equilibrium. Plasma close to the

horizon (within the ergosphere) is placed onto negative energy orbits allowing the pro-

duction of Poynting flux carrying the rotational energy of the hole to infinity. It is unclear

precisely how and when the Poynting flux jet is transformed into a matter-dominated jet.

The greatest uncertainties associated with the application of the Blandford-Znajek (here-

after BZ) mechanism to real systems are the spin rates of supermassive black holes in
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radio-loud AGN, and the strength/geometry of the magnetic field threading the black hole

event horizon.

1.2.3 Outline of thesis

In Chapter 2 we begin the exploration of the interaction between black holes and mag-

netic fields by considering magnetic coupling between the black hole itself (or plasma

near the horizon), with the inner edge of a radiatively efficient accretion disk. This cou-

pling has the effect of adding energy and angular momentum to the inner accretion disk;

the source of this energy and angular momentum is either the accretion flow within the

radius of marginal stability, or the black hole rotation itself. In order to appreciate the

context of our treatment of this coupling, one needs some sense of how viscosity trans-

ports angular momentum outward in accretion disks, allowing the plasma to flow inward.

As we discussed previously, it is now recognized that the presence of magnetic fields in

accretion disks is vital to the accretion process. Plasma closer to the central accreting

object can transfer its angular momentum to plasma further out due to correlations in the

MHD turbulence. However, studies have indicated that an effective kinematic viscosity

of the kind characterizing the Shakura & Sunyaev (1973) disk model can capture essen-

tial properties of the more realistic MHD turbulence based angular momentum transport

mechanism. Within the context of these viscous disk models, the magnetic coupling be-

tween the black hole or plasma near the hole with the inner disk is first tackled in the

Newtonian regime where the disk structure equations are appropriately modified to take

the coupling into account. We then generalize to the relativistic regime where the effect

of the coupling is studied in Schwarzschild spacetime as well as in thea = 0.998 limit

of the Kerr metric. We characterize the behavior of a disk (and the radial dependence of

the dissipation within the disk) that is subjected to a time-variable magnetic coupling. We

then show that the so-called “Deep Minimum” state observed in the Seyfert galaxy MCG-
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6-15-30 can be plausibly explained as the result of a time variable inner edge coupling

between the rotating black hole and the accretion disk.

In Chapter 3 we continue the exploration of the interaction between black holes and

magnetic fields by addressing the issue of how a large scale poloidal magnetic field is

dragged to the black hole by the accretion flow. In order for the BZ process to explain the

powerful jets observed, the black hole-threading field must be large. As we will explain

in greater detail in Chapter 3, MHD studies of accretion disks throughout the 1990’s have

uncovered a characteristic difficulty in these systems that appears to limit their ability to

bring strong fields toward the black hole. Basically, turbulent MHD accretion disks ap-

pear to be strongly diffusive to large scale poloidal fields. Thus, it has been argued that

field-line diffusion acts to make the horizon-threading magnetic field approximately equal

in strength to the large-scale magnetic field of the accretion disk. Since magnetic pressure

in the disk must be an order of magnitude less than the total (gas+radiation+magnetic)

pressure in order for the MRI (and hence MHD turbulence) not to be quenched (Balbus

& Hawley 1991), it has been argued that the horizon-threading magnetic field is too weak

to produce the observed powerful jets (Ghosh & Abrahmowicz 1997). What such studies

have neglected, though, is the dynamical role of the plunging region of black hole accre-

tion disks within the radius of marginal stability, which we claim to be fundamental in its

ability to drag strong magnetic fields to the black hole. We show that the plunging region

can enhance the black hole-threading field by one or more orders of magnitude compared

to the studies that ignored it. In the process, we also uncover a strong dependence of

the hole-threading field magnitude on the disk thickness and effective magnetic Prandtl

number of the turbulent disk flow.

In Chapter 4 we extend the Newtonian treatment of Chapter 3 to the relativistic regime

in Kerr metric. The main goal is to study the spin dependence of the strength of the

horizon-threading magnetic field. We find that the horizon threading magnetic field is
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stronger for lower spin systems and that the BZ mechanism produces maximum power

for intermediate values of spin, in opposition to conventional wisdom which has it that

strong jet systems have the highest black hole spin. We also confirm that the Newtonian

treatment of Chapter 3 is a valid approximation in the low spin limit. Finally we show

that our model explains some curious aspects of the recently observed correlation between

accretion rate and jet power in a sample of nearby radio-loud AGN in elliptical galaxies

(Allen et al. 2006)
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Chapter 2

Torqued Accretion Disks Around Black

Holes

Even before the observational evidence for black hole accretion disks became compelling,

the basic theory of such disks had been extensively developed. Building upon the non-

relativistic theory of Shakura & Sunyaev (1973), Novikov & Thorne (1974) and Page

& Thorne (1974) developed the “standard” model of a geometrically-thin, radiatively-

efficient, steady-state, viscous accretion disk around an isolated Kerr black hole. In ad-

dition to the assumptions already listed, it is typically assumed that the viscous torque

operating within the disk becomes zero at the radius of marginal stability,r = rms. Phys-

ically, this was justified by assuming that the accretion flow would pass through a sonic

point close tor = rms and hence fall ballistically (i.e., “plunge”) into the black hole.

Even while setting up this boundary condition, Page & Thorne (1974) noted that mag-

netic fields may allow this zero-torque boundary condition (ZTBC) to be violated. Given

the modern viewpoint of accretion disks, that the very “viscosity” driving accretion is

due to magnetohydrodynamic (MHD) turbulence, the idea that the ZTBC can be violated

has been revived by recent theoretical work, starting with Gammie (1999) and Krolik
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(1999a). In independent treatments, these authors show that significant energy and an-

gular momentum can be extracted from matter within the radius of marginal stability via

magnetic connections with the main body of the accretion disk. Agol & Krolik (2000)

have performed the formal extension of the standard stationary Novikov & Thorne ac-

cretion disk model to include a torque atr = rms and show that the extra dissipation

associated with this torque produces a very centrally concentrated dissipation profile. As

shown by Gammie (1999), Agol & Krolik (2000), and Li (2002), this process can lead

to an extraction (and subsequent dissipation) of spin energy and angular momentum from

the rotating black hole by the accretion disk. In these cases, the magnetic forces might

be capable of placing the innermost part of the flow on negative energy orbits, allowing a

Penrose process to be realized. A second mechanism by which the central accretion disk

can be torqued is via a direct magnetic connection between the inner accretion disk and

the (rotating) event horizon of the black hole. In this case, as long as the angular velocity

of the event horizon exceeds that of the inner disk, energy and angular momentum of the

spinning black hole can be extracted via the Blandford-Znajek mechanism (Blandford &

Znajek 1977). We note that field lines that directly connect the rotating event horizon with

the body of the accretion disk (Figure2.1) through the plunging regionareseen in recent

General Relativistic MHD simulations of black hole accretion (e.g., Hirose et al. 2004).

Interest in these torqued relativistic disks has received a boost from recent X-ray ob-

servations. The X-ray spectra of many AGN (and, indeed, Galactic Black Hole Candi-

dates) reveal the signatures of “X-ray reflection” from optically-thick matter. In some

cases, examination of these features allows us to detect strong Doppler and gravitational

shifts indicative of circular motion close to a black hole (Fabian et al. 1989; Tanaka et al.

1995; Fabian et al. 2000; Reynolds & Nowak 2003). In these cases, the observed range of

Doppler and gravitational shifts can be used to map the X-ray emission/irradiation across

the surface of the accretion disk. TheXMM-Newtonsatellite is particularly well suited to
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Figure 2.1: Torqued accretion disk caused by magnetic field lines connecting the black
hole event horizon with the accretion disk. The system that we study in this chapter
involves either field lines connecting the disk with the black hole as shown above, or
field lines connecting plasma near the black hole with the disk.

the study of these features due to its combination of good spectral resolution and large col-

lecting area. UsingXMM-Newton, Wilms et al.(2001) and Reynolds et al.(2004) studied

the Seyfert-1 galaxy MCG–6-30-15 in its peculiar “Deep Minimum State” first discov-

ered by ASCA (Iwasawa et al. 1996). Confirming the principal result of Iwasawa et al.

(1996), the X-ray reflection features were found to be extremely broad (Fig.2.2). The

degree of gravitational redshifting required the majority of the X-ray emission to emerge

within a radius ofr ∼ 2GM/c2 from a near-extremal Kerr black hole (i.e., a black hole

with a spin parameter ofa = 0.998). As explicitly shown in Reynolds et al. (2004), it is

very problematic to explain these data within the framework of the standard accretion disk

model. Fabian & Vaughan (2003) and Miniutti & Fabian (2004) suggest that gravitational

focusing of the primary continuum X-rays might produce such a centrally-concentrated

emissivity profile. Alternatively, Reynolds et al. (2004) have shown that a torqued disk

can readily explain the Deep Minimum spectrum provided the source is assumed to be

in a torque-dominated state whereby the power associated with the innermost torque is
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Figure 2.2: XMM-Newton data for the “Deep Minimum State” of the AGN MCG-6-30-
15. (a) Ratio between data and model from fitting a power law to the 0.5-11 keV data.
(b) Ratio from fitting a power law and the empirical warm absorber model; remaining
residues are interpreted as an extremely broadened iron emission line from the central
accretion disk. (c) Deconvoluted spectrum of the Fe Kα band, showing the accretion
disk model and the continuum with and without (dashed) the reflection component for a
model with reflection from an ionized disk. From Wilms et al. (2001).

instantaneously dominating the accretion power (Fig.2.3). In other words, the X-ray

data suggest that during this Deep Minimum state of MCG–6-30-15 the power derived

from the black hole spin greatly exceeds that derived from accretion.

Of course, this state of affairs cannot last forever or else the central black hole in

MCG–6-30-15 would spin down to a point where it could no longer provide this power.

At some point in its history, the system must be in an accretion-dominated phase in which

the black hole is spun up. However, even in its spin-dominated state, the spin-down

timescale of the central black hole is of the order of 100 million years or more. Thus

we could envisage a situation in which the system shines via a quasi-steady-state, spin-

dominated accretion disk.
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Figure 2.3: Broad iron line fit assuming that the line emission tracks the underlying
disk dissipation of (a) a standard (Novikov & Thorne model) accretion disk and (b) a
stationary torqued disk model (Agol & Krolik, 2000). From Reynolds, Brenneman &
Garofalo (2005).

There are hints, though, that accretion disks may switch between spin-dominated and

accretion-dominated on much shorter timescales. In its normal spectral state, the X-ray

reflection features in MCG–6-30-15 are much less centrally concentrated than in the Deep

Minimum State, suggesting that the normal state might be accretion-dominated. It is

also important to note that this system can switch between its normal state and the Deep

Minimum State in as little as 5–10 ksec (Iwasawa et al. 1996), which corresponds to

only a few dynamical timescales of the inner accretion disk. On the theoretical side,

rapid (dynamical timescale) changes in these inner disk torques were noted in the MHD

simulations of Reynolds & Armitage (2001). Thus, it is of interest to consider the physics

of an accretion disk that undergoes a rapid torquing event. That is the prime motivation

for this Chapter.

In Section2.1we will begin our study of sporadically torqued accretion disks by inves-

tigating an analytic solution for a torqued Newtonian disk. In Section2.2, we generalize

to the fully relativistic equations and obtain numerical solutions. In Section2.3, we relate
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our results with the observed properties of the “Deep Minimum State” of MCG–6-30-15,

and consequently discuss the effect that a torquing event may have on the physics of the

X-ray emitting disk corona. In particular, we suggest that the enhanced Returning Radia-

tion associated with a torquing event might suppress the 0.5–10 keV coronal emission in

all but the inner portion of the disk. Section4.4summarizes our main conclusions.

2.1 An analytic “toy” model of a time-dependent non-

relativistic torqued disk

We begin our investigation of sporadically torqued disks via the study of a simple case

that lends itself to a straightforward analytic solution. We shall construct a non-relativistic

model of a radiatively-efficient accretion disk following the usual approach of Pringle

(1981). We shall assume that the accretion disk is axisymmetric, geometrically-thin and

in Keplerian motion about a point-massM. Using a cylindrical polar coordinate system

(r,φ,z) with the axis passing through the central mass normal to the disk plane, we shall

denote the surface density of the disk byΣ(r, t), the angular velocity of the disk about

M as Ω(r) and the radial velocity of the disk material asvr(r, t). The equations that

determine the structure of the thin disk assuming radiative efficiency are mass and angular

momentum conservation,

r
∂Σ
∂t

+
∂(rvrΣ)

∂r
= 0, (2.1)

r
∂(Σr2Ω)

∂t
+

∂(rΣvr r2Ω)
∂r

=
1
2π

∂G
∂r

, (2.2)

respectively, whereG(r, t) is the torque exerted by the diskoutsideof radiusr on the disk

insideof that radius.

In standard disk models, the torqueG is the integrated value of the only stress ten-

sor component (Srφ) that survives the condition of axisymmetry and geometric-thinness.
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From Krolik (1999b) we have,

G =
Z

rSrφ dz
Z

r dφ = 2πr3νΣ
∂Ω
∂r

, (2.3)

where we have introduced an “effective kinematic viscosity”,ν. To generalize these mod-

els to the case of an externally imposed torque, we set

G = 2πr3νΣ
∂Ω
∂r

+GT (2.4)

whereGT is the externally imposed torque (due to the magnetic couple to the black hole

or plunging region) that is in general a function of radius and time. Combining eqns.2.1,

2.2and2.4, and specializing to a Keplerian rotation curve,

Ω =
(

GM
r3

)1/2

, (2.5)

we get the usual diffusion equation for surface density modified for the effects of the

external torque,

∂Σ
∂t

=
3
r

∂
∂r

[
r1/2∂(νΣr1/2)

∂r

]
− 1

rπ(GM)1/2

∂
∂r

(
r1/2∂GT

∂r

)
. (2.6)

For the rest of this chapter, we shall work in units whereGM = 1. Changing variables to

x = r1/2 andψ = νΣx and assuming thatν has no explicit time dependence, we get

∂ψ
∂t

=
3ν
4x2

∂2

∂x2

(
ψ− GT

3π

)
. (2.7)

We now consider a particular torquing event. Suppose that the disk suffers no external

torques for the periodt < 0. Then, att = 0, we engage an external torque (possibly

resulting from a newly formed magnetic connection to the plunging region or spinning

event horizon) that deposits angular momentum into a narrow annulus atr = r0. If the

rate at which angular momentum is being deposited isβ, we have

∂GT

∂r
= βδ(r− r0)Θ(t), (2.8)
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giving

GT(r, t) = βΘ(r− r0)Θ(t), (2.9)

whereΘ is the Heaviside step function. At this point, we specialize to a particular viscos-

ity law. While we lose generality, this will enable us to construct a readily soluble system

that can be used to study the general qualitative behavior of torqued disks. We setν = kr

for mathematical convenience. We can now rewrite eqn.2.7as

∂ξ
∂t

=
3k
4

[
∂2ξ
∂x2

]
− β

3π
Θ(x−x0)δ(t), (2.10)

where

ξ = ψ− β
3π

Θ(x−x0)Θ(t), (2.11)

and the delta-function in time results from the time-derivative of theΘ(t) term.

Suppose that the disk is in the untorqued steady state att < 0. From eqn.2.10, one

can easily see that such a steady state is given by,

ξss= ψ = A(x−xi) (t < 0), (2.12)

whereA is a normalization constant andr i ≡ x2
i is the inner edge of the untorqued disk

defined as the location where the “viscous” torques vanish. Examination of eqn.2.10

shows that the time-dependent behavior of the torqued disk at timest > 0 is given by the

simple diffusion equation,
∂ξ
∂t

=
3k
4

∂2ξ
∂x2 , (2.13)

with an initial condition set by integrating through the delta-function in time,ξ(x, t = 0) =

ξss−βΘ(x−x0)/3π. The appropriate boundary condition isξ→ ξss ast → ∞. Standard

methods (i.e., separation of variables) give the following solution:

ξ(x, t) = ξss(x)+
β

3π2

Z ∞

0

1
λ
[sinλx0 cosλx− (cosλx0 +1)sinλx]exp

[
−3kλ2t/4

]
dλ.

(2.14)
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With this solution, we can compute the surface density of the disk at any given radius

and time. Armed with the surface density, we can then compute all other quantities of

interest including the viscous dissipation rate per unit surface area of the disk:

D(r) =
νΣr2

2
Ω′2, (2.15)

whereΩ′ = dΩ/dr. Plots of the radial dependence ofΣ(r) andD(r) for various times

are shown in Figures2.4-2.8and2.10-2.14. Also shown in Figure2.9and Figure2.15is

the time dependence of the total viscous dissipation obtained by integratingD(r) across

the whole disk (i.e. luminosity). We can see that the response of the disk to the onset

of an external torque can be separated into two phases. In the first phase, the accretion

flow is “dammed” atr = r0 due to the inability of the accretion flow to transport the

angular momentum deposited by the external torque. This leads to a build-up of mass

(i.e., an increase in the surface density) in the regionr > r0. Concurrently, matter in the

regionr < r0 continues to accrete thereby partially draining away the surface density. The

inevitable result is a growing discontinuity in the surface density atr = r0. The angular

momentum transport associated with this discontinuity grows until mass can, once again,

flow inwards across this radius. One then enters the second phase of evolution, whereby

the surface density in the regionr < r0 is replenished back to its original level while the

surface density discontinuity is maintained at approximately a constant level. Eventually,

one achieves the torqued steady-state solution (e.g., Agol & Krolik 2000). The two sets

of figures (2.4-2.9 and2.10-2.15) are for an external torque atr = 4 and one closer to

the inner edge atr = 2, respectively. Note how, for a given injection rate of angular

momentum, the effect on the disk structure is much more dramatic for smaller radius.

Since our disks are assumed to be radiatively-efficient, the instantaneous total lumi-

nosity of the accretion disk can be formally decomposed into two components, one due

to the decrease in gravitational potential energy of the accreting gas, and a second due to
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Figure 2.4: Evolution of our “toy” model disk with a torque acting atr = 4. Figure shows
the initial state of the surface density profile for the non torqued disk (solid line) and the
resulting final torqued steady-state (dashed line).

the work done by the external torque, i.e.,

L = 2
Z

2πrD(r)dr =
1
2

Z
GMṀ

r2 dr +
Z

Ω
∂GT

∂r
dr. (2.16)

As can be seen from Fig.2.9 and Fig.2.15, the luminosity dips before climbing up to

a new elevated level that includes the work done by the external torque as well as the

accretion energy. The temporary dip in luminosity is due to the damming of the accretion

flow in the early evolution of the torquing event.

Now that we have explored a torquing event via the analytical solution of an extremely

simplified accretion disk model, we move on to somewhat more realistic models. In the

next section, we present a semi-analytic analysis of a geometrically-thin general relativis-

tic accretion disk.
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Figure 2.5: Early evolution of our “toy” non-relativistic model disk with a torque acting
at r = 4. Shown are four times in the early evolution of the surface density profile (solid-
line:t = 0 the untorqued steady-state, dashed-line:t = 10−3, dot-dashed-line:t = 10−2,
dotted-line:t = 10−1; we use units such thatk = 1 which corresponds to scaling with
respect to the viscous timescale of the inner disk). Notice how the initial evolution is
such that density drops inward of the torque location and increases outward of it due to
the “damming” of the accretion flow.

2.2 Relativistic torqued accretion disks

Relativity produces two complications to the analysis. Firstly, the equations governing

the structure of the accretion disk are rather more complex and drive us to use numeri-

cal rather than analytic techniques. Secondly, the relationship between the emitted and

observed fluxes becomes non-trivial, with gravitational light bending, relativistic aber-

ration/beaming, and Doppler/gravitational redshifting all becoming important. We shall

deal with these issues in turn.

The time-dependent equations describing the structure of a geometrically-thin accre-

tion disk in theθ = π/2 plane of a Kerr spacetime are given in Boyer-Lindquist coor-
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Figure 2.6: Late evolution of our “toy” non-relativistic model disk with a torque acting at
r = 4. The subsequent late evolution towards the torqued steady-state (solid-line:t = 0, or
untorqued steady-state, dashed-line:t = 1, dot-dashed-line:t = 10, dotted-line:t = 100).

dinates(t,R,θ,φ) by Eardley & Lightman (1974). TakingΣ(R) to be the proper surface

density of the disk (i.e., the surface density measured by a local observer moving with the

fluid), the disk evolution is described by

∂Σ
∂t

=
C 1/2

BR
∂

∂R

[
Γ

∂L†

∂R

∂
∂R

(W R2D)

]
, (2.17)

where,

B =

(
1+

aM1/2

R3/2

)
, (2.18)

C =

(
1− 3M

R
+

2aM1/2

R3/2

)
, (2.19)

D =
(

1− 2M
R

+
a2

R2

)
, (2.20)

Γ =
B

C 1/2
, (2.21)

L† = M1/2R1/2

(
1− 2aM3/2

R3/2
+

a2M2

R2

)
. (2.22)
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Figure 2.7: Early evolution of our “toy” model disk with a torque acting atr = 4. The
dissipation profilesD(r) in the early stages of the evolution with the type of line and time
corresponding to those of figure (b).

Here,a is the dimensionless spin parameter of the black hole (denoted asa∗ by Eardley

& Lightman 1975) andL† is the specific angular momentum of the fluid for prograde

orbits. The localrφ shear in this flow isσ = −3ΩC−1D, where the angular velocity in

the comoving frame isΩ = (M/r3)1/2. Thus, guided by the non-relativistic prescription,

we set the vertically-integratedrφ component of the stress tensor in the absence of an

external torque to be

W =−νσΣ =
3
2

νΣ
M1/2

R3/2

D
C

, (2.23)

whereν is the same effective viscosity that appeared in the non-relativistic expressions.

Noting that the totaltorque is given byG = 2πWR2D, we see that the appropriate rela-

tivistic diffusion equation describing a sporadically torqued disk (i.e., the counterpart to

eqn.2.6) is
∂Σ
∂t

=
C 1/2

2πBR
∂

∂R

[
Γ

∂L†

∂R

∂
∂R

(
3D2

2C
νΣM1/2R1/2− GT

2π

)]
. (2.24)

It is straightforward to verify that eqn.2.24 reduces to eqn.2.6 in the non-relativistic
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Figure 2.8: Late evolution of our “toy” model disk with a torque acting atr = 4. The
dissipation profilesD(r) in the late stages of the evolution toward steady-state with the
type of line and time corresponding to those of figure (c).

limit (i.e., B,C ,D → 1;L†→ (MR)1/2). The complications introduced by the relativistic

factors render this equation intractable to elementary analytic solution methods. Thus,

we use a simple explicit scheme to numerically solve this diffusion equation following

the treatment of Press et al. (1992), using a finite difference scheme to evaluate first and

second spatial derivatives. Figures2.16-2.21and2.22-2.27show the temporal behavior

of an accretion disk around Schwarzschild (a = 0) and near maximal Kerr (a = 0.998)

black holes respectively. To facilitate comparison with the non-relativistic case, we have

chosen the same viscosity law,ν = kR (i.e. ν scales with the radial Boyer-Lindquist

coordinate and not the proper distance). As in the Newtonian case, this prescription does

not change the results qualitatively. Note that the behavior is similar to that found in

the non-relativistic model. The two phases of evolution, the damming phase and the

replenishing phase, are reproduced.

The differences are mostly due to the fact that in the relativistic regime there are
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Figure 2.9: Evolution of our “toy” model disk with a torque acting atr = 4. The lumi-
nosity profile obtained by integrating the dissipation profile over the disk surface. The
final steady-state torqued luminosity profile is enhanced with respect to the non-torqued
steady-state profile due to work done by the torque.

Figure 2.10: Early evolution of our “toy” model disk with a torque acting atr = 2. The
initial state of the surface density profile for the non torqued disk (solid line) and the
resulting torqued steady-state (dashed line).
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Figure 2.11: Evolution of our “toy” model disk with a torque acting atr = 2. Four times
in the early evolution of the surface density profile (solid-line:t = 0, dashed-line:t = 10−3,
dot-dashed-line:t = 10−2, dotted-line:t = 10−1).

Figure 2.12: Late evolution of our “toy” model disk with a torque acting atr = 2 (dashed-
line:t = 1, dot-dashed-line:t = 10, dotted-line:t = 100). For reference, the lower solid-
line shows the untorqued steady-state disk.
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Figure 2.13: Evolution of our “toy” model disk with a torque acting atr = 2. The dis-
sipation profilesD(r) in the early evolution (with line types and times corresponding to
those of Fig.2.11.

Figure 2.14: Evolution of our “toy” model disk with a torque acting atr = 2. Figure
shows the dissipation profilesD(r) in the late evolution with times and line-style equal
to those of Fig.2.12.
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Figure 2.15: Evolution of our “toy” model disk with a torque acting atr = 2. The lu-
minosity profile obtained by integrating the dissipation profile over the disk surface for
both torques at r=2 (dashed line) and r=4 (solid line).

two natural inner boundaries for the disk at the location of the marginally stable circular

orbits. R= 6M for Schwarszchild spacetime andR= 1.23M for the near-maximal Kerr

spacetime.

Relating the observed radiative flux to the fundamental disk structure is substantially

more complex in the relativistic case due to the complexities of general relativistic photon

propagation. For a given value of the stressW, energy conservation gives that the total ra-

diative flux from one side of the disk, measured in the locally orbiting frame, is (Novikov

& Thorne 1974),

F(R) =
3D
4C

ΩW. (2.25)

Suppose that the corresponding energy-integrated (but angle-dependent) intensity isIe(R,θ),

whereθ is measured from the normal to the disk plane (in the locally orbiting frame of

reference). Following Cunningham (1975), an observer at infinity will see an integrated
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luminosity,

L0 =
Z Z

2πIeϒg3(g∗−g∗2)−1/2dg∗d(πR2) (2.26)

where we have followed the notation of Cunningham (1975) with the exception ofϒ; here

ϒ is the relativistic transfer function that encodes the effect of light bending and results

from ray-tracing null-geodesics through the Kerr metric from the disk to the observer.

The quantityg is the ratio of observed energy to emitted energy, andg∗ is the “relative

redshift” defined by,

g∗ = (g−gmin)/(gmax−gmin), (2.27)

wheregmax andgmin are the extremal values of g over the family of geodesics from a

given emission radius and a given viewing inclination of the disk. We have used the code

of R. Speith (Speith, Riffert & Ruder 1995) to computeϒ and hence perform this integral

in order to examine how the observed luminosity changes through the torquing event.

These calculations uncover a fundamental difference between the Newtonian and rel-

ativistic cases. In the relativistic case, the observed changes in luminosity are a function

of the inclination angle of the observer due to the effects of light bending and relativistic

beaming of the disk emission. Figures2.21 and2.27 show the temporal behaviour of

the observed flux (normalized to the flux for the untorqued disk) for various observing

angles for our Schwarzschild and near-extremal Kerr cases, respectively. The final frac-

tional increase in observed flux depends on the beaming pattern of the torque-energized

region of the disk compared with that of the untorqued disk. For our Schwarzschild case

(Fig. 2.21), one can see that the final fractional increase in observed luminosity depends

very weakly on the observing angle, implying that the untorqued disk and the torque-

energerized region of the torqued disk have very similar beaming patterns. There is,

however, a much more pronounced temporary decrease in observed flux at higher incli-

nations due to the temporary dimming of the (more highly beamed) inner regions of the

disk. For our near-extremal Kerr case, the final fractional increase in observed luminosity
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Figure 2.16: Evolution of disk in Schwarzschild spacetime for torque at R/M=10. Figure
shows the surface density profile just after the torquing event begins as well as when the
steady-state torqued profile is approached (dashed-line:t = 10000).

increases by almost a factor of two as one moves from almost face-on to almost edge-on

disks, implying that the torque-energized disk is significantly more beamed than the un-

torqued disk. A temporary decrease is only observed for the most edge-on cases, again

due to a temporary dimming of the inner most regions of the disk.

These features are all symptomatic of the fact that the black hole torques the accretion

disk and deposits energy and angular momentum in the disk. This extra source of energy

that is dumped into the disk and that tends to affect the disk outward of the external torque

location constitutes the starting point for the analysis of Section2.3where we attempt to

explain the ”deep minimum state” of the Seyfert galaxy MCG-6-30-15 as the result of

just such a sporadic torquing event.
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Figure 2.17: Evolution of disk in Schwarzschild spacetime for torque at R/M=10. Figure
shows the early stages in the evolution of the surface density profile with the solid line
being the untorqued steady-state profile (dashed-line:t = 0.8, dot-dashed-line:t = 2.53,
dotted-line:t = 8.0).

Figure 2.18: Evolution of disk in Schwarzschild spacetime for torque at R/M=10. Figure
shows the untorqued steady-state profile (solid-line) as well as the late-time evolution of
the torqued profile (dashed-line:t = 25, dot-dashed-line:t = 80, dotted-line:t = 253).
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Figure 2.19: Evolution of disk in Schwarzschild spacetime for torque at R/M=10. Figure
shows the early evolution of the dissipation function with lines and times corresponding
to those of figure2.18. The qualitative feature is again a drop inward of the torque
location and an increase outward.

2.3 Can we interpret the “Deep Minimum State” of MCG–

6-30-15 as a sporadic torquing event?

In addition to exploring the general characteristics of sporadically-torqued disks, a central

motivation for this study are theXMM-Newtonobservations of the Seyfert galaxy MCG–

6-30-15. In particular, we would like to explore whether the enigmatic “Deep Minimum

State” of this AGN could correspond to a sporadic torquing event, possibly induced by the

formation of a temporary magnetic connection between the inner accretion disk and either

the plunging region of the disk or the rotating event horizon. There are two defining char-

acteristics of the Deep Minimum State that must be reproduced by any successful model,

the extremely broadened X-ray reflection features (implying a very centrally concentrated
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Figure 2.20: Evolution of disk in Schwarzschild spacetime for torque at R/M=10. Figure
shows the late-time evolution of dissipation function with lines and times analogous to
those of figure2.18.

X-ray irradiation pattern) and the factor 2–3 drop in the observed X-ray continuum flux.

A major uncertainty when relating disk models to X-ray observations is always the re-

lation between the dissipation within the disk (predicted by the models) and the emission

of the observed X-rays. If we suppose that a local disk-corona radiates a fixed fraction of

the underlying dissipation into the X-ray band, the results of this Chapter quickly lead to

a contradiction between the sporadically-torqued disk model and the observations. While

the model does predict a temporary dip in observed luminosity for some observer in-

clinations (that one might be tempted to identify with the continuum drop in the Deep

Minimum), this dip is due to a dimming of the innermost regions of the accretion flow

as a result of the damming of the mass flux. This is precisely the part of the flow that

we wish to be enhanced in order to explain the simultaneous broadening of the X-ray

reflection features.

Within the (standard) accretion disk corona framework, the relation between the dis-
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Figure 2.21: Evolution of disk in Schwarzschild spacetime for torque at R/M=10. Figure
shows the observed luminosity starting at untorqued steady-state with t=0. The observed
luminosity is determined for angles of 10 (solid-line), 30 (dashed-line), 60 (dot-dashed
line) degrees, and 80 degrees (dotted line). Although the magnitude of the observed lu-
minosity is not the same in the untorqued steady-state for all angles, we have normalized
them in order to see the change with respect to the untorqued state. Note the presence of
a drop in the luminosity as the angle of inclination decreases.

sipation within the disk and the emission of the observed X-rays depends on the repro-

cessing of disk photons by the corona. We suggest this relation changes when the system

departs from steady-state as the sporadic torque engages and will use this, in the next

section, to discuss a scenario for the Deep Minimum spectrum.

2.3.1 Quenching the X-ray corona with returning radiation

The assumption that the X-ray emission from the disk corona locally tracks the dissipa-

tion in the underlying accretion disk is clearly an oversimplication. For example, Krolik

& Hawley (2001) have used high-resolution pseudo-Newtonian simulations to show that

there is a rather extended transition (occurring near but slightly outside of the radius of
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Figure 2.22: Evolution of disk in Kerr spacetime for torque at R/M=2 and spin parameter
a= 0.998. Figure shows the surface density profile in untorqued steady-state (solid-line)
as well as the approach to steady-state torqued profile (dashed-line:t = 10000).

marginal stability) from the pure MHD turbulent region characterizing the bulk of the disk

to the more laminar flow present in the plunging region. Since the heating of the corona

is almost certainly due to reconnection and MHD wave heating from the underlying disk,

the fraction of the dissipated energy transported to the corona will certainly change within

this transition region, leading to a violation of the simple assumption employed in our toy

models. A time-variable magnetic torque of the kind we envision in this paper might

alter the MHD and thermodynamic properties of the gas and such a scenario might not

be compatible with the one we describe in the thin-disk approximation. In other words,

we can imagine that the external torque changes both the radiative efficiency of the gas as

well as local MHD properties thereby invalidating the treatment of the magnetorotational

instability as a local kinematic viscosity. Global disk simulations focusing on the forma-

tion and properties of the corona are required to address this issue and, hence, are beyond
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Figure 2.23: Early evolution of disk in Kerr spacetime for torque at R/M=2 and spin
parametera = 0.998. Figure shows the density profile with the solid line being the un-
torqued steady-state profile (solid-line:t = 0) and the other profiles matching the times
and line styles for figure2.17of the Schwarzschild figure.

the scope of this Chapter.

We do, however, note an important and previously neglected physical effect that could

substantially change the structure of a disk corona in a strongly torqued disk — Compton

cooling by flux emitted elsewhere in the accretion disk and, in particular, by “Returning

Radiation”. Consider a geometrically-thin accretion disk around a near-extremal Kerr

black hole, and suppose that it possesses a disk-hugging X-ray corona energized from

the underlying disk. Now suppose that the central regions of the disk are subjected to

a significant torquing event. As shown above, the work done by the torque is rapidly

radiated from the accretion disk in a very centrally concentrated manner. The torque-

induced emission will be a combination of both thermal optical/UV radiation and hard

X-ray emission produced by the corona associated with the torque-energized regions of

the disk. Now, some fraction of the torque-induced emission will strike the disk at larger

42



Figure 2.24: Late evolution of disk in Kerr spacetime for torque at R/M=2 and spin
parametera = 0.998. Figure shows the untorqued steady-state profile (solid-line) as
well as the late-time evolution of the torqued profile (dashed-line:t = 25, dot-dashed-
line:t = 80, dotted-line:t = 253).

radii — this will be particularly prevalent if the disk is flared or warped, but will occur

even in flat disks due to strong relativistic light bending effects (i.e., Returning Radia-

tion; Cunningham 1973). This extra irradiation will enhance the Compton cooling of the

corona at these larger radii. At the very least, the additional cooling will lead to a decrease

in the Compton amplification factor of the corona and a spectral steepening of the coro-

nal emission. One could envisage a situation, however, in which the Compton cooling

becomes so extreme that the corona completely collapses and local EUV/X-ray emission

ceases.

Some essential aspects of this scenario can be captured in a simple model based on

energy conservation, following Haardt & Maraschi (1991, 1993). Consider the X-ray

emitting corona above a unit-area patch of the disk at a radiusr. If a fraction f of the
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Figure 2.25: Late evolution of disk in Kerr spacetime for torque at R/M=2 and spin
parametera = 0.998. Figure shows the early evolution of the dissipation profile in ad-
dition to the untorqued steady-state (solid-line) for the same times and line styles of the
Schwarzschild Fig.2.17.

Figure 2.26: Evolution of disk in Kerr spacetime for torque at R/M=2 and spin parameter
a = 0.998. Figure shows the late stage evolution of the dissipation function with times
and line-styles compatible with those of Fig.2.18.
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Figure 2.27: Evolution of disk in Kerr spacetime for torque at R/M=2 and spin pa-
rametera = 0.998. Figure shows the luminosity observed at the same angles as in the
Schwarzschild case (10 degrees, solid-line; 30 degrees, dashed-line; 60 degrees, dotted-
dashed-line; 80 degrees, dotted line). Note how the smallest torqued steady-state rise
occurs for the intermediate angle of 55 degrees. The lack of a drop in the observed lumi-
nosity comes from the presence of the external torque nearer to the inner boundary in the
radial coordinate than in the Schwarzschild case.

energy dissipated in the underlying disk goes into heating the corona, the heating rate is

H (r) = f D(r). (2.28)

By definition, the (Compton) cooling rate of the corona is(A− 1)Fs, whereA is the

Compton amplification factor andFs is the soft photon flux passing through the corona

which will act as seed photons for the inverse Compton scattering process that generates

the X-rays. Because the thermal timescale of the corona is very short, it is appropriate

to assume an instantaneous balance between heating and cooling. Equating heating and

cooling gives,

f D(r) = (A−1)Fs. (2.29)

We now determineFs by examining energy conservation of the colder disk underlying
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the corona. There are three contributions to that we must consider. Firstly, the por-

tion of the internal dissipation within the disk that doesnot get transported into the disk

will become thermalized in the cold disk and contribute an amount(1− f )D(r) to the

disk heating. Secondly, some fraction of the locally generated coronal fluxξ1 f D(r) will

impinge on the disk and be reprocessed into soft flux. The parameterξ1 encapsulates

possible anisotropies in the coronal flux and the albedo of the disk, but will typically be

of the order ofξ1 ∼ 0.2−0.5. Finally, as noted above, irradiation of our coronal patch

from other radii in the disk will contribute to the soft flux and hence the Compton cool-

ing. This will cool the corona due to both the direct action of the irradiating soft flux,

and the reprocessing/thermalization of the soft and hard irradiating flux. Suppose that the

non-local irradiating flux isR (r) times the locally produced flux. The corresponding soft

flux contributing to the Compton cooling will beξ2R D(r), whereξ2≤∼ 1 parameterizes

the fraction of this non-local emission that ends up as soft flux. Hence, the total soft flux

at a particular location in the disk will be

Fs = ξ1 f D(r)+ξ2R (r)D(r)+(1− f )D(r). (2.30)

Solving forA from equation2.29, we get

A = 1+
f

ξ2R (r)+1− f (1−ξ1)
. (2.31)

Of course, within this simple model the total energy dissipated within the corona

is a fixed fraction of the underlying dissipation irrespective of the (cooling) soft flux.

However, the amplification factor is significantly reduced by Returning Radiation if

R(r)>ξ−1
2 [1− f (1−ξ1)] (2.32)

which, for canonical values off = 1 andξ1 = ξ2 = 0.5, corresponds toR (r)>1. The

resulting coronal spectrum from the affected regions of the disk would be expected to

steepen significantly, possibly placing a large fraction of the emission into the unobserv-

able EUV band.
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For a flat disk at large radii subjected to returning radiation, we haveR (r) = R0(a)+

∆ηR∞(a), where∆η is the enhancement in the efficiency of the disk due to the inner

torque andR∞(a) andR0(a) are dimensionless functions of the black hole spin parameter

given by the fitting formulae of Agol & Krolik (2000). For a near-extremal Kerr black

hole (a= 0.998), we haveR0≈ 0.2 andR∞ ≈ 1. Thus, we can see that even in the absence

of disk flaring or warping, returning radiation alone could significantly depress coronal

X-ray activity at large radii if

∆η>
1− f [1−ξ1]

ξ2
−0.2. (2.33)

Thus, although there is some dependence on the properties (e.g., isotropy and patchiness)

of the corona and the ability of the disk to reprocess and thermalize any incoming flux,

the corona will be depressed if the disk is in a “spin-dominated” state (∆η≈ 1 or greater),

i.e., a state in which the disk is shining via the release of black hole spin energy rather

than gravitational potential energy.

2.3.2 A proposed scenario for the MCG-6-30-15 Deep Minimum State

Let us now return to MCG–6-30-15 and the sporadic external torque model for its Deep

Minimum State. We suppose that the normal state of this system is that of a standard

untorqued accretion disk that might well be described by the standard accretion models

of Novikov & Thorne (1974) and Page & Thorne (1974). We then suppose that some shift

in magnetic configuration caused the accretion disk to become magnetically torqued by

either the plunging region or the rotating black hole itself. We hypothesize that this event

signals the onset of a Deep Minimum State.

On timescales shorter than the viscous timescale of the inner disk (tvisc∼ 1hour), we

expect this torquing event to lead to a damming of the accretion flow and a true dimming

of the disk interior to the location where the connection has occurred. Current instru-
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ments are not able to define the broad iron line profile on a 1 hour timescale and, hence,

the predicted temporary narrowing of the broad iron line would not have yet been ob-

served. However, on longer timescales, the disk will tend to the new torqued steady-state

(provided the torque is sufficiently long-lived).

If the magnetic torquing occurs in the very centralmost regions of the disk (which is

likely in all of the scenarios that we are envisaging), the torqued steady-state will possess a

much more centrally concentrated dissipation pattern. As described above, some fraction

of this central flux will strike the disk further out (the Returning Radiation phenomenon)

and possibly lead to a Compton suppression of the X-ray emitting corona there. Only the

central portions of the X-ray emitting corona which are being vigorously energized will

contribute significantly to the observed X-ray flux.

It is simple to see that theoverall X-ray luminosityescaping the system is unlikely

to drop, and will probably rise, within this scenario — the non-local cooling is only im-

portant for∆η > 1, in which case the part of the disk directly energized by the torque

will produce coronal luminosity in excess off Ṁc2. Even accounting for the fact that

half of this may strike the disk and be reprocessed into soft flux, theoverall X-ray lumi-

nosity of the torqued disk will inevitably exceed that of the untorqued disk (0.3 f Ṁc2).

However, the highly centrally concentrated nature of the torqued emission coupled with

the suppression of the X-ray emission at larger radii means that this X-ray luminosity

is highly beamed into the plane of the disk, and theobserved X-ray fluxfor an observer

with an inclination of 30◦ can readily drop (Fig.2.28). In other words, the observed

coronal activity is suppressed by cooling from a powerful photon source that goes largely

unobserved due to beaming effects.
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disk plane

i

Figure 2.28: Polar diagram showing observed intensity as a function of viewing angle
for the case of a near-maximal Kerr black hole (a = 0.998) and (from left to right) a
ring source atr = 2rg andr = 8rg. The circular curve is for isotropic emission. From
Dabrowski et al. (1997).

2.4 Conclusions

Both non-relativistic and fully-relativistic MHD simulations of black hole accretion sug-

gest the ubiquity of weak torques across the radius of marginal stability (Hawley & Krolik

2000, 2001; De Villers, Hawley & Krolik 2003; Gammie, Shapiro & McKinney 2004).

However, it is still far from clear whether these torques can ever achieve the strength re-

quired to allow a decline of the overall mass-energy of the black hole, due to spin-down

of the hole, a requirement for the kind of spin-dominated accretion disks that we have

been discussing within the context of MCG–6-30-15. Significantly more simulation work

is needed to address this question.

If one makes the assumption that such strongly torqued disks are possible, they pro-

vide a plausible and theoretically-attractive explanation for the extremely broadened X-

ray reflection features seen in the Deep Minimum State of MCG–6-30-15 (Wilms et al.

2001; Reynolds et al. 2004) as well as the Galactic Black Hole Binary XTEJ1650–500

(Miller et al. 2002). Given this hypothesis, we can ask whether the onset of the Deep

Minimum State corresponds to the occurrence of a strong torquing event.
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We address this question through analytic and semi-analytic time-dependent toy mod-

els of torqued accretion disks. Using these models, we have shown that the simple model

of a sporadically-torqued diskfails to explain the phenomenology of the Deep Minimum

State transition. However, it would be premature to dismiss torqued-disk models on the

basis of this failure. In particular, the real culprit may be the assumption that the local

X-ray emission is a fixed fraction of the dissipation in the underlying disk. We discuss

a particular scenario in which all but the innermost X-ray emitting corona is quenched

by returning radiation when the torque is engaged. Other possibilities include changes

in the structure of the MHD turbulence as a result of the strong torquing event that, in

turn, could readily change the fraction of the dissipated energy that is transported into the

corona.

An alternative paradigm is the gravitational light-bending model of Fabian & Vaughan

(2003) and Miniutti & Fabian (2004). Here, the primary X-ray source is located on the

black hole spin axis. A transition into the Deep Minimum State corresponds to a migra-

tion of the X-ray source down to 2–3GM/c2, with the light bending producing both an

enhancement in the central illumination of the accretion disk and a dimming of the ob-

served X-ray continuum flux. While the physical nature of the axial X-ray source remains

unclear, it is an appealing aspect of this model that it reproduces the long-term temporal

behavior of the iron line strength (Miniutti & Fabian 2004).

It is uncertainty in the geometry of the primary X-ray source that prevents us from

distinguishing between the torqued-disk and light-bending models. The most promis-

ing observational approach is to search for a reverberation delay between short timescale

flickering in the X-ray continuum and the corresponding response in the X-ray reflec-

tion signatures. If measurements of this time-delay demonstrate that the X-ray source

in the Deep Minimum is indeed 2–3GM/c2 [corresponding to 10−15(M/106M�) light

seconds] above the central disk plane, strong light-bending must occur and the need for a
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torqued disk is removed. Measurements of this time-delay will constrain the X-ray source

geometry and allow the degeneracy between these two models to be resolved but require

future high-throughput observations. Also, future high throughput missions may be able

to look for the short-lived damming phase via a temporary narrowing of the broad iron

line.
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Chapter 3

Magnetic Flux-Trapping Around Black

Holes

Despite years of observational and theoretical work, we are at present still uncertain of

the basic mechanism behind jets. Whatever this mechanism is, it must tap into one or

both of two available energy sources. The first is the gravitational potential energy of

matter in the accretion disk, and the second is the rotational energy of the black hole. The

most probable way that an accretion disk can drive a wind is by field lines threading the

disk with geometry that favors loading of field lines by disk plasma (Blandford & Payne

1982). Unfortunately, this method seems to fail to produce the highly collimated, highly

relativistic jets (essentially due to the mildly relativistic velocities that characterize disk

rotation). The alternative involves spin-energy extraction of the black hole itself via the

BZ mechanism (Blandford & Znajek 1977). The power extracted from a Kerr black hole

with dimensionless spin parametera∗ threaded by a magnetic field of strengthBH (in the

membrane paradigm sense; see Thorne, Price & Macdonald 1986) is

LBZ ≈
1
32

ω2
FB2

Hr2
Ha2
∗c (3.1)
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whererH is the radius of the event horizon andω2
F = ΩF(ΩH −ΩF)/Ω2

H , with ΩH and

ΩF being the angular velocities of the black hole and magnetic field lines, respectively.

It is often argued (e.g., see BZ) that the magnetic field structure adjusts itself such that

ΩF = ΩH/2 (Phinney 1983), hence maximizingω2
F to a value of 1/4. Although the

original formula of Blandford & Znajek was derived via perturbation theory and hence is

strictly valid only for low values of spin, numerical simulations have shown that equation

3.1 is valid at least up to a spin ofa∗ = 0.9 (Komissarov, 2001).

While the initial work of BZ was based on force-free black hole magnetospheres,

the basic mechanism is seen to operate in the recent generation of fully relativistic MHD

accretion disk simulations (e.g., see Koide et al. 2000; Komissarov 2004, De Villiers et al.

2004, McKinney & Gammie 2004, McKinney 2005a,b,c). Furthermore, these simulations

do indeed support the hypothesis that the field structure adjusts so as to giveΩF = ΩH/2

for those field lines that thread the horizon.

A major uncertainty in the study of the BZ mechanism, however, is the strength of the

black hole-threading magnetic field,BH . Until the early 1990’s, the maximum strength of

the hole-threading magnetic field was determined by considering the strength of the disk-

threading field. If the horizon-threading field exceeded the disk field strength, the argu-

ment went, the former would push its way off the hole via magnetic pressure and back into

the disk until the hole-threading field strength was no larger than the disk field strength.

Two major untested assumptions go into this scenario. The first is that the hole-threading

field is confined via Maxwell pressure by the disk-threading field, while the second is that

the disk-threading field grows to a large enough value to confine a sufficiently intense

black hole-threading field to explain the most powerful jets. In 1991, Balbus & Hawley

rekindled interest in an MHD instability (the MRI) uncovered by Chandrasakhar in 1961,

showing how it formed the foundation for angular momentum transport in accretion disks.

This revelation came at a price, in the sense that it operates only if the disk magnetic field
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is characteristically weak, or more precisely, when magnetic pressure in the disk is at least

an order of magnitude less than the gas pressure in the disk. These realizations form the

basis for the arguments starting with Lubow, Papaloizou & Pringle (1994), through Ghosh

& Abramowicz (1997), and ending with Livio et al (1999), pointing to basic constraints

on the strength of the hole-threading field. The picture that emerged was bleak for the BZ

mechanism. The indication was that the disk field must be smaller than believed possible

before the 1991 conclusions. To compound the problem, turbulent accretion was found to

be sufficiently diffusive (Lubow, Papaloizou & Pringle, 1994), making the already weaker

than hoped disk-threading field difficult to drag toward the black hole. Under these cir-

cumstances, Livio et al. (1999) showed that the accretion energy always exceeds black

hole spin energy. The upshot of these conclusions would be that hole-threading fields

must be weak, to the extent that the BZ power would be insufficient to explain the highly

relativistic jets.

We challenge the argument that Maxwell pressure from the large-scale magnetic field

threading the disk solely determines the field on the hole on the basis that such a conclu-

sion ignores the dynamics of the so-called plunge region. We argue that the plunge region

is effective in trapping a strong black hole-threading field despite weak disk-threading

fields. In contrast to Ghosh & Abramowicz (1997), we claim that the plunge region plane

cannot be force-free.

In more detail, the goal of this Chapter is to construct a non-relativistic model of ac-

cretion around a black hole to illustrate the strength of the black hole threading magnetic

field that results from the assumption of an inertially dominated accretion flow in the

plunge region. We consider the dragging of a poloidal magnetic field through a diffusive

accretion disk toward a black hole, for different values of the effective magnetic Prandtl

number of the disk and varying disk thickness. We show that the strength of the hole-

threading magnetic field can be substantially larger than the field in the disk and that the

54



Figure 3.1: Toy model setup for a diffusive accretion disk surrounding a black hole.
Courtesy of C. Reynolds.

increase in the field strength on the horizon increases with larger Prandtl number and

disk thickness. The relativistic generalization of this model will be presented in the next

chapter.

3.1 The toy model

Here we construct a simple model to study the dragging of an external magnetic field by

an MHD turbulent black hole accretion disk. While the magnetic field will be (essentially)

perfectly frozen into the accreting plasma on small scales, we follow Lubow et al. (1994)

and Heyvaerts, Priest & Bardou (1996) in assuming that reconnection within the MHD

turbulence allows a large scale magnetic field to diffuse through the turbulent plasma

with aneffectivemagnetic diffusivityη. The question we want to address is the nature of

the balance between inward dragging of the magnetic field by the accretion flow and the

outward diffusion of the magnetic field. This competition determines the strength of the
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magnetic field threading the black hole. Figure3.1shows a cartoon of our toy model.

Our accretion disk is a standard geometrically thin Shakura-Sunyaev (1973) disk. We

describe angular momentum transport in the disk using the usualα-prescription, and as-

sume that the velocity field within the disk is not affected by the large scale magnetic

field (i.e., we do not allow the large scale field to act back and affect the dynamics of the

accretion disk). Within the body of the accretion disk, the large scale electromagnetic

field of interest is taken to satisfy Maxwell’s equations,

~5×~E =−∂~B
∂t

(3.2)

~5×~B = µ~J (3.3)

and a simple Ohm’s law of the form

~J =
1

µη
(~E +~v×~B) (3.4)

where~v is the flow velocity of the plasma, and we are assuming that the field will vary

slowly thereby allowing us to neglect the displacement current in equation3.3. We now

derive the equation that governs the structure of the magnetic field in the accretion disk.

By writing the current in terms of~B from equation (3.3) and the electric field in terms of

~B from equation (3.4), we can rewrite the induction equation (eq.3.2) in terms of~B,

~5×
(

η~5×~B
)
− ~5×

(
~v×~B

)
=−∂~B

∂t
. (3.5)

Using the usual form of the vector potential

~B = ~5×~A (3.6)

and imposing the gauge condition

~5·~A = 0 (3.7)

we have

5×

[
−η52~A−~v×

(
~5×~A

)
+

∂~A
∂t

]
= 0. (3.8)
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For the rest of this chapter, we shall work in a cylindrical polar coordinate system (r,

φ, z), with the originr = 0 at the center of the disk (i.e., the location of the center of the

black hole), and the planez= 0 coincident with the mid-plane of the accretion disk. From

Stokes’ Theorem, we can write the flux threading a ring described by fixedr and fixedz

in terms of theφ component of the vector potential as,

ψ =
Z

S
~B·d~a =

Z
S

~5×~A·d~a =
Z

∂S
~A·d~l = 2πrAφ, (3.9)

whereSdenotes a circular area spanned by fixedr andzand∂Sdenotes its ring boundary.

At this point, we assume that the large scale magnetic field is axisymmetric. A qualitative

discussion of departures from this assumption will be presented in section3.3.2. Under

this assumption, the poloidal components of equation3.8can be integrated to give,

−η
[

∂2ψ
∂z2 + r

∂
∂r

(
1
r

∂ψ
∂r

)]
+vr

∂ψ
∂r

+
∂ψ
∂t

= 0. (3.10)

This equation describes the time-evolution of the magnetic flux through any given ring

described by a fixed value ofr andz. The first term (involving a second-derivative with

respect toz) describes the diffusion of the magnetic field due to magnetic tension asso-

ciated with field-line curvature, whereas the second term (involving a second derivative

with respect tor) describes diffusion driven by gradients in magnetic pressure.

We wish to apply equation3.10in the mid-plane of our geometrically-thin accretion

disk (z= 0) and examine the magnetic flux enclosed as a function of radius in the diskr.

The vertical structure of the disk/field only enters in the first term of equation3.10(i.e.,

the magnetic tension term). Following Heyvaerts, Priest and Bardou (1996, hereafter

HPB), we assume that the flux within the disk has az-dependence given by,

ψ(r,z) = ψ(r,0)+
z2

2
ψ2 (3.11)

whereψ2 is the value of∂
2ψ

∂z2 at the center plane of the disk at distancer from the black

hole. This amounts to assuming that the large scale field is smooth inside of the disk. By
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differentiating with respect toz we have

∂ψ
∂z

= zψ2, (3.12)

so, introducing the disk thicknessh, we can relateψ2 to the value of∂ψ
∂z at the disk surface(

∂ψ
∂z

)
+

= hψ2, (3.13)

where the plus sign denotes the upper disk surface. Thus, we can write an equation for the

midplane magnetic flux function for an accretion disk characterized by a radial velocity

inflow as

−η
[

1
h

(
∂ψ
∂z

)
+

+ r
∂
∂r

(
1
r

∂ψ
∂r

)]
+vr

∂ψ
∂r

+
∂ψ
∂t

= 0. (3.14)

We must specify the form of our externally imposed magnetic field. We suppose that the

original externally imposed field is uniform with strengthB0 in the vertical direction (i.e.,

the direction normal to the plane of the accretion disk). Therefore, the flux function can

be decomposed into three components,

ψ(r,z; t) = ψBH(r,z; t)+a(r,z; t)+πr2B0 (3.15)

whereψBH(r,z; t) is the flux function associated with “cleaned” black hole-threading field

(which, we stress, is generated by currents in the disk), the final term on the RHS is just

the uniform imposed flux (generated by currents far enough away to be considered out-

side of our system), anda(r,z; t) accounts for all other (disk-threading) magnetic field

structures (generated, in principle, by currents either in or out of the disk plane). The

cleaned black hole-threading field refers to the configuration of the field on the horizon

membrane in the sense of Thorne & MacDonald, (1986). The basic idea is that whereas

the horizon proper is outside causal contact with the external plasma and cannot influence

it, the region just outside the horizon can still be important. Because of the divergent grav-

itational redshift as the horizon is approached, observers outside will see a magnetic field

that is sluggish and compactified on the horizon. Because field features at the horizon
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do not affect the outside, the membrane paradigm eliminates this region by considering

an effective horizon membrane just outside of the real horizon where the magnetic field

is less dramatically influenced by the gravitational redshift. We assume that in the re-

gion exterior to the disk (|z| > h), the black hole-threading field has the form of a split

monopole,

ψBH(r,z; t) = ψ∗(t)
(

1−sgn(z)
z

(z2 + r2)1/2

)
(|z|> h), (3.16)

whereψ∗(t) is the hole-threading flux. To reiterate, this hole-threading field is generated

by toroidal currents flowing in the disk (|z| < h) and is a vacuum solution to Maxwell’s

equations elsewhere. While the precise structure of the cleaned black hole field is un-

clear, the choice of the split monopole has support from recent General Relativistic MHD

simulations (e.g., see Hirose et al., 2004; Komissarov 2005).

3.1.1 The magnetosphere

The z-derivative of the flux function at the disk surface is determined by matching the

magnetic flux function in the disk onto a solution for the magnetic field outside of the

disk (hereafter referred to as the disk magnetosphere). We assume that the plasma density

in the magnetosphere is very low, resulting in the magnetosphere adopting a force-free

configuration, i.e., (~∇×~B)×~B = 0. In addition, we assume that the Alfvén speed in the

disk magnetosphere is sufficiently high as to reduce the toroidal field to essentially zero

(through the production of torsional Alfvén waves). SettingBφ = 0, the field in the disk

magnetosphere becomes potential (~∇×~B = 0) and the flux function obeys

Dψ = 0 (3.17)

whereD is the linear differential operator

D ≡ ∂
∂r

(
1
r

∂
∂r

)
+

∂
∂z

(
1
r

∂
∂z

)
. (3.18)
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Noting that both the imposed uniform field and (exterior to the disk) the black hole-

threading fieldψBH(r,z; t) individually obeyDψ = 0, the structure of the disk magneto-

sphere is determined by solving the potential problem fora(r,z; t), i.e.,Da = 0.

At this point, a brief discussion of ourBφ = 0 assumption (which leads to the po-

tential field condition) is in order. The differential rotation to which the disk plasma is

subjected produces toroidal fields that propagate outward into the magnetosphere as tor-

sional Alfvén waves. In the non-relativistic treatment here, we assume that the Alfvén

speed in the disk magnetosphere is large enough such that any twist in the magnetic field

is removed via a torsional Alfv́en wave. We also argue that this fact carries over into

the relativistic regime where the inner disk rotates at speeds close to the speed of light.

The reason for this is that it is the differential rotation that produces the toroidal field

component and not the direct rotational speed. In fact, detailed studies of non-rotating

(or slowly-rotating) black hole magnetospheres have shown that the field line rotation as-

sociated with a Keplerian accretion disk has only a small effect on the poloidal field as

compared with the equivalent non-rotating configuration (MacDonald 1984; Uzdensky

2004). In this sense, Keplerian accretion disks around slowly rotating black holes are

“slow rotators” (Uzdensky 2004).

3.1.2 The disk

For the rest of this chapter, we explicitly consider the behavior of the magnetic field in the

upper half of thez-plane,z> 0 — we suppose the system to be symmetric in thez= 0

plane. The tension term in eqn.3.14can be decomposed into(
∂ψ
∂z

)
+

=
(

∂ψBH

∂z

)
+

+
(

∂a
∂z

)
+

. (3.19)

The contribution from the hole-threading flux can be evaluated directly from eqn.3.16,(
∂ψBH

∂z

)
+
≈−ψ∗

r
, (3.20)
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where we have neglected a term which is smaller by a factor of(h/r)2. The remaining

contribution to eqn.3.19follows from the solution to the potential problemDa = 0 with

boundary conditionsa(r = 0,z; t) = 0 anda(r,z= 0;t) specified. As shown by HPB, this

gives (
∂ψ
∂z

)
z=h

= P
Z ∞

0
dx

[a(x,0;t)−a(r,0;t)]
π(r−x)2 − a(r,0;t)

πr
(3.21)

where “P ” signifies the principal part of the integral. We can now write an explicit

integro-differential equation for the time evolution ofa(r,0;t) in the diffusive part of

the disk (r > rms);

∂a
∂t

+
∂ψBH

∂t
+vr rB0 +

(
vr +

η
r

) ∂a
∂r

=

η
[

1
h

P
Z ∞

0
dx

[a(x,0;t)−a(r,0;t)]
π(r−x)2 − a(r,0;t)

hπr
− ψBH(t)

hr
+

∂2a
∂r2

]
. (3.22)

As part of our model, we must specifyh(r), v(r) andη(r). For definiteness, we define

h(r) by taking the ratioh/r as a fixed parameter of our model (in principle, one could

substitute a particular form forh(r) resulting from a detailed disk model). To specify the

radial velocity field, we follow Lubow et al. (1994) and split our disk into two zones

which we dub an “active” and a “dead” zone. In the active zone (rms < r < rdead), we

setvr = −ν(1/r − 1/rdead) whereν = αh2(GM/r3)1/2, andη = ν/Pm. The magnetic

Prandtl numberPm is a fixed and constant parameter of the active disk. Note that we

have introduced the usualα of accretion disk theory (in contrast with HPB who implicitly

employα ∼ 1). In the dead zone (rdead< r < rout), the diffusivity is still given byη =

αh2(GM/r3)1/2/Pm, but the velocity is set to zero. For computational necessities, we

impose an outer cutoff on the system atr = rout. We assume that the disk beyondrout

is a perfect and static conductor. Hence the total magnetic flux threading a loop (r =

rout,z= 0) is constant and has the valueπr2
outB0. The inclusion of the dead-zone makes

the evolution of the inner part of the system essentially independent of the position or

exact nature of ther = rout boundary. In particular, the dead zone acts as a reservoir of
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magnetic flux that can feed the actively accreting part of the disk — only in the outermost

parts of the active disk does the conservation of magnetic flux lead to a non-negligible

magnetic pressure trying to “suck” magnetic flux out of the active disk. The physical

nature of the dead zone will be discussed in Section3.3.1.

Finally, we must specify boundary conditions ona(r,0;t). The implementation of the

inner radial boundary condition must capture the fact that the plunge region is extremely

effective at sweeping in poloidal magnetic field that crosses withinr = rms. Consider a

poloidal magnetic field line which is dragged towards the plunge region on the viscous

timescaletvisc≈ (rms/hms)2(r3
ms/GM)1/2α−1. Once in the plunge region, the radial ve-

locity of the disk material rapidly increases with no associated increase in the effective

magnetic diffusivity (indeed, to the extent that the plunge region becomes a laminar rather

than a turbulent flow, the effective magnetic diffusivity may well plummet to very small

values). For the field strengths under consideration here (i.e., with an energy density

much less than the kinetic energy density of the accretion flow) inward advection of the

field line on a dynamical timescaletdyn≈ (r3
ms/GM)1/2 will dominate all other processes.

Since the characteristic evolution timescale of the system istvisc� tdyn, flux conservation

gives that the vertical magnetic field in thez = 0 plane in the plunge region compared

with that in the disk just outside is

Bz(plunge)
Bz(disk)

≈
tdyn

tvisc
≈ α

(
h
r

)2

� 1. (3.23)

To a good approximation, we can say that the magnetic flux locally crossing the plunge

region is zero. Thus, the only magnetic flux passing through a loop(r < rms,z = 0) is

that which threads the black hole, i.e.,ψ(r ≤ rms,0;t) = ψ∗(t). To cancel the contribution

from the externally imposed uniform field in this region, we must have

a(r,0;t) =−r2B0/2 (r < rms). (3.24)

Thus, the appropriate inner radial boundary condition for eqn3.22 is a(r = rms,0;t) =
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−r2
msB0/2 and we must use eqn.3.24in the evaluation of the integral term of eqn.3.22.

The fact that∂a(rms,0;t)/∂t = 0 allows us to use eqn.3.22to evaluate the rate of change

of black hole-threading flux,

∂ψBH

∂t
= η(rms)

[
1
h

P
Z ∞

0
dx

[a(x,0;t)−a(r,0;t)]
π(r−x)2 − a(r,0;t)

hπr
− ψBH(t)

hr
+

∂2a
∂r2 +B0

]
r=rms

,

(3.25)

where we have used the continuity of∂a/∂r acrossr = rms to combine the third and fourth

terms on the left hand side of eqn.3.22. We can justify this assumption of continuity as

follows. Suppose that this derivative wasdiscontinuousacrossr = rms, resulting in a

discontinuity in the strength of the vertical magnetic field. This would lead to a large

magnetic pressure gradient and a very rapid rearrangement of material until continuity

was achieved. We do note, however, that we expect a rather narrow transition zone just

outside ofr = rms where vertical magnetic field goes from zero to the value characteristic

of the disk. We must spatially resolve this transition in our numerical model.

For the outer radial boundary condition, we seta(rout,z = 0;t) = −ψ∗(t) for some

rout > rdead. This amounts to bounding the entire system by a perfect and static conductor

in the disk plane (z= 0) for all r > rout, as discussed above.

With these assumptions, eqns.3.22 and 3.25 completely describe the evolution of

a(r,0;t) andψ∗(t) from some initial state once we fix the magnetic Prandtl numberPm,

the disk thicknessh/r, the characteristic radii of the problem (rms, rdead, rout), the external

field strengthB0, and the viscosity parameterα. In factα andB0 are trivial parameters of

the model, affecting only the scaling of the time coordinate and the absolute normalization

of a, respectively. Furthermore, the inclusion of the dead-zone makes the evolution of the

inner disk/field essentially independent of the location of the outer boundaryr = rout.

Hence, the non-trivial parameters describing this system arePm, h/r, andrdead. For our
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initial condition, we take

a(r,z= 0, t = 0) =

 −r2B0/2 (r < rms)

−r2
msB0/2 (r ≥ rms)

(3.26)

This amounts to saying that the initial currents flowing in the disk are only those required

to cancel the imposed uniform field in the plunge region.

3.2 Solution method and results

While equation3.17is solved via standard analytic techniques once we have a solution to

equation3.22, we solve eqn.3.22numerically by discretizing it on a logarithmic grid with

200 zones fromrms= 6 to rout = 150 with the dead-zone starting atrdead= 100. Here and

for the rest of this chapter, radii will be given in units of gravitational radiiGM/c2.

All terms (including the principal part integral) are differenced to second-order spatial

accuracy. The time evolution is achieved through a simple first-order explicit scheme. To

ensure numerical stability, we set the time-step to bedt =(1/dt2ad+1/dt2diff +1/dt2field)
−1/2,

where the advective, diffusive and field time-steps are given bydtad = 0.5min[∆r/(v+

η∗/r)], dtdiff = 0.5min[∆r2/η∗] anddtfield = 0.5min[h∆r/πη∗].

Figure 3.2a shows the time-evolution ofψBH for the case ofPm = 2 and various

choices ofh/r from 0.01 to 0.16. In all cases, the flux threading the black hole grows

from zero and achieves some positive steady state. The final equilibrium flux threading

the black hole always exceedsπr2
msB0 (corresponding toψBH

2π = 18B0), thereby establish-

ing the basic fact that the plunge region can aid in the accumulation of significant mag-

netic flux through the black hole. For thicker disks, the increased inward advection of the

field (due to the increased radial inflow speed of the accreting matter) coupled with the

decreased effectiveness of field diffusion leads to significant enhancements of the black

hole-threading flux above this baseline value. The dependence of the equilibrium value
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of ψ∗ on disk thickness and magnetic Prandtl number is shown in Fig.3.2b. For small

Pm, the enhancement of the hole-threading flux above the canonical value ofψBH
2π = 18B0

is very small. However, forPm of order unity or higher, there is a strongh/r-dependent

enhancement.

The full magnetic field configuration at any given time can be derived by solving the

potential problem fora(r,z; t) adopting the Green’s function approach laid out in HPB to

solve equation3.17.

In Figures3.3-3.5, we show the initial field configuration as well as the final con-

figuration forh/r = 0.08 and two choices of magnetic Prandtl numberPm = 2 and 20.

The initial configuration deviates from a simple uniform field due to the fact that flux is

excluded from the regionr < rms which leads to a “bowing” of the field lines away from

the radius of marginal stability. This curvature is rapidly reversed as field is advected in-

wards, finally achieving a steady state in which the bend angle of field lines as they enter

the diffusive part of the disk is approximately constant. As pointed out by Lubow et al.

(1994) and discussed below, we expect this bend angle (away from the disk normal) to be

i ∼ tan−1(hPm/r). This is indeed seen in our equilibrium solutions.

The central quantity of interest in this work is the magnetic field threading the black

hole event horizon. Recalling the definition of the flux function, it is straightforward

to show that the magnetic field threading the event horizon isBH = ψBH/2πr2
H where

rH = 2rg is the event horizon radius of the (slowly rotating) black hole considered in this

work. From the results described above, we conclude that the equilibrium flux threading

the black hole always exceeds the flux of the external uniform field through the plunge

region (πr2
msB0 corresponding toψBH

2π = 18B0), sometimes by a large factor in the case of

high effective magnetic Prandtl numbers and/or thick disks. Scaling to this fiducial flux,

we haveBH = 4.5ϒB0, whereϒ = ψBH/2π18B0. Using a least squares fit to the results

displayed in Fig.3.2, we find that a good approximation isϒ≈ 1+20Pm(h/r). Hence, we
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Figure 3.2:Panel (a): Time dependence of the black hole-threading flux forPm = 2 and
h/r = 0.01 (magenta dot-dot-dot-dash line), 0.02 (cyan dotted line), 0.04 (blue dot-dash
line), 0.08 (red solid line), and 0.16 (green dashed line). For comparison,A∗/B0 = 18
corresponds to the flux of the uniform external field threading the radius of marginal
stability. Time is in units of the viscous timescale atrms, tvisc = r2(R3/GM)/αh2. Panel
(b) : Equilibrium value ofA∗/B0 as a function ofh/r for Pm = 0.2 (green dashed line),
2.0 (red solid line) and 20.0 (blue dotted line).
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Figure 3.3: Magnetic field configuration for the initial condition of theh/r = 0.08 case.
The white line is the location of the radius of marginal stability and the black hole is in
the lower left corner. The scale is 50 gravitational radii (50GM

c2 ) on a side.

have

BH ≈ 4.5

[
1+20Pm

(
h
r

)]
B0, (3.27)

which is accurate to the 20% level forPm < 20. As we discuss below, the factor multiply-

ing thePmh/r term in eqn.3.27has a dependence on the size of the dead zone; the precise

form of eqn.3.27is strictly valid only forrdead= 100.
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Figure 3.4: Magnetic field configuration for the final state of thePm = 2, h/r = 0.08 case
with the same dimensions as the previous figure.

3.3 Discussion

3.3.1 Dependence on the size of the dead zone

At first glance, the dragging of magnetic flux by the accretion disk leads to a surprisingly

large enhancement in the black hole-threading field. However, as we will now explain,

simple arguments can be put forward to support the results encapsulated in eqn.3.27.

Firstly, we note that the existence of the dead zone is crucial for setting an overall size
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Figure 3.5: The final state of thePm = 20,h/r = 0.08 case. Note how the higher magnetic
Prandtl number results in a powerful inward dragging of magnetic field and subsequent
magnetization of the black hole. Each of these three figures is 50 gravitational radii
(50GM/c2) on a side.

scale to the magnetic disturbances introduced by the disk. To see this, consider the limit

in which rdead→ ∞ (also requiringrout→ ∞, of course). In this case, the imposed uni-

form magnetic field is dragged inwards by the accretion flow but a balance will never be

achieved between the inward advection and the magnetic tension — without an imposed

spatial scale, the field curvature through the disk and hence the magnetic tension can be

made arbitrarily small. A balance is possible only when one imposes an outer truncation
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on the part of the disk that drags the magnetic flux. In this case, the undragged field at

r > rdeadacts as an anchor and limits the vertical extent to which the magnetic field can be

appreciably distorted. Indeed, our calculations show that the magnetic field at|z|> rdead

is essentially just the imposed uniform field.

Now, as already noted, we find that the magnetic field threads the active part of the

diffusive accretion disk (rms < r < rdead) with a bend angle (away from the disk normal)

of tani ≡ Br/Bz≈ hPm/r. As shown by HPB and Lubow et al. (1994), this is a direct

consequence of a balance between outward magnetic diffusion due to field-line tension

and the inwards advection of magnetic field,

vr
∂ψ
∂r
≈ η∗

(
∂ψ
∂z

)
z=h

. (3.28)

Consider the field line that threads the inner edge of the diffusive disk atr = rms. This

field line follows a roughly parabolic path in the magnetosphere that can be described by

the flux functionΨ = Ψ0(r2 +2ξz) = constant. We can determine the parameterξ using

the fact that, at the disk plane, we haveBr/Bz≈ r/hPm,

Br

Bz
=−∂Ψ/∂z

∂Ψ/∂r
=− ξ

rms
≈
(

h
r

)
Pm, (3.29)

where we have dropped a term that is second order in(h/r). At a vertical distance of

z= rdead, this same field line has a cylindrical radiusRgiven by

R2 = r2
ms

[
1+2

rdead

rms

(
h
r

)
Pm

]
(3.30)

Using our observation above concerning the vertical extent of the field disturbances, we

use the fact that the field is essentially uniform for|z|> rdeadto read off the magnetic flux

threading the plunge region and hence the black hole,

ΦH = πR2B0 = πr2
msB0

[
1+2

rdead

rms

(
h
r

)
Pm

]
. (3.31)

In terms of the field threading the hole (puttingrms = 6rg) we get

BH = 4.5

[
1+

rdead

3

(
h
r

)
Pm

]
B0. (3.32)
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Figure 3.6: Magnetic field configuration for the plunge boundary condition. The figure
shows a zoom-in (10GM/c2 on a side) of the final field structure in thePm = 2,h/r = 0.08
case. A white vertical line on the accretion disk denotes the radius of marginal stability.

Thus we can see that the numerical factor multiplying the(h/r)Pm term in eqn.3.27 is

directly related to the value ofrdead.

The above discussion helps to elucidate the role of the plunge region in enhancing

the black hole-threading flux — the plunge region “shields” the diffusive part of the disk

from the large bundle of magnetic flux that threads the black hole. This bundle of flux is

the ultimate repository for the magnetic flux that has been scooped up by the accretion

flow. The larger the region of the disk that can drag the flux inwards, the larger is this
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Figure 3.7: Magnetic field configuration for the uniform flux bundle boundary condition.
The figure shows a zoom-in (10GM/c2 on a side) of the final field structure in thePm = 2,
h/r = 0.08 case. A white vertical line on the accretion disk denotes the radius of marginal
stability.

repository. To illustrate this issue, we have run a modified version of our code in which

the plunge region boundary condition is replaced with the assumption that the magnetic

flux contained withinr = rms has the form of a uniform field on the disk plane. We

employ canonical values of the model parameters;h/r = 0.08, Pm = 2, andrdead= 100.

As expected, we get a weak (50%) enhancement in the flux contained withinr = rms,

compared with over a factor of 3 for the plunge case. The magnetic field structures of the

two cases are illustrated in Fig.3.6and3.7.

Performing a full numerical solution to eqn.3.22 for rdead= 50, rdead= 100 and

rdead= 200 reveals that the enhancement of the magnetic flux increases withrdeadslightly
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more slowly than the linear relationship predicted by our simple arguments in this sec-

tion. Since the implementation of the dead zone is one of most artificial aspects of our

toy model, we will not explore this dependence in any more detail here. In real systems,

the dead zone might be identified with the outer edge of the MHD turbulence dominated

accretion disk, e.g., the self-gravity region in an AGN disk or the tidal truncation radius

for the disk in a Galactic Black Hole Binary (GBHB). Both of these radii are likely to

be at significantly larger radius thanrdead= 100 used here. Alternatively, if the magneto-

sphere is treated using a full MHD wind model, the crucial length-scale which determines

the magnetic field enhancement is likely be the vertical height of the Alfvénic surface. In

addition, the radius of the dead zone could also represent the transition radius in an Ad-

vection Dominated Accretion Flow (ADAF) outwards of which the extreme thinness of

the disk results in negligible inflow velocity. It is beyond the scope of this chapter to ad-

dress such models. However, our approach allows us to illustrate an essential point; that

the inward dragging of magnetic field over some region of the inner disk coupled with

the existence of the plunge region allows a significant enhancement in the strength of the

magnetic field threading the black hole.

3.3.2 Limitations of our approach

Before discussing the astrophysical implications of our result, we must address the three

major limitations of our approach. First, we have made no attempt to include relativistic

effects (beyond our simple treatment of the radius of marginal stability) on the dynamics

or electrodynamics of the disk/field system. Our model is an adequate representation for

slowly spinning black holes (where the radius of marginal stability is rather large and in a

comparatively low-gravity region of spacetime), but we acknowledge that a full relativis-

tic electrodynamic treatment is required to robustly treat the case of rapidly rotating black

holes. While the same basic phenomenon of magnetic flux trapping by the plunge region
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is at work around rapidly rotating black holes, the geometry of the system (i.e., the fact

that the radius of marginal stability is much closer to the event horizon) is unfavorable for

producing dramatic enhancements in the black hole-threading magnetic field. We show

this in the next chapter when we extend this model to the relativistic regime.

Second, we assume the existence of a pre-existing large scale magnetic field. The

origin of such a field depends upon the system under consideration. For the accreting

black hole at the heart of a Gamma-Ray Burst (GRB) collapsar, such a field may arise

naturally from the collapsed stellar envelope. In the case of AGN, the field corresponds

to that of the accreting interstellar medium. For GBHBs, the presence of a large scale

field probably depends on the mode of accretion, with wind-accretors likely possessing a

much stronger and better organized large scale field than Roche-lobe overflow accretors.

Third, we assume axisymmetric large scale fields with a disk magnetosphere con-

sisting of force-free and purely poloidal field. As mentioned, a more physical treatment

would entail matching an MHD wind solution to the disk-plane flux function. With such

an approach, one could capture the inertial effects of a disk outflow on the field structure,

the hoop stresses resulting from any toroidal fields present, and the angular momentum

losses in the disk due to the wind. These could have competing effects on the ultimate

ability of the disk to drag the field into the plunge region. The inertial effects will tend

to bend the field lines outwards, increasing the field-line curvature at the disk plane and

hence increasing outward diffusion of the field. The loss of disk angular momentum to

the wind, on the other hand, would lead to an increase in the radial velocity of the accre-

tion flow but no change in the magnetic diffusivity. This, in turn, increases the inwards

advection of the magnetic field. Clearly, more detailed calculations of this scenario are

warranted. As for the axisymmetric assumption, we note that Spruit & Uzdensky (2005)

have recently examined the dragging of a large scale magnetic field by an accretion disk

under the assumption that the MHD turbulence in the disk concentrates the field into small
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bundles (giving rise to the accretion disk equivalent of Sun spots). Through an analysis

of the dynamics of these bundles, they conclude that this is a generally favorable scenario

for accumulating a large amount of magnetic flux in the central regions of the disk. Thus,

in at least one specific model, an extreme deviation from axisymmetry aids in the inward

dragging of magnetic flux.

We reiterate that the principal result of this chapter is that the existence of a plunge

region together with magnetic field dragging in the accretion disk can significantly en-

hance the black hole-threading magnetic field and hence the BZ effect. Furthermore, the

enhancement becomes increasingly effective for thicker disks or higher magnetic Prandtl

numbers.

3.3.3 Astrophysical implications

Given the caveats discussed above, the results of this chapter have important implica-

tions for the strength of the black hole-threading field and the relevance of the BZ pro-

cess. Suppose that the magnetic pressure due to the large scale fieldB0 is a fractionf of

the maximum pressure in the accretion disk,pmax, i.e., B0 = (8π f pmax)1/2. Using this

together with eqn.3.1 and eqn.3.27 gives,LBZ ≈ 5πω2
F f pmaxϒ2r2

Ha2
∗c. Using the ex-

pressions forpmax for radiation pressure-dominated (RPD) and gas pressure-dominated

(GPD) disks from Moderski & Sikora (1996) and GA97, and assuming the usual BZ

impedance matching criterion is obeyed, gives

LBZ ≈

 1.5×1045α−1 f M8ϒ2a2
∗ RPD

9×1043α−9/10 f M11/10
8 ṁ4/5

−4 ϒ2a2
∗ GPD

(3.33)

where we have scaled to a black hole mass ofM = 108M8 andṁ= 10−4ṁ−4 is the mass

accretion rate in Eddington units. This can be directly compared with the expressions

for LBZ in GA97 if we set f α−1 ≈ 0.1 (which results from their relation betweenα and

the disk magnetic field). Forϒ = 1 (corresponding to small effective magnetic Prandtl
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numbers or very thin disks), we find low BZ luminosities that agree very well with those

computed by GA97. However, as we have shown, large magnetic Prandtl numbers and/or

thick disks can result in large enhancements of the black hole-threading fields, approxi-

mately described byϒ ≈ 1+2xPm(h/r), wherex∼ O(rdead/rms). The BZ luminosity is

then enhanced by a factor ofϒ2.

It is interesting to explore astrophysical consequences of the strongh/r dependence

of the equilibrium hole-threading fluxψ∗. There is mounting empirical evidence that

black hole systems produce jets only when a geometrically thick accretion disk is present.

The best case can be made for the GBHBs, as discussed by Fender, Belloni & Gallo

(2004). In their X-ray low-hard (LH) state (a.k.a. the power-law state; McClintock &

Remillard 2004) they display steady optically-thick radio cores which, in Cygnus X-1,

can be spatially resolved into a jet-like structure by VLBA (Stirling et al. 2001). It is

generally believed that the inner regions of the accretion flow in a LH-state GBHB system

is radiatively inefficient, hot, and hence geometrically-thick (h/r ∼ 0.5). However, the

radio jet is seen to shut off once the source has made a transition to the high-soft (HS)

state (or thermal state; McClintock & Remillard 2004) which is believed to correspond to

an inner accretion disk which is radiatively efficient and hence significantly thinner. We

postulate that the jet in the LH state is powered by the BZ effect which is enhanced by the

flux trapping effect of the plunge region. Some time after a transition to a HS state, the

system will possess a disk with a similar accretion rate but significantly reduced thickness.

For a fixed accretion rate, the maximum pressure in a disk scales aspmax∝ (h/r)−1. Using

our parameterization forϒ, we expect the BZ luminosity scales asLBZ ∝ f (h/r), provided

h/r � 1/xPm. Hence, due to the inability of a thin disk to trap flux on the black hole,

the BZ luminosity of the HS state will be much reduced leading to the suppression of the

radio jet.

The actual LH→ HS transition itself is particularly interesting. It is during this tran-
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sition (when the source crosses the “jet line” on the X-ray flux/color diagram) that power-

ful relativistic outflows are produced which, for example, produce the superluminal radio

blobs seen from microquasars. It is likely that the transition is driven by the thermal

collapse of the LH-state hot disk, producing a structure that eventually evolves into the

HS-state cold disk. The nature of the intermediate structure is unclear, however. It has

been suggested that the thermal collapse produces a magnetically-dominated region (e.g.,

Meier 2005) in which MRI-driven turbulence is suppressed and accretion proceeds only

through large scale magnetic torques. If the pre-collapse disk is threaded by a large scale

magnetic field, this field could readily become dynamically important in the post-collapse

disk (since rapid thermal collapse will proceed at constant surface density, producing a

disk pressure which scales aspmax ∝ h/r). Subsequent magnetic braking of the disk

would lead to rapid inflow, a rapid accretion of poloidal flux onto the black hole, and a

rapid increase in the importance of the BZ effect. The powerful ejections seen from GB-

HBs as they undergo this transition might be the result of such a scenario. The ejections

would terminate once the inner disk has ceased to be magnetically dominated (due to the

accretion of matter from the outer disk), hence re-establishing a turbulent state with high

effective magnetic diffusivity.

3.4 Conclusions

Black hole rotation is, in principle, a more than sufficient source of energy for energizing

even the most powerful relativistic jets. The viability of magnetic extraction of black hole

spin energy does, however, hinge on the strength of the horizon-threading poloidal mag-

netic field that can be established by the accretion flow. In this chapter, we have argued

that the plunge region of the black hole accretion disk has an important role to play in en-

hancing the horizon-threading field well above the modest levels suggested by previous
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works. We support this hypothesis by constructing a toy-model (that is non-relativistic,

assumes axisymmetry, and treats the fields away from the disk plane as potential) with

which we can follow the dragging of an external magnetic field by the disk and its sub-

sequent trapping by the plunge region. Our toy model suggests that the BZ effect can be

enhanced above the canonical estimates of GA97 by a factor of[1+ xPm(h/r)]2 where

Pm is the effective magnetic Prandtl number of the disk andx∼ O(rdead/rms). Even in

cases where the effective magnetic diffusivity is significant due to the MHD turbulence

(i.e.,Pm∼ 1), the BZ effect can be enhanced by one order of magnitude (or more) above

the GA97 value if the disk is geometrically-thickh/r ≈ rms/rdead. Theh/r-dependence

of this effect has an appealing resonance with the empirical evidence from GBHBs which

points to a close connection between the existence of powerful black hole jets and the

inferred properties of the accretion disk
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Chapter 4

Relativistic generalization of the flux

trapping model

Our goal in this Chapter is to construct a relativistic version of the flux-trapping model

described in Chapter3. We show that thea = 0 limit produces flux accumulation values

close to those obtained in the non-relativistic study, establishing the validity of the Chap-

ter 3 results for slowly spinning black holes. Our central result is that the ability of the

plunge region to enhance the black hole threading field decreases as the spin of the black

hole increases. We find that the BZ power is not a monotonically increasing function of

black hole spin and, instead, has a maximum whena≈ 0.8. In section4.1.1, we describe

the formalism of the relativistic extension of the flux-trapping model. We discuss the

covariant nature of the magnetic flux function and the equations it satisfies. In section

4.2 we present our results and show that the hole-threading flux decreases with increase

in spin. This appears to be largely a geometrical effect connected to the radial positions

of the marginally stable orbit and the horizon as a function of spin. In section4.3, we

discuss the implications of our model in view of the recently discovered correlation be-

tween jet power and accretion rate found by Allen et al. (2006). Section4.4presents our
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conclusions.

4.1 The relativistic flux-trapping model

We consider a geometrically-thin accretion disk around a Kerr black hole threaded by a

large scale poloidal magnetic field. On small scales, the magnetic field lines are frozen

into the highly conductive plasma of the accretion disk. However, if we coarse-grain

our view to larger scales, we expect that the large scale magnetic field lines can undergo

turbulent diffusion through the disk plasma. Heyvaerts et al. (1996) have shown that the

effective magnetic Prandtl number (i.e., the ratio of the effective turbulent viscosity to

the effective turbulent magnetic diffusivity) is order unity. Hence a field line threading

the disk will be dragged inwards by accretion, but radial magnetic pressure gradients

and magnetic tension (associated with field line curvature as it threads the disk) will lead

to competitive field line diffusion. We expect the region above and below the disk to

possess a very low plasma density, and hence for the magnetic field in this region to have

a force-free configuration. As argued in Chapter 3, poloidal field lines threading through

the plunge region of the accretion flow will be dragged very rapidly onto the black hole,

leaving the plunge region devoid of poloidal magnetic flux.

Below we enumerate the idealizations and construction of our model system.

1. Our accretion disk is described by a Novikov & Thorne (1974) disk truncated at

the marginally stable orbit, inwards of which is the plunging region. We assume

that the large scale magnetic field does not perturb the structure of the turbulent

accretion flow. The central object is assumed to be a standard Kerr black hole

whose gravitational potential dominates the system.

2. In the magnetosphere (the region outside of the black hole and accretion disk) we

assume that the plasma density is negligible and hence that the magnetic field is
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force free. In addition to this, we also impose the constraint that the poloidal mag-

netospheric currents are weak or, equivalently, that the toroidal component to the

magnetic field is negligible. Macdonald (1984) shows that spin-up of the hole has

negligible effect on the poloidal field structure which allows us to treat the magne-

tosphere in the limit of negligible currents. With these assumptions, the system is

described as a vacuum solution to Maxwell’s equations (in the Kerr spacetime) in

the magnetosphere.

3. As discussed above, we assume that no poloidal magnetic flux threads the plunge

region of the accretion disk. Any magnetic flux that is advected inwards across the

radius of marginal stability is immediately added to the flux bundle threading the

black hole.

4. The boundary condition on the horizon requires imposing finite electric and mag-

netic fields as measured by freely-falling observers crossing the horizon. Znajek

(1978) calculated the appropriate boundary condition on the horizon under this as-

sumption for a force-free magnetosphere. This condition is imposed on the horizon

in our model as

ψ =
2ψ0

1+
[
sin2θ/(1−cosθ)2

]
exp[−2a2cosθ/(r2

+ +a2)]
, (4.1)

wherer+ is the radial coordinate of the horizon andψ0 is the magnitude of the flux

threading the horizon which is determined by the numerical solution. In essence,

the boundary condition imposed on the horizon amounts to fixing thea andθ de-

pendence of the above function. Finally, the fundamental assumption of our model

is that no magnetic flux threads the plunging region of the disk [revt < r < rms;

θ = π/2− tan−1(h/r)].

5. Far away from the black hole and at poloidal angles above the accretion disk, we

assume the large-scale field is uniform and impose an appropriate outer boundary
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condition that captures this assumption. Therefore, the black hole magnetosphere

is surrounded by a perfectly conducting sphere. Far away from the black hole but in

the plane of the accretion disk we impose a “dead zone” as in Chapter3. The only

difference between this region and the active disk region is that the radial inflow

velocity is set to zero. In the dead zone, therefore, magnetic field lines are not

dragged toward the black hole. As pointed out in greater detail in Chapter3, this

dead zone dramatically reduces the sensitivity of the system to the treatment of the

outer boundary. The physical nature of the dead zone is addressed in Chapter3.

Unlike in Chapter3, the outer boundary condition here is fixed.

axis

outer boundary

plunge

horizon

                                

disk

  

Figure 4.1: Boundaries for our axisymmetric simulations
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4.1.1 Basic equations of our model

We assume that the underlying spacetime metric is the Kerr (1963) metric, i.e., that the

gravitational field of the rotating black hole completely dominates over that of the ac-

cretion disk. Throughout this Chapter, we will work in Boyer-Lindquist coordinates in

which the Kerr metric takes the standard form,

dS2 = −
(

1− 2Mr
ρ2

)
dt2− 4Marsin2θ

ρ2 dt dφ (4.2)

+
Σ
ρ2 sin2θdφ2 +

ρ2

∆
dr2 +ρ2dθ2,

where

ρ2 = r2 +a2cos2θ, (4.3)

∆ = r2−2Mr +a2, (4.4)

and

Σ = (r2 +a2)2−a2∆sin2θ. (4.5)

The basic equation describing the evolution of the (large-scale) magnetic field within

the acccretion disk is obtained by following the relativistic analogue of the non-relativistic

treatment of Chapter3. One difference between our approach and that of Chapter3 is

that we only seek the stationary (time-independent) solution; this results in a significant

simplification in the relativistic equations that we must deal with. As in Chapter3, we

also assume that the poloidal field structure is axisymmetric. The equation describing the

field evolution within the disk is obtained by combining Maxwell’s equation

5b Fab = µJa, (4.6)

with a simplified Ohm’s law

Ja = σFabub−uaJbub, (4.7)
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whereFab is the standard Faraday tensor,µ is the permeability of the plasma,Ja the 4-

current,ua the 4-velocity of the accretion disk flow, andσ is the effective conductivity of

the turbulent plasma. This gives

5b Fab =
1
η

Fabub−µuaubJb, (4.8)

whereη = 1/µσ is the effective magnetic diffusivity. The effective nature of these disk

quantities comes from the fact that although the conductivity itself is expected to be very

large in these astrophysical plasmas, they are characterized by turbulence which means

that reconnection cannot be neglected. In order to capture the effect that magnetic recon-

nection has on the coarse-grained field geometry, one introduces a finite effective con-

ductivity or effective diffusivity. The second term on the right-hand side of equation4.8,

which we include for completeness, is zero by the MHD assumption that proper electric

charge vanishes. Therefore, the disk is governed by

5b Fab =
1
η

Fabub. (4.9)

The equations are cast in terms of the vector potential, which is related to the Faraday

tensor via

Fab = Ab,a−Aa,b, (4.10)

and, in particular, in terms of the componentAφ in the coordinate basis of the Boyer-

Lindquist coordinates.

Ultimately, to examine BZ powers, we need to derive the magnetic flux threading a

hoop placed at a given radiusr within the accretion disk. The magnetic flux function is

related to the vector potential via Stokes’ Theorem applied to the Faraday tensor

ψ≡
Z

S
F =

Z
S
dA=

Z
∂S

A = 2πAφ, (4.11)

whereS is a space-like surface with boundary∂S consisting of a ring defined byr =

constant,θ = constant, andt = constant. Because we work with the vector potential,Ab,
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we comment briefly on the choice of gauge. SinceAb is specified up to the gradient of a

scalar functionΓ,

A
′
b = Ab +5bΓ, (4.12)

the assumption of time-independence and axisymmetry gives us

A
′
t = At (4.13)

and

A
′
φ = Aφ. (4.14)

Thus, we need not specify the gauge uniquely beyond the statement of t andφ indepen-

dence. Writing eqn.4.9in terms of the vector potential, and applying time-independence

and axisymmetry, yields

∂
∂r

[
g11
(

g30∂At

∂r
+g33∂Aφ

∂r

)]
+

∂
∂θ

[
g22
(

g30∂At

∂θ
+g33∂Aφ

∂θ

)]
+(4.15)

1
2

(
g00∂g00

∂r
+2g30∂g30

∂r
+g33∂g33

∂r
+g11∂g11

∂r
+g22∂g22

∂r

)
g11
(

g30∂At

∂r
+g33∂Aφ

∂r

)
+

1
2

(
g00∂g00

∂θ
+2g30∂g30

∂θ
+g33∂g33

∂θ
+g11∂g11

∂θ
+g22∂g22

∂θ

)
g22
(

g30∂At

∂θ
+g33∂Aφ

∂θ

)
=

1
η

urg
11
(

g30∂At

∂r
+g33∂Aφ

∂r

)
.

where thegαβ andgαβ are the lower and upper metric terms in the Boyer-Lindquist co-

ordinates, and are evaluated at the disk surface (θ = π/2− tan−1(h/r) whereh/r is the

fractional thickness of the disk), and the numbering in the metric terms are connected to

the coordinates via (0 =t,1 = r,2 = θ,3 = φ). This is our final equation describing the

magnetic flux threading the accretion disk.

As in the non-relativistic case (Chapter3), we need to match the field in the disk onto

the magnetospheric field in order to fully specify the solution. As described previously,

our assumptions for the magnetosphere lead to the vacuum Maxwell equations

5b Fab = 0. (4.16)
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In the magnetosphere we also impose the ideal MHD condition

Fabub = 0, (4.17)

whereub is the 4-velocity of the (tenuous) plasma in the magnetosphere and is determined

by the condition that (in steady-state) field lines rigidly rotate. In terms of the vector

potential, our final equation describing the vector potential in the magnetosphere is,

0 =
∂
∂r

[
g11
(

g30∂At

∂r
+g33∂Aφ

∂r

)]
+

∂
∂θ

[
g22
(

g30∂At

∂θ
+g33∂Aφ

∂θ

)]
+(4.18)

1
2

(
g00∂g00

∂r
+2g30∂g30

∂r
+g33∂g33

∂r
+g11∂g11

∂r
+g22∂g22

∂r

)
g11
(

g30∂At

∂r
+g33∂Aφ

∂r

)
+

1
2

(
g00∂g00

∂θ
+2g30∂g30

∂θ
+g33∂g33

∂θ
+g11∂g11

∂θ
+g22∂g22

∂θ

)
g22
(

g30∂At

∂θ
+g33∂Aφ

∂θ

)
.

Our basic philosophy is to solve eqn.4.18for the magnetic field structure in the mag-

netosphere using eqn.4.15 as a boundary condition to be applied on the disk surface.

Additional boundary conditions are required. The magnetic flux is fixed to be zero on

the black hole spin axis (i.e., the field is assumed to be finite on the axis). We bound

the region under consideration by an outer spherical boundary at larger, and assume that

the flux threading that boundary corresponds to a uniform field with strengthB0, i.e., we

setψ = r2sin2θB0. The boundary condition on the horizon is determined by the Znajek

condition (Macdonald 1984) with explicit form given by equation4.1.

4.1.2 Solution method

We adopt a relaxation method approach to solve for the time-independent magnetic flux

configuration around a Kerr black hole. Through this relaxation process, we derive the

steady-state solution to equation4.18given the boundary conditions discussed above. At

the start of the numerical solution, we thread the accretion disk with uniform magnetic

field everywhere which is not a steady-state solution to equation4.15. We then jointly

relax the magnetic configuration both in the magnetosphere and on the disk surface until
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a solution to equations4.18and4.15is obtained. As the solution evolves, the magnetic

flux at the disk inner edge changes. As previously mentioned, a consequence of our

boundary condition on the plunge region is that any magnetic flux advected across the

radius of marginal stability is immediately added to the flux bundle threading the black

hole. As the disk supplies flux to the horizon via the plunge region, Maxwell pressure

will lead to a high-latitude expansion of the hole-threading flux bundle, changing the field

geometry in the magnetosphere away from the uniform initial state. As this happens, the

diffusion terms in equation4.15increase.

Flux accumulation occurs even once the hole-threading field is significantly greater

than the disk-threading field because the plunge region is shielding the disk-field from

the magnetic pressure associated with the hole-threading field. However, the system does

settle into steady-state when the disk-threading field is bent by the expanded black hole

flux-bundle such that outward field line diffusion balances inward advection. The physics

is the same as that described in Chapter3 with the exception of relativity. The steady-state

solution to equation4.15is the relativistic analog of the steady-state solution to equation

3.22of Chapter3 and the steady-state solution to equation4.18is the relativistic analog

of equation3.17of Chapter3.

In our canonical numerical solution, space is divided into a(r,θ)-grid, with 72 zones

in r and 51 zones inθ. The radial coordinate runs from the horizon to an outer boundary

at r = 53, and is spaced in a geometric progression such as to give a factor of almost 2

difference in the zone spacing at the inner and outer boundary. Theθ coordinate runs

from the axis (θ = 0) to the disk surface, and is uniformly spaced in cosθ.
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4.1.3 Newtonian vs. relativistic treatments of non-rotating black holes

It is important to examine whether the Newtonian analysis of Chapter3 accurately de-

scribes the physics of the flux-dragging model in the slowly rotating black hole case. We

choose to compare the flux-trapping that results fora = 0 against a Newtonian treatment,

with magnetic Prandtl number fixed atPm = 20 and varying disk thickness. Given our

different treatment of the outer boundary condition, it would be inappropriate to compare

our Schwarzschild results directly with the results of Chapter3, however. Instead, we use

our code to derive both the Schwarzschild results and the Newtonian limit (c→ ∞). The

results are displayed in Fig.4.2, where, to be consistent with the notation of Chapter3,

we plot the ratioA∗
B0

whereA∗ = Aφ. The difference between the Newtonian and relativistic

cases for all disk thicknesses is a few percent. This demonstrates that the neglect of the

relativistic terms for slowly rotating black holes is justified, as hypothesized in Chapter3.

4.1.4 Resolution and convergence study

It is necessary to confirm that our results do not rely on our particular choice of numerical

resolution. We chose to examine the effects of resolution on a representative model with

a = 0.4 andh/r = 0.1, andPm = 20, increasing in resolution from our canonical 72×51

case to 100×80. The results can be seen in Table 1, where we compare the equilibrium

hole-threading flux of each case with that obtained at our canonical resolution. It can be

seen that the higher resolution run agrees very well with a hole-threading flux that is only

1.5% lower despite more than doubling the number of computational cells.

It is equally important to demonstrate that our relaxation scheme achieves conver-

gence. In Figure4.3we show the dependence of the hole-threading flux on the relaxation

parametert for the specific value ofa = 0.2. It is indeed seen that the hole-threading flux
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Figure 4.2: Equilibrium value ofA∗/B0 as a function of h/r forPm=20.0 for Newtonian
(asterisk) and Schwarzschild disk (cross). Notice how the Newtonian values are larger
and by a greater amount for smaller disk thickness. As the thickness increases the dif-
ference between Newtonian and Schwarzschild decreases until for largest thickness the
Schwarzschild value overtakes the Newtonian. Nevertheless, the differences are always
of a few percent, establishing the fact that the Newtonian treatment is sufficiently accu-
rate for slowly rotating black holes.

spin r/θgrid ψnorm % difference
0.4 72 by 51 1 0
0.4 100 by 51 1.004 0.4
0.4 100 by 80 0.985 1.5

Table 4.1: Resolution study for flux obtained ata = 0.4.

appears to reach convergence. This behavior is typical for all spin runs.
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Figure 4.3: Value ofAφ as a function of the relaxation parametert showing the typical
behavior of the runs. This one is fora = 0.2.

4.2 Results: spin dependence of flux trapping

We evaluate the steady-state solution to the above equations for various black hole spin

values and forPm = 20, a disk thickness ofh/r = 0.1, rdead = 40 androut = 53. We

find that the flux accumulated on the black hole horizon decreases as the spin increases

(Figure4.4). The reason behind the decrease in flux with increase in spin appears to

have a straightforward geometrical interpretation. As the spin of the hole increases, the

accretion disks’ inner edge (at the radius of marginal stability) gets closer to the horizon

in both coordinate and proper distance. This results in a decrease of the ratio of the

area within the plunge region to the area of the event horizon. Thus, as one considers

more rapidly rotating black holes, the geometry becomes progressively less favorable to

shielding the turbulent accretion disk from the hole-threading flux bundle. We show the
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Figure 4.4: Magnetic flux threading the horizon normalized to the flux in the spin-zero
case, vs. black hole spin illustrating the basic result that flux-trapping is less effective as
the spin increases.

magnetic field geometry fora = 0.85 in Fig.4.5.

As mentioned above, the behavior of the radius of marginal stability for rapidly spin-

ning black holes results in ineffective shielding of the hole-threading flux bundle from the

turbulent (diffusive) portion of the accretion disk. In short, flux-trapping breaks down for

largest spin.

We now consider the BZ power that results from the trapped magnetic flux and its

dependence on black hole spin. We start by evaluating the horizon-threading magnetic

field as measured by zero-angular-momentum observers (ZAMO) from the flux values

we obtain,

BH =
√

g11B
r (4.19)

with

Br = ∗F rbub, (4.20)
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Figure 4.5: Lines of constant magnetic flux for a=0.85 Kerr black hole. Each side is 30
BL radii across. The marginally stable circular orbit is located atr = 2.6. Note how
field lines are allowed to thread the equatorial plane for radial coordinate values that are
smaller than for a spin zero disk (Fig.3.6).

where∗Fab is the dual Faraday tensor andub is the four-velocity of the ZAMO observers

evaluated in the equatorial plane on the horizon membrane (in the sense of Thorne et al,

1986). The dual tensor components involve terms with derivatives ofAφ with respect to

θ and therefore require the use of the boundary condition on the horizon membrane (eq.

4.1). The results depend on the value ofB0, the initial uniform field strength threading

the horizon. The results are displayed in Figure4.6. With these values of the horizon-

threading magnetic fields, we can determine the BZ luminosity. This is shown in Figure

4.7. Despite possessing the largest hole-threading magnetic field, the Schwarzschild

case, of course, produces no BZ power. Because of the low flux threading the horizon

in the high spin case, the luminosity in this case is also low. The maximum BZ power

is generated fora≈ 0.8. We note that the accumulated flux on the black hole depends
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Figure 4.6: Ratio of the horizon-threading magnetic fields in the flux-trapping model and
uniform field case.

linearly or almost so, on the radial coordinate value of the outer region of the active

accretion disk. We have truncated the active region of our disk atrdead = 40 outwards

of which the disk fluid is characterized by zero radial velocity so the dragging of flux

occurs only inwards ofrdead. As pointed out in Chapter3, rdead is one of the most

artificial aspects of our model, but could be identified with the outer edge of the MHD-

turbulence dominated accretion disk, or as the transition radius between an outer thin

disk and an inner ADAF disk. We see, thus, that by increasing our active region of

the disk and/or increasing the disk thickness, we could increase the generated luminosity.

However, we remind the reader that our analysis is performed with large magnetic Prandtl

number (i.e. 20) and thus with low diffusion. Chapter3 shows that lower values ofPrm

will generate considerably lower black hole threading flux. One final point is in order.

The outer boundary condition atr = 54 is fixed which means that field dragging by the
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Figure 4.7: The individual points label the relative Blandford-Znajek luminosity as a
function of spin. The solid line is the parametrization we adopt in the Nemmen et al. idl
code.

disk towards the black hole will generate bending of field lines that is greater than an

analogous simulation in which the outer boundary is at a larger radial coordinate. Since

the bending of field lines increases the diffusion term in equation4.15, the choice of fixed

outer boundary not only decreases the overall flux accumulation on the hole, it does so

more for smaller choice of outer radial coordinate value. Likerdead, rout is an artificial

aspect of our model whose physical value might be interpretable as some kind of load

region where flux-freezing forbids flux lines from being dragged along with the field

threading the accretion disk. In Chapter3, on the other hand, we did not fix the field

at rout, thereby allowing the field to be dragged unrestricted by the outer boundary value.

Nevertheless, these caveats do not affect our basic qualitative result that the BZ luminosity

is maximized for intermediate values of the black hole spin parameter. We consider this
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an important and novel result.

4.3 Discussion - an application of the flux-trapping model

to the Ṁ-jet power correlation

In the previous section we showed that the magnetic field threading the black hole de-

creases as the spin increases. This produced a BZ power that is maximized for interme-

diate values of spin, with a peak ata≈ 0.8. We can accurately parameterize the behavior

of LBZ vs. a with the following overall empirically determined spin dependence

LBZ ∝ (1−a4)a2. (4.21)

This expression does a good job at reproducing the numerically determined points in

Figure4.7. Using this parametrization, we will now show that our model has immediate

application to the curious properties of jetted AGN in nearby elliptical galaxies.

Allen et al. (2006) used theChandraX-ray observatory to study nine nearby X-

ray luminous elliptical galaxies. Assuming central black hole masses given by the M-σ

relation,Chandrameasurements of the ISM temperature and density on scales≈ 10pc

from the cores of these galaxies could be used to deduce the rate at which ISM accretes

into the gravitational potential of the black hole. These estimates are based on the simple

spherical accretion picture of Bondi (1952). In addition,Chandrareveals ISM cavities

that have been blown by jet activity from the central AGN. Using “PdV” arguments (and

assuming that the cavities have an age given by their sound crossing time), the jet powers

could be deduced. It was found that

Pjet ≈ ηṀc2 (4.22)

where the average efficiency isη≈ 3% (See Fig.4.8which reproduces Fig. 4 from Allen

et al. 2006). The object-to-object scatter about the correlation (eqn.4.22) is small, with

95



Figure 4.8: The logarithm of the Bondi accretion power (in units of 1043 erg s−1) from
Chandra X-ray data assuming an efficiency of 0.1 for conversion of rest mass into energy,
versus the logarithm of the jet power (courtesy of Allen et al).

deviations in efficiency of only a factor of≈ 2.

Nemmen et al. (2006) have explored whether the Allen et al. correlation is a natural

result of the BZ mechanism. Employing the Narayan & Yi (1995) advection dominated

accretion flow (ADAF) model, which is likely appropriate for the low accretion rates

found in these elliptical galaxies, Nemmen et al. estimated the strength of the magnetic

field in the central disk as a function of accretion rate and then estimated the BZ efficiency,

ηBZ, as a function of black hole spin, where

ηBZ≡
LBZ

Ṁc2
. (4.23)

They follow Meier (2001) to connect the jet power to the ADAF flow by enhancing the

magnetic field in the inner accretion disk via frame-dragging. They showed that the Allen

et al. results could only be reproduced if the elliptical galaxy black holes were all rapidly
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spinning and there was rather little mass loss in the accretion disk between the Bondi

radius and the black hole. Most disturbing, however, was thatηBZ was found to be a very

sensitive function of spina, especially fora≈ 1. See dashed line in Figure4.9. Hence,

all of the black holes in the Allen et al. sample would need to possess almost the same,

high spin values. They found thatηBZ changed by almost a factor of 20 as one considers

black holes with spin in the rangea = 0.8−1 (see dashed line in Figure4.9). Hence, to

reproduce the tight correlation of the Allen et al. sample, all of the black holes in these

nine galaxies would need to possess almost the same high spin value. In other words, the

Nemmen et al. model suffers a fine tuning problem.

Figure 4.9: The efficiencyηBZ vs. spin for the BZ model for a standard horizon-threading
magnetic field (dashed line) vs. that in the flux-trapping model (solid line).

We have taken the ADAF model of Nemmen and included the effects of flux trapping

via our approximate parametrization. The resultingηBZ as a function ofa is shown in

Fig.4.9and compared with that of Nemmen et al. (2006). The fact that the BZ power in

the flux trapping model is a maximum for intermediate values of spin results inηBZ that is
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a very flat function of spin for high spin. Furthermore, the efficiency that can be produced

by the BZ mechanism in the flux trapping model is substantially higher reaching almost

ηBZ≈ 1000%. Of course, since the actual source of the energy is the black hole spin, the

BZ efficiency as defined above (i.e., the BZ luminosity ratioed against the rest-mass en-

ergy of the accretion flow) can exceed unity without violating energy conservation. Thus

we can tolerate a much larger mass loss between the Bondi radius and the black hole. Nu-

merical investigation of rotating Bondi flows (e.g. Proga & Begelman 2003) suggests that

only αṀ reaches the black hole whereα≈ 0.01−0.1 is the effective viscosity parameter.

Such a mass loss can be tolerated by these BZ models only if one includes the effects of

flux trapping. We suggest that this provides a much more compelling framework for the

exploration of the Allen et al. correlation than the more standard BZ model of Nemmen

et al.

4.4 Conclusions

We postulated that given the dynamics of the plunge region of a thin black hole accretion

disk, flux trapping can enhance the strength of the magnetic field threading the horizon

by a significant factor. Our results indicate that a diffusive accretion disk will generate

progressively weaker horizon-threading magnetic fields as the spin of the hole increases.

Because the power generated via the BZ mechanism depends on the strength of the mag-

netic field threading the black hole horizon, our results indicate that high spinning black

holes will not generate the maximum BZ luminosity. Therefore, if the trapping behavior

of the plunge region operates in accretion systems around black holes, and if the energy

emitted is BZ luminosity, the most powerful AGN jets occur for intermediate spin black

holes. We then followed the program of Nemmen et al. to show that the enhancement

due to the flux-trapping model on the BZ power is sufficient to explain the energies of the
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nine jets in the Allen et al sample including an attractive indeterminacy in the black hole

spin. In other words, we have shown that within the context of the flux-trapping model,

we are not forced to assume a narrow range of spins for the central supermassive black

holes of the nine elliptical galaxies. In addition, the jet efficiency in the flux-trapping

model allows for greater mass loss in the accretion flow via BP winds.

This work has focused on the flux-trapping that results for the more stable co-rotating

accretion disks. However, counter-rotating accretion disks where the black hole spin axis

is oriented at 180 degrees to that of the accretion flow, may exist for relatively short time

periods. The question arises as to what kind of BZ power would we obtain for such

configurations. Because of the dependence of the strength of the hole-threading magnetic

field on the locations of the marginally stable orbit and of the horizon, we expect that

flux-trapping would be much greater for retrograde spins. This is because the marginally

stable orbit moves further away from the horizon as the spin increases. In fact, as the

black hole spin approachesa≈ 1, the marginally stable circular orbit of a counter-rotating

accretion disk moves out tor ≈ 9rg. We see, therefore, that if counter-rotating accretion

disks surround highly spinning supermassive black holes, the BZ power is not only much

greater than we have determined for co-rotating accretion disks, it would also be greater

for larger spin. The largest BZ power would occur for a maximally counter-rotating black

hole accretion disk around a maximally spinning black hole. Such arguments could form

the basis for understanding the enormous powers (up to≈ 1048ergs−1) of the giant radio

galaxies.
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Chapter 5

Conclusions and Future Work

The emerging paradigm for the workings of AGN jets involves the interaction between

supermassive black holes and large scale magnetic fields. But the presence of magnetic

fields around black holes does not limit itself to the production of jets. Less collimated

outflows may also have a magnetic origin and particular time-dependent phenomena in

the inner disk region may also originate as a result of the presence of magnetic fields. In

this dissertation we have investigated two types of interaction between the magnetic field

and the surrounding black hole-accretion disk system that tend to appear in GRMHD

simulations regardless of the initial seed magnetic field.

In Chapter2 we studied the possible consequences of magnetic torques connecting

the horizon or near black hole region with the inner accretion disk. We showed that this

type of scenario produces a dissipation profile that is unlike that of the standard Shakura &

Sunyaev or Novikov & Thorne models, with energy being deposited in the inner accretion

disk. We then showed that this increased dissipation in the inner disk region can lead to a

quenching of the X-ray flux further out in the disk corona and can serve as an explanation

to the observed “Deep Minimum” State of the Seyfert galaxy MCG-6-30-15.

In Chapter3 we studied the non-relativistic flux-trapping model to show that strong

large scale magnetic field can thread the black hole horizon even though weak field may
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thread the inner edge of the accretion disk. We found that the strength of the hole-

threading magnetic field increases with disk thickness, the effective magnetic Prandtl

number, and the location of the dead zone. We also discussed the relation of this to the

behavior of jets during GBHB state transitions.

In Chapter4 we extended the study of Chapter3 to the relativistic regime in Kerr

metric. We confirmed the appropriateness of the results of Chapter3 for slowly spinning

black holes and then studied the strength of the horizon-threading magnetic field as a

function of spin. The crucial result from this study is that given the validity of the plunge

region boundary condition, the largest Blandford-Znajek luminosity is produced for in-

termediate spins ofa≈ 0.8. We then showed that our model provides the most natural

explanation to the observed correlation between jet power and accretion rate for a sam-

ple of AGN in nearby elliptical galaxies. We show that the remarkable constancy in jet

production efficiency can be explained without having to fine tune the spins of the black

holes to their maximum values.

5.0.1 Future work

We have pointed out the fact that of the two main mechanisms for producing relativistic

outflows, the Blandford & Payne mechanism may fail to produce the highly relativistic

outflows observed. On the other hand, the Blandford & Znajek mechanism is a Poynting

flux based process. Although a number of possible scenarios have been envisioned, it is

not clear how a Poynting flux dominated jet in origin can convert this energy into kinetic

form as the observations require. Perhaps this intermediate step is unneccessary. In other

words, could magnetic fields in the central region of black hole accretion systems be the

agent responsible for taking the azimuthal flows characteristic of accretion and directly

generating axial flow of plasma?

The exploration of this idea depends, roughly speaking, on the details of the gravito-
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magnetic interaction near the black hole. In order to produce the strong magnetic stresses

that are required to produce the energy in the jet, the plasma and field must be brought in

close to the horizon so that spacetime can twist magnetic field in tightly. There is a direct

relationship between the twisting of field and the outflow energy. On the other hand, the

closer plasma gets to the horizon of the black hole, the stronger gravity becomes. The

horizon wants the plasma so there is an essential tension between gravity and Lorentz

forces, both vying for the plasma. The details concerning the ultimate fate of plasma

and of the nature of Poynting flux generated during this intense interaction between mag-

netic and gravitational forces is basically unclear. What is clear is that such issues arise

specifically in the context of magnetic field brought to the black hole via a relatively thin

accretion disk as a result of the fact that plasma and field approach the black hole in the

plane of the disk. When dealing with accretion around black holes, is equatorial field

dragging a ubiquitous phenomenon? In other words, is it possible to bring plasma and

field close to the black hole, but say, near the pole of the hole as opposed to the equatorial

plane? What kind of accretion system would produce magnetic field configurations that

involve plasma near the pole of the black hole?

The azimuthal stretching of poloidal magnetic field that approaches the pole of the

black hole leads to an acceleration of plasma along the axis of the hole as a result of mag-

netic field reconnection. For this to happen, though, we must first determine if poloidal

fields can reach the polar axis above and below the black hole horizon. We have studied

large scale magnetic configurations threading thin accretion disks, that under the drag-

ging in the turbulent accretion flow, reach the black hole in the equatorial plane. We

could imagine accretion tori of the kind expected to occur for advection dominated ac-

cretion flows, in which the large scale magnetic field structure approaches the black hole

above and below the equatorial plane as well. Because the plunge region area is effec-

tively smaller as the black hole spin increases, we propose the idea that as the spin of
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the black hole increases, it becomes energetically more feasible for the poloidal magnetic

field to survive being stretched to the polar axis, where it can be azimuthally twisted,

leading to the reconnection described above. The other interesting thing to note is that the

large geometrical thickness of the magnetic fields required for this process to occur, can

only be brought to the near horizon region if the disk is geometrically large. Therefore,

we find that energy in kinetic form can be transferred from the accretion disk to the jet

only for thickest disks and for largest black hole spin. The large thickness of the disk sug-

gests that what we should be modeling may be closer to a spherically accreting system. A

quasi-spherical accretion system may also solve the issue of how fields are dragged to the

polar axis above the hole, thereby overcoming the centrifugal barriers that arise in thinner

accretion systems. In addition to the simplicity of the process compared to other magnetic

models of jets, the gravitational redshift suffered by the plasma at the pole is less than that

suffered in the plane of the disk for a given value of the radial coordinate. The issue that

needs to be studied for this scenario to work is the extent to which the energy put into the

magnetic field tracks the total conserved energy of the system, the killing energy. To the

extent that it does or might, the idea is worth pursuing. This model is, therefore, appealing

from various viewpoints and the idea behind this work would be to motivate full GRMHD

simulations for very thick disks to test the idea in detail.
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Appendix A

Acronyms

ADAF - Advection Dominated Accretion Flow

AGN - Active Galactic Nuclei

BZ - Blandford & Znajek

BP - Blandford & Payne

GR - General relativity

MHD - Magnetohydrodyamics

GRMHD - General relativistic magnetohydrodynamics

MRI - Magnetorotational instability

ZTBC - Zero torque boundary condition

HPB - Heyvaerts, Priest & Bardou

RPD - Radiation pressure dominated

GPD - Gas pressure dominated

GA 97 - Ghosh & Abrahmowicz

GBHB - Galactic black hole binary

LH - Low/Hard state

HS - High/soft state
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