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 Pharmacokinetics describes the time course of drug absorption, distribution, 

metabolism and excretion.  Pharmacodynamics is the relationship between unbound drug 

concentration over time and the resulting antimicrobial effect.  Pharmacokinetic/ 

pharmacodynamic (PK/PD) indices quantify the relationship between pharmacokinetic 

parameters (i.e., area under the concentration-time curve, AUC) and microbiological 

parameters (i.e., minimal inhibitory concentrations, MICs), and are used to establish 

interpretive criteria or clinical breakpoints.  The three primary PK/PD indices used are 

the AUC over 24 h at steady-state/MIC (AUCss/MIC), the peak concentration/MIC 

(Cmax/MIC), and the percentage of time over 24 hours that the drug concentration exceeds 

the MIC at steady-state pharmacokinetic conditions (T>MIC).  These indices can be used to 

determine both appropriate dosage regimens and index magnitudes required for efficacy 



  

and reduced antimicrobial resistance emergence.  The goal of this work was to determine 

the relevant PK/PD index target (AUCss/MIC) for oxytetracycline (OTC) against 

Aeromonas salmonicida, causative agent of furunculosis in salmonids.  To achieve this 

goal we first established a standardized MIC testing method for aquatic bacterial 

pathogens, then used this method to determine the in vitro susceptibility cutoff 

concentration (epidemiologic cutoff value) for OTC (and three other antimicrobial 

agents) against 217 A. salmonicida isolates.  We conducted additional in vivo studies 

using rainbow trout to monitor achievable serum OTC concentrations in both healthy and 

A. salmonicida-challenged fish.  We confirmed OTC to be highly efficacious against a 

susceptible A. salmonicida strain in vivo, and through pharmacokinetics studies, 

calculated the OTC AUCss in healthy and challenged fish to be 27.2 and 20.1 μg·h/mL, 

respectively.  The PK/PD index target reported in a neutropenic mouse model as the most 

applicable to the tetracyclines is an AUCss/MIC of ≥5.  Either of the AUCss values 

divided by the current epidemiologic cutoff value for A. salmonicida isolates (1 μg/mL) 

yields a product greater than this AUCss/MIC target of ≥5.  This work demonstrates 

PK/PD indices commonly used in studies in mammals to predict therapeutic efficacy can 

be applied in studies in fish. 
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Chapter 1: Antimicrobial Agents Used in Aquaculture 

Antimicrobial Agents Approved for Use in Aquaculture in the United States 

Introduction 

 Antimicrobial agents have long been used to relieve pain and suffering and 

control infections in animals, including fish.  Gutsell (1946) was the first to publish an 

article about using an antibiotic (sulfa) to treat bacteria in fish in the U.S.  Since then, the 

safe and prudent prescription of efficacious drugs by veterinarians to treat aquatic 

animals has contributed immensely to the increased food production capacity of U.S. 

aquaculture.  However, using antimicrobial agents is not without risk.  Antimicrobial 

resistant pathogens and environmental bacterial species have been found in, and near fish 

farms where antibiotic-medicated feed has been administered (Huys et al., 2001; 

Guardabassi et al., 2000a; Sathiyamurthy et al., 1997; Husevag and Lunestad, 1995).  

Since only three antibiotics are currently available for use in U.S. aquaculture (Table 1), 

veterinarians have limited options when making treatment decisions.  Continued use of 

the same drug(s) will likely exacerbate the very problem of resistance and may eventually 

diminish their utility in aquaculture.  Careful in vitro antimicrobial susceptibility testing 

(AST) is required to accurately monitor the development of resistance and assist in the 

decision-making process of whether to administer treatment.  AST and selection and 

prescription of the appropriate antimicrobial agent if available, is an important task of the 

clinician and veterinarian.  Until recently, in vitro AST methods for the three approved 

antimicrobials for aquaculture, oxytetracycline (OTC), ormetoprim-sulfadimethoxine, 

and florfenicol, were not standardized for any aquatic bacterial species. 
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Table 1. Antimicrobial agents approved for use in U.S. aquaculture in 
poikilothermic food species. (FDA-CVM, 2007) 
Drug 
(Manufacturer) 

Species Indication Dosage 
regimen 

Limitations/ 
Comments 

Oxytetracycline 
dihydrate 
(Terramycin® 200 
by Phibro Animal 
Health) 

Pacific 
salmon 

Mark skeletal 
tissue        

250 
mg/kg/day 
for 4 d 

--Salmon <30 g      
In feed as sole 
ration      
-- 7 day 
withdrawal time 

 Salmonids     Control ulcer 
disease, 
furunculosis, 
bacterial    
hemorrhagic 
septicemia, and 
pseudomonas 
disease 

2.5 to 3.75 
g/100 lb/day 
for 10 d 

--In mixed ration    
-- Water 
temperature not 
below 48.2° F 
--21 day 
withdrawal time 

 Catfish Control bacterial 
hemorrhagic 
septicemia and 
pseudomonas 
disease 

2.5 to 3.75 
g/100 lb/day 
for 10 d 

--In mixed ration 
-- Water 
temperature not 
below 62° F  
--21 day 
withdrawal time 

 Lobster Control 
gaffkemia 

1 g/lb 
medicated 
feed for 5 d 

--In feed as sole 
ration   
--30 day 
withdrawal time 

Oxytetracycline 
HCl (OxyMarineTM 
by Alpharma Inc., 
Soluble Powder-
343® by Phoenix 
Scientific, Inc., and 
Terramycin-343® 
by Pfizer, Inc.) 

Finfish fry 
and 
fingerlings 

Mark skeletal 
tissues 

200 to 700 
mg 
oxytetracycli
ne HCl 
(buffered) 
per liter of 
water for 2 to 
6 h  

 

Sulfadimethoxine- 
ormetoprim 
(Romet-30® by 
Roche Vitamins, 
Inc.) 

Salmonids Control 
furunculosis 

50 mg/kg/d 
for 5 d 

--In feed        
--42 day 
withdrawal time 

 Catfish Control enteric 
septicemia 

50 mg/kg/d 
for 5 d 

--In feed    
--3 day 
withdrawal time 

Florfenicol 
(Aquaflor® by 
Schering-Plough 
Animal Health 
Corporation) 

Catfish Control of 
mortality due to 
enteric 
septicemia 

10 mg/kg/day 
for 10 
consecutive d 

--Veterinary Feed 
Directive (VFD) 
drug  
--12 day 
withdrawal time 
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Table 1. Antimicrobial agents approved for use in U.S. aquaculture in 
poikilothermic food species. (FDA-CVM, 2007) 
Drug 
(Manufacturer) 

Species Indication Dosage 
regimen 

Limitations/ 
Comments 

Salmonids Control of 
coldwater disease 

10 mg/kg/day 
for 10 
consecutive d 

--VFD drug  
--15 day 
withdrawal time 

Sulfamerazine by 
Roche Vitamins, 
Inc. 

Rainbow, 
brook,    
and brown 
trout 

Control 
furunculosis 

--10 g/100 
lb/day for up 
to 14 d 

--In feed     
--21 day 
withdrawal time  
--Not currently 
marketed 

Approval applies only to the specific drug which is the subject of a new animal drug 
application (NADA); active ingredients from other sources (e.g. bulk drug from a chemical 
company or similar compounds made by companies other than those specified in the 
NADA) are not approved new animal drugs. 
 
Approval applies only to use of the drug for the indications and manner specified on the 
label. 

 

Oxytetracycline 

OTC (Figure 1) is a broad-spectrum antibiotic widely used in veterinary 

medicine, partly due to its lower order of toxicity and ability to readily distribute 

throughout the body and into tissues (Chambers, 2001).  OTC and other tetracyclines are 

primarily bacteriostatic and inhibit bacterial protein synthesis by preventing the 

association of aminoacyl-tRNA with the bacterial ribosome. 

OTC (Terramycin®, Phibro Animal Health) is approved by the U.S. Food and 

Drug Administration (FDA) as an oral antibacterial to treat many bacterial infections in 

animals and humans.  It is also approved in aquaculture to treat furunculosis (caused by 

Aeromonas salmonicida) and pseudomoniasis in salmonids at temperatures above 9 °C, 

and to treat bacterial hemorrhagic septicemia and pseudomoniasis in catfish at 

temperatures above 16 °C (FDA-CVM, 2007).  The FDA-approved dose is 2.50-3.75 

g/100 lb (or 55-83 mg/kg) body weight (b.w.)/day for 10 consecutive days, and has a 
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withdrawal time of 21 d.  OTC is also approved for treatment of gaffkemia in lobsters at a 

dose of 1 g/lb of feed/day for 5 consecutive days, and has a withdrawal time of 30 d.  It is 

probably the most widely used and least expensive antibiotic for treating acute 

septicemias. 

 

Figure 1. Molecular structure of OTC. 

 

In June 2006, FDA’s Center for Veterinary Medicine (CVM) accepted an 

amended product chemistry package for Phibro Animal Health’s new animal drug 

application (NADA) #038-489 which changed the Terramycin® OTC formulation from 

the mono-alkyl (C8-C18) trimethylammonium or q-salt, to the dihydrate salt.  A recent 

pharmacokinetics study in shrimp compared OTC-medicated feeds prepared with the q-

salt form and the dihydrate form.  This study showed the OTC q-salt form remained in 

the environment longer than the OTC dihydrate form (Reed et al., 2006).  The authors 

suggested the q-salt form is probably more detrimental to the environment and fauna than 

the dihydrate form, and this was likely a strong reason for FDA’s change in formulation. 

An OTC HCl immersion bath treatment sponsored by Alpharma, Inc. 

(OxyMarineTM) was approved by the FDA in 2003 for skeletal marking in all finfish fry 

and fingerlings.  In 2004 and 2005 supplemental NADAs were approved for the same 
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indication by the FDA for OTC HCl soluble powder-343 (Phoenix Scientific, Inc.) and 

Terramycin-343 OTC HCl soluble powder, respectively.  The FDA-approved dose is 

200-700 mg/L of water for 2-6 h.  Two label claims for an OTC immersion bath 

treatment are close to completion which address the control of mortality due to systemic 

columnaris infections in steelhead trout and systemic coldwater disease in freshwater-

reared salmonids (Schnick, 2006). 

Sulfadimethoxine-ormetoprim 

 Sulfadimethoxine-ormetoprim (SDM-OMP, 5:1 ratio) (Figure 2) is approved by 

the FDA as an oral antibacterial to treat furunculosis in salmonids and enteric septicemia 

in catfish (ESC).  Under the trade name Romet-30®, it is sponsored by Pharmaq AS 

(Oslo, Norway).  The drug combination is also used in an extra label manner in a variety 

of fish species including the hybrid striped bass (Morone saxatilis x Morone chrysops) to 

treat other diseases.  The FDA-approved dose in salmonids is 50 mg/kg b.w./day for 5 d 

with a withdrawal time of 42 d.  The same dose is approved in catfish with a withdrawal 

time of 3 d. 

 

Figure 2. Molecular structure of SDM (a) and OMP (b). 

 



 6 
 

 Individually, SDM and OMP are active against a wide array of pathogenic 

microorganisms.  However, when administered in combination, they work synergistically 

and may lower the incidence of antimicrobial resistance (Bullock et al., 1974).  

Sulfonamides like SDM are p-aminobenzoic acid (PABA) analogs which competitively 

inhibit the incorporation of PABA into folic acid.  This prevents the synthesis of folic 

acid and subsequent bacterial growth.  OMP serves as a potentiator of the anti-folate 

effect of sulfonamides by competitive inhibition of dihydrofolate reductase.  Together 

they offer broad spectrum antimicrobial activity which is effective for treating infections 

in fish caused by Yersinia ruckeri (enteric redmouth disease) (Bullock and Snieszko, 

1979), A. salmonicida (furunculosis) (Bullock et al., 1974), and Edwardsiella ictaluri 

(enteric septicemia in catfish, ESC) (Plumb et al., 1987). 

Florfenicol 

 Florfenicol (Figure 3) is a broad-spectrum, primarily bacteriostatic, antibiotic 

with a range of activity similar to that of chloramphenicol.  Florfenicol, however, does 

not carry the risk of inducing human aplastic anemia that is associated with 

chloramphenicol.  Florfenicol’s mode of action is through binding to the 50S ribosomal 

subunit and inhibition of the transpeptidyl-transferase step in protein synthesis, effective 

against gram-negative and gram-positive bacteria. 

 Florfenicol (Aquaflor®) is sponsored by Schering-Plough Animal Health 

Corporation and is approved by the FDA as an oral antibacterial to treat ESC and 

coldwater disease (Flavobacterium psychrophilum) in freshwater-reared salmonids.  The 

FDA-approved dose is 10 mg/kg body weight/day for 10 d, and a withdrawal time of 12 

d.  Two additional label claims were approved by the FDA in October 2005 for 
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furunculosis in freshwater-reared salmonids and systemic columnaris disease in 

freshwater-reared salmonids and catfish (Schnick, 2006). 

 

Sulfamerazine 

 Sulfamerazine (Figure 4) is approved by the FDA as an oral antibacterial to treat 

furunculosis in trout.  The FDA-approved dose is 10 g/100 lb body weight/day for up to 

14 d, and has a withdrawal time of 21 d.  It was last sponsored by Roche Vitamins Inc., 

but because many individuals were substituting a generic "sulfa drug" for sulfamerazine, 

Roche decided to stop manufacturing sulfamerazine (Cornell University, 2006). 

 

Figure 3. Molecular structure of florfenicol. 

Figure 4.  Molecular structure of sulfamerazine. 



 8 
 

Other Antimicrobial Agents Used in Aquaculture Worldwide 

 Drug use in aquatic animal production worldwide varies dramatically.  This 

variation occurs as a consequence of different drug approval requirements and regulatory 

attention.  Differences in the availability and use of certain drug classes between 

countries can be dramatic.  Japan, for example, has 29 individual or combination 

antibiotics approved for use in aquatic animals (Okamoto, 1992) while Canada has four 

and the U.S. has three available (Schnick et al., 2005). 

Quinolones 

 Oxolinic acid (Figure 5) is a first generation synthetic quinolone antibiotic which 

possesses excellent activity against many bacterial fish pathogens, especially gram-

negative organisms.  It is accepted for use in aquaculture in Japan and some countries in 

Europe, being widely used in Norwegian aquaculture (Grave et al., 1999) to treat 

numerous diseases including furunculosis.  Oxolinic acid is administered orally via 

medicated feed with a recommended dose for finfish of 12 mg/kg b.w./day for up to 7 d 

(EMEA, 2005).  Samuelsen and Bergh (2004) showed a significantly decreased mortality 

in fish offered oxolinic acid-medicated feed versus the controls after a Vibrio 

anguillarum immersion challenge.   

  

 

 

Figure 5. Molecular structure of oxolinic acid. 
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 Flumequine (Figure 6), similar to oxolinic acid, is a first generation quinolone 

active against mainly gram-negative bacteria, and approved for use in Japan and some 

European countries.  Flumequine inhibits DNA-gyrase (Drlica and Zhao, 1997).  Vik-Mo 

et al. (2005) showed efficacy in laboratory trials against an experimental infection caused 

by Listonella anguillarum.  Flumequine is also used in shrimp farming to combat 

vibriosis, however a recommended dosage has not been determined (Joint FAO/WHO 

Expert Committee on Food Additives, 2006). 

 Other quinolone antimicrobials like nalidixic acid and piromidic acid are 

approved in Japan, but very little is known regarding the recommended dose, 

pharmacokinetics, withdrawal times, or extent of their use (Jarobe et al., 1993; Uno et al., 

1992; Katae et al., 1979a; Katae et al., 1979b). 

 

Figure 6. Molecular structure of flumequine. 

 

Beta-lactams 

 Amoxicillin (Figure 7) is the most commonly used beta-lactam antibiotic in 

aquaculture worldwide.  It is approved for use in Japan and some European countries 

(Schnick et al., 2005) to treat furunculosis and other bacterial diseases.  The 

recommended dose is 40-80 mg/kg b.w. per day for 10 consecutive days (Roberts and 

Shepherd, 1997).  Amoxicillin inhibits cell wall synthesis by preventing peptidoglycan 
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cross-linkage, thus it is primarily active against gram-positive bacteria.  In mammalian 

medicine, amoxicillin is administered with clavulanic acid to decrease its susceptibility to 

degradation by beta-lactam producing bacteria and to increase the spectrum of action 

against gram-negative bacteria.  However, this has not yet been reported in the 

aquaculture literature.  Amoxicillin is the drug of choice within the class because it is 

better absorbed following oral administration, than other beta-lactam antibiotics (i.e., 

ampicillin). 

 

Figure 7. Molecular structure of amoxicillin. 

 

Sulfonamides and Potentiated Sulfonamides 

 In addition to the frequently used SDM-OMP product, other sulfonamides and 

potentiated sulfonamides are approved for use overseas.  Sulfamonomethoxine, 

sulfisozole, and SDM are all approved for use in Japanese aquaculture.  Sulfamerazine is 

approved for use in some countries in Europe.  Sulfadiazine-trimethoprim (Tribrissen®) 

and sulfamonomethoxine-OMP are used in Europe, Canada, and Japan.  Romet-30® and 

these other potentiated sulfonamides have shown potent activity against several fish 

pathogenic species including A. salmonicida subsp. salmonicida, V. anguillarum, and V. 

salmonicida (Samuelsen et al., 1997; Hoie et al., 1992). 
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Phenicols 

 Florfenicol is commonly used in Japan, Canada, and Europe to treat furunculosis, 

columnaris and other diseases.  Cyanphenicol and thiamphenicol are members of the 

phenicol family and are approved for use in Japan.  Despite being banned from use in 

aquaculture producing countries in Asia and Southeast Asia, chloramphenicol has been 

detected in farmed shrimp imported into the European Union.  Chloramphenicol is on the 

FDA list of prohibited substances for extra-label use in all food-producing animals due to 

its link to human aplastic anemia, intestinal problems and neurological reactions (FDA, 

1996).  The European Union established a minimum required performance limit (MRPL) 

for this compound of 0.3 μg/kg in tissues from food animals (EUROPA, 2007). 

Pharmacokinetics of Antimicrobial Agents Commonly Used in Aquaculture in the United 

States 

Pharmacokinetics 

 Pharmacokinetic data describe the rate and extent of systemic drug exposure 

following product administration to the target animal species.  Pharmacokinetics involves 

the kinetics of drug absorption, distribution, metabolism, and elimination.   Absorption of 

antimicrobial agents range from 0 to 100%, and is the process by which the compound 

transfers from the site of administration (intravenous, intramuscular, oral, topical, 

intraarterial, etc.) into the systemic circulation (central compartment) (Gerding et al., 

1996).  Intravenous or intramuscular administration of most antimicrobials results in a 

percentage bioavailability of 100%.  However, absorption after oral administration is 

always less than 100%.  Bioavailability refers only to the extent of absorption, and 
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provides no indication of the rapidity of absorption or the degree of protein binding.  

Rates of absorption from the gastrointestinal tract can be affected by pH changes, the pKa 

of the drug, gastric emptying time, and contents of ingested material. 

 Drug distribution refers to the transfer of drug from one location to another within 

the body and influences the systemic concentration.  Usually, the lesser amount of drug 

distributed the greater amount present in the systemic concentration, and vice versa.  

Distribution is independent of the mode of administration.  The rate and extent of 

distribution is determined by the rate of delivery to tissues (i.e., blood perfusion rate), 

ability of the drug to pass from the systemic circulation to tissue sites (i.e., diffusion), and 

affinity of the drug to proteins in plasma, serum or tissues (i.e., binding or 

bioavailability). 

 The liver is the primary organ where enzymatic metabolism occurs.  Metabolic 

reactions include oxidation, reduction, and hydrolysis (Phase I CYP450 enzymes) and 

glucouronidation, methylation, and sulfation (Phase II conjugative enzymes).  These 

reactions result in more polar compounds which help facilitate their elimination. 

 Drug elimination is defined as the irreversible removal of drug from the body by 

all routes of elimination.  The kidney is the main excretory organ for the removal of 

metabolic waste products (and drugs).  The degree of lipid solubility and extent of 

ionization in blood determines how much drug will be excreted by the kidneys.  In 

humans, the kidneys receive approximately 25% of the cardiac output which is the same 

as the liver.  Biliary excretion by the liver of products of biotransformation is another 

route of elimination present in almost all vertebrates.  In addition, the bile facilitates the 

absorption of ingested lipids and serves as a major route for cholesterol elimination. 
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Oxytetracycline 

 For many years researchers have investigated the absorption, distribution, 

metabolism, and elimination profiles of OTC in various fish and shellfish species (Uno et 

al., 2006; Reed et al., 2006; Chen et al., 2004; Rigos et al., 2004; Wang et al., 2004; 

Coyne et al., 2004b; Bernardy et al., 2003; Haug and Hals, 2000; Abedini et al., 1998; 

Doi et al., 1998; Du et al., 1997). 

Absorption.  Tetracyclines are known for their poor absorption from the 

gastrointestinal (GI) tract, with OTC categorized as intermediate meaning when the 

stomach is empty 60-80% of an oral dose is absorbed.  OTC absorption in mammals is 

decreased in the presence of dairy products, calcium, magnesium, and iron or zinc salts in 

the gastrointestinal tract.  Divalent and trivalent cations bind OTC decreasing its 

antimicrobial activity (Lunestad and Samuelsen, 2001).  This can be particularly 

important in aquaculture when OTC is administered to fish in seawater where cation 

levels are high (Barnes et al., 1995).  Unavoidable contact with seawater occurs when 

OTC surface-coated feed pellets are offered.  Contact can also occur in the upper GI tract 

of marine teleost fishes that characteristically drink seawater continuously to compensate 

for water loss.  Encapsulation of OTC in the feed pellet may avoid direct drug-cation 

interaction, however, for absorption to take place the drug must be in the liquid form, 

thus mixing with cation-rich fluid in the gut is unavoidable. 

Few researchers have reported absorption half-lives (T1/2α) of OTC in fish 

following non-intravenous routes of administration.  Wang et al. (2001) reported a T1/2α 

of 2.3 h in orally administered black seabream. 
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Bjorklund and Bylund (1990) showed absorption of OTC in freshwater fish was 

faster at higher temperatures.  At 16 °C, the maximum plasma concentration (Cmax) was 

reached after only 1 h (2.1 ± 0.5 μg/mL), while at 10 °C and 5 °C the Cmax was reached 

after 12 h (5.3 ± 1.7 μg/mL) and 24 h (3.2 ± 1.8 μg/mL), respectively.  Bjorklund and 

Bylund explained the effect of temperature was due to the fact that fish are 

poikilothermic, that is their internal temperature varies, often matching the ambient 

temperature of the immediate environment (Bjorklund and Bylund, 1990).  Further, an 

increased ambient and internal temperature should correlate with increased gastric 

emptying and metabolism in poikilothermic fish species.  Therefore, for many farmed 

fish species, the withdrawal times, based on temperature dependent residue levels, are 

determined in degree days (Alderman, 2000).  For instance 150° days for OTC would 

represent a withdrawal period of 15 d at 10 °C or of 10 d at 15 °C. 

Distribution.  Few studies have investigated the distribution phase of OTC, with 

regard to the diffusion of OTC from the systemic circulation into fish tissues and body 

spaces (peripheral compartments).  These researchers primarily used the intravenous 

route of administration.  Black et al. (1991) calculated a rapid distribution half-life of 

only 0.9 h after a single intravenous bolus dose in rainbow trout.  Similarly, Rigos et al. 

(2003a) calculated a distribution half-life of only 2 h in gilthead sea bream.  Interestingly, 

there does not appear to be much of a difference in OTC distribution half-lives in fish and 

those reported in humans (Gerding et al., 1996).  The ability of OTC to rapidly distribute 

into the tissues and body spaces where a given pathogen may be targeted, along with its 

affordability, is part of the justification for its historically widespread use in aquaculture. 
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Metabolism.  Tetracyclines are not metabolized in vivo, but rather are excreted 

predominantly unchanged in the urine (50-80% of the given dose) (Gerding et al., 1996).  

Oka et al. (1989) showed that tetracyclines photodecomposed easily in an aqueous 

solution comparable to a fish pond.  Interestingly, Halling-Sorensen et al. (2002) reported 

other known OTC degradative products to have antimicrobial activity at levels close to 

that of their parent compounds.  These compounds have largely been ignored in 

quantitative pharmacokinetics studies due to the minimal metabolism in vivo of 

tetracyclines, but may need to be considered in future studies. 

Elimination.  Results of studies on the elimination phase of OTC from the muscle 

after oral administration show an obvious decrease in the elimination half-life (T1/2β) in 

higher water temperatures.  In muscle, T1/2β values ranged from 600 h in brook trout at 7 

°C (Herman et al., 1969) to 46 h in perch at 20 °C (Wang et al., 2004).  Similarly, 

reported values of T1/2β in plasma, serum, and whole blood follow the same temperature-

dependent trend as observed in muscle.  Haug and Hals (2000) calculated a T1/2β of 578 h 

in plasma of arctic char held at 6 °C in freshwater.  Whereas Rigos et al. (2004) 

calculated a T1/2β of 21 h in plasma of sea bass held at 22 °C in saltwater.  Poikilothermy 

is again the probable cause of piscine ambient temperature-dependent changes in OTC 

elimination.  We can find a few inconsistencies in the literature, however.  Jacobsen 

(1989) calculated an estimated T1/2β of 48 h from a study conducted in rainbow trout held 

at 12 °C.  This value is more than 400 h less than that observed in another study 

conducted in rainbow trout held at 11 °C (Abedini et al., 1998).  Despite these 

inconsistencies, and drastic differences in T1/2β, mandatory temperature-specific 
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withdrawal times (Table 1) have been established for orally administered OTC (FDA-

CVM, 2007). 

Sulfadimethoxine-ormetoprim 

 Pharmacokinetic parameters have been determined individually for SDM and 

OMP in rainbow trout (Droy et al., 1990; Kleinow and Lech, 1988) and channel catfish 

(Michel et al., 1990; Squibb et al., 1988) using intravenous and oral administration.  

Pharmacokinetic investigations of the two drugs (Romet®) administered orally together 

have been conducted in hybrid striped bass (Bakal et al., 2004), Atlantic salmon 

(Samuelsen et al., 1995), channel catfish (Milner et al., 1994), chinook salmon (Walisser 

et al., 1990), and rainbow trout (Droy et al., 1989).  As with many different 

pharmacokinetic assessments in fish species, researchers have used several different 

water temperatures making direct comparisons of data problematic.  Temperature-related 

differences have significant impacts on absorption and excretion kinetics even within the 

same species (Borgan et al., 1981). 

 Absorption.  Bakal et al. (2004) provided the most complete investigation into 

the absorption of SDM and OMP when administered in combination.  After IP injection 

in hybrid striped bass at a ratio of 5:1, SDM to OMP, the T1/2α was 5.4 h and 0.7 h 

respectively.  After oral administration the T1/2α was 3.9 h and 0.2 h respectively.  The 

slower absorption rate after IP administration compared to oral administration may be 

attributable to the increased surface area enhanced by the peristaltic movements of the GI 

tract.  Also SDM is more soluble in an acidic environment which could allow for more 

rapid uptake of the drug from the stomach..  Bakal et al. also calculated a low 

bioavailability (4.6%) for SDM indicating poor absorption from the GI tract of hybrid 
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striped bass.  Although the 5:1 ratio of SDM-OMP is commonly used in feed 

formulations, Bakal et al. found it does not represent the actual drug ratio found in the 

plasma or serum of animals. 

 Due to the differing absorption rates described above, this drug combination does 

not exist in a constant ratio within the animal.  To complicate the issue even further, in 

vitro susceptibility determinations are typically conducted using a ratio of 20:1 (Miller et 

al., 2005) which has been proven to be the optimal ratio of synergism of sulfonamides 

and their potentiators (Mandell and Sande, 1990). 

 Bakal et al. (2004) proposed using the total amount of the drug actually absorbed 

(area under the concentration-time curve, AUC) in the ratio calculation.  This allowed the 

more close approximation of the average ratio of the drugs in the animal.  After oral 

administration in the hybrid striped bass, Bakal et al. calculated a ratio of 2.14:1 

(SDM:OMP) based on the AUC for each compound.  The relationship of these in vivo-

derived ratios to the ratios used in in vitro susceptibility testing is still unclear.  How in 

vivo-derived ratios may be used to help predict therapeutic efficacy for a pathogen with a 

different MIC ratio also remains to be seen. 

 Samuelsen et al. (1995) aimed to investigate the bioavailability and 

pharmacokinetics of SDM and OMP in combination in Atlantic salmon held in 10 °C 

seawater.  They showed a considerably higher bioavailability of 39% for SDM and 89% 

for OMP.  Compared to the 4.6% calculated by Bakal et al. (2004) in hybrid striped bass 

held in 16-17 °C freshwater, this exhibits the inconsistency of data present in the 

literature. 
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 Distribution.  Several researchers have investigated the distribution into tissues 

of SDM and OMP when administered alone in aquatic animal species.  Kleinow and 

Lech (1988) and Squibb et al. (1988) reported comprehensive pharmacokinetics, low 

protein binding, and wide distribution of radiolabelled SDM following oral and 

intravenous administration in rainbow trout and channel catfish, respectively.  However, 

only Samuelsen et al. (1995) monitored rainbow trout tissues for the presence of the two 

compounds after simultaneous administration.  They found the SDM and OMP volumes 

of distribution at steady state to be 0.39 and 2.48 L/kg, respectively.  This suggests a 

much wider distribution of OMP into the tissues outside the plasma than what was seen 

with SDM.  The distribution volume for SDM was similar to that reported previously in 

experiments involving the single compound, 0.422 L/kg  (Kleinow and Lech, 1988), 

0.622 L/kg (Squibb et al., 1988), and 0.40 L/kg (Michel et al., 1990).  Considerably 

higher distribution volumes have been reported by researchers for OMP, 4.854 in 

rainbow trout (Droy et al., 1990) and 5.503 L/kg in catfish (Plakas et al., 1990).  

Samuelsen et al. (1995) also noted the kidney had the highest OMP concentration of any 

organ tested.  In salmonids, the kidney contains cells rich in melanin 

(melanomacrophages).  They postulated OMP may bind to the melanin in these cells and 

could explain the high concentration and prolonged T1/2β of OMP in kidney compared to 

the other organs. 

 Metabolism.  Uno et al. (1993) showed both SDM and sulfamonomethoxine were 

metabolized by rainbow trout to the N4-acetylated conjugate which was the major 

metabolite, and the N1-glucuronide conjugate and N4-acetyl-N1-glucuronide double 

conjugate which were present in lesser amounts.  Kleinow et al. (1992) monitored SDM 
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and N4-acetylated SDM in several tissues and plasma of rainbow trout.  They found 20 h 

after administration the majority of compound in the plasma was the parent SDM.  

Conversely, N4-acetylated SDM predominated in the bile.  Slightly higher levels of N4-

acetylated SDM were found in the liver.  These findings agree with Squibb et al. (1988) 

who reported that approximately 90% of the biliary SDM occurred as N4-acetylated SDM 

in catfish.  These findings also support the view that liver enzymes are instrumental in the 

extraction of the N4-acetylated SDM compound from the parent SDM. 

 Plakas et al. (1990) found several unidentified OMP metabolites in the urine of 

catfish. 

 Elimination.  Samuelsen et al. (1995) showed a fairly rapid elimination for both 

SDM and OMP, as the elimination half-life, T1/2β, was 9.9 and 25.6 h, respectively.  In 

channel catfish T1/2β for SDM and OMP was found to be 12.6 and 12.8 h (Michel et al., 

1990; Squibb et al., 1988), whereas Droy et al. (1990; 1989) calculated T1/2β for SDM and 

OMP in rainbow trout to be 16.1 and 17.5 h, respectively. 

Florfenicol 

 Florfenicol is a relatively new antimicrobial agent to aquaculture, when compared 

to OTC and SDM-OMP which have been used for decades in aquaculture worldwide.  

Researchers only began studying the pharmacokinetics of florfenicol in fish in the mid-

1990’s.  Pharmacokinetics investigations of florfenicol have been conducted in Atlantic 

salmon (Horsberg et al., 1996; Horsberg et al., 1994; Martinsen et al., 1993), cod 

(Samuelsen et al., 2003), channel catfish (Wrzesinski et al., 2006),  rainbow trout (Pinault 

et al., 1997), and koi and three spot gourami (Yanong and Curtis, 2005). 
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 Absorption.  Horsberg et al. (1996), Martinsen et al. (1993), and Samuelsen et al. 

(2003) showed florfenicol absorption after oral administration to be fast and complete 

with Tmax and bioavailability values of 6 h and 99%, 10.3 h and 96.5%, and 7 h and 91%, 

respectively.  After oral administration Yanong et al. (2005) estimated a T1/2α in koi and 

three-spot gourami to be 1.4 h and 0.6 h, respectively.  After intramuscular administration 

they calculated a T1/2α of 3.5 and 0.1 h, respectively. 

 Distribution.  Virtually identical volumes of distribution at steady state were 

observed by Horsberg et al. (1996) (1.12 L/kg) and Martinsen et al. (1993) (1.32 L/kg) in 

Atlantic salmon, and Samuelsen et al. (2003) (1.1 L/kg) in cod.  These values indicate 

florfenicol distributes throughout the body in both species and suggests tissue 

concentration may be similar to those found in plasma. 

 Metabolism.  Metabolism studies of florfenicol have identified florfenicol amine 

as the major metabolite in muscle tissue although florfenicol parent is more predominant 

in skin (FDA-CVM, 2005).  Florfenicol amine lacks antibacterial activity, but serves as 

the marker residue.  From 48 h after administration and throughout a study by Horsberg 

et al. (1996) florfenicol amine was found in higher concentrations in Atlantic salmon 

plasma than florfenicol.  Samuelsen et al. (2003) noted a considerable difference in the 

T1/2β of florfenicol after oral administration in cod (39 h), when compared to that 

observed by Horsberg et al. in Atlantic salmon (14.7 h).  A negligible temperature 

difference was cited as a possible explanation however, no florfenicol amine was 

detected in either plasma or tissues of cod.  The apparent lack of this metabolic pathway 

in cod may have contributed to the slower elimination of florfenicol and its amine in cod 

than in Atlantic salmon.  However, such a difference in T1/2β has not been shown in 
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previous studies with cod and other antimicrobial agents (Samuelsen et al., 2000; Elema 

et al., 1994; Rogstad et al., 1993). 

 Metabolism of florfenicol presumably occurs in the liver but this has not been 

shown experimentally. 

 Elimination.  With the exception of the longer T1/2β of cod described above, 

florfenicol elimination is quite rapid compared to most other antimicrobial agents used in 

aquaculture.  Martinsen et al. (1993) and Horsberg et al. (1996) calculated T1/2β in 

Atlantic salmon to be 12.2 and 14.7 h, respectively.  The rapidity of absorption and 

subsequent elimination in most species, coupled with the general lack of potential of 

antimicrobial resistance impacting human health (due to the scant use of structurally 

related compounds thiamphenicol and chloramphenicol) has contributed to the 

attractiveness of florfenicol in aquaculture. 

Antimicrobial Susceptibility Testing 

Current Status of Methods 

 When veterinarians decide whether or not to treat fish with antimicrobial agents, 

they must consider the anticipated pharmacokinetics of the antimicrobial agent in the 

target fish species under the given conditions (i.e., water temperature, salinity, hardness).  

They must also choose an antimicrobial agent that is effective against the disease.  A 

well-controlled and standardized antimicrobial susceptibility test (AST) is the best means 

to obtain this information.  A critical component of an AST method is its ability to 

accurately predict a clinical outcome following treatment based on the AST result.  In 

other words, does a likely susceptible in vitro AST result automatically mean therapy will 

be efficacious?  Conversely, does a likely resistant in vitro test result mean therapy will 
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not be efficacious?  The purpose of an in vitro test is not to mimic in vivo conditions, 

rather provide reproducible results which can be used to predict clinical outcome 

(CLSI/NCCLS, 2007b). 

 Three reproducible AST methods are currently available for use in veterinary 

medicine.  Agar and broth dilution susceptibility tests result in a minimal inhibitory 

concentration (MIC) for a single bacterial isolate and provide the most clinical relevance, 

where the MIC may be directly related to an achievable tissue or plasma concentration in 

vivo.  Disk diffusion susceptibility tests yield diameters of the zone of inhibition which 

provide no correlation with achievable concentrations in vivo, but are simple and very 

affordable tests to run.  In recent years, the E-test has gained popularity as a simple 

diffusion-based susceptibility test resulting in an MIC shown to yield virtually identical 

results as the more traditional broth microdilution tests (Luber et al., 2003). 

 Prior to 2001 aquatic animal disease researchers commonly used AST methods 

and clinical breakpoint values (susceptible, intermediate, and resistant) developed in their 

own laboratories.  Different methods and breakpoint values prevented accurate inter-

laboratory comparisons and correlation to clinical cases.  In 2001 a draft set of protocols 

for AST methods for aquatic bacterial pathogens was published by Alderman and Smith 

(2001).  These protocols were adopted by many fish health laboratories (Smith, 2005), 

however there were no standardized AST methods with quality control (QC) organisms 

and parameters.  It was not until 2003 that a Clinical and Laboratory Standards Institute 

(CLSI, formerly National Committee for Clinical Laboratory Standards, NCCLS) disk 

diffusion AST method was standardized and QC organisms and parameters established 

(CLSI/NCCLS, 2006a; Miller et al., 2003).  Shortly thereafter in 2005, a CLSI/NCCLS 
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broth microdilution AST method was also standardized and QC parameters established 

(Chapter 3) (CLSI/NCCLS, 2006b; Miller et al., 2005).  These standardized methods 

apply only to non-fastidious aquatic pathogens (Group 1 bacteria) that grow well on and 

in unsupplemented Mueller-Hinton media.  These pathogens include members of 

Enterobacteriaceae, non-psychrophilic (grow best at temperatures >20°C) Aeromonas 

spp., Pseudomonas spp., Plesiomonas shigelloides, Shewanella spp., and non-obligate 

halophilic members of Vibrionaceae. 

Interpretive Criteria 

 How does one decide if an isolate is susceptible, resistant, or intermediate based 

on a single AST result?  The data obtained from the test, MIC or zone diameter, must be 

interpreted based on potential clinical effect.  These interpretive criteria or breakpoints 

are determined by a number of considerations. 

 MIC clinical breakpoint values are determined from three main sources of 

information (CLSI/NCCLS, 2007a): 

1. Pharmacokinetic and/or pharmacodynamic studies of the antimicrobial 

agent in the target animal species used to determine the likelihood of 

achieving a concentration of the drug at the target site. 

2. Historical clinical outcomes are correlated with MICs of clinical isolates 

evaluated. 

3. The antimicrobial agent’s MIC distribution for the pathogen is examined 

to develop epidemiologic cutoffs. 

 Zone diameters from disk diffusion tests can also be used to interpret an isolate’s 

level of susceptibility.  Zone diameter clinical breakpoints are determined primarily from 
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large AST data distributions where each isolate’s diameter of zone of inhibition is plotted 

on the x-axis and its MIC is plotted on the y-axis.  Regression analysis has often been 

used to suggest appropriate zone diameter breakpoint values, but is dependent upon a 

fairly even distribution of organisms at each MIC tested, particularly in the range of the 

intermediate MIC ± 2 to 3 two-fold dilutions (Fuchs et al., 2002).  With many of the 

newer antibiotics (i.e., florfenicol) however, resistant organisms are rare, and the MIC 

distribution is heavily weighted toward very susceptible MICs, resulting in an unreliable 

regression line.  To overcome this problem the error rate-bounded method of Metzler and 

DeHaan (1974) as modified by Brunden et al. (1992) is commonly used to select disk 

diffusion clinical breakpoints, and has been accepted by the CLSI (CLSI/NCCLS, 

2007a). 

 Historically in the U.S., the CLSI as an independent standard-setting organization, 

reviewed data submissions and approved breakpoint values.  These breakpoint values 

were often used by FDA’s Center for Veterinary Medicine (CVM) on the product label.  

Since clinical breakpoints for animal drugs affect safety and effectiveness of the 

antimicrobial, CVM makes the final decision about the breakpoint used in an approved 

product.  Agreement upon breakpoint values between the two organizations is desirable 

but not obligatory. 

 By definition a clinical breakpoint is the classification of projected clinical 

outcome of patient treatment based on the causative microorganism’s in vitro response to 

an antimicrobial agent relative to the exposure to that agent that is attainable using the 

labeled dose regimen for the target animal species for that type of infection and infecting 

organism (CLSI/NCCLS, 2007a).  Thus, the bacterial species- and target animal species-
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specificity of these values provides one a level of reliability in these values.  It is also 

important to note that interpretive criteria apply only if the laboratory has conducted AST 

according to specific standardized methods. 

 Currently, there are no universally accepted clinical breakpoint values available 

for any antimicrobial agent or fish pathogen in any fish species.  Reimschuessel et al. 

(2005) published a searchable database (Phish-Pharm) from hundreds of research 

publications that investigate the pharmacokinetic profiles of numerous compounds in 

multiple fish species and water conditions.  Meta-analyses of data taken from this 

database, along with in vitro MIC and zone diameter distributions for a given bacterial 

pathogen (Miller and Reimschuessel, 2006; Smith and Hiney, 2005; Coyne et al., 2004a; 

Tsoumas et al., 1989) can be used to help determine clinical breakpoints in aquaculture.  

Additional investigations are also needed to determine actual pharmacokinetic/ 

pharmacodynamic (PK/PD) index targets (i.e., T>MIC, AUC/MIC, Cmax/MIC) for a given 

drug against a bacterial pathogen in order to predict clinical efficacy and prevent the 

emergence of resistance. 

 The studies described in this dissertation are the foundation for developing such 

breakpoints for the fish pathogen A. salmonicida.  This work required developing 

standardized AST methods for aquatic pathogens.  These were used to develop 

epidemiologic cutoff values from AST data distributions.  New microbiological and high-

performance liquid chromatography methods were developed to detect OTC in fish 

serum.  These methods were used to provide pharmacokinetic and pharmacodynamic data 

for two OTC feed formulations.  In addition, pharmacokinetic data was obtained from 
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both infected and healthy fish to correlate with clinical outcome and the susceptible MIC 

epidemiologic cutoff value. 
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Chapter 2: Antimicrobial Resistance Mechanisms and 

Susceptibility Testing of Aquatic Isolates 

This book chapter is included as published under Miller R.A., A. Baya, and R. 

Reimschuessel.  (2003). Antimicrobial Resistance Mechanisms and Susceptibility 

Testing of Aquatic Isolates.  In: New Approaches to the Use of Antibiotics. Research 

SignPost (www.researchsignpost.com). Ed: Gerardo Álvarez de Cienfuegos López, 

Manuel Antonio de Pablo Martínez, Alfonso Ruiz-Bravo López. 2003 pp 183-201. 

Introduction 

 Advances in aquatic animal medicine have increased the number of antimicrobial 

therapeutants available for use in aquaculture.  Antimicrobials used in worldwide 

aquaculture are listed in Table 2.  Some of these compounds are used almost exclusively 

in aquatic animal medicine, while others are also important in human medicine.  With 

antimicrobial use comes the risk of exposed bacterial populations becoming resistant to 

those drugs.  Concerns that fish pathogens and environmental microorganisms could 

become resistant and then transfer their resistance genes to human pathogens have been 

expressed by a number of agencies and researchers (FDA-CVM, 2003; Angulo, 2000; 

Moll et al., 1999; Aoki, 1997; Kruse and Sorum, 1994).  Several studies have identified 

antimicrobial resistant microorganisms in human and veterinary medicine (Schroeder et 

al., 2002a; Schroeder et al., 2002b; Threlfall et al., 2000), in addition to environmental 

isolates acquired from aquaculture settings (Huys et al., 2001; Guardabassi et al., 1999; 

Nygaard et al., 1992; McPhearson et al., 1991).  Other studies have identified 

transmissible resistance genes in aquatic pathogens (Petersen et al., 2000; Guardabassi et 
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al., 2000b; Rosser and Young, 1999; Adams et al., 1998; Dahlberg et al., 1997).  The 

resistance genes from aquatic isolates have similar genetic sequences as a number of 

resistance genes found in mammalian isolates.  The mechanism of action of the aquatic 

resistance genes also parallel those found in mammalian isolates. 

Table 2.  Antimicrobial agents used in global aquaculture. 
Antimicrobial agent Bacterial disease controlled 
Amoxicillin Furunculosis, rickettsial infection, coldwater disease 
Ampicillin Coldwater disease, streptococcosis 
Bicozamycin   
Chloramphenicol Bacterial fin erosion, carp erythrodermatitis, columnaris, 

enteric redmouth, furunculosis, haemorrhagic 
septicaemia, pasteurellosis, ulcerative dermatitis, 
vibriosis 

Chlortetracycline Coldwater disease, saltwater columnaris 
Clindamycin Bacterial kidney disease 
Doxycycline Mycobacteriosis, streptococcosis 
Erythromycin Bacterial kidney disease, streptococcosis 
Florfenicol Furunculosis 
Flumequine Furunculosis, vibriosis, enteric redmouth 
Furanace Bacterial fin erosion, coldwater disease, columnaris, gill 

disease, haemorrhagic septicaemia, vibriosis 

Furazolidone Carp erythrodermatitis, furunculosis, vibriosis 
Josamycin   
Kanamycin Bacterial fin erosion, haemorrhagic septicaemia, 

mycobacteriosis, vibriosis 
Kitasamycin   
Lincomycin   
Minocycline Mycobacteriosis 
Myroxacin   
Nalidixic acid   
Nitrofurantoin Vibriosis 
Novobiocin   
Oleandomycin   
Oxolinic acid Columnaris, enteric redmouth, furunculosis, 

haemorrhagic septicaemia, vibriosis 
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Table 2.  Antimicrobial agents used in global aquaculture. 
Antimicrobial agent Bacterial disease controlled 
Oxytetracycline Acinetobacter disease, bacterial fin erosion, carp 

erythrodermatitis, coldwater disease, columnaris, 
edwardsiellosis, emphysematous putrefactive disease, 
enteric redmouth, enteric septicaemia, furunculosis, gill 
disease, haemorrhagic septicaemia, redpest, salmonid 
blood spot, saltwater columnaris, streptococcosis, 
ulcerative dermatitis, pseudomonas disease, gaffkemia 

Penicillin dihydrostreptomycin   
Penicillin G Bacterial kidney disease 
Piromidic acid   
Rifampin Mycobacteriosis 
Spiramycin Bacterial kidney disease 
Streptomycin Haemorrhagic septicaemia, mycobacteriosis 
Sulfadiazine-trimethoprim Enteric redmouth, furunculosis, Plesiomonas shigelloides 

infection, vibriosis 
Sulfadimethoxine-ormetoprim Furunculosis, enteric septicemia of catfish 
Sulfamerazine Bacterial kidney disease, coldwater disease, columnaris, 

enteric redmouth, furunculosis, haemorrhagic 
septicaemia 

Sulfamethazine, sodium salt Bacterial kidney disease, coldwater disease, columnaris, 
furunculosis, vibriosis 

Sulfamonomethoxine   
Sulfamonomethoxine-
ormetoprim 

  

Sulfisoxazole Bacterial kidney disease, coldwater disease, columnaris, 
enteric redmouth, furunculosis, haemorrhagic 
septicaemia 

Sulfonamides Nocardiosis 
Tetracycline Carp erythrodermatitis, columnaris, furunculosis, 

streptococcosis 
Thiamphenicol   
Tiamulin Enteric redmouth 
Information obtained from Austin and Austin (1987) and Schnick (2006). 

 

 To reduce the potential of selecting for resistant bacteria in the aquatic 

environment, it is essential to use antimicrobial agents judiciously (National Aquaculture 

Association Board of Directors, 2003).  The objective of antimicrobial therapy in all 

animals should be to provide a drug that is biologically active against the target pathogen, 
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at the appropriate concentration at the site of infection for the appropriate length of time 

(Lees and Aliabadi, 2002).  In other words, appropriate antimicrobial chemotherapy 

involves optimizing dosing regimes (pharmacokinetics) with antibacterial activity at the 

site of infection (pharmacodynamics).  There are great challenges to conducting 

pharmacokinetic and pharmacodynamic (PK/PD) studies in the aquatic animal, as 

evidenced by the limited amount of data in this area.  Nevertheless, the basic principles of 

judicious use of antimicrobials apply to aquatic animal medicine, just as it applies to 

veterinary medicine in general, and to human medicine (National Aquaculture 

Association Board of Directors, 2003; AVMA Executive Board, 2002). 

 When using antimicrobials it is essential to ascertain that the drug being 

considered will be effective in treating a particular disease causing agent.  This may 

require antimicrobial susceptibility testing (AST) of the microorganism in question.  Such 

testing is well standardized for mammalian isolates in protocols such as those described 

by the National Committee for Clinical Laboratory Standards (NCCLS).  Conducting 

AST on bacteria from the aquatic environment is not well established and is complicated 

by the fact that most of the isolates from aquatic animals, and their environment, require 

or prefer growth conditions different from those isolates obtained from homeothermic 

hosts.  Further, researchers have diverged from the NCCLS standardized AST protocols 

when evaluating the antimicrobial susceptibility of aquatic microflora.  Many of these 

deviations include studies which have inappropriately used NCCLS-approved interpretive 

criteria (susceptible and resistant breakpoints) for testing at 35ºC when testing isolates at 

22ºC.  Other studies have incubated isolates for a time that was ‘growth dependent’.  This 

indicates that there was no uniform incubation time for the isolates tested.  Another 
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inappropriate practice has been using arbitrary zone diameters, or zones of inhibition of 

any substantial size, as the criteria for determining if an organism is resistant or 

susceptible to a given drug.  The usefulness of such data is questionable and also negates 

the ability to reliably compare data between laboratories.  In other words, a poorly 

controlled antimicrobial susceptibility test, based on laboratory-specific methods could 

cause the attending veterinarian to prescribe antimicrobial agents that are clinically 

ineffective. 

 A major factor contributing to the lack of interlaboratory reproducibility of AST 

results of bacterial pathogens isolated from aquatic species has been the lack of a 

standardized testing method including quality control (QC) organisms and QC ranges for 

AST of isolates requiring temperatures lower than those already standardized by the 

NCCLS (CLSI/NCCLS, 2007b).  In addition to QC parameters, resistant and susceptible 

breakpoints need to be defined for the bacterial pathogens that are unique to aquatic 

animal species, whose growth preferences have not already been addressed by the current 

NCCLS methods (CLSI/NCCLS, 2007b).  In other words, an isolate determined to be 

susceptible using breakpoints established by testing isolates from a warm-blooded animal 

at 35ºC, does not necessarily correlate with clinical efficacy in the aquatic animal host.  

While several studies have been conducted to determine the susceptibility of aquatic 

bacterial pathogens to antimicrobial agents few attempts have been made to determine the 

criteria for defining resistance in the aquaculture setting.  Bruun et al. (2000) tried to 

define resistance based on three criteria: minimum inhibitory concentration (MIC) values 

alone; PK data and MIC values; and an “in vivo resistance” definition, which asked if it 

was possible to treat an infection under similar conditions to those found on an 
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aquaculture farm?  These three basic definitions are the major components, discussed in 

the NCCLS guideline M37-A (CLSI/NCCLS, 2007a).  The NCCLS document gives a 

thorough explanation of each criteria, and specific examples of the types of data needed 

for determining resistant, intermediate, and susceptible phenotypes in a given group of 

bacteria.  These criteria involve first identifying the appropriate testing conditions and 

then identifying the appropriate QC organisms and corresponding QC ranges.  Using 

appropriate QC strains, the in vitro activity of the drug against the target pathogen is then 

determined for several hundred bacterial pathogens.  In addition, the target animal PK-PD 

data is generated and is correlated with the results of clinical studies.  When analyzed in 

its entirety these components are then used in developing interpretive criteria for bacterial 

pathogens in the targeted animal species, including aquaculture species.  In aquaculture, 

research is needed to determine resistant, intermediate, and susceptible breakpoints for 

AST of bacterial isolates that grow at lower temperatures.  Such information will help 

determine the efficacy of different antimicrobials for susceptible aquatic isolates, and will 

facilitate the clinician’s choice of an appropriate antimicrobial.  This data will also help 

researchers and diagnosticians monitor the development of resistant microorganisms in 

the aquatic environment. 

Antimicrobial Resistance in the Aquatic Environment 

Why is there a need to monitor changes in resistance? 

 Antimicrobial agents are known to accumulate in the environment (i.e., 

sediments, water column).  This accumulation arises from various sources including 

uneaten medicated feed and from urine and fecal excretions.  Repeated exposure of 

aquatic microflora to an agent has been shown to increase the likelihood of selecting for a 
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bacterial population that has acquired resistance characteristics.  Several studies have 

shown an increase in the number of resistant bacteria obtained from the sediments, the 

water column, and animal species following antimicrobial treatment (Petersen et al., 

2002; Chee-Sanford et al., 2001; Guardabassi et al., 2000a; Guardabassi et al., 1999; 

DePaola et al., 1995; Nygaard et al., 1992; Sandaa et al., 1992; McPhearson et al., 1991). 

 There is also concern that antimicrobial resistance genes can be transferred from 

aquatic microflora to human pathogens (Angulo, 2000; Garrett et al., 1997).  For 

example, Sorum (1998) described the in vitro transfer of a resistance or R-plasmid from 

an atypical Aeromonas salmonicida isolate to Escherichia coli, Salmonella enterica 

serovar Enteritidis, and S. enterica ser. Typhimurium.  Thus, concern has also been 

voiced regarding terrestrial farm antimicrobial usage (Padungton and Kaneene, 2003; 

Schroeder et al., 2002a). 

 Conversely, an increase in resistance in resident bacterial populations in the 

aquatic setting has occurred following exposure to drugs from human sources such as 

hospital sewage.  Huys et al. (2001) studied the relationship between antimicrobial 

“tolerance” and taxonomic diversity among oxytetracycline-resistant heterotrophic 

bacterial populations found in hospital sewage and in freshwater aquaculture water 

samples.  They found several “tolerant” genera in both sites tested, however the isolates 

originating from the hospital sewage site exhibited higher frequencies of “tolerance” to 

two of the drugs tested, ampicillin and kanamycin. 

 In order to reduce the introduction of antimicrobials into receiving waters from 

aquaculture farms, some commercial suppliers of aquaculture products, university 

researchers, and fish farmers are developing innovative intensive indoor closed culture 
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systems for some fish species traditionally raised in outdoor pond or cage settings 

(Losordo et al., 1999; Losordo et al., 1998; Timmons and Losordo, 1994).  These 

recirculating systems reduce the potential for fish to be exposed to drugs and pathogens 

commonly found in agricultural and urban runoff. 

Resistance Mechanisms and Associated Genes Identified in Aquatic Bacteria 

 In the last 20 years, several studies have demonstrated that similar antimicrobial 

resistance genes are present in bacterial isolates from the aquatic environment and from 

warm-blooded animals (Petersen et al., 2002; Schmidt et al., 2001a; Kim and Aoki, 

1993).  Genes that code for antimicrobial resistance may be acquired in one of three 

ways: plasmids or transposons, integrons, or by chromosomal mutation.  Resistance 

genes have been identified in many aquatic pathogens including A. salmonicida (Schmidt 

et al., 2001a; Schmidt et al., 2001b; Oppegaard and Sorum, 1994), Yersinia ruckeri 

(Klein et al., 1996), and Vibrio salmonicida (Sorum et al., 1992) which are the etiological 

agents of furunculosis, enteric redmouth, and coldwater vibriosis, respectively. 

 Acquisition of resistance genes via R-plasmids, has been shown to occur in 

several fish pathogens including A. salmonicida (Schmidt et al., 2001b), A. hydrophila, V. 

anguillarum, Pseudomonas fluorescens, Edwardsiella tarda (Aoki, 1988), 

Photobacterium damselae subsp. piscicida (Magarinos et al., 1992) and Y. ruckeri (De 

Grandis and Stevenson, 1985).  Plasmids are known to be reservoirs of resistance genes 

to drugs such as tetracycline, trimethoprim, sulfonamides, and chloramphenicol, used in 

the aquatic environment (Lewin, 1992).  The transfer of R-plasmids is thought to play a 

major role in the horizontal transfer of resistance in the fish farming environment.  These 

conjugal elements have been found to contain resistance genes encoding resistance to 
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virtually all antimicrobial agents used in aquaculture (Tran and Jacoby, 2002; Aoki, 

1997; Roberts, 1996).   

 The genes associated with antimicrobial resistance code for a number of different 

resistance mechanisms (Lewin, 1992).  Many of the genes identified in aquatic isolates 

encode for efflux proteins (i.e., tet genes).  Efflux proteins, possessed by both Gram-

negative and Gram-positive organisms, are energy-dependent membrane associated 

proteins which export some antimicrobials, including tetracyclines, out of the cell 

(Roberts, 1996).  Schmidt et al. found that 30% of oxytetracycline-resistant aeromonads 

tested carried one or two of the five tetracycline resistance genes that were examined 

(Schmidt et al., 2001a).  Three of these genes, tetA, tetE, and tetD encode for proteins 

involved in the efflux pump.  Most tetracycline resistance genes in aquatic isolates such 

as A. hydrophila, E. tarda, V. salmonicida, and P. piscicida have been found on plasmids 

or transposons (Guardabassi et al., 2000b; Sorum et al., 1992; Aoki and Takahashi, 

1987).  Transposons are mobile genetic elements capable of site-specific recombination 

with assistance from transposase enzymes. 

 Other gene complexes encoding for plasmid-mediated antimicrobial resistance in 

aquatic pathogens include dhfr, sul, and the chloramphenicol transferase (CAT) enzymes.  

Studies of dhfr have shown that the gene is present on plasmids and transposons (Adrian 

and Klugman, 1997; Huovinen et al., 1995).  An R-plasmid associated class I integron 

containing the dhfrI gene (encodes resistance to trimethoprim) was found in 

Acinetobacter spp. isolated from the aquatic environment (Petersen et al., 2000), and A. 

salmonicida (Schmidt et al., 2001b).  Trimethoprim acts as an inhibitor of the enzyme 

dihydrofolate reductase, which is an essential enzyme in folic acid synthesis.  A defect in 
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the dhfr gene results in an altered target enzyme dihydrofolate reductase, thereby 

reducing its affinity for trimethoprim, which leads to reduced susceptibility to the drug.  

Similarly, a defect in the genes sulI or sulII, encoding the enzyme dihydropteroate 

synthase results in an altered affinity for the sulfonamides.  Sulfonamides inhibit the 

enzyme dihydropteroate synthase, blocking the formation of dihydropteroic acid from 

para-aminobenzoate and dihydropteroate (Smith and Lewin, 1993).  Integron-associated 

sulI genes have been found among A. salmonicida isolates. 

 The production of the CAT enzymes and beta lactamases are examples of the 

resistance mechanisms which modify and inactivate the targeted antimicrobial agent.  

The CAT-I enzyme, conferring chloramphenicol resistance has been found in P. 

piscicida, and the CAT-II enzyme in V. anguillarum, A. salmonicida, and E. tarda (Aoki, 

1988).  More recently another chloramphenicol resistance gene catA2, was identified in 

A. salmonicida (Sorum et al., 2003).  Three beta-lactamases, including a carbapenemase 

were found in seven strains of A. salmonicida resistant to amoxicillin (Hayes et al., 

1994). 

 Class 1 integrons are elements that contain genetic determinants of the 

components of a site-specific recombination system that recognizes and captures mobile 

gene cassettes.  Gene cassettes commonly encode proteins involved in resistance to 

antibiotics (Fluit and Schmitz, 1999).  Integrons have been found among environmental 

bacteria (Petersen et al., 2000; Rosser and Young, 1999), some motile Aeromonas species 

(Schmidt et al., 2001a), and many isolates of A. salmonicida (Sorum et al., 2003; L'Abee-

Lund and Sorum, 2001; Schmidt et al., 2001b).  Chromosomal mutation is another 

mechanism of antimicrobial resistance that has been extensively studied in mammalian 
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bacterial pathogens.  Two types of chromosomal mutations are associated with resistance 

to the quinolones.  These mutations have been shown to lead to alterations in the target 

enzyme DNA gyrase that reduce the accumulation of 4-quinolones (i.e., oxolinic acid) 

inside the bacterial cell (Lewin et al., 1990).  The 4-quinolones, which each share the 

same core ring structure are antimicrobial agents that target two essential bacterial 

enzymes, DNA gyrase and DNA topoisomerase IV (Drlica and Zhao, 1997; Courvalin, 

1990).  The genes gyrA and gyrB encode for DNA gyrase, essential for uncoiling DNA 

during replication and transcription.  A nucleotide substitution within the gyrA 

polypeptide chain is suspected to alter the binding ability of quinolones to the assembled 

DNA gyrase (Lewin et al., 1990), as seen in a study with A. salmonicida (Oppegaard and 

Sorum, 1996).  Chromosomal resistance due to mutations have also been associated with 

quinolone resistance in V. anguillarum (Aoki et al., 1974), Pasteurella piscicida, E. 

tarda, Y. ruckeri, and A. salmonicida (Tsoumas et al., 1989).  In vitro experiments, 

demonstrating low level resistance to oxolinic acid and other 4-quinolones (including 

fluoroquinolones) in A. salmonicida, revealed alterations in outer membrane proteins 

which may function as porins (Barnes et al., 1990b; Wood et al., 1986).  Porins form 

water-filled channels that regulate the outer membrane permeability of low molecular-

mass solutes, including antibiotics (De et al., 2001; Koebnik et al., 2000). 

 Other structural defenses have been found in studies with A. salmonicida (Barnes 

et al., 1990b; Wood et al., 1986).  Outer membrane protein modifications have been 

associated with the expression of low-level resistance against quinolones and 

tetracyclines.  The presence of the outer membrane protein in A. salmonicida, or A-layer 

has been shown to play a role in virulence (Maurice et al., 1999), and enhanced the 
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uptake of hydrophobic antibiotics such as chloramphenicol and streptonigrin (Garduno et 

al., 1994).  Alternatively, A-layer negative mutants had a reduced susceptibility to these 

same antimicrobials. 

Antimicrobial Susceptibility Testing of Aquatic Bacteria 

Introduction 

 Because similar mechanisms of resistance are found in bacterial pathogens of 

mammalian and aquatic species, there is increased public concern about antimicrobial 

resistance from aquatic sources.  This concern has spawned efforts to standardize AST 

methods.  In 1998, scientists from multiple countries met at the Workshop on MIC 

Methodologies in Aquaculture (WMA) (Alderman and Smith, 2001) to develop a ‘core’ 

set of protocols for AST of aquatic microorganisms.  These protocols, based primarily on 

those found in the NCCLS documents (CLSI/NCCLS, 2007b; CLSI/NCCLS, 2003; 

CLSI/NCCLS, 2000), were created to facilitate interlaboratory data evaluation and begin 

development of standardized, quality controlled methods for AST.  The ‘tentative’ 

protocols assembled by participants of the workshop were comprised of protocols for 

disk diffusion, agar dilution, broth microdilution, and broth macrodilution testing.  

Included were procedures for the following components (as applicable): antimicrobial 

stock solutions, media preparation, inoculum, diffusion disks, incubation, results 

interpretation, quality control, and rejection criteria. 

Importance of Temperature for Susceptibility 

 Standardized methods of AST for bacteria isolated from aquatic animals are 

required because isolates from homeotherms typically require growth temperatures for 
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testing ≥35ºC, whereas most isolates from the aquatic environment including those from 

fish prefer or require growth at temperatures ≤28ºC.  AST methods and QC guidelines 

have been extensively standardized for testing many different organisms and drugs at 

35ºC, but relatively little work has been done at the lower temperatures.  The effect these 

low temperatures and potentially longer incubation times may have on susceptibility test 

results has not been addressed extensively in the literature.  One could reason that several 

factors may affect results of AST when conducted at temperatures <35ºC.  For example, 

chemicals themselves may be more stable at the lower temperatures compared to 

temperatures ≥35ºC (Michel and Blanc, 2001).  The slower metabolism of the bacteria at 

the lower temperatures may also affect the results, however lower temperatures may 

require longer incubation times.  This in turn may increase the risk of drug inactivation.

 Despite the problems identified previously, AST data using diffusion and dilution 

protocols at the lower temperatures has repeatedly been proven useful, and does in fact 

yield consistent reproducible results (Miller et al., 2003; Ho et al., 2000).  Therefore, with 

adequate validation, protocols using low temperatures should be able to be standardized. 

 As alluded to above temperature may influence the susceptibility of 

microorganisms to antimicrobials by altering rates of drug transport, intracellular protein 

binding, and possibly the decreased metabolic rate of the bacterial pathogen.  If 

temperatures are lowered, the decreased temperature favors the passive binding of the 

drug to intracellular proteins, and the drug may be less likely to attain its target (Michel 

and Blanc, 2001).  Likewise, the lower temperature could alter the drug’s affinity for the 

target.  Additionally, if growth at lower temperatures reduces the drug concentration in 

the microorganism, one would expect a decreased susceptibility compared to isolates 
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tested at 35ºC.  In fact, data has shown that AST performed at temperatures below the 

preferred temperature of the given isolate, produced lower MICs and larger zones of 

inhibition indicating an increased susceptibility at the lower temperature (Miller et al., 

2003).  The role temperature may have in altered susceptibility due to factors such as 

growth kinetics and intracellular pharmacokinetics needs to be investigated. 

Current Status of Disk Diffusion Methods 

 The Kirby-Bauer method (Bauer et al., 1966) is the most commonly used disk 

diffusion method for determining the susceptibility of aquatic bacteria to antimicrobial 

agents (Barker and Kehoe, 1995).  However, over the years, many different types of disk 

diffusion methods, including types of media have been used by researchers testing 

aquatic pathogens by disk diffusion.  Dalsgaard (2001) published a comprehensive list of 

the different types of media used for testing various aquatic pathogens.  Dalsgaard (2001) 

and Barker and Kehoe (1995) both found Mueller-Hinton agar to be the best medium for 

diffusion testing, based upon its consistent performance with a wide range of aquatic 

pathogens.  It is also a well-known, chemically defined medium that is recommended by 

the NCCLS for performing disk diffusion testing (CLSI/NCCLS, 1996).  Those in 

attendance at the WMA also recommended this medium (Alderman and Smith, 2001). 

 In addition to the variation in media used, there has been an even greater disparity 

in disk diffusion methods used by laboratories (Ottaviani et al., 2001; Guerin-Faublee et 

al., 1996; Dalsgaard et al., 1994).  Such differences include: incubation time, agar 

content, incubation conditions, media supplements, disk size, disk contents, inoculum 

preparation, inoculum density, and inoculation technique.  The extent of this list of 

variations can have profound effects on test validity and outcome.  Recognizing the 
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problem, scientists worldwide have acknowledged an urgent need to standardize the disk 

diffusion method for testing the susceptibility of bacteria isolated from aquatic animals 

and their environment. 

 Building on the efforts and recommendations of the WMA, researchers have 

focused recently to standardize the disk diffusion testing method including the formation 

of QC standards and parameters used for monitoring performance and reproducibility.  

To establish NCCLS QC ranges for two organisms, researchers conducted a multi-

laboratory collaborative study (Miller et al., 2003).  This study established QC ranges for 

E. coli (ATCC® 25922; NCIMB 12210) and A. salmonicida subsp. salmonicida (ATCC® 

33658; NCIMB 1102) at two temperatures, 22ºC and 28ºC, against nine antimicrobial 

compounds commonly used in global aquaculture.  These antimicrobials included 

ampicillin, erythromycin, florfenicol, gentamicin, oxolinic acid, oxytetracycline, 

ormetoprim-sulfadimethoxine, trimethoprim-sulfamethoxazole, and enrofloxacin (only A. 

salmonicida subsp. salmonicida).  The standardized methods of disk susceptibility testing 

used in that study and the resulting QC ranges were recently published in the NCCLS 

report, M42-R entitled, Methods for Antimicrobial Disk Susceptibility Testing of Bacteria 

Isolated from Aquatic Animals (CLSI/NCCLS, 2006a).  The NCCLS-approved methods, 

including the QC ranges are for testing isolates found in Group 1 (Table 3).  Organisms 

in Groups 2-5 may require additional standardized testing methods as bacteria in these 

groups require supplemented media or different incubation temperatures or times.  It is 

hoped researchers will use the existing methods and QC ranges, as well as future editions 

of the M42 report to validate their work when conducting disk diffusion testing of aquatic 

isolates. 
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Current Status of Dilution Methods 

 The sizes of the zones of inhibition generated by disk diffusion testing are 

dependent on the rate of diffusion of the antimicrobial agent through the agar media, thus 

zone sizes do not correlate directly with the level of in vivo drug activity.  Broth dilution 

results on the other hand, have a more direct relationship to the MIC which has greater 

clinical relevance.  Studies with various aquatic pathogens including A. salmonicida 

(Adams et al., 1998) and Vibrio spp. (Roque et al., 2001; Ho et al., 2000) have used broth 

dilution methods to obtain MICs without using universally standardized conditions.  

Unfortunately, without the use of standardized testing conditions it is difficult to compare 

data between laboratories or over time.  Thus, it is imperative to standardize methods for 

broth dilution susceptibility testing under optimal growth conditions needed by aquatic 

isolates such as lowered temperatures. 

 Unlike disk diffusion studies, which are done in aquatic laboratories using many 

different types of media, cation-adjusted Mueller-Hinton broth (CAMHB) has been the 

preferred medium for broth microdilution testing (CLSI/NCCLS, 2000).  CAMHB yields 

consistent results within and between laboratories, and facilitates growth of a wide range 

of bacterial pathogens. 

 Again, building upon the recommendations of those at the WMA and using the 

NCCLS documents describing dilution testing (CLSI/NCCLS, 2007b; CLSI/NCCLS, 

2000), researchers at the U.S. FDA are currently developing a method for broth 

microdilution susceptibility testing, along with QC guidelines for testing organisms at the 

lower temperatures.  A 96-well microtiter plate containing 10 antimicrobial agents (Trek 

Diagnostic Systems, Inc.; Cleveland, OH) has been developed, and is currently being 
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Group # Bacterial spp. Temperature Incubation time Suggested media

Group 1 -Enterobacteriaceae —Mueller-Hinton agar
-Aeromonas salmonicida
    (non-psychrophilic strains)
-Aeromonas hydrophila
    (and other mesophilic Aeromonads)
-Pseudomonas spp.
-Plesiomonas shigelloides
-Shewanella spp.
-Vibrio  spp.
    (non-obligate halophilic strains)
-Listonella anguillarum

Group 2 -Vibrio spp. 22±2ºC and/or 28±2ºC 24-28 hours and/or 44-48 hours —1.5% NaCl addition where basal 
    (obligate halophilic strains) media NaCl content is not known; 

1.5% final NaCl concentration 
where basal NaCl content is knowna

-Photobacterium damselae  subsp. 28±2ºC 44-48 hours —Same as above
    piscicida/damselae

Group 3 -Flavobacterium columnare 28±2ºC 24-28 hours and 44-48 hours —Dilute Mueller-Hinton agarb

-Flavobacterium branchiophilum  
-Flavobacterium psychrophilum 15±2ºC 44-48 hours and 68-72 hours —Dilute Mueller-Hinton agar with 

5% serumc

Group 4 -Streptococcus iniae 35ºC 16-18 hours —Mueller-Hinton agar with 5%

 -Streptococcus dysgalactiae sheep blood
 -Lactococcus garviae

 -Vagococcus salmoninarum

 -Other Gram-positive cocci 35ºC 16-18 hours —Mueller-Hinton agar
Group 5 -Psychrophilic Aeromonas 15±2ºC 44-48 hours —Mueller-Hinton agar

    salmonicida  strains
 -Vibrio salmonicida 15 ± 2ºC 44-48 hours —Mueller-Hinton agar with 1.5% 

NaCl
-Streptococcus difficilis 28±2ºC 44-48 hours —Mueller-Hinton agar with 5% 

sheep blood
-Gram-positive rods Multiple variations Multiple variations —Multiple variations
    (Renibacterium salmoninarum ,
    Mycobacterium   spp., Nocardia
    spp., Erysipelothrix rhusiopathiae ,
    and Corynebacterium  spp.)

c recommended conditions by Michel and Blanc (2001)

Table 3.  NCCLS VAST - Aquaculture Working Group recommended grouping for standardizing disk susceptibility tests of 
various bacteria isolated from fish

a recommended conditions by Alderman and Smith (2001) and Ottaviani et al. (2001)
b recommended conditions by Hawke and Thune (1992)

22±2ºC and/or 28±2ºC 24-28 hours and/or 44-48 hours
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evaluated using NCCLS recommendations for broth microdilution testing (CLSI/NCCLS, 

2007b; CLSI/NCCLS, 2000).  Preliminary results show reproducible MICs when testing 

Vibrio spp., Aeromonas spp., Edwardsiella spp., Ph. damselae subsp. damselae/piscicida, 

Y. ruckeri, and Listonella anguillarum.  Once a standardized method and QC parameters 

are available, diagnosticians will be able to generate data that is comparable both between 

laboratories and over time.  If standard panels, similar to the one described above, 

become commercially available, researchers will have a valuable new tool to assist in the 

discrimination between resistant and susceptible bacterial isolates of the aquatic 

environment. 

Future Needs and Challenges 

Interpretive Criteria 

 Interpretive criteria or clinical breakpoints, defining resistant, intermediate, or 

susceptible phenotypes, are derived from multidisciplinary studies including 

pharmacokinetics-pharmacodynamics (PK-PD), MIC determinations, and trials involving 

treatment of diseased animals which may include clinical cases and/or experimentally 

induced infection.  Interpretive criteria are currently available for various warm-blooded 

target species for several antimicrobial compounds.  However, limited work has been 

conducted on generating interpretive criteria for bacterial pathogens of aquatic species.  

Thus, there are no aquaculture specific clinical breakpoint concentrations for 

antimicrobials used in aquatic medicine.  Such specific interpretive criteria are urgently 

needed for all aquatic isolates to enable attending veterinarians to more accurately 

prescribe an antimicrobial for treatment.  Studies attempting to establish clinical 

breakpoints must include analyses of the relationship between PK-PD parameters in the 
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target animal species and efficacy in treating infections caused by the specific bacterial 

pathogen.  These analyses should include such PD parameters as length of time for serum 

or plasma levels to exceed the MIC of the pathogen, peak serum or plasma level to MIC 

ratio, or ‘area-under-the-serum drug concentration’ (AUC) to MIC ratio (CLSI/NCCLS, 

2001).  Studies generating MICs from at least 500 isolates of the bacterial pathogen in 

question should represent clinically relevant strains that exhibit resistance and 

susceptibility to the drug in question.  Lastly, AST results (MICs and zone sizes) should 

be correlated with therapeutic outcomes observed in research and in clinical experience 

(CLSI/NCCLS, 2007a). 

Methods of AST for the Other Isolates 

 A standardized method, as well as QC ranges now exist when conducting disk 

diffusion susceptibility tests of most aquatic isolates requiring or preferring growth at 

temperatures <35ºC.  Testing conditions, including media supplementation, incubation 

times and temperatures need to be determined when testing the bacterial pathogens in 

Groups 2-5.  Once a method is developed and has been demonstrated to yield consistent 

results after testing isolates in the ‘group’ for which the method was standardized, QC 

parameters should then be determined.  To facilitate this process, additional QC 

organisms may need to be employed.  There are over 40 drugs used in global aquaculture 

(Table 1), and currently only 9 of them have QC ranges established for susceptibility 

testing isolates at temperatures <35ºC.  It is hoped that this list of antimicrobials will in 

the not-too-distant future expand to encompass many more drugs of interest to 

aquaculture. 
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Chapter 3: Standardization of a broth microdilution susceptibility 

testing method to determine minimal inhibitory concentrations of 

aquatic bacteria 
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Papapetropoulou, B. Petty, C. Teitzel, and R. Reimschuessel. (2005) Standardization 

of a broth microdilution susceptibility testing method to determine minimum 

inhibitory concentrations of aquatic bacteria.  Dis Aquat Organ. 64:211-222. 

 

Abstract 

 A multiple laboratory study was conducted in accordance with the standards 

established by the Clinical and Laboratory Standards Institute (CLSI, formerly the 

NCCLS), for the development of quality control (QC) ranges using dilution antimicrobial 

susceptibility testing methods for bacterial isolates from aquatic animal species.  Quality 

control ranges were established for Escherichia coli ATCC 25922 and Aeromonas 

salmonicida subsp. salmonicida ATCC 33658 when testing at 22°C, 28°C, and 35°C (E. 

coli only) for ten different antimicrobial agents (ampicillin, enrofloxacin, erythromycin, 

florfenicol, flumequine, gentamicin, ormetoprim-sulfadimethoxine, oxolinic acid, 

oxytetracycline, and trimethoprim-sulfamethoxazole).  Minimal inhibitory concentration 

(MIC) QC ranges were determined using dry- and frozen-form 96-well plates and cation-

adjusted Mueller-Hinton broth.  These QC ranges were accepted by the CLSI - 
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Subcommittee on Veterinary Antimicrobial Susceptibility Testing.  This broth 

microdilution testing method represents the first standardized method for determination 

of MICs of bacterial isolates whose preferred growth temperatures are below 35°C.  

Methods and QC ranges defined in this study will enable aquatic animal disease 

researchers to reliably compare quantitative susceptibility testing data between 

laboratories, and will be used to ensure both precision and inter-laboratory 

harmonization. 

Introduction 

In the area of anti-infective therapy, researchers and fish disease specialists have 

made great strides in recent years towards developing standardized methods to determine 

MICs of bacteria isolated from the aquatic environment.  A number of studies have 

provided valuable data to assist in the determination of the most appropriate growth 

media, incubation temperatures and times, and antimicrobial agent concentrations for 

testing various bacterial genera found in the aquatic environment (Coyne et al., 2004a; 

Michel et al., 2003; Miller et al., 2003; McGinnis et al., 2003; Samuelsen et al., 2003; 

Rigos et al., 2003b; Alderman and Smith, 2001; Hawke and Thune, 1992; Martinsen et 

al., 1992; Bandin et al., 1991; Inglis and Richards, 1991; Barnes et al., 1990a).  Some of 

these studies employed dilution methods of antimicrobial susceptibility testing derived 

from accepted standards, such as those published by the CLSI (CLSI/NCCLS, 2002b; 

CLSI/NCCLS, 2000).  Because there are no QC ranges established for tests conducted at 

temperatures below 35°C, these studies lacked required internal controls. 

Most of these studies recommended using Mueller-Hinton medium for routine 

susceptibility testing of non-fastidious organisms.  Alderman & Smith (2001) published a 
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‘tentative’ set of protocols wherein they outlined the problems commonly encountered 

when comparisons were made of data generated by laboratories employing different 

media and methods.  Data generated using these varied protocols differ greatly from 

laboratory to laboratory, making inter-laboratory correlations of susceptibility results 

difficult.  Thus, there is a pressing need for fish health diagnostic laboratories, 

veterinarians, and researchers to have standardized antimicrobial susceptibility testing 

methods available for bacterial isolates of aquatic origin. 

Three standardized antimicrobial susceptibility testing methods are recommended 

by the CLSI for testing bacterial pathogens of mammalian origin (CLSI/NCCLS, 2002b).  

These are agar disk diffusion, broth dilution, and agar dilution.  The E-test® (AB Biodisk) 

is a commercial proprietary system based on a modified agar diffusion method, which is 

currently not recommended by the CLSI for use as a standardized antimicrobial 

susceptibility testing method.  Prior to the completion of the study reported here, only the 

agar disk diffusion method was standardized for the testing of aquatic isolates 

(CLSI/NCCLS, 2006a; Miller et al., 2003).  However, agar disk diffusion test results can 

be less reliable when slower growing organisms are tested. In these cases, fairly large 

zones of inhibition may indicate susceptibility or may simply represent the effect of 

delayed growth (Acar and Goldstein, 1996).  These factors help justify the need for 

susceptible, intermediate, and resistant breakpoints for aquaculture drugs and pathogens 

at the lower temperatures.  Disk diffusion tests also yield zones of inhibition which are 

generally not as useful to the clinician, even when the extrapolation of a MIC value is 

possible using a linear regression analytical system.  Despite its limitations, the agar disk 

diffusion method is still commonly used in aquatic diagnostic laboratories.  In the past 
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decade, however, several studies have been published where dilution susceptibility 

testing methods were used on aquatic isolates (Coyne et al., 2004a; Michel et al., 2003; 

McGinnis et al., 2003; Samuelsen et al., 2003; Rigos et al., 2003b; Torkildsen et al., 

2000; Rangdale et al., 1997; Park et al., 1995). 

A standardized dilution susceptibility testing method provides two advantages 

over the disk diffusion test.  First, results generated by a dilution testing method may be 

quantitative (MIC), in addition to qualitative (susceptible, intermediate, and resistant).  

Quantitative results increase the potential for optimizing a dosing regimen based on the 

pharmacokinetic and pharmacodynamic parameters that drive clinical efficacy.  

Secondly, broth dilution methods permit the testing of bacteria whose growth 

characteristics are less amenable to disk diffusion testing (i.e., slower growing or 

fastidious organisms).  Agar dilution, although considered to be the ‘gold-standard’ for 

antimicrobial susceptibility testing, can be labor intensive and time-consuming.  

Therefore, agar dilution tests tend to be performed less frequently than disk diffusion and 

broth dilution tests.  Broth dilution methods offer a preferred choice for quantitatively 

evaluating slower growing aquatic microorganisms. 

To develop a standardized and internationally harmonized dilution susceptibility 

testing method for aquatic isolates, some members of the CLSI Subcommittee on 

Veterinary Antimicrobial Susceptibility Testing – Aquaculture Working Group (VAST-

AWG) coordinated a multiple laboratory study to standardize a MIC testing method for 

bacterial isolates that grow at 22°C and 28°C.  Temperatures chosen for this study were 

based upon their routine use in aquatic animal disease diagnostic laboratories worldwide, 

on recommendations of members of the CLSI Subcommittee on VAST-AWG, on an 
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effort to coordinate methodologies with international investigators, and to accommodate 

temperature optimums for aquatic bacteria isolated from both cold- and warm-water 

species.  The methods used in this study were based on the broth microdilution testing 

methods described in the CLSI standard M31-A2 (CLSI/NCCLS, 2002b).  Also 

incorporated were recommendations of experts in the field of aquatic microbiology, such 

as incubation temperature and duration, and testing media which were summarized by 

Alderman and Smith (2001).  This method was developed for testing aquatic bacterial 

isolates which prefer or require temperatures below 35°C, and do not require 

supplementation of the standard Mueller-Hinton growth medium.  Since these aquatic 

isolates prefer or require these lower temperatures, previously they could not have been 

tested accurately employing the QC parameters established in the CLSI protocols for 

testing organisms from mammalian origin whose optimal growth temperatures are ≥35ºC 

(CLSI/NCCLS, 2002b).  The CLSI Subcommittee on VAST - AWG generated a list of 

aquatic bacterial pathogens which prefer lower temperatures (Table 4), and on which the 

standardized susceptibility testing method described herein may apply.  Commercially-

prepared MIC test plates which contained dehydrated antimicrobial agents (dry-form 

plates) were used in this study, and validated against a commercially-prepared frozen-

form plate, which is the CLSI reference method (CLSI/NCCLS, 2001).  Ten different 

antimicrobial agents were chosen to represent major classes of antimicrobial agents, some 

of which are approved for use in aquaculture in the U.S. and other countries.  Some of 

these antimicrobial agents have been prescribed for ‘extra-label’ use by veterinarians 

treating non-food commercial and hobby aquarium fish.  In addition, some of these 

antimicrobial agents have been identified in the aquatic environment 
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Table 4. Broth dilution susceptibility testing conditions for Group 1 organisms, 
as recommended by the CLSIa/NCCLS Subcommittee on VAST – AWG. 

Group # Aquatic pathogens Incubation Suggested 
media 

Group 1 Enterobacteriaceae CAMHB 
  Aeromonas salmonicida (non-

psychrophilic strains) 

22 ºC (24-28 h and/or 
44-48 h) 
& 28 °C (24-28 h) 

  

      
  Aeromonas hydrophila and other 

mesophilic Aeromonads 
  

     
  Pseudomonas spp., Plesiomonas 

shigelloides, Shewanella spp. 
  

     
  Vibrio spp. (non-obligate 

halophilic strains) 
   

    
 Listonella anguillarum     
a CLSI, Clinical and Laboratory Standards Institute (formerly the NCCLS) 

 

(Capone et al., 1996), and are of growing concern to environmental regulatory agencies 

(Daughton and Ternes, 1999). 

The standardized methods established in this work will assist in the more precise 

monitoring of resistance in bacteria commonly isolated from the environment, as well as 

aid aquatic disease specialists in the treatment of bacterial infections in aquatic species. 

Materials and Methods 

Standardization Study 

Participating laboratories.  In this study, data was generated in ten participating 

laboratories.  These included the Food and Drug Administration, Center for Veterinary 

Medicine (FDA-CVM), Office of Research, Laurel, Md.; Fish Health Unit, Department 

of Primary Industries Water & Environment, Prospect Launceston, Australia; Atlantic 

Veterinary College, University of Prince Edward Island, Prince Edward Island, Canada; 
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Institute of Marine Research, Department of Aquaculture, Bergen, Norway; Danish 

Institute for Fisheries Research, Fish Disease Laboratory, Frederiksberg, Denmark; 

University of Wisconsin, Wisconsin Veterinary Diagnostic Laboratory, Madison, Wis.; 

Alpharma, Animal Health Division, Chicago Heights, Ill.; University of Patras, 

Laboratory of Public Health, Rio Patras, Greece; Florida Department of Agriculture and 

Consumer Services, Division of Animal Industry, Bartow, Fla.; Washington State 

University, Washington Animal Disease Diagnostic Laboratory, Pullman, Wash. 

While the study was initiated with ten participating laboratories, QC ranges 

presented here are based on data from nine testing laboratories for Escherichia coli 

ATCC 25922 and seven laboratories for Aeromonas salmonicida subsp. salmonicida 

ATCC 33658.  Data from one laboratory was consistently askew with the values 

observed in the other nine laboratories for both QC strains, and thus the data from this 

laboratory was eliminated from the entire study.  In the case of the A. salmonicida subsp. 

salmonicida strain, one laboratory was unable to receive the A. salmonicida subsp. 

salmonicida QC strain due to import restrictions, and the other generated data for all 

antimicrobial agents consistently out of line from the values obtained in the other seven 

laboratories.  As a result, the maximum total QC data points per organism/antimicrobial 

agent/temperature/incubation time condition were reduced from 300 to 270 for E. coli, 

and to 210 for A. salmonicida subsp. salmonicida.  Previous CLSI methods 

standardization and QC studies have eliminated data from laboratories based on 

inconsistent data (Miller et al., 2003; McDermott et al., 2001; Marshall et al., 1996; 

Jorgensen et al., 1996).  In this study the number of data points produced in the nine and 

seven laboratories for E. coli and A. salmonicida subsp. salmonicida respectively, 
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satisfied the requirements of the CLSI for the establishment of QC ranges (CLSI/NCCLS, 

2002a). 

MIC test plates.  All plates used in the multiple laboratory trial were dry-form 

plates manufactured by Trek Diagnostic Systems (Cleveland, OH) (lot #3222) in the 

standard 96-well format.  This custom plate consisted of two-fold dilutions centering on 1 

μg/mL, of the following antimicrobial agents: ampicillin, enrofloxacin, erythromycin, 

florfenicol, flumequine, gentamicin, ormetoprim-sulfadimethoxine, oxolinic acid, 

oxytetracycline, and trimethoprim-sulfamethoxazole. Tables 5-10 include the 

concentration range tested for each antimicrobial agent.  Two wells in each MIC test 

plate were used as positive controls. 

Test strains and growth conditions.  American Type Culture Collection 

(Manassas, Virginia) reference strains, E. coli ATCC 25922; NCIB 12210; DSM 1103 

and A. salmonicida subsp. salmonicida ATCC 33658; NCMB 1102 were incubated at 

both 22 ± 2ºC for 24 to 28 h and 44 to 48 h, and at 28 ± 2ºC for 24 to 28 h in cation-

adjusted Mueller-Hinton broth (CAMHB). 

Quality control.  Following guidelines for QC described in the CLSI standard 

M31-A2 (CLSI/NCCLS, 2002b) E. coli ATCC 25922 was incubated at 35°C for 16 to 20 

h in CAMHB. 

Broth microdilution susceptibility testing.  This study was designed in 

accordance with guidelines described in the CLSI guideline M37-A2 (CLSI/NCCLS, 

2002a) for conducting QC studies, and followed procedures outlined in the CLSI 

standard M31-A2 (CLSI/NCCLS, 2002b).  On ten testing days, each laboratory tested E. 

coli ATCC 25922 and A. salmonicida subsp. salmonicida ATCC 33658 in three lots of 
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CAMHB.  CAMHB was prepared by Trek Diagnostic Systems using powders from three 

lots from three different sources: BD Diagnostic Systems (Sparks, MD) 212322 - lot 

#1254009; Hardy Diagnostics (Santa Maria, CA) C7521 - lot #2049; and Difco (Sparks, 

MD) 275710 - lot #2218968.  Sterility and pH measurements were taken, and cation 

supplementation was made based on the certificate of analysis for each lot of powder, and 

adjusted in accordance with the CLSI standard M7-A6 (CLSI/NCCLS, 2000).  Trek 

Diagnostic Systems distributed all media in liquid form to the 10 participating 

laboratories. 

On each ‘testing day’, one suspension was prepared for each QC strain in 

demineralized water.  The CLSI guideline M31-A2 states sterile water, Mueller-Hinton 

broth, or 0.9% saline may be used to prepare inocula of some fastidious pathogens 

(CLSI/NCCLS, 2002b).  Turbidities were measured using one of the following; 

colorimeter (0.5 McFarland suspension), spectrophotometer (0.08-0.10 at OD625), 

turbidimeter (60-70 NTUs), or the line method (CLSI/NCCLS, 2006a).  Suspensions 

targeted an inoculum density equivalent to approximately 1.0 x 108 colony forming units 

per mL (CFU/mL).  Bacterial suspensions were diluted 1:200 in CAMHB to target an 

inoculum concentration of approximately 5.0 x 105 CFU/mL.  Dry-form MIC test plates 

were inoculated with 100 μL per well using either a Trek Autoinoculator® apparatus 

(Trek Diagnostic Systems) or a multichannel pipetter. 

Test plates were covered with plastic adhesive seals and incubated within 15 min 

of inoculation at 22°C and 28°C (E. coli ATCC 25922 and A. salmonicida subsp. 

salmonicida ATCC 33658) and 35°C (E. coli ATCC 25922).  Plates were stacked no 

more than two plates high to ensure proper humidity and air circulation.  Test plates were 
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read by removing the seal.  This permitted the detection of slight growth detectable with 

the unaided eye.  The seals were carefully replaced for those plates which required 

incubation at 22°C for an additional 20 to 24 h. 

Immediately following inoculation, colony counts were performed for each isolate 

on each test day, from a positive control well from one MIC test plate.  To perform the 

colony counts a 1:1000 dilution was made in demineralized water.  A 100 μL aliquot was 

used to inoculate a tryptic soy agar plate supplemented with 5% sheep blood.  The 

inoculum was uniformly spread across the surface of the agar using an L-shaped 

spreader.  Colony count plates were incubated at 28°C for 24 to 28 h and the number of 

CFUs counted. 

Definition of minimum inhibitory concentration.  MICs were defined as the 

lowest concentration of antimicrobial agent that prevented visible growth of the 

microorganism.  Following recommendations detailed in the CLSI standard M7-A6 

(CLSI/NCCLS, 2000), when a single skipped well occurred the highest MIC was read 

(i.e., the first well with no growth after the skipped well), and when two skipped wells 

occurred the test was repeated. 

Definition of quality control ranges.  In accordance with CLSI guideline M37-

A2 (CLSI/NCCLS, 2002a) the organisms were tested using three lots of media tested in 

at least seven laboratories on ten test days.  The percentage of participant MICs that fell 

within the approved QC ranges for E. coli ATCC 25922 exceeded 95% for all 

antimicrobial agents tested (Tables 5-7).  In tests on A. salmonicida subsp. salmonicida 

ATCC 33658, trailing endpoints were observed by researchers in two laboratories 

(Figure 12), which caused the percentage of participant MICs within the approved QC 
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ranges to be slightly lower than the targeted 95% for four of the antimicrobial agents 

(ampicillin, florfenicol, flumequine, and oxolinic acid) at 22°C 44 to 48 h and 28°C 24 to 

28 h (Tables 9 and 10). 

Validation Study 

To be in compliance with the CLSI guidelines M37-A2 (CLSI/NCCLS, 2002a) 

and M23-A2 (CLSI/NCCLS, 2001), for establishment of QC criteria, a single laboratory 

(FDA-CVM) study was required to show comparability between MIC results generated 

using the dry-form and frozen-form reference plates. 

Test plates consisted of two-fold dilutions of the following antimicrobial agents: 

ampicillin (0.03-16 μg/mL), enrofloxacin (0.002-1 μg/mL), erythromycin (0.25-128 

μg/mL), florfenicol (0.03-16 μg/mL), flumequine (0.008-4 μg/mL), gentamicin (0.06-4 

μg/mL), ormetoprim-sulfadimethoxine (0.008/0.15-4/76 μg/mL), oxolinic acid (0.004-2 

μg/mL), oxytetracycline (0.015-8 μg/mL), and trimethoprim-sulfamethoxazole 

(0.015/0.3-1/19 μg/mL).  Two wells in each MIC test plate were used as positive 

controls. 

The CLSI recommends that a minimum of 100 isolates should be tested to 

validate MIC test results using the reference frozen-form plates against those obtained in 

dry-form plates (CLSI/NCCLS, 2002a).  In this study over 100 distinct isolates of E. coli 

and A. salmonicida combined, were tested at all temperatures and times for which MIC 

QC ranges were proposed.  E. coli isolates were obtained from the FDA-CVM culture 

collection originating from non-piscine host species.  A. salmonicida isolates were 

obtained from various aquatic disease research laboratories in the United States, Canada, 

and the United Kingdom.  Both E. coli ATCC 25922 and A. salmonicida subsp. 
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salmonicida ATCC 33658 were used as QC organisms at 22 ± 2°C and 28 ± 2°C and 

only E. coli at 35 ± 2°C, using the ranges approved by members of the CLSI 

Subcommittee on VAST for testing in dry-form plates as a result of the standardization 

study described above. 

Tests were conducted in CAMHB (Trek Diagnostic Systems) using the same 

procedure employed in the multiple laboratory trial.  Bacterial suspensions equivalent to 

a 0.5 McFarland suspension were prepared and diluted in CAMHB to a standardized 

inoculum concentration of approximately 5.0 x 105 CFU/mL for the dehydrated plates, 

and 1.0 x 106 CFU/mL for the frozen plates.  Dry-form plates were inoculated with 100 

μL per well, and frozen plates with 50 μL per well (making a 1:2 dilution with the thawed 

antimicrobial agent solution in each well) using a Trek Autoinoculator®. 

 

Inter-laboratory 
range Median

CLSI/NCCLS-
approved QC 

rangeb

Ampicillin 0.06 - 32 2 - 16 4 2 - 16 267 100
Enrofloxacin 0.002 - 1 0.004 - 0.03 0.008 0.004 - 0.015 266 98.1
Florfenicol 0.12 - 64 2 - 16 8 2 - 16 266 100
Flumequine 0.015 - 8 0.12 - 0.5 0.25 0.06 - 0.5 266 100
Gentamicin 0.12 - 8 ?0.12 - 2 0.25 0.12 - 0.5 266 95.1
Ormetoprim- 
sulfadimethoxinec

Oxolinic acid 0.004 - 2 0.06 - 0.25 0.06 0.03 - 0.25 266 100
Oxytetracycline 0.03 - 16 0.25 - 2 0.5 0.25 - 1 267 99.3
Trimethoprim- 
sulfamethoxazoled

Table 5. Escherichia coli ATCC 25922 minimum inhibitory concentration QC results at 22°C - 24-28 h with
CAMHBa.

% Within 
QC range

# Data 
points

Antimicrobial 
agent

Testing range (μg 
mL-1)

MIC (μg mL-1)

0.5/9.5 0.12/2.4 - 1/19 267 99.60.008/0.15 - 4/76 0.12/2.4 - 2/38

0.03/0.6 - 2/38 ?0.03/0.6 - 
0.25/4.8

d First value indicates concentration of trimethoprim; second value indicates concentration of sulfamethoxazole

c First value indicates concentration of ormetoprim; second value indicates concentration of sulfadimethoxine

267 99.60.06/1.2 0.03/0.6 - 0.12/2.4

a CAMHB was made from three lots of media, common to all nine laboratories.
b CLSI, Clinical and Laboratory Standards Institute (formerly the NCCLS)
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MIC (μg mL-

1)
 

Inter-laboratory 
range Median

CLSI/NCCLS-
approved QC 

rangeb

Ampicillin 0.06 - 32 4 - >32 8 4 - 16 267 99.6
Enrofloxacin 0.002 - 1 0.004 - 0.03 0.008 0.004 - 0.015 265 97.4
Florfenicol 0.12 - 64 4 - 16 8 4 - 16 264 100
Flumequine 0.015 - 8 0.12 - 1 0.25 0.12 - 0.5 264 99.2
Gentamicin 0.12 - 8 0.25 - 4 0.5 0.25 - 1 264 96.2
Ormetoprim-
sulfadimethoxinec

Oxolinic acid 0.004 - 2 0.06 - 0.5 0.12 0.06 - 0.25 264 99.2
Oxytetracycline 0.03 - 16 0.5 - 4 1 0.5 - 2 267 99.3
Trimethoprim-
sulfamethoxazoled

a CAMHB was made from three lots of media, common to all nine laboratories.

Table 6. Escherichia coli ATCC 25922 minimum inhibitory concentration QC results at 22°C - 44-48 h with
CAMHBa.

% Within 
QC range

# Data 
points

Antimicrobial 
agent

Testing range 
(μg mL-1)

0.25/4.8 - 2/38

0.03/0.6 - 2/38 ≤0.03/0.6 - 0.25/4.8 0.06/1.2 0.03/0.6 - 0.25/4.8

d First value indicates concentration of trimethoprim; second value indicates concentration of sulfamethoxazole

266 95.5

265 100

0.008/0.15 - 4/76 0.12/2.4 - 2/38 0.5/9.5

b CLSI, Clinical and Laboratory Standards Institute (formerly the NCCLS)
c First value indicates concentration of ormetoprim; second value indicates concentration of sulfadimethoxine

 

MIC (μg mL-1)  

Inter-laboratory 
range Median

CLSI/NCCLS-
approved QC 

rangeb

Ampicillin 0.06 - 32 2 - 32 4 2 - 16 265 99.6
Enrofloxacin 0.002 - 1 0.008 - 0.03 0.015 0.008 - 0.03 263 100
Florfenicol 0.12 - 64 4 - 16 8 4 - 16 264 100
Flumequine 0.015 - 8 0.12 - 1 0.25 0.12 - 0.5 264 99.6
Gentamicin 0.12 - 8 0.25 - 4 0.5 0.25 - 1 260 97.7
Ormetoprim-
sulfadimethoxinec

Oxolinic acid 0.004 - 2 0.06 - 0.5 0.12 0.06 - 0.25 262 99.6
Oxytetracycline 0.03 - 16 0.5 - 8 1 0.5 - 2 264 99.2
Trimethoprim-
sulfamethoxazoled

a CAMHB was made from three lots of media, common to all nine laboratories.

d First value indicates concentration of trimethoprim; second value indicates concentration of sulfamethoxazole

265 98.5

263 100

0.008/0.15 - 4/76 0.06/1.2 - 2/38 0.5/9.5

b CLSI, Clinical and Laboratory Standards Institute (formerly the NCCLS)
c First value indicates concentration of ormetoprim; second value indicates concentration of sulfadimethoxine

0.12/2.4 - 1/19

0.03/0.6 - 2/38 ≤0.03/0.6 - 
0.25/4.8 0.06/1.2 0.03/0.6 - 0.25/4.8

Table 7. Escherichia coli ATCC 25922 minimum inhibitory concentration QC results at 28°C - 24-28 h with
CAMHBa.

% Within 
QC range

# Data 
points

Antimicrobial 
agent

Testing range 
(μg mL-1)
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Inter-laboratory 
range Median

CLSI/NCCLS-
approved QC 

rangeb

Ampicillin 0.06 - 32 0.25 - 8 0.5 0.25 - 1 201 90.5
Enrofloxacin 0.002 - 1 0.008 - 0.06 0.015 0.008 - 0.03 205 99.0
Erythromycin 0.03 - 16 8 - >16 16 4 - 32 205 100
Florfenicol 0.12 - 64 0.25 - 8 1 0.5 - 2 203 93.6
Flumequine 0.015 - 8 ?0.015 - 0.5 0.06 0.03 - 0.12 202 94.1
Gentamicin 0.12 - 8 0.5 - 4 0.5 0.25 - 2 203 98.0
Ormetoprim-
sulfadimethoxinec

Oxolinic acid 0.004 - 2 0.008 - 0.12 0.015 0.008 - 0.03 197 90.4
Oxytetracycline 0.03 - 16 0.12 - 1 0.25 0.12 - 1 205 100
Trimethoprim-
sulfamethoxazoled

a CAMHB was made from three lots of media, common to all seven laboratories.

0.03/0.6 - 2/38 ?0.03/0.6 - 0.25/4.8

c First value indicates concentration of ormetoprim; second value indicates concentration of sulfadimethoxine
d First value indicates concentration of trimethoprim; second value indicates concentration of sulfamethoxazole

0.12/2.4

0.06/1.2 - 0.5/9.5 202 98.0

1002020.03/0.6 - 0.25/4.8

MIC (μg mL-1)

0.008/0.15 - 4/76

b CLSI, Clinical and Laboratory Standards Institute (formerly the NCCLS)

Table 9. Aeromonas salmonicida subsp. salmonicida ATCC 33658 minimum inhibitory concentration QC
results at 22°C - 44-48 h with CAMHBa.

% Within 
QC range

# Data 
points

Antimicrobial 
agent

Testing range 
(μg mL-1)

0.06/1.2 - 2/38 0.25/4.8

Inter-laboratory 
range Median

CLSI/NCCLS-
approved QC 

rangeb

Ampicillin 0.06 - 32 0.12 - 4 0.25 0.12 - 1 206 97.1
Enrofloxacin 0.002 - 1 0.004 - 0.06 0.015 0.008 - 0.03 207 98.6
Erythromycin 0.03 - 16 4 - 16 8 4 - 16 206 100
Florfenicol 0.12 - 64 0.25 - 4 0.5 0.25 - 1 205 99.0
Flumequine 0.015 - 8 ?0.015 - 0.25 0.06 0.015 - 0.12 207 98.6
Gentamicin 0.12 - 8 0.25 - 4 0.5 0.25 - 1 207 98.1
Ormetoprim-
sulfadimethoxinec

Oxolinic acid 0.004 - 2 ?0.004 - 0.06 0.015 0.008 - 0.03 205 99.0
Oxytetracycline 0.03 - 16 0.06 - 1 0.12 0.06 - 0.25 207 99.5
Trimethoprim-
sulfamethoxazoled

a CAMHB was made from three lots of media, common to all seven laboratories.

Table 8. Aeromonas salmonicida subsp. salmonicida ATCC 33658 minimum inhibitory concentration QC
results at 22°C - 24-28 h with CAMHBa.

% Within 
QC range

# Data 
points

Antimicrobial 
agent

Testing range 
(μg mL-1)

MIC (μg mL-1)

c First value indicates concentration of ormetoprim; second value indicates concentration of sulfadimethoxine
d First value indicates concentration of trimethoprim; second value indicates concentration of sulfamethoxazole

0.008/0.15 - 
4/76

0.03/0.6 - 2/38

b CLSI, Clinical and Laboratory Standards Institute (formerly the NCCLS)

0.06/1.2 - 0.25/4.8

0.03/0.6 - 0.12/2.4

205 97.1

100207

0.03/0.6 - 0.5/9.5 0.12/2.4

0.06/1.2?0.03/0.6 - 0.12/2.4
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Results and Discussion 

Standardization Study 

An obligatory component of all antimicrobial susceptibility tests is the 

establishment of QC ranges for a given QC strain for each antimicrobial agent it is tested 

against.  In this standardization study, QC ranges for ten different antimicrobial agents 

were established for broth microdilution susceptibility testing at 22ºC (24 to 28 h and 44 

to 48 h) and 28ºC (24 to 28 h) for E. coli ATCC 25922 and A. salmonicida subsp. 

salmonicida ATCC 33658, and at 35°C (16 to 20 h) for E. coli ATCC 25922.  These QC 

strains are well characterized and have been approved by the CLSI for use in disk 

diffusion tests (CLSI/NCCLS, 2006a). 

Inter-laboratory 
range Median

CLSI/NCCLS-
approved QC 

rangeb

Ampicillin 0.06 - 32 0.12 - 8 0.5 0.12 - 1 205 91.7
Enrofloxacin 0.002 - 1 0.004 - 0.25 0.008 0.004 - 0.03 207 99.5
Erythromycin 0.03 - 16 4 - >16 8 4 - 32 207 100
Florfenicol 0.12 - 64 0.25 - 8 1 0.5 - 2 205 91.7
Flumequine 0.015 - 8 0.03 - >8 0.06 0.015 - 0.12 206 92.7
Gentamicin 0.12 - 8 0.25 - >8 0.5 0.25 - 1 204 98.0
Ormetoprim-
sulfadimethoxinec

Oxolinic acid 0.004 - 2 0.008 - 0.12 0.015 0.008 - 0.03 206 92.7
Oxytetracycline 0.03 - 16 0.12 - 8 0.25 0.12 - 1 207 99.5
Trimethoprim-
sulfamethoxazoled

a CAMHB was made from three lots of media, common to all seven laboratories.

Table 10. Aeromonas salmonicida subsp. salmonicida ATCC 33658 minimum inhibitory concentration QC
results at 28°C - 24-28 h with CAMHBa.

% Within 
QC range

# Data 
points

Antimicrobial 
agent

Testing range 
(μg mL-1)

MIC (μg mL-1)

c First value indicates concentration of ormetoprim; second value indicates concentration of sulfadimethoxine
d First value indicates concentration of trimethoprim; second value indicates concentration of sulfamethoxazole

0.008/0.15 - 4/76

0.03/0.6 - 2/38

b CLSI, Clinical and Laboratory Standards Institute (formerly the NCCLS)

0.06/1.2 - 0.5/9.5

0.03/0.6 - 0.25/4.8

206 97.6

99.5204

0.06/1.2 - 1/19 0.25/4.8

0.12/2.4?0.03/0.6 - 0.5/9.5
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Tables 5-7 and 8-10 summarize the MICs and QC limits for the ten antimicrobial 

agents tested for E. coli ATCC 25922 and A. salmonicida subsp. salmonicida ATCC 

33658, respectively.  The CLSI Subcommittee on VAST approved these MIC QC ranges 

using a modification of the median method described by Gavan et al. (1981) for disk 

diffusion testing. In many cases there was a single defined median MIC, in which case 

the QC range was defined as ±1 dilution from the median MIC (Figure 8).  There were 

some cases where an underlying distribution of MICs appeared to be asymmetric (Figure 

9).  In these cases, the QC range was expanded one dilution above or below any shoulder 

≥66.7% of the peak MIC frequency.  There was one instance of an asymmetric 

distribution (E. coli ATCC 25922 – ormetoprim-sulfadimethoxine at 35°C) where a five 

dilution range was approved (Figure 10). 

Minimal variability of MIC results was observed with the three lots of CAMHB 

within and between the laboratories for both QC strains (data not shown).  However, 

trailing endpoints (Figures 11 and 12) in tests on both organisms were observed by 8 of 

10 laboratories in one of the lots of media for all antimicrobial agents tested. 

Colony count data generated by laboratories were between 5.0 x 104 - 1.1 x 106 

CFU/mL.  While the cell concentrations in some cases were slightly lower or higher than 

the desired 5.0 x 105 CFU/mL concentration, this did not affect the results, as the MICs 

were within the approved QC range for E. coli ATCC 25922 at 35°C. 
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Figure 8.  Escherichia coli ATCC 25922, oxytetracycline at 22°C 24 to 28 h. An example of a 
distribution with a single mode resulting in the approved three-dilution QC range 0.25 – 1 μg mL-1. 
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Figure 9.  Escherichia coli ATCC 25922, ormetoprim-sulfadimethoxine at 22°C 44 to 
48 h. An example of a bimodal distribution with the smaller mode (1/19 μg mL-1) 

representing 83.5% of the larger mode (0.5/9.5 μg ml-1).  The approved four-dilution 
QC range is 0.25/4.8 – 2/38 μg mL-1. 
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Figure 10.  Escherichia coli ATCC 25922, ormetoprim-sulfadimethoxine at 35°C 16 to 20 h. An 
example of a trimodal distribution with the two smaller modes (0.12/2.4 μg mL-1 and 0.25/4.8 μg mL-

1) representing 77.4% and 83.9% of the largest mode (0.5/9.5 μg/mL-1), respectively. The approved 
five-dilution QC range is 0.06/1.2 – 1/19 μg mL-1. 
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Figure 11.  Aeromonas salmonicida subsp. salmonicida ATCC 33658, ampicillin at 22°C 44 to 48 h. 
An example of an approved three-dilution QC range (0.25 – 1 μg mL-1) with a single mode, 

comprised of <95% of the total data points caused by trailing endpoints observed in two of the 
testing sites. 
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Figure 12. Escherichia coli ATCC 25922, oxytetracycline 28°C 24 to 28 h. Using two lots of CAMHB 
from two different manufacturers, rows A and B show normal growth in wells yielding MICs of 1 μg 
mL-1 and 2 μg mL-1, respectively. Row C shows small pellets of growth or ‘trailing endpoints’ using 

the third lot of CAMHB, with an MIC of 2 μg mL-1 

 
 

Approved CLSI guidelines for testing bacterial isolates at 35°C suggest that 

equivalent MIC results should be observed from tests using tetracycline in place of 

oxytetracycline, and trimethoprim-sulfamethoxazole in place of ormetoprim-

sulfadimethoxine (CLSI/NCCLS, 2002b).  After QC tests were conducted on E. coli 

ATCC 25922 at 35°C in each of the nine laboratories, modifications to those approved 

QC ranges were necessary.  These new modifications were approved by members of the 

CLSI Subcommittee on VAST, and were included in the CLSI guidance document 

(CLSI/NCCLS, 2006b).  The previously approved CLSI QC range for E. coli ATCC 

25922 and tetracycline at 35°C was 0.5 – 2 μg/mL (CLSI/NCCLS, 2002b).  However, 

this range did not correlate with the data observed in this study (QC range of 0.5 – 4 

μg/mL).  The CLSI-approved QC range for both trimethoprim-sulfamethoxazole and 

ormetoprim-sulfadimethoxine against E. coli ATCC 25922 was ≤0.5/9.5 μg/mL 

(CLSI/NCCLS, 2002b).  Since this value was not a true range, it was important to attempt 

to establish a QC range with an upper and lower limit.  QC ranges were established for 
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trimethoprim-sulfamethoxazole and ormetoprim-sulfadimethoxine using E. coli ATCC 

25922 at 35°C. 

CLSI QC ranges for dilution susceptibility testing are typically three or four 

dilutions wide (CLSI/NCCLS, 2002b), and this was the finding for the majority of the 

ranges determined in this work.  The affect of temperature on the MICs was clearly 

demonstrated for both organisms.  With an increase in temperature from 22°C to 28°C 

after 24 to 28 h incubation, a clear increase of approximately one dilution was observed 

in the approved ranges for both QC strains, indicating an amplified growth rate and/or 

antimicrobial agent metabolism.  Additionally, incubation time affected the MICs for 

both organisms, where a one dilution increase in the approved QC range at 22°C was 

observed with the majority of the antimicrobial agents.  The increase in MICs with an 

increased incubation time suggests there may be an amplified antimicrobial agent 

metabolism and/or degradation during the second 24 h of incubation at 22°C. 

Validation Study 

MICs were obtained for each isolate from the dry-form and frozen-form plates. 

MICs were evaluated by comparing the number of log2 dilution steps from the dry-form 

plates to the MIC results on the frozen-form plates.  Although there were some trends of 

increasing or decreasing MICs depending upon the organism, antimicrobial agent, and 

temperature condition, most of the MIC results (>95%) for each condition of organism, 

antimicrobial agent, temperature, and incubation time were within ±1 log2 dilution step of 

one another (Table 11).  When the percentage agreement within ±1 log2 dilution fell 

below 95%, these results were primarily due to trailing endpoints observed in the dry-

form plates.  Despite using an automated inoculation system, there was a relatively high 
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frequency of occurrence of skipped wells, which contributed in some instances to a >1 

log2 dilution step difference between the plate-types.  Isolates were only retested if two 

skipped wells were observed in two or more antimicrobial agent-dilution series 

(CLSI/NCCLS, 2000). 

Colony count data for the E. coli and A. salmonicida isolates consistently yielded 

inocula concentrations in the 2.0 x 105 - 8.0 x 105 CFU/mL range.  Counts slightly out of 

this range, did not appear to impact the validity of the test and were included. 

N Temperature / 
time AMP ENRO ERY FFN FLUQ GEN PRI OXO OXY SXT

E. coli isolates 74 22°C 24 h 98.6 75.7 100.0 100.0 95.9 95.9 98.7 93.2 98.6 98.2
74 22°C 48 h 95.9 84.3 93.2 100.0 98.6 87.8 100.0 95.9 98.6 100.0
69 28°C 24 h 100.0 88.4 100.0 100.0 100.0 92.6 98.6 100.0 97.0 100.0

112 35°C 16 h 98.2 91.9 99.0 100.0 99.0 87.9 98.2 96.2 78.6 99.0
AVERAGE 98.2 85.1 98.1 100.0 98.4 91.1 98.9 96.3 93.2 99.3

A. salmonicida isolates 40 22°C 24 h 100.0 97.4 97.5 100.0 97.5 100.0 97.5 100.0 94.3 100.0
40 22°C 48 h 97.5 92.3 97.5 97.6 95.0 87.5 100.0 97.5 97.1 100.0
40 28°C 24 h 90.2 97.3 100.0 100.0 94.9 97.5 97.5 97.4 97.1 100.0

AVERAGE 95.9 95.7 98.3 99.2 95.8 95.0 98.3 98.3 96.2 100.0

Table 11.  Percentage agreement within 1 log2 dilution between MIC results on dried- and frozen-form panels.

AMP, ampicillin; ENRO, enrofloxacin; ERY, erythromycin; FFN, florfenicol; FLUQ, flumequine; GEN, gentamicin; PRI, ormetoprim-sulfadimethoxine; OXO,  oxolinic 
acid; OXY, oxytetracycline; SXT, trimethoprim-sulfamethoxazole  

Conclusions 

Based on these standardization and validation studies both E. coli ATCC 25922 

and A. salmonicida subsp. salmonicida ATCC 33658 are acceptable QC strains for broth 

microdilution tests in dry- and frozen-form (or in-house prepared) MIC plates. 

The methods and QC ranges (Table 12) described in this study were presented to 

members of the CLSI/NCCLS Subcommittee on VAST, and accepted for inclusion in the 

CLSI guideline M49-A (CLSI/NCCLS, 2006b). 

This study represents the first published multiple laboratory study conducted in 

accordance with approved guidelines to establish MIC QC ranges at lower temperatures.  

These standardized methods and approved QC ranges should establish a foundation for 

the establishment of more ranges for other economically important antimicrobial agents, 
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and will serve as a model for the development of additional standardized testing methods 

for bacterial pathogens of aquatic animals.  The utility of these methods and associated 

QC ranges should also extend to the development of susceptible, intermediate, and 

resistant breakpoints for antimicrobial agents used in aquaculture against economically 

important aquaculture pathogens. 
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Table 12. Summary of CLSI/NCCLS-approved MIC QC ranges for broth dilution susceptibility testing in CAMHB.

0.06/1.2 - 
0.5/9.5

0.06/1.2 - 
0.5/9.5

Antimicrobial      
agent

coli salmonicida

( ) indicate QC ranges established previously (CLSI/NCCLS 2002b)

Escherichia

ATCC 25922 (μg mL-1)

Aeromonas salmonicida subsp.

ATCC 33658 (μg mL-1)

0.12/2.4 -   
1/19

0.25/4.8 -   
2/38

0.12/2.4 -   
1/19

0.06/1.2 - 
0.25/4.8

0.03/0.6 - 
0.25/4.8
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Chapter 4: Epidemiologic cutoff values for antimicrobial agents against 

Aeromonas salmonicida isolates determined by frequency distributions of 

minimal inhibitory concentration and diameter of zone of inhibition data 

This manuscript is included as published under Miller R.A. and R. Reimschuessel. 

(2006) Epidemiologic cutoff values for antimicrobial agents against Aeromonas 

salmonicida isolates determined by frequency distributions of minimal inhibitory 

concentration and diameter of zone of inhibition data. Am J Vet Res. 67:1837-1843. 

 

Abstract 

 Prior to prescription of antimicrobial therapy, clinicians tasked with the decision 

to treat or not to treat an animal or population, should be familiar not only with the 

disease but also with the antimicrobial susceptibility of the bacterial pathogen if present.  

The accuracy of in vitro antimicrobial susceptibility results to predict therapeutic efficacy 

can be improved through the use of interpretive criteria or clinical breakpoints.  These 

breakpoint values are derived from in vitro antimicrobial susceptibility distributions of 

isolates of the target bacterial species or genus, as well as in vivo pharmacokinetic and 

pharmacodynamic (PK/PD) and clinical efficacy data.  This study provided in vitro 

antimicrobial susceptibility distributions for four antimicrobial agents for 217 Aeromonas 

salmonicida isolates from 12 different countries.  Minimal inhibitory concentration 

(MIC) and diameter of the zone of inhibition for oxytetracycline, ormetoprim-

sulfadimethoxine, oxolinic acid, and florfenicol were determined for each isolate in 

accordance with standardized antimicrobial susceptibility testing methods for bacterial 
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isolates from aquatic animals that have been approved by the Clinical and Laboratory 

Standards Institute (CLSI).  Susceptibility data were tabulated in a scattergram and 

analyzed by use of error rate bounding.  Susceptibility tests for oxytetracycline, 

ormetoprim-sulfadimethoxine, and oxolinic acid revealed 2 distinct populations of 

bacteria.  Isolates tested against florfenicol clustered into a single population.  Use of 

frequency distributions of susceptibility results to develop epidemiologic cutoff values 

appears to be applicable to aquatic isolates.  Frequency distributions of susceptibility 

results for A. salmonicida revealed clear divisions between isolate susceptibilities.  This 

type of data, considered in conjunction with pharmacokinetic and efficacy data, may be 

useful for developing clinical breakpoints for use in aquaculture. 

Introduction 

 Veterinarians are expanding their practices to include exotic species, including 

fish (Francis-Floyd, 2006; Kuehn, 2002).  In the United States, only a few antimicrobial 

agents (including ormetoprim-sulfadimethoxine, oxytetracycline, and florfenicol) are 

approved for use in fish farmed for food production.  Legislation such as the Minor Use 

and Minor Species Animal Health Act of 2004 is fostering the availability of additional 

therapeutic agents for use in fish (FDA-CVM, 2006).  Before such drugs can be used, it is 

important for clinicians treating fish to become familiar with aquatic bacterial diseases 

and the susceptibility of those pathogens to various antimicrobial agents.  

 Although to our knowledge clinical breakpoints or interpretive criteria 

(susceptible, intermediate, and resistant) have not been developed for any aquatic 

pathogens in any aquatic animal species, standardized AST methods for aquatic isolates 

(Miller et al., 2005; Miller et al., 2003) should improve a clinician’s ability to choose an 
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appropriate antimicrobial agent.  Historically, veterinarians and researchers of aquatic 

diseases have used laboratory-specific clinical breakpoints.  These values have had 

limited application or reliability outside of the regions in which they were generated.  

These limitations can be attributed to variations among in vitro testing procedures, 

limited diversity of isolates, and unique environmental conditions that may have affected 

therapeutic efficacy.  Efforts to enhance the probability of therapeutic success when 

relying on AST results are dependent upon interpretive criteria which are as specific as 

possible for a given bacterial pathogen in a given animal species.  The reliability of such 

interpretive criteria is enhanced when standardized AST methods, such as those 

published by the CLSI, are used (CLSI/NCCLS, 2006a; CLSI/NCCLS, 2006b).  These 

two guidance documents, M42 and M49, provide standardized test conditions for 

nonfastidious aquatic bacterial isolates and provide details on methods for quality control 

and quality assurance. 

 Frequency distributions of MICs can be used to delineate epidemiologic cutoff 

values (also known as species-specific microbiological breakpoints), as defined by the 

European Committee on AST (EUCAST, 2006; Kahlmeter and Brown, 2004).  These 

cutoff values can be used to discriminate wild type (i.e., originally susceptible bacterial 

populations) from nonwild type (i.e., populations with acquired and mutational resistance 

mechanisms) isolates.  These cutoff values are not to be confused with clinical 

breakpoints, which are used primarily for predicting clinical outcomes. 

 The purpose of the study reported here was to develop epidemiologic cutoff 

values by use of frequency distributions of MICs and diameters of zones of inhibition for 

217 typical and atypical (slow growing) isolates of Aeromonas salmonicida (causative 
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agents of furunculosis, goldfish ulcer disease, and carp erythrodermatitis) against 3 FDA-

approved antimicrobials and 1 antimicrobial commonly used in some European countries.  

These distributions may be useful in developing clinical breakpoints when combined with 

data from pharmacokinetic-pharmacodynamic studies in targeted fish species and, if 

possible, clinical outcome data from fish with furunculosis or outbreaks of associated 

disease. 

Materials and Methods 

Sample Population 

Isolates of A. salmonicida were obtained from 16 contributors located in various 

countries (8 in the United States, 2 in Israel, and 1 each in Canada, the United Kingdom, 

Switzerland, Spain, Norway, and Finland).  Contributors were contacted by the authors 

and requested to provide typical and atypical A. salmonicida isolates from a wide 

geographic region that included clinical and wild-type strains representing a wide range 

of susceptibilities.  

 A total of 217 A. salmonicida isolates were used for AST, including 112 isolates 

from the United States representing 20 states, 99 isolates from 11 other countries, and 6 

isolates from an unknown origin.  Strains were originally isolated from 28 fish species.  

The year of original isolation for the isolates ranged from 1955 to 2004 (median year of 

original isolation, 1995). 

 All isolates were stored in tryptic soy broth with 20% glycerol at –80oC and then 

cultured on tryptic soy agar supplemented with 5% sheep blood at 22oC for 48 h.  After 

culture, cells were harvested for DNA extraction and AST.  
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 Six isolates, 1 from the National Collections of Industrial, Food and Marine 

Bacteria (Aberdeen, United Kingdom), and 5 from the American Type Culture Collection 

(ATCC 33658, ATCC 14174, ATCC 33659, ATCC 27013, ATCC 49393) (Manassas, 

VA) served as control isolates in the PCR assays.  These isolates were not included in the 

sample population used for AST. 

PCR Assay 

 Genomic DNA was extracted from all bacterial strains by use of a commercially 

Generation capture column kit (Gentra Systems, Minneapolis, MN).  Extraction was 

conducted in accordance with the manufacturer’s instructions. 

 The PCR assays were performed in 0.2-mL thin-walled PCR tubes in a GeneAmp 

PCR System 9700 (Applied Biosystems, Foster City, CA).  Genomic DNA from A. 

salmonicida subsp salmonicida ATCC 33658 was used as a positive control sample for 

each of the 2 PCR assays (MIY and AP).  Nuclease-free water was used as a negative 

control sample.  Template DNA (10 to 100 ng) was added for each reaction, and a 1-kb 

Ready-Load DNA ladder (Invitrogen, Carlsbad, CA) was used.  Products were separated 

by use of electrophoresis on 1.5% agarose gels and developed with ethidium bromide 

staining and UV illumination in a Bio-Rad Gel Doc 2000 documentation system 

(Hercules, CA). 

 The MIY primer set, which is specific for only typical strains of A salmonicida 

subsp salmonicida (Miyata et al., 1996), was used.  The MIY primer set comprises MIY1 

(5′–AGCCTCCACGCGCTCACAGC–3′) and MIY2 (5′–

AAGAGGCCCCATAGTGTGGG–3′).  Each reaction (volume, 25 μL) contained 0.6 

units of Platinum Taq DNA polymerase (Invitrogen); 2.5 μL of 10X PCR buffer 
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(Invitrogen); 1.5mM MgCl2 (Invitrogen); 16 pmol of each amplification primer (i.e., 

MIY1 and MIY2) (Invitrogen); and 0.2mM of each of the 4 deoxynucleotide 

triphosphates (Applied Biosystems).  Reaction mixtures were maintained at 94oC for 2 

min, amplified for 35 cycles with denaturation at 94oC for 30 seconds, annealing at 68oC 

for 90 seconds, and elongation at 68oC for 90 seconds.  A final extension was performed 

at 68oC for 3 min.  Expected size of the PCR product was 512 base pairs (bp). 

 The AP primer set, which is specific for all strains of A salmonicida (Gustafson et 

al., 1992), was used.  The primer set comprised AP1 (5′–

GGCTGATCTCTTCATCCTCACCC–3′) and AP2 (5′–

CAGAGTGAAATCTACCAGCGGTGC–3′).  Each reaction (volume, 25 μL) contained 

0.25 units of Platinum Taq DNA polymerase; 2.5 µL of 10X PCR buffer; 2.5 mM MgCl2; 

8 pmol of each of amplification primer (i.e., AP1 and AP2), and 0.2mM of each of the 4 

deoxynucleotide triphosphates.  Reaction mixtures were maintained at 94oC for 2 min, 

amplified for 30 cycles with denaturation at 94oC for 15 seconds, annealing at 57oC for 

30 seconds, and elongation at 72oC for 90 seconds.  A final extension was performed at 

72oC for 3 min.  Expected size of the PCR product was 421 bp. 

Disk Diffusion Testing 

 Disk diffusion tests were conducted in accordance with CLSI guidelines 

(CLSI/NCCLS, 2006a).  Escherichia coli ATCC 25922 or A. salmonicida subsp 

salmonicida ATCC 33658, or both, were used as quality-control isolates. All tests were 

conducted on Mueller-Hinton agar (Difco, Sparks, MD), with incubation at 22oC for 44 

to 48 h. Disks containing florfenicol (30 μg), oxolinic acid (2 μg), oxytetracycline (30 

μg), and ormetoprim-sulfadimethoxine (1.25 and 23.75 μg of ormetoprim and 
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sulfadimethoxine, respectively) were obtained from BD Diagnostic Systems (Sparks, 

MD).  Diameters of the zones of inhibition were measured with a ruler and rounded to the 

nearest millimeter.  Bacterial inocula were standardized and monitored for cell densities 

in the range of 1 X 108 to 2 X 108 CFU/mL. 

MIC Testing 

Broth microdilution tests were conducted in accordance with CLSI guidelines 

(CLSI/NCCLS, 2006b).  E. coli ATCC 25922 or A. salmonicida subsp salmonicida 

ATCC 33658, or both, were used as quality-control organisms.  All tests were conducted 

in 96-well plates produced by Trek Diagnostic Systems (Cleveland, OH); plates were 

incubated at 22oC for 44 to 48 h.  Plates contained dehydrated antimicrobial agent in each 

well and were formatted in 2 identical series of twelve 2-fold dilutions for florfenicol (32 

to 0.015 μg/mL), oxolinic acid (4 to 0.002 μg/mL), and oxytetracycline (32 to 0.015 

μg/mL) and eleven 2-fold dilutions for ormetoprim-sulfadimethoxine (8/152 to 

0.008/0.15 μg/mL).  Two wells were used as positive control wells.  A Trek 

autoinoculator unit (Cleveland, OH) was used to dispense 100 μL of standardized 

inoculum prepared in cation-adjusted Mueller-Hinton broth (Trek Diagnostic Systems) 

into each well.  Bacterial inocula were standardized and monitored for cell densities of 

approximately 5 X 105 CFU/mL. 

Scattergram Analysis 

The MIC and corresponding diameter of the zone of inhibition for each isolate 

were tabulated to generate a frequency distribution for each antimicrobial agent in the 

form of a scattergram (Microsoft Excel, Redmond, WA).  As recommended by the CLSI 
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(CLSI/NCCLS, 2002a; CLSI/NCCLS, 2001), an error rate bounding method initially 

described elsewhere (Metzler and DeHaan, 1974) was modified to calculate discrepancy 

rates on the basis of MICs and diameters of zones of inhibition for all A. salmonicida 

isolates, typical A. salmonicida isolates, and atypical A. salmonicida isolates.  

Discrepancy rates were calculated for use in selecting epidemiological cutoff values for 

the diameters of the zones of inhibition.  The MIC50 and MIC90 values were also 

calculated for all isolates, isolates from the United States, and isolates from other 

countries. 

Results 

 Analysis of PCR results by use of AP (salmonicida species-specific for typical or 

atypical isolates) and MIY (salmonicida subspecies-specific for typical isolates) primer 

sets revealed a pool of isolates consisting of 163 typical and 54 atypical A. salmonicida 

isolates; these results did not include the 6 reference isolates.  Of the 163 typical isolates, 

110 were from the United States, 49 were from other countries, and 4 were from an 

unknown origin.  Of the 54 atypical isolates, 2 were from the United States, 50 were from 

other countries, and 2 were from an unknown origin. 

 Assay of a subset of the population show species-specific AP primers had positive 

results for only A. salmonicida isolates (Figure 13).  One atypical isolate (A. salmonicida 

subsp pectinolytica) had negative results in PCR assays for both primers (data not 

shown).  As expected, all atypical A. salmonicida isolates had negative results in the PCR 

assay for the MIY primer set.  Some background banding was observed, but PCR 

products with intensely positive results made identification by use of PCR assays 

unambiguous. 
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Figure 13—Agarose gel revealing PCR products obtained by use of the salmonicida subspecies-
specific MIY primer set (512-bp product) for typical isolates only (lanes 2, 4, 6, 8, 10, 12, 14, 16, and 

18) and the salmonicida species-specific AP primer set (421-bp product) for typical and atypical 
isolates (lanes 3, 5, 7, 9, 11, 13, 15, 17, 19). Lanes were as follows: 1 and 20, 1-kilobase DNA ladder; 2 

and 3, Aeromonas salmonicida subsp. salmonicida ATCC 33658; 4 and 5, A. salmonicida subsp. 
masoucida ATCC 27013; 6 and 7, A. salmonicida subsp. achromogenes ATCC 33659; 8 and 9, A. 

salmonicida subsp. smithia ATCC 49393; 10 and 11, Maine91 (typical); 12 and 13, 4059 (atypical); 14 
and 15, A. caviae ATCC 15468; 16 and 17, A. veronii ATCC 9071; and 18 and 19, negative control 

samples. Values on the left represent molecular size in number of bp. Notice that the MIY primer set 
did not generate a band at 421 bp in lanes 4, 6, 8, and 12, which is as expected for atypical A. 

salmonicida isolates. 

 

 

 On the basis of evaluation of scattergrams that contained plots of the MICs versus 

the diameters of the zones of inhibition for oxytetracycline, ormetoprim-

sulfadimethoxine, and oxolinic acid, 2 clearly discernible populations of isolates were 

observed (wildtype [susceptible to antimicrobials; no resistance mechanisms] and non-

wildtype [acquired and mutational resistance mechanisms]; Figure 14A, 14B, 14C).  A 

wide range of diameters of the zones of inhibition for oxytetracycline (13 to 30 mm) was 

observed between the 2 populations.  Similar separation was evident for ormetoprim-

sulfadimethoxine (7 to 19 mm) and oxolinic acid (22 to 34 mm).  Distribution of the 

plotted points for florfenicol revealed a single wildtype population with all isolates 

having MICs ≤2 μg/mL and zone diameters ≥34 mm (Figure 14D). 
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 Discrepancy rates and error rate bounding were used as recommended by the 

CLSI (CLSI/NCCLS, 2002a; CLSI/NCCLS, 2001) to determine epidemiological cutoff 

values (Tables 13 and 14).  The epidemiological cutoff values were adjusted until the 

number of false wildtype results on disk diffusion tests (very major discrepancies; type I 

errors) and false non-wildtype results (major discrepancies; type II errors) were held to a 

minimum.  As specified by the CLSI for collections of clinical isolates (CLSI/NCCLS, 

2002a), all rates for major and very major discrepancies were held at < 1.5% and < 3%, 

respectively.  Minor discrepancies (i.e., when 1 test result was classified as intermediate 

and the other was wildtype or non-wildtype) were also considered in the calculations. 

 Analysis of MIC50 and MIC90 values calculated for all isolates, isolates from the 

United States, and isolates from other countries revealed a pattern only for oxolinic acid 

(Table 15).  Isolates from the United States had considerably lower MICs for oxolinic 

acid, compared with the MICs for isolates from other countries.  Isolates from the United 

States had slightly higher MICs for oxytetracycline, compared with the MICs for isolates 

from other countries (Table 16).  Isolates from other countries had slightly higher MICs 

for ormetoprim-sulfadimethoxine, compared with the MICs for isolates from the United 

States (Table 17).  No difference was observed with regard to MICs for florfenicol on the 

basis of geographic origin of the isolates (Table 18). 

 Gross observations of values for MICs and diameters of the zones of inhibition 

revealed that typical A. salmonicida isolates had slightly higher MICs than the atypical 

isolates for oxytetracycline, ormetoprim-sulfadimethoxine, and florfenicol (data not 

shown).  Slower growth rate, characteristic of atypical A. salmonicida isolates, and 

subsequent increased growth inhibition may help explain this increased susceptibility.  In  
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Figure 14—Frequency distribution for MICs and diameters of the zone of inhibition for isolates of A. 
salmonicida when tested against oxytetracycline (30 μg; A), ormetoprim-sulfadimethoxine (1.25 μg 

and 23.75 μg, respectively; B), oxolinic acid (2 μg; C) and florfenicol (30 μg; D). Epidemiologic cutoff 
values are indicated for MICs (horizontal dashed lines) and diameters of the zones of inhibition 

(vertical dashed lines) for each antimicrobial. Notice that there are 2 clusters of isolates for 
oxytetracycline, ormetoprim-sulfadimethoxine, and oxolinic acid but only 1 cluster of isolates for 

florfenicol. 
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Table 13. Discrepancy between MICs and diameters of the zones of inhibition 
for Aeromonas salmonicida when tested against various antimicrobials. 

                   Discrepancy*,             _  

Antimicrobial Isolates MIC range‡ No. Very 
major 

Major Minor 

Oxytetracycline        
 All 

isolates 
≥Ihigh + 2 217 0 NA 0 

  Ihigh + 1 to 
Ilow –1 

217 0 0 1 (<0.01) 

  ≤Ilow – 2 217 NA 0 1 (<0.01) 
 Typical 

isolates 
≥Ihigh + 2 163 0 NA 0 

  Ihigh + 1 to 
Ilow –1 

163 0 0 1 (0.01) 

  ≤Ilow – 2 163 NA 0 1 (0.01) 
 Atypical 

isolates 
≥Ihigh + 2 54 0 NA 0 

  Ihigh + 1 to 
Ilow –1 

54 0 0 0 

  ≤Ilow – 2 54 NA 0 0 
Ormetoprim-
sulfadimethoxine 

            

 All 
isolates 

≥I + 2 217 1 (< 0.01) NA 3 (0.01) 

  I + 1 to I – 1 217 1 (< 0.01) 0 3 (0.01) 
  ≤I – 2 217 NA 0 3 (0.01) 
 Typical 

isolates 
≥I + 2 163 1 (0.01) NA 3 (0.02) 

  I + 1 to I – 1 163 1 (0.01) 0 3 (0.02) 
  ≤I – 2 163 NA 0 4 (0.02) 
 Atypical 

isolates 
≥I + 2 54 0 NA 0 

  I + 1 to I – 1 54 0 0 0 
  ≤I – 2 54 NA 0 0 
Oxolinic acid             
 All 

isolates 
≥Ihigh + 2 217 0 NA 0 

  Ihigh + 1 to 
Ilow –1 

217 0 0 0 

  ≤Ilow – 2 217 NA 0 0 
 Typical 

isolates 
≥Ihigh + 2 163 0 NA 0 

  Ihigh + 1 to 
Ilow –1 

163 0 0 0 

  ≤Ilow – 2 163 NA 0 0 
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Table 13. Discrepancy between MICs and diameters of the zones of inhibition 
for Aeromonas salmonicida when tested against various antimicrobials. 

                   Discrepancy*,             _  

Antimicrobial Isolates MIC range‡ No. Very 
major 

Major Minor 

 Atypical 
isolates 

≥Ihigh + 2 54 0 NA 0 

  Ihigh + 1 to 
Ilow –1 

54 0 0 0 

  ≤Ilow – 2 54 NA 0 0 
Florfenicol             
 All 

isolates 
≥NWT + 1 217 0 NA NA 

  NWT + WT 217 0 0 NA 
  ≤WT – 1 217 NA 0 NA 
 Typical 

isolates 
≥NWT + 1 163 0 NA NA 

  NWT + WT 163 0 0 NA 
  ≤WT – 1 163 NA 0 NA 
 Atypical 

isolates 
≥NWT + 1 54 0 NA NA 

  NWT + WT 54 0 0 NA 
  ≤WT – 1 54 NA 0 NA 
*Very major discrepancies represent the number of false wild-type (WT) results on 
disk diffusion tests (type I errors), major discrepancies represent the number of 
false non–wild-type (NWT) results on disk diffusion tests (type II errors), and 
minor discrepancies represent when 1 test result was classified as intermediate and 
the other was WT or NWT. †Values reported are number (%). ‡Ihigh + 1 and Ihigh + 
2 represent 1 and 2 dilutions above the highest MIC within the intermediate range, 
respectively, and Ilow – 1 and Ilow – 2 represent 1 and 2 dilutions below the lowest 
MIC within the intermediate range, respectively. The I + 1 and I + 2 represent 1 
and 2 dilutions above the intermediate MIC value, respectively, and I – 1 and I – 2 
represent 1 and 2 dilutions below the intermediate MIC value, respectively. The 
NWT represents results for the population of isolates with acquired and mutational 
resistance mechanisms. The WT represents results for the population of isolates 
susceptible to antimicrobials (no resistance mechanisms). The MIC range for 
florfenicol was defined such that NWT + 1, NWT + WT, and WT – 1 represent 1 
dilution above the NWT cutoff value, the NWT cutoff value and WT cutoff value, 
and 1 dilution below the WT cutoff value, respectively. 

NA = Not applicable. 
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Table 14. Epidemiologic cutoff values for diameters of the zones of inhibition 
and MICs for all A. salmonicida isolates when tested against various 
antimicrobials. 
                                            Diameter of zone of  
                                                inhibition (mm)                               MIC (mg/mL)  
                                                   Intermediate                                   Intermediate   
Antimicrobial WT range  NWT WT range NWT 
Oxytetracycline (30 mg) ≥28 24-27  ≥23 <1 2-4 ≥8 
Ormetoprim- 
Sulfadimethoxine 
(1.25 and 23.75 mg)*  ≥20 17-19  <16 <0.5/9.5 1/19 ≥2/38 
Oxolinic acid (2 mg) ≥30 26-29  <25 <0.12 0.25-0.5 ≥1 
Florfenicol (30 mg) ≥31 NA  <30 <4 NA ≥8 
*Values reported are for ormetoprim and sulfadimethoxine, respectively. 
See Table 13 for remainder of key. 

 

 

Table 15. Cumulative percentage of MICs for 217 isolates of A. salmonicida 
(112 isolates obtained from the United States, 99 isolates obtained from other 
countries, and 6 isolates obtained from an unknown origin) when tested 
against oxolinic acid. 
MIC (mg/mL)            All isolates United States Other countries 
>4 100 100 100 
4 98.6 100 97.1 
2 95.9 100 91.2* 
1 94.0* 100 87.3 
0.5 89.9 100 78.4 
0.25 89.9 100 78.4 
0.12 89.9 100 78.4 
0.06 88.0 98.3 76.5 
0.03 82.0† 93.9*,† 68.6† 
0.015 9.7 8.7 10.8 
0.008 0.0 0.0 0.0 
0.004 0.0 0.0 0.0 
0.002 0.0 0.0 0.0 
≤0.002 0.0 0.0 0.0 
*Represents the MIC90. †Represents the MIC50. 
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contrast, atypical isolates had noticeably higher MICs for oxolinic acid; however, most of 

these isolates were from countries in which oxolinic acid is approved for use. 

 Analysis of frequency distributions of susceptibility results for all 4 antimicrobial 

agents revealed a wider range of zones of inhibition for most MICs than the range of 

MICs at specific diameters of zones of inhibition.  These noticeable variations may be 

explained by a decreased robustness of disk diffusion tests on slower growing (atypical A. 

salmonicida) and fastidious organisms (Amsterdam, 1996).  However, the distinct 

separation of wildtype and nonwild type isolates on the basis of diameters of the zones of 

inhibition alone should still provide accurate and useful epidemiological cutoff values for 

isolates of this pathogen.  Susceptibility data revealed that both disk diffusion and broth 

microdilution testing methods may be used to monitor for the development of 

antimicrobial resistance in A. salmonicida isolates.  

 On the basis of the epidemiological cutoff values developed in the study, 6 (2.7%) 

isolates were classified as nonwild type for oxytetracycline, ormetoprim-

sulfadimethoxine, and oxolinic acid, 15 (6.7%) isolates were classified as nonwild type 

for 2 of these antimicrobials, and 56 (25.1%) isolates were classified as nonwild type for 

only 1 of these antimicrobials. 

Discussion 

 To our knowledge, the study reported here represents the first large-scale study in 

which standardized AST methods were used to generate frequency distributions of MICs 

and diameters of the zones of inhibition for a disease-causing bacterium in aquaculture.  

As recommended by the CLSI for the development of interpretive criteria, more than 100



Table 16. Cumulative percentage of MICs for 217 isolates of A. salmonicida 
(112 isolates obtained from the United States, 99 isolates obtained from other 
countries, and 6 isolates obtained from an unknown origin) when tested 
against oxytetracycline. 

MIC (mg/mL) All isolates United States Other countries 
>32 100 100* 100 
32 92.2* 89.6 95.1* 
16 81.1 75.7 87.3 
8 71.0 67.0 75.5 
4 69.1 63.5 75.5 
2 69.1 63.5 75.5 
1 68.7 63.5 74.5 
0.5 68.2 62.6† 74.5 
0.25 50.7† 48.7 52.9† 
0.12 8.8 10.4 6.9 
0.06 0.0 0.0 0.0 
0.03 0.0 0.0 0.0 
0.015 0.0 0.0 0.0 
≤0.015 0.0 0.0 0.0 
See Table 15 for remainder of key. 

 

Table 17—Cumulative percentage of MICs for 217 isolates of A. salmonicida 
(112 isolates obtained from the United States, 99 isolates obtained from other 
countries, and 6 isolates obtained from an unknown origin) when tested 
against ormetoprim-sulfadimethoxine. 

MIC (mg/mL)* All isolates United States Other countries 
>8/152 100 100.0 100.0 
8/152 94.0 96.5 91.2 
4/76 94.0 96.5  91.2 
2/38 94.0 96.5  91.2 
1/19 92.6 94.8  90.2† 
0.5/9.5 90.3† 93.9† 86.3 
0.25/4.8 86.6 88.7  84.3 
0.12/2.4 74.7‡ 76.5‡ 72.5‡ 
0.06/1.2 11.1 6.1  16.7 
0.03/0.6 0.5 0.0  1.0 
0.015/0.3 0.0 0.0  0.0 
0.008/0.015 0.0 0.0  0.0 
≤0.008/0.015 0.0 0.0  0.0 
*Values represent concentrations for ormetoprim and sulfadimethoxine, 
respectively. †Represents the MIC90. ‡Represents the MIC50. 
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Table 18. Cumulative percentage of MICs for 217 isolates of A. salmonicida 
(112 isolates obtained from the United States, 99 isolates obtained from other 
countries, and 6 isolates obtained from an unknown origin) when tested 
against florfenicol. 

MIC (mg/mL) All isolates United States Other countries 
>32 100  100 100 
32 100  100 100 
16 100  100 100 
8 100  100 100 
4 100  100 100 
2  100  100 100 
1 98.2*  98.3* 98.0* 

0.5 78.8†  72.2† 86.3† 

0.25 23.5  15.7 32.4 
0.12 3.7  0.9 6.9 
0.06 0.0  0.0 0.0 
0.03 0.0  0.0 0.0 
0.015 0.0  0.0 0.0 
≤0.015 0.0  0.0 0.0 
See Table 15 for remainder of key. 

 

clinical and wildtype isolates relevant to the class of antimicrobial and representing 

multiple geographic locations were tested. 

 The study reported here relied on donors providing us with isolates from their 

own stocks; thus, it did not fully represent a random sample of A. salmonicida isolates.  

Also it is possible some isolates used in this study may have been derived from the same 

bacterial clone.  Clonality was not addressed in this study.  Nevertheless, the large 

number and diversity of isolates in terms of location and species of origin should 

contribute to credibility of these data. 

 General recommendations can be made on the basis of the distinct separation (or 

clustering in the case of florfenicol) of the test population with regard to susceptibility.  

These epidemiologic cutoff values for isolates of A. salmonicida should not be 
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considered in a clinical context because they are based solely on susceptibility 

distributions determined in vitro.  These cutoff values can be used to detect the 

development of resistance. 

 Discrepancy between in vitro test results of susceptibility and therapeutic 

effectiveness is a result of the numerous factors that influence the interactions of 

antimicrobials and bacteria in vivo.  To have clinical application, these cutoff values must 

subsequently be correlated (and adjusted when necessary) with serum kinetics of the 

antimicrobial agent when administered at therapeutic doses and, if possible, clinical 

outcome data.  In the United States, such clinical breakpoints for antimicrobials used in 

humans have been determined by panels of experts who review large data sets.  The data 

provided here should assist in efforts to determine clinical breakpoints for antimicrobials 

used in aquatic animal medicine. 

 In 1 study (Tsoumas et al., 1989), investigators reported the frequency distribution 

of MICs for 70 isolates of A. salmonicida against oxytetracycline and 5 other 

antimicrobial agents and suggested a susceptible breakpoint of ≥1 μg/mL for 

oxytetracycline.  Data reported here reinforces this recommendation that an 

oxytetracycline cutoff value of 1 μg/mL clearly separates the wild type from the nonwild 

type population (i.e., susceptible from resistant).  In another study (Smith and Hiney, 

2005), investigators evaluated frequency distributions for MICs and diameters of the 

zones of inhibition for oxolinic acid against A. salmonicida isolates and postulated 

classifying A. salmonicida strains into 3 groups (susceptible, ≤0.0625 μg/mL; 

intermediate, 0.125 to 0.5 μg/mL; and resistant, ≥1 μg/mL).  Those results are extremely 

similar to the findings of the study reported here. 
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 When veterinarians are faced with a decision to treat a patient or population, 

oftentimes the only tools they possess are susceptibility data for the test isolate, 

recommendations from the supplier of the disk diffusion tests, clinical experience, and 

information extracted from published reports.  Other important considerations are the 

pharmacokinetic and physiologic differences among species, overall health of the patient 

or population, and route of administration.  Data sets collected by Reimschuessel et al. 

(2005) summarize  the multitude of external factors that can alter the pharmacokinetics of 

many drugs in piscine patients.  Some of these include route of administration, species, 

temperature, salinity, and disease state.  Effects of such variables must also be considered 

when treating fish.  

 Clinical aquatic animal medicine is challenging because of a lack of available 

antimicrobial agents, minimal efficacy data in many cultured fish species, and little 

information regarding frequency distributions of susceptibility results.  The study 

reported here was an attempt to provide clinicians with some of this much needed data.  

These data represent a valuable component in the development of interpretive criteria and 

should be useful as researchers and clinicians move closer to establishing true clinical 

breakpoints for a major aquatic pathogen, A. salmonicida.  Additional high-quality in 

vivo pharmacokinetic-pharmacodynamic and efficacy data will be required to allow 

clinicians and researchers to make comparisons and correlations with in vitro data on 

frequency distributions of susceptibility results reported here. 
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Chapter 5:  Determination of Oxytetracycline Levels in Rainbow 
Trout Serum on a Biphenyl Column using HPLC 
 

This manuscript is included as published under Miller R.A., R. Reimschuessel, and 

M. Carson. (2007) Determination of oxytetracycline levels in rainbow trout serum 

on a biphenyl column using high-performance liquid chromatography. J Chrom B. 

852:655-658. 

 

Abstract 

 We developed a simple and sensitive high performance liquid chromatography 

method on a biphenyl column to determine oxytetracycline (OTC) levels in rainbow trout 

serum.  The assay used deproteination, filtration, and subsequent separation on a reverse-

phase biphenyl column, with UV detection at 355 nm.  OTC (7.8-7.9 min) was 

completely resolved from the structurally similar riboflavin (10.4-10.5 min), a common 

feed supplement.  Estimated limits of detection and quantitation of OTC were 0.01 

µg/mL and 0.04 µg/mL, respectively.  The average recovery for OTC was 102% with a 

RSD of 8.34%.  Calibration standards were linear from 0.01 μg/mL to 10 μg/mL. 

Introduction 

  Oxytetracycline (OTC) is one of only three antibiotics currently approved by the 

United States Food and Drug Administration and available for use in aquaculture.  It is 

approved for use against selected indications in salmonids, catfish, and lobsters (FDA-

CVM, 2007). 
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  Tetracyclines are known to have low bioavailability and are poorly absorbed 

when administered with feed (Agwuh and MacGowan, 2006).  Elema et al. (1996) 

showed feed pellets contained many metallic ions that formed complexes with OTC and 

reduced the amount of drug available for fish to absorb from the intestinal tract.  To 

choose an appropriate therapeutic agent, it is essential to have information about the 

serum concentration, over time, at the site of infection.  Additionally, the minimal 

inhibitory concentration (MIC) of the pathogen and clinical efficacy data are also 

important to predict therapeutic efficacy. 

 Using various methods, researchers have studied the pharmacokinetic profile of 

OTC in multiple species including shrimp (Chiayvareesajja et al., 2006), hens (Singh et 

al., 2005), sea turtles (Harms et al., 2004), fish (Chen et al., 2004), goats (Payne et al., 

2002), sheep and calves (Craigmill et al., 2000), pigs (Nielsen and Gyrd-Hansen, 1996), 

and humans (Wojcicki et al., 1985).  Some of these methods evaluated drug activity- or 

microbiological-based methods to estimate OTC concentration in the blood, while others 

used analytical methods such as HPLC.  Generally, HPLC is a more sensitive and precise 

method, and is especially useful when low concentrations of analyte are present.  Very 

few, if any, studies have provided data resolving OTC from the structurally similar 

molecule riboflavin (Figure 15) in serum or plasma.  Riboflavin or vitamin B2, found in 

dairy products, eggs, vegetables, organ meats, whole grains, and wheat germ, is 

recommended as an aquaculture feed supplement (>20 mg/kg feed) to increase energy 

metabolism and promote physiological health (Cowey and Young Cho, 1993).  Ichinose 

et al. (Ichinose et al., 1985) reported riboflavin concentrations ranging between 0.21 

μg/mL and 0.37 μg/mL in serum of black carp, gibel, and eel.  Due to their similarities in 
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structure and excitation range (riboflavin = 325-405 nm; OTC = 310-420 nm) (Garcia et 

al., 2004), we compared the retention times of riboflavin and OTC on a polymer column.  

Riboflavin retention time was only 30 s longer than that of OTC (unpublished data).  Low 

levels of riboflavin absorbed from intestinal contents may co-elute with OTC, increasing 

the area of the OTC peak.  In pharmacokinetic studies, exclusively OTC must be 

quantified in serum or plasma to predict therapeutic efficacy and calculate the 

pharmacodynamic parameters: time above MIC, Cmax/MIC and AUC/MIC. 

  This is the first published method that uses a biphenyl column to quantify OTC in 

fish serum.  This method resolves OTC from surrounding peaks, such as riboflavin. 

 
Figure 15. Molecular structures of OTC (A) and riboflavin (B). 
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Experimental 

Chemicals 

  All chemicals were reagent grade unless otherwise specified. 

  We obtained OTC from the United States Pharmacopeia (Rockville, MD).  We 

prepared a stock OTC solution, 1.0 mg/mL, by solubilization of 100 mg in 100 mL 

methanol, and stored it up to 3 months at -20 °C. 

  We prepared McIlvaine buffer (Oka et al., 1984) by solubilization of 12.9 g 

anhydrous citric acid (Mallinckrodt Baker Inc., Phillipsburg, NJ) and 10.9 g dibasic 

sodium phosphate (Fisher Scientific, Fair Lawn, NJ) in 1 L water.  We prepared 

McIlvaine-EDTA buffer by solubilization of 37.2 g EDTA disodium salt dihydrate 

(Sigma-Aldrich, St. Louis, MO) up to 1 L of McIlvaine buffer with gentle heating.  Prior 

to use we filtered McIlvaine-EDTA buffer through a 0.2 μm nylon filter and stored at 4 

°C. 

  We used methanol (Mallinckrodt Baker Inc.) and acetonitrile (Honeywell Burdick 

and Jackson, Morristown, NJ), both HPLC grade, without further purification.  We 

obtained oxalic acid dihydrate from Sigma-Aldrich.  Water used throughout this study 

was purified by the Milli-Q plus Ultra-Pure Water System (Millipore Corporation, 

Bedford, MA). 

Equipment 

  We used an Agilent Series 1100 (Agilent Technologies, Palo Alto, CA) 

Quaternary Pump, Vacuum Degasser, Autosampler, Thermostatted Column 

Compartment, and Variable Wavelength Detector for chromatographic separation.  We 
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completed data acquisition and analysis with a PE Nelson 900 Series Interface Controller 

and TotalChromTM software (PerkinElmer Life and Analytical Sciences, Wellesley, MA). 

Sample Preparation 

  We collected control serum from 200-600 g rainbow trout obtained from a 

commercial source.  Fish were held in tanks in our laboratory at 14-18 °C, and fed a 

standard diet which contained 35-45 mg riboflavin/kg feed according to the feed 

manufacturer (Rangen Inc., Buhl, ID).  We euthanatized fish by immersion in a lethal 

dose of tricaine methanesulfonate (MS-222) (Crescent Research Chemicals, Phoenix, 

AZ).  We stored serum at -80 °C until use.  We used the stock 1.0 mg/mL OTC solution 

diluted in water to concentrations of 10 μg/mL and 3.0 μg/mL, to fortify serum samples 

at concentrations of 3.0, 0.50, and 0.10 μg/mL. 

  We vortex mixed serum samples (600 μL) with an equal volume (600 µL) 

McIlvaine-EDTA buffer, incubated at 30 °C for 30 min, and centrifuged at 12,000 g for 

10 min to deproteinate.  We removed supernates, and filtered through a Whatman 

(Florham Park, NJ) PuradiscTM 13 mm PVDF 0.2 μm syringe filter.  We loaded the 

filtered samples into autosampler vials and injected a 100 μL aliquot onto the LC column. 

  We prepared chromatographic standards by serial dilution of the stock 1.0 mg/mL 

OTC solution in water to concentrations of 10, 3.0, 1.0, 0.30, 0.10, 0.03, and 0.01 μg/mL.  

We then diluted the standards 1:1 with McIlvaine-EDTA buffer.  We analyzed 

chromatographic standards in a bracketed sequence (i.e., calibration standards + samples 

+ calibration standards). 
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Column Liquid Chromatography 

  Separation was performed on an AllureTM biphenyl column 4.6 x 150 mm, 5 μm 

particle size, and 60 Å pore diameter (Restek Corporation, Bellefonte, PA).  The column 

was maintained at 40 °C.  We used mobile phases which were 0.2 µm nylon-filtered 

aqueous 0.01 M oxalic acid and acetonitrile.  We employed gradient elution with initial 

conditions of 5% acetonitrile for 1 min, and linear changes to 30% acetonitrile at 10 min, 

80% at 12 min, 80% at 13 min, 5% at 15 min, and 5% at 20 min.  The flow rate was 1 

mL/min. 

Validation 

  We analyzed control and fortified serum samples to determine selectivity, 

accuracy, and precision.  We extracted and analyzed four replicates of control serum and 

serum fortified at 3.0, 0.50, and 0.10 µg/mL on each of two different days, for a total of 

eight replicate analyses at each concentration. 

  We performed an exhaustive extraction procedure to assess accuracy with a real 

sample.  In this experiment we used incurred rainbow trout serum samples obtained from 

one fish fed an OTC-medicated aquaculture feed (Rangen Inc.).  As described above, we 

extracted and filtered five replicates of the incurred serum sample (200 μL each) with an 

equal volume of McIlvaine-EDTA buffer (normal extract).  We resuspended the 

remaining pellet after centrifugation in 400 μL of McIlvaine-EDTA buffer, vortex mixed, 

centrifuged, and filtered as described above (exhaustive extract).  We loaded normal and 

exhaustive extracts into autosampler vials and injected a 100 μL aliquot onto the LC 

column. 
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Results and Discussion 

 Table 19 summarizes the results of the validation study where the mean recovery 

of OTC was uniformly high (97.1-107%) at all concentrations tested.  We did not find 

OTC in the unfortified rainbow trout serum control samples.  Relative standard 

deviations were acceptably low at all three OTC concentrations tested, indicative of a 

precise method.  Estimated lower limits of detection (LOD) and quantitation (LOQ) of 

OTC were 0.01 µg/mL and 0.04 µg/mL, respectively.  We calculated these values as the 

average background signal plus 3 X the standard deviation (LOD) or plus 10 X the 

standard deviation (LOQ) in analyses of rainbow trout control serum.  Calculated LOD 

and LOQ values were lower than those reported in previous OTC pharmacokinetics 

studies where serum was analyzed on a C8 column (LOD = 0.05 μg/mL) (Doi et al., 

1998) and plasma was analyzed on a C18 column (LOQ = 0.1 μg/mL) (Haug and Hals, 

2000).  In addition, the mean percent recovery for all samples in this study (102 ± 8.34%) 

was greater than the same parameter measured previously by Doi et al. (76.16 ± 0.14%) 

(Doi et al., 1998) and Haug and Hals (83.0 ± 8.9%) (Haug and Hals, 2000). 

 

Control serum - 0 μg/mL 8   -----    -----  
Fortified serum - 0.10 μg/mL OTC 8 0.11 ± 0.01 107 ± 12.3
Fortified serum - 0.50 μg/mL OTC 8 0.51 ± 0.02 101 ± 3.06
Fortified serum - 3.0 μg/mL OTC 8 2.9 ± 0.06 97.1 ± 2.13
a Mean recovery ± % RSD in all samples = 102 ± 8.34

Sample

Table 19. Validation using control and OTC fortified rainbow trout serum.

No. Mean OTC concentration 
(μg/mL) ± SD

Mean recovery 
(%) ± % RSDa

 

  

  We found excellent separation and recovery of OTC in fortified and incurred 

rainbow trout serum samples following simple deproteination and filtration (Figure 16).  
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From preliminary optimization trials, we found that riboflavin elutes at 10.4 min.  Thus, 

in Figure 16B-D presumed riboflavin was found to separate in rainbow trout serum 

samples at 10.4 min, and estimated concentrations were consistent with those reported 

previously by Ichinose et al (1985).  These data suggest riboflavin can be present in fish 

serum at relatively high concentrations, and needs to be resolved from OTC when using 

HPLC methods. 

  We generated standard curves for OTC by linear (weighted 1/x2) regression of 

peak areas against their respective concentrations.  We studied linearity by separate 

analysis in quadruplicate of the calibration curves, created using the standards (10 μg/mL 

– 0.01 μg/mL).  Regression analyses for each line resulted in R2 values exceeding 0.9991. 

  Stable retention times were observed throughout the validation (Figure 16).  We 

were able to accurately determine OTC concentrations without interference from 

riboflavin (Figure 16B-D) or other serum components. 

 The mean normal extract concentration of five incurred serum replicates was 0.45 

± 0.01 μg/mL, while the mean exhaustive extract concentration was 0.02 ± 0.01 μg/mL, a 

value less than the LOQ of the method (Figure 17).  The normal extract of the incurred 

serum was 95.5% of the total extract (normal + exhaustive extracts), consistent with the 

near quantitative recoveries found in the fortified experiments. 

Conclusion 

  The method we describe here uses simple extraction and chromatographic 

procedures that accurately quantify OTC concentrations in rainbow trout serum.  We 

believe its selectivity for OTC makes it a highly valuable method for pharmacokinetics 

and pharmacodynamics studies which require accurate OTC concentrations. 
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Figure 16. Chromatograms of the (A) 0.10 μg/mL calibration standard, (B) rainbow trout control 
serum, (C) 0.10 μg/mL fortified rainbow trout serum, (D) incurred rainbow trout serum (0.18 

μg/mL). 
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Figure 17. Chromatograms of incurred rainbow trout serum (A) and an exhaustive extraction of the 

centrifuged serum components (B). 
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Chapter 6: Pharmacokinetics of Two Oxytetracycline Feed 
Formulations in Rainbow Trout Using an Individualized Dosing 
Regimen 
 
 

Abstract 

 Different drug formulations can affect pharmacokinetics and therefore may affect 

therapeutic efficacy.  Active serum antimicrobial agent concentrations can be correlated 

with the in vitro derived minimal inhibitory concentration (MIC) of a pathogen to help 

predict therapeutic efficacy.  We used a microbiological method to determine active 

oxytetracycline (OTC) pharmacokinetic profiles in serum from rainbow trout using two 

commonly used OTC-medicated feed formulations, quaternary salt (q-salt) and dihydrate 

salt.  In separate experiments 72 rainbow trout held at 12-13 °C received 74.7 ± 1.5 mg 

OTC q-salt/kg body weight (b.w.) or 73.4 ±2.0 mg OTC dihydrate salt/kg b.w. via oral 

gavage on 10 consecutive days.  We euthanatized nine fish and collected serum on days 

1, 3, 6, 8, 10, 12, 15, and 22 after dosing began.  No significant difference (p<0.05) was 

found in serum OTC concentrations of fish fed the two formulations until late in the 

elimination phase when serum OTC concentrations neared the limits of detection (LOD) 

after 15 days.  Maximum serum concentrations, Cmax, were the same for both 

formulations (1.19 μg/mL) after 10 days.  Pharmacokinetic properties including area 

under the concentration-time curve at steady-state over 24 h (AUCss), absorptive half-life 

(T1/2α), and elimination half-life (T1/2β) were also very similar.  This study revealed 

virtually identical pharmacokinetic properties for OTC in fish fed an OTC q-salt and 

dihydrate salt feed formulation. 
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Introduction 

 OTC is one of only three antibiotics currently approved by the U.S. Food and 

Drug Administration (FDA) and is available for use in aquaculture.  It is approved for use 

against selected indications in salmonids, catfish, and lobsters (FDA-CVM, 2007). 

 In June 2006, FDA’s Center for Veterinary Medicine (CVM) accepted an 

amended product chemistry package for Phibro Animal Health’s new animal drug 

application which changed the Terramycin® OTC formulation from the mono-alkyl (C8-

C18) trimethylammonium or q-salt, to the dihydrate salt.  A recent study in shrimp 

hemolymph by Reed et al. (2006) showed the Cmax and time to achieve the maximum 

(Tmax) were not significantly different for either OTC formulation.  However, they did 

show the q-salt form was more stabile in water, and suggested it may remain in tact in the 

environment longer than the dihydrate salt form.  They concluded the q-salt form, by 

persisting in the environment, may facilitate the development of resistant 

microorganisms.  This is particularly important since tetracyclines are not metabolized in 

vivo, but are excreted in tact primarily in the urine (50-80% of a given dose) (Gerding et 

al., 1996). 

 The goal of this study was to, for the first time in a finfish species, elucidate 

whether there is a significant difference in the attainable microbiologically active serum 

OTC concentrations after administration of different OTC feed formulations (OTC q-salt 

and OTC dihydrate) administered by oral gavage.  This study also provided 

pharmacokinetic data for OTC in healthy rainbow trout which will be separately 

correlated (Chapter 7) with data from experimentally infected rainbow trout. 
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Materials and Methods 

 Animals 

 We conducted two separate studies using the same experimental design for two 

OTC feed formulations (q-salt and dihydrate salt).  We obtained 72 rainbow trout 

(Oncorhynchus mykiss) from Casta Line Trout Farm (Goshen, VA).  We placed three fish 

in separate compartments using a polycarbonate box within 60 L aquaria.  These 24 

aquaria had a flow-through water supply maintained at 12-13 °C.  We allowed fish to 

acclimate to their tanks for 5 d, and did not offer feed during this time.  Three days into 

the acclimation period, we weighed each fish to calculate the amount of feed needed to 

target a dose of 75 mg OTC/kg b.w.  The FDA-approved dosing range is 55 to 83 mg 

OTC/kg b.w.  The mean weights of the fish in the OTC q-salt and dihydrate salt studies 

were 172 ± 44 g (median=182 g) and 130 ± 25 g (median=131 g), respectively. 

 OTC-medicated and Control Feed 

 We purchased the two OTC-medicated (8.8 g OTC/kg feed) trout production 

feeds from Rangen Inc. (Buhl, ID).  Crude protein, fat, fiber, ash, and phosphorus levels 

in the two feeds were identical according to the manufacturer.  Eurofins Scientific Inc. 

(Des Moines, IA) used a microbiological assay to determine the potency of the feed made 

with OTC q-salt (8130 mg/kg).  Covance Laboratories Inc. (Madison, WI) used a high 

performance liquid chromatography method to determine the potency of the feed made 

with OTC dihydrate salt (8140 mg/kg).  Feed analyses were completed within 3 months 

of use.  We stored homogenized feeds away from light to minimize photodegradation of 

OTC.  Mean doses in the OTC q-salt and dihydrate salt studies were 74.7 ± 1.5 mg 



  

 103 
 

OTC/kg of fish, and 73.4 ± 2.0 mg OTC/kg, respectively.  Based upon total feed 

ingested, administered doses were equivalent to 0.9% b.w. per day. 

 Study Design 

 After acclimation, we anesthetized each fish for <1 minute in a 400 mg/L solution 

of tricaine methanesulfonate (Crescent Research Chemicals; Phoenix, AZ).  Dry 

homogenized feed samples were packed into plastic 3 mL luer-lock syringes with the tip 

excised and flamed to round the edges and minimize irritation during gavage.  We 

calculated doses based on the body weight of each fish.  All doses were within the FDA-

approved dose of OTC in salmonids (55-83 mg/kg).  We administered the doses by 

gavage daily for 10 consecutive days.  No fish were observed to regurgitate any feed.  We 

euthanatized nine fish (three tanks) and obtained blood samples from the caudal vein at 1, 

3, 6, 8, 10, 12, 15, and 22 d after beginning dosing.  After the blood was allowed to clot 

at room temperature for 1-3 h, we stored the samples at 4 °C for 24-48 h.  We collected 

serum from centrifuged blood samples (3,000 g for 15 min at 5 °C) and stored all serum 

at -80 °C until use.  After dosing ceased, we fed homogenized non-medicated trout 

production feed (Rangen Inc.) at 0.9 % b.w. by oral gavage on days 10, 11, 16, and 17 to 

all fish remaining. 

 Serum Analysis by Microbiological Assay 

 We used methods modified from those described by Chen et al. (2004) and 

Strasdine and McBride (1979) to measure OTC in fish serum.  We prepared Bacillus 

cereus ATCC 11778 spore suspensions equivalent to a 3.0 McFarland (9 x 108 CFU/mL) 

measured on a VITEK colorimeter (Biomerieux Inc.; Durham, NC).  We added a 12 mL 
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aliquot of the spore suspension to 250 mL of Antibiotic Medium #8 agar (BD Diagnostic 

Systems; Sparks, MD) that had been cooled to 45.5 °C.  After pouring the agar into a 150 

mm X 150 mm petri plate (Nalge Nunc International; Rochester, NY), we allowed it to 

harden for 1.5 h.  We removed agar wells with a cork borer (diameter = 4.70 mm) 

connected to a vacuum (Figure 18) and placed plates at 4 °C for 30 min, then prepared 

fortified OTC calibration standards. 

 

Figure 18. Agar cutter apparatus. 

   

 Control serum was collected previously from rainbow trout fed non-medicated 

trout production aquaculture feed (Rangen Inc.), and was used in the preparation of 

fortified OTC calibration standards.  We prepared fortified serum standards (8, 4, 2, 1, 

0.5, and 0 μg/mL) using a stock 1.00 mg/mL OTC methanolic solution (United States 

Pharmacopeia; Rockville, MD).  The 0.5 μg/mL fortification was the lowest detectable 

fortified concentration.  We added 45-50 μL per well.  Fortified standards were added as 

a series of six concentrations in three microassay plates for each of the OTC q-salt and 
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dihydrate salt serum analyses.  Mean zone diameters for each fortification level were 

used in regression calculations to determine serum OTC concentrations in the ‘unknown’ 

samples at each time point. 

  We thawed ‘unknown’ serum samples at room temperature, vortex mixed and 

added 45-50 μL to one well per sample.  We incubated all test plates at 4 °C for 1 h then 

moved them to a 28 °C incubator for 20-21 h.  We measured zone of inhibition diameters 

using digital calipers to the nearest one-hundredth of a mm. 

 We incorporated the zone diameters into the corresponding regression equation 

(based on the regression lines in Figures 19 and 20), to solve for the serum OTC 

concentration. 

       q-salt calculations: Serum OTC concentration = log100.064(zone diameter)-1.129 

dihydrate calculations: Serum OTC concentration = log100.070(zone diameter)-1.353 

 We performed pharmacokinetic calculations using MS Excel Add-ins available 

for download online (Usansky et al., 2007). 

Results 

Fortified Standards 

 Regression analyses performed on zone diameter measurements of fortified 

standards were linear for both OTC q-salt (Figure 19) and OTC dihydrate (Figure 20) 

serum concentrations.  The precision of the method was calculated to be ± 0.08 μg/mL 

(OTC q-salt analysis) and ± 0.05 μg/mL (OTC dihydrate analysis) by inserting the 

standard deviation of the zone diameter measurements into the above equations.  The 

LOD of the average zone diameter of a well after 20-21 h of incubation was 4.29 mm 

plus two 2 mm radii (4 
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y = 0.064x - 1.129
R2 = 0.996
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Figure 19. Regression analysis of OTC fortified serum standards used in analysis of serum from fish 
fed OTC q-salt feed. 
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Figure 20. Regression analysis of OTC fortified serum standards used in analysis of serum from fish 

fed OTC dihydrate salt feed. 
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mm).  This diameter is the smallest zone of growth inhibition surrounding the well that 

can be measured using this method.  The LODs for the OTC q-salt and dihydrate analyses 

were 0.25 μg/mL and 0.17 μg/mL, respectively. 

Incurred Serum OTC Concentrations 

 Significant differences in serum OTC concentrations between the two medicated 

feed formulations were found on days 15 and 22 (Table 20; Figures 21 and 22).  

However, serum OTC concentrations were not detected in 5/9 q-salt samples and 1/8 

dihydrate salt samples at 15 d, and no OTC was detected at 22 d in either treatment 

group.  For samples where no OTC was detected, we assigned values equal to the LOD.  

Assignment of the LOD to these values was responsible for the significant difference 

found at 15 d and 22 d in the q-salt and dihydrate salt groups.  We observed very low 

standard deviations throughout both studies likely due to the individualized dose 

calculations where all fish received approximately the same dose every 24 h per their 

b.w. 

 A white precipitate formed around the wells of serum samples in which no OTC 

was found (Figure 23).  It is not clear why this precipitate was present only in samples 

where OTC was not detected. 
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OTC feed 
formulation

Days after 
Dose #1 Animals (n) Mean OTC [ ] Standard 

Deviation

q-salt 1 7 0.25 0.00
dihydrate 1 9 0.31 0.07

q-salt 3 9 0.66 0.09
dihydrate 3 9 0.74 0.10

q-salt 6 9 0.79 0.19
dihydrate 6 9 0.85 0.19

q-salt 8 9 1.07 0.15
dihydrate 8 9 1.08 0.21

q-salt 10 9 1.19 0.34
dihydrate 10 9 1.19 0.27

q-salt 12 9 0.75 0.27
dihydrate 12 9 0.62 0.14

q-salt 15 9 0.31a 0.07
dihydrate 15 8 0.21a 0.06

q-salt 22 9 0.25b 0.00
dihydrate 22 9 0.17b 0.00

Table 20. Serum OTC Concentrations in Healthy Rainbow Trout

a Significantly different (p<0.05)
b Significantly different (p<0.05)  
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Figure 21. Mean serum OTC concentrations in rainbow trout after oral administration for 10 
consecutive days. Bars represent ± standard deviation. * indicates mean values are significantly 

different.  - 1st dose given;  - 10th dose given. 
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Figure 22. Serum OTC concentrations in 72 rainbow trout - all data.  - 1st dose given;  - 10th dose 
given. 
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Figure 23. Microassay plate (A) with wells surrounded by a white precipitate (arrows); a diameter of 

zone of Bacillus cereus growth inhibition (B). 

 

Pharmacokinetics Calculations 

 First order absorption from the gut into the central compartment (blood) was 

observed.  For the purpose of making a comparison in diseased animals (Chapter 7), we 

calculated a T1/2α (ln2/ka) in the dihydrate and q-salt study equal to 5.2 d and 4.4 d, 

respectively, without using the method of residuals (Figures 24 and 25).  Similarly, 

without extrapolation the elimination half-life (T1/2β = ln2/ke) of the dihydrate salt was 4.5 

d and the q-salt was 5.5 d.  Limited sampling during the elimination phase made it 

difficult to choose an appropriate pharmacokinetic model. 

 An AUCss was determined for each curve using mean serum OTC concentrations 

at 8 and 10 d calculated using the trapezoidal rule. 

AUCss = ((C8d+C10d)/2))(t10d-t8d))/2 

 The AUCss for q-salt was 27.1 μg·h/mL and the AUCss for dihydrate salt was 27.2 

μg·h/mL, almost identical. 
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Figure 24. Two compartment pharmacokinetic model for OTC (q-salt formulation). Values circled in 
red are the ka (at left) and ke (at right). 

y = 0.349e0.133x

y = 4.011e-0.154x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Days after Dose #1 (d)

Se
ru

m
 O

T
C

 C
on

ce
nt

ra
tio

n 
(μ

g/
m

L
)

 

Figure 25. Two compartment pharmacokinetic model for OTC (dihydrate salt formulation). Values 
circled in red are the ka (at left) and ke (at right). 
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Discussion and Conclusions 

 This work represents the first published pharmacokinetics study in fish 

incorporating the following: 

1) An FDA-approved dosing regimen administered by oral gavage 

2) Each dose calculated for individual fish based on b.w. 

3) No repeated bleedings of experimental fish aimed to reduce bias and 

variability from blood loss 

 We chose to use a high dose (73-75 mg OTC/kg b.w.), still within the FDA-

approved range of 55-83 mg OTC/kg b.w., in an attempt to determine the maximum 

achievable serum OTC concentrations in healthy rainbow trout under prime experimental 

conditions.  These supra-optimal conditions were meant to mimic what typically occurs 

in an aquaculture situation, the strongest healthiest fish eat the most, thus receiving 

treatment, while the out-competed and/or unhealthy fish succumb to disease.  

Additionally, achievable (or best case scenario) serum OTC concentrations during the 

dosing regimen in healthy fish can be used to help make clinical decisions based on in 

vitro susceptibility data obtained in the laboratory. 

 The effects of daily anesthesia and handling stress during this study were not 

determined.  However, Chen et al. (2004) completed a similar study where OTC-

medicated feed was broadcasted to summer flounder held at a slightly higher temperature 

(17 °C).  When compared to the present study, following a 10 d dosing regimen Chen et 

al. found very similar concentrations in summer flounder at 0.04 d (1.25 ± 0.30 μg/mL) 

and 1 d (1.19 ± 0.36 μg/mL).  This suggests the potential stress from daily anesthesia and 

handling may not markedly effect serum OTC concentrations. 
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 Neither Cmax or Tmax were significantly different for the two forms of OTC, 

agreeing with data presented by Reed et al. (2006) in white shrimp.  Contrary to the 

results of Reed et al., we found AUC0-∞ values for the two forms of OTC were not 

significantly different (q-salt = 175.9 μg·h/mL, dihydrate salt = 187.0 μg·h/mL).  These 

findings, as well as the virtually identical AUCss values, indicate there is no marked 

difference in the total amount of active OTC absorbed in rainbow trout fed these two 

formulations. 

 The microbiological method employed in this study proved to be reproducible and 

yielded very similar results to those found using high performance liquid chromatography 

(data not shown). 

 Ultimately, only when drug effect can be directly predicted or assessed from drug 

concentrations, does pharmacokinetic analysis become applicable and meaningful.  Thus, 

additional pharmacokinetics studies of OTC in fish exposed to a bacterial pathogen 

(Chapter 7) are needed to provide insight into the correlation of mass transfer of OTC 

embedded in pharmacokinetic models with drug effect. 
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Chapter 7:  Efficacy and Pharmacodynamics Studies of 
Oxytetracycline in Rainbow Trout against Aeromonas salmonicida 
 

Abstract 

 Pharmacokinetic/pharmacodynamic (PK/PD) indices quantify the relationship 

between pharmacokinetic parameters (i.e., area under the concentration-time curve, 

AUC) and microbiological parameters (i.e., minimal inhibitory concentrations, MICs).  

These indices can be used to determine both appropriate dosage regimens and index 

magnitudes required for efficacy and prevention of the emergence of antimicrobial 

resistance.  The goal of our study was to determine the relevant PK/PD index 

(AUC/MIC) for oxytetracycline (OTC) using a furunculosis disease model in rainbow 

trout.  We began by confirming the efficacy of OTC-medicated feed in rainbow trout 

against an Aeromonas salmonicida (0.25 μg/mL) immersion challenge disease model.  

We continued with a pharmacokinetics study using a total of 72 dermally abraded, A. 

salmonicida-challenged rainbow trout which were terminally bled 1, 3, 4, 6, and 10 d 

after medicated dosing began.  There was a clear direct correlation between plasma total 

protein (TP) and fish health.  The OTC AUC at steady-state over 24 h (AUCss) was 20.1 

μg·h/mL during a 10 d dosing regimen of 74.7 ± 2.3 mg OTC/kg body weight (b.w.).  

The estimated AUCss divided by the current susceptible MIC epidemiologic cutoff value 

(1 μg/mL) for all A. salmonicida isolates (AUC/MIC index) is 20.1.  This estimate is well 

above the reported PK/PD target for tetracyclines in a neutropenic murine-thigh model 

(≥5).  Based on this estimate and AUCss values calculated previously in healthy 
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uninfected rainbow trout, the 1 μg/mL epidemiologic cutoff value represents an accurate 

breakpoint value for OTC against isolates of A. salmonicida. 

Introduction 

 Many researchers have studied the pharmacokinetic profile of OTC in multiple 

aquatic species including shrimp (Uno et al., 2006; Chiayvareesajja et al., 2006; Reed et 

al., 2006), sea turtles (Harms et al., 2004), and fish (Rigos et al., 2004; Wang et al., 2004; 

Coyne et al., 2004b; Haug and Hals, 2000; Doi et al., 1998).  There is, however, a void in 

the literature of data showing a drug effect in fish that was directly predicted or assessed 

from systemic OTC concentrations. 

 OTC (Terramycin®, Phibro Animal Health) is approved by the United Stated 

Food and Drug Administration (FDA) as an oral antibacterial to treat many bacterial 

infections in animals and humans, but in aquaculture it is approved to treat furunculosis 

(Aeromonas salmonicida) and pseudomoniasis in salmonids, and bacterial hemorrhagic 

septicemia and pseudomoniasis in catfish (FDA-CVM, 2007).  We chose to develop a 

furunculosis disease model in the rainbow trout because it is one of the most costly 

aquaculture diseases worldwide. 

 Furunculosis is a septicemic disease principally in salmonids and was first 

described in 1894 (Bernoth, 1997).  Furunculosis is enzootic to many hatcheries but can 

be prevented through good husbandry practices and treatment.  Signs of chronic 

infections are raised red fluid-filled lesions (furuncles) and necrosis of internal organs.  

Additional gross signs include intestinal swelling and erythema around the base of the 

fins.  The disease is transmitted horizontally, but not vertically, and, as is the case with 

many fish diseases, severity increases with poor environmental conditions and associated 
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stress (Pickering, 1997).  Recently an FDA-approved commercial vaccine (Furogen®, 

AquaHealth Ltd.) has been shown to be highly effective in salmonids (Faisal and Gunn, 

2007).  Control of the disease by improved water quality and administration of 

antimicrobial medicated feeds have also been shown to be effective. 

 As the aquaculture industry expands, questions arise concerning the consequences 

of antimicrobial use.  Because drugs like OTC are incorporated into the feed that is 

dispersed into the water, they are essentially dosing the environment, resulting in 

selective pressures in the exposed ecosystem (World Health Organization, 1999).  

Researchers have documented the emergence of antimicrobial resistance in the 

environment following use of antimicrobial agents in aquaculture (Huys et al., 2001; 

Guardabassi et al., 2000a; Sathiyamurthy et al., 1997; Husevag and Lunestad, 1995; 

Husevag et al., 1991).  Thus, haphazard antimicrobial use in aquaculture should be 

avoided.  Prudent use guidelines (National Aquaculture Association Board of Directors, 

2003; AVMA Executive Board, 2002) discourage using antimicrobials for 

chemoprophylaxis.  In addition, veterinarians need accurate test results to prescribe drugs 

appropriately, as well as guidelines for interpreting those from antimicrobial 

susceptibility tests.  The M31-A3 Approved Guideline published by the Clinical and 

Laboratory Standards Institute states, “It is important to consider that the judicious use of 

antimicrobials in the veterinary setting is directly related to the interpretive criteria 

associated with AST in that a given set of interpretive criteria only applies to that specific 

antimicrobial and disease combination.  It is also important to note that interpretive 

criteria…apply only if the laboratory has conducted susceptibility testing according to 

the specific methods found in the documents.” (CLSI/NCCLS, 2007b) 
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 Currently, no such interpretive criteria (i.e., clinical breakpoints) are available for 

any fish pathogen in any fish species for any antimicrobial agent.  To determine clinical 

breakpoints for a given antimicrobial agent against an aquatic pathogen at least the 

following are required; 1) susceptibility frequency distributions for a large number of 

isolates resulting in epidemiologic cutoff values (also called micro-epi cutoffs), 2) target 

animal PK/PD studies, and 3) correlations of susceptibility test results with clinical 

outcome.  The latter two requirements are addressed in the present study to correlate with 

and complement the susceptibility frequency distribution data presented in Figure 14A. 

 The goal of this work was to confirm the efficacy of OTC for an A. salmonicida 

strain with a low MIC, determine its pharmacokinetics in fish exposed to the pathogen, 

and attempt to correlate the mass transfer of OTC embedded in the pharmacokinetic 

model with drug effect.  We determined the AUCss for OTC and proposed a PK/PD index 

target that may predict therapeutic efficacy and prevent resistance from emerging. 

Materials and Methods 

Animals 

 For the Efficacy and Parallel study we obtained 144 rainbow trout (Oncorhynchus 

mykiss) from Casta Line Trout Farm (Goshen, VA) where no furunculosis cases have 

been reported.  We placed three fish in separate compartments using a polycarbonate box 

within 60 L aquaria.  The 24 tanks had a flow-through water supply maintained at 12-13 

°C (Figure 26).  We allowed fish to acclimate to their tanks for 3 d, and did not offer 

feed during this time. 
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Figure 26. Three rainbow trout per 60 L tank equipped with a polycarbonate box. 

 

Study Design 

 In the Efficacy study we randomly assigned tanks to two treatment groups (Non-

medicated and Medicated) using a randomized block design (Figure 27).  Fish were 

observed at least twice daily throughout the study. 

 In the Parallel study we randomly assigned tanks to two treatment groups (Non-

medicated and Medicated) and a Pre-dosing sampling group (Figure 28).  We also 

randomly assigned tanks within each treatment group (Pre-dosing, Non-medicated, and 

Medicated) to a designated sampling day, where all fish in that tank were sacrificed and 

sampled as described below.  The Pre-dosing treatment group was comprised of 12 fish 

total, euthanized one and two days (2 tanks/day) after challenge.  In the Non-medicated 

feed group unexpected mortalities increased the total number of fish sampled on each 

pre-determined sampling day (1, 3, 4, 6 d), thus no fish were available to sample on day 

10.  The Medicated group was comprised of six fish, euthanized and sampled 1, 3, 4, 6, 

and 10 d after dosing began. 
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Figure 27.  Efficacy study tank assignments - random tank assignment for Non-medicated (light 
yellow) and Medicated (dark pink) treatment groups. 

 
 
 
 
 

 

Figure 28.  Parallel study tank assignments - random tank assignment for Non-medicated (light 
yellow), Medicated (dark pink), and Pre-dosing (white) experimental groups. 
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OTC-medicated and Control Feed 

 We purchased OTC-medicated (8.8 g OTC/kg feed) trout production feed 

manufactured using the newly approved dihydrate salt OTC formulation (Rangen Inc., 

Buhl, ID).  Control trout production feed was obtained from the same manufacturer.  

According to the manufacturer identical crude protein, fat, fiber, ash, and phosphorus 

levels were present in both feeds.  Covance Laboratories Inc. (Madison, WI) used a high 

performance liquid chromatography method to determine the potency of the OTC 

dihydrate salt feed (8140 mg/kg) and control feed (<2 mg/kg).  Feed analyses were 

completed within 3 months of use, and the results were used in dose calculations.  We 

homogenized the feeds in separate blenders, and stored them away from light to minimize 

photodegradation of OTC. 

A. salmonicida Challenge Strain 

 A. salmonicida subsp. salmonicida Maine91 (CVM 33722) was originally isolated 

in 1991 from salmon in Maine and later found to be virulent in rainbow trout by Bowser 

et al. (1994).  It was confirmed to be a ‘typical’ strain previously using PCR primers 

specific for A. salmonicida subsp. salmonicida (Miller and Reimschuessel, 2006).  To 

confirm the virulence of this strain we sequentially infected six 150-300 g rainbow trout.  

We prepared a bacterial suspension equivalent to a 0.5 McFarland (1-2 x 108 colony 

forming units/mL) and injected 0.5 mL intraperitoneally.  Within 2-3 days, the fish 

succumbed to infection and the isolate was aseptically retrieved in near pure culture from 

the spleen on tryptic soy agar (TSA) with 5% sheep blood after 44-48 h incubation at 22 

°C.  Once in pure culture, the procedure was repeated in another fish.  This was repeated 
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in a total of six rainbow trout, and the final isolate (CVM 35493) was frozen at -80 °C in 

tryptic soy broth with 30% glycerol. 

Challenge Procedure 

 Following a 3 d acclimation period, we placed each fish under anesthesia in a 400 

mg/L tricaine methanesulfonate solution (MS-222) (Crescent Research Chemicals; 

Phoenix, AZ) and measured its weight.  We used each fish’s weight to calculate the 

amount of medicated feed needed to target a dose within the FDA-approved range of 55 

to 83 mg OTC/kg b.w.  In the Efficacy study the mean fish weight in the Non-medicated 

group was 153 ± 27 g (median=152 g) and in the Medicated group it was 151 ± 25 g 

(median=150 g).  In the Parallel study the mean fish weight in the Non-medicated group 

was 149 ± 24 g (median=147 g), in the Medicated group it was 137 ± 30 g (median=127 

g), and in the Pre-dose sampling group it was 154 ± 21 g (median=156 g). 

 To facilitate infection by the A. salmonicida challenge strain we applied a dermal 

abrasion using a Dremel® tool under anesthesia (Figure 29) (Gieseker et al., 2006).  We 

removed scales and epidermis from a 1 x 2 cm area on the epaxial musculature caudal to 

the dorsal fin.  The scales and mucus were gently wiped free from the abraded area.  

Darwish et al. (Darwish et al., 2002) also cited dermal abrasion as necessary to induce 

disease reproducibly (Figure 30).  Following dermal abrasion, each fish was returned to 

their respective tank compartment to recover. 
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Figure 29. Abrasion method using a Dremel® tool (A) to produce a 1 x 2 cm abraded area (B). 

 

 

Figure 30.  A. salmonicida invading the abraded dermis 2 d after immersion challenge. 

 

 Fifteen 1.8 L brain heart infusion (BHI) broth cultures of A. salmonicida CVM 

35493 were grown in 2 L Erlenmeyer flasks incubated at 22 °C for 24 h.  We pooled 

these cultures in a 10 L plastic carboy, and took a sub-sample to determine the 

colony forming units (CFUs)/mL of broth.  We performed 10-fold serial dilutions of 
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the inoculum in 96-well microtiter plates using 20 μL transfer volumes and 180 μL sterile 

saline in each well.  Four 20 μL drops were placed on TSA with 5% sheep blood, allowed 

to absorb, and incubated at 22 °C for 44-48 h. 

 

Cell density of inoculum in Efficacy study  = Avg colony count/drop x 50 (to get to 
per mL) x dilution factor (100 to 10-6) 

= 5.75 colonies/drop x 50 x 10-6 

= 2.88 x 108 CFU/mL of broth culture 

Cell density of inoculum in Parallel study    = 1.38 x 108 CFU/mL of broth culture 

 

 We allowed fish to recover from anesthesia for 1.5-2 h prior to challenge.  Tank 

water levels were lowered to 15 cm (~27 L), flow stopped, and 1 L total of undiluted A. 

salmonicida CVM 35493 BHI broth culture was added evenly to the three compartments 

in each of the 24 tanks.  In the Efficacy study, fish were exposed to the 1 to 28 dilution of 

the A. salmonicida CVM 35493 broth culture [(2.88 x 108 CFU/mL/28) = 1.03 x 107 

CFU/mL tank water)].  In the Parallel study, fish were exposed to 4.91 x 106 CFU/mL 

tank water [(1.38 x 108 CFU/mL/28)].  Exposure lasted for 2 h then water flow was 

restored to all tanks at 0.75 L/min. 

Dosing by Oral Gavage 

 Two days after bacterial challenge, in both Efficacy and Parallel studies we 

anesthetized all fish individually with MS-222 as before, and fed orally by gavage one of 

the two trout production feeds (Non-medicated and OTC-medicated).  In the Efficacy 

study 36 fish (12 tanks) received control feed (Non-medicated), and another 36 fish 

received OTC-medicated feed.  In the Parallel study 30 fish (10 tanks) received control 



  

 124 
 

feed (Non-medicated), 30 fish received OTC-medicated feed, and another 12 fish (4 

tanks) did not receive any feed and were sacrificed for sampling one day before and on 

the day dosing began (Pre-dosing group).  We packed dry homogenized feed samples into 

dedicated plastic 3 mL luer-lock syringes with the tip excised and flamed to minimize 

irritation during insertion and removal (Figure 31).  We administered doses by gavage 

daily for 10 consecutive days using separate anesthesia baths to prevent OTC and/or A. 

salmonicida cross-contamination.  No fish were observed to regurgitate measurable 

amounts of medicated feed.  Based upon total feed ingested, administered doses were 

equivalent to 0.9% b.w. per day.  We used mass equivalents for fish fed the control feed 

(Non-medicated group). 

 In the Efficacy study, the mean dose in the Medicated group was 74.5 ± 1.5 mg 

OTC/kg of fish.  In the Parallel study, the mean dose in the Medicated group was 74.7 ± 

2.3 mg OTC/kg of fish.  Immediately following dosing each fish was returned to their 

respective tank compartment to recover. 

 
Figure 31. Excised 3 mL luer-lock syringe (A) used in oral gavage dosing (B). 

 

Sampling Procedure 

 We obtained both plasma and serum from all moribund and surviving fish by 

exsanguination after euthanization with a lethal dose of MS-222.  Plasma was also 
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collected from five freshly dead fish during the Efficacy study.  We filled heparinized 

microhematocrit tubes and centrifuged them at 10,000 RPM for 5 min.  We measured 

packed cell volumes (PCV, %) or hematocrit using a micro-capillary reader (IEC; 

Needham Heights, MA), and total protein (TP, g/dL) using a clinical refractometer 

(Schuco; Williston Park, NY).  Preliminary studies suggested the product of PCV and TP 

is an accurate predictor of the osmoregulatory status of the fish.  We allowed the 

remaining blood volume to clot at 4 °C overnight, centrifuged at 4,000 g for 15 min at 4 

°C, and collected the serum which we stored at -80 °C. 

 We aseptically removed spleens from dead, moribund, and surviving fish, placed 

each spleen in 200 μL 0.85% sterile saline, and 

weighed it to the nearest ten-thousandth of a gram.  We 

homogenized each spleen in a microcentrifuge tube 

using a sterilized tissue homogenizer with a stainless 

steel shaft and Teflon pestle (Scientific Laboratory 

Supplies Inc.; Millville, NH) (Figure 32).  We 

performed 10-fold serial dilutions of the vortex mixed 

spleen homogenate in a 96-well microtiter plate using  

20 μL transfer volumes and 180 μL sterile saline in  

each well.  We placed four 20 μL drops from each dilution step onto a TSA with 5% 

sheep blood plate, allowed them to absorb, and incubated the plate at 22 °C for 44-48 h.  

We multiplied the average colony counts/drop by the dilution factor and then divided by 

the spleen weight to calculate the CFU/g of spleen.  We randomly selected five colonies 

Figure 32. Homogenizing 
spleen tissue for 

determination of CFU/g of 
spleen. 
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to streak for isolation and have their susceptibility to OTC determined by broth 

microdilution. 

Broth Microdilution Testing 

 We determined OTC MICs after 44-48 h incubation at 22 °C using the 

standardized broth microdilution antimicrobial susceptibility testing method described by 

Miller et al. (Miller et al., 2005) (Chapter 3) and found in the CLSI Approved Guideline 

M49-A (CLSI/NCCLS, 2006b).  We included quality control organisms Escherichia coli 

ATCC 25922 and A. salmonicida subsp. salmonicida ATCC 33658 in all tests. 

Serum Analysis 

 We used a modified microbiological method similar to the one described by Chen 

et al. (2004) and Strasdine and McBride (1979) for determination of OTC in fish serum.  

We prepared a Bacillus cereus ATCC 11778 spore suspension in sterile deionized water 

equivalent to a 3.0 McFarland (9 x 108 CFU/mL) measured on a VITEK colorimeter 

(Biomerieux Inc.; Durham, NC).  We added a 12 mL aliquot of the spore suspension to 

250 mL of Antibiotic Medium #8 agar (BD Diagnostic Systems; Sparks, MD) that had 

been cooled to 45.5 °C.  After pouring the agar into a 150 mm x 150 mm petri plate 

(Nalge Nunc International; Rochester, NY), we allowed it to harden for 1.5 h.  We 

removed agar wells with a cork borer (diameter = 4.70 mm) connected to a vacuum and 

placed plates at 4 °C for 30 min. 

 We collected serum from rainbow trout fed non-medicated trout production feed 

(Rangen Inc.), and used it to prepare fortified OTC calibration standards.  We prepared 

serum standards (8, 4, 2, 1, 0.5, and 0 μg/mL) using a stock 1.00 mg/mL OTC methanolic 
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solution (United States Pharmacopeia; Rockville, MD).  The 0.5 μg/mL fortification was 

the lowest detectable fortified concentration.  After removing the microassay plates from 

4 °C, we added 45-50 μL of fortified solutions to each well.  We included the series of six 

fortified standards on three microassay plates.  We used mean zone diameters at each 

fortification level in regression calculations.  We calculated a level of detection (LOD) 

based on the average zone diameter of a well after 20-21 h of incubation (4.29 mm) plus 

two 2 mm radii (4 mm).  We determined this diameter to be the smallest zone of growth 

inhibition surrounding the well capable of accurate measurement using this method.  

Using the regression equation provided below we calculated a LOD of 0.18 μg/mL. 

 We thawed serum samples at room temperature, vortex mixed and added 45-50 

μL to one well per sample. We incubated all test plates at 4 °C for 1 h then moved them 

to a 28 °C incubator for 20-21 h.  We measured diameters of zone of inhibition using 

digital calipers to the nearest one-hundredth of a mm. 

 We incorporated the zones of inhibition into the corresponding regression 

equation (based on the regression line in Figure 33), to solve for the serum OTC 

concentration. 

       Serum OTC calculations: OTC [ ] = log100.070(zone diameter)-1.326 

 We performed pharmacokinetic calculations using MS Excel Add-ins available 

for download online (Usansky et al., 2007). 
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y = 0.070x - 1.326
R2 = 0.999
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Figure 33. Regression analysis of OTC fortified serum standards used in extrapolation of serum OTC 
concentrations from the Efficacy and Parallel studies. 

  

Results and Discussion 

Efficacy Study 

 Treatment with OTC-medicated feed drastically decreased the percent mortality 

when compared to the Non-medicated group (Figure 34).  Percent mortality in the Non-

medicated fish was 88.9%, whereas in Medicated fish it was only 2.8%.  All mortalities 

occurred between 4 and 9 d after dosing began, and all fish had substantial concentrations 

of A. salmonicida in their spleens (Figure 35).  Clinical signs presented as erratic 

swimming, tachypnea (respiratory distress), darkening of skin, hemorrhages at the base of 

the fins.  Internally, the presence of ascites and hemorrhage of the abdominal wall and 

viscera were noted. 
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Figure 34. Cumulative percent mortality showing the efficacy of OTC in rainbow trout against an 
experimental A. salmonicida infection. - day of challenge;  - 1st dose given;  - 10th dose given. 
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Figure 35. Persistence of A. salmonicida CVM 35493 in rainbow trout, each represents one spleen 
(left axis).  Packed cell volume (PCV) x total protein (TP) values in experimentally infected rainbow 

trout (right axis). - day of challenge;  - 1st dose given;  - 10th dose given. 
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 Infectivity on the order of 106-108 CFU/g was found in the spleen in virtually all 

samples.  Histologically, focal to multi-focal necrosis in the spleen was common in dead 

fish and those showing signs of clinical disease (Figure 36).  The one Medicated fish 

found dead 11 days after dosing began also had a high concentration of A. salmonicida 

detected in the spleen.  Broth microdilution susceptibility tests of the 156 A. salmonicida 

isolates taken from spleens of Non-medicated fish revealed no change in OTC MIC (0.06 

– 0.25 μg/mL) from the parent 

challenge strain CVM 35493 

(0.25 μg/mL).  However, all 

five A. salmonicida isolates 

randomly taken from the 

spleen of the Medicated fish 

found dead were highly 

resistant to OTC with MICs 

>32 μg/mL.  Clonality was  

not addressed with these isolates. 

 Direct correlations between PCV*TP values in moribund and freshly dead fish 

and A. salmonicida concentrations/g of spleen were easily recognized (Figure 35).  Low 

PCV*TP values (<150) in plasma were consistently found in moribund and freshly dead 

fish, whereas surviving fish in both treatment groups had higher PCV*TP values (>150).  

Additionally, in all fish where low PCV*TP values were recorded high concentrations of 

A. salmonicida were found.  These low PCV*TP values are due to an inability to 

maintain ionic homeotasis which is critical to the survival of all fish species.  Loss of 

Figure 36. Focal necrosis and A. salmonicida microcolonies 
in rainbow trout spleen, 8 d after immersion challenge. 
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Na+-K+-ATPase, a membrane-bound enzyme that actively transports Na+ out of the cells 

and K+ into the cells is likely responsible for the osmoregulatory dysfunction seen in this 

study.  Deane and Woo (2005) also showed osmoregulatory function to be impaired in 

the kidney at an early stage of infection (vibriosis) in sea bream. 

 Serum OTC concentrations in all surviving Non-medicated fish sacrificed 14 d 

after dosing ended were below the LOD (0.18 μg/mL), and four out of 35 surviving 

Medicated fish had low (0.19-0.25 μg/mL) but detectable levels of OTC (Figure 37). 
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Figure 37. Serum OTC concentrations in surviving fish 14 days after dosing. - day of challenge;  - 
1st dose given;  - 10th dose given. 
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Parallel Study 

 A. salmonicida was not found in spleens from any Medicated fish (Figure 38).  A. 

salmonicida was detected in spleens of Non-medicated fish 1 d (1/6 fish), 3 d (3/7 fish), 4 

d (7/9 fish), and 6 d (6/8 fish) after dosing began.  Generally higher concentrations of 

bacteria/g of spleen were detected in dead and moribund fish than in sacrificed fish.  Less 

bacteria/g of spleen were found in Non-medicated fish in the Parallel study than in the 

Efficacy study.  A possible explanation for this difference is a 1 log lower challenge dose 

was used in the Parallel study. 
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Figure 38.  A. salmonicida CVM 35493 persistence in experimentally challenged rainbow trout. - 
day of challenge;  - 1st dose given;  - 10th dose given. 
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 Calculations of serum OTC concentrations revealed first order absorption from 

the gut into the central compartment (blood).  We calculated an absorptive half-life (T1/2α 

= ln2/ka) equal to 5.1 d (Figures 39 and 40), similar to the half-lives calculated for OTC 

q-salt (4.4 d) and dihydrate salt (5.2 d) in healthy unabraded rainbow trout (Chapter 6).  

Wang et al. (2001) reported an OTC T1/2α after oral administration of 2.3 h. 
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Figure 39. Mean serum OTC concentrations with a fitted exponential curve. Circled value indicates 
the absorption rate constant, ka. 
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Figure 40. Serum OTC concentrations in rainbow trout experimentally challenged with A. 
salmonicida CVM 35493. 

 

 An AUCss estimated over 24 hours was calculated using mean serum OTC 

concentrations at 6 and 10 d and the trapezoidal rule. 

AUCss = ((C6d+C10d)/2))(t10d-t6d))/4 

 The AUCss in experimentally infected rainbow trout was 20.1.  Interestingly, this 

value and the AUC0-10d are lower but comparable to the AUCss and AUC0-10d values 

calculated previously in uninfected rainbow trout fed OTC medicated feed under the 

same conditions (Table 21). This indicates that slightly less OTC makes it into fish that 

have been subjected to the dermal abrasion and A. salmonicida challenge procedures.  

Whether one or both of these stressors contribute to this decreased absorption, remains to 

be seen. 
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Treatment Group Mean dose ± SD (μg/mL) AUCss AUC0-10d AUC0-∞

Infected OTC dihydrate salt 74.7 ± 2.3 20.1 143.0 n/a

Uninfected OTC q-salt * 74.7 ± 1.5 27.1 175.9 309.7

Uninfected OTC dihydrate salt * 73.4 ± 2.0 27.2 187.0 293.3

Table 21. Summary of AUC values in infected and uninfected rainbow trout held under identical 
conditions.

* data from pharmacokinetic study (Chapter 6)  

 Slightly decreased AUC values in dermally abraded and challenged fish may also 

be due to an increased residence time of the OTC-medicated food in the gastrointestinal 

(GI) tract.  We found most GI tracts of fish sampled to be full of feed indicating a 

decrease in gastric emptying possibly due to bacterial challenge and/or stress.  

Bioavailability was not determined in this study due to difficulties in intravenous 

administrations in fish, thus the percentage of OTC absorbed from the GI tract could not 

be calculated.  If in a similar study, a more potent OTC-medicated feed were used, and 

less ingested feed was required to reach comparable therapeutic serum concentrations, 

presumably, the fish’s ability to digest, pass, and absorb the feed should result in higher 

achievable serum OTC concentrations.  If all of this proves true, other than the obvious 

benefit to the fish, fewer doses and possibly less total OTC administered may prove to be 

economical for farmers and better for the environment. 

 Alternatively, the slightly decreased AUC values in the abraded and infected fish 

(Table 21) may be explained by hemodilution.  Loss of osmoregulatory function leading 

to an increased plasma volume with a decreased TP, may help explain the lower AUC 

values (Figure 41).  Additional studies aimed at comparing PCV and TP values in 

dermally abraded and unabraded rainbow trout fed OTC-medicated feed with and without 

bacterial challenge are needed to prove an affect of bacterial challenge and/or dermal 

abrasion on hemodilution of OTC in serum.  TP values in serum should also be 
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determined since Hrubec and Smith (1999) found significantly higher TP concentrations 

in rainbow trout and catfish serum than in plasma. 

 The plot of mean PCV*TP values in Non-medicated and Medicated fish shows a 

very similar trend until 6 d after dosing began (Figure 41).  No significant difference in 

mean PCV*TP values were observed 1, 3, or 4 d after dosing began.  A gradual decline in 

the health of the Non-medicated fish began with four mortalities (1 at 3 d, 2 at 4 d, 1 at 6 

d) and one moribund fish at 4 d.  A significant decrease in mean PCV*TP values 

(p<0.05) from 1 to 3 d after dosing began indicated a decline in osmoregulatory function 

in Non-medicated fish.  A critical period during this study was between 4 and 6 d after 

dosing began when mean TP concentrations only (not PCV values) in Non-medicated 

fish declined significantly (p<0.05), while TP concentrations in Medicated fish increased 

markedly (not significant).  Also at 6 d mean TP values were significantly higher in the 

Medicated fish (p<0.05) confirming a positive effect was afforded by administration of 

the OTC-medicated feed.  TP concentrations in Medicated fish at 10 d were significantly 

lower than those from fish sacrificed 1 d after bacterial challenge and before dosing, 

however they appeared to be in the late stages of recovery to normal osmoregulatory 

function. 

 Also with the gradual decrease in mean PCV*TP values in Non-medicated fish 

came a gradual increase in the levels of A. salmonicida recovered in the spleen starting 1 

d after dosing began (Figure 42).  Similar to what was observed in the Efficacy study the 

major decrease in PCV*TP values after challenge was probably due to sepsis in the 

animal, liver malfunction, and proteinemia, resulting in an inability to regulate ion 

transport.  However, one can postulate that the initial decrease in PCV*TP from one to 
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Figure 41.  Direct relationship between mean PCV*TP and serum OTC concentration in rainbow 
trout.  Left axis – Mean serum OTC concentrations after challenge; Right axis – Mean packed cell 

volume (PCV, %) x total protein (TP, g/dL) after challenge. † - OTC-medicated fish mean 1 d and 3 
d values are significantly different, ‡ - Control fish mean 4 d and 6 d values are significantly 

different, * - OTC-medicated fish and Control fish mean values are significantly different; - day of 
challenge;  - 1st dose given;  - 10th dose given. 

 

two days after challenge may be due to the dermal abrasion and/or stress.  Medicated fish 

PCV*TP values declined throughout the study until mean serum OTC concentrations 

approached 0.5 μg/mL (Figure 41).  The decline in PCV*TP values cannot be explained 

with the sepsis assumption however, since no A. salmonicida were detected in the spleen 

in Medicated fish.  Many authors have described anemic states in cases of bacterial 

infection of salmonids.  Waagbø et al. (1988) reported hypoproteinemia and a reduction 

in red blood cells, hematocrit and hemoglobin in Atlantic salmon suffering from Hitra 
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disease.  Barham et al. (1980) also reported hypoproteinemia and a reduction of 

hemoglobin and hematocrit in rainbow trout infected with Aeromonas spp. and 
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Figure 42. Inverse relationship of PCV*TP and the persistence of A. salmonicida. 

 
 

Streptococcus spp.  A decrease in TP in the serum of brown trout and Atlantic salmon 

with ulcerative dermal necrosis and a single fungal infection Saprolegnia ferax was 

reported by Mulcahy (1971).  Řehulka (2003) reported hypoproteinemia to correspond 

with a histological finding in kidney and acute hepatitis, which are mainly characterized 

by the loss of albumin and a decrease in its synthesis.  Albumin contributes to 

maintaining colloidal osmotic pressure in the blood flow.  Řehulka showed 

hypoalbuminemia can lead to swelling and ascites (Rehulka, 2003), which was also noted 

in some fish challenged with A. salmonicida in the present study. 
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Conclusions 

 Results from this study can be used to determine a pharmacokinetic/ 

pharmacodynamic (PK/PD) index which is a quantitative relationship between a 

pharmacokinetic parameter (i.e., AUC) and a microbiological parameter (i.e., MIC).  

Examples of PK/PD indices include AUC/MIC, Cmax/MIC, and time above MIC (T> MIC).  

These indices can be used to determine appropriate dosage regimens and index 

magnitudes required for efficacy and prevention of the emergence of antimicrobial 

resistance (Mouton et al., 2005). 

 Aminoglycosides and fluoroquinolones exhibit concentration-dependent killing 

and are best represented with the PK/PD indices AUC/MIC and Cmax/MIC.  Although 

tetracyclines exhibit time-dependent killing in vitro, AUC/MIC has been the major 

PK/PD index correlating with therapeutic efficacy (Craig, 1998).  This may be due to the 

much longer in vivo post-antibiotic effect of these drugs when compared to β-lactams and 

macrolides (Craig and Gudmundsson, 1996).  In PK/PD studies use of AUCss is preferred 

over AUC0-∞ (Mouton et al., 2005) when determining indices.  However, calculation of 

these indices using steady-state concentrations obtained during a 24 h period from a 

single fish is very difficult.  Handling, anesthetizing, and bleeding a fish two or more 

times within a 24 h period would cause considerable stress, vascular injury and skewing 

of results due to the reduction in circulating blood volume.  A more realistic approach is 

to calculate these indices from blood samples taken once daily or once every two to three 

days. 

 The present Parallel study used this approach in an experimental challenge model 

of A. salmonicida (MIC=0.25 μg/mL) in rainbow trout.  Based on the epidemiologic 
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cutoff values for OTC against isolates of A. salmonicida (Figure 14A) (Miller and 

Reimschuessel, 2006), the A. salmonicida challenge strain fits into the wild-type 

classification and should be considered susceptible to OTC.  We calculated an AUCss 

equal to 20.1 μg·h/mL.  If we divide this value by the MIC of the challenge strain the 

AUCss/MIC is 80.4.  This value is far greater than the PK/PD targets for tetracycline 

against gram-negative infections reported by Burgess et al. (2007) (AUCss/MIC≥25) 

using a Monte Carlo simulation, and Stein and Craig (AUCss/MIC≥5) using a murine 

thigh-infection model (Stein and Craig, 2006).  Similarly, Passarell et al. (2005) 

associated an AUC/MIC of >30 with a >90% chance of success in a human intra-

abdominal infection model. 

 In summary, if we divide the AUCss values from Table 21 (20.1, 27.1, and 27.2) 

and the current susceptible A. salmonicida breakpoint of 1 μg/mL (Figure 14A), the 

AUCss/MIC values are still considerably greater than those reported by Stein and Craig 

and are near those proposed by Burgess et al. (2007) and Passarell et al. (2005).  Thus, as 

in studies of OTC in mammals, studies of OTC in fish share a clear relationship between 

AUC and efficacy.  Increasing the A. salmonicida susceptible breakpoint from 1 μg/mL 

to 2 or 4 μg/mL should be avoided unless favorable clinical outcomes are reported 

against isolates with these higher MICs.  Further, due to an inability to detect A. 

salmonicida isolates from the spleen of Medicated fish during the Parallel study, a link 

between the AUCss/MIC target (≥5) and the prevention of emergent resistant A. 

salmonicida isolates can be identified. 

 Additional studies investigating the clinical efficacy of OTC in rainbow trout 

against an infection using a higher MIC (1-4 μg/mL) A. salmonicida isolate will provide 
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crucial information related to the accuracy of the current epidemiologic cutoff values.  

Pharmacokinetics studies using a higher potency OTC-medicated feed will also provide 

more data on the potential serum OTC concentration over the course of an infection. 
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Summary 

 Aquatic animal veterinarians are faced with many of the same clinical decisions 

as clinicians and veterinarians specializing in other disciplines.  One such decision is 

whether or not to prescribe antibiotic treatment for a patient/population.  Clinicians and 

veterinarians most often make rapid judgment calls based on minimal empirical evidence.  

Fish farmers and pet fish owners, just like poultry farmers and owners of companion 

animals, want instant answers.  Treating with an appropriate antibiotic can save a 

farmer’s investment as well as a beloved family member.  However, indiscriminate 

antibiotic use can put the animal, environment, and even the owner at risk of acquiring an 

infection caused by bacteria that have become resistant to the originally prescribed 

antibiotic.  The decision to treat should involve multiple factors including: 

1. Antimicrobial susceptibility test (AST) results of the pathogen isolated in the 

disease outbreak 

2. Published or unpublished susceptibility distribution data for a given pathogen 

population 

3. Known pharmacokinetic properties of the antibiotic in the target animal 

4. Relevant clinical experience and reports of clinical cases 

 Antimicrobial susceptibility tests need to be conducted using standardized 

methods and quality control strains.  This allows for meaningful comparisons within and 

between laboratories.  Most human and terrestrial animal bacterial pathogens grow best 

in vitro at temperatures at or above 35 °C.  It is at these temperatures that antimicrobial 

susceptibility testing (AST) methods have been standardized (CLSI/NCCLS, 2007b; 

CLSI/NCCLS, 2003; CLSI/NCCLS, 2000).  Conversely, aquatic animal bacterial 
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pathogens prefer or require in vitro growth temperatures well below 35 °C, and thus 

require different incubation conditions for AST.  We standardized methods for AST of 

non-fastidious aquatic isolates by disk diffusion (Miller et al., 2003) and broth 

microdilution (Miller et al., 2005).  Each method is equipped with two quality control 

(QC) strains which allow researchers and technicians worldwide, to reproducibly conduct 

AST of bacterial isolates that prefer or require lower in vitro growth temperatures.  When 

used correctly these standardized methods provide a means for scientists to confidently 

monitor AST data over time, and will also foster more meaningful scientific 

communication.  Other aquatic animal bacterial pathogens that need standardized AST 

methods are members of Vibrionaceae, Flavobacteriaceae, gram-positive cocci, and 

psychrophilic strains (i.e., Vibrio salmonicida). 

 Using standardized AST methods and associating test results with clinical 

outcome can help veterinarians decide what treatment to prescribe.  However, associating 

AST results with clinical outcome is not always possible, especially in fish medicine 

where mortalities can be difficult to assess due to bird predation, cannibalism, and 

sinking carcasses.  Interpretive criteria or clinical breakpoints are useful when deciding 

which drug to use.  These breakpoints are zone diameters and minimal inhibitory 

concentrations (MIC) for a given antimicrobial agent and disease causing agent.  They 

delineate whether an isolate is susceptible, intermediate, or resistant in vitro, and 

ultimately are used to predict how the target animal may respond to treatment using the 

standard dosing regimen.  Clinical breakpoints exist for many human and terrestrial 

animal pathogens, but none have been determined for any bacterial pathogen in any 

aquatic animal. 
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 In this work we began the process to establish the first clinical breakpoints for an 

antimicrobial agent approved for use in aquaculture against an aquatic bacterial pathogen.  

First we used newly standardized AST methods for aquaculture to determine the 

susceptible and resistant MIC and zone diameter cutoffs (called epidemiologic cutoff 

values) for oxytetracycline, ormetoprim-sulfadimethoxine, florfenicol, and oxolinic acid 

against 217 Aeromonas salmonicida isolates.  These epidemiologic cutoff values can be 

used to monitor for the development of resistance to these drugs in A. salmonicida 

isolates.  To have clinical application, these MIC cutoff values, based on a large 

population of isolates, must be correlated with pharmacokinetic data in a target animal 

species and clinical outcome data where the MIC of the infecting A. salmonicida isolate 

is known.  In human and veterinary medicine, the relationship between pharmacokinetic 

data and MICs of pathogenic isolates, is used to develop 

pharmacokinetic/pharmacodynamic (PK/PD) indices.  The most commonly used indices 

are T>MIC, Cmax/MIC, and AUCss/MIC.  PK/PD target values for each of these indices 

can be used to predict therapeutic efficacy, minimize the emergence of resistant 

organisms, and help establish clinical breakpoints. 

 In our work, pharmacokinetic studies of OTC in rainbow trout were used to 

monitor serum concentrations in both healthy rainbow trout and those challenged with a 

presumably susceptible strain of A. salmonicida (MIC = 0.25 μg/mL).  The PK/PD index, 

AUCss/MIC, is generally accepted as the best predictor of therapeutic success for 

tetracyclines against gram-negative infections (Burgess et al., 2007; Stein and Craig, 

2006; Passarell et al., 2005).  When either of the AUCss/MIC values calculated in healthy 

and challenged trout were divided by the current susceptible MIC epidemiologic cutoff 
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value for A. salmonicida (1 μg/mL) the products were well above the AUCss/MIC target 

value of ≥5 reported by Stein and Craig (2006) in a murine thigh-infection model, and 

very close to ≥25 (Burgess et al., 2007) and ≥30 (Passarell et al., 2005) reported recently.  

Based on the findings presented here, the 1 μg/mL susceptible MIC epidemiologic cutoff 

value for A. salmonicida isolates appears to be accurate.  This work also showed the 

currently approved dosing regimen for OTC in salmonids is effective against 

experimental A. salmonicida infections caused by A. salmonicida isolates with MICs 

≤0.25 μg/mL.  However, additional studies are needed before an OTC susceptible clinical 

breakpoint can be established for A. salmonicida.  Separate efficacy studies using the 

same OTC dosing regimen against challenge strains with MICs of 1, 2 and/or 4 μg/mL 

along with pharmacokinetic data (AUCss) will need to be conducted to determine 

susceptible and resistant clinical breakpoints. 

 This work will help aquatic animal disease researchers in the future develop 

clinical breakpoints for OTC and other antimicrobial agents against economically 

important aquatic animal pathogens.  These studies show PK/PD parameters historically 

only applied in studies on humans and terrestrial animals can be applied in fish as well.  

The studies described here may serve as a template for future efforts in this field.  A 

neutropenic mouse thigh-infection model developed by Dr. William Craig (1998) shares 

some similarities with the fish spleen-infection model used in this work.  Both fish spleen 

and mouse thigh can be used to monitor bacteria levels over time in response to 

treatment.  These types of studies cannot be used to assess efficacy, but can help assess in 

vivo kill kinetics.  It is doubtful that an artificially immunocompromised fish would 

survive for long in the microbial milieu of a fish tank, but does warrant an investigation.  
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Examinations are also needed into the applicability of similar fish tissue-infection models 

of other gram-negative septicemias including enteric septicemia of catfish caused by 

Edwardsiella ictaluri. 

 Future clinical response studies with OTC and other antimicrobial agents should 

include a procedure to detect the presence of resistant isolates in the entire tissue 

homogenate.  This was not performed in the present work.  This would require using a 

spread-plate technique of each homogenate dilution onto agar media with and without the 

antimicrobial agent.  The benefit of testing the entire tissue homogenate is it would 

drastically increase the chance of detecting bacteria with a decreased susceptibility, as 

compared to the current study which only tested the susceptibility of five randomly 

selected A. salmonicida colonies. 

 Pharmacokinetics studies conducted in laboratory settings where multiple blood 

samples are taken from a single fish over time can yield data that misrepresent 

concentrations in normal animals not subjected to such extreme stress.  Despite a fish’s 

hematopoietic ability, repeated sampling of 1-2 mL of blood for analysis may reduce the 

circulating volume in which a drug can enter, thus making meaningful correlations 

difficult.  Also repeated bleeding at or near the same site will probably only result in the 

withdrawal of fluid from the hematoma.  Thus pharmacokinetic studies conducted in a 

field setting with large numbers of animals or in a laboratory setting where euthanization 

is used will likely provide the most reliable predictors of achievable serum drug 

concentrations.  In the present work, limited variability was observed in serum OTC 

concentrations in healthy and infected fish that were euthanized at each time point after 



  

 147 
 

dosing began.  Similar weights, environmental conditions and doses of OTC per gram 

body weight all contributed to this consistency.   

 The Food and Drug Administration (FDA) approved OTC for use in aquaculture 

in the 1970’s.  It is not clear what studies were completed to optimize the approved 10 

day dosing regimen for OTC in salmonids.  Researchers have reported maximum serum 

OTC concentrations in healthy fish after a single oral dose (Rigos et al., 2003a; Haug and 

Hals, 2000; Bjorklund and Bylund, 1990; Iversen et al., 1989) similar to those reported in 

the present work which used the FDA-approved 10 day dosing regimen.  Additional 

studies are needed to investigate the need of the full 10 day dosing regimen in salmonids.  

These investigations may reveal a shortened dosing period, more infrequent dosing, 

and/or a change in the potency of OTC-medicated feed will yield similar results in terms 

of efficacy and OTC pharmacokinetics.  These results may also present a more 

economical and environmentally friendly alternative to OTC dosing in aquaculture.  This 

presentation is contingent upon the total amount of antimicrobial agent administered 

using this modified regimen being less than that using the approved 10 day dosing 

regimen.  Only then would there be a presumed benefit to the environment and/or fish 

farmer. 

 Release of xenobiotics and pollutants from industry (including aquaculture) into 

the environment should be minimized or avoided altogether.  With a predicted 50% 

increase in global population by 2050 (The United Nations Population Division, 2001), 

will come an increased demand on the food supply, in particular high protein sources like 

fish.  Preventative measures taken now to minimize the exposure of fish, shellfish, and 
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the aquatic environment to xenobiotics like antimicrobial agents can help protect and 

preserve this important resource. 

 The American Veterinary Medical Association (AVMA, 2002) and National 

Aquaculture Association (2003) have made strides to curb unnecessary antimicrobial use 

in aquaculture by publishing guidelines for judicious and prudent antimicrobial use for 

food-fish veterinarians.  More efforts like these which raise awareness about 

antimicrobial use in aquaculture and place more responsibility on the food-fish 

veterinarian are crucial.  Recently, the FDA amended the new animal drug regulations to 

implement the veterinary feed directive (VFD) drugs section of the Animal Drug 

Availability Act of 1996 (ADAA).  A VFD drug is intended for use in animal feeds, and 

such use of the VFD drug is permitted only under the professional supervision of a 

licensed veterinarian. 

 In the healthcare environment, recommendations for preventing and reducing 

antimicrobial resistance in hospitals stress the importance of improving antimicrobial use, 

referred to as antimicrobial stewardship.  Antimicrobial stewardship programs have 

served as wake-up calls to both clinicians and health care administrators.  Studies and 

surveys suggest as much as half of all antimicrobial use is inappropriate.  If veterinarians 

(including aquatic animal veterinarians) implement such a program would they come to 

the same conclusion?  The probability is good, and this might begin a movement toward 

reducing needless antimicrobial use in veterinary medicine. 
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