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Abstract

In this paper, an open-loop multilevel ON/OFF model is proposed to capture the multifractal behavior of
the HTTP traffic on the Internet. It is assumed that the life time of a TCP session and the active time of a
burst within a TCP session have a heavy-tail type distribution. The aggregate traffic of this model is shown
to be multifractal. We analyze its second and higher order statistics by the wavelet analysis and develop a
simple method to estimate the model parameters from a real Internet trace. We show that real and synthesized
traffic produce the same Logscale Diagram with accuracy, for proper selection of the model parameter. Finally,
we compare using the NS-2 simulator the queueing behavior of FIFO queues fed by real and synthetic traffic
demands.

I. INTRODUCTION

Recent studies [3] [4] on Internet traffic have shown that the aggregate traffic driven by TCP based protocols such
as HTTP is not only monofractal (self-similar) but also multifractal. The wavelet analysis demonstrates that the traffic
is monofractal on large time scales (> 1sec), which is mainly due to the heavy-tailed distribution of file sizes on the
Internet. However, the traffic behavior on small time scales is much more complicated and has been shown to be
multifractal. This multifractal behavior is mainly due to the protocol dynamics such as TCP flow control, network
congestion, packet loss and packet retransmission. Taqqu and Willinger [2] explained the monofractal behavior on
large time scales by aggregating a large number of independent ON/OFF type traffic with ON and/or OFF duration
which have heavy-tailed distribution. The ON duration is corresponding to the total transmission time of a file. They
proved that the aggregate traffic converges to the well-known fractional Brownian motion asymptotically in the limit
of many flows. They also found a simple relationship between the shape parameter of heavy-tailed distribution and
theHurst parameter of self-similarity. However, their single level ON/OFF model can not explain the multifractal
behavior on small time scales with its constant rate assumption in the ON duration. We seek a more precise model
which can capture the traffic behavior in all regions and at the same time provide a physical interpretation of the
model via natural network mechanisms. We are also interested in the impact of protocol dynamics on the network
performance and control. Some important parameters such as round-trip time and active time of burst will be studied
and discussed. Furthermore, based on these parameters estimated from a real trace, we propose an open-loop traffic
model with a multilevel ON/OFF structure for HTTP traffic on the Internet. The proposed model can capture the
traffic behavior within a wide range of time scales and offers useful physical information of the effects on protocol
parameters. By employing this model, we can facilitate the consideration of the optimal control problem in network
management and estimate its performance.
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II. MULTILEVEL ON/OFF MODEL FOR ONE TCP SESSION OF HTTP TRAFFIC

By using the discrete wavelet analysis[5], the Logscale Diagram of a typical HTTP traffic in Fig.1 shows that
the logarithm of the energy of the wavelet detail coefficientlog2E[d2j;k] is a linear function at large time scales.
However, the traffic behavior at small time scales (� 1sec.) is more complicated and regarded to be multifractal.
The single ON/OFF model is unable to explain this multifractal behavior on small time scales by its constant packet
rate assumption. For reliable communication, TCP has a well-known congestion control mechanism. After sending
out a batch of packets (burst), the sender will stop and wait until receiving acknowledgment from the receiver. In
order to avoid congestion, the burst size (the number of packets in one burst) is controlled by the current TCP sliding
window. The time interval for waiting the ACK is almost equal to the network round-trip time (RTT). This stop and
wait behavior of HTTP connection can also be modeled by a second level ON/OFF process. Since most objects on
the web pages are small graphic or texture files, the transfer of these files is usually finished in its slow start phase.
However, when the web objects are large enough, the TCP will finish the slow start phase and enter to its congestion
avoidance phase. In this case, the TCP session will have a very long active period and this behavior will be modeled
in this paper by a heavy-tailed distribution of active time. We propose a two level ON/OFF model for one TCP session
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Fig. 1. Logscale Diagram of Real Trace

as shown in Fig.2. The first level is an ON/OFF process which models the life time of one TCP session (T11) and the
OFF time (T10) between two TCP sessions . In order to capture the behavior of the TCP mechanism inside the duration
of T11, there is another ON/OFF process, which mimics the active time (duration of a burstT21) and the inactive time
(T20) between two successive bursts . The packet rateB in the active time is assumed to be a constant. TheT11 and
T21 have the Pareto Type I distribution with Parameters(K11; �11) and(K21; �21) respectively. i.e

Pr[T > t] =

(
(K=t)� , if t � K
1 , if 0 < t < K

The OFF timeT10 andT20 are chosen to be Exponential random variables with mean1=�10 and1=�20 respectively.
All these random variables are statistically independent of each other.

T10 := r:v: Exp(1=�10)
T11 := r:v: Pareto(K11; �11)
T20 := r:v: Exp(1=�20)
T21 := r:v: Pareto(K21; �21)
B := Data rate within the active period
N := Number of connections
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Similar to the original single level ON/OFF model [2], when a file is ready to be transferred, the user connection

T11

T21

T20 T10

Fig. 2. Traffic model for one TCP session

begins a TCP session with durationT11 and then returns to the OFF state when transmission is completed. Some
empirical studies have shown that the mean OFF time is 30 to 60 times greater than the mean ON time on the Internet.
Note that the network round-trip time is assumed to be the sum ofT21 andT20. For the HTTP traffic on the Internet,
T21 is usually far less thanT20.

III. PARAMETER ESTIMATION AND MODEL FITTING

In order to match the second order statistical properties of the real HTTP traffic, we have to properly estimate the
model parameters from the real trace. Veitch and Abry [5] provided an asymptotically unbiased and efficient estimator
for the slopem of the Logscale diagram within a certain region (j1; j2). The shape parameters�11 and�21 can be
estimated by the relation in [2]:

� := 2�m:

However, this slope estimator is semiparametric and depends on the selection of (j1; j2). We need to determine this
linear region before estimating the slope. Since the traffic is monofractal on large time scales and the Logscale Dia-
gram is also linear in this region, the selectioin ofj1 andj2 within this region will not affect the result of�11. For the
selection of the linear region at small time scales, we use an Exponential ON/OFF process to verify our selection, with
the details of this technique provided in [7]. Fig.1 and Fig.3 show the slope estimated from the Logscale Diagram via
these algorithms.

The parameterK11 is chosen to match the mean TCP session ON time of the real HTTP trace. The mean of TCP
session ON time (Tm) is easily obtained by estimating the time interval between the SYN packet and FIN packet
within the same session. From the definition of Pareto distribution, we have

K11 := Tm
a11 � 1

a11
:

Unlike the estimation of mean session ON time, there is no packet in the real trace to indicate the beginning or the
end of each burst. The parameterK21 of T21 is estimated by the normalized autocorrelation functiona(t) of the real
traffic for values oft very close to zero. LetXi be the number of bytes of the real trace transmitted in the interval
[(i � 1=2)�; (i + 1=2)�), where� is the minimum time resolution, chosen to be1msec in this paper. LetW (t) be
the stationary ON/OFF process of the second level with the magnitudeB. The autocorrelation function is

A(t) := E[W (0)W (t)]

= B2Pr[W (t) = 1jW (0) = 1]Pr[W (0) = 1]:

Letting�11(t) := Pr[W (t) = 1jW (0) = 1], we have

A(t) = B2 ET21
ET21 +ET20

�11(t):

The normalized autocorrelation function is

a(t) :=
A(t)

A(0)
= �11(t):
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According to renewal theory in [2] [8], the renewal equation of�11(t) is

�11(t) = G1c(t) +

Z t

0
F1c(t� u)dH12(u)

whereG1c(t)= Pr[residual life of the first ON interval> t j at time 0 is ON]. Since we are interested in the behavior
of a(t) around t close to zero, we have the approximation

a(t) = �11(t) � G1c(t):

Since the active timeT21 has aPareto distribution, the complement CDF of the residual life of the first ON period is

G1c(t) =
1

ET21

Z
1

t
(
K21

u
)�21du

=
K�21�1

�21
t��21+1:

By estimating the normalized autocorrelation function at the first lag from the trace, the estimator ofK21 is

â(�) :=
MX
i=1

XiXi+1=
MX
i=1

X2
i

K21 := �(�21â(�))1=(�21�1):

To estimate the parameter1=�20, or equivalently the mean inactive period, we need to measure the network round-trip
time from the trace. It can be extracted from the real trace by the duration between the SYN packet and the SYN-ACK
packet at the beginning of each TCP session. In our model, the mean round-trip timeRm is equal to the sum of the
mean active time and the mean inactive time, i.e.:

1=�20 = Rm �
�21K21

�21 � 1
:

The parameterB is the constant data rate in the active periodT21. The mean rateMt and the varianceVt of a connection
are:

Mt = BR1R2

Vt = B2R1R2(1�R1R2)

whereR1 := ET11
ET11+ET10

andR2 := ET21
ET21+ET20

. AssumingR1R2 << 1, we haveVt � B2R1R2. With the
independence assumption of the connections,B is obtained by the Fano factor [1] of the real trace.

B �
Vt
Mt

=
NVt
NMt

=
V ar(Xi)

Mean(Xi)

The number of connectionsN and the ratioR1 are chosen by matching the mean rate (time average) of the real trace,
over all intervals using

Mean(Xi) = NR1R2B:

We have one degree of freedom to chooseN andR1. In order to satisfy the assumption ofR1R2 << 1, we can
pick a large integer for N and then the mean off time1=�10 is determined byR1 at the same time. SinceT10 is an
Exponential random variable andET10 >> ET11, the starting time of each TCP session can be approximated by a
Poisson process.

IV. COMPARISON USING WAVELET ANALYSIS

We compare our synthesized traffic with the real HTTP traffic, which was collected from a gateway of the Di-
recPC1system on Oct 13 1999 17:00-18:00. We extracted all the HTTP traffic by the sender’s port number. The

1DirecPC is a product of Hughes Network System
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mean round-trip time and the mean TCP session time are0:130sec and4:896sec respectively. It has the mean rate
513:98Bytes=msec and the variance9:8990e05Bytes2=msec. The normalized autocorrelation functiona(1msec) is
0:3519. The shape parameters�11 and�21 are estimated by the slopes of the Logscale Diagram at the small scale and
large scale regions shown in Figure 1 and 3. The following table provides the corresponding parameters of this model.

Para. K11 �11 1=�10 B

Value 1.27sec 1.35 167.55sec 1926B/ms
Para. K21 �21 1=�20 N

Value 0.54ms 1.77 128.75ms 1000
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Fig. 3. Logscale Diagram of Real Trace and estimated slope in region (4,10)

A. Second Order Statistics

We apply the discrete wavelet transform to analyze the real and synthesized traffic. The mathematical properties
of wavelet transform and its advantages are beyond the scope of this paper [6] [3][4]. The second order analysis
of the traffic is obtained by studying the detail process of wavelet transformsdj;k. As mentioned before, theXi,
i = 1; 2; :: is the time series of total transmitted bytes during the interval [(i � 1=2)�; (i + 1=2)�]. In order to
avoid the estimation error from the deterministic trend, the mother wavelet of the discrete wavelet decomposition is
chosen to be theDaubechies wavelet with 5 vanishing moments. The Logscale Diagram in Fig.4 is the energy of the
detail processlog2E[d2j;k] v:s: the octavej of the real traffic and synthesized traffic. It shows that the second order
statistics of these two traffic traces have almost the same values on every scale. This matching implies their similar
autocorrelation structure in time. There is a breaking point around the scalej = 11 (211� � 2sec) related to the
minimum value ofT21 (=K21 in the model). When the observing time scale is less thanK21, the behavior of traffic
is dominated by the second level ON/OFF process or equivalently by the TCP congestion control mechanism. This
figure shows that TCP dynamics of HTTP traffic can be modeled well in second order behavior by a simple open-loop
ON/OFF process. On the right-hand side of the breaking point, the behaviors of the real and synthesized traces are
both monofractal with the same Hurst parameter (H � 0:823). Note that the slopem and theHurst parameter [1]
have the relationm = 2H � 1.
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Fig. 4. Logscale Diagram of Real Trace and Synthesized Traffic

B. Higher Order Statistics

The higher order statistics are obtained by the structure functionS(q; j) and the partition functionT (q) defined in
[6],

S(q; j) :=
2(L�j)X
k=1

k2�(L�j)=2dj;kk
q

whereL := log2(Data Length).T (q) is approximated by the slope oflog2S(q; j) whenj is small. The multifractal
spectrumf(�) is the Legendre Transform ofT (q):

f(�) := inf
q
(q�� T (q)):

The multifractal spectrumf(�) provides a measure of the “frequency” of the singularity exponent�(t) at timet. It
indicates the probability of a certain value of the singularity exponent:

Pr[�(t) = �] � 2�L(1�f(�))

For a monofractal process, like the fractional Gaussian noise (FGN, the increment of fractional Brownian motion), its
singularity exponent�(t) is a constantH for every t; this might be considered as a degenerate case of multifractality.
The corresponding partition functionT (q) = qH � 1 is a linear function ofq. Since the�(t) is equal toH for
everyt in FGN, its multifractal spectrum should be a single point at (H,1). We will use the FGN as the pilot process
and compare the multifractal spectrum with the real and synthesized traffic. For a multifractal process, the partition
function is a concave function ofq and the singularity exponent�(t) has a wide range of values. In other words, there
is an non-negligible probability that�(t) is equal to some specific value. Figure 5 shows the partition functions of
the real trace, synthesized trace and the FGN. The concave curves of partition functions show that the real traffic and
synthesized traffic are multifractal processes and the partition function of FGN is very close to a linear function due to
its monofractal behavior. It is more clear to see the difference in their multifractal spectra in Fig.6. The spectrum of
FGN shows that the probabilityPr[�(t) = H] � 1. For real and synthesized traffic, their spectra show a rich variety
of singularity exponents with a non-negligible probability. Moreover, the spectrum of our model shows not only the
multifractal property but also the same shape with the spectrum of the real traffic.

V. QUEUING BEHAVIOR

After comparing the statistical properties of the real and synthesized traffic, we are also interested in their queuing
behaviors. We consider a simple first come first serve queuing system (FIFO) with fixed service rate and infinite buffer
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Fig. 5. Partition Function T(q) of Real Trace, Synthesized Traffic and FGN
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Fig. 6. Multifractal Spectra of Real Trace, Synthesized Traffic and FGN

size. The queue length distribution with different utilization is obtained by properly adjusting the service rate. Figure
7 shows the steady state queue length tail distributionPr[Q > b] with various levels of utilization� = 0:6; 0:7; 0:8
and0:9. When the traffic load is heavy, the real and synthesized traffic have almost the same distribution. Under light
traffic load, the synthesized traffic also provides a good prediction for the queue length distribution when the queue
length is less than 50K bytes. In the region of large queue lengths, the tail queue length distribution is overestimated.
However, this event happens with a small probability due to the light traffic load.

VI. CONCLUSIONS

The wavelet analysis can provide a multi-resolution ”lens” for traffic analysis. When we observe the traffic at
large time scales, we are blind to the behavior of protocol, congestion, and network dynamics. The traditional single
ON/OFF model is good enough to explain its monofractal phenomenon at large time scales. However, when we go
deep into the smaller time scales, which are smaller than the average round-trip time, the constant rate assumption
in the single ON/OFF model does not hold anymore. The traffic behavior in this region is strongly dependent on
the round-trip time and the active time of bursts. In order to investigate the multifractal behavior at these small time
scales, we suggested an open-loop traffic model with a multilevel ON/OFF structure. Based on the model parameters
we estimated from a real trace, a synthesized trace was generated with fixed packet size. By using the wavelet analysis,
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we demonstrated their similar behaviors in second order and higher order statistics, then compared their queue length
distributions in queues with infinite buffer size. Our results suggest that the HTTP traffic might be simulated well
by an open-loop traffic generator with a multilevel ON/OFF structure. Since we employ network parameters such as
active time of bursts, round-trip times as the model parameters, it would be very helpful to understand the impact of the
various network parameters on the statistical behavior of HTTP traffic and on the corresponding network performance.

APPENDIX

Here we verify our selection of linear region at small scales by a single level Exponential ON/OFF processW (t).
Let the Exponential random variablesT21 and T20 be the duration of ON and OFF with mean1=�21 and 1=�20
respectively. According to [8], the autocorrelation and the power spectrum density are

r(t) =
B2

�(1=�21 + 1=�20)
e��t (1)

S(!) =

Z
1

�1

r(t)e�j!tdt =
2B2

(1=�21 + 1=�20)(!2 + �2)
: (2)

where� = �21+�20. Since the mother wavelet is a bandpass function, with [1] we have the approximation ofE[d2j;k]
by assuming that	(!) is an ideal bandpass function:

E[d2j;k] � 2

Z �=2j�1

�=2j
S(!)2jk	0(2

j!)k2d! (3)

�
2j+2B2

�(1=�21 + 1=�20)
(arctan

�=�

2j�1
� arctan

�=�

2j
) (4)

Since we have N connections and the ON/OFF ratio of the first levelR1, the Logscale diagram of this short range
dependent process is

log2E[d2j;k] � log2NR1 + log2f
2j+2B2

�(1=�21 + 1=�20)
(arctan

�=�

2j�1
� arctan

�=�

2j
)g (5)

The Logscale diagram of this short range dependent ON/OFF process is also shown in Fig.(3) with the same mean
ON time and OFF time estimated in section 4. It is clear that the short range dependence dominates the nonlinear
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region on the time scales which are less than 16 msec (octavej = 4). The zero slope of the Logscale diagram indicates
the absence of correlation on large time scales. In order to estimate the parameter�21 in the model without the bias
from the effect of the short range dependence, Fig.3 shows that we can choose the region between the end of short
range dependence and the beginning of another linear region of the upper level.
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