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The performance of caching systems in general, and Internet caches in particular,

is evaluated by means of the user-perceived service speed, reliability of downloaded

content, and system scalability. In this dissertation, we focus on optimizing the speed

of service, as well as on evaluating the reliability and quality of data sent to users.

In order to optimize the service speed, we seek optimal replacement policies in

the first part of the dissertation, as it is well known that download delays are a direct

product of document availability at the cache; in demand-driven caches, the cache

content is completely determined by the cache replacement policy. In the literature,

many ad-hoc policies that utilize document sizes, retrieval latency, probability of

references, and temporal locality of requests, have been proposed. However, the

problem of finding optimal policies under these factors has not been pursued in any



systematic manner. Here, we take a step in that direction: Still under the Independent

Reference Model, we show that a simple Markov stationary policy minimizes the

long-run average metric induced by non-uniform documents under optional cache

replacement. We then use this result to propose a framework for operating caches

under multiple performance metrics, by solving a constrained caching problem with

a single constraint.

The second part of the dissertation is devoted to studying data reliability and

cache consistency issues: A cache object is termed consistent if it is identical to

the master document at the origin server, at the time it is served to users. Cached

objects become stale after the master is modified, and stale copies remain served to

users until the cache is refreshed, subject to network transmit delays. However, the

performance of Internet consistency algorithms is evaluated through the cache hit

rate and network traffic load that do not inform on data staleness. To remedy this,

we formalize a framework and the novel hit* rate measure, which captures consistent

downloads from the cache. To demonstrate this new methodology, we calculate the

hit and hit* rates produced by two TTL algorithms, under zero and non-zero delays,

and evaluate the hit and hit* rates in applications.
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Chapter 1

Introduction

1.1 Web caching

The use of caches to increase performance in distributed information systems dates

to the earliest days of the computer industry. Caches were first introduced in virtual

shared memories to lessen the disparity in performance between ever-faster central

processing units and relatively slower main memories, e.g., see [70] and references

therein for a detailed historical overview.

With time, principles and guidelines utilized in the design of early caches were

extended to accomodate the operational requirements of modern data storage and

content distribution systems, e.g., distributed file sharing systems [14, 58], databases

[26, 30], and the World Wide Web [11, 17, 76]. Common to these systems is the host-

ing of data on potentially large number of servers in an ubiquitous manner, so that

each data item is accessible by the users at all times. However, in spite of these simi-

larities, the nomenclature used to characterize rules of engagement and various cache

design challenges is unique to each system; the work presented in this dissertation is
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therefore focused on the World Wide Web.

On the Internet, proxy caches contain replicas of “popular” documents and are

strategically placed between servers and users for the purpose of reducing network

traffic, server load, and user-perceived retrieval latency. To date, Web caching is

the most productive approach to handling the ever-increasing number of Web users

and volume of server objects, while maintaining good service speed, scalability, and

reliability of data, which are demanded by Internet users and server administrators.

1.2 Quality of service (QoS)

The performance of Web caching systems is typically evaluated from two different

viewpoints: System and network operators responsible for guaranteeing the uptime

of Web servers and network communication links, are primarily concerned with load

and scalability issues. Consequently, metrics such as traffic volume and number of

accesses to the server are often used to measure the cache performance. On the other

hand, these operational aspects are of little importance to the users.

From a user perspective, key to the effetiveness of Web caches is the ability to

serve requests with recent (i.e., fresh) documents in a timely manner, as we con-

sider the possibility that the content of Web pages might change over time. These

two factors, namely speed of service and quality of data1 (QoD), significantly affect

the user-experience, and therefore have a profound bearing on the quality of service

(QoS) of the cache.

1We assimilate object freshness with the quality and reliability of data.
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1.3 Speed of service

A user request for a Web document is first presented at the cache. If the cache con-

tains a copy of the requested item (i.e., cache-hit), then a copy is sent to the user by

the cache without contacting the server. When the requested object is not found in

the cache (i.e., cache-miss), the request is forwarded to the server, which then trans-

mits the document back to the cache, and from there to the user. Caches that follow

these operational rules are termed demand-driven caches, in contrast to prefetching

caches, whereby download requests are proactively submitted to the server by the

cache [75, 76].

Each time a cacheable document is received by the cache, a decision must be

made to either store or discard the new download. If cache-placement is determined,

the cache then invokes a replacement policy that identifies the set of documents (if

any) to be evicted from the cache, in order to make room for the retrieved object. The

(re)placement policy therefore provides the sole means of shaping the content of the

cache, which is central to ensuring good service speed. This was previously reported

in [2, 17, 36, 65, 66] and is now explained below.

In demand-driven caches, service speed (equivalently, download delay) is primar-

ily affected by the location of the cache in the network [46, 49], the cache storage

capacity, and the bandwidth between the users and the cache and between the server

and the cache. However, under fixed network infrastructure and storage space, the

speed of service is a direct product of document availability at the cache, as well as of

indexing and allocation algorithms that impact the cache processing delays [19, 78].

Thus, key to improving the service speed is the implementation of replacement algo-

rithms that can yield low download latencies. Motivated by this fact, we set our focus
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in Part I of this dissertation on finding efficient (provably optimal) cache replacement

policies under the assumptions that user requests are independent and identically dis-

tributed (i.i.d.), and that document retrieval costs (e.g., delays) are not uniform.

1.4 Reliability and quality of data

As in most content distribution systems, pages on the Web evolve over time to re-

flect the latest services, features, and data available at the server (e.g., pages on news

portals and commercial Web sites). One key problem that arises in the context of

updatable documents is the staleness of objects stored at the cache: Once the master

document at the origin server is altered, the previously cached version of the docu-

ment becomes obsolete, and remains so until the changes are propagated to the cache.

User requests that arrive to the cache before it is informed of the master update are

served with stale copies, in the process degrading the quality of the downloaded data.

In order to remedy this state of affairs, consistency algorithms are implemented

either at the cache or at the server for the sole purpose of increasing the likelihood

that documents served to users by the cache are identical to those offered at the server.

Consistency protocols exchange control messages between the server and the cache,

and compare each copy with its corresponding master; cached objects are marked as

invalid in the event of a mismatch.

Through the invalidation of stale copies, consistency algorithms allow the cache

to achieve higher quality of data and improve the reliability of content sent to users:

If a cached copy is valid, each request presented at the cache incurs a cache-hit and

receives the stored replica. Otherwise, requests are forwarded to the server to retrieve

the latest document version, and the new document is loaded into the cache.
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Concerns regarding the download of stale (i.e., inconsistent) Web objects were

outlined in numerous studies, e.g., see [18, 31, 34, 40, 67, 73] and references therein.

However, the performance of Internet consistency algorithms is typically evaluated

through the corresponding cache hit rate and network traffic load; we refer the reader

to [18, 21, 22, 23, 24, 31, 42, 54, 79] for a sample literature. These metrics do not

inform on the service of stale data and are therefore inadequate for evaluating the

cache consistency performance under a given protocol, as previously concluded in

[42].

To date, neither an analytical framework nor a suitable metric are available to

model the service of stale Web documents to users. These issues are addressed in

Part II of the dissertation, where we propose a framework and measures for evaluating

cache consistency. In this analytical model, document requests and master updates

are modeled by mutually independent point processes on � �	����� . The novel hit* rate

then counts the number of consistent (i.e., fresh) downloads out of all user requests,

and can be used to quantitavely capture the QoD.
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Part I

Finding Optimal Replacement

Policies to Improve the Speed of

Service

7





Chapter 2

Cache Replacement Policies

2.1 Conventional replacement algorithms

A review of the literature quickly reveals that a large number of methods for file

caching and virtual memory replacement have been developed [2, 20]. Unfortu-

nately, they do not transfer well to Web caching. In the context of these conventional

caching techniques, the underlying working assumption is the so-called Independent

Reference Model (IRM), whereby document requests are assumed to form an i.i.d.

sequence. It has been known for some time [2, 20] that under the IRM the miss rate

(respectively, the hit rate) is minimized (respectively, maximized) by the policy � �

according to which a document is evicted from the cache if it has the smallest prob-

ability of occurence (respectively, is the least popular) among the documents in the

cache.

In practice, the probability of document request is not available and thus needs

to be estimated on-line as requests are coming in. This naturally gives rise to the

Least-Frequently-Used (LFU) policy, which calculates the access frequency based on
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trace measurements of user requests, and dictates the eviction of the least frequently

referenced item. The focus on miss and hit rates as performance criteria reflects the

fact that historically, pages in memory systems were of equal size, and transfer times

of pages from the primary storage to the cache were nearly constant over time and

independent of the document transferred.

Interestingly enough, even in this restricted context, the popularity information as

derived from the relative access frequencies of objects requested through the cache,

is seldom maintained and is rarely used directly in the design of cache replacement

policies. This is so because of the difficulty to capture this information in an on-

line fashion in contrast to other attributes of the request stream, said attributes being

thought indicative of the future popularity of the object. Typical examples include

temporal locality via the recency of access and object size, which lead very naturally

to the Least-Recently-Used (LRU) and Largest-File-First (LFF) replacement policies,

respectively.

2.2 Conventional versus Web caching

At this point it is worth stressing the three primary differences between Web caching

and conventional caching:

1. Web objects or documents are of variable size whereas conventional caching

handles fixed-size documents or pages. Neither the policy � � nor the LRU pol-

icy (nor many other policies proposed in the literature on conventional caching)

account for the variable size of documents;

2. The miss penalty or retrieval cost of missed documents from the server to the
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proxy can vary significantly over time and per document. In fact, the cost value

may not be known in advance and must sometimes be estimated on-line before

a decision is taken. For instance, the download time of a Web page depends on

the size of the document to be retrieved, on the available bandwidth from the

server to the cache, and on the route used. These factors may vary over time

due to changing network conditions (e.g., link failure or network overload);

3. Access streams seen by the proxy cache are the union of Web access streams

from tens to thousands of users, instead of coming from a few programmed

sources as is the case in virtual memory paging, so the IRM is not likely to

provide a good fit to Web traces. In fact, Web traffic patterns were found to

exhibit temporal locality (i.e., temporal correlations) in that recently accessed

objects are more likely to be accessed in the near future [74]. To complicate

matters, the popularity of Web objects was found to be highly variable (i.e.,

bursty) over short time scales but much smoother over long time scales [3, 29,

36].

These differences, namely variable size, variable cost and the more complex

statistics of request patterns, preclude an easy transfer of caching techniques devel-

oped earlier for computer memory systems.

2.3 Replacement policies on the Web

A large number of studies have focused on the design of efficient replacement poli-

cies; see [36, 37, 38, 39] and references therein for a sample literature. Proposed

policies typically exploit either access recency (e.g., the LRU policy) or access fre-
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quency (e.g., the LFU policy) or a combination thereof (e.g., the hybrid LRFU pol-

icy). The numerous policies which have been proposed are often ad-hoc attempts to

take advantage of the statistical information contained in the stream of requests, and

to address the factors above. Their performance is typically evaluated via trace-driven

simulations, and compared to that of other well-established policies.

As should be clear from the discussion above, the classical set-up used in [2, 20]

is too restrictive to capture the salient features present in Web caching: The IRM

captures document popularity (i.e., long-term frequencies of requested objects), yet

fails to capture temporal locality (i.e., correlations among document requests). It

also does not account for documents with variable sizes. Moreover, this literature

implicitly assumes that document replacement is mandatory upon a cache-miss, i.e.,

a requested document not found in cache must be put in the cache.

With these difficulties in mind it seems natural to seek provably optimal caching

policies under the following conditions: (i) The documents have non-uniform costs

(as we assimilate cost to size and variable retrieval latency), (ii) There exist corre-

lations in the request streams, and (iii) Document placement and replacement are

optional upon a cache-miss.

In this dissertation we take an initial step in the directions (i) and (iii): While still

retaining the IRM, we consider the problem of finding an optimal replacement policy

with non-uniform costs under the option that a requested document not in cache is not

necessarily put in cache after being retrieved from the server. Interestingly enough,

this simple change in operational constraints allows us to determine completely the

structure of the optimal replacement policy for the minimum average cost criterion

(over both finite and infinite horizons).

12



2.4 Finding good replacement policies

One approach for designing good replacement policies is to couch the problem as

one of sequential decision making in the presence of uncertainty. The analysis that

produced the policy � � mentioned earlier (and its optimality under the IRM) is one

based on Dynamic Programming as developed in the framework of Markov Decision

Processes (MDPs) [32, 68]. Here, we modify the MDP framework used in [2, 6, 20]

in order to incorporate the possibility of optional eviction.

The system model is presented first in Chapter 3, where we assume [Section 3.1]

that a total of � documents are available over all servers, and that at any given time

the cache can hold upto � documents, with ����� . Under this model, we proceed

to identify the space of allowable system states and the corresponding action space

[Section 3.2], and define the probability measure associated with the MDP [Section

3.3].

A generic cost function ����� � �2� denotes the penalty incurred by the system upon

a miss request for document � ��� � 
���
�
�
��	� . With this one-step cost penalty, we

introduce the finite and infinite horizon cost functionals [Section 3.4], and show that

these costs can be specialized to express commonly used cache performance metrics,

such as the hit rate, byte hit rate, and average download latency.

In order to improve the speed of service (as well as other performance measures

mentioned above), in Chapter 4 we seek an optimal replacement policy that mini-

mizes the expected average cost over the entire horizon. To find it, we make use of

standard ideas from the theory of MDPs, and formulate the Dynamic Program that

corresponds to the problem at hand. Indeed, we propose the (simple) Markov station-

ary policy ���� , and show that this policy is optimal under both the finite and inifinite

13



horizon cost criteria.

The main contribution of the first part of the dissertation is presented in Chapter

5: As in most complex engineering systems, multiple performance metrics need to

be considered when operating caches, sometimes leading to conflicting objectives.

For instance, managing the cache to achieve as small a miss rate as possible does

not necessarily ensure that the average latency of retrieved documents is as small

as could be, since the latter performance metric depends on the size of retrieved

documents while the former does not. In order to capture this multi-criterion aspect

we introduce constraints, and formulate the problem of finding a replacement policy

that minimizes an average cost under a single constraint in terms of another long-run

average metric. Utilizing a methodology developed in the context of MDPs with a

constraint [13], we obtain the structure of the constrained optimal replacement policy

by randomizing two simple policies of the type � �� .
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Chapter 3

The Cache Model

3.1 The system model

A user request is first presented at the cache. If the cache contains a copy of the

requested document (i.e., a cache-hit), then it is sent to the user by the cache. Oth-

erwise, the request is forwarded to the server, which in turn sends the document to

the cache, and from there to the user. Given our primary focus on designing efficient

replacement policies employed by individual caches, collaboration between differ-

ent caches is ruled out, and the discussion is therefore restricted to a single cache in

isolation.

3.1.1 User requests

A total of � distinct cacheable objects are available over all servers, labeled � �

���
�
�
 �	� , and let � ��� 
���
�
�
 �	��� denote the universe of all system documents. For

each � � �	��
���
�
�
�� the � -valued rv ��� represents the � �
	 request presented at the

cache. The stream of successive requests arriving at the cache is then captured by the

15



sequence of rvs ����� ��� � � �,�	��
���
�
�
 � .
The popularity of requests in the sequence � � � � � ���	��
���
�
�
 � is defined as the

pmf ��� ��� � 
/� ��
�
�
���� � � � � , where for each � � 
���
�
�
 �	� , we denote by � ��� � the

long-term probability that document � is referenced, namely

� ��� � ������	
���
 

#��(



�
��� ��� � � � ������� 
���
1� (3.1)

whenever the limit exists. This limit indeed exists for all cases considered in our

analysis, as outlined below. Under the additional (and natural) restriction

� ��� � ���	� � ��
���
�
�
 �	� � (3.2)

every document is referenced infinitely often. A pmf � on � 
���
�
�
��	��� which satisfies

(3.2) is said to be an admissible pmf.

3.1.2 The reference model

The statistics of user requests � ��� � � � �	��
���
�
�
 � is expressed through the refer-

ence model associated with the sequence � . One model that is commonly used in

the design and evaluation of replacement policies is the IRM under which the rvs

� � � � � �)�	��
���
�
�
 � are i.i.d rvs distributed according to some pmf � on � . Under the

IRM, the pmf (3.1) clearly exists by the Strong Law of Large Numbers, and coincides

with the given pmf � .

The main disadvantage of the IRM lies in its inability to capture the temporal

correlations observed in practical Web request streams [15, 36, 38, 39, 51]. In spite

of this fact, most of the analysis presented in this work is carried out under the IRM

assumption, since its simplicity permits the finding of efficient (provably optimal)
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eviction policies1, e.g., see the analysis of the optimal policy � � by Denning and

Aho [2].

A second reference model often encountered in caching applications is the Markov

Reference Model (MRM) according to which requests are modeled by a stationary

and ergodic Markov chain [6, 41]. Under the MRM, correlations are tracked through

the single-step transition probabilities

������� ��� � � �
	�� � ��
 � � ��� � � � ���"�3
���
�
�
��	� � � �,�	��
���
�
�
 (3.3)

and the initial pmf � �%��� � 
/� ��
�
�
���� � � � � is the unique pmf which satisfies

� ��� � �
��
� ��� � �
���

����� � � ��
���
�
�
 �	� 
 (3.4)

The transition probabilities (3.3) are determined by the request stream � through

����� ������	
���

� 

��� � � � � �
	�� ��� � � � ��� �� 


��� � � � � � ��� � � 
���
 � ���4��
���
�
�
 �	� 
 (3.5)

Once available, the stationary pmf � can then be obtained as the unique solution to the

linear system (3.4). The MRM specializes to the IRM whenever
����� � � ��� � � � ��� �


���
�
�
 �	� .

Additional request models can be developed by specializing the transition proba-

bilities of the MRM, one such model being the Partial Markov Model (PMM). Details

concerning the PMM can be found in [6, 74] (and references therein).

3.1.3 Dynamics of the cache content

Throughout, let � � denote the set of documents stored at the cache, just before the

request � � is presented. The set � � is a subset of � , and we assume that the cache

1Additional reference models and the impact of temporal correlations on the performance of prac-

tical caching algorithms can be found in the dissertation by Vanichpun [74].
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can contain at most � objects with � ��� .

The content of the cache evolves after the request � � is handled according to the

following operational rules: If � � contains fewer than � objects (i.e., the cache is not

full) and a copy of ��� is not available in the cache, then � � is sent from the server and

is placed in the cache. On the other hand, when the cache is full and � � is retrieved

from the server, then the cache must decide whether � � should be placed in the cache,

and if so, which single document � � to purge from the cache in order to make room

for the new document. In all other cases, i.e., when � � is already contained in � � , the

set of documents in the cache remains unchanged in response to the user request. To

summarize, we have

� �
	�� ��� � � � � � � ��� � � �
������ �����
� � if � �	� � �
� � � � � if � ��
� � � � 
 � � 

���
� � � � ����� � if � ��
� � � � 
 � � 
�� �

� (3.6)

where 
 � � 
 denotes the cardinality of the set � � , and � � � � ����� � is a subset of �
obtained from � � by adding ��� and removing � � , in that order. Caches that operate

under such rules are often referred to as demand-driven caches.

The eviction action � � at time � � �	��
���
�
�
 is dictated by a cache replacement

policy. Mandatory eviction policies require that � � be placed in the cache upon every

cache-miss, so that � � in (3.6) is a single document contained in � � . Alternatively,

optional eviction policies permit � � to be either an object in � � or the request ��� .
When � � is selected to be the new download � � , then � � is not placed in the cache,

and no document is evicted.

Under the operational assumptions (3.6) and the admissibility condition (3.2), the

cache becomes full once � distinct documents have been referenced, and remains

so from that time onward. As we have in mind to develop good eviction policies, and
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since no objects are evicted until the cache fills up, there is no loss of generality in

assuming that the cache is initially full, as we do from now on. In other words, we

assume 
 � � 
�� � for all � �,�	��
���
�
�
 , in which case (3.6) simplifies to

� �
	�� �
��� �� � � if � � � � �
� � � � ��� � � if � � 
� � � 
 (3.7)

3.2 Cache states and replacement policies

We define the variable
� � as the state of the cache at time � �,�	��
���
�
�
 . The evolution

of the cache is tracked by the collection � � � � � � �	��
���
�
�
 � and is affected by the

stream of incoming requests � , and by the policy � that produces the eviction actions

� � � � � �)�	��
���
�
�
 � .
For a number of reasons that will be discussed shortly, we find it useful to select

� � as the pair
� � � � � � � � � � for all �"� �	��
���
�
�
 : The set of cached documents � �

can be easily recovered from the state variable
� � , and the next cache state

� �
	��
is fully determined by

� � once � � and � �
	�� are provided, under the transition rule

(3.7). Furthermore, the eviction decision � � adopted by the replacement policy �

in response to ��� is entirely based on the observed system history up to time � . To

formalize this, let ��� ���	��
���
�
�
��	��� denote the action space, so that � � is in � for

all � ���	��
���
�
�
 . We denote by ��� the set of all possible collections of documents

stored at the cache, i.e., all subsets of � 
���
�
�
��	��� with size � . The cache state space
�

is defined as
� �����
	 � , so that

� � is in
�

for all � �)�	��
���
�
�
 .
The eviction decision � � taken by the policy � at time � �3�	��
���
�
�
�� is described
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by the mapping

� � � � � 	 � � � 	 � � � � (3.8)

with the convention that � � � � whenever ��� is in � � . When � � is not in � � , then

� � � � � � � � when optional replacement policies are considered, and � � � � � un-

der mandatory eviction. In either case, the collection � � � � � �,�	��
���
�
�
 � defines the

replacement policy � .

We shall find it useful to consider randomized replacement policies which are

now defined: A randomized replacement policy � is a collection � � � � � �%�	��
���
�
�
 �
of mappings

� � � � � 	 � � � 	 � 	 � � � �	��
 � (3.9)

such that for all � �)�	��
���
�
�
 , we have
��
 � �
� � � � � ��� � ��
�
�
 � � ��� ����� ��� � � � ����� � ��
 (3.10)

with

� � � � � ��� � ��
�
�
 � � ��� � ��� ��� ��� � ����� � �
		��� ��� � � � �	� � � (3.11)

and

� � � � � ��� � ��
�
�
�� � ��� ����� ��� ��� � ����� � �,�	� � � 
� � � ��� 
� � ��� � � (3.12)

for all � ���	��
���
�
�
��	� . The class of all (possibly randomized) replacement policies

is denoted by 
 .

If a non-randomized policy � has the property

� � ��� � � � � � � � � � � �)�	��
���
�
�
 (3.13)
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then we say that � is a Markov policy. If in addition � � does not depend on � for all

� �6�	��
���
�
�
 , then the policy is called a Markov stationary policy. Similar definitions

can be given for randomized Markov stationary policies [32].

3.3 The probability measure

In demand-driven caching, the replacement policy is the single means by which engi-

neers can shape the content of the cache. Efficient policies are those that manipulate

the stored content to minimize a cost associated with the operation of the system

(over the long run). Throughout the remainder of this chapter, we discuss several

costs that are widely used in practical caching systems (e.g., the hit rate, byte hit

rate, and others). Before defining them, we must first define the probability measure

associated with a replacement policy � .

For each policy � in 
 , we define the probability measure ��� on the product

space � � 	 ���	��
���
�
�
��	����� 
 (equipped with its natural Borel � -field) through the

following requirements: For a randomized policy � , we have

��� � � � � � 
 � � ��� � ��
�
�
 � � ��� ����� ��� � � � � � ��� � � � � ��� � ��
�
�
�� � ��� ����� ��� ��� � ����� �
for each ���$�	��
���
�
�
 and all � �$�	��
���
�
�
��	� . If � is a non-randomized policy, then

this last requirement takes the form

��� � � � � � 
 � � ��� � ��
�
�
 � � ��� ����� ��� � � � � � � 		��� � � � � � � ��� � ��
�
�
 � � ��� � ��� ��� ��� � � � � 

In either case, for every state � � ����� in

�
, it is also required that

��� � � �
	�� � � � � �
	�� ��� 
 � � ��� � ��
�
�
�� � ��� ����� ��� ��� � � ��� � �
��� � � �
	�� ��� 
 � � ��
�
�
 � � � � ��� � � �
	�� � � 
 � � ��� � �
��� � � �
	�� ��� 
 � � ��
�
�
 � � � � � � � � � � � � � ��� � � � � � 
 (3.14)
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Throughout, we denote by
�
� the expectation operator associated with the probabil-

ity measure � � .

3.4 Optimal replacement policies

A one-step generic cost function � � � 
���
�
�
 �	��� ��� 	 represents the penalty in-

curred by the system in the event that the requested document is not found in the

cache. This cost � can be specialized to reflect various costs proposed in the litera-

ture [4, 18, 36, 37, 71], as later illustrated through some examples.

Fix #5�5�	��
���
�
�
 . For a given initial system state � � ����� , the total expected cost

over the horizon � �	� #�� under the policy � in 
 is given by

��� � � � # �/� � ����� � � �
�

� 
�
��� � � � � ��
� � � � ��� � � � 
 � � � � � � � � ���!
 (3.15)

With any initial state pmf � � �%��� � � � ����� � � � ������� � � where � � � � ����� � � � � � �%� � ����� � ,
the cumulative expected cost over the horizon � �	� #�� becomes

����� � � # � � � � �'��� � � � # � � � � � � ��
	�� ��
���� � � � � ��������� � � � # �/� � ����� � (3.16)

upon averaging over all possible starting positions according to � � .
Of primary interest is the expected average cost (over the infinite horizon) under

the policy � defined by

����� � � � � ����	
���
������ 

#��(
 ����� � � # � (3.17)

� ����	
���
������ 

#��(


�
�

� 
�
��� � � � � ��
� � � � ��� � � ���!


The problem we wish to address can now be formulated as one of finding a cache

replacement policy � � in 
 that satisfies

����� � � � �6��� � � � � � � 
 
 (3.18)
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Any policy for which this condition holds is referred to as an optimal policy under the

expected average cost criterion. It is well known [32, 68] that under finite state and

action spaces (as is the case in the problem at hand), there exists a Markov station-

ary policy that satisfies (3.18). In order to find one such optimal Markov stationary

policy, we follow the procedure below.

First, we find it useful to extend the notion of optimality to the finite horizon.

More specifically, for each # � �	��
���
�
�
 , the collection � � � � � � �	��
���
�
�
�� # � de-

fines a replacement policy that dictates the eviction actions � � (previously defined in

Section 3.2) at time �!� �	��
���
�
�
�� # . The class of all such replacement policies is

denoted by 
 
 . A policy � � in 
 
 is said to be an optimal replacement policy over

the horizon � �	� #�� if

����� � � � # � �6����� � � # � � � � 
 
 
 (3.19)

Since the state and action spaces under our system model are finite, the Markov chain

�	� � � � � � � � � � �	��
���
�
�
 � has a single communicating class under the measure (3.16).

It is therefore well known that for every #,�,�	��
���
�
�
 there exists a Markov policy � �

that satisfies (3.19), independently of the initial state pmf � � on
�

[32] [page 128].

In view of these facts, we focus our attention on finding a Markov policy � � in


 
 for which

��� � � � � # �/� � ����� � �6����� � � # �/� � ����� � � � � 
 
 (3.20)

for every initial state � � ����� in
�

. If such a Markov policy is obtained for a given

value of # , then the policy � � also minimizes the cost function (3.16). In addition, if

the policy � � is a Markov stationary policy and does not depend on # , then we can

construct an optimal replacement policy that minimizes the expected average cost

(3.17). This procedure is carried out in the next chapter.
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3.5 The cost functionals

A number of situations can be handled by adequately specializing the cost-per-step c:

If ����� � �3
�� � ��
���
�
�
 �	� , then ��� � � � # � and ����� � � are the expected number of cache

misses over the horizon � �	� #�� and the average miss rate under policy � , respectively.

Explicitly, the miss rate is given by the expression

�%� � � � ����	
���
 ����� 

#��(


�
�

� 
�
��� � � � � ��
� � � � �!
 (3.21)

On the other hand, if � is taken to be the byte size � ��� � � � � 
���
�
�
 �	� , then the

byte hit rate under policy � can be defined by

��� � � � � ����	
���
 �����
�
�

� � 

��� � � � � �	� � � � � � � � �
	�
�

� � 

��� � � � � � �
	 � (3.22)

where the liminf operation reflects the fact that this performance metric is maximized.

To make use of earlier notation, first note that
�
�

� � 

��� � � � � � � 	 does not depend on

the policy � . Furthermore, under the IRM, it holds that

����	
���
 

# �(


� � 
�
��� � � � � � � � � ����	
���
 


#��(

��
� ��� � �
���


�
��� � � � � � ��� �

�
��
� ��� � �
��� � �
��� � (3.23)

in which case we get

��� � � � � 
 � ����	
���
 ����� �
�

� � 

��� � � � � � 
� � � � � � � � � 	�
�

� � 

��� � � � � � �
	 (3.24)

� 
 � ����� � �� �� ��� � �
��� � �
��� �

and maximizing the byte hit rate is equivalent to minimizing the average cost associ-

ated with � .
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Another performance metric of great interest is the user-perceived download la-

tency. The delay experienced in the service of a single data item consists of the

propagation delay from the cache to the user, and of the server-cache transmission

time, in the event of a cache-miss. Assuming that the bandwidth
� �  between the

cache and the user is fixed, and that
� � � is the available (fixed) bandwidth on the

server-cache communication link, the average download latency can be written as2

� � � � � ����	
���
 ����� 

#��(


�
�

� 
�
��� ��� � � � � �� �  � � � � � 
� � � � � � � � �� � ��� �

� 
� �  
��
� ��� � �
��� � �
��� �

��� � � �� � � 
 (3.25)

Thus, the average document retrieval latency is minimized by minimizing the cost

��� � � � .
Additional costs of the form � ��� � � can be obtained for specific applications, by

an appropriate selection of the cost function � . One such example can be found in

wireless and mobile ad hoc networks (MANETs), where the reduction of energy

consumed by the various wireless nodes is of supreme importance [59, 61]. This

goal can be achieved by associating with � the energy expended in the retrieval of

documents.

2The uplink delay is assumed negligible as it entails the transmit delay of very short control mes-

sages.
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Chapter 4

A Class of Optimal Replacement

Policies

4.1 The Dynamic Program

In this chapter, we introduce and execute the technical procedure that yields the opti-

mal Markov stationary replacement policy, under the assumption that cache eviction

is not mandatory. Throughout the discussion below, we assume that user requests are

i.i.d (hence modeled according to the IRM). To aid our analysis, let � denote any

� 
���
�
�
��	��� -valued rv distributed according to the stationary pmf � of the IRM, so

that the probability of reference in (3.14) becomes

� � � �
	�� ��� 
 � � ��
�
�
�� � � � ��� � �)��� � ��� � ��� � �*�3
���
�
�
��	� 
 (4.1)

For each # � �	��
���
�
�
 and any given initial system state
� � � � � ����� in

�
,

let � 
 � � ����� denote the value function that captures the optimal cost over the finite
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horizon � �	� #�� , namely

� 
 � � ����� � �����
� ����� ��� � � � # �/� � ����� � 
 (4.2)

The value function satisfies the Dynamic Programming Equation (DPE): For each

#(�)�	��
���
�
�
 it holds

� 
 	�� � � ����� � � � � 
� � � � ��� ��� � �����
 ��	 	 � � � � 
 � � � � � � � �*� � � (4.3)

� � � � � � � � � � 
 � � ����� � �
with

� � � � ����� � � � � 
� � � ��� ���
for every state � � ����� in

�
.

Under finite state and action spaces, as is the case here, it is well known [68] that

there exists a Markov policy � � in 
 
 that minimizes1 ����� � � # �/� � ����� � . Consequently,

the Markov policy � � also minimizes the finite horizon cost function � ��� � � # � . The

policy � � can now be obtained by invoking the Principle of Optimality [68]: In order

to minimize � ��� � � # � , the optimal actions to be taken at time � �6�	��
���
�
�
 � # in each

state � � ����� in
�

are given by

� �� ��# �/� � ����� � � �
��� �� ����� 	 ���

 ��	 	 � � � � 
 � � � � � � � � � �*� � if � 
� �
� if � � � � (4.4)

with a lexicographic tie-breaker for sake of concreteness. In this last equation, the

possibility of non-eviction is reflected in the choice � � � (obviously in � � � ). A

complete characterization of � �� ��# � � � � ���	��
���
�
�
��	��� is provided in the following

section.

1This fact permits us to replace inf with min in the definition of the value function (4.2) (and thus

in equation (4.3) as well), since the minimum cost is attained by the Markov policy 	�
 .
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4.2 The optimal policy
���
�

We are now ready to state the main result of this chapter, namely the optimality of

� �� .

Theorem 4.1 Fix # � �	��
���
�
�
 . When cache eviction is optional and requests are

modeled by the IRM, we have the identification

� �� ��# �/� � ����� � ��� �� � � ����� � � �)�	��
���
�
�
�� #�� (4.5)

for any state � � ����� in
�

whenever � is not in � , with

� �� � � ����� � � ����� 	 ���
 ��	 	 � ��� ��� � ����� � � 
 (4.6)

A proof of Theorem 4.1 is given in Appendix A. Note that � �� ��# �/� � ����� � does not

depend on � or on the horizon # , therefore the policy � �*�5� � �� � � �� ��
�
�
 � � �� � in 
 

minimizes the cost (3.16) for all #5���	��
���
�
�
 , and any initial pmf � � on

�
. Thus,

the collection of actions � � �� � � �� � 
�
�
'� defines the non-randomized Markov stationary

policy ���� in 
 , which is optimal under the expected average cost criterion (3.18).

Upon each cache miss, the policy � �� prescribes

��� ���	��

� ����� �
� ��� � ����� 	 ��� � � �
��� ���
��� � 

� ���
��� ����� � ������� � � ��� � � � � � � (4.7)

again with a lexicographic tie-breaker.

Different optimal policies can be derived from � �� by specializing the cost � per

document. For example, consider the policy � � � obtained for ����� � ��
�� � ��
���
�
�
 �	� ,
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which dictates

��� ���	��

� ����� �
� ��� � ����� 	 ��� � � �
��� � 

� ���
��� ����� � ������� � � ��� � � � � � 
 (4.8)

The policy � � � minimizes the miss rate incurred by the caching system.

Similarly, the byte hit rate and service speed are maximized by associating the

cost � with the byte size function � . The resulting policy � �� prescribes

��� ���	��

� ����� �
� ��� � ����� 	 ��� � � �
��� � �
��� � 

� ���
��� ����� � ������� � � ��� � � � � � � (4.9)

and we refer to it as the policy � �� .

4.3 The optimal cost

In order to calculate the long-run average cost incurred by the use of the policy � �� ,

we first define the permutation � � of � 
���
�
�
��	��� , which orders the values � ��� � ����� � � � �

���
�
�
 �	� , in decreasing order, namely

� � � ��� 
/� � ��� � ��� 
/� ��� � � � ��� 0�� � ��� � � � 0�� ��� 
�
�
�� � � � ��� � � � ��� � ��� � � � � (4.10)

again with a lexicographic tie-breaker. The key observation here is that since � ��� � �
�	� � � 
���
�
�
��	� , then every document is eventually referenced and therefore the

long-term usage of the policy ���� results in � fixed documents in the cache, namely

the documents � ��� 
/� ��
�
�
 � � ��� �6� . Formally, if we denote by

� �
 � � � � ��� 
/� ��
�
�
�� � ��� �6� � (4.11)
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the steady state content of the cache under the cost � , then

����	� ��
 ������ � � ����� ��� � � � � ��� �� 
�� � �3
���
�
�
�� �
�	� � � � �(
���
�
�
��	�


 (4.12)

This fact allows us to calculate the long-term average cost (3.17) incurred by � �� , as

reported in the following lemma.

Lemma 4.1 The long-term average cost incurred by the operation of the optimal

policy ���� is expressed by

����� � �� � � �
�����	��	 � ��� � ����� � �

��
� � � 	�� � �

� ����� � � ��� � ����� � � � (4.13)

provided user requests are modeled by the IRM with pmf � .

Proof. The proof is immediate and utilizes the fact that under the condition � ��� � �
�	� � �5
���
�
�
��	� , there exists a finite time index, say � � , for which � � � � � �
 . Since����� � ��� � 
 
 
 � � 
 ����� � 

� � , it is plain that

����	
���
 

#��(


��� � ��
��� � � � � � 
� � � � ��� � � � �,�	
 (4.14)

Under � �� we have � � � � � � � � �
 for all ��� � � , so that

����	
���
 

#��(



�
��� � � � � � ��
� � � � ��� � � � � ����	
���
 


#��(


�
��� � � � � � � 
� � �
 � ��� � � �

� � � � � � 
� � �
 � ��� �*� � � 
���
1� (4.15)

by the Strong Law of Large Numbers, and the rvs � and � �
 are independent. The

claim (4.13) follows from (4.14), (4.15), and the Bounded Convergence Theorem.
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The miss rate (3.21) obtained by the policy � � � at (4.8) can now be calculated with

the help of Lemma 4.1: When ����� ��� 
�� � � 
���
�
�
 �	� , the permutation � � at (4.10)

orders the set of available documents according to their popularity. In other words,

� ����� � � � ��
���
�
�
��	� , is identified with the � �
	 most popular document. The optimal

resulting cost is given by (4.13) as

�%� � � � � �
��

� � � 	�� � �
� � ��� � � �3
 � � � � � � � ��� 
/� ��
�
�
�� � ��� �6� � ��


The optimal byte hit rate and the maximum average service speed can both be

calculated in a similar manner. If � is associated with the byte size function � , then

� �
 ��� � � � 
/� ��
�
�
 � � � � �6� � �
where � � is any permutation ensuring the ordering

� � � � � 
/� � � � � � � 
/� ��� 
�
�
 � � � � � � � � � � � � � � � � � 
 (4.16)

The byte hit rate (3.24) incurred by the long-term usage of � �� at (4.9) is given by

��� � � �� � � 
 �
��

� � � 	�� � �
� � ��� � � � � � � ��� � �

� �� ��� � �
��� � �
��� �

��
� ��� � �

� � ��� � � � � � � ��� � �
� �� ��� � �
��� � �
��� �

and the optimal average service speed (3.25) can be expressed as

� � � �� � �

��
� ��� � �
��� � �
���� �  �

��
� � � 	�� � �

� � ��� � � � � � � ��� � �
� � � 
 (4.17)
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4.4 Implementing
� �
�

In practice, the popularity vector � �+��� � 
/� ��
�
�
 ��� � � � � is not available and needs to

be estimated on-line from incoming requests. By invoking the Certainty Equivalence

Principle, the probabilities � ��� � ��� � 
���
�
�
 �	� , can be estimated by measuring the

request frequency up to the � �
	 request, �!��
�� 0���
�
�
 , through

���� ��� � � 

�

� � ��
��� ��� � � � � ��� � � �3
���
�
�
��	� � (4.18)

and the policy � �� is implemented by enforcing the rule

��� ���	��

� ����� �
� ��� � ����� 	 ��� � �� �
��� ���
��� � 

� ���
��� ����� � ������� � � ��� � � � � � 
 (4.19)

Surveys of replacement policies [9, 65] reveal that numerous eviction algorithms

of the form (4.19) have already been developed, and were proved to be efficient

in practical systems. The well established Greedy-Dual* (GD*) used by the Squid

cache [25], the Popularity Aware Greedy-Dual-Size (GDSP) suggested by Jin and

Bestavros [36, 37], Cao and Irani’s Greedy-Dual-Size (GDS) [18], and the Least Fre-

quently Used - Document Aging (or LFU-AD in short) proposed in [4], are examples

of such algorithms.2 Since the GDSP and LFU-AD can be derived from the GD* by

specializing its associated parameters, the GD* is now described in detail.

Let ����� � � 
���
�
�
��	��� � � 	 denote an arbitrary cost used by the GD* policy.

Under optional eviction, when a request � � presented at time � � �	��
���
�
�
 incurs a

cache miss, the GD* policy prescribes

��� ���	��

� ����� �
2Additional algorithms can be found in the work by Starobinski [71].
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� ��� � ����� 	 ���
���

��� �� �
��� ����� �
���� �
��� ���� � � � � � � � �
	
where

�
is the contribution of the temporal locality of reference and �5� � is a

weight factor that modulates the contribution of the probability of reference, docu-

ment size and its retrieval cost, to the eviction decision. Under the IRM we can take�
�)� , in which case the GD* policy reduces to

��� ���	��

� ����� �
� ��� � ����� 	 ����� �� �
��� ����� �
���� �
���

� � � � ��� � � � 

This simplified policy obviously follows (4.19), with cost function � given by

����� � � �����
� � 


� ��� � � � ��
���
�
�
 �	� 
 (4.20)

Here, the size function � is in the denominator, in contrast to the cost used by the

policy � �� , to ensure that large documents do not remain in the cache, and thus make

room for more (smaller) data items.

In addition to the estimation of the pmf � , it is sometimes required to estimate

the cost values ����� � � � � 
���
�
�
��	� , e.g., in the case of document latency where the

document size might be fully known in advance, but the available bandwidth to the

server needs to be measured on-line at request time. If
�� � ��� � � � �3
���
�
�
 �	� � denote

estimates of the document costs at the time instance of the � �
	 request, then the policy

���� is implemented through the eviction law

��� ���	��

� ����� �
� � � � ����� 	 ���*� ������
��� �� � �
��� � 

� ���
��� ��� � � ������� � � ��� � � � � � 
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4.5 The non-optimality of
�
�

Some caching systems require that a document must be removed from the cache upon

each instance of a cache miss. At this time, the structure of the optimal replacement

policy for such applications is not known under an arbitrary retrieval cost � . A natural

question is whether the policy � � given by

��� ���	��

� ����� �
� � � � ����� 	 ��� � � �
��� ���
��� � 

� ���
��� ����� � ����� � (4.21)

is optimal, and if it is not optimal, then what is the penalty incurred by the use of the

policy � � instead of the optimal policy ���� .

To answer these queries, let 
 ������� denote the class of all (possibly randomized)

replacement policies in 
 that enforce mandatory eviction. Clearly, the set of policies


 ������� being a subset of 
 , it is plain that

�����
� ��� ��� � � � � �����

� �����	��

� ����� � � 
 (4.22)

However, under the mandatory eviction restriction, it is still possible that the optimal

replacement policy coincides with the policy � � .

In view of the structure of the policy � � [2], which is optimal in the uniform cost

case under mandatory eviction, it is very tempting to conclude that � � is optimal on

the set 
 ������� . Unfortunately, � � is not optimal in general, as can be shown through

simple examples: Take � � � , � �50 , a stationary pmf �(� � �	
 ��� � ���	
 ���	
����	
 ��� � ,
and the associated costs � � � 0��	� &���
/� . By running the Dynamic Program over a

long period of time, we find that the optimal action under the average cost criterion

is obtained by removing 

� ��� � � from the cache, when a miss occurs. This action

disproves the optimality of � � , which would dictate the eviction of 

� ��� 0�� .
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4.6 The impact of using
�
� instead of

� �
�

The main disadvantage of the policy � �� lies in the fact that once the documents in

the set � � ��� 
/� ��
�
�
 � � � � �6� � have been requested, they are never removed from the

cache. In order to increase the content dynamics at the cache, it is preferable that

� � be employed, in which case the � � 
 objects � � ��� 
/� ��
�
�
�� � ��� � � 
/� � are never

evicted, and the � �
	 cached document (for sufficiently large value of � ) is always the

object referenced by the last request that prompted a cache miss.

In order to understand the tradeoffs associated with the selection of � � over ���� ,

we calculate the difference between their resulting average costs. To do so, we must

first obtain the average cost incurred by the use of the policy � � .

Theorem 4.2 Under the IRM with pmf p, the long-term average cost associated with

the policy � � induced by � via (4.21) is given by

����� � � � �
� � � � 
�
� � � � � � 
 � ��� � ����� � �

� � � � � 
� � � � � � 
 � � ��� � ����� �� � � � � 
� � � � � � 
 � ��� �
under the convention (4.10).

Proof. The proof follows the steps presented in the proof of Lemma 4.1. Under the

condition � ��� � �$�	� ��� 
���
�
�
��	� , there exists a finite (random) time index � � such

that the documents in the set3
�� �
 � � � ��� 
/� ��
�
�
�� � ��� � �6
/� � are contained in � � � ,

and (4.14) also holds under � � . We can therefore write the average cost under � � as

����	
���
 

#��(



�
��� � � � 
 � � � � � � � � ��� ��� � � � � � � ��� �*�	� � � � � � � ��� �*� ��� 
���
1� (4.23)

3We use the notation
����� to denote the set of �	��
 documents that are never evicted once requested

under ��
 , to distinguish it from the set
���� in (4.11), which contains � documents.
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where � denotes the rv of cache documents after time � � (i.e., in steady state), imme-

diately before document � is requested, and the rvs S and R are independent. First,

it is plain that � � ��� �*� � �
� � � � 
�
� � � � � � 
 � ��� � ����� � 
 (4.24)

Next, to calculate
� � � � � � � � ��� �*� � , note that� �
� � � � � � �

�
� � �� �
 	 ��� �*�
	 � �

� ���	��	 � �
��� ���
��� � (4.25)

and � �
� � � � � � �

�
� 
� �� �
 	 ��� �*� 	

� � �
�
�
� � � � � � � � 
� �� �
 	 ��� � � �
	

� � �
�
�
� � � � � � � � 
� �� �
 � � � � �� �
 	 ��� � � � 	

� � �
�
�
� � � � � � � � 
� �� �
 � � � � �� �
 � � � � �� �
 	 ��� � � �
	

� 
�
�


�

�
��� �

� �
�
�
� �
	�� � � � � � � 
� �� �
 � � � � �� �
 � � �3
���
�
�
�� �
	 ��� � �
	�� �
	

�
�
� ����	��	 � � �
��� ���
�����

��

 � �

� ���	��	 � �
��� ���	 �� ���	��	 � �
����
�
�

�(
�
�
 
�
�
� � ����	��	 � � �
��� ���
���� � ����	��	 � �
��� 
 (4.26)

Inserting the results (4.24), (4.25) and (4.26) into (4.23), we obtain the desired aver-

age cost.

Corollary 4.1 The penalty incurred by the use of the non-optimal policy � � instead
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of the optimal policy � �� is captured by the difference

����� � � �	� ����� � �� � � � � � ��� �6� � ��� � � � �6� � � � � � � � 
� � � � � � 
 � � ��� � ����� �� � � � � 
� � � � � � 
 � ��� � (4.27)

�
� � � � � 
� � � � � � 
 � ��� � ��� � � ��� �6� � ��� � ��� �6� � � � ��� � ����� � �� � � � � 
� � � � � � 
 � ��� � 


The cost difference (4.27) depends on the stationary pmf � , and on the retrieval

costs ���
��� ���,� 
���
�
�
��	� . Given this fact, another question that is imperative for

understanding the tradeoffs of using � � instead of ���� is whether there exist a pmf �
and document costs under which the penalty (4.27) is minimized.

Theorem 4.3 For any given cost function � � � 
���
�
�
��	��� � � 	 , there exists a pmf

p for which the cost difference (4.27) is zero, in which case the policy � � is optimal

amongst all replacement policies in 
 .

Proof. Let � � denote a permutation of ��� 
/� ��
�
�
 �	��� � � , which sorts the document

costs in descending order, i.e., ��� � ��� 
/� � � ��� � ��� 0�� � � 
�
�
 � ��� � ��� � � � . Pick the

probabilities � � � ��� 
/� � ��
�
�
���� � � ��� � ��
/� � , so that

� � � ��� 
/� � � � � � ��� 0�� � � 
�
�
 � � � � ��� � ��
/� � � � � � ��� �6� � �
under the restriction

� � � ��� 
/� � �(
�
�
 � � � � ��� � ��
/� � �6
�

One selection that meets these requirements is � � � ���
��� � � �

� � � � 
���
�
�
 � � �6
 .
The cost difference ��� 
'0���� will be zero if we select

� � � ���
��� � � � � � ��� �6� � ��� �6�
���
��� � �"� � �(
���
�
�
 �	� (4.28)
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provided there exists � � � ��� �6� � in � �	��
/� which satisfies (4.28) under the constraint

��
� ��� � �

� ���
��� � � � � ��
� ��� � �

� ���
��� � � � � � ��� �6� � � 
 � ��
� � � 	��

��� � ��� �6� �
��� � ���
��� � 	%��
�
 (4.29)

By rewriting (4.29) we get

� � � ��� �6� � � 
 � � � � �� ��� � � � ���
��� �

 � � �� � � 	�� � � � � � � 
 
� � � � � � 
 
 �

a quantity which is clearly in � �	��
/� . It is also simple to verify that

� � � ��� 
/� � ��� � � � 
/� ��� � � � ��� 0�� � ��� � ��� 0�� ��� 
�
�
�� � � � ��� � � � ��� � � � � � � � (4.30)

and the permutation � � therefore follows the convention (4.10). Since the calculated

pmf p, the cost function � � � 
���
�
�
��	��� � � 	 , and the permutation � � meet the

conditions of Lemma 4.1 and Theorem 4.2, we can utilize Corollary 4.1 to conclude

that the cost difference (4.27) is indeed zero, which completes the proof.

4.7 On the optimal policy with Markov requests

We conclude this chapter with a brief discussion regarding optimal replacement poli-

cies under the Markov Reference Model. Several studies have focused on identifying

properties of replacement policies when requests are modeled according to a station-

ary and ergodic Markov chain: Karlin et al. [41] showed that in the case of mandatory

eviction and uniform costs (i.e., ����� � �+
�� � �+
���
�
�
��	� ), if � � � �,
 , then there

exists an optimal replacement policy under which � � 
 documents are never evicted

from the cache once they have been requested. Moreover, results reported in [41] in-

dicate that paging algorithms developed earlier under the IRM, such as the Random
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Replacement (RR) and the Least Frequently Used (LFU) policies, do no perform well

under the MRM. Instead, the heuristic Commute algorithm was proposed, and was

proved to be efficient by deriving an upper bound on the resulting miss rate.4

To date, the structure of the optimal replacement policy under the MRM is not

yet known (to the best of the author’s knowledge), even in the simplified context

of uniform costs, for either mandatory or optional eviction. Markov requests are

expressed in our system model through

� � � �
	�� � � 
 � � ��
�
�
 � � � � � � � � �
	�� � � 
 � � ��� � �)�	��
���
�
�
 (4.31)

in (3.14) where � � is distributed according to the unique pmf � that satisfies (3.4).

Optimal replacement policies can therefore be found once the costs ����� � � � ��
���
�
�
 �	� �
and the transition probabilities

� ��� � � ���"�3
���
�
�
��	� � are available, by solving the Dy-

namic Program presented earlier in Section 4.1 (with all the appropriate modfications

to account for the MRM).

4Additional observations regarding eviction policies under the MRM can be found in [6, 43].
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Chapter 5

Optimal Caching Under a Constraint

5.1 Problem formulation

One possible approach to capture the multi-criteria aspect of running caching sys-

tems is to introduce constraints. Here, we revisit the caching problem with optional

eviction and when user requests are modeled by the IRM, under a single constraint.

Formulation of the caching problem with a constraint requires two cost functions,

say �/��
 � � 
���
�
�
��	��� � � 	 
 As before, ��� ��� � and 
 � � � � represent different costs of

retrieving the requested document � � if not in the cache � � at time � . For instance,

we could take ����� � � 
 and 
 ��� �4� � ��� � to reflect interest in the miss rate and the

document retrieval latency, respectively.

The problem of interest can now be formulated as follows: Given some - �$� ,
we say that the policy � � 
 satisfies the constraint at level - if

� ��� � � � - 
 (5.1)

Let 
 � 
 � - � denote the class of all cache replacement policies in 
 that satisfy the

constraint (5.1). The problem is to find a cache replacement policy � � in 
 � 
 � - �
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such that

��� � � � � �6����� � � � � � 
 � 
 � - � 
 (5.2)

Any such policy � � is referred to as a constrained optimal policy (at level - ). With

the choice ����� � �%
 and 
 ��� � � � ��� � this formulation would focus on minimizing the

miss rate with a bound on average latency of document retrieval.

One natural approach to solving this problem is to consider the corresponding

Lagrangian functional defined by

�

� ��� � � ����� � � � � � � ��� � � � � � 
 � � ���	
 (5.3)

The basic idea is then to find for each
� �,� , a cache replacement policy � ��� � � in 


such that
�

� ��� � � � � � � �
�

� ��� � � � � � 
 
 (5.4)

Now, if for some
� � �(� , the policy � ��� � ��� happens to saturate the constraint at level

- , i.e., � ��� � ��� � ��� � � - , then the policy � ��� � ��� belongs to 
 � 
 � - � and its optimality

implies
�

� � � � � � � � � � � �
�

� � � � � � � � � 
 
 (5.5)

In particular, for any policy � in 
 � 
 � - � , this last inequality readily leads to

��� � � � � � � � � �6����� � � � � � 
 � 
 � - � � (5.6)

and the policy � � � � � � solves the constrained optimization problem.

The only glitch in this approach resides in the use of the limsup operation in the

definition (3.17), so that
�

� ��� � � is not necessarily the long-run average cost under

the policy � for some appropriate one-step cost. Thus, finding the optimal cache

replacement policy � ��� � � specified by (5.5) cannot be achieved in a straightforward

manner.
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5.2 A Lagrangian approach

Following the treatment in [13], we now introduce an alternate Lagrangian formu-

lation which circumvents this technical difficulty and allows us to carry out the

program outlined above: For each
� � � we define the one-step cost function

� � � � 
���
�
�
 �	��� � � 	 by

� ����� � � ����� � � � 
 ��� � � � �3
���
�
�
��	� (5.7)

and consider the corresponding long-run average functional (3.17), i.e., for any policy

� in 
 we set

� ��� � � � ������� � � � � ����	
���
������ 

#��(


�
�

� 
�
��� � � � � � 
� � � � � �	� � � ��� 
 (5.8)

With these definitions we get

����� � � � �
�

� ��� � � � � � 
 (5.9)

by standard properties of the limsup, with equality

������� � � �
�

� ��� � � (5.10)

whenever � is a Markov stationary policy.

For each
� �)� , the (unconstrained) caching problem associated with the cost

� �
coincides with the system model described in Chapter 3, under which both the state

and action spaces are finite. Thus, there exists a non-randomized stationary Markov

policy, denoted ��� , which is optimal [32], i.e.,

� ��������� �6� ��� � � � � � 
 � (5.11)

and earlier remarks yield

�

� ��������� �
�

� ��� � � � � � 
 
 (5.12)
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In other words, the stationary Markov policy � � also minimizes the Lagrangian func-

tional (5.3), and the relation

� ��������� � �����
� ��� � ��� � � � �����

� ��� �

� ��� � � (5.13)

holds. Consequently, as argued in Section 5.1, if for some
� � �(� , the policy ��� � satu-

rates the constraint at level - , then the policy � � � solves the constrained optimization

problem.

The difficulty is that a priori we may have ����������� 
� - for all
� �(� . However, the

arguments given above still show that the search for the constrained optimal policy

can be recast as the problem of finding � �(� and a (possibly randomized) stationary

Markov policy � � such that

� ����� � � � - (5.14)

and

���	��� � � � ���	� � � � � � 
 
 (5.15)

5.3 On the way to finding the optimal policy

The appropriate multiplier � and the policy � � appearing in (5.14) and (5.15) will be

identified in the next section. To help us in this process we need some technical facts

and notation which we now develop.

Theorem 5.1 The optimal cost function
� � ����������� is a non-decreasing concave

function which is piecewise linear on � 	 .

Some observations are in order before giving a proof of Theorem 5.1: Fix
� �)� . In

view of Theorem 4.1 we can select � � as the policy ���� induced by
� � , i.e., for each
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� �,�	��
���
�
�
 , the policy ��� prescribes

��� ���	��

� ����� �
� ��� � ����� 	 ���*��� �
��� � ���
��� � � 
 �
��� � � � � � � � � � � 


Let � � denote the permutation (4.10) of � 
���
�
�
��	��� that orders the values � ��� � � �	��� � ,
� �3
���
�
�
��	� , in increasing order, namely � � � � 
/� � � ��� � � 
/� ��� 
�
�
�� � � � � � � � � �	� � � � � � ,
with a lexicographic tie-breaker. Let � 
 � � � denote the steady state stack induced by

the policy ��� , namely the collection of documents in the cache that results from the

long-term usage of the policy ��� . Obviously, we have1

� 
 � � � � � � ��� 
/� ��
�
�
 � � ��� �6� � (5.16)

so that

� ��������� � ����� ������� �
�

�����	 	 � � 
 � ��� � � �	��� � (5.17)

upon rephrasing the result of Lemma 4.1.

Given the affine nature (in the variable
�

) of the cost, there must exist a finite

and stricly increasing sequence of non-zero scalar values
� ����
�
�
�� ���

in � 	 with � �
� ���6
�
�
 � ���

such that for each
� �)�	��
�
�
���� , it holds that

� 
 � � � � � 
 � ��� � � � � � � � � � ��� � ��� 	�� � (5.18)

with the convention that
� � �)� and

��� 	�� � � , but with

� 
 � ��� � 
� � 
 � ��� 	�� � � � �)�	��
���
�
�
���� ��
�
 (5.19)

In view of (5.17) it is plain that

� ��������� �
�

�����	 	 � ��� 
 � ��� � � �	��� � (5.20)

1The steady state stack
� � given in (4.11) corresponds to the case �	��
 .
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whenever
�

belongs to the interval � � for some
� � �	��
���
�
�
���� . These facts are

described through an example in Figure 5.1, in which � � � , � � 0 , the cost

vectors are � � � 
�� 0���� � and 
 � � 
����	
'&����	
'0�&�� , and the reference pmf is given by

� �$� 
/.��	��
/.��	��
/.�� � .

Proof of Theorem 5.1. For each policy � in 
 , the quantities � ��� � � and � ��� � � are

non-negative as the one-step cost function � and 
 are non-negative. Thus, the map-

ping
� � �

� ��� � � (5.3) is non-decreasing and affine, and we conclude from (5.13) that

the mapping
� � � ��������� is indeed non-decreasing and concave. Its piecewise-linear

character is a straightforward consequence of (5.20).

In order to proceed we make the following simplifying assumption:

Assumption (A) If for some
� � � it holds that � ��� � � �	��� �"� � �
��� � �	�
��� for some

distinct � ��� � 
���
�
�
��	� , then there does not exist any � 
� � ��� with � � 
���
�
�
 �	�
such that � ��� � � �	��� � � � �
��� � �	�
��� ��� � � � � ��� � � .
This assumption can be removed at the cost of a more delicate analysis without af-

fecting the essence of the optimality result to be derived shortly.

For each
� � �	��
���
�
�
���� , the relative position of the quantities � ��� � � ����� � � � �


���
�
�
 �	� , remains unchanged as
�

sweeps through the interval � ��� � ��� 	�� � . Under

assumption (A), when going through
� � � � 	�� , a single reversal occurs in the relative

position with

� 
 � ��� � � � � ��� � 
/� ��
�
�
 � � ��� � � ��
/� � � ��� � �6� � (5.21)

and

� 
 � ��� 	�� � � � � ��� � 
/� ��
�
�
 � � ��� � � ��
/� � � ��� � � �(
/� � 
 (5.22)
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Figure 5.1: An illustration of the intervals ��� , �����	��
���
�
�
���� , with ����� , and the

resulting optimal average cost � ���������
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By continuity we must have

� � � ����� �6� � � ��� � � � � ����� �6� � ��� � � ��� � � �(
/� � � ��� � � � � ��� � � �(
/� � 
 (5.23)

Theorem 5.2 Under the foregoing assumptions, the mapping
� � � ��������� is a non-

increasing piecewise constant function on � 	 .

Proof. The analog of (5.20) holds in the form

� ��������� �
�

�����	 	 � ��� 
 � ��� � 
 ��� � (5.24)

whenever
�

belongs to � � for some
� �)�	��
�
�
���� . Hence, the mapping

� � � ��������� is

piecewise constant.

Now pick
� �)�	��
���
�
�
���� � 
 and consider

�
and � in the open intervals � � � � ��� 	�� �

and � ��� 	�� � ��� 	 � � , respectively. The desired monotonicity will be established if we can

show that � ������� �	� � ��������� �,� . First, from (5.24), note that

� ���������	�2� ��������� �
�

� ��	 	 � � 
 � ��� � 
 ��� � � �
� ��	 	 � � 
 � ��� � 
 ��� � (5.25)

� � � � ��� �6� � 
 � � �	� �6� � � � � � ��� � �(
/� � 
 � � ��� � �(
/� �
given the steady state stacks (5.21) and (5.22), as we recall that � 
 � � �4� � 
 � ��� �
and � 
 ��� � � � 
 � ��� 	�� � .

Next, pick ���2� such that
� ��� and � ��� are still in the open intervals � � � � ��� 	�� �

and � ��� 	�� � ��� 	 � � , respectively. By (5.20) we get � 
 � � ����� � � 
 � � � and

� ��		� ������		� �	� � �	������� �
�

�����	 	 � ��		� 
 � ��� � � ��		� ��� �	� �
�����	 	 � � 
 � ��� � � �	��� �

�
�

�����	 	 � � 
 � ��� � � ��		����� � � �
�����	 	 � � 
 � ��� � � �	��� �

� �
�

�����	 	 � � 
 � ��� � 
 ��� � 
 (5.26)
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Similarly,

� � 		������� 		� �	�2� � ������� � �
�

�����	 	 � � 
 � ��� � 
 ��� � 
 (5.27)

By Theorem 5.1, the mapping
� � ����������� is concave , hence

� � 		������� 		� �	�2� � ����� � �6� ��		��������		� � � � ��������� 

Making use of (5.26) and (5.27) in the last inequality, we readily conclude that

�
� ��	 	 � � 
 � ��� � 
 ��� � � �

� ��	 	 � � 
 � ��� � 
 ��� � 
 (5.28)

But � 
 � � � � ��� ��� � and � 
 ��� � � ��� ��� 	�� � , whence (5.28) is equivalent to

� � � ����� �6� � 
 � � ����� �6� � � � � � ����� � �(
/� � 
 � � ��� � � �(
/� � 
 (5.29)

The desired conclusion ��������� �	� � ��������� �(� is now immediate from (5.25).

5.4 The constrained optimal replacement policy

We are now ready to discuss the form of the optimal replacement policy for the con-

strained caching problem. Throughout we assume Assumption (A) to hold. Several

cases need to be considered:

Case 1 - The unconstrained optimal replacement policy � � satisfies the constraint,

i.e., � ����� � � � - , in which case � � is simply the optimal replacement policy � �� for

the unconstrained caching problem, associated with the generic cost � . This case is

trivial and requires no proof since by Theorem 4.1 the average cost is minimized and

the constraint satisfied.
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Case 2 - The unconstrained optimal replacement policy does not satisfy the con-

straint, i.e., ������� � � � - , but there exists
� �6� such that ����������� � - . Two subcases

of interest emerge in this context and are presented in Theorems 5.3 and 5.4 below.

Case 2a - The situation when the policy � � above saturates the constraint at level

- was covered earlier in the discussion; its proof is therefore omitted.

Theorem 5.3 If there exists
� �3� such that � ��������� � - , then the policy ��� can be

taken as the optimal replacement policy � � for the constrained caching problem (and

the constraint is saturated).

Case 2b - The case of greatest interest arises when the conditions of Theorem

5.3 are not met, i.e., ������� � �4� - , � ������� � 
� - for all � �5� but there exists
� �+�

such that � ��������� � - . In that case, by the monotonicity result of Theorem 5.2, the

quantity

�
� � ����� � � �,� � � ��������� � - � (5.30)

is a well defined scalar in � �	����� . In fact, we have the identification

� � � ��� � � (5.31)

for some
� �,�	��
���
�
�
���� �2
 , and it holds that

� ��������� � � ��� - �)� ��������� � 
 (5.32)

For each � in the interval � �	��
 � , define the Markov stationary policy
���

obtained

by randomizing the policy ����� and ����� � � with bias � . Thus, the randomized policy
���

prescribes

��� ���	��

� ����� �

� ��� �

��� �� ����� 	 ����� � �
��� � �����
��� � � � � ��� � � � w.p. �
����� 	 ����� � �
��� � ��� � � �
���

� � � � � � � ��� w.p. 
 � � 
 (5.33)

50



Theorem 5.4 The optimal cache replacement policy � � for the constrained caching

problem is any randomized policy
���

of the form (5.33) with � determined through

the saturation equation

� ��� � � � � - 
 (5.34)

Proof. For the most part we follow the arguments of [13]: Let
� �$�	��
���
�
�
���� �,


be the integer appearing in the identification (5.31). Pick
�

and � in the open interval

� ��� � ��� 	�� � and � ��� 	�� � ��� 	 � � , respectively, in which case

��� ������� and ��� �(����� � � (5.35)

with

� ������� � � - �)� ��������� 
 (5.36)

Thus, as in the proof of Theorem 4.4 in [13], let
�

and � go to
��� 	�� monotonically

under their respective constraints. The resulting limiting policies � and � (in the

notation of [13]) are simply given here by � �(� ��� � � and � ������� with 2

���	� � � � � ��� ������� � � � �����	������� � (5.37)

for every � in the interval � �	��
 � , and the optimality

��� � � � � �6���	� � � � � � 
 (5.38)

follows. Moreover, the mapping � � � ��� � � � being continuous [52], with ����� � � � � � � �
� ��������� � � � and � ��� � � � � ��� � � ��������� � , there exists at least one value � in � �	��
/� such that

2See details in the proof of Theorem 4.4 in [13].
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(5.34) holds. The proof of optimality is now complete in view of comments made in

Section 5.3.

It is possible to give a somewhat explicit expression for � ��� � � � for � in � �	��
 � .

Lemma 5.1 Let � �
 denote the set of documents that are never removed from the

cache once requested, namely

� �
 � � � 
 � ��� � � � 
 � ��� 	�� � � � � ��� � 
/� ��
�
�
 � � ��� � � ��
/� � 
 (5.39)

The average cost ����� � � � can then be expressed as

� ��� � � � � � � 
 � �*� � � ����	
���
 

# �(


����� � 
�
��� � � � � �	� � � � 
 � � � ��� (5.40)

with

����	
���
 

#��(


����� � 
�
��� � � � � � � � � � 
 � � � � �

�
�
� ��	 �	 � ��� � 
 ��� � � � ��� � � � � ����� �6� � 
 � � ����� �6� �
� � 
 � � ��� � � � � � ��� � � �(
/� � 
 � � ��� � � �(
/� � � (5.41)

where � ��� � represents the asymptotic fraction of time that the cache contains the

document � ����� �6� , and is given by

� ��� � � � � � � � ����� �6� �
� � � � � ��� � �6� � �)� 
 � � ��� � � � ��� � � �(
/� � 
 (5.42)

Proof. Under the policy
� �

and i.i.d requests, if the document � ��� � �6� is in the cache,

it can only be removed from the cache when � ����� � �%
/� is requested. The time
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until the eviction of � ����� �6� is therefore a Geometric rv (of type II) with parameter

� 
 � � � � � � � ����� ���)
/� � . Similarly, if � ����� ���)
/� is in the cache, the time until its

removal is a Geometric rv with parameter � � � � � ��� � �6� � . The fraction of time that

� ����� �6� is in the cache, is then simply

� ��� � �
�� � � � � � � 	�� 
 
�� � ��� � 
�� � � � � � � 	�� 
 
�� � ��� � 
 � �� � � � � � � 
 
�� � � 


� � � � � � ��� � �6� �
� � � � � ����� �6� � �)� 
 � � ��� � � � ����� � �(
/� � �

and (5.41) follows.

Case 3 - Finally, assume that ����������� � - for all
� � � . This situation is of

limited interest as we now argue: Fix
� �(� . For each policy � in 
 , we can use the

optimality of ��� to write

- � � � � ����������� ��� ��������� � � � � ����� � � ��� ��� � � 
 (5.43)

Thus, letting
�

go to infinity, we conclude that

- �6� ��� � � � � � 
 
 (5.44)

The constrained caching problem has no feasible solution unless there exists a policy

that saturates the constraint. Typically the inequality above will be strict.
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Part II

Modeling and Measuring Internet

Cache Consistency and Quality of

Data
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Chapter 6

Internet Cache Consistency

6.1 The cache consistency problem

The discussion in Part I of the dissertation implicitly assumes that server documents

are never modified. In other words, the content of documents at the server remains

fixed over time. This operational assumption does not hold in practical Web caching

systems.

A cached object is termed consistent if it is identical to the master document, at

the time it is served to the user from the cache. The consistency model in use reflects

the degree to which cached replicas are kept consistent. In order to increase document

consistency, Web servers and Internet caches employ consistency algorithms that

invalidate cached copies upon freshness expiration. Each user request that finds an

invalid copy is forwarded to the server, which sends a fresh object back to the user,

and the stale cached replica is replaced with the latest version.

In reality, Web pages are updated at rates that are determined by the application

of the hosting server, the services offered in each document, as well as the rollout
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schedule for the production server. Consistency assurance becomes more challenging

when server documents are updated rapidly (e.g., weather updates, sports scores,

news portals), since frequent server-cache communications are required to properly

track the freshness at the cache. Furthermore, since all communications between the

server and the cache are subject to constraints imposed by the network infrastructure,

consistency is impeded by the network transmit delays. This fact is noticeable in

wireless applications, mobile devices, and satellite systems, where the non-negligible

communication latency can significantly impact the QoD [72].

6.2 Consistency algorithms on the Web

Consistency issues have been extensively studied in distributed shared memories

[47], hierarchical virtual memories [63], network and file sharing systems [48], and

distributed databases [30]. In spite of this fact, analytical models and consistency

metrics developed for those earlier systems cannot be applied toward the performance

evaluation of Web consistency algorithms in a straightforward manner; operational

rules pertaining to those systems do not coincide with those used on the Web.1

On the Internet, algorithms fall in one of three categories, namely Time-To-Live

(TTL), client polling, and server invalidation. Operational principals characterizing

algorithms in each category are now described below.

1Additional details regarding individual system characteristics and (dis)similarities to Internet

caches can be found in [18, 35, 42] and their references.
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6.2.1 TTL algorithms

When TTL algorithms are employed, each document accepted by the cache is equipped

with a Time-To-Live (TTL) parameter, which is either provided by the server or de-

termined at the cache. Once a document is placed in the cache, it is considered valid

until the time specified by the Time-To-Live elapses. A user request that finds a valid

cached copy incurs a cache-hit and is served directly by the cache. On the other hand,

requests presented after the Time-To-Live has expired, are cache-miss requests that

are forwarded to the server, which in turn sends a fresh copy to the cache, and from

there to the user.

TTL algorithms are widely implemented in general Internet applications, e.g.,

DNS, FTP, and HTTP caches [21, 40, 55, 56]. This fact is a direct consequence of

their simplicity, sufficiently good performance, the flexibility to assign a TTL value

to a single cached data item, and the ease of deployment in hierarchical caching sys-

tems [34]. In the literature, several TTL protocols are available, with each algorithm

utilizing a distinct Time-To-Live calculation technique. Commonly encountered al-

gorithms include the fixed TTL whereby the Time-To-Live is always set to a constant

# [21, 22, 23, 24, 34, 40], the LM-Factor used in Squid caches that calculates the

Time-To-Live based on the last master modification time [18, 77], and the non-causal

perfect TTL (also referred to as the optimal TTL algorithm or precise-expiration pro-

tocol) according to which the Time-To-Live expires at the exact moment of next

master update [44, 54, 79].
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6.2.2 Client polling

A client polling consistency algorithm is invoked according to a schedule that is

dictated by the cache. Each time it runs, the algorithm connects to the server and

initiates an If-Modified-Since request, accompanied by the identifiers (i.e., validators

[28]) of one or more cached items. Commonly used validators include the Last-

Modified-Timestamp, document version, header, and the entity-tag (ETag). If the

server finds that the value of the validators match those of the master (i.e., the cached

copy is up to date), it sends a 304 Not-Modified reply to the cache, and the cache

continues to serve the valid copy in response to user requests; otherwise the server

returns a 200 OK message together with the latest master version, and the stale cached

copy is replaced with the new download.

Practical implementations of client polling protocols include the if-modified-since

algorithm (also known as the polling-every-time protocol) under which every request

that arrives to the cache prompts an If-Modified-Since message to the server, the

periodic-polling method that connects to the server every
�

time units [57], and the

piggyback-cache-validation whereby freshness control messages are embedded in

other (i.e., non-consistency related) transmissions to the server.

In spite of their simplicity, polling algorithms are not favored in general Internet

applications. The if-modified-since algorithm clearly results in good QoD, but can

significantly increase the server and network loads, and user-service latency [79].

Other client polling protocols that are less resource intensive than the if-modified-

since algorithm typically result in poor cache consistency.
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6.2.3 Server invalidation

Server invalidation algorithms are invoked by the server upon each update to the

master (or shortly thereafter). Once launched, the algorithm connects to one or more

caches that contain a copy of the modified document, and informs each cache of the

changes. Some algorithms perform this notification by sending a new master copy

to the cache. Other algorithms only invalidate the stored copies, and the first request

that arrives after the invalidation is a cache-miss that is forwarded to the server.

Invalidation protocols are implemented in many commercial Web caches, and are

particularly popular in servers that contain dynamically generated Web pages. Com-

mon protocols include the replication algorithm that forwards the master changes to

all caches immediately after the update [79], the invalidation-report used in wire-

less and mobile applications to inform end-user caches of content updates [80], as

well as the piggyback-server-invalidation under which the invalidation messages are

encapsulated in non-consistency related communications with the cache [45].

The main advantage of invalidation algorithms lies in the high degree of cache

consistency attained by most protocols in this category. However, other (e.g., TTL)

consistency solutions are preferred in general, since a server that employs an invali-

dation algorithm must maintain a list of all system caches.

6.3 Weak vs. strong consistency models

In order to capture the freshness of a cached item with respect to the master, we find

it useful to introduce the following freshness classification: A server-fresh document

is defined as the latest serviceable document at the server, whereas a cache-fresh doc-

ument is defined as a valid cached copy, or equivalently, as one thought to be server-
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fresh by the cache. We define a cache-fresh* document as one that is both cache-fresh

and server-fresh, and a document that is not cache-fresh* is termed cache-stale*.

The schedule of the consistency algorithm and the non-zero server-cache trans-

mit delay � make it possible for a cached item to be considered valid by the cache

despite the availability of a later (i.e., fresher) version at the server. Such occurrences

would result in the undesirable download of cache-stale* (thus inconsistent) docu-

ments from the cache. Following Cao and Liu [18], strong consistency algorithms

are characterized by users being served strictly server-fresh documents under zero

delays and processing times. A consistency algorithm that is not strong is termed

weak, in which case there is a possibility that users download inconsistent copies

(i.e., ones that are cache-fresh yet not server-fresh), even under zero delays.

In general, causal TTL and most client polling algorithms are weakly consistent,

whereas the if-modified-since, the perfect TTL, and most server invalidation proto-

cols are strongly consistent. To appreciate this fact, consider the fixed TTL and the

if-modified-since algorithms, when all delays are zero:

� With the fixed TTL algorithm, each document placed in the cache remains valid

for # time units, and all requests presented until the TTL expiration are served di-

rectly from the cache. If the master is updated prior to the expiration, then all requests

that arrive after the update yet before the TTL has expired are served with a cache-

stale* copy. The fixed TTL is therefore a weak consistency protocol.

� The if-modified-since algorithm sends a conditional GET directive to the server

in response to every user request that arrives to the cache. If the server finds that

the cached item is fresh, a 304 Not-Modified message is returned to the cache; oth-

erwise the server forwards the latest master version and the new object is loaded

into the cache. Either way, once the server-cache communications complete, the re-
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quested document is sent to the user from the cache. If � ��� (i.e., instantaneous

transmissions) then users are always served with server-fresh copies, hence the if-

modified-since is a strong consistency protocol.

6.4 Quantifying cache consistency and QoD

For a given consistency algorithm, we define a cache-hit* as a cache-hit that results

in a server-fresh download from the cache to the user. The complementary situation

of a cache-stale* download is termed a cache-miss*. Each cache-hit* is therefore

a cache-hit, but the reverse clearly does not hold. The hit rate and the hit* rate are

then the long-run average download rates of cache-fresh and cache-fresh* documents

from the cache, respectively. Since each cache-hit* is necessarily a cache-hit, the

hit* rate can never exceed the hit rate, and equality is achieved for strong consistency

algorithms if �+�,� .
The hit* rate is most useful for measuring the fraction of fresh downloads when

the cache utilizes weak protocols, for then the likelihood that users retrieve stale ob-

jects is potentially large: Consider the fixed TTL algorithm when # is very large,

and server documents are updated frequently. A large value for # guarantees a high

hit rate and lowered bandwidth utilization [34, 40], but results in poor quality of data

(QoD), even when the communication latency is negligible (e.g., broadband connec-

tivity). Measuring consistency is also important for strong consistency mechanisms

deployed in a hierarchy of caches, or when the delay is large (e.g., satellite and wire-

less networks [67, 80]), as previously concluded in [73].

In order to evaluate the consistency performance under a given protocol, we for-

mulate a framework that allows consistency issues to be investigated in a quantitative
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manner. This framework is presented in Chapter 7, where the focus is on a single

server-cache pair and a single data object, as we attempt to isolate relevant issues.

User requests and master updates are modeled by mutually independent point pro-

cesses. Then, the hit and hit* rates of any given consistency algorithm can in prin-

ciple be evaluated, and various design parameters could be tuned on the basis of the

resulting performance.

In Chapters 8 and 9, we apply the modeling framework to the analysis of the

fixed and perfect TTL algorithms, respectively. Hit rate and hit* rate results are

obtained for each protocol under any value of the download delay � ��� . Closed

form expressions for the calculated rates are available in some special cases when

the requests are generated according to a Poisson process. Computable bounds are

derived for each algorithm when the request process is a renewal process, and are

tightened when the inter-request time distribution belongs to certain subclasses of

distributions (e.g., IFR, DFR, NBUE and NWUE). On the basis of these results,

we can now explore the degradation of the hit and hit* rates as a function of the

communication delay � , and of additional algorithm-specific parameters.

To conclude, we note that the proposed modeling framework can also be used

to investigate consistency issues in polling and invalidation algorithms, as well as

techniques employed by other distributed systems (e.g., virtual shared memories and

file sharing systems [1, 35, 63]).
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Chapter 7

A Framework for Measuring Cache

Consistency

7.1 The system model

The system is made up of a site called the origin where the current authoritative

version of the data is maintained, and of requestors. Each requestor is identified

with a cache that is used either by users or by client-caches. Thus, the origin and

requestors are synonymous with server and caches, respectively.

Caches are assumed to be of infinite size, reflecting the fact that storage is ample.

The need to specify a replacement policy is moot, and only the operational rules of

the consistency algorithms matter. In particular, once a document has been placed in

the cache, a copy is always available at the requesting cache, although said copy may

be either fresh or stale at any given time.

Under these circumstances, there is no loss of generality in abstracting a caching

system into a single cache-server pair, and in considering a single cacheable data
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item, say
�

, in isolation, as we do from here on.

7.1.1 Modeling requests

User requests for the document
�

arrive according to a point process ��# �� ��� �
�	��
���
�
�
 � with the understanding that the � �
	 request occurs at time # �� . Thus, # �� �
# �� 	�� for each � ���	��
���
�
�
 with # �� �5� . Let � � � 	�� ��� ���	��
���
�
�
 � denote the se-

quence of inter-request times with ��� 	��"��# �� 	�� � # �� for each ��� �	��
���
�
�
 . The

point process ��# �� ��� � �	��
���
�
�
 � is assumed to be simple in that � � 	�� �$� a.s. for

� �,�	��
���
�
�
 � so multiple requests cannot occur simultaneously.

As customary, the counting process � � � � � � � � � � associated with the point

process ��# �� ��� �,�	��
���
�
�
 � is given by

� � � � � ����� ��� �)�	��
���
�
�
 � # �� � � � � ���(� (7.1)

so that � � � � counts the number of requests in the interval � �	� � � . The corresponding

residual lifetime process � ����� � � � ���,� � is defined by

����� � � �(#
�
� � � 
 	�� � � � ���(�	


If # �� � � �(# �� 	�� for some � �3�	��
���
�
�
 , then � � � � �	� and ����� � � � # �� 	�� � � , i.e.,

����� � � represents the amount of time that will elapse until the occurrence of the next

request after time � .
We assume at minimum that the point process ��# �� �
� �%�	��
���
�
�
 � admits a rate

in the sense that there exists a finite constant
� � �2� given by the limit

� � � ����	� ��

� � � �
� � 
���


We refer to
� � as the request rate.
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7.1.2 Modeling document updates

The document
�

changes over time, and is updated according to the second point

process ��#� � � � � �	��
���
�
�
 � where #� � is the epoch at which the � �
	 update takes

place. We denote by � � � 	���� � � �	��
���
�
�
 � the sequence of inter-update times with

� � 	�� � #  � 	�� �(#  � for each � � �	��
���
�
�
 . Here as well, #  � � #  � 	�� for each

� �%�	��
���
�
�
 with #� � �$� . The point process ��#  � � � �$�	��
���
�
�
 � is assumed to be

simple so that multiple updates are ruled out.

In analogy with (C.8), the counting process � �4� � � � � ��� � associated with the

point process ��#  � � � �,�	��
���
�
�
 � is given by

�4� � � � ����� � � �)�	��
���
�
�
 � #  � � � � � ���,�

with �4� � � counting the number of updates in the interval � �	� � � . The corresponding

residual lifetime process � � ��� � � � ���,� � is defined by

� ��� � � �(#  � � � 
 	�� � � � ���(�

so that � ��� � � represents the amount of time that will elapse until the next update after

� .
As before, we assume that the process ��#  � � � �,�	��
���
�
�
 � admits a rate, referred

to as the update rate, in the sense that there exists a finite constant
�

� �2� given by

�
� � ����	� ��


�4� � �
� � 
���


7.2 Basic assumptions

Throughout, the point processes ��# �� ���5� �	��
���
�
�
 � and ��#  � � � � �	��
���
�
�
 � are

assumed to be mutually independent. This reflects the lack of correlation between

user behavior and the evolution of data content.
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For reasons of brevity and mathematical simplicity, these point processes are as-

sumed to be renewal processes. For the requests, this means that the inter-request

times � � � 	�� � � �)�	��
���
�
�
 � form a sequence of i.i.d. rvs distributed according to the

common cdf
� � . Let � denote any rv distributed according to

� � . Similarly, when

the update process is a renewal process, the inter-update times � � � 	���� � �)�	��
���
�
�
 �
form a sequence of i.i.d. rvs distributed according to the cdf

�
� . We denote by �

any rv distributed according to
�

� . The cdfs
� � and

�
� are assumed to have finite

mean � � � � � and � � � � � , in which case it is well known [69] that
� � � � � � � � � �

and
�

� � � � � � � � � .
Let � � � denote the fixed download delay of

�
over the network, i.e., if a

document is sent from the server at time � , it is received by the cache at time � � � , at

which point it is ready for access by the users. In the other direction, communication

from the cache to the server is deemed instantaneous as it entails the transmission of

very short control messages.

7.3 Hit rates and QoD

With a given consistency algorithm, we can associate the two performance measures

mentioned earlier, namely the hit and hit* rates. These metrics reflect the quality (or

freshness) of
�

from two different viewpoints, namely cache freshness and server

freshness, and capture the fraction of hit and hit* occurrences out of all user requests,

respectively.

In order to count the number of cache-hit instances under the network delay � ,

an � 	 -valued validator process ����� � � � � � � � � is introduced to track the cache

freshness of the cached copy of
�

; a hit occurs at request time # �� if and only if
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� � ��# �� � � ��� . The hit rate is then simply defined by

� � �!� � ����	� ��
 

�

��
� ��� � � � ����#

�
� � � ��� � 
 (7.2)

Similarly, in order to identify cache-hit* requests, the server freshness of the

cached version of
�

is monitored through another � 	 -valued process ��� � � � � � � � �
� � , so that a hit* occurs at request time # �� if and only if � � � ��#

�
� � ���,� , and the hit*

rate is defined as

� � � �!� � ����	� ��
 

�

��
� ��� � � � � � ��#

�
� � � ��� ��
 (7.3)

The limits in both (7.2) and (7.3) are taken in the a.s. sense and are assumed

to exist with
� � �!� and

� ��� �!� constants. This will be the case for all algorithms

considered in this work. In that case, the a.s. limit

����	� ��

� �

� ��� � � � �

� ��#
�
� � � ��� �� �

� ��� � � � ����# �� � � ��� � � � ��� �!�� � �!� (7.4)

also exists as a constant. This ratio represents the fraction of server-fresh hits out of

all hits, and therefore measures the QoD produced by a given algorithm.

7.4 Requests and updates in applications

The experimental validation of the proposed model has already been carried out in

numerous studies for the case of � �$� (e.g., see [10, 27, 60, 62, 67, 79] and refer-

ences therein). In these studies, request epochs and update timestamps are extracted

from log files of popular caches in order to calculate the total number of hit* occur-

rences among all user requests.

The selection of the distributions
� � and

�
� that best models arrivals and updates

is specific to each Internet application. Inter-request times in HTTP and FTP caches
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follow the Weibull and Pareto heavy tailed distributions, as reported in [27, 62] and

emphasized by Bestavros et al. in [10]. Locality of reference, whereby recently

accessed documents are likely to be shortly requested again, can be (partially) ex-

pressed through an appropriate selection of
� � [29, 64]. Web pages that contain

stocks and weather information on the Yahoo portal are updated periodically every

few seconds [67]; logs collected from news servers [60] and Harvest caches [18]

suggest a bimodal inter-update time distribution.

As we shall later observe, the expressions for the hit and hit* rates for the consis-

tency algorithms analyzed in the next chapters depend crucially on the (non-delayed)

renewal function � � � � � � � � � � � �5� . It is therefore rather difficult (if at all pos-

sible) to calculate these rates for general applications owing to the simple fact that� � � � � � � is not known in closed form except in some special cases (e.g., when �
is lattice or uniformly distributed, or for a class of matrix-exponential distributions

[5]). In order to circumvent this difficulty and apply the obtained results in general

applications, we derive distribution-free bounds on the calculated rates with the help

of well known bounds on the renewal function. Bounds on the hit and hit* rates are

then tightened when
� � belongs to several subclasses of distributions of interest, as

well as for specific inter-request time distributions.

7.5 Bounds on the renewal function

7.5.1 Distribution-free bounds

Bounds are available for the renewal function associated with any distribution
� � .

First, recall that the forward recurrence time rv � � associated with the rv � is dis-
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tributed according to

� � ��� � � � � � �
� �
� � � �3� � � 
 � � ���(�	
 (7.5)

Lorden [50] has shown the upper bound� � � � � � � � � � � � � �
�
��� � ��� �2
�� ���(� (7.6)

while Marshall [53] proved the lower bound� � � � � � � � � � �	� � � ��� � � � � � � �	��
�� ���(�	
 (7.7)

We refer to these results as distribution-free bounds as they only depend on the first

and second moments of the distribution
� � . These bounds may not be useful when

� �
�
� � � � � or � � ��� � � � are large for then there is a risk that the upper bound (7.6) is

too loose, or the lower bound (7.7) close to zero for � � � � � � (hence useless).1

To avoid the technical challenges associated with the distribution-free bounds

(7.6) and (7.7), we now seek alternative bounds that do not suffer from the dis-

advantages mentioned above. We achieve this goal by focusing the discussion on

subclasses of distributions of interest (i.e., ones that are commonly used in network

traffic modeling), for which tighter bounds are known to exist.

7.5.2 NBUE and NWUE distributions

A distribution
� � defined on � �	����� is said to be Increasing Failure Rate, denoted

IFR, if the mapping

� � � � �3� � � � �
� � �3� � � � ���(� (7.8)

1 ����	��
 �
����� 
 always since this is equivalent to ������������� 
 . Similarly, ��� �! #"%$'&(" � � $ is a

simple consequence of (7.5).
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is non-increasing in � for each � � � . Conversely, if the mapping (7.8) is non-

decreasing then
� � is termed Decreasing Failure Rate, or DFR in short.2

If a distribution
� � on � �	����� satisfies the condition

� � ��� � � � � � � ��� � � � ���(�	�

then
� � belongs to the class of New Better Than Used in Expectation (NBUE) dis-

tributions, and the associated renewal function is bounded from above by� � � � � � � � � � � � ���(�	
 (7.9)

On the other hand, when

� � ��� � � � � � � ��� � � � ���(�	�

then we say that
� � is New Worse Than Used in Expectation (NWUE). In this case,

the corresponding renewal function is bounded from below by� � � � � � � � � � � � ���(�	
 (7.10)

It is well known [12] that if
� � is IFR (equivalently, DFR), then it is also NBUE

(equivalently, NWUE).

To summarize, if
� � is either IFR or NBUE, then the following bounds on the

renewal function are readily available from (7.7) and (7.9), namely

� � �	� � � ��� � � � � � � � � � � � � � � � � ���(�	
 (7.11)

In a similar manner, the combination of (7.6) and (7.10) for
� � NWUE yields

� � � � � � � � � � � � � � � � � �
�
��� � � � ��
�� ���(�	
 (7.12)

2Much of this material can be found in the monograph by Barlow and Proschan [12].
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Finally, if
� � is DFR, then a tighter upper bound than the one specified in (7.6)

is reported by Brown [16]. Combining the upper bound by Brown with the lower

bound (7.10) gives

� � � � � � � � � � � � � � � �
� �
�
� � � � �
0 �2
�� ���,�	
 (7.13)

7.5.3 Distribution-specific bounds

Linear bounds on the renewal function are presented by Marshall [53]. These bounds

are specific for each given distribution and can be used to further improve the bounds

on the renewal function listed thus far.

For a given distribution
� � on � �	����� , define

� � � ������ ��� � � � � � � � � � ��� � � �

 � � � � � � � � � (7.14)

and

�

 � ������ ��� � � � � � � � � � ��� � � �

 � � � � � � � � � (7.15)

where �)� � � �,� � � � � � � � �6
 � . Then, the renewal function associated with the

distribution
� � is bounded from above by� � � � � � � � � � � � �

 � (7.16)

and from below by � � � � � � � � � � � � � �
(7.17)

for all values of ���,� .
Previous comments regarding NBUE and NWUE distributions allow the linear

bounds (7.16) and (7.17) to be sharpened: Whenever
� � is NBUE we have

� � � � � � � � � � � � � � � � �

 � ���(�	� (7.18)

73



and whenever
� � is NWUE we conclude

� � � � � � � � � � � � � � � � � � � ���(�	
 (7.19)

7.6 Poisson, Weibull, and Pareto requests

The Poisson, Weibull, and Pareto distributions are often used to model time gaps in

network packet arrivals, as well as inter-request times experienced by Web caching

systems. Consequently, special attention is given to evaluating the hit and hit* rates

under these inter-request time distributions, for each of the algorithms examined in

the following chapters.

Poisson requests. Poisson requests correspond to the generic inter-request time rv

� being exponentially distributed, say with rate
� � , i.e.,

� � � � � � 
 ��� ����� � � ���(�	


In this case, the renewal function is available in closed form [69] with� � � � � � � � � � � � ���(�	


This fact permits the derivation of closed form expressions for the hit and hit* rates,

provided that the inter-update time distribution
�

� is also at hand.

Of even greater interest are the Weibull and Pareto distributions, which were

proved more suitable (than the exponential distribution) in representing inter-arrival

times of user requests at the cache [27, 39, 62].

Weibull requests. The Weibull distribution is characterized by

� � � � � � 
 ��� � � � � 
�� � ���,�	� - � � �2�	�
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with the two first moments given by� � � � � 
� � � - � � �(
/�

and ��� � � � � 
� � � 0- �(
/�

where
� � � � is the Gamma function defined through

� � � � �
� 

� � ��� � � �  
 � � � �2�	


The residual lifetime rv ��� associated with the Weibull rv � has the distribution

� � ��� � � � �
� �

- � � � � 
- �/� � � ��� � � ���(�

with � � � ����� denoting the lower incomplete Gamma function given by

� � � ����� �
� �
� � ��� � � �  
 � � � ���	� � �(�	


It is well known [12] that the Weilbull distribution is DFR for - � 
 . Thus, the

DFR bounds in (7.13) can now be used to obtain bounds on the renewal function

associated with the Weibull inter-request time distribution, in the process yielding

� � � � � � � � � � � � � � � �
� �
�

0 � � � � 
 � 0
- �	�2
�� ���,�	


On the other hand, when - � 
 the Weibull distribution is IFR [12], and the appro-

priate IFR bounds (7.11) provide us with

� � � � � �

- � � � � 
- �/� � � ��� � � � � � � � � � � � � � � ���(�	


Here, the Marshall bounds (7.16) and (7.17) are omitted by the simple fact that
�

 �
� for - �)
 and

� � � � 
 whenever - �6
 , so the resulting bounds are less effective

than those listed above.
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Pareto requests. Similar arguments apply to the Pareto inter-request time distribu-

tion defined by

� � � � � ��
 � � �
� � � � � � ���(�	� - � � �2�	


This distribution is DFR, and we restrict the discussion to - �30 , in which case the

first two moments � � � � � �
- �2
 (7.20)

and ��� � ��� � 0 � �
� - � 0�� � - ��
/�

are finite. In this case, the distribution of the residual lifetime rv � � is given by

� � ��� � � � �3
 � � �
� � � � �

� �
� ���(�	


It is a simple matter to check that the DFR bounds in (7.13) yield

� � � � � � � � � � � � � � � 

- � 0 � ���,�	
 (7.21)

In addition, since
�

 �3
 in the Marshall bound (7.18), alternative bounds are readily

available in the form

� � � � � � � � � � � � � � �(
�� ���(�	
 (7.22)

Upon making use of these results, we conclude that

� � � � � � � � � � � � � � ��	 ��� � 

- � 0 ��
 � � ���,�

for all values of - ��0 .
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Chapter 8

The Fixed TTL Algorithm

8.1 Operational rules of the fixed TTL

With the nomenclature introduced in Chapter 7, the fixed TTL algorithm can be de-

scribed as follows: Whenever the server receives a request for
�

, say at time # �� for

some � �3�	��
���
�
�
 , it returns the current version together with the TTL field #%�6� .
The first miss request for

�
arrives to the cache at # �� ��� , and the cache makes the

returned version available at # �� �2� . Any subsequent request for
�

at the cache in

the time interval ��# �� �,� � # �� �)� ��# � is served directly from the cache without

contacting the server.

If a request at time # �� for some � � 
�� 0���
�
�
 is the first one presented after the

TTL has expired, then it is forwarded to the server, in which case requests arriving

during the interval ��# �� � � � # �� � � � # � are all hits. The discussion is carried out

under the assumption that the requests presented in ��# �� � # �� �(�!� for � ���	��
���
�
�
 ,
are sent to the server as well. However, the copies of

�
received in response to these

requests are neither placed nor do they reset the TTL, as assumed in [18] for the
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empirical evaluation of various TTL algorithms.1

8.2 Zero delays

In this section we drop � from earlier notation as it is now set to zero. Cache fresh-

ness of the object
�

is completely described by the validator process ��� � � � � � �
� � , which continuously tracks the TTL value at the cache. The process has right-

continuous sample paths with left limits, and is defined by

� � � � �%� � ��#
�
� �	�(� � � # �� � � 	 � #

�
� � ��� # �� 	��

for each � �)�	��
���
�
�
 , with the update rule

� ��#
�
� � �

��� �� # if � ��# �� � � �,�
� ��# �� � � if � ��# �� � � �2� 
 (8.1)

Operational assumptions made earlier lead to the initial condition � � � � � � � so

that � � � � � # by (8.1). The timer will have expired at time � � � if and only

if � � � � � � � . Thus, the � �
	 request at time # �� produces a hit if � ��# �� � � � � ;
otherwise it will be a miss. The hit rate2 � ��# � for the fixed TTL is now as defined in

(7.2). Its evaluation has been carried out already by Jung et al. [40].

Proposition 8.1 If the point process ��# �� 	�� � � �,�	��
���
�
�
 � is a renewal process, then

it holds that � ��# � � � � � ��# � � �

 � � � � ��# � � � 


1We restrict the analysis to the case � ��� , as customary on the Web.

2The notation � ����� is used here to reflect the dependency of the hit rate on the fixed TTL param-

eter � .
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Note that
� � � ��# � � ��� � � � ��# � � for all # ��� as soon as

� � admits a density, a

common occurrence in applications. Proposition 8.1 being a special case of Proposi-

tion 8.3 with �+�)� , its proof is therefore omitted.

As we now turn to the hit* rate, we note that even in the absence of transmission

delays between the server and the cache, there is a possibility that a request incurs

a hit for a stale copy. The consistency of the cached object with that offered by the

server is captured by the process ��� � � � � � � � � � which tracks the time until the

expiration of the cache-fresh* copy. This process has right-continuous sample paths

with left limits, and is defined by

� � � � � �$� � � ��#
�
� �	�(� � � # �� � � 	 � #

�
� � ��� # �� 	��

for each � �)�	��
���
�
�
 , with the update rule

� � ��#
�
� � �

��� �� 	 ��� � � ��# �� � ��� ����# �� � � if � � ��# �� � � �,�
� � ��# �� � � if � � ��# �� � � �2� 


The initial condition is taken to be � � � � � � �6� so that � � � � � � 	 ��� ��#���� ��� � � � . The

hit* rate
� ����# � is given by (7.3) with ��� � � � � � ���(� � as defined above.

Proposition 8.2 Under the assumptions of Proposition 8.1, it holds that

� � ��# � � � � � � 	 ��� ��#���� � � � � �

 � � � � ��# � � � (8.2)

provided the point process ��#  � 	�� � � �)�	��
���
�
�
 � is also a renewal process.

Proposition 8.2 follows from the analogous result for the general case � �$� given

in Proposition 8.4.

In this last expression the stationary forward recurrence time � � is taken to be

independent of the counting process � � � � � � ���(� � ; its distribution is given by

� � � � � � � � �
�

� �
� � � ��� ��� 
 � � ���,�	
 (8.3)
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An alternative expression for
� � ��# � follows by specializing (8.8) with � �+� , and

is given by

� � ��# � � � ��# ��� � � � � #�� � �
�

� 

�

� � � ��� � �

 � � � � � ��# � � � � � � �3� � � 
 �

� � ��# �	� �
�

� 

�

� � � ��# � � � � � � � ��� � �� � � ��# � � � �(
 � � �3� � � 
 � 
 (8.4)

8.3 Non-zero delays

In the presence of a network delay � � � , cache freshness is monitored through

the validator process ����� � � � � � ��� � , which continuously tracks the TTL value at

the cache (see Figure 8.1). This process has right-continuous sample paths with left

limits, and is defined as follows: First, define the � -valued rvs � � ��� � ���	��
���
�
�
 �
recursively by

� � 	�� � ����� � � � � � � # ���� � � � # �2# �� � (8.5)

for each � � �	��
���
�
�
 with � � � � . The rv � � identifies the � �
	 request forwarded

to the server that resets the TTL value to # , as we recall that requests made in the

interval ��# ���� � # ���� � �!� are forwarded as well, but do not affect the TTL at the cache

in that interval. For each � �)�	��
���
�
�
 we can then write

� � � � � ��� � � ��# ���� � �!� �(� � �(��# ���� � �!� ��� 	
on the interval � # ���� �(� � # ���� � � ���!� , with the update rule ��� ��# ���� �(�!� �$# . We

initially take � ��� � � �)� for � � � ��� , and the hit rate
� ��#����!� can be written as in

(7.2) with ��� � � � � � ���(� � .
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Cache
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T

T

Figure 8.1: A time line diagram of requests, updates, and the freshness tracking

processes for the fixed TTL with ���2� .

Proposition 8.3 If the point process ��# �� 	�� � � �,�	��
���
�
�
 � is a renewal process, then

we have

� ��#����!� � � � � � ��# � �!� � � � � � � � � �!� �

 � � � � � ��#�� �!� � � � (8.6)

for each � �,� .

As expected, this result specializes for �+�,� to the one stated in Proposition 8.1

and in [40]. A proof of Proposition 8.3 is available in Appendix B.

Next, the evaluation of the hit* rate is made possible through the server-freshness

tracking process ��� � � � � � � � � � � at the cache. This process has right-continuous

sample paths with left limits, and is defined as follows: For each � �)�	��
���
�
�
 we set

� � � � � � �$� � � � ��#
�
� � �!� �(� � �(��# �� � �!� � � 	

whenever # �� � � � ��� # �� 	�� � � with the update

� � � ��#
�
� � �!� �

��� �� 	 ��� � � � ��# �� � �!� �/� � ����# �� � � �!� 	 � � � � � � � ��# �� � �!� � � �)�
� � � � ��#

�
� � �!� � � � � � � � � ��# �� � �!� � � ��� 
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The initial conditions are taken to be � �

� � � � �6�	� � � � �(� , as illustrated in Figure

8.1. The hit* rate
� ����#����!� is given by (7.3), this time with ��� �

� � � � � � � � � , and is

evaluated in the following proposition.

Proposition 8.4 Under the assumptions of Proposition 8.2, we have

� � ��#����!� � � � � � 	 ��� � � � #���� � � � � � � � � � � 	 ��� � � ��� � � � �

 � � � � � ��#�� �!� � � � (8.7)

for each � �(� .

As before, � � is taken to be independent of the counting process � � � � � � � � � � ,
which allows us to rewrite the hit* rate as

� � ��#����!� (8.8)

� � ��#����!��� � � � � #�� � � � �
�

� 
 	 �
�

� � � ��� � � � � � � � �!� �

 � � � � � ��#�� �!� � � � � � ��� � � 
 �

� � ��#����!��� � � � ��� � � �
�

� 
 	 �
�

� � � � ��# � �!� � � � � � � � ��� � �

 � � � � � ��#�� �!� � � � � � ��� ��� 
 � 


The result (8.7) reduces to Proposition 8.2 for the case of �5� � . A proof of Propo-

sition 8.4, as well as the derivation of the alternative expression (8.8), are provided

in Appendix B.

8.4 Properties of the hit and hit* rates

Relationships between the derived rates are readily obtained from (8.8) for any value

of � �,� , under the assumptions of Proposition 8.2. The ratio (7.4) that captures the

fraction of non-stale hits satisfies the bounds

� � � � � #�� � � �
� � ��#����!�� ��#����!� � � � � � �2� � � (8.9)
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which clearly show the interplay between network delays and update statistics.

The ability of the fixed TTL to ensure consistency is degraded as the delay in-

creases, as is the case for most algorithms in practice. Better performance can be

achieved by lowering the value of # , yet it is possible that frequent updates prevent

users from ever being served with server-fresh data.3 Furthermore, if documents are

rarely updated, i.e.,
�

��� � , then (8.9) implies
� � ��#����!� � � ��#����!� as would be

expected.

Key to understanding the performance of practical Web caches under the fixed

TTL algorithm are the effects of # and � on the hit and hit* rates. To do so, we now

focus on monotonicity properties and on the asymptotics of the calculated rates as a

function of these system parameters.

Lemma 8.1 For any inter-request time distribution and fixed delay � ��� , the hit

rate produced by the fixed TTL is a non-decreasing function of # .

The proof of Lemma 8.1 is immediate and is therefore omitted.

Lemma 8.2 Assume that
� � � � � and

� � � � � are finite. Then, for each � � � , we

have the asymptotics

����	
���
 � ��#����!� �3

but

����	
���
 � � ��#����!� �)�	


3e.g., when the master is updated every � time units in which case ��� �  �� �!& � 
 .
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Proof. Starting with the hit rate, we note by the Basic Renewal Theorem [69] that

����	� ��

� � � � � � �
� � � � (8.10)

and the desired conclusion follows since

����	
���

� � � � ��# � �!� � � � � � � � � �!� �

#�� � � #�� �

 � � � � � ��# � �!� � � � ��
�


For the hit* rate, applying the distribution-free bounds (7.6) and (7.7) we get the

inequality � � � ��� � � � � � � � �!� �

 � � � � ��#�� �!� ��� �

� � � � � �
�
� � � � �

� � ��#�� �!� � � � � �

which leads to the result

����	
���
 � � ��#����!�
� ����	
���
 � � ��#����!��� � � � � #�� � � � �

�

� 
 	 �
�

� � � ��� � � � � � � � �!� �

 � � � � � ��#�� �!� � � � � � ��� ��� 
 � �

� ����	
���

�

�

� � ��#�� �!�
� 
 	 �
�

� � � � � � �
�
��� � � � � � � ��� � � 
 �

� ����	
���

�

�
� � � � � � � � � �

�
� � � � �

� � ��#�� �!�
� �	


This last inequality is a consequence of the assumption
� � � � � � � and

� � � � � � � ;

a common occurrence in applications.

Although very tempting, it is erroneous to conclude that either one of the hit or

hit* rates are monotone in � for any given inter-request time distribution
� � . This

monotonicity property can be deduced in some special cases (e.g., Poisson requests),

and sufficient conditions for it are provided in the following lemma.
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Lemma 8.3 Given the TTL parameter # , the hit rate incurred by the fixed TTL is

non-increasing in � on � �	� #�� if the inter-request time distribution
� � satisfies the

condition� � � � � � � � � � � � � � � � � � ��#�� � � �	� � ��#�� � � � � � � �,� ����� � �2#�
(8.11)

On the other hand, if
� � and the inter-update time distribution

�
� satisfy the more

relaxed condition

� � � � ��� � � � � � � � � � �	� � � � � � ��� (8.12)

� � � � � � #�� � � � � � � � ��# � � � �	� � ��#�� � � � ��� � � �(� ����� � �2#��
then the hit* rate is non-increasing in � on � �	� #�� .

Proof. The lemma only considers the delay � in the interval � �	� #�� , to comply with

the ongoing assumption # �6� that was used throughout the analysis of the hit and

hit* rates.

Observe that if � � �3� � , then
� � � ��# � � � � ��� � � � ��#�� � � � � , and the suffi-

cient condition (8.11) immediately ensures
� ��#���� � � � � ��#���� � ���(� . To derive the

condition on the hit* rate, we refer to the expression for
� ����#����!� in (8.7) and define

� ��#����!� � � � � � 	 ��� ��#�� � ��� � � � � � � � � � � 	 ��� � � ��� � � � ��

The desired monotonicity

� ����#���� � � � � ����#���� � � � � is satisfied if
� ��#���� � ���

� ��#���� � � ��� for # ��� � �5� � ��� . A closer examination of this requirement

yields

� ��#���� � �	� � ��#���� � �
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� � � � � � ��� � � �(� � ��� � � � � �	� � � � � � � �
� � � � � � � � � � �2#�� � � ��� � � � � �	� � � � � � � �
� � � � � #�� � � � � � �2#�� � � ��� � � � � �	� � � � � � � � ��#�� � � �	� � � � � � � �
� � � � � #�� � � � � � ��� � � � � �	� � � � � � � � ��#�� � � �	� � ��# � � � � � �

� � � � � � � � � � ��� � � � � �	� � � � � � � �
� � � � � #�� � ����� � ��� � ��#�� � � �	� � ��#�� � � � � �

� �	


Under the assumption that � � is independent of the inter-request time rv � , this last

inequality is equivalent to the monotonicity condition (8.12).

It is now left to explore the asymptotic behavior of the hit and hit* rates as �
becomes very large. Before doing so, it is important to point out that the sufficient

conditions listed in Lemma 8.3 are clearly satisfied when the inter-request time is

exponentially distributed (i.e., Poisson requests).

Lemma 8.4 For each #6��� we have the asymptotics

����	
� ��


� � ��#�� � ���!� � �	�

and

����	
� ��


� ��#�� � ���!� � 

0 


The proof of Lemma 8.4 follows similar arguments as those used in the proof of

Lemma 8.2, and is therefore omitted.
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8.5 Evaluating the hit and hit* rates

8.5.1 Exponential inter-request times

An important special case arises when requests occur according to a Poisson process,

in which case quite explicit expressions are available, namely

����� � � ��#����!� � � � #
� � ��# � �!� �(


and

� ���� � � ��#����!� � � �
� � ��#�� �!� �(
 � � � 	 ���*� � � #���� � �	� 	 ��� � � ��� � � ��


While a simple closed form expression is available for the hit rate, the hit* rate can be

evaluated in principle once the distribution
�

� is specified. For instance, consider the

case when updates occur periodically every �  time units. It is plain that
� � ��#����!� �

� whenever �4 �6� (as would be expected). However if � �)�  , as we recall that

� � is uniformly distributed on the interval � �	���  � , simple calculations show that

� ���� � � ��#����!� �
� �

0��  � � � ��#�� �!� �(
/�
�
� �  � �!� � � � � �  � � � # � 	 � ��� 


This expression allows for a comparison between the hit and hit* rates incurred by

the fixed TTL for the practical systems examined in [67], as illustrated in Figure 8.2

for several values of # and � .

8.5.2 Distribution-free results

Bounds presented in Section 7.5.1 for the renewal function associated with any distri-

bution
� � can now be used to get rough estimates of the hit rate under the fixed TTL.
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Figure 8.2: Hit and hit* rates for Poisson requests and fixed inter-updates �! � 
 .
(a) Hit* rate, #,��
 ; (b) Hit* rate, #,�,�	
'& ; (c) Hit rate, #(�3
 ; (d) Hit rate, #(�,�	
'& .
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Explicitly, by replacing the renewal function terms in the expression for
� ��#����!�

with the applicable bounds (7.6) and (7.7), we find
� � # � � � ��� � #�� � � � � �

�
� � � � �

� � ��#�� �!� � � �
�
� � � � � � � ��#����!� � � � #�� � �

�
� � � � � � � � ��� �2� �

� � ��#�� �!� � � � ��� � #�� � � 

These bounds are obviously not effective when

� �
�
� � � � � is large, for then it is pos-

sible for the upper bound to be greater than one and the lower bound to be negative.

Similar bounding arguments can be invoked for the hit* rate, in the process yield-

ing the upper bound

� � ��#����!� �
� � ��#�� �!� �(


� � ��#�� �!� � � � ��� � #�� � �
� ���� � � ��#����!�

� � � � � ��� ��� � �
�
� � � � � � � � ��� �2� ���

� � ��#�� �!� � � � ��� � #�� � �
and the associated lower bound

� � ��#����!� �
� � ��#�� �!� �(


� � ��#�� �!� � � �
�
� � � � �

� ���� � � ��#����!�
� � � � � �2� � � � �

�
� � � � � � � � ��� � #�� � ���

� � ��# � �!� � � �
�
� � � � � �

which clearly suffer from the same deficiencies emphasized before.

8.5.3 NBUE and NWUE Requests

We now demonstrate how the NBUE and NWUE bounds described in Section 7.5.2

can be used to better evaluate the hit and hit* rates, by tightening the bounds obtained

in the last section. For
� � NBUE, the hit rate satisfies

� � # � � � ��� ��# � � �
� � � � � # � �(
 � � ��#����!� � � � #�� � � ��� �2#�� � �

� � � � � # � � � � � � � #�� � � �
and the bounds for the hit* rate are given by

� � ��#����!� � � � � ��# � �!� �(
/� � ���� � � ��#����!�
� � ��#�� �!� � � � ��� � #�� � � �

� � � � �2� � � � ��� �,� �
� � ��#�� �!� � � � ��� � #�� � �(8.13)
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and

� � ��#����!��� � ���� � � ��#����!�	� � � � � �2� � � � ��� �2#�� � �
� � ��#�� �!� �(
 
 (8.14)

Similarly, with
� � NWUE we have

� � # � � �
�
� � � � � �(


� � � � � # � � � �
�
� � � � � �

� ��#����!� � � � # � � �
�
� � � � � ��


� � � � � # � �(
 �

together with

� � ��#����!� � � ���� � � ��#����!� � � � � � ��� ��� � �
�
� � � � � ��
/�

� � ��# � �!� �(

and

� � ��#����!��� � � � ��#�� �!� �(
/� � ���� � � ��#����!�
� � ��#�� �!� � � �

�
� � � � � � � � � � ��� ��� � �

�
� � � � � ��
/�

� � ��#�� �!� � � �
�
� � � � � 


Although good bounds are already established for NBUE (and thus IFR) distri-

butions, the NWUE bounds are still not satisfactory, for the same reasons outlined

earlier. To further tune these bounds, we make use of Marshall’s linear bounds,

namely (7.16) and (7.17), in the expressions for the hit rate, and obtain
� � # �(� �  � � � �


 � � � ��# � �!� � �

 
� � ��#����!� � � � #��)� �  � � � �


 � � � ��#�� �!� � � ��


Applying the linear bounds on the hit* rate yields

� � ��#����!��� � ���� � � ��#����!� 
 � � � ��#�� �!�

 � � � ��#�� �!� � � ��� � � � � �2� � � �  � � � �


 � � � ��#�� �!� � � � (8.15)

and

� � ��#����!� � � ���� � � ��#����!� 
 � � � ��#�� �!�

 � � � ��# � �!� � �

 
� � � � � ��� ��� �  � � � �

 � � � ��# � �!� � �

 

 (8.16)

The refined bounds are therefore achieved as we recall that
� � � � (equivalently,

�

 �)� ) whenever
� � is NWUE (equivalently, NBUE), respectively.4

4See (7.18) and (7.19), as well as previously made comments in Section 7.5.3.
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Figure 8.3: Upper bound, lower bound, and simulated hit* rate with fixed inter-

updates �" !�5
 and #3�%�	
'& : (a) Weibull inter-request times, � �$� , - �5
�
 � ; (b)

Pareto inter-request times, �+�3
/.�� , - �60�
1
 .

The use of these bounds is exhibited in Figure 8.3, when inter-request times are

modeled by the Weibull and Pareto distributions under fixed inter-update times. In

this figure, while we used the NBUE bounds (8.13) and (8.14) for the Weibull distri-

bution, in the case of the Pareto distribution, we have relied on the results (8.15) and

(8.16) with
� � �,� and

�

 ��
 , as already concluded in (7.22).
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Chapter 9

The Perfect TTL Algorithm

The perfect TTL is a non-causal consistency algorithm where the server knows at

any given time when the current version of
�

will be updated. Each time the server

receives a request for
�

, say at time � , it returns the current version together with the

residual lifetime value � ��� � � as its TTL. The downloaded document is placed in the

cache at time � � � , and is considered cache-fresh until � � � ��� � � .
In general, Web servers are not capable of predicting the next master modification

time, therefore the implementation of the perfect TTL is not feasible in many caching

systems in practice. In spite of this fact, the perfect TTL algorithm can be easily

deployed in applications where the rollout schedule for the Web server is known in

advance, a common practice in commercial servers with frequently updated pages

[67].

The analysis of the perfect TTL is not only important for evaluating the consis-

tency performance that can be attained by the systems described in [67], but it also

contributes to understanding the limitations of other consistency protocols: Since the
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perfect TTL is the single strong consistency algorithm in the class of TTL protocols,1

we expect this algorithm to produce the highest hit* rate among all TTL algorithms.

9.1 Rules of engagement

When � �+� , a document downloaded from the server in response to a cache-miss

at time # �� for some ��� �	��
���
�
�
 is instantenously placed in the cache, and the

server-fresh object is sent to the user. All requests that arrive during the time interval

��# �� � # �� � � ����# �� � � incur a hit and are served by the cache with a server-fresh doc-

ument. Consequently, each hit request produces a hit*, hence the perfect TTL is a

strong consistency algorithm. In addition, since the server-freshness of
�

expires at

the precise moment of TTL expiration at time # �� � � ����# �� � , the server-freshness and

cache-freshness tracking processes are identical for all � � � , and the hit and hit*

rates are equal when � is indeed zero.

Now pick an arbitrary � �(� . The first miss request for
�

arrives to the cache at

# �� �)� , the cache places the returned version at # �� � � , and forwards the downloaded

item to the user. If the master is updated prior to placement, i.e., � ����# �� � �3� , then

the cache immediately marks
�

as invalid. On the other hand, if � ����# �� � � � , then

any subsequent request for
�

at the cache in the time interval ��# �� � � � # �� � � ����# �� � �
is served directly by the cache with a server-fresh copy.

As before, if a request at time # �� for some � �$
�� 0���
�
�
 is the first one presented

after the TTL has expired, then it is forwarded to the server. Requests presented

1See additional arguments below.
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during the time interval ��# �� � # �� � �!� that find an invalid cached copy are forwarded

to the server as well. If a document returned from the server finds a zero TTL value

at the cache, then the TTL counter is reinitialized upon the placement of the newly

retrieved document.2

9.2 Quality of data under the perfect TTL

For the consistency algorithms considered in this dissertation, the cache-freshness

and server-freshness tracking processes, ��� � � � � � � � � � and ��� � � � � � � � � � � , re-

spectively, are related through � ��� � � � � � � � � � , for all � � � and � � � . These

two processes are obviously not equal in general, as previously demonstrated in the

analysis of the fixed TTL [8].

We have already established that if �5�6� , then under the perfect TTL the cache

and server freshness tracking processes coincide. This fact remains true even when

� is non-zero, as later explained in the hit* rate analysis in Section 9.4. The perfect

TTL is therefore a special case where � � � � � � � � � � � � for all � � � and � � � ,
whence the hit and hit* rates are always equal. As a result, the QoD given by the

ratio (7.4) achieves its maximal value of one.

In spite of maximizing the QoD measure, it is erroneous to conclude that the

perfect TTL achieves a higher hit* rate than all other (including non-TTL) cache

2These operational constraints coincide with the rules of the fixed TTL algorithm discussed in

Section 8.1, where requests arriving after a cache miss at time ���� in the interval �������� ���� � � � for

� � 
 � 
 �	�	�	� , are also forwarded to the server. However, under the assumption � � � for the fixed

TTL, miss requests presented in this time interval never find a zero TTL upon their return to the cache,

hence do not affect the TTL of the cached copy.
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consistency protocols: Consider the replication server-invalidation algorithm. Under

this algorithm, the server publishes master changes to the cache upon each update. As

a consequence, documents stored at the cache are always cache-fresh, therefore user

requests are always served by the cache. When �%�)� , master changes are replicated

to the cache instantenously, and every request is served with a cache-fresh* docu-

ment. In other words, when ���3� , the hit and hit* rates attained by the replication

algorithm are both equal to one, whereas under the perfect TTL the hit* rate (9.3) is

clearly less than one.

9.3 Zero delays

In the notation of the modeling framework, let ��� � � � � � � � � denote the cache

(and server) freshness tracking process of
�

at the cache.3 This process has right-

continuous sample paths with left limits, and is defined by

� � � � �%� � ��#
�
� �	�(� � � # �� � � 	 � #

�
� � ��� # �� 	��

for each � �)�	��
���
�
�
 , with the update rule

� ��#
�
� � �

������ �����
� ����# �� � if � ��# �� � � �)�
� ��# �� � � if � ��# �� � � ��� . (9.1)

The initial value of the process is taken to be � � � � � �)� so that � � � � � � ��� � � � � �
by (9.1). The TTL expires at time � �)� if and only if � � � � ����� , and therefore the

�
�
	 request at time # �� produces both a hit and hit* if and only if � ��# �� � � �2� .

3Since ������� $ � � $ � 
�� ����� 
 � � $ � � $�� 
�� for � � 
 from previous arguments, we only refer

to the process ������� $ � � $ � 
�� throughout this chapter. Furthermore, in this section � � 
 and is

omitted from the notation.
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The tracking process ��� � � � � � � � � is related to the residual lifetime process

� � ��� � � � � � � � , but is not identical to it. To appreciate this fact, introduce the

sequence ��� � � � �)�	��
���
�
�
 � of � -valued rvs through

� � � ����� ��� �)�	��
���
�
�
 � #  � �2#
�
� � 
 (9.2)

As the rv � � identifies the first request made after the � �
	 update, � � �	��
���
�
�
 ,
the rv # ���� represents the first request epoch after that update taking place at #  � . It

is easy to check that the two processes coincide everywhere except in each interval

� #� � � # ���� � where the tracking process vanishes. In particular, � ��# ���� � � � � and

the request occuring at time # ���� incurs a miss. However, all the requests made in

the interval ��# ���� � # ���� � � ����# ���� � � result in a hit. This fact allows for an equivalent

definition for the TTL tracking process, namely

� � � � � � � ��# ���� �	�(� � � # ���� � � 	
whenever # ���� � ��� # ���� 	�� for each � �,�	��
���
�
�
 , with the update rule

� ��#
�
��� � � � ����# ���� � 


We use the initial condition � � � � � �)� so that � ��# �� � � �,� � � � � � � .
The corresponding hit rate

�
(and thus the hit* rate

� � as well) is defined at (7.2)

with ��� � � � � ���(� � .

Proposition 9.1 If the point processes ��# �� � � ���	��
���
�
�
 � and ��#  � � � ���	��
���
�
�
 �
are renewal processes, the common value of the hit and hit* rates is given by

� � � � ��
 � � � ��� �����
� � � � � � � 
 (9.3)
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The proof of this proposition is omitted as it is available by assigning � � � in

Proposition 9.2.

In the expression (9.3) the stationary forward recurrence time � � is taken to be

independent of the counting process � �4� � � � � �+� � , and its distribution is given by

(7.5). An alternative expression for
�

can therefore be written as

� � � � ��
 � �
�

� 

� � � �3��� � � � �3��� � 
�� (9.4)

and is a direct consequence of (9.6) with �+�,� .

9.4 Non-zero delays

A request presented at time # ���� finds an invalid cached document and incurs a miss.

The downloaded copy is placed in the cache at # ���� �!� and expires at # ���� � � ����# ���� � ,
possibly prior to placement. All requests that arrive in the interval ��# ���� � # ���� �(�!�
also find an expired cached copy and are forwarded to the server as well, to increase

the consistency of
�

at the cache: If # ���� � #� � 	�� � # ���� � � for some � �)�	��
���
�
�
��
then the document placed at time # ���� ��� is immediately stale, and requests made

during � #� � 	�� � # ���� � �!� retrieve the latest version of
�

and replace the stale replica.

These dynamics are illustrated in Figure 9.1.

Under these rules of engagement, the validator tracking process ��� � � � � � � � � �
can be defined as

� � � � � �$� � ����#
�
� � �!� �(� � �(��# �� � �!� � � 	
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Figure 9.1: Time line diagram of requests, updates, and the tracking process of the

perfect TTL algorithm for ����� .

whenever # �� � � � ��� # �� 	�� � � , and adopts the update rule

� � ��#
�
� � �!� �

������ �����
� � ����# �� �	� �!� 	 if � � � ��# �� � �!� � � �)�
� ��� ��# �� � �!� � � if � � � ��# �� � �!� � � ��� 


This tracking process can again be related to the residual lifetime process � � ��� � � � ���
� � as follows: If # ���� �3� � #� � 	�� (equivalently, � ����# ���� � � � � � ) for some

� � �	��
���
�
�
 , then the two processes coincide on each interval # ���� ��� � � �
#  � 	�� , whereas ����� � � � � in each interval � #  � � # ���� ���!� . In all other cases where

# ���� �,� � #� � 	�� , the tracking process is zero in the interval � #  � � #� � 	�� � . In other

words, the two processes coincide wherever the tracking process is non-zero. These

observations lead to the alternative definition of the tracking process given by

� � � � � �%� � � ��#
�
��� � �!� �(� � �(��# ���� � �!� � � 	
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on each time interval # ���� � � � ��� # �� � � � � � �
� �)�	��
���
�
�
 , updated by the rule

� � ��#
�
��� � �!� �%� � ����# ���� �	� �!� 	 �

with the initial value ��� � � � � � at � �,� . Moreover, by the fact that ��� � � � � � ��� � �
on the set � ���(� � � ��� � � ��� � it is plain that each hit request incurs a hit*, whence

the processes ����� � � � � � � � � and ��� � � � � � � � � � � coincide, as in the case of zero

delays.

The hit rate
� � �!� is given in (7.2) with the tracking process ��� � � � � � ���(� � , and

an expression for it is available in the following proposition.

Proposition 9.2 With the assumptions of Proposition 9.1, the common value of the

hit and hit* rates is given by

� � �!� � � � � �!� � 
 � � � � � 	 ��� � ��� � � ��� � � �
� � � � � ��� (9.5)

� 
 � � � � � ��� � ��� ��� � � � � �
� � � � � ���

� � � ��� � � � � � � 
 � � � � � �!� ���
� � � � � � � 


As expected, when � �6� this result specializes to the one stated in Proposition 9.1.

A proof of Proposition 9.2 is available in Appendix C.

Here again, the rv ��� in (9.5) is taken to be independent of the counting process

� �4� � � � ���(� � . This fact allows us to rewrite the hit rate as

� � �!� � 
 � �
�

� 

�

�  �  � � 
 � � 
 � � � � ��� � ��� ��� � � ��� � � 
 ��
 � � ��� � (9.6)

�6� 
 � � � � � �!� ����� �
�

� 

� � � ��� ��� � � � � �3� � � 
 �/�

which reduces to (9.4) for ����� . A proof of the alternative expression (9.6) is also

provided in Appendix C.
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9.5 Bounds and properties

Bounds on the hit rate produced by the perfect TTL can be derived from the expres-

sion (9.5), for any inter-request time and inter-update time distributions. Explicitly,

under the renewal assumption on the point process of requests, we have4� � � � � � ��� � � � � � � � �
� � � � � � � � � � � � ��� � � � � 
 � � � � � �!� � �

� � � � � ��� � (9.7)

and we obtain the lower bound

� � �!��� 
 � 
 � � � � � �!� �
� � � � � ��� 
 (9.8)

An upper bound can be developed by removing the negative term in the left hand side

of the expression (9.7) for the hit rate. This yields

� � �!� � 
 � � � ��� � � � � � � 
 � � � � � �!� ���
� � � � � ��� � (9.9)

and equality is achieved whenever �+�)� .
The single parameter that affects the consistency performance of the perfect TTL

is the download delay � . Under the operational rules of this algorithm, we (in-

tuitively) anticipate that increased communication delays would degrade the cache

consistency outcome. This is indeed the case, as concluded in the following proposi-

tion.

Proposition 9.3 The hit rate produced by the perfect TTL algorithm is a non-increasing

function of � , with ����	
� ��


� � �!� �,� .

Proof. Take � � �+� � �%� . From the expression (9.6) for the hit rate, it is simple

4A proof for (9.7) is provided in Appendix C.
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matter to check that



�

�
� � � � � �	� � � � � � �

�
� 

�

� ���

� �
� 
 � � � � ���/� � ��� � ��� � ��� � 
 � 
 � � ��� �

� � 
 � � � � � � � � ���
� 

�

� �  � � � 
 ��  � ��� 
 � � � ��� � � 
 ��
 � � ��� �

��� � � � � � � � � � � � � � � � � ���
� 

� � � ��� ��� � � � � � �3� � � 
 �/


The desired result
� � � � � � � � � � ���(� follows by replacing

� � � ���/� � with
� � � � � � � �

(clearly not greater than
� � � ���/� � for � in the interval � � ����� � � ), cancelling the first

two terms in this last expression, and recalling that
� � � � � � � � � � � � � � � � � �(� .

The asymptotic behavior of
� � �!� can be derived from (9.6) as well: First, the

hit rate can be rewritten as

� � �!� � 
 � �
�

� �

� 

�

�  �  � � 
 � � 
 � � � � ��� � ��� ��� 
 � ��� � ��� 
 � � ��� �

�6� 
 � � � � � �!� ����� �
�

� 

� � � ��� ��� � � � � �3� � � 
 �/


Letting � go to infinity, we find

����	
� ��


�
�

� �

� 

�

�  �  � � 
 � � 
 � � � � ��� � ��� ��� 
 � ��� � ����
 � � ��� � � �
�

� 

� � � 
 � � ��� � �3
�


This result is a simple consequence of the Renewal Equation [69] according to which

� � � � � � �
� � 
 �

� � � � �	� ��� � � 
 � ��� � ��� � ���(�	


Then, by applying the Basic Renewal Theorem (8.10) and recalling ����	
 ��
 � � � �3� � � �)�

(implied by the integrability of
�

� ), we have

����	
� ��
 � 
 �

� � � � �!� ����� �
�

� 

� � � ��� ��� � � � � �3� � � 
 �
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� ����	
� ��


� � �
�

� 

� � � � ��� ��� � � � � �3� � � 
 �

� ����	
� ��


� � �
�

� 

� � � � ���2� � � � ��� � � 
 �

� �	�

which completes the proof of the proposition.

9.6 Evaluation of the hit and hit* rates

9.6.1 Poisson requests

When inter-request times are exponentially distributed with rate
� � , the hit rate of

the perfect TTL can be written as

����� � ��� �!� � �
�
� �
� � � �!� 	 � � � �� �


 ��� ����� � � � � 
 � � 	
�

�
�

� �
����� � � � � � � �!� 	 � � � (9.10)

with mapping
� ��� � 	 � � � 	 given by

� ��� � ��� �,� 
 ��� �	� � �
� �(�	


This mapping is monotone increasing, thereby confirming the validity of Proposition

9.3 for the special case of Poisson requests.

A closed form expression for the hit rate can be found in some scenarios. For

instance, under periodic updates where
�

is altered every �! time units, we find that

����� � ��� �!� �)�	� �  �(� �
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Figure 9.2: The hit and hit* rate of the perfect TTL with Poisson requests and fixed

inter-updates �4 *�3
 , for several values of � .

while with �" "��� the expression (9.10) becomes

����� � ��� �!� � �" � ��  � 

� � �  � 
 ��� �����

� ��� � � 
 � 

This hit rate is presented in Figure 9.2 for several values of the delay � , where we

can now visualize the degradation of the hit rate as � increases.

9.6.2 Distribution-free results

The bounds presented in (9.8) and (9.9) are not very useful in general applications, as

the value of the renewal function
� � � � � � � may not be known in closed form for every

���(� . To circumvent this difficulty, additional bounds can be derived by utilizing the

bounds on the renewal function discussed in Chapter 7.

A new upper bound can be developed by replacing the term
� � � � �!� � in the upper
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bound expression (9.9) with the lower bound (7.7), so that

� � �!� � 
 � �
�

� � � � ��� � � � ����� � � � � � � ��� ��� ��� 
 (9.11)

In this last term we have taken
� � � � � � � � � � � � � �

� , by virtue of the fact that the rv

� is independent of the stationary point process of user requests.

A lower bound on the hit rate can be derived in a similar manner, by assigning

(7.6) in the lower bound (9.8). This action results in a smaller lower bound than the

one reported in (9.8), which is given by the expression

� � �!��� 
 � �
�

� � �
� � � � � �

�
��� � � � � 
 (9.12)

The new lower bound is inefficient when
� �
�
� � � � � is large, and therefore better

bounds are still required.

To conclude this section, note that additional bounds can be obtained by using the

Marshall bounds. Replacing the term
� � � � �!� � with the corresponding lower bound

(7.17) in the upper bound expression (9.9) yields

� � �!� ��
 � �
�

� � � � ��� � � � ����� 
 � � � � � � � � 
 (9.13)

Similar calculations provide us with the lower bound

� � �!��� 
 � �
�

� � � 
 � � � � � �

 � � (9.14)

with
� �

and
�

 given in (7.14) and (7.15), respectively.

9.6.3 NBUE and NWUE Requests

The hit rate under the perfect TTL algorithm can be better estimated by tightening

the bounds listed thus far. This goal is achieved in this section when the distribution
� � is either NBUE or NWUE.
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Figure 9.3: Upper bound, lower bound, and hit rate simulation results under fixed

inter-update times �4 = 1: (a) Weibull inter-request times, � � �	
'0 , - � 
�
 � ; (b)

Pareto inter-request times, �+�3
/.�� , - �60�
1
 .

If the inter-request time distribution is NBUE, the previous lower bounds can be

revisited to write

� � �!��� 
 � �
�

� � � 
 � � � �!�

as we recall that
�

 � � in (9.14) for all NBUE distributions. Combining this last

inequality with (9.11) we find that the distance between the upper and lower bounds

for NBUE inter-request time distributions is given by

�
�

� � ��� 
 �
� � �!� � � ��� � ������� � � � ��� � � � � � � � ��� �(� � � �

so that the hit rate can already be well-estimated when � is small and
� � �*� �

� , as

is the case in most Web applications.

Similarly, if
� � is NWUE, then the bound

� � �!� � 
 � �
�

� � � � ��� � � � ����� 
 � � � �!� (9.15)
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follows from (9.13), since now
� � � � . Here, the lower bound (9.12) that suffers

from the disadvantages mentioned earlier remains the best lower bound for general

NWUE distributions. However, once the distribution
� � is given, improved bounds

can still be derived. For example, when
� � is the Pareto distribution, then

�

 � 
 ,
and the lower bound (9.14) is given by

� � �!����
 � �
�

� � � 0�� � � �!� 


These bounds, together with the NBUE bounds, are illustrated in Figure 9.3 for the

Pareto and Weibull inter-request time distributions, respectively.
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Appendix A

A Proof of Theorem 4.1

Theorem 4.1 is a direct consequence of the following fact:

Proposition A.1 For each #(�)�	��
���
�
�
�� it holds that

����� 	 ��� � � � � � � ��� � � 
 � � � � � � � �*� � � (A.1)

� ����� 	 ��� � � � � � � � � ��� � ����� � �
for any � � ����� in

�
with � not in � .

Equality (A.1) is understood to mean that� � � 
 � � � � � � � � � � � � 	 ���
 ��	 	 � � � � 
 � � � � � � � � � � � (A.2)

holds with � given by

� � ����� 	 ��� ��� � � � � � � �
��� ���
��� � 
 (A.3)

The proof proceeds by induction on #,�,�	��
���
�
�
 .
The basic step - Fix � � ����� in

�
and note that

� � � � ����� � � � � 
� � � ��� ��� 
 (A.4)
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Thus, for � in � � � distinct from � (also in � � � by virtue of its definition (A.3)),

we have � � � � � � � � � � � � � � �
� � � � � � � 
� � � � � � � ��� � � � �
� � � � � � � 
� � � � � ��� � � � � � � � � � � � �
� � ��� � � � �

with a similar expression for
� � � � � � � � � � � � � � � . Hence,� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � ��� � ����� ��� � � � � ��� � � (A.5)

and (A.1) does hold for #,�,� .
The induction step - Assume (A.1) to hold for some #(�6�	��
���
�
�
 . Fix � � ����� in

�
with � not in � . We need to show that for � in � � � , we have� � � 
 � � � � � � � � � �	� � 
 � � � � � � � � � � � �(� (A.6)

with � given by (A.3).

Fix � in � � � and note that � � �

is distributed like � �

and is independent of it, by

the IRM. Using the DPE (4.3) we can write� � � 
 	�� � � � � � � � � � � �
� � � � � � � � � � � � � � � 
 � � � � � � � � � � � �
� � � � � � � 
� � � � � � � ��� � � � � (A.7)

� � �
� � � � 
� � � � � � � 	 ���

 � ��	 	 � �  	 ��� � � � 
 � � � � � � � � � � � � � � � � � ���*

Note that

� � � � � � � � � � � � � � 
 � � � � � � � � � � � �
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� � � � � � � � � �,��� � � � � � � � 
 � � � � � � � � � � � �
� � � � � � � � 
 � � � � � � � � � � � � (A.8)

with � defined by (A.3), and that� � � � � � 
� � � � � � � ��� � � � �
� � � � � � � 
� � � � � ��� � � � � � � ��� � ����� � 
 (A.9)

Finally, � �
� � � � 
� � � � � � � 	 ���

 � ��	 	 � �  	 ��� � � � 
 � � � � � � � � � � � � � � � � � ���
� � �

� � � � 
� � � � � 	 ���
 � ��	 	 � �  	 ��� � � � 
 � � � � � � � � � � � � � � � � � ���

� � ��� � 	 ���
 � ��	 	 � � � � 
 � � � � � � � � � � � � ��
 (A.10)

Reporting (A.8), (A.9) and (A.10) into (A.7), we conclude that� � � 
 	�� � � � � � � � � � � �
��� � � � � � � � �,��� � � � � � � � 
 � � � � � � � � � � � �
� � � � � � � 
� � � � � ��� � � � �
� � ��� � ����� � � � ��� � 	 ���

 � ��	 	 � � � � 
 � � � � � � � � � � � � �
� � � � � � � � 
 � � � � � � � � � � � � (A.11)

� � �
� � � � 
� � � � � 	 ���

 � ��	 	 � �  	 ��� � � � 
 � � � � � � � � � � � � � � � � � ���*

We can now write the corresponding expression (A.11) with � replaced by � , and

the difference in (A.6) takes the form� � � 
 	�� � � � � � � � � � �	� � 
 	�� � � � � � � � � � � �
��� ��� � ����� � � � � � � ��� � �

��� � � � � � � � �(��� � � � �/� � � � ��� � � � � � � � � � � � ��� (A.12)
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with

� � � � � � � 
 � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � �
� � � � 	 ���

 � ��	 	 � � � � 
 � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � �
� � � � � � � 
 � � � � � � � � � � � � � 	 ���

� � ��	 	 � � � � 
 � � � � � � � � � � � � � (A.13)

and

��� � � �
� � � � 
� � � � � 	 ���

 � ��	 	 � �  	 ��� � � � 
 � � � � � � � � � � � � � � � � � � �
� � �

� � � � 
� � � � � 	 ���
� � ��	 	 � � � 	 ��� � � � 
 � � � � � � � � � � � � � � � � � � � 


Observe that � ��� � ����� � � � � � � ��� � ���(� by the definition of � and that the condition

� ���,� , being equivalent to (A.1), holds true under the induction hypothesis. Again,

by invoking the hypothesis we have that

	 ���
 � ��	 	 � � � � 
 � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � �

and therefore concludes � � �,� . Similarly, for � � we get� � � 
 � � � � � � � � � � � � � 	 ���
 � ��	 	 � � � � 
 � � � � � � � � � � � � �

� � � � 
 � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � � �)� � �
which is non-negative as argued earlier in the context of � � .

Consequently, it is already the case that� � � 
 	�� � � � � � � � � � �	� � 
 	�� � � � � � � � � � � � �,� (A.14)

directly from the induction hypothesis, and (A.3)-(A.6) will hold if we can show that

��� �,� . Inspection of � � reveals that � � �,� provided

	 ���
 � ��	 	 � �  	 ��� � � � 
 � � � � � � � � � � � � � � � � � �
� 	 ���

� � ��	 	 � � � 	 ��� � � � 
 � � � � � � � � � � � � � � � � � � �(� (A.15)
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whenever � �

is not in � � � .
To establish (A.15) we find it useful to order the set of documents � 
���
�
�
 � � �

according to their expected cost: For � and � in � 
���
�
�
 � � � we write � � � (re-

spectively, � � � ) if � ��� � ����� � ��� � � � ��� � � (respectively, � � � � ��� � ��� � ��� � ����� � ), with

equality � � � if � ��� � ����� � ��� � � � ��� � � . With this terminology we can now interpret �

as the smallest element in ��� � according to this order. Two cases emerge, depending

on whether � � � �

or � �

� � :

Case 1 - Assume that � �

� � with � �

not in � � � . Then, consider

	 ���
 � ��	 	 � �  	 ��� � � � 
 � � � � � � � � � � � � � � � � � � (A.16)

and note that � �

is not in � � � � � and that � �

is the smallest element in � � � � � �

(thus in � � � � � � which contains it). By the induction hypothesis applied in the

state � � � � � � � � � � , the minimization (A.16) is achieved by the selection � � ��� �

,

so that

	 ���
 � ��	 	 � �  	 ��� � � � 
 � � � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � ��


The same argument shows that

	 ���
� � ��	 	 � � � 	 ��� � � � 
 � � � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � �

by applying the hypothesis on the state � � � � � � � � � � . Combining these facts, we

get

	 ���
 � ��	 	 � �  	 ��� � � � 
 � � � � � � � � � � � � � � � � � �
� 	 ���

� � ��	 	 � � � 	 ��� � � � 
 � � � � � � � � � � � � � � � � � �
� � � � 
 � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � � (A.17)
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and (A.15) follows by invoking the induction hypothesis once more, this time in state

� � ����� .
Case 2 - Assume � � � �

with � �

not in � � � . Then, going back to the expression

(A.16), by virtue of the induction hypothesis applied to the state � � � � � � � � � � , we

find that

	 ���
 � ��	 	 � �  	 ��� � � � 
 � � � � � � � � � � � � � � � � � �

� � � � 
 � � � � � � � � � � � � � � � � �

and (A.15) now follows by invoking the induction hypothesis once more, this time

in state � � � � � � � � � � , as we note that any element � � in � ��� with � ��
� � is

necessarily in � � � � � , hence in � � � � � � � �

. This completes the proof of

Theorem 4.1.
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Appendix B

Proofs of Propositions 8.3 and 8.4

In the next sections B.1 and B.2, we make use of the � -valued rvs � � ��� �!�)�	��
���
�
�
 �
defined recursively through (8.5). Note that � ��# ���� �*� � � for all � ���	��
���
�
�
 , and

that under the renewal assumptions on the request process, the rvs � � ��# �� � � � � �� ��# �� � � � � � �	��
���
�
�
 � are i.i.d., each distributed according to � ��# �� � � . Therefore,

by the Strong Law of Large Numbers we find

����	� ��

� �
� � ����	� ��




�

� � ��
� � �

�
� ��#

�
� � � � �	� � ��#

�
� � �
�
� ��� � ��# �� � �

� � 
���
 (B.1)

By the very definition of # �� � , we have that��� � ��# �� � �
� ��
 � � � � � ��#�� �!� � � ��� (B.2)

as explained through arguments below.

B.1 A proof of Proposition 8.3

Since the rvs � � ��� �!�)�	��
���
�
�
 � monotonically exhaust � a.s., it is plain that

� ��#����!� � ����	� ��



� �

����
� ��� � � � � ��#

�
� � � ��� � � 
���
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In order to make use of this fact, fix � � �	��
���
�
�
 and consider the dynamics of the

freshness tracking process on the interval ��# ���� � # ���� � � � : With # ���� � � ��# ���� � � , we

have � � � � � � �%� since � � ��# ���� � �%� . The validator process is reinitialized at time

# ���� � � to the value ������# ���� � �!� �,# , returning to zero with the expiration of the

TTL at time # ���� � � � # , i.e., � � � ��# ���� � � � # � � � �)� .
Thus, the requests made at the cache in the interval ��# ���� � # ���� � � � incur misses,

while those occurring in ��# ���� � � � # ���� � � � # � are necessarily hits. Also, there is

exactly one request made in the interval � # ���� � � � #�� # ���� � � � , and it is necessarily a

miss. In summary, we see that there are exactly 
 � � � ��# ���� � �!� � � ��# ���� � � misses

in the interval ��# ���� � # ���� � � � . Therefore, for each �!��
�� 0���
�
�
 , we get

����
� ��� � � � � ��#

�
� � � �,� ��� � � ��

� � �
�

� ������� � � � � �
� � ����#

�
� � � �,� �

�
� � ��
� � � � 
 � � � ��# �� � � �!�	� � ��# �� � � � � 
 (B.3)

Again, under the renewal assumption on the request process, the rvs � � ��# �� � � �!���
� ��# �� � � � � � �	��
���
�
�
 � are i.i.d. rvs, each distributed according to � � �!� , and the

Strong Law of Large Numbers now gives

����	� ��



�

� � ��
� � � � � ��#

�
��� � �!�	� � ��# ���� ��� � � � � � �!� � � 
���
 (B.4)

Since


 � � ��#����!� � ����	� ��



� �

����
� ��� � � � � ��#

�
� � � �,� ��� 
���
1�

it is plain from (B.3) and (B.4) that


 � � ��#����!� � 
 � � � � � �!� �

 � � � � � ��# � �!� � � �
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by the usual arguments, as we recall (B.1) with (B.2). The desired expression (8.6)

is finally obtained.

B.2 A proof of Proposition 8.4

The arguments are similar to those given in the proof of Proposition 8.3. We begin

by noting that

� � ��#����!� � ����	� ��



� �

����
� ��� � � � �

� ��#
�
� � � �2� ��� 
���
 (B.5)

In order to use (B.5), fix � �)�	��
���
�
�
 and consider the cache-fresh* tracking process

on the interval ��# ���� � # ���� � � � : A download is requested at time # ���� , resulting in a cache

placement at time # ���� � � . If no update occurs before this cache placement, then the

validation process is reinitialized at time # ���� � � to the value 	 ��� ��#���� ����# ���� � � �!� ,
and returns to zero with the expiration of this TTL. In other words, � �

� � ��#
�
��� � � �

	 ��� ��#���� ����# ���� � �,�!� � � �!� � . On the other hand, if an update occurs before the

placement, i.e., � ����# ���� � �(� ,1 then � �

� � � � �)� on the entire interval ��# ���� � � � # ���� � � � .As already discussed in the proof of Proposition 8.3, the hits on the interval

��# ���� � # ���� � � � can occur only in the subinterval ��# ���� � � � # ���� � � � # � . If � ����# ���� � �(� ,

none of these requests can be hits*. However, if � � � ����# ���� � , then all the requests

made in the interval ��# ���� � � � # ���� � 	 ��� � � � #���� ����# ���� � � � are hits*, while none of

those made in the interval � # ���� � 	 ��� � � � #���� ����# ���� � � � # ���� � � � #�� are as they are

all hit but miss* requests. Summarizing, we conclude that the number
� �

� of hits* in

1Only applies when � � 
 .
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the interval ��# ���� � # ���� � � � is given by the difference

� �

� � � � ��#
�
��� ��	 ��� � � � #���� ����# ���� � � � � � � � ��# ���� ��	 ��� � � ��� ����# ���� � � � 


Consequently, for each �!�,�	��
���
�
�
 , we can write
����
� ��� � � � �

� ��#
�
� � � ��� � � � � ��

� � �
�

� � ����� � � � � �
� � �

� ��#
�
� � � ��� � � � � ��

� � �
� �� 
 (B.6)

Under the renewal assumptions on the independent processes ��# �� � � �)�	��
���
�
�
 � and

��#� � � � �)�	��
���
�
�
 � , we can easily verify the following: First, we have the equalities

����	� ��



�

� � ��
� � � � � � ��#

�
� � ��	 ��� � � � #���� ����# �� � � � � � �	� � ��# �� � ���

� � � � � 	 ��� � � � #���� � � � � � � 
���
1�
and

����	� ��



�

� � ��
� � � � � ��#

�
� � ��	 ��� � � ��� ����# �� � � � �	� � ��# �� � � � � � � � � 	 ��� � � ��� � � � � � 
���


In both cases the rv � � is taken to be independent of the counting process � � � � � � ���
� � . Combining, we get

����	� ��



�

� � ��
� � �

� �� � � � � � 	 ��� � � � #���� � � � � � � � � � � 	 ��� � � ��� � � � � � 
���
 (B.7)

To conclude, we report (B.6) and (B.7) into (B.5), and this yields

� � ��#����!� � � � � � 	 ��� � � � #���� � � � � � � � � � � 	 ��� � � ��� � � � �

 � � � � � ��#�� �!� � � �

as we recall (B.1) with (B.2).

In order to derive the alternative expression (8.8) we expand the expression (8.7),

and by taking the rv � � to be independent of the point process of requests we get

� � ��#����!� � � � � ���2#�� � � � � � ��# � �!� � � � � � � �2� � � � � � �!� �� � � ��#�� �!� � �(

�

� � � � � ��� � ��# � � � � � � ��� �� � � ��#�� �!� � �(
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Then, simple manipulations of this last term lead to� � � � � � � � �2#�� � � � � � � � � � �
�

� ��	 

�

� � � ��� � � � � �3� � � 
 �

and the desired result (8.8) follows from the fact that

� � � ����# � � � � � � ��#�� �!� � � � � � � �2� � � � � � �!� �� � � ��#�� �!� � �(

� � � � � � #�� � � � ��#����!�	� � � � � � � �2#�� � � � � � � �!� �� � � ��#�� �!� � �(

� � � � � ��� � � ��#����!�	� � � � � � � �2#�� � � � � � ��#�� �!� �� � � ��# � �!� � �(
 �

as we recall that � � is distributed according to (8.3).
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Appendix C

A Proof of Proposition 9.2

Throughout this proof we shall make use of the � -valued rvs ��� � � � � �	��
���
�
�
 �
defined recursively through (9.2). In addition, we find it useful to introduce the se-

quence of � -valued rvs � � ��� �!�)�	��
���
�
�
 � defined through

� � � ����� � � �)�	��
���
�
�
 � #  � �2#
�
� � � � (C.1)

so that #  � � identifies the most recent document update time taking place prior to

the request at time # �� � . With (C.1), the requests and updates processes are related

through

#
�
� � ��#  � � � ������#  � � � � (C.2)

or alternatively via

#  � � 	�� ��#  � � � � � � 	�� �(# �� � � � ����# �� � � � (C.3)

for each �!�)�	��
���
�
�
 .
Since the rvs ��� � � � �)�	��
���
�
�
 � monotonically exhaust � a.s., it is plain that

� � �!� ��
 ������	
� ��
 


� �

����
� ��� � � � � ��#

�
� � � �,� � � 
���
 (C.4)

123



In order to make use of (C.4), fix � � �	��
���
�
�
 and consider the dynamics of the

freshness tracking process on the interval � # ���� � # �� � � � � : If # ���� �6� � # �� � � � , the

miss requests in this interval1 are those that arrive to the cache during � # ���� � # ���� �
� ����# ���� � � , as we recall that the request at time # �� � � � is the first one presented after

the update at time # ���� � � ����# ���� ���3#� � � 	�� . In fact, there are exactly 
 � � ��# ���� �
� ����# ���� � � � � ��# ���� � such requests. On the other hand, when # ���� � � �2# �� � � � , miss

requests are those presented in the time interval � # ���� � # ���� � �!� , and there are exactly


 � � ��# ���� � �!� � � ��# ���� � such requests. To summarize, denote by � � the number

of miss occurrences on each interval � # ���� � # �� � � � � , therefore

� � � 
 � � ��# ���� ��	 ��� � � ��� ����# ���� � � �	� � ��# ���� � 

Combining all facts and observations, we get that for each � �6�	��
���
�
�
 , it holds

that
����
� ��� � � � � ��#

�
� � � �,� � �

� � ��
� � �

�
� ������� � � � � �

� � ����#
�
� � � �)� � �

� � ��
� � � �

� 


Now, the processes ��# �� ���2���	��
���
�
�
 � and ��#� � � � ���	��
���
�
�
 � are assumed mu-

tually independent renewal processes, and by the Strong Law of Large Numbers we

can write

����	
� ��
 


�

� � ��
� � � �

� �3
 � ��� � � 	 ��� � � ��� ����# �� � � � � � � 
���
 (C.5)

By the fact that the processes � � � ����� � � � � � � � � � � and � 
 � � � � � � � � � � are

stochastically equivalent, an alternative expression for (C.5) is given by2

����	
� ��
 


�

� � ��
� � � �

� � ��� � � ������#  � � � ��	 ��� � � ��� ����# �� � � � � � � 
���


1This only applies when � � 
 .
2Here, we make use of the fact that ������ � 
 , which follows directly from the modeling framework;

see Section 7.1.1 and Section 7.1.2 for details.
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Applying the relationships (C.2) and (C.3) in this last result we conclude that

� � � 	�� � ������#  � � � � � ����# �� � � � � �)�	��
���
�
�
��

and the result (C.5) can again be rewritten to yield

����	
� ��
 


�

� � ��
� � � �

� � � � � � 	 ��� � ������#  � � � � � ��� � � � � 
���


Next, it is simple to check that� � � � 	 ��� � ������#  � � � � � ��� � � �
� ���

�
� � � ������#  � � � � � � � � � � �

� � �
�
� � � ������#  � � � � � � � � ������#  � � � � �!� � 
 (C.6)

By the fact that

� � ������#  � � � � �!� �3
 �

�
� � � �

� ��
� � � � � �(� � �3
 � � � �!�

we get that the rvs � � ������#� � � ��� �!� and �
� � � ������#� � � � � � � are independent. This

holds true since ������#� � � � depends on the rv � � , which under the renewal assumption

on the process of requests is independent of the rvs � ��� � ��0����	��
�
�
 . Then, (C.6)

becomes ��� � � 	 ��� � ������#  � � � � � ��� � � �
� ���

�
� � � ������#  � � � � � � � � � � �

� � � � � ������#  � � � � � � � 
 � � � � � �!� ��� � (C.7)

and we replace ������#� � � � with ��� as we recall that the two rvs are identically dis-

tributed.
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To complete the proof, it is left to calculate ����	 � ��
 ���
� . In order to do so, we

must first define the delayed renewal process associated with the requests: Consider

the point process ��# ��� ����� �	��
���
�
�
 � with the understanding that the � �
	 request

occurs at time # ��� , and # ��� � #� � � � � . Thus, # ��� ��# ��� 	�� for each �6� �	��
���
�
�
 .
Let �

�
� � 	������2���	��
���
�
�
 � denote the sequence of inter-request times with

�
� � 	�� �

# ��� 	�� � # ��� for each �2�5�	��
�� 0���
�
�
 . This point process is assumed to be a renewal

process, and it is related to the point process of requests defined in Section 7.1.1 as

follows: �
�
� � 	�� ��� �3
�� 0���
�
�
 � form a sequence of i.i.d rvs, each distributed according

to the common cdf
� � ; the rv

�
� ��� ������#� � � is distributed according to the cdf

� ��� ,

and
�
� � � �� � 	������ �3
�� 0���
�
�
 are mutually independent rvs.

The counting process �
�
� � � � � � ��� � associated with the point process ��# ��� ��� �

�	��
���
�
�
 � is given by

�
�!� � � � ����� ��� �)�	��
���
�
�
 � # ��� � � � � ���(� (C.8)

so that
�
� � � � counts the number of requests in the interval � �	� � � . Here, ��# ��� ���+�

�	��
���
�
�
 � is a delayed renewal process, therefore there exists a rate
� � that satisfies

� � � ����	� ��

�
� � � �
� � 
���


In this case, the Renewal Function is known in closed form [69], and is given by� � �
� � � � 	 � � � � � ���(�	
 (C.9)

To finalize the proof, we have

����	
� ��
 � �

�
� ����	

� ��
 

�

� � ��
� � � � � ��#

 � 	�� � � � � ��#  � ���
� ����	

� ��
 

�

� � ��
� � � � � � ��#

 � � � � 	�� � � �	� � ��#  � � �
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� � � �
� � � � � 	 � 
���


� � � � � � ��� � 
���

� � � � � �

� � 
���
 (C.10)

By substituting (C.7) into (C.5), and applying the results (C.5) and (C.10) in the hit

rate definition (C.4), we obtain the desired result (9.5).

We conclude this appendix with the derivation of the alternate expression (9.6)

and the inequality (9.7). First, observe that � � � � can be expressed as

� � � � � � � ����� � � ����� �

�
� � � �

�
����� � � �

�
�
� � � � � � � � 


Under the enforced assumptions on the point processes of user requests and document

updates (see Section 7.1.1 and Section 7.1.2, respectively), we have the identification

#� � � �,� . We can therefore write the first term in (C.7) as� � � � � � ����� � � � � � � � � � ��� � � � � � ��� � ����� � � ��� ���
� � � 
�

� � � �
� ��
� � � � � � � � ����� � � ��� � � �

and under the renewal assumption on the request process this expression becomes� � � � � � ����� � � � � � � � � � �
� � �

� 

�

�  �  � � 
 � � 
 � � � � ��� � ��� ����� � �3� � � 
 ��
 � � ��� � 


By applying similar arguments on the second term in (C.7), we find that

� � � � ����� � � � � ��� � �
� �

� �  � � 
 �
� � � �3� � � 
 ���

� � �
� �

� 

� � � �3� ��� � � � � �3� � � 
 � �

� � �
� 

� � � �3� ��� � � � � �3� � � 
 �/�
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and the expression (9.6) for the hit rate follows by reporting the last two results into

(9.5), and replacing the denominator with (C.10).

It is now left to prove the upper bound (9.7). Since the counting process � � � � � � ���
� � is non-decreasing in � , we have that� � � � � � ����� � � � � � � � � � � � � � � � � � ����� � � � � � � � ����� � � � �!� � 

Under the renewal assumption on the point process of requests, the rv � � � ��� � ��� �!�
and the rv 
 � � � �!� are identically distributed. Using the fact that the rv � � � ��� � � � �!�
is independent of ����� � � (shown earlier in this appendix), we get� � � � � � ����� � � � � � � � � � � � � � � � ����� � � � � � � �'
 � � � �!� � �

which leads directly to (9.7).
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