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Chapter 1

Introduction

Helicopter rotors operate in a highly unsteady flow field (See 1.1). The non-uniform
inflow produced by the rotor wake combined with the pitchifepping and lagging mo-
tion of the rotor blades produce highly non-steady changdbe angles of attack and
aerodynamic forces acting on the blades. Other importantss of unsteadiness at the
blade element include fluctuations in the local free-streaincity (and Mach number)
in forward flight (see Ref. 1). Overall, unsteady aerodyrmagifects contribute to de-
termining rotor performance, the aeroelastic behaviohefrbtor system, the vibratory
loads, and also to rotor noise. The ultimate goal for therraalyst is to be able to model
unsteady aerodynamic effects more accurately and morésetfic within the context of
the entire integrated rotor analysis. Because of the coatipuglly intensive nature of
this problem, there are constraints on the computatiomplirements, accuracy and al-
lowable mathematical representation of the aerodynamigemar he task of predicting
the aerodynamic loads on the rotor blades is, thereforeemetly challenging because
it involves a balance between numerical accuracy and catipoal cost. One power-
ful tool for high-fidelity aerodynamic predictions is contptional fluid dynamics (CFD).
Besides providing good estimates of the aerodynamic facesg on the rotor blade in
almost any condition, it also gives valuable insight inte ghysics of the flow, albeit at

extremely high computational cost. Because the rotor ahayaced with the problem of
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Figure 1.1: Unsteady aerodynamic phenomena in helicopter environment (Courtesy

Dr. Gordon Leishman, Ref. 1).

tightly coupling the aerodynamic model into the structalaiamic response model of the
rotor, the mathematical representation for the aerodyosumiay have to be formulated
in a specific computational form. These efficiency and matteral form constraints
usually make the direct use of CFD unsuitable for use in ceimgmsive rotor design and
analysis codes. Nevertheless, CFD methods can help forsisatbalevelop and validate
reduced-order unsteady aerodynamic models that retdineafippropriate mathematical
structures and computational efficiency necessary foctler applications. This is one
goal of the current work.

A quasi-steady analysis may be used to obtain a first estiofdbe aerodynamic
forces in helicopter rotor applications. However, depegdn the flow conditions and

degree of unsteadiness, the actual airloads can diffeifisantly from their quasi-steady



values, both in magnitude and in phase. The practical ltraita of CFD and the inade-
guacy of the quasi-steady approach necessitates the usewhediate levels of aerody-
namic modeling that retain the high fidelity of CFD while bgof appropriate mathemat-
ical form and also being computationally less expensive ihdicial method (Refs. 2—6)
is one such tool, which provides high fidelity solutions at lcomputational cost; it of-
fers at least three or four orders of magnitude reductiommpmutational time over direct
CFD solutions. This makes the indicial method highly sug&br use in routine rotor
analysis, if its use can be properly justified.

In the indicial method, the general motion of a body can beesged as a sum of
discrete step motions. If the indicial (step) response teisput can be determined, the
aerodynamic response for arbitrary motion of the body cacabauilated using superpo-
sition principles (Duhamel superposition). The indicegponses have been determined
exactly for thin airfoils operating in unsteady incompibksflows, mainly by Wagner
(Ref. 7), Kuissner (Ref. 8), von Karman & Sears (Ref. 9) &edrs (Ref. 10).

Exact solutions for an oscillating airfoil in a steady, ingoressible free-stream flow
was first obtained by Theodorsen (Ref. 11). The problem ofsteady free-stream ve-
locity fluctuations, such as those found at the blade elemfeathelicopter rotor, raises
considerably the complexity of the problem. This is mainchuse of the non-uniform
convection velocity of the downstream wake. Nevertheksssitions for the additional ef-
fects of unsteady free-stream were given by Greenberg (Re¢and Kottapalli (Ref. 13).
However, these theories make certain simplifying assuwmptihat restrict their range of
validity to low free-stream velocity amplitudes. This istnseful for helicopter prob-
lems. A more comprehensive theory was given by Isaacs (Rghrd later generalized

3



for arbitrary pitch axis location by Van der Wall & LeishmdRdf. 15). However, Isaacs
model has certain practical limitations because the soiusi expressed in the frequency
domain. This makes it difficult to implement it for arbitratypes of forcing (angle of
attack and Mach number). A time domain solution for arbytraariations in pitch an-
gle and free-stream velocity was developed by Van der Walle8shman (Ref. 15). It
was shown that by using an exponential approximation to tagnar function, the lift
variation for arbitrary forcing can be solved using Duhamégration to a numerical
accuracy comparable to the exact solutions. Comparisotisigaacs (Ref. 15) theory
showed that any small differences were partly dependenh@netmporal discretization
used in the superposition scheme and partly on the qualitii@@exponential function
used to approximate the Wagner indicial function.

Helicopter rotors operate at high subsonic Mach numbeggaally in the out-
board regions of the advancing side, rendering incompes8ow assumptions invalid.
This means that all the theories considered by Van der Wak&hman (Ref. 15) become
less effective. Not only that, but the use of a strictly inqwassible flow theory may
produce erroneous results if applied for problems inva\aompressibility effects. For
compressible flows, the pressure disturbances travel atadpeed and there are greater
lags in the aerodynamic response compared to incompresisisl No exact solutions for
the time-varying free-stream problem can be obtained, &acthate approaches must be
used. The issues of modeling compressibility effects oneauty airfoil behavior using
linear indicial theory has been studied for many years, fiysMazelsky, Beddoes and
others (Refs. 3,16-18), and then by Leishman and co-wo(kats. 19-23). Efficient
mathematical models have been developed to determine tbesfacting on an airfoil

4
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Figure 1.2: Schematic of the flow problem.

undergoing oscillations in angle of attack and plunge nm#bconstant Mach number.
However, indicial based models to predict lift and pitchmgment for combined angle
of attack and free-stream Mach number oscillations negtidudevelopment.

In the present work a method is proposed to model subsonis flovelving com-
bined angle of attack and free-stream Mach number varstidine new theory is vali-
dated for a NACA 0006 airfoil using CFD. Figure 1.2 shows aesuohtic of the basic flow
problem. The goal of the work is to predict the lift and pitafpimoment for non-steady
variations in angle of attack and Mach number. All the caltiohs were carried out with

the Mach number and angle of attack varying at the same rddueguency, i.e.
M(t) = Mo(1+Asinwt)
a(t) = om-+osinwt

For a helicopter with a hover tip Mach numbbtgor, advance ratiqu and a chord

to radius ratio ot/R, this would correspond to

w=0Q (1.1)

Mo = XMqgRr (1.2)
_ M

A= (1.3)



g:_c

K = N = 2Rx

(1.4)

wherex = r/R and Q is the rotational speed. From these expressions it is se&n th
for a given blade sectioriVlg, A andk are fixed. For a high speed helicopter with an
advance ratigl = 0.4, a hover tip Mach numbeklqr = 0.65, and a chord to radius ratio,
¢/R=1/15, the following values oMo, A andk are obtained at different radial stations

of the rotor:

X Mo A k

0.3]0.195 1.33 0.1111

041026 1.0 0.0833

0.5 0.325 0.8 0.066¢

0.8]052 0.5 0.0414

1.0/065 04 0.03

Table 1.1: Values oMo, A andk at different radial locations of the rotor for a helicopter

with a hover tip Mach numbeMqor = 0.65,1= 0.4 andc/R= 1/15.

From these results it is clear that the reduced frequenaissceated with Mach
number changes are not high. However, most of the calca&iiothis work were car-
ried out at a reduced frequency aR(ecause it was felt that the unsteady aerodynamic
models could be better contrasted and evaluated under mgteady conditions (i.e.,
higher reduced frequencies) rather than for nearly quasdy conditions (i.e., low re-
duced frequencies). Also, it must be borne in mind that wtiitereduced frequencies
associated with free-stream Mach number changes are not thigse associated with
pitching motion are high because besides the collectivecglic pitch, it includes vi-

6



bration effects and is, therefore, associated with severqliencies. It is also important
to note that in the inboard sections of the rotor, flow reMessaurs on the retreating side
(A > 1) and this makes it difficult to predict the unsteady airkadcurately for these
blade-sections.

It is shown in this work that all existing indicial models feubsonic flows effec-
tively adopt a quasi-steady approach to incorporate tleeedf changing Mach number.
One improvement made to these theories in the present wahle isiclusion of the ap-
propriate noncirculatory terms resulting from changes scMnumber. The new theory
uses the incompressible indicial theory of van der Wall &dbenan (Ref. 15) as a basis
for developing a more generalized theory capable of hagdiompressible flows that
involve combined angle of attack and free-stream Mach nuwdogations.

The thesis has been divided into four chaptdrdgroduction Methodology Re-
sults and DiscussioandConclusions The chapter on methodology describes the theory
and implementation of various unsteady aerodynamic modalsely, CFD, the incom-
pressible indicial method, the existing compressiblediadimethod and the new indicial
method. Because the primary advantage of the indicial nadibe in its computational
efficiency, a detailed analysis of different numerical @igmhes is performed and an im-
proved algorithm is proposed, which provides a good bald&teeen computational
efficiency and numerical accuracy. TResults and Discussiarhapter compares the re-
sults obtained using the different unsteady aerodynamuabetsdor a wide range of flow
conditions. The various unsteady aerodynamic theoriegadigated against CFD results.
An attempt is also made to understand the physics behingicdidw nonlinearities that
occur at higher Mach numbers. The effect of viscosity arfdiathickness are also briefly

7



discussed. Finally, the conclusions are presented alotigseme possible directions for
future work, which would extend the application of the indienethod to include a wider

range of flow conditions and airfoils.



Chapter 2

Methodology

This chapter describes the different unsteady aerodynarodzls that have been used to
develop and validate the new compressible indicial modetifoe-varying free-stream
Mach numbers. An overview of the CFD model, the unsteadynessible indicial
model and the existing compressible indicial model is giv&his is followed by a de-
tailed description of the new indicial model along with nuioal algorithms to efficiently

implement it.

2.1 The CFD Method

Computational fluid dynamics (CFD) is a valuable tool forteasly aerodynamic predic-
tions. All CFD calculations were made using an extensioimefflURNS code (Ref. 25).
This is a single block Navier-Stokes solver that has beed tsstudy a variety of un-
steady airfoil and rotor flow problems. The calculationseyserformed in the Euler mode
on a 241x 53 structured C-grid (see Fig. 2.1). A finite difference updvhumerical algo-
rithm was used to solve the governing equations, with thiiatian of the inviscid fluxes
being based on Roe’s upwind-biased flux-difference schémtais work, CFD has been

used to :

e Obtain the unsteady indicial response to a step changedm{prThis is used to ex-

tract the indicial coefficients that are used to specify titkdial response function.

9
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Figure 2.1: C-grid used for CFD computations on the NACAOaDIl.

This approach has been followed by Lee et al. (Ref. 24).

e To obtain the unsteady lift and pitching moment variatioriteairfoil for arbitrary

forcing in angle of attack, Mach number and pitch rate.

e To validate the new indicial theory for a wide range of flow ditions that would

be relevant to helicopters.

e To understand the physics behind nonlinear phenomenadbat at high angles of

attack and Mach number.

All the CFD calculations were performed for a NACA 0006 aiirfo Euler mode

using the field velocity approach (Ref. 26).
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2.1.1 The Governing Equations

The Conservative form of the Navier-Stokes equations camrltten as :

0Q AE-E) OF-FR)

ot ox oy 0 2.1)
p pu pv
pu pu+p pvU
Q= ,E= , F = ,
pv puv pVZ+p
PE: (PEt + p)u (PEt + p)v
2.2)
0 0
1 1
E, — XX F= Xy
Txy Tyy
UTxx + VIxy — Ox UTxy + VIyy — Qy

where

E = C\,T+%(u2+v2),

oT
qX - _k&7

Xx = 3l-l ox ay)’

ou ov

To have well conditioned matrices during the solution psscéhe equations need to

be normalized. For the above equations, the various flownpetexrs are non-dimensionalized

11



using reference parameters in the following manner

and

2u° ou* ov* —* oT*
.[.* - (2 I q* _
O 3Re \ox* dyr) X (y—1)M2Z2RePr ox*

whereL is taken as the chord length, is the velocity of sound far away from the airfoil,
P IS taken to be the density of the free-stredimjs taken to be the static temperature of

the free-stream. The Reynolds number and Prandtl numbegname by

Re = P22k pr_ %

Y

2.1.2 Transformation From the Physical Domain to the Comtarial Domain

The physical domain is mapped on to a computational domagrevthe grid lines are
orthogonal and equal-spaced. The governing equationshesnbe solved on the com-
putational domain by determining the metrics of the tramsftion. The transformed
eguations can be written as

0Q OE OF OE,  oF,

o Togton e tan &)

Where the barred vectors are the vectors in the transforgnedij coordinate system.

These can be expressed in terms of the Cartesian vectoroagsfo

Gl

Q = Z[Q (2.4)

m
I

LEE+EF 25)
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- 1
Fo= JIxE+nyF] (2.6)
E = 3[EEAER) @7)
— 1
R = 3 [NxEv +nyR/| (2.8)

wherelJ is the Jacobian of the inverse coordinate transformatienJi= det(é’g’?’]) )).

|

2.1.3 Modes of Operation

The TURNS code is designed to compute the solution for a vadge of steady and un-

steady flow problems. In the present work, the code was uselddollowing purposes:

1. To calculate the steady-state lift for a given angle @cktiand Mach number. Also,
the final-state of a steady calculation is used as input tongteady computation
with the same initial conditions (i.e., at the same initiaje of attack and Mach
number). Figure 2.2 shows a typical lift transient for a dye€FD calculation.
Note that the initial oscillations do not matter as long asfthal solution converges

to the steady-state value.

2. To calculate the unsteady lift response to a step changegle of attack. This is
used to determine the indicial coefficients that specifyitiakcial response func-
tions. Figure 2.3 shows a typical indicial (step) normakéresponse for a step

change in angle of attack.

3. To calculate the lift and pitching moment for combinedations in angle of attack
and Mach number. This is used to validate the indicial théory wide range of

flow conditions. Figure 2.4 shows a typical unsteady liffoesse for combined

13
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Figure 2.2: Typical lift transient for steady CFD compuatiM = 0.5, a = 1°).

variations in angle of attack and Mach number.

2.2 The Indicial Method

The indicial approach is based on the concept that an aeaotdgresponsé(t), can be
linearized with respect to its boundary condition (or faccifunction),g(t), if f(t) is a
smooth, non-discontinuous function gft). This allows the representation 6ft) in a
Taylor series about some valuesof €, i.e.,

of

f(t)= f(0)+As$ . +--- (2.9)

If the respons@f /de depends only on the elapsed time from the perturbakon
(i.e., a linear time-invariant response), then it may benshthat the formal solution for
f(t) is the well-known Duhamel integral

14
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Figure 2.4: Typical unsteady lift variation for arbitrargr€ing in angle of attack and

Mach numberi = 0.5(1+ sinut), a = 1° 4 1°sinwt, k = 0.2).

15



f(t)=f(0)+ Otg—Z(o)(p(t—o)do (2.10)

whereq(t) = % le—g, - Hence, if the forcing functiom is known and ifg(t) (the indicial
response) is also known (say, from computation or expert)yinen the Duhamel integral

in Eq. (2.10) gives the value df(t) for any arbitrary changes &{t).

2.2.1 Incompressible Method

Before describing the reduced-order model for compresgibivs, the incompressible
flow approach must be reviewed. The incompressible flow thiEwms a rigorous basis

from which to extend the modeling to consider the treatménbmpressibility effects.

Lift Coefficient

The lift response to changes in angle of attacknd free-stream velocity consists of

clearly separable circulatory and noncirculatory commisgia.e., it can be assumed that
Ca(t) = CE(t) + (1) (2.12)

The circulatory part is associated with the formation o€wiation around the airfoil sec-
tion. The noncirculatory part is associated with appareassreffects (i.e., flow inertia
effects). Van der Wall & Leishman (Ref. 15) show that the aady incompressible cir-

culatory lift equation is given by

sd
c:i<t>:$[2m3/4<s:om<s>+ /0 %(@ Qu(s—0)do] (2.12)

wherews 4 is the normal velocity at the/3 chord point. For an airfoil oscillating about
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its 1/4-chord pointws 4 is given by

w3/4:Va+a—20 (2.13)

The parametesis the distance traveled by the airfoil in semi-chords, am@fon-steady
free-stream it is given by

2 rt

s— —/ V(t)dt (2.14)

CcJo
The Wagner functionpy (s), is known exactly (Ref. 7) but is usually represented approx
imately in exponential form for use in the Duhamel integi@he approximation to the
Wagner function, which is attributed to R. T. Jones (Ref238J, is written as a two-term

exponential series with four coefficients (see Fig. 2.8), .
@ (s) = 1—0.1650045% _ 9 3357035 (2.15)
Notice that@y () = 1, so that in the absence of any forcing, the result reducéseto
quasi-steady result, which is given by
Ci(s— ) = 1 (2nwg/4) =2m( o+ ac (2.16)
n Y, / 2V
and for steady flow where = 0,

Ci(s— o) = 2 (2.17)

For an airfoil oscillating about the 1/4-chord point, thennwculatory component of the

lift response is given by

CRo(t) = 5 <d(:j/t°‘> + “ZC) (2.18)

wherec s the chord length of the airfoil. Notice that unlike thectilatory component, the

noncirculatory component is dependent only onitistantaneousate of change in the

17
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Figure 2.5: The Wagner function for incompressible flow canepl to CFD solution for

the normalized lift for a step change in angle of attack.

forcing. This, as will be seen later, is an important differe between the compressible

and incompressible indicial methods.

Pitching Moment Coefficient

To determine the pitching moment coefficient about the bdrd, the unsteady pressure
distribution over the airfoil needs to be determined. FromgWér's theory (Ref. 7), the

circulatory part of the pressure distribution is given by

4Awz/4  [c—X 4Aac (x 1\ [c—x

wherex is the chordwise coordinate, starting at the leading edde first term in the

above equation is the usual thin airfoil result combinedlie Wagner function and is,

therefore, an unsteady term. The second term is also aa&iocylterm, albeit a quasi-
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steady term. By integrating Eq. (2.19) in space, it can b&sltbat the quasi-steady term
does not contribute to the total lift but affects the pitdhmoment. It can be shown that
the lift resulting from the first term passes through 1/4¢dhgoint and consequently, it
does not contribute to the pitching moment about the 1/4ech®he pitching moment

can be obtained from Eg. (2.19) by evaluating the momenttaheld/4 chord-point, i.e.,

Ciny (1) = /OlAcp(o.zs—x) dx —g <%) (2.20)

However, for a general airfoil the center of pressure of thautatory forces does not co-
incide with the 1/4-chord point. Consequently, the firstrtém Eq. (2.19) also contributes
to the pitching moment about the 1/4-chord. The modifiedhiilg moment equation is

then given by

Coalt) = o [27314(0.25 — xep) (5= O)u(s)

+/OSd(2TlW3/4EjOC.y25—ch>)(O_) pu(s—0)do] _g(‘i‘/_c) (2.21)
where
Xep = Xep(Olefr) (2.22)
o — G+% (2.23)

The center of pressuregp, can be obtained as a function of the angle of attack from
steady state computational or experimental datax.dfis assumed to be constant and

coincident with the aerodynamic center, then the equagdnces to

oy () = C(1)(025— %e) — & (‘i‘,—c) (2.24)
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2.2.2 Compressible Flow Equations

For an incompressible flow Laplace’s equation applies, twuaflinearized compressible
flow a form of the wave equation applies (Ref. 29). In this casesed form solutions
for the unsteady airloads are much more involved and cammgégneral, be found for all
values of time. There are low- and high-frequency approkona available, which are
good check cases for any theory, but these results are riatpary useful for helicopter

rotor applications, in general.

Lift Coefficient

The lift response for the compressible flow has the same basicas the incompressible
indicial model but with important differences. The indicrasponse for compressible
flows also involves circulatory and noncirculatory termetsthat the total can be assumed
to be decomposed as

Cn(t) = Cr(t) +Cre(t) (2.25)

One important difference between the incompressible antboessible theories lies in
the treatment of the noncirculatory terms. For compresgiblvs, the velocity of sound is
finite, which has two important consequences. First, thlnvalue of the circulatory part
of the indicial response is zero. Second, the noncircutfatomponent of the indicial lift

is finite (it is infinite for incompressible flow) and is alsdlirenced by the forcing at prior
time. Consequently, like the circulatory term, the hewgieffects in the noncirculatory

airloads must be solved for using the Duhamel integral.
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Circulatory Part

From small perturbation theory, the quasi-steady lift idosonic compressible flows can

be obtained from the corresponding incompressible liftrtigoducing the Glauert factor,

B=

s, 1 [2Wg4\  2m ac
cﬁ(t)_\—/( . )_F(ourw) (2.26)

Noting the difference between the quasi-steady resultth®incompressible and com-
pressible cases (Egs. (2.16) and (2.26), respectively)sdime result can be used in the

unsteady equation by replacing¥s 4 in Eq. (2.12) by 2ws/4/B. This gives

[<2T1W3/4) (s=0)gi(s,M +/ <2T1W3/4) (G)ﬁ(s—o’wdo}

Cﬁ(t7M> = B

d(C
[CouWaya(s=0)gfi(s M) +/ ”°W3/4 (0)¢f(s—0,M)do] (2.27)

<lr- <+

wheregf;(s,M) is the analogous circulatory lift response function for poessible flows
andC,, = 2t/ is the static lift curve slope from Glauert rule. The funo@brepresen-
tation of the indicial response functions in this case areentmmplicated and will be
described later.

Because the ten@, Wz 4 itself is a function of, M anda, the above equation can

be rewritten in the form

1 .
\—/ [CnaW3/4(G07 M07 ao)(ﬂ(’:\(s7 M) +

/S (aCna W3/4 d_(X n 6Cna W3/4 d_I\/I n 6Cna W3/4 d_(X
0

Ca(t,M) =

C p—
da do oM do aa do)(0>(pn(s G,M)do] (2.28)

whereag, Mg andag correspond to the initial values of, M anda, respectively. The

parameteCn, W3/, may be rewritten as

2TW3/4

B
21
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_o_em Vor+}dc
o (1_M2)1/2 2

aMa +ac/2
= 2n<m) (2.29)

wherea s the sonic velocity. From the above equation, the pargavdtives ofCy, w5 4

are
a(CnaW3/4> 2maM
= 2.
3 5 (2.30)
6(Cna W3/4) 21ac -+ 1M ca
M = T (2.31)
a(CnaW3/4> Tic
—_ = = 2.32
3% 5 (2.32)
The above results can now be substituted into Eq. (2.28)t@mob
1 Zﬂ(aMoGo—l—lCdo)
c _ = 2 C
M) =yl M)+
S /2maMda (2rmaa +mMca) dM  Teda
ki == —o,M 2.
/0( 5 i T d0+[3d0) (0)¢h(s—o, )do} (2.33)
Notice that velocityy/, has been replaced lapl. Rearranging Eq. (2.33) gives
Co(t M) = i[Zﬁ(MoGo-l—GoC/Za)(pﬁ(s,M)_i_
M Bo
s /(2MMda (2o +T1Mca/a)dM  1c/ada
- 2= —o,M 2.34
/0 ( B d0.+ B3 d0.+ B do. (O-)q)ﬁ(S 07 )do ( 3)

The foregoing equation gives the circulatory lift respotwsarbitrary forcing ina, a and
M. It retains the same form as the equation used for incomptesow (c.f. Eq. (2.12))

but now accounts for compressibility effects.

Noncirculatory Effects

The noncirculatory components, which are not associatéu twe formation of circula-
tion around the airfoil, also contribute significantly teethft and pitching moment, es-
pecially at high reduced frequencies. It is, therefore,artgmt to include noncirculatory
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effects into the aerodynamic model. The noncirculatorgnteare modeled by using the
semi-analytical approach described by Lomax (Ref. 29)dBed (Ref. 3) and Leishman
(Ref. 1), and is based on linear theory. From one-dimenspsimn theory (Refs. 29, 30)

it is known that for the initial value of the indicial respathen

A 2padw(x) i Aw(X)
ACH(x,t =0) = 7%pv2 = (M) ~ (2.35)

For forcing about the 1/4-chord point, the distributionagk) over the chord is given by

x 1\.
=V -—= 2.
w(X) o+ (c 4) ac (2.36)
Therefore,
x 1\ ..
Aw(X) = aAV +VAa + (E — Z) Aac (2.37)

This latter result can be used to derive the initial valuehef honcirculatory component

of the lift coefficient as

1 Cc
Cht—0) — E/ AC,dx
0

_ Mi\/%/oc (A(Va)—i— (’—é—%) cAd) dx

4 .
= — (O(AV +VAa + %)

MV 4
4 40 c )

= —Ad+ —AM+ —=5Ad
M + M?2 + aM?

This is theinitial value of the noncirculatory lift responsetat O for any change im,

M or a. The noncirculatory airloads subsequently decay frometlgisial values in the
absence of any other forcing. This decay is representedeéopndhcirculatory response
functionsgfS (s,M), ¢fi- (s, M), ¢hS(s,M), i.e., it can be written in general that

c ..
AM @ (s,M) + WAO( @ (s;M)

4a

4
Cho(t,M) = —Acx([ﬂ(f(s,M)Jer

M
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The total value of noncirculatory lift can now be obtained dmmming the individual

responses to the indicial forcing at each instant of time §imgithe Duhamel integral,

i.e., by using
S4d0( 4a dM
nc _ c Cig_
Cho(t) = Mdo 0)@hs(s—a,M) d0+/ V2 do(o)(mM(s o,M)do
s ¢ da c
+/O WE(O-)([#:G(S—O',M)C’O (238)

Pitching Moment Coefficient

Following a similar approach, the indicial equations foe fhitching moment can also
be obtained. One difference however, is that the quasdgtesm in the incompressible
indicial equation is now treated as an unsteady term withsan@ated indicial response
functiongf,(s,M). As will be shown later, however, the unsteady componeg ($,M)

diminishes rapidly and the term essentially behaves likeasigsteady term for all but

very high rates of change. The pitching moment about thetiétd can be written as

1
Chya(tM) = | (CnWa/a(0.25—Xcp) (co, Mo) 6 (5, M)
sd(C 0.25—
+ / ( naW3/4( XCp))(ﬂg(S O_ M)do_]
0 do
7 [ ohism + [ (G5 ) dhis—omao
- === (s—o,M)do 2.39
[8[30 jdoj (2:39)
where
Xep = Xcp(M,Oeff) (2.40)
ac
Cefi = O+ o (2.41)

In the above equations, the center of pressure of the ctosyléorcesxc, is expressed
as a function of Mach number and angle of attack based onysstate data obtained
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Figure 2.6: Variation in the steady-state center of presasra function of free-stream

Mach number and angle of attack for the NACA 0006 airfoil.
using CFD for a wide range of angles of attack and Mach numberthe present work,
the steady-state center of pressixgg, was calculated using CFD for all combinations of
angles of attack (6, 10, 15, 20, 25, 30, 35, 40, 45) and Mach numbers (D, 0.2,
..., 09) (see Fig. 2.6).

For the noncirculatory part, the initial pitching moment at 0 can be obtained by
following a similar approach that was described for theré&ponse. It can be shown that

ne 1 r¢ C
Cht—0) — ?/OACp(Z—x)dx

_ Mi\/c_lz/oc (ava) + (x— 5)8a) (5~ x)dx

4 ( aAV VAo 7CA(J()

MV 4 4 48
1 a 7c )
= ——NAN0——AM—-———Aa
M M?2 12aM?

This equation provides the noncirculatory pitching monresponse at= 0. Fort > 0,
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the noncirculatory response functiog§ (s,M), ¢hy, (s, M) andgiy; (s,M) are used, i.e.,

1 a c .
Ch(t,M) = —MAO((pPTz(s, M) — WAM@}]CM (s,M) — 12aM2Aa(q‘Tg(s, M)  (2.42)

The total response can now be obtained using the Duhamglatte get

nc S 1 da c
Cn(t,M) = — 5 M%(O)%(S—U,M)dc
S o dM
/OWE(G)%(S—G,MNU
s Tc da

Indicial Response Functions

The unsteady equations described in the earlier sectiwalvathe use of circulatory and
noncirculatory indicial response functions. Represémtaif these response functions in
a suitable form and determination of the coefficients deswgithem is explained in this
section.

Similar to the Wagner function, the compressible indi@alonse functiogf(s,M)

can be expressed using the Beddoes two term exponenties sevi
(s, M) = 1— Aje PiP’s _ p e b’ (2.44)

In this case, the coefficienis;, Ay, by andb, were obtained from CFD results for sim-
ulated step changes in angle of attack and fitting the formgpf{(E44) to the computed
results at each Mach number (see also Lee et al. Ref. 24xtl$ptspeaking, the lin-
earized indicial coefficients are a function of Mach numiér,and angle of attackqy,

at the instant of forcing. This issue is of particular sigrdfice at high Mach numbers
and angles of attack where the indicial coefficients are rserssitive to changes in the
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forcing (M and/ora). However, for most conditions it is reasonable to assuraéthcial
coefficients to be constant. In the present work, the inteciafficients were assigned the
valuesA; = 0.3493,A; = 0.6507,b; = 0.0984,b, = 0.7759 based on results obtained by
Lee et al. (Ref. 24). This was found to give good results foridewange of flow con-
ditions, although further discussion of the nonlinear aspef this problem are given in
Chapter 4. It is important to note the following differendetween the Wagner function

and its compressible counterpart:

e A1+ Ay = 0.5 for the Wagner function whereas for the compressible respéunc-
tion, Ay + A2 = 1. This means that agy(t = 0) = 0.5 and@y(t — ) =1 while

¢ (M,t =0) =0 and@;(M,t — o) = 1.

e There is a compressibility scaling factf in the exponential terms. This factor
modifies the indicial response as a function of Mach numbdrrafiects the in-

creased aerodynamic lags in the flow resulting from comp#isg effects.
The circulatory pitching moment response function forIpitate is expressed as
@ (s, M) = 1 — Age 5P’ (2.45)

whereAs = 1, bs = 5.0. Notice thatos is large in comparison with; or b,. This means
that the exponential term decays to zero very fast (i.e.stbady state is reached almost
immediately).

The noncirculatory response for compressible flows has t fimitial value which

decays quickly to zero as time progresses. This is modelelddoydicial functions

de(sM) = exp(;—s) (2.46)

Na
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u(SM)
s (s;M)
G (M)
G (5, M)

@ (s, M)

- o) 2.47)
= exp(%ﬁs) (2.48)
— As exp(b_?ma) A exp(b;l_ib) (2.49)
= Ag EXp(bgT:]M ) + A exp(bﬁ_:]M ) (2.50)
_ exp(T:’) (2551)

The exact linearized solutions to the subsonic indicigboese in the initial stages

can be obtained analytically as a function of time (follogvRRef. 29), i.e.,

Ch,(SM) =

Cnd (S, M) —

Cm,(SSM) =

Cm, (S M) =

anw[, 1-M
v

M V 2M
4Aa 1-M 40AM 1-M
M [1— M s} N2 [1— M s} (2.52)
1cAa 2-M &
{ s YTy m} (2.53)
1 Aw 1 1-M +|v| 2 &
M V 2M AM 2M
Aa 1-M M-2¢
——|1- S+ S
M 2M 4AM 2M
aAM 1-M M-2¢
i = 2.54
MZ[ oM ST 2|v|} (2:54)
lora[ 7 5(1-M)
M V 12 8M
1-M2 , (1—M)3+4Mm
sz S Ve 53} (2.55)

However, these results are valid only for a short period,elg®d < s < 2M /(14 M).

The coefficientdy,, Tny, Tny, €tc. (in Egs. 2.46-2.51) can be obtained by matching

the slopes of the assumed combined (circulatory and naratary) response to a given

forcing (@, M, a) att = 0 with the results obtained from linear theory. Using thisraach
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it can be shown that

AMkg

Tne = 2(1— M)+ 2m2B(Ashs + Azby) (2:59)
T = 2(1—M)+2Tr|ff/ll\g[l3<M1(A1b1+A2b2) (257
Tn = (1—M)+2T[|2\/IM2[§d(Alb1+A2b2) (259
o =
= A @
Ty = 15(1—|\/T)LT%ZBA5b5 (260

The coefficienty, kv, etc. are modifiers that represent variations in the initét
ues of the indicial response because of two-dimensionateff(piston theory is a one-
dimensional theory). Normally, the values are set to 0. He ifdicial coefficients associ-
ated with the noncirculatory pitching moment response \aesggned the valuég = 1.5,
A4 = —0.5,b3 = 0.25,bs = 0.1 based on results obtained by Lee et al. (Ref. 24).

Now that the circulatory and noncirculatory indicial reapes are completely de-
fined, the lift and pitching moment can be obtained for anytemty forcing. Figure 2.7
shows the indicial response to a step change in angle okatac= 0°, Aa = 1°) for
Mach numbers oM = 0.3 and 05. It is seen that for low to moderate subsonic Mach
numbers, there is very good agreement between the CFD amubiibel results. For the
higher (supercritical) Mach number of8) there are some differences between CFD and
indicial model in its present form (see Fig. 2.8). Theseeddhces arise because of the
limitations of the steady linear compressible theory as assbecause of nonlinear effects
at supercritical Mach numbers. This can be corrected by fyiodi the indicial method
so that the lift curve slope is obtained directly from steathte CFD predictions instead

29



of steady linear compressible theory. This issue is dismlissgreater detail in Chapter 4.

2.2.3 Existing (Old) Indicial Model

The previous sections have described the new indicial madelving changes in Mach
number. Previously, compressible flow calculations inv@vWach number variations
were performed using an approach similar to the one propasegavith some important
differences. The circulatory lift response was previousityained by introducing the

Glauert factooutsidethe Duhamel integral, i.e., by writing

Cﬁ(t,M) = Vi[(ZTl\Ng/4)(S O)CPE](S,M)-F

/Sdi (2rwa)4) ( )qﬁ(s—o,M)do] (2.62)

The circulatory response functiagi(s,M) is identical for the new and existing models.
For the noncirculatory component of the lift, however, the model does not have the

additional forcing term resulting from changes in Mach nemin the latter case

S4d0( c da

) = [ 1 qo(0)dE(s—oM do+/ e (0)d(s—o,M)do (2.63)

Comparing Eqg. (2.63) with Eq. (2.38), it is seen that the otmtdei has only two terms
as compared to the three terms that are used in the new motelindicial response

functions and the time constants are identical for the twdeis

2.3 Numerical Solution Methodology

The primary motivation behind using the indicial methodhattit provides orders of

magnitude reduction in computational time as compared tD.Amerefore, it becomes
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important to use efficient numerical algorithms to reduedbmputational cost, while at
the same time maintaining a good level of accuracy. Thewiofig sections describe the

numerical issues involved in implementing the indicial het.

2.3.1 The Duhamel Integral

The indicial method involves the evaluation of the Duhamé&tgral for calculating the
circulatory and noncirculatory airloads. An exact anagtisolution to the Duhamel in-
tegral is possible only for trivial flows, and numerical tacfues have to be used for
solving more general problems. Because the solution ptoead the same for both cir-
culatory and noncirculatory terms, only the circulatorytpadiscussed here. Depending
on whether the Mach number is constant or varying with tinffégre@nt approaches need
to be used. For constant Mach number flows, the recurrenceithlgns developed by
Beddoes & Leishman (Refs. 1, 3) are adequate, providingfgignt reductions in the
computational time. When the Mach number is not constatdyradte algorithms must
be used, and the solution process becomes computationatly expensive. However,
the indicial method still remains at least three orders ofjnitade faster than the corre-
sponding CFD computation.

From Eq. (2.27) the circulatory lift was shown to be of thatfior

CHULM) = & [Cwsia0)65() + [T ) ghs o)

<k |k

[(cnaw3/4)eﬁ(s)] (2.64)

where the notatiofiCn, W3/4)eff(S) is used for ease of representation. If a two term expo-

nentially growing indicial response function is used in fibien
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() = 1— AgePiP's _ p g bab’s (2.65)

then the expression within square brackets in Eq. (2.64peanritten as

-l—/SdCn W3/4 ¢:(s—o)do

(Cna W3/4> ef‘fective( S) Cna W3/4
= CnyW3/4(0) (1—Ale*b1B S_ Age 2P S) +

S dGn, W34 —b1B%(s—0) —b,B?(s—0)
fy—do @ (1 e ~hee )ao

- Cnu W3/4<0) - A]-Cnu W3/4(0) eiblszs - AZCna W3/4<0) eﬁbZBzS —+
dG, w
/ G, W3/4(S) / AL C” Lot ) 01801 -

s dG,,w
/ AZM(cy)e—szz(S—G)do (2.66)
0 do

The termsA;Cn, W3/4(0) e P1B%S and AyCr Wy /4(O)e*b2523, which contain the initial value
of Cn, W34, are short term transients and can be neglected. Theréfer®uhamel inte-

gral can be rewritten as

(CraWz/a)e(S) = CngWay4(0) + Cny Way4(S) — CngWa/4(0) — X(s) = Y(8)

— CoaWaa(9)— X(5) — Y(8) (2.67)

where theX andY terms are given by

s dGCy,w

X(s) = /0 Alw(o)eblsz(sc)do (2.68)
s d

Y(s) = /0 AZ%(G)e‘bZBZ(S‘G)dG (2.69)

The X andY terms are often called “deficiency” functions. They may takeeither

positive or negative values.
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2.3.2 Recurrence AlgorithmM = constant)

Consider the manipulation of thé(s) term. TheY(s) term can be treated likewise. As-
suming a continuously sampled system with time ggfgwhich may be non-uniform),

then at the next time step

s+tAs  d W
X(s+As) = /O Alw(c)eblﬁz(sﬂso)dc (2.70)

Splitting the integral into two parts gives

s dG,, W
X(s+As) = /()Al%<0)eb182(s+mc)do+

/S+ASA1 dCﬂaW3/4 (O_>e_blBZ(S+AS_0)dO_
S

do
s dG,.w
— /Al Cnd 3% (0)e B (50 g biB*hsg
0 o
/ sths Alweblyo e b1B%(s+0s) 4 g (2.71)
S

Because the indicial coefficient&,, by, Az, by and[3 are constant (linear indicial method

with constant Mach number), the teen:P’2s can be taken outside the integral

X(s+As) = g Db / py 25 W3/4 (0)eF=)dg

S do

= X(s)e PFBs 1 | (2.72)
Notice that this new valueX(s+ As), is a one-step recurrence formula in terms of the
previous valueX(s), and a new increment, over the new period. No information at
earlier time steps need be saved to evaluate this expression
Consider now the evaluation of theerm. Again, because the indicial coefficients
(A1, b1, A2, by) and 3 are constant, the termle*blﬁz(S*AS) can be taken outside the
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integral

_ /S+AS an W3/4( ) —b]_BZ(S—O-AS— )dO'
do

_ /S+AS 1an W3/4( )ebleoe_blBZ(&._As)do_

— Age DiB¥(s+s) / e A, Wy 4(0)eb152°d0

s do
st+Asd W
= Age DiP(stas) /S %(o)f(c)dc (2.73)

with f(o) = P1P%0 in this case. At this point, several simplifying assumpsi@an be
made. Introducing a simple backward-difference approkionafor d(Cn,Ws/4)/ds at

time s+ As gives

anaW3/4 B CnaW3/4(S+ AS) _CnaW3/4(s)
do  |gas As
A(CngW3/4)stas
— A (2.74)

which has an error of ordeiCn,ws/4)"(s+ As)As. The remaining part of the integral

involving f(o) can be evaluated exactly ahthecomes

A(CngW3/a)stas (1— e Diphs
| = A1< - ) .7 (2.75)
A(Cyy, W3/4)S+AS 1-— efbleAs
_ A1< - ) b.7as 2 (2.76)
~  A1A(CngW3/4)stas (2.77)

Notice that the recurrence functioXsandY contain all the time-history informa-
tion of the unsteady aerodynamics, and are simply updated aneach time step. This
approach, thereby provides numerically efficient solgitmthe unsteady aerodynamics

for arbitrary variations in forcing. Obviously, the resuttan be extended to any mode of
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forcing and to any number of exponential terms that may bd tseepresent the indicial

response function.

2.3.3 Exact Algorithm§ = constant)

The recurrence algorithm discussed above is valid only wthenindicial coefficients
and[3 are constant (i.e., the free-stream Mach number is const&vihen the indicial
coefficients and/of are not constant, the above algorithm is no longer accuriite

exact analytical expression fi(s) is given by

s  dG,,w
Xs)= [ A1$(0>e—blﬁz<s><s—o>do 2.78)

Notice that3 has been replaced If3(s) to indicate that it is dependent on time. Because
B is no longer constant, the manipulations in Eq. (2.72) and(Ed@3) can no longer be
made, andX(s) has to be calculated by evaluating the Duhamel integralatepiéy for

each instant of time. This is done using

sdG,, W
X = | L(; 34 (6) eI (9(50) g
0 (0)

N
- 'Z\A(Cnawsm)iAleblBﬁ‘ (5= (2.79)
i=

= A(CrgWa/a)1A1e PP 1 A(Co W )A€ PIFR(S02)

A(CnuW3/4)NilAle*blBﬁ(S*O'Nfl) +A(Cnaw3/4)NAleiblBﬁ (s—on)

In the above equatiomw;, 02, ...,0N correspond to the reduced time at the various
instants of forcing. Notice th#? in the exponent is always evaluated at titra s (i.e.,
at the instant when the lift is calculated) and not at theainisivhen the forcing is applied
(i.e., atoy, o2, etc.). From the above equation it is seen that the entire hirstory of
the forcing has to be stored and summed to obtain the airladsy given time. This
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makes the exact algorithm an )¥) algorithm, compared to the recurrence algorithm
which is ON), whereN is the total number of time-steps. While this involves addil
computational overhead, it is still at least three ordersiagnitude faster than CFD, as
long as the computation does not involve several cycles @flason (or equivalently, a
large number of time-steps). Figures 2.9 and 2.10 show twescehere the recurrence
algorithm gives rise to errors in the lift prediction. Thevadtage of using the exact
algorithm is clearly evident from these examples.

However, one drawback of the exact algorithm is that if tredbpegm involves several
cycles of oscillation (say hundreds of cycles), then thea obstoring the entire time
history of the forcing and computing the contribution of ledorcing event separately
can get prohibitively expensive, rendering the computati@advantage of the indicial
method invalid. For example, consider a case where theilaifidergoes 100 cycles of
oscillation. If it is assumed that there are 500 time-stegppcle then this would involve
a total of 500x 100= 5 x 10* time-steps. This means that the exact algorithm would
be 5x 10* times more expensive than the recurrence algorithnNfDgersus OK)).
Figure 2.11 clearly shows that the computational cost asze rapidly as the number
of cycles increases (i.e., as the computation is perforraeéxdtended periods of time).
It is, therefore, essential to develop an alternative nicakscheme that combines the
computational efficiency of the recurrence algorithm widtaining the accuracy of the
exact algorithm.

The following section describes a modified approach to sthigdduhamel integral
involving a combination of the recurrence and exact apgreacwhich is shown to give

the same degree of accuracy of the exact method but at a lergyutational cost. It is
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Figure 2.9: Lift predictions using the exact and the requeealgorithms for combined

variations in angle of attack and Mach numbdg,= 0.5,A = 0.6, a = 1° 4+ 1°sint.

based on the fact that the indicial response is nearly conga varies very gradually)
after about 15 to 20 chord lengths of reduced time after tharfg is applied. Therefore
only those forcing events (such as a changeirx or M) that are less than 15 to 20
chord lengths (of reduced time) old, need to be calculatedtdx The contribution of
the remaining forcing events to the total lift can be comguapproximately using the

recurrence algorithm.

2.3.4 Modified Algorithm

This approach combines the positive features of both thermrecce and the exact algo-
rithms. Here, the recurrence algorithm is used to comp@edintribution to the total lift

from events (forcing) that occurred a long time back, while éxact algorithm is used to
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exact algorithm (Total number of cycles = 30).
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compute the contribution from recent events. Kis) term is split into two parts where,

s d(Cp,w
X(s) = /AlM(O-)eblﬁz(s)(so)do-
0

do
Sy dCnaWa/a) b g2y (s—o) " p ) s 5-0
= Xi(s) +X2(9) (2.80)

In the above equation, the first integral,(s), contains the contribution t4(s) of
the events (forcing) that occurred a long time back (comedpg tos < s°). It is rela-
tively small in comparison wittXx(s), which contains the contribution of forcing events
that took place recentlys(> s*). Because the contribution o (s) to X(s) is relatively
small, it is reasonable to permit some errors in its cal@uhat X;(s) can therefore be
calculated using the recurrence algorithm, without anpificant loss in the overall ac-
curacy ofX(s). The value of the integrady(s) is significant because it represents the sum
of the indicial responses from recent forcing events. Thecealgorithm is, therefore,

used to evaluate thé(s) integral. The quantit)(s+ As) can be written as

X(s+As) = Xi(s+As)+ Xo(s+As) (2.81)

Xa(s+A8) = Xq(s)e PP 9 1 AA(Cr Wayg)N_me PSS
N

Xo(s+DS) = 3 AD(Cyowyg)ie E S0
i=N=m+1
wherem s the time-step correspondingde= s* measured backwards in time (i.e.A$
is constant, themAs = s—s*) andN is the total number of time-stephl & time-steps
per cyclex number of cycles). The value af can, therefore, be viewed as an accuracy
factor;m= 1 yields the recurrence algorithm white= N yields the exact algorithm. For

intermediate values ah, a modified (and improved) recurrence algorithm is produced
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that is both computationally efficient and numerically aete. The choice o§* (or
equivalently, the choice aih) depends on the range of variation of the Mach number.
At higher Mach numbers, the exact algorithm has to be used fonger period of time
(i.e., higherm) because the indicial response asymptotes to the steatyvstiue more
slowly (as modeled by th@? factor in the exponential terms of the indicial response
function). If the range of Mach numbers is not high, or if thewflis largely in the
incompressible range, then the recurrence algorithm iallysadequate. The modified
algorithm gives greater flexibility to the analyst, enaplanbalance between the accuracy

and computational efficiency to suit the specific needs optbblem.

2.3.5 Performance Comparison

Figures 2.12 and 2.13 show the results obtained for a meah Naober of 6, A = 0.4
andA = 0.6. The runs were performed using 500 time-steps per cycl8darycles of
oscillation. The unsteady lift variation is shown for diéat values oim expressed in
terms of number of cycles (i.e.,@2cycles would correspond to = 2.0 x 500= 1000).
ForA = 0.4 (see Fig. 2.12) it is seen that the differences betweereth@nence and the
exact algorithms are not significant. This is mainly becabseMach numbers involved
are not too high and consequently the time-lags associaitbdtine indicial response
are not substantially different from the incompressibleec@.e. 3 is close to unity). Itis
seen that when two cycles of oscillation are calculatedtéxand the remaining three are
calculated using the recurrence algorithm, the resulte@aely identical to the the exact
algorithm (where all 30 cycles are computed exactly). ket 0.6 (see Fig. 2.13), it is

seen that there are significant differences between thé¢ @xdcthe recurrence algorithms.
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Figure 2.12: Lift predictions using the exact and the modidgorithm for combined

variations in angle of attack and Mach numbdg,= 0.5,A = 0.4, a = 1° 4+ 1°sint.

The modified algorithm is shown to provide nearly the sameaakegf accuracy as the
exact algorithm when.3 cycles are calculated exactly.

Figure 2.14 shows log-log plot of the computational timeswsrthe number of
cycles using the exact and the modified algorithms. From litygesof the lines, notice
that the exact algorithm is a second order method df4pgvhile the modified algorithm
is a first order method of ®(m). Clearly, the modified algorithm offers a significant
reduction in the computational time.

Figure 2.15 compares the relative computational time wealin computing the
unsteady airloads using the CFD and the different numealcgdrithms. It is evident
that the recurrence algorithm is computationally nearlg fivders of magnitude faster

than an equivalent CFD computation. However, it is not nucadly accurate for flows
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test case involving 30 cycles of oscillation.

with time-varying free-stream Mach numbers. The exactrilgm is computationally

more expensive than the recurrence algorithm, but provédesrate solutions for the
indicial formulation. The modified algorithm provides a quutationally less expensive
alternative that has the same accuracy as the exact algorTihe computational expense
of using the modified algorithm depends on the actual flow lerab For example in

the inboard regions where the flow operates in the low subsegime, the recurrence
algorithm is adequate. The modified algorithm is needed iortllge far-outboard regions

of the blade where the Mach numbers are higher.
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Chapter 3

Results and Discussion

This chapter compares the results obtained using the inassiple indicial theory, the
existing compressible theory, and the revised comprestiebry against CFD results for
a wide range of flow conditions. Based on the indicial modelscdbed in the earlier
sections, results have been computed for various nonystpadodic flow conditions.
The parameters of importance afdy (mean value of the Mach numbeR),(perturba-
tion velocity ratio),am (mean angle of attack® (amplitude of pitch oscillations), and

(reduced frequency). In each case, the forcing is assumuael abthe form

M = Mo(l—l—)\Sin(d)

a = Oam-+asin(wt+y)

wherey is the phase difference between the Mach number and angiaokascillations.

In all cases, the normal force coefficient has been nornailigethe linearized steady-
state lift; the incompressible lift coefficient is normadzby 2w, and the compressible
lift coefficient is normalized by uo/p. The CFD and indicial codes were executed for
five cycles of oscillation so that the initial transients ezeompletely removed. The last
cycle was used to show the results. A CFD run usually invoB286 time steps with six
Newton sub-iterations per time step. The indicial method wan using 500 time-steps
per cycle. It was seen that the indicial method reduces thgatational time by nearly
three to four orders of magnitude. This is the primary corapahal advantage of the
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indicial method that makes it suitable for routine rotorlgaeg codes. The CFD results
were normalized by using the steady-state lift obtaine@t@and ag. The results are

discussed for three separate conditions (cases):

1. Constant free-stream Mach number with oscillatory yemes in angle of attack.
2. Constant angle of attack with an oscillating free-stréaach number.

3. Combined angle of attack and free-stream Mach numbeltaigms.

3.1 Case 1: Constant Free-Stream Mach Number with Oscil&idch

Motion

Figures 3.1, 3.2, 3.3, 3.4 show the normalized lift and prighmoment variation for
constant Mach number and oscillating angle of attack fdedséht Mach numbers (8,
0.5, 065 and 08). Figures 3.1 and 3.2 show results foe= 1° 4 1° sinwt. There is
excellent agreement in the lift predictions between theciattmodel and CFD for all
free-stream Mach numbers. The pitching moment predictadss agree well with the
CFD results. This is because at low angles of attack nonlieiéects associated with the
compressibility of the flow are small.

If the amplitude of the pitch oscillations is increased tierttoa = 2° 4 2° sinwt
(see Figs. 3.3 and 3.4), it is seen that the resultdffer 0.8 begin to differ in magnitude
and phase (especially for the pitching moment). The reastint this can be better
understood by viewing the pressure distribution over theiaat various instants of time

(see Fig. 3.5). Itis observed that at all times, a shock wapedsent on the upper surface
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of the airfoil. The shock wave moves back and forth as theiiokcillates, affecting
the pressure distribution over the airfoil. Because thécinimodel does not explicitly
account for the presence or movement of shock waves, it $sdagable in predicting
the unsteady airloads. The pitching moment is particulaffgcted because it is very
sensitive to any phenomena that can change the distribatiohordwise pressure (and
hence the aerodynamic center and center of pressure) avairtbil. Notice also that
when the Mach number is constant, the predictions from tietieg indicial model and
the new indicial model are identical in all respects. Thitofes from the fact thaf is
constant and there are no additional noncirculatory temssng from variations in the

Mach number.

3.2 Case 2: Constant Angle of Attack with Varying Free-Strddach

Number

Figures 3.6, 3.7, 3.8 and 3.9 show the normalized lift anchpiig moment variation for
constant angle of attack and varying free-stream Mach nufob@erturbation velocity
ratios of 02, 0.4, 0.6 and 08. From the results in Figs. 3.6 and 3.7, it is seen that for a
mean Mach number of 0.3 there is very good agreement betwEBna@d the indicial
models. However, the new compressible indicial model gibletter results than both the
incompressible theory and the existing indicial theorydbirvalues ofA. The indicial
pitching moment predictions follow the CFD results in phdsé differ slightly in mag-
nitude in the low Mach number region. This is because of tlghstifferences in the

prediction of the unsteady lift, as well as uncertaintiethim estimation of the center of
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pressure.

For a higher mean Mach number o60(Figs. 3.8 and 3.9), the incompressible
indicial method and the existing compressible indicialmoetdiffer from the CFD results
in both magnitude and in phase. Initially, as the Mach numbereases, there is an
increase in the lift because of compressibility effects.isThehavior is obviously not
captured by the incompressible indicial model but it is veaptured by both the existing
and new compressible indicial models. However, while thstayg compressible model
captures the general behavior, it is associated with gisgraes in magnitude and phase.
The new model on the other hand shows good agreement withEbe i€ gives very
good agreement fox = 0.2 andA = 0.4. ForA = 0.6 andA = 0.8, certain nonlinearities
are observed beyondt = 90 (i.e., after the maximum Mach number is reached in the
oscillatory cycle). These are not captured by any of thecedtorder models because the
flow physics behind these nonlinearities involves the faromeof shock waves, which are
very difficult to account for within the limitations imposég a linear model.

A study of the variation of chordwise pressure distributioth time (see Figs. 3.14
and 3.15) forA = 0.6 reveals the flow physics behind these nonlinearities. reigul4
shows the pressure distribution fof & wt < 137 and Fig. 3.15 shows the pressure
distributions for 1424° < wt < 16443°. Although the results in Figs. 3.14 and 3.15
involve changes im as well, the basic phenomenon of shock formation and movemen
is the same as for the constant angle of attack case. Ipjttakre is a phase lag be-
tween the Mach number and the lift response. As the Mach numbeases beyond the
maximum Mach number of.8 and starts decreasing, a strong pressure gradient begins
to build up. This pressure gradient gradually develops anghock, which then moves
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over the upper surface of the airfoil. With the formationtud shock, the indicial lift pre-
dictions begin to deviate from the CFD results. As the Macimber decreases further,
the shock wave approaches the leading edge and finally \emiskhe point where the
shock reaches the leading edge and leaves the airfoil isiagsd with a sudden jump
in the lift curve atwt ~ 164°. The same behavior is responsible for the sudden jump in
the curve atat ~ 170 for the A = 0.8 case in Fig. 3.12. The formation and movement
of the shock wave has a significant effect on the pressurakdison over the airfoil,
and is responsible for the differences between the CFD amuhthicial results. Accurate
prediction of the pitching moment coefficient is all the matellenging because it is
dependent on an accurate estimate of both the lift and thtercehpressure of the circu-
latory forces. Because the formation and movement of shaslewver the airfoil surface
has a significant effect on the pressure distribution, iteig/\difficult to make accurate
predictions of their effects without increasing the matatgoal and numerical complexity

of the reduced-order model.

3.3 Case 3: Combined Angle Of Attack and Free-Stream Machbdum

Oscillations

Figures 3.10, 3.11, 3.12 and 3.13 show the results for comdlprtching and free-stream
Mach number oscillations. When the Mach numbers involvedralatively low M <
0.4), there is very good agreement between CFD and both thenpr@ssible and com-
pressible flow models. For low perturbation velocity rat{as= 0.2 andA = 0.4), the

incompressible model offers reasonably good predictiéiws. higher values ok, how-
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ever, the incompressible model under-predicts the lifiéeglly in the low Mach number
region). The new form of the indicial model gives excellegteeement for all values of
A. The pitching moment predictions also show good agreemehtG¥D (especially for
A =0.2 andA = 0.4) because the aerodynamic center does not change sigtlifiablow
Mach numbers.

When the Mach numbers are higher (see Figs. 3.12 and 3.E3)atiare of the re-
sults is similar to the corresponding case with constanteanijattack. The inadequacy
of the incompressible and the existing theories is cleavigent for A = 0.6 and 08
where both of these theories under-predict the lift sigaiftty. The new theory shows
good agreement with CFD if the Mach number does not exceettitial Mach number
(M¢r = 0.8 in this case). As discussed earlier, beyond the criticaliMaumber the forma-
tion and movement of shocks over the airfoil surface affdetgressure distribution and
makes it difficult to make accurate predictions of the lifdgtching moment using any
kind of linear model. Even under such conditions, the iralitheory gives reasonable
unsteady airloads predictions.

Figures 3.16, 3.17, 3.18 and 3.19 show results when thetizarsan Mach number
and angle of attack are out of phase with each other. Agaimethats show excellent
agreement between the indicial and CFD methods. In facs, abserved that the pre-
dictions are actually better when there is a phase differdmetween the Mach number
and the angle of attack variations. This is because the Maatber and angle of attack
do not reach their maximum values at the simultaneously @ddwe the case when
there is no phase difference). This mitigates the compbisgieffects associated with
the formation of shocks and, therefore, makes it somewlsa¢reto predict the lift and
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pitching moment using the indicial model. This is illusaain the case wheidy = 0.65
andA = 0.4. Here, it is observed that when there is a phase differehdé8@, the lift
predictions are better than those when there is no phaszatiffe.

Figure 3.20 shows the chordwise pressure distributionam@ws instants of time.
It is observed that while a shock does form, it exists onlydahort period during the
cycle. The jump in the lift curve arounat = 190° corresponds to the point when the

shock wave reaches the leading edge of the airfolil.
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Figure 3.17: Variation of pitching moment coefficient fort@f phase pitching and free-
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Figure 3.19: Variation of pitching moment for out of phaseiping and free-stream Mach

number oscillations.

69



2
wt=0.0%a=1°M=0.65
15 F
i
o
('.) 05
0
-0.5
1 ‘ ‘ ‘
0 0.25 05 0.75
x/c
2 T
wt=120.32°, o = 0.13°, M = 0.87
15
W
o
O 05
ol
-0.5
1 ‘ ‘ ‘
0 0.25 0.5 0.75
x/c
2 T
wt=177.62° a = 0.95°, M = 0.66
15 F
i
o
('.) 05
0
0.5 |
1 ‘ ‘ ‘
0 0.25 05 0.75
x/c
2 T
wt =189.08°%, a = 1.15°, M = 0.60
15
o
Q
1 ‘ ‘ ‘

0 0.25 0.5 0.75
x/c

Figure 3.20: Pressure distribution over the airfoil atefiéint times foM = 0.65,A = 0.4,

a=1°+1°sin(wt 4+ 180°), k=0.2.

70

_Cp

wt =103.13°%, a = 0.02°, M = 0.90

L
0.25 0.5

0.75 1
x/c
wt =160.43°, a = 0.66°, M = 0.73
0.‘25 0‘.5 O.‘75 1
x/c
wt = 183.35°, o = 1.05°, M = 0.63
0.‘25 0‘.5 0.‘75 1
x/c
wt=194.81° o = 1.25°, M = 0.58
0.‘25 0‘.5 O.‘75 1
x/c



3.4 Results for Different Reduced Frequencies

Figures 3.21, 3.22, 3.23 and 3.24 show results for differedticed frequencies of@b,

0.1, 0.2 and 04 for the conditiondMg = 0.5, o,y = 1°, ad = 1°, A = 0.4 and 06. For
A = 0.4, there is good agreement between the indicial method amlf@Fall reduced
frequencies, except fadr= 0.4 where a phase difference is observed beyone 120°.

ForA = 0.6 the results, in terms of general trends and predictivelnbfyaare similar for
all reduced frequencies except, again,Ker 0.4.

Interestingly, forA = 0.6, shocks are formed féer = 0.05, 01 and 02. Fork = 0.4,
no shock is formed. However, the indicial lift predictiorre actually poorer fok = 0.4.
This is surprising because it would be expected that thenalesef expected nonlinearities
would make it easier to predict the airloads. One possitalsae for this behavior lies in
the accurate treatment of the noncirculatory terms. Higlueced frequencies are associ-
ated with high noncirculatory airloads. At high reducedyfrencies, the noncirculatory
terms assume greater significance and, consequently, eong @ their representation
could give rise to phase or amplitude changes in the lift atathing moment predictions.
Figures 3.25 and 3.26 show some additional results for estlfrequencies other than
0.2.

Figure 3.27 and 3.28 show the variation of lift and pitchingment when the an-
gle of attack and Mach number oscillations occur at differeduced frequencies. The
compressible indicial models show very good agreement @D results except for the
A = 0.8 case where the Mach number is as high.8s @ is seen that the existing indicial

model and the new indicial model do not differ significantty Mach number variations

71



CFD o CFD o
New model New model
Existing model Existing model
25 1 Incompressible model -~ 1 25 1 Incompressible model ----- 1

Normalized Lift, C,/C o
&
Normalized Lift, C,/C o

0.5
My=0.5, A=0.4, = 1%+1%inwt, k = 0.05  “3sssss Mg=0.5, A=0.4, o = 1%+1%incat, k = 0.1
0=0.5, A=0.4, a = 17+1 sinat, k = 0. By p=0.5, A=0.4, a = 1"+1"sinwt, k = 0.
0 L L L 0 L L L
0 90 180 270 360 0 90 180 270 360
Time, wt (deg) Time, wt (deg)
2.5 T T T 3 T T T
CFD o CFD o
New model New model
Existing model Existing model
Incompressible model ----- 251 Incompressible model ----- ]
g 2 e
Q Q a2t
= g
O [¢)
E £
5 15 =
(5 (5]
N N
© ©
E £
2 2
1+
s j 0.5
Mg=0.5, A=0.4, a = 1%41%inat, k = 0.2 Mg=0.5, A=0.4, a = 1%+1%incat, k = 0.4
0.5 . . . 0 . . .
0 90 180 270 360 0 90 180 270 360
Time, wt (deg) Time, wt (deg)

Figure 3.21: Variation of lift coefficient for different reded frequenciedM = 0.5(1+

0.4sinwt),a = 1° + 1°sinwt).

at low reduced frequencies. The pitching moment predistame also seen to be in very

good agreement with the CFD results.

3.5 Simplified Approach for Pitching Moment Calculations

All the pitching moment results shown so far have been obthioy using Eg. (2.39).
While this approach provides a good estimate of the pitciognent, it is computa-
tionally expensive because it involves the evaluation af duhamel integrals. It also
requires an extensive data-set for the center of presswduamstion of both angle of at-
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Figure 3.22: Variation of pitching moment coefficient foffdrent reduced frequencies

(M = 0.5(1+ 0.4sinut), o = 1° + 1°sinat).
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Figure 3.24: Variation of pitching moment coefficient foffdrent reduced frequencies

(M = 0.5(1+ 0.6sinwt), o = 1° + 1°sinat).
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tack and Mach numberg, = Xcp(a, M)), which may prove difficult especially when the
data is obtained experimentally. One alternative to this@gch is to use the aerodynamic
centerx;¢(M), instead of the center of pressure in the unsteady pitchioigent equa-
tion. Here, the circulatory Iif€(t,M) is assumed to be acting at the aerodynamic center
and its moment about the’4-chord-point is used to replace the first Duhamel integral i
Eq. (2.39). Because the aerodynamic center is indepentitre angle of attack, it needs

to be determined from CFD or experiment only as a functiorhefllach number. The

simplified pitching moment equation would then be

CC

My /a4

(t,M) = C(t,M)(0.25— Xag(M)) —

1 [Tg;c n( +/ < ) ¢ (s—o,M)do

Figure 3.29 shows the variation of the aerodynamic centafasction of the Mach

(3.1)
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number. The differences between the CFD and experiment majttbuted to the invis-
cid nature of the Euler solver as well as because of the diigsun accurately predicting
the airloads using CFD or experiment at high Mach numbehduld be borne in mind
that at high subsonic Mach numbers the concept of an aeradgrenter is not strictly
valid because the dependence of lift and pitching momentismo longer linear. Conse-
guently one would have to use approximate values of the grewdic center based on the
regions ofa where the behavior is locally linear. Figure 3.30 companespitching mo-
ment results using the simplified method (aerodynamic ceqperoach) and the original
method described in Chapter 2 (the center of pressure agiprdais seen that for subcrit-
ical flows where the aerodynamic center variations are rosignificant, the simplified
approach gives very similar results to the original methéghen the Mach numbers in-
volved are high, the simplified approach shows significamtad®ns, primarily because
of the inaccuracies in the estimation of the effective agnathic center. Under these
conditions the center of pressure approach better capgtweageneral trends in the pitch-
ing moment behavior. Nevertheless, for most subcriticat$lothe simplified approach

provides a good estimate of the pitching moment behavior.

3.6 Effect of Airfoil Thickness

All the results so far were obtained for a NACA 0006 airfoihefNACA 0006 was chosen
because, being a thin airfoll, it is reasonable to modelnsteady behavior based on thin
airfoil theory. In particular its lift curve slop€,, can be calculated to a good degree

of accuracy by using Glauert compressibility rule (i@, = 21/f) without having to
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generate a detailed database of the lift coefficient for a@weshge of Mach numbers and
angles of attack. However, helicopters use a wide rangerfufilaifor which the thin
airfoil assumptions may not be fully justified. It is therefamportant to investigate the
sensitivity of the unsteady airloads to the effects of @itfockness.

In this study, four other airfoils were considered — NACA QQINACA 0012,
NACA 00015 and the NACA 0020. Figure 3.31 and 3.32 show théealy airloads for
the aforementioned airfoils for combined variations inlaraf attack and Mach number
as obtained from CFD. It is seen that while the general trenevery similar, there are
some differences, especially at supercritical Mach numilférstly, it is seen that there is
an offsetin the lift. Thisis to be expected because, as thkribss increases, the lift curve
slope Cy,, changes and no longer follows the Glauert compressibiigy. In Fig. 3.31 it
is seen that for NACA 0015 and NACA 0020, the nonlinear effexttaracterized by the
abrupt changes in the lift are present evenXoet 0.4. Similarly, in Fig. 3.31, there are
no sudden changes in the lift curve for the NACA 0002 airfioidlicating the absence (or
lessening) of the nonlinear effects that are present foother airfoils. This is because,
as the thickness increases the critical Mach number is Edv@re., for the NACA 0012,
NACA 0015 and NACA 0020, the critical Mach number is loweredhereas for NACA
0002, it increases).

To modify the indicial method to better predict the unsteaufipads for other air-

foils it is necessary to:

¢ Calculate the indicial coefficients for that particulafail: The indicial coefficients

used in this work were obtained for the NACA 0006 airfoil.
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Figure 3.31: Variation of lift for different airfoils foM = 0.5(1+ 0.4sinut),a = 1° 4
1°sinwt.
e Develop a look-up table for the lift coefficient for a wide genof Mach numbers

and angles of attack for that airfoil.

Some of these issues are discussed in Chapter 4.

3.7 Effect of Viscosity

The effect of viscosity on the unsteady airloads is anothmgrortant issue. Generally,
the Reynolds numbers typically encountered by helicodtatds are in the range of 1 to
10 million. The flow field under these conditions is generalisbulent and proper care
should be taken to model the turbulence effects. In the ptegeark, the Baldwin—Lomax
model (Ref. 34) was used. Figure 3.33 shows the variatioiftddt combined variations

in angle of attack and Mach number fRe= 10°. It is seen that the results are fairly
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Figure 3.32: Variation of lift for different airfoils foM = 0.5(1+ 0.6sinut),a = 1° 4
1°sinwt.

similar to the equivalent cases when run in the Euler mode.

3.8 Sensitivity of the Results to Time-step Size

A proper choice of the time-step size is important for botbuaacy and computational
efficiency. While a small time-step size would provide geegiredictive accuracy, it can
increase the computational cost for the same problem. Fhisie for both CFD and
the indicial method. For most of the computations carrietliouhis work, the CFD
calculations were carried out at a normalized time-step gi2.025. Figure 3.34 shows
the effect of time-step size on the unsteady lift predictiolt is seen that the results for
At =0.025 and 00125 are almost indistinguishable. Furthermore¥oe 0.05 the results

are almost identical except for a small amplitude reductiothe high Mach number
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Figure 3.33: Effect of viscosity on the unsteady airloads.
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Figure 3.34: Effect of time-step size on CFD lift predictson

regime and a phase difference in the region where the shdokneed.

A proper choice of the time-step size for the indicial metioonportant because
the computational times can decrease drastically whenuh#ar of time-steps are re-
duced (recall that the exact algorithm@$N?)). In this work, the results were obtained
for 500 time-steps because this gives accurate resultdlfibreacases. For lower Mach
numbers, the number of time-steps per cycle can be furtdeicezl with negligible losses
in accuracy. For other time-steps (100, 250, etc.) theteau very similar to the results

with 500 time-steps, with some deviations towards the ertd@tycle (see Fig. 3.35).

3.9 Grid Resolution

The grid resolution is an important issue for any CFD comfpata In the present work,

most of the CFD calculations were obtained for a 2483 C-grid. To be valid, the
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Figure 3.35: Effect of time-step size on indicial lift pretions.

CFD results should be grid-independent. Figure 3.36 coesptie lift variation for grid-
resolutions of 24k 53 with that for 291x 53. As seen in the figure the differences are
negligible. Figure 3.37 compares the lift variation fordgresolutions of 24% 53 with
that for 241x 41. Again, the results are very similar, except for some kdifrences in

the low Mach number region.
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Chapter 4

Conclusions and Future Work

This thesis has described the development of an indicisddassteady airfoil theory

for compressible flows with a variable free-stream Mach nemB@he method extends
the incompressible indicial method to the treatment of casgible flows with combined

pitching and Mach number variations. Overall, the restitssthat the new compressible
indicial model is very effective in predicting the unstediftyand pitching moment if the

Mach numbers involved are below the critical Mach number.

4.1 Conclusions

The following conclusions have been drawn from the study:

1. The incompressible indicial method was found to providedyestimates of air-
loads if compressibility effects are smaM (< 0.3). For Mach numbers greater
than 03, the effects of compressibility on the unsteady airloagisomes increas-

ingly important, and the incompressible method fails tateepthese effects.

2. The existing compressible indicial model, while proaglibetter predictions than
the incompressible model, gives rise to large amplituderase errors for non-

steady Mach number variations.

3. The new model provides very good estimates of the unstddgads for subcritical
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flows. Both the indicial lift and moment predictions showss#oagreement with

CFD results.

. For supercritical flows, the compressible indicial modeés not capture certain
nonlinear effects associated with the formation and movemieshock waves over
the airfoil surface. While the method does provide a redsenastimate of the
lift coefficient for supercritical flows, further refinemewitthe model is needed for

better estimates of the pitching moment.

. At higher reduced frequencids ¥ 0.4), some phase differences were observed be-
tween the indicial and CFD results. These may be attributelde approximations
in the modeling of the noncirculatory terms, which are digant at high reduced

frequencies.

. The effect of airfoil thickness on the unsteady airloads studied for a NACA 0002,
NACA 0006, NACA 0012, NACA 00015 and NACA 0020 airfoils. Thesults
show that while the general trends are similar for all théods, some differences
arise in the form of : a small offset in the unsteady airloadsch arises because the
lift curve slopeCy, and the indicial coefficients are different for differentfails;

and a decrease in the critical Mach number with an increaaifwoil thickness.

. Three numerical approaches for solving the Duhamel iatege described — a
recurrence algorithm, an exact algorithm and a new pseecdarience algorithm.
The recurrence algorithm offers nearly five orders of magiatreduction in com-

putational time over CFD, but gives rise to inaccuracies/éying Mach number
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flows. The exact algorithm is computationally more expesdbut provides accu-
rate solutions to the indicial formulation. The new algamit, which combines the
positive features of the exact and the recurrence algositisishown to provide the

same degree of accuracy as the exact algorithm at a lowerwtatignal cost.

4.2 Future Work

While the new indicial model has been shown to function walld wide range of flow
conditions, it is also seen that the theory has limitatiansigher (supercritical) Mach
numbers and higher reduced frequencies. The predictivabdép of the indicial model
can be further enhanced by identifying those elements imibael that give rise to defi-
ciencies and improving upon them. One possible step in ttestibn lies in the treatment
of the lift curve slopeC,,, and the indicial coefficients themselves.

From Eq. (2.27) and Eq. (2.44) it is seen that determinatiathe circulatory re-
sponse requires an a priori knowledge of the lift curve sloge and the indicial coeffi-
cientsAq, Ay, b1, andby. Until now, a simplified approach has been used, whereinfthe |

curve slope was assumed to follow the Glauert rule as given by

Ch =5 (4.1)

and the indicial coefficients were taken to be constant addgandent of Mach number

and angle of attack, i.e.,

A; =0.3493 b; = 0.0984

A; = 0.6507, by = 0.7759 (4.2)
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The results have shown that such approximations are adetpragubcritical flows for a
NACA 0006 airfoil. However, this approach is not strictlylidaat high subsonic Mach

numbers or for thicker airfoils, as will be seen in the follog/sections.

4.2.1 Lift Curve Slope

The indicial method can be extended to provide a more acepratliction of the unsteady
airloads by using CFD to calculate the lift curve slope atedént angles of attack and
Mach numbers instead of using the simplified Glauert congbéiy rule, which is valid

only for thin, symmetric airfoils, i.e.,
Cro =C$™P(M, ) (4.3)

Figures 4.1 and 4.2 sho@ as a function otx andM using CFD and the Glauert
compressibility rule. It is seen that at high Mach numbesamgles of attack the differ-
ences between CFD and linear theory are not small. Also, gt io@ borne in mind that
for thicker airfoils the lift curve slope cannot be calceldiusing the Glauert rule even for
low and moderately subsonic Mach numbers. This explainedled to use Eq. (4.3) over

EqQ. (4.1) under these conditions.

4.2.2 Indicial Coefficients

The treatment of the indicial coefficients is another impotissue. It is known that the
indicial coefficients are functions of Mach number and thgl@aof attack. Parameswaran
& Baeder (Ref. 32) and Singh & Baeder (Ref. 33) have shown lairidicial aerody-

namic response coefficients can be obtained from first pliesusing CFD (see also, Lee
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et al. Ref. 24). Using this method, the indicial coefficiecas be obtained for a given

Mach number and angle of attack, i.e., now

Aq :Al(l\/l,(]), b1 = bl(M,G)

AZZAZ(M7G)7 b2:b2(M,(X) (44)

As noted earlier, the indicial response is influenced by lithand the indicial coeffi-

cients. For e.g., Eq. (2.27) can be rewritten for a step horeis

1
Cg(t7M) - \_/|:Cnaw3/4(S:O>+A(CnaW3/4) (ﬂg(S_G7M>:| (45)
1 _ _
=g [CnaW3/4(S 0) +A (Cng W) (1 Ae P _e bzszsﬂ (4.6)

For a step change in angle of attack, this reduces to

1
CS(t,M) = _[CnaVor(s:O)+A(CnGVor) (1—A1e‘b1525—e‘b2525>} (4.7)

v
= CpyOm+Cr, AT (1 _ Ale—blszs _ e—b2[325> 4.8)
= CP(M,0m) +ACH(1— Age 1P’ _ peD2f’s) (4.9)

where the superscrigtdenotes the quasi-steady value. Therefore, to study thetedf
the indicial coefficients on the indicial response, indefgem of the effects o€,,, the
CFD and indicial theory results must be suitably normali@esd, the contribution o€,

to the step response needs to be removed through normatizafihis can be achieved
through the following normalization procedure.

For a step forcing it is known that

Ca(t,M) = CR%(t, M) + C5(t, M) (4.10)
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where

4N
CIEEM) = “=Eeh(tM) (4.12)
CE(t,M) = CI(M,atm) +ACI(1— ArePiF’s _ pjebeb’s) (4.12)

where the superscrigls denotes the quasi-steady value obtained using CFD or linear

theory, i.e.,

CI(M,0m) = 2mm/B or CSFP(M,am)

AC® = 2mha/B  or CSFP(M,am+Aa)—CSFP(M, o)
Combining Eq. (4.10) and Eq. (4.12) gives
Cn(t,M) = CC+ CIS(M, o) + ACI(1 — Age21P"s _ Ay b2P’s) (4.13)

Transferringpﬂs(am, M) to the left-hand side of Eq. (4.13) and dividing throughout
by ACS® gives

Cn(t7M>_CﬂS(Gm7M> o CI[l]C(LM)

- 1- AP pjeteP’s) (414
ACﬂS ACﬂS + ( 1 2 ) ( )

The first term in Eq. (4.14), which is a result of the nonciataty part of the re-
sponse, is a transient term and decays to zero very rapidilg. s€Econd term, which is
essentially the circulatory indicial response functigf(s,M), is the dominant term and
is specified completely using only the indicial coefficiefwithout any contribution from
Cn,)- Such a representation makes it easy to study the effectaahMiumber on the
indicial coefficients without including the effects fromethft curve slopeCy, .

Figures 4.3 and 4.4 show the normalized step respongd fer0.5, a, = 1° and
2°. The results show excellent agreement between the CFD andditial model. At
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Figure 4.3: Step response for = 0.5, a, = 1°, Aa = 0.5° with regular indicial coeffi-
cients.

a higher Mach number of.8 anda,, = 1° (Fig. 4.5) differences arise between the CFD
and indicial results. Asiy, is increased to 2 the differences become more pronounced
(see Fig. 4.6). Because the lift predictions for arbitrasycing are based on the lift
response to step inputs, it would be expected that under@itpml conditions the lift
predictions would also have some differences. This is aowefir by the results in the
previous chapters. One way of improving the lift prediciamder these conditions is
to modify the indicial coefficients as a function of the Maalmber and angle of attack
(Notice that this is different from thg? scaling in the exponent of the indicial response).
Instead of assuming the indicial coefficients to be constsgiven by Eq. (4.2),

they can be treated as functions of the Mach number and AoA\l(se et al. Ref. 24).

97



1.2 . .

Indicial Theory
CFD o

Jolale'o/a'0!0/0/0/0/0100/0(0/0[0/0/0/0/0/0/0/0laalalaala!

0.4 | .
M=0.5 a=2°%Aa=05°

02 L I 1 1

0 20 40 S 60 80 100

Figure 4.4: Step response for = 0.5, a, = 2°, Aa = 0.5° with regular indicial coeffi-
cients.

For example, foM = 0.8, if the indicial coefficients are modified as

A; = 0.596 by = 0.124

Ap =0.404, bp =1.027

for am = 1°, and

A, =0.636 by = 0.090

A; =0.364, bp=0.554

for am = 2°, then a better agreement between CFD and the indicial seisuttbtained
(Figs. 4.7 and 4.8). From this, it may be concluded thatitmgahe indicial coefficients
A1, Az, b1, bo as a function of Mach number and AoA could improve the unsteatbads
predictions (especially at high Mach numbers). Howevehduld be borne in mind that
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Figure 4.5: Step response ot = 0.8, a, = 1°, Aa = 0.5° with regular indicial coeffi-

cients.
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Figure 4.6: Step response fiok = 0.8, oy, = 2°, Aa = 0.5° with regular indicial coeffi-

cients.

99



1.2 -

" Indicial Theory (Modified)
CFD -

0000000004

_____

M=0.8a=1° Aa=0.5°

0.2 1 1 1 1

0 20 40 S 60 80 100

Figure 4.7: Step response figr= 0.8, a, = 1°, Aa = 0.5° with modified indicial coeffi-

cients.
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Figure 4.8: Step response figr= 0.8, oy, = 2°, Aa = 0.5° with modified indicial coeffi-

cients.
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using the modified indicial method based on CFD data invoireadditional computa-
tional overhead for calculating the lift curve slope anditfticial coefficients at each time
step. It also requires a significant prior computationaéstment to develop a database
for Cp, and the indicial coefficients for a wide range of flow condigso Another draw-
back with this method is that separate data sets have to beebtfor different airfoils.
Thus, while the modified approach has the potential to ofé¢tel results, it comes at a
higher computational overhead. This cost can be justifigubd@ing requirements and
constraints placed on the level of analysis in which it iseéaised.

It should be remembered that treating the indicial coeffisieand lift curve slope
as functions of angle of attack and Mach number based on CRE® dises not make
the scheme non-linear. This is because the indicial regsoare still superposed and,
therefore, always assumes linearity. Therefore the approauld not be expected to
capture strictly nonlinear phenomena. What this approads dlo is that by using the
CFD responses from a nonlinear regime it offers a betterigred system in this regime

even though the method itself is linear.

4.2.3 Enhancements to the Numerical Algorithm

It was shown in Chapter 2 that for flows with time-varying Manlmbers, a modified
recurrence algorithm needs to be used. It was seen thatntlots/és a proper choice
of the parametem, which determines the number of time-steps that need twledél
exactly. It was seen that the optimum choicexoflepends on the Mach number regime
(M), as well as the amplitude of Mach number oscillatiok)s The higher the values of

Mo andA, the higher the value ohfor a given error tolerance.
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As noted in Table 1.1, the value bfg andA is different at different radial locations
of the rotor. Therefore inorder to compute the airloads ieffity, it would be necessary
to use different values ah at different radial locations. Towards this end it would be

useful to examine several issues such as:

e Study the error behavior of the modified recurrence algorigéimd develop ways to

estimate it based on the flow conditions and the numericatisol parameters.

e Develop ways to to obtain the optimum valuerofor a given blade section based

on some error criteria.

¢ Investigate ways to dynamically change the valuen@it a particular blade section
based on the flow conditions while also keeping track of thersrinvolved in the

airloads prediction.

It would also be useful to extend the numerical algorithm &kenit second and third
order accurate because this would allow an increase insteyesize and thereby reduce
the computational time. This could prove particularly Hesal for the exact/modified
algorithm because its computational time is inversely propnal to the square of the

time-step size.
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Appendix

Calculation of Indicial Coefficients
The compressible indicial response to a step change imfpisiobtained from CFD and
represented in functional form as a two-term exponentidseThe parameters used to
specify the indicial response function are known as intim@fficients. Because the ac-
curacy of the indicial prediction system is based on the i@ayuof the indicial response
function, extraction of the indicial coefficients used tesify the indicial response func-
tion from CFD results is extremely important. This appenairefly describes the pro-
cedure involved in extracting the indicial coefficientsifrdCFD data (see Ref. 1 and
Ref. 24).

In the earlier chapters it was shown how the indicial respdnsa step change in
forcing (say angle of attack) is modeled as consisting of@utatory and noncirculatory
components, i.e.,

Clt, M) = CE(t, M) + CR(t, M) (A1)

The circulatory and noncirculatory parts are functionadigresented as

CE(t,M) = CrDagh(s,M) (A2)

= Cn, A0 (1— Agexp(—bif%s) — Agexp(—biB2s)) (A.3)
cpe M) = “Slgie(s M) (A4)
che(e, M) = %exp(;—nj) (A.5)
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where,

T AMkq
la ™ 2(1—M) + 2mM2B(Arby + Asby)

(A.6)

From the above equations, we note that once the indiciaficmeftsA;, Ao, b1 andb, are

known, the circulatory and noncirculatory lift responses@mpletely specified. Notice
that Ty, is itself a function of the aforementioned coefficients, aréd not be calculated
separately. To obtain the values of the indicial coeffi@gg@in optimization algorithm
is used by treating the CFD results as the “exact” solutio-élement vector can be

defined that consists of the indicial coefficients, i.e.,
X" = (A, Az, by, by) (A7)

The vector in Eq. (A.7) must be chosen to minimize the diffiessbetween the functional
approximation to the indicial responey(t)ind, @and the CFD result$(t)crp. To do

this, an objective functiod(x) can be defined in terms of a residual sum of squares as
N
J(X) = Z (Ch(tm)ind —Cn(tm)(:FD)2 (A.8)

m=1

whereN is the number of discrete points at which the CFD result islknoThe deter-
mination of the indicial coefficients then becomes a nomliqgogramming problem of

minimizing J(X) in the parameter spaeesubject to the constraints

A17A27 b17 b2 >0 (Ag)
and the equality constraint
N
z An=1 (A.10)
n=1

Itis advisable to calculate the indicial coefficients basethe CFD data for a Mach
number that is sufficiently below the critical Mach numbexy(6.5). This is done so as to
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ensure the absence of any nonlinear phenomena such as sheek vAfter the indicial
coefficients are obtained at a particular subsonic Mach runtle indicial response for
all other subcritical Mach numbers can be obtained by ugiagtaling factop? as seen

in Eq. (A.3).
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