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this finding. 
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estimate relations between controller performance and air traffic in sectors and centers of 
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within sectors and centers. The estimated relations may be biased by factors such as 

spatial and temporal propagation of delays in the NAS, ATC procedures used to delay 

flights away from the source of airspace congestion, strategic and tactical planning 



performed by ATC system and different traffic management processes and programs 

implemented for traffic flow management in the NAS. There is a need to evaluate the 

performance of ATC system in managing air traffic and minimizing delays in the entire 

NAS.

It is found that a hyperbolic function is applicable for relating delays and enroute traffic 

volumes in the NAS. Monthly models estimated using monthly measures of delays and 

enroute traffic volumes perform better than daily models. Monthly models estimated for 

same calendar month of successive years show the best statistical fit. It appears that the 

enroute operational capacity of NAS can differ considerably for different months. Ground 

delays, taxi out delays, gate departure delays and airport departure delays used to reduce 

air delays due to enroute congestion are identified using the monthly and month-specific 

models.



RELATIONS AMONG ENROUTE AIR TRAFFIC,

CONTROLLER STAFFING AND SYSTEM

PERFORMANCE

by

Sameer Datta Kamble

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2005

Advisory Committee:

            Professor Paul M. Schonfeld, Chair
Professor Michael O. Ball
Assistant Professor Mark H. Lopez 



ii

Dedicated to my family in India



iii

ACKNOWLEDGEMENTS

I would like to thank my parents Ranjana and Datta Kamble, my brother Saurabh, 

my sister Leena and my brother in law Narendra for their support and encouragement 

through my academic years.

I would like to thank my friend Sameer Sayed for his help and support.

My special thanks to my advisor Dr Schonfeld for his continuous motivation, advice and 

guidance, and for introducing me to the new world of research. He has instilled in me the 

confidence to tackle any difficult problem in research and in real life.

I would like to thank Dr. Michael O. Ball and Dr. Mark H. Lopez for being members of 

my advisory committee.

I would like to thank the following persons from FAA and various other organizations 

who have helped me throughout this research project. They have provided data and have 

patiently answered all my queries. They include: 

Mr. Dave Knorr (FAA) Mr. Geoff Shearer (FAA)

Mr. Ed Meyer (FAA) Mr. Tony Rubiela (FAA)

Mr. Douglas Baart (FAA) Ms. Nancy Stephens (FAA)

Mr. Daniel Citrenbaum  (FAA) Mr. Barry Davis (FAA)

Mr. Elliott McLaughlin (FAA) Ms. Ann Yablonski (FAA)

Mr.  Matt Dunne (FAA)         Mr. Tony Diana (FAA)

Mr. Robert Tobin (FAA)         Dr. Fredrick Wieland (MITRE)



iv

Mr. Ron Suiter (Ventana) Mr. Dan Goldner (Ventana)

Dr. Arnab Majumdar (Imperial College, London)

I also wish to thank the Federal Aviation Administration (FAA) for funding this research 

through the National Center of Excellence for Aviation Operations   Research 

(NEXTOR).



v

TABLE OF CONTENTS

List of Tables ……………………….…………………………… xi

List of Figures ………………………………………………….. xv

Chapter I Introduction……………………………………………………… 1

Chapter II Structure of Thesis……………………………………………… 7

Chapter III Literature Review………………………………………………... 9

3.1 Relations between enroute air traffic controller staffing and 
enroute air traffic in the NAS……………………………………. 9

3.1.1 US national airspace system and air traffic controller positions 
staffed for enroute sectors……………………………………….. 9

3.1.2 Function classification of enroute air traffic controller positions.. 10
3.1.3 Current method used for controller staffing……………………... 11
3.1.4 Relation between enroute air traffic, controller workload and

ATC complexity…………………………………………………. 14
3.1.5 Measurement of ATC complexity……………………………….. 19
3.1.6 Relation between air traffic operations and number of controllers 

staffed in sectors…………………………………………………. 23
3.1.7 Factors affecting relation between controller staffing and enroute

air traffic operations……………………………………………... 29
3.1.8 Controller forecasting model developed by FAA for enroute air 

traffic center controllers…………………………………………. 36
3.1.9 Summary of literature review……………………………………. 39

3.2 Relations between controller performance and air traffic in 
sectors and centers of the NAS………………………………….. 42

3.2.1 Impact of air traffic congestion in sectors and centers…………... 42
3.2.2 Measures of controller performance and controller workload in 

sectors and centers……………………………………………….. 48
3.2.3 Models developed in literature to relate flight delays/excess 

distances with congestion in sectors and centers………………... 58
3.2.4 Difficulties in estimating relations between flight delays/excess 

distances and air traffic in sectors and centers…………………... 62
3.2.5 Considerations in developing models to estimate relations 

between flight delays/excess distances and congestion in sectors 
and centers……………………………………………………… 65



vi

3.3 Relations between ATC system performance and enroute air 
traffic in the NAS………………………………………………... 66

3.3.1 The need to consider entire NAS to estimate relations between 
delays and enroute traffic volumes by considering monthly and 
daily measures of delays and enroute traffic volumes in the 
NAS…………… ………………………………………………… 66

3.3.2 Models proposed in literature……………………………………. 78
3.3.3 Queuing model developed by Wieland 2004 to estimate 

operational capacity of NAS using OPSNET data………………. 85
3.3.4 Selection of delay data to measure delays in NAS………………. 89
3.3.4.1 Delay databases maintained by FAA……………………………. 89
3.3.4.2 Drawbacks of data on delay relative to schedule……………… 89
3.3.5 Suitability of OPSNET database for measuring traffic volumes

and delays caused by enroute traffic volumes in the NAS………. 91
3.3.5.1 Drawbacks of delay data from OPSNET database………………. 92
3.3.5.2 Merits of delay and traffic volume data from OPSNET database.. 93

3.4 Overview of Methodology………………………………………. 96
3.4.1 Relation between controller staffing and enroute air traffic in 

NAS……………………………………………………………… 96
3.4.2 Relations between controller performance and air traffic in 

sectors and centers of NAS……………………………………… 97
3.4.3 Relations between ATC system performance and enroute traffic 

volumes in the NAS…………………………………………… 98

Chapter IV Relations between Enroute Air Traffic Controller Staffing and 
Enroute Air Traffic in the NAS………………………………….. 100

4.1 Proposed analysis………………………………………………... 101
4.1.1 Relation between ATC complexity for centers and air traffic 

operations in centers……………………………………………... 101
4.1.2 Relation between air traffic operations and distribution of air 

traffic operations in centers during the peak 1830 hours and the 
second busiest 1830 hours of a 365 day period………………….. 101

4.1.3 Relation between monthly onboard controller staffing in centers 
and monthly center operations…………………………………... 101

4.1.4 Validation of current controller forecasting model by comparing 
model predicted monthly staffing and actual on board monthly 
staffing of controllers………….………………………………… 101

4.1.5 Relation between number of dynamic sectors in a center and that 
center’s air traffic operations…………………………………….. 102

4.2 Analyses and results……………................................................... 102



vii

Chapter V Relations between Controller Performance and Air Traffic in 
Sectors and Centers of the NAS…………………………………. 119

5.1. Measures of air traffic activity (controller workload) in sectors 
and centers……………………………………………………….. 120

5.2. Measures of controller performance in sectors and centers……... 124

5.3. Data used for analyses…………………………………………… 127

5.4. Proposed models………………………………………………… 129
5.4.1. Relations between controller performance and controller 

workload for the same center/sector……………………………... 129
5.4.2. Effect of congestion in successive center/sector on flight path….   138
5.4.3. Analysis of flights traveling between a city pair………………… 143
5.4.4. Performance comparison of R and R & D controller staffing 

configurations in a sector………………………………………... 152

5.5. Selection of centers and sectors and details of data used………... 156

5.6. Data processing tools and statistical softwares used for 
performing analyses……………………………………………... 160

5.7. Analyses and results……………………………………………... 160

5.8. Comparison of results of models estimated in section 5.7 with 
results of Howell et. al. (2003)…………………………………... 207

Chapter VI Relations between ATC System Performance and Enroute Air 
Traffic in the NAS……………………………………………….. 208

6.1 Organization of chapter………………………………………….. 208

6.2. Difficulties in estimating relations between ATC system 
performance and enroute traffic volume in the NAS……………. 210

6.3. Analyses proposed to estimate relations between recorded flight 
delays and enroute traffic volume in the NAS…………………... 211

6.4. Proposed extension to Wieland`s model………………………… 211

6.5. Proposed analyses………………………………....................... 217



viii

6.5.1. Analysis performed using delays specifically caused by enroute 
congestion which are recorded by OPSNET database as delays 
by cause “center volume”………………………………………... 217

6.5.2. Analyses performed using different forms of delays used to 
reduce air delays caused by enroute congestion…………………. 221

6.5.2.1. Analysis of average ground delay and number of operations 
delayed by category-arrival, departure and 
enroute…………………………………………………………… 222

6.5.2.2. Analysis of average minutes of delay by category- airport 
departure delay, gate departure delay, taxi-in/out delay, airborne 
delay, block delay and gate arrival delay………………………... 226

6.5.3. Trends in the variation of different delay types…………………. 230

6.6. Analyses and results……………………………………………... 231

6.7. Results…………………………………………………………… 231

6.8. Interpretation of results………………………………………….. 264
6.8.1 Interpretation of results from section 6.7………………………... 264
6.8.2 Interpretation of results from section 6.7.3……………………… 268
6.8.3 Relation between delays and enroute traffic volume in the NAS.. 269
6.8.4. Reasons for low explanatory power of the monthly and month-

specific models…………………………………………………... 270

6.9. Drawbacks of analyses…………………………………………... 273
6.9.1. Drawbacks of data used in the analyses…………………………. 273
6.9.2. Drawbacks of month-specific models…………………………… 275

Chapter VII Conclusions……………………………………………………… 276

7.1 Relations between enroute air traffic controller staffing and 
enroute traffic in the NAS……………………………………….. 276

7.2 Relations between controller performance and air traffic in 
sectors and centers of NAS……………………………………… 282

7.3 Relations between ATC system performance and enroute air 
traffic in the NAS………………………………………………... 287

7.4 Models and results which can be incorporated in the FAA NAS 
Strategy Simulator……………………………………………….. 294

Chapter VIII Recommendations for Future Work……………………………... 296



ix

8.1. Relation between delays due to understaffing of controllers and 
controller staffing/enroute traffic in the NAS…………………… 296

8.2. Analyses using variable “controller work minutes in a center” 296

8.3. Models estimated using minutes of delays due to enroute 
congestion ……………………………………...

297

8.4. Revision of Position Classification Standard for ATC (FAA 
1999), currently used by FAA to measure center complexities 
and assign controller grades & wages…………………………… 298

8.5. Revision and validation of FAA 1997 standards………………...   298

8.6. Analyses to be performed after obtaining the required data…….. 299

8.6.1. Analysis 4.1.5 - Relation between number of dynamic sectors in 
a center and air traffic operations handled by that center……….. 299

8.6.2. Analysis 9.3.1 - Sector MAP values are used to measure NAS 
performance, for estimating relations between NAS performance 
and enroute traffic volumes………………………...   299

8.6.3. Analysis 9.3.2. Enroute delays caused by Traffic Management 
processes are used as measures of NAS performance, for 
estimating relations between NAS performance and enroute 
traffic volumes…………………………………………………… 299

8.7. Estimating three-dimensional relations among NAS enroute 
traffic demand, controller staffing and NAS performance………. 300

Chapter IX Unrealized Analyses……………………………………………... 301

9.1. Analysis proposed to estimate relations between flight times and 
enroute traffic volumes in the NAS……………………………… 301

9.2. Analysis proposed to estimate relations between excess distances 
traveled by flights and enroute traffic volume in the NAS……… 304

9.3. Analyses proposed to estimate relations between NAS 
performance measures and NAS enroute traffic volumes……….. 306

9.3.1. Sector MAP value is used as a NAS performance measure for 
estimating relations between NAS performance and enroute 
traffic volume……………………………………………………. 306

9.3.2. Enroute delays caused by Traffic Management processes are 
used as measures of NAS performance, for estimating relations 



x

between NAS performance and enroute traffic volume………… 309

References……………………………………………………….. 312



xi

LIST OF TABLES

Table 3.1 Number of areas and sectors in 5 ARTCC`s of NAS……………………10

Table 3.2 Number of controllers required to be staffed by function and number of 
aircraft worked………………………………………………………...…12

Table 3.3 Standard deviation of differences in controller work times between the 
staffing models and actual onsite observations………………………..…21

Table 3.4 Centers in continental U.S., forecasted center operations, and centers 
selected for measurement by center group…………………………….…25

Table 3.5 Centers which appear significantly different by dataset…………………26

Table 3.6 R controller’s work time per aircraft and number of aircraft worked per 15 
minutes…………………………………………………………………...27

Table 3.7 Number of controllers required to be staffed by function and number of 
aircraft worked…………………………………………………………...28

Table 5.1 Data for centers and dates chosen for analyses…………………………157

Table 5.2 Data for sectors and dates listed chosen for analyses………………..…158

Table 5.3 Additional data for centers and dates used for analyses……………..…158

Table 5.4 Data for sectors and dates used for analyses……………………………159

Table 5.5 Numbering of three centers based on sequence in which 20 flights 
traversed three centers while traveling from DFW to ORD on 
04/15/2003……………………………………………………………...189



xii

Table 5.6 Data for sectors and days used to perform analyses in section 5.7.4…...199

Table 5.7 Controller performance measures used to study performance of two 
controller staffing configurations in section 5.7.4…….....……………..200

Table 5.8 Results of two tailed t tests for sector ZDC04 for analyses in section
5.7.4………………………………………………………………….…201

Table 5.9  Results of two tailed t tests for sector ZJX 68 for analyses in section
5.7.4…………………………………………………………………..…202

Table 5.10  Results of two tailed t tests for sector ZNY39 for analyses in section
5.7.4………………………………………………………..............…...204

Table 5.11 Results of two tailed t tests for sector ZMA 20 for analyses in section
5.7.4……………………………………………………………………..205

Table 6.1 Results of regression analyses for monthly models for delay metric 
“Fraction of center operations in NAS which are delayed due to enroute 
congestion”……………………………………………………..………233

Table 6.2 Results of regression analyses for monthly models for delay metric 
“Fraction of delayed operations delayed due to enroute 
congestion”………………………………………………………..……234

Table 6.3 Results of regression analyses for month specific models for delay metric 
“Fraction of center operations in NAS delayed due to enroute 
congestion"……………………………………………………...………236

Table 6.4 Results of regression analyses for month specific models for delay metric 
“Fraction of center operations in NAS delayed due to enroute congestion” 
for May…………………………………………………………….……237

Table 6.5 Results of regression analyses for month specific models for delay metric 
“Fraction of delayed operations delayed due to enroute
congestion”………………………………………………………..……238



xiii

Table 6.6 Results of regression analyses for month specific models for delay metric 
“Fraction of delayed operations delayed due to enroute congestion” for 
July………………………………………………………………...……240

Table 6.7 Results of regression analyses for monthly models for delay metric 
“average ground delay”…………………………………………………243

Table 6.8 Results of regression analyses for monthly models for delay metric 
“fraction of center operations which are departure delayed……………244

Table 6.9 Results of regression analyses for month specific models for delay metric 
“average ground delay”…………………………………………………246

Table 6.10 Results of regression analyses for month specific models for delay metric 
“Average ground delay” for July……………………………………….247

Table 6.11 Results of regression analyses for month specific models for delay metric 
"fraction of center operations which are departure delayed"………...…248

Table 6.12 Results of regression analyses for month specific models for delay metric 
“Fraction of center operations which are departure delayed” for 
August…..................................................................................................250

Table 6.13 Results of regression analyses for month specific models for delay metric 
“Average gate departure delay” for November………………………...253

Table 6.14 Results of regression analyses for month specific models for delay metric 
“Average taxi out delay"………………………………………………..254

Table 6.15 Results of regression analyses for month specific models for delay metric 
“Average taxi out delay” for June………………………………………256

Table 6.16 Results of regression analyses for month specific models for delay metric 
“Average airport departure delay”…………………………………...…256



xiv

Table 6.17 Results of regression analyses for month specific models for delay metric 
“Average airport departure delay” for November……………………...258

Table 6.18 Results of regression analyses for month specific models for delay metric 
“Average block delay"……………………………………………….…258

Table 6.19 Results of regression analyses for month specific model for delay metric 
“Average block delay” for December………………………………..…260

Table 6.20 Four delay metrics and calendar months for which month specific models 
showed good explanatory power…………………………………….…267



xv

LIST OF FIGURES

Figure 1.1 Time series trend of monthly traffic volumes (center operations) in 
NAS…………………………………………………………………….....2

Figure 1.2 Time series trend of fraction of monthly center operations delayed due to 
enroute congestion in NAS…………………………………………..……3

Figure 1.3 Time series trend of percentage of monthly delayed operations delayed 
due to enroute congestion in NAS………………………………….……..4

Figure 3.1 Annual increases in number of sectors in NAS……………………….…33

Figure 3.2 Annual increases in number of areas in NAS……………………………33

Figure 3.3 Relation between normalized traffic activity during 15 minute interval and 
average excess distance for flights handled during 15 minute interval in a 
center, averaged over 20 enroute centers (Howell et al. 2003)……..……60

Figure 3.4 Relations between normalized traffic activity during 15 minute interval 
and average excess distance for flights handled during 15 minute interval 
in a center (Howell et al. 2003)……………………………………..……61

Figure 3.5 Relation between delays vs. NAS traffic volume from (Wieland, 2004)..86

Figure 3.6 Relation between delays vs. NAS traffic volume plotted using three simple 
queuing curves from (Wieland, 2004)…..……………………………….87

Figure 4.1 HCI vs. center operations (365 day rolling period) for the ZMA
center……………………………………………………………………104

Figure 4.2 HCI vs. center operations (365 day rolling period) for the ZJX 
center……………………………………………………………………104



xvi

Figure 4.3 HCI vs. center operations (365 day rolling period) for the ZNY
center……………………………………………………………………105

Figure 4.4 HCI vs. center operations (365 day rolling period) for the ZDC
center……………………………………………………………………105

Figure 4.5 HCI vs. center operations (365 day rolling period) for the ZAB
center……………………………………………………………………106

Figure 4.6 Cav2/Cav1 vs. center operations (365 day rolling period) for the ZMA
center……………………………………………………………………108

Figure 4.7 Cav2/Cav1 vs. center operations (365 day rolling period) for the ZJX
center……………………………………………………………………108

Figure 4.8 Cav2/Cav1 vs. center operations (365 day rolling period) for the ZNY
center……………………………………………………………………109

Figure 4.9 Cav2/Cav1 vs. center operations (365 day rolling period) for the ZDC
center……………………………………………………………………109

Figure 4.10 Cav2/Cav1 vs. center operations (365 day rolling period) for the ZAB
center……………………………………………………………………110

Figure 4.11 Monthly onboard controller staffing in all NAS centers vs. monthly center 
operations in NAS………………………………………………………112

Figure 4.12 Monthly onboard controller staffing vs. monthly center operations for the 
ZNY center…………………………………………………………...…113

Figure 4.13 Monthly onboard controller staffing vs. monthly center operations for the 
ZMA center…………………………………………………………..…114

Figure 4.14 Monthly onboard controller staffing vs. monthly center operations for the 
ZJX center………………………………………………………………114



xvii

Figure 4.15 Monthly onboard controller staffing vs. monthly center operations for the 
ZDC center………………………………………………………...……115

Figure 4.16 Monthly onboard controller staffing vs. monthly center operations for the 
ZAB center………………………………………………………...……115

Figure 4.17 Time series trend of variables, staffing standard forecasted monthly 
controller staffing in all centers of NAS and monthly onboard controller 
staffing in all centers of NAS………………………………………...…117

Figure 4.18 Staffing standard forecasted monthly controller staffing in all NAS centers 
and monthly onboard controller staffing in all NAS centers vs. monthly 
center operations in NAS………………………………………….……118

Figure 5.1 Ratio of actual distance and GCR distance of flight vs. avg flight secs for 
center US Dom ZDC……………………………………………………163

Figure 5.2 Ratio of actual distance and GCR distance of flight vs. avg flight count for 
center US Dom ZDC……………………………………………………164

Figure 5.3 Ratio of actual distance and GCR distance of flight vs. avg flight secs (for 
selected operations of center US Dom ZDC)…………………..………165

Figure 5.4 Ratio of actual distance and GCR distance of flight vs. avg flight count 
(for selected operations of center US Dom ZDC)………………...……165

Figure 5.5 Ratio of actual duration and GCR distance of flight vs. avg flight secs for 
center US Dom ZDC……………………………………………………166

Figure 5.6 Ratio of actual duration and GCR distance of flight vs. avg flight count for 
center US Dom ZDC……………………………………...…………….167

Figure 5.7 Ratio of actual duration and GCR distance of flight vs. avg flight secs (for 
selected operations of center US Dom ZDC)………………………..…168



xviii

Figure 5.8 Ratio of actual duration and GCR distance of flight vs. avg flight count 
(for selected operations of center US Dom ZDC)…………………...…168

Figure 5.9 Ratio of actual distance and GCR distance of flight vs. avg flight secs for 
sector   ZDCDI……………………………………………………….…171

Figure 5.10 Ratio of actual distance and GCR distance of flight vs. avg flight count for 
sector ZDCDI……………..…………………………………………….171

Figure 5.11 Ratio of actual distance and GCR distance of flight vs. avg flight secs (for 
selected operations of sector ZDCDI)………………………………..…172

Figure 5.12 Ratio of actual distance and GCR distance of flight vs. avg flight count 
(for selected operations of sector ZDCDI)…………………………...…173

Figure 5.13 Ratio of actual duration and GCR distance of flight vs. avg flight secs for 
sector ZDCDI………………..……………………………………….…174

Figure 5.14 Ratio of actual duration and GCR distance of flight vs. avg flight count for 
sector ZDCDI………………………..……………………………….…174

Figure 5.15  Ratio of actual duration and GCR distance of flight vs. avg flight secs (for 
selected operations of sector US Dom ZDCDI)………………………..175

Figure 5.16 Ratio of actual duration and GCR distance of flight vs. avg flight count 
(for selected operations of sector US Dom ZDCDI)……………...……176

Figure 5.17 Ratio of actual distance and GCR distance of flight in center US Dom 
ZDC vs. avg flight secs for center US Dom ZBW (for selected 
operations)………………………………………………………………180

Figure 5.18 Ratio of actual distance and GCR distance of flight in center US Dom 
ZDC vs. avg flight count for center US Dom ZBW (for selected 
operations)………………………………………………………………180



xix

Figure 5.19 Ratio of actual duration and GCR distance of flight in center US Dom 
ZDC vs. avg flight secs for center US Dom ZBW (for selected 
operations)………………………………………………………………182

Figure 5.20 Ratio of actual duration and GCR distance of flight in center US Dom 
ZDC vs. avg flight count for center US Dom ZBW (for selected 
operations)………………………………………………………………182

Figure 5.21 Ratio of actual distance and GCR distance of flight in sector ZDC04 vs. 
avg flight secs for sector ZDC03…………………………………….…183

Figure 5.22 Ratio of actual distance and GCR distance of flight in sector ZDC04 vs. 
avg flight count for sector ZDC03……………………………………...184

Figure 5.23 Ratio of actual duration and GCR distance of flight in sector ZDC04 vs. 
avg flight secs for sector ZDC03…………………………………….…185

Figure 5.24 Ratio of actual duration and GCR distance of flight in sector ZDC04 vs. 
avg flight count for sector ZDC03…………………………………...…185

Figure 5.25 Ratio of actual distance and GCR distance of flight in sector ZDC04 vs. 
avg flight secs for sector ZDC03 (for selected operations)……….……186

Figure 5.26 Ratio of actual distance and GCR distance of flight in sector ZDC04 vs. 
avg flight count for sector ZDC03 (for selected operations)………...…186

Figure 5.27 Ratio of actual duration and GCR distance of flight in sector ZDC04 vs. 
avg flight secs for sector ZDC03 (for selected operations)…………….187

Figure 5.28 Ratio of actual duration and GCR distance of flight in sector ZDC04 vs. 
avg flight count for sector ZDC03 (for selected operations)………...…188

Figure 5.29 Ratio of actual distance and GCR distance of flight in center 1 vs. flight-
specific workload (in seconds) in center 2……………………………...190



xx

Figure 5.30 Ratio of actual distance and GCR distance of flight in center 1 vs. flight-
specific workload (in seconds) in center 3…………………………...…191

Figure 5.31 Ratio of actual distance and GCR distance of flight in center 1 vs. flight-
specific workload (in operations) in center 2………………………...…191

Figure 5.32 Ratio of actual distance and GCR distance of flight in center 1 vs. flight-
specific workload (in operations) in center 3…………………………...192

Figure 5.33 Ratio of actual distance and GCR distance of flight in center 2 vs. flight-
specific workload (in seconds) in center 3…………………………...…192

Figure 5.34 Ratio of actual distance and GCR distance of flight in center 2 vs. flight-
specific workload (in operations) in center 3…………………………...193

Figure 5.35 Ratio of actual duration and GCR distance of flight in center 1 vs. flight-
specific workload (in seconds) in center 2…………………………...…194

Figure 5.36 Ratio of actual duration and GCR distance of flight in center 1 vs. flight-
specific workload (in seconds) in center 3…………………………...…194

Figure 5.37 Ratio of actual duration and GCR distance of flight in center 1 vs. flight-
specific workload (in operations) in center 2…………………………...195

Figure 5.38 Ratio of actual duration and GCR distance of flight in center 1 vs. flight-
specific workload (in operations) in center 3……………………...……195

Figure 5.39 Ratio of actual duration and GCR distance of flight in center 2 vs. flight-
specific workload (in seconds) in center 3…………………………...…196

Figure 5.40 Ratio of actual duration and GCR distance of flight in center 2 vs. flight-
specific workload (in operations) in center 3…………………………...197

Figure 6.1 Fraction of center operations delayed due to center volume vs. monthly 
center operations in NAS…………………………………………….…232



xxi

Figure 6.2 Fraction of delayed operations delayed due to center volume vs. monthly 
center operations in NAS………………………………………….……234

Figure 6.3 Fraction of center operations delayed due to center volume vs. monthly 
center operations in NAS (Month-specific model for May)……………237

Figure 6.4 Fraction of delayed operations delayed due to center volume vs. monthly 
center operations in NAS (Month-specific model for July)………….…239

Figure 6.5 Average ground delay vs. monthly center operations in NAS……….…242

Figure 6.6 Fraction of center operations departure delayed vs. monthly center 
operations in NAS………………………………………………………244

Figure 6.7 Average ground delay vs. monthly center operations in NAS (Month-
specific model for July)……………………………………………...…247

Figure 6.8 Fraction of center operations departure delayed vs. monthly center 
operations in NAS (Month-specific model for August)……………..…249

Figure 6.9 Average gate departure delay vs. monthly center operations in NAS 
(Month-specific model for November)…………………………………253

Figure 6.10 Average taxi out delay vs. monthly center operations in NAS (Month-
specific model for June)…………………………………………...……255

Figure 6.11 Average airport departure delay vs. monthly center operations in NAS 
(Month-specific model for November)…………………………………257

Figure 6.12 Average block delay vs. monthly center operations in NAS (Month-
specific model for December)………………………………………..…259

Figure 6.13 Time series trend of variation in seven monthly delay 
metrics…………………………………………………………………..262



xxii

Figure 6.14 Time series trend of variation in monthly center operations in 
NAS…………………………………………………………………….262

Figure 6.15 Variation in trend of seven monthly delay metrics vs. monthly center 
operations in NAS………………………………………………………263



1

CHAPTER I: INTRODUCTION

Problem statement:

As enroute air traffic increases and the NAS (National Airspace System) approaches its 

capacity, the delay and associated costs increase nonlinearly and steeply. There is a need 

to prepare for the air traffic growth in the system. The problems related to demand-

capacity imbalance need to be anticipated and resources should be allocated in an 

efficient way.

There is a need to estimate relations among controller staffing, controller performance 

and enroute air traffic in the NAS. The capacity of enroute airspace sectors is limited by 

the number of aircraft which can be handled by controllers per unit time. Staffing in 

sectors is based on number of operations which can be handled by controllers per unit 

time and the difficulty involved in controlling those operations. Considering the future 

growth in enroute traffic, planning is needed to provide resources and training to meet the 

controller staffing needs of the future.

Adequate controller staffing and ATC resources should be provided to avoid degrading 

the NAS performance.

When a sector demand exceeds its capacity, workload increases for controllers in that 

sector and their performance may suffer. Hence, it is important to estimate the relations

between performance of ATC system and enroute air traffic in sectors and centers of the 
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NAS. These relations evaluate the performance of the controllers and air traffic control 

(ATC) system. 

Monthly center operations in NAS (in millions) 
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Figure 1.1 Time series trend of monthly traffic volumes (center operations) in NAS

Figure 1.1 shows the time series trend of monthly airspace traffic volumes in NAS 

(center operations in NAS) from January 1998 to May 2005.The period from January 

1998 to September 2001 shows a steady increase in monthly center operations in NAS.

The September 11, 2001 event impacted the air traffic operations in NAS. Hence, the 

period from September 2001 to February 2002 shows a sharp decline in enroute air traffic 

in NAS. However the period from February 2002 to May 2005 shows a gradual increase 

in the enroute NAS traffic. 

In August 2004 the NAS handled 4.101 million center operations. This enroute traffic 

exceeded the August 2000 peak of 4.077 million center operations. In March 2005 the 

NAS handled 4.175 million center operations, the highest monthly enroute traffic ever 
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recorded. This shows that the enroute air traffic is gradually increasing since September 

11, 2001.  

OPSNET (Air Traffic Operations Network) is the only database reports the number of 

operations delayed due to (center volume) enroute congestion. Figure 1.2 shows the time 

series trend of fraction of monthly center operations delayed due to enroute congestion in 

NAS.

Fraction of monthly center operations delayed due to enroute congestion
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Figure 1.2 Time series trend of fraction of monthly center operations delayed due to 

enroute congestion in NAS.

The fraction of monthly center operations delayed due to enroute congestion increased 

from 0.0025 in January 96 to 0.033 in June 2005.

Figure 1.3 shows the time series trend of the percentage of monthly delayed operations in 

the NAS which are delayed by enroute congestion. This percentage increased from 0.319 

in January 1996 to 2.79 in June 2005.
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Percentage of monthly delayed operations delayed by enroute congestion
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Figure 1.3 Time series trend of percentage of monthly delayed operations delayed due to 

enroute congestion in NAS.

Time series trends of the two graphs show that the percentage of operations delayed by 

enroute congestion, and the percentage of delayed operations delayed by enroute 

congestion is increasing in the NAS. Traffic volume in the NAS is causing an increase in 

delays and percentage of delays caused by enroute congestion. Hence it is important to 

explore the impact of further increases in enroute traffic on the ATC system performance. 

These relations must be estimated for individual sectors and centers, and for the entire 

NAS. 
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Objective:

The main objective of this study was to estimate statistically the relations among 

controller staffing, enroute traffic and ATC system performance. The following three 

relations were sought:

1. Relations between staffing of enroute air traffic controllers and enroute traffic. Such 

relations were estimated for individual sectors and centers, and for the entire NAS.

2. Relations between controller performance and air traffic in NAS sectors and centers.

3. Relations between ATC system performance and enroute traffic volumes in the NAS

Scope and methodology:

Since it is difficult to estimate strong relations between controller performance and air 

traffic within sectors and centers, such relations should also be estimated at an aggregate 

level for the entire NAS.

The literature was reviewed in order to assess previous research in the relevant areas. 

FAA standards on controller staffing, air traffic control procedures and data reporting 

requirements were also used to estimate the desired relations. Consultations with Air 

traffic controllers and other FAA personnel were helpful in providing:

1. Understanding of air traffic control procedures and ATC system operation in the NAS.

2. Data recorded by FAA, for use in this analysis.

Appropriate measures of controller staffing, NAS performance and enroute traffic were 

used to estimate these relations. For example controller staffing could be measured in 
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terms of number of controllers, controller and NAS performance in terms of delays and 

enroute traffic in terms of operations. Individual differences may exist in the proposed 

metrics. For example controllers can be classified based on grade levels and operations 

can be classified into arrivals and departures. It was decided to use a simplified single 

metric to measure each variable. Based on the data available from FAA, models were 

developed for these relations, using statistical tools such as regression analyses and t 

tests. Appropriate time intervals and airspace components (sectors, centers or entire 

NAS) will be chosen for estimating the sought relations. Statistical tools like regression 

analyses and t tests will be used to estimate the relations.

It is possible that the relations among controller staffing, enroute traffic and ATC system 

performance could be biased by additional factors, such as improvement in ATC 

equipage which could affect the controller staffing and improve NAS performance. 

Hence care was needed in the data analysis and model development. Care was also 

needed in choosing data for centers, sectors and time periods. The feasible analyses were 

severely limited by the data available from FAA.
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CHAPTER II: STRUCTURE OF THESIS

The following relations are estimated among enroute air traffic, controller staffing 

and ATC system performance in NAS

1. Relations between Enroute Air Traffic Controller Staffing and Enroute Air Traffic in 

the NAS

2. Relations between Controller Performance and Air Traffic in Sectors and Centers of 

the NAS

3. Relations between ATC System Performance and Enroute Air Traffic in the NAS

This thesis consists of nine chapters.

Chapter I: Introduction

Chapter II: Structure of thesis

Chapter III: Literature Review 

Chapter IV:  Relations between Enroute Air Traffic Controller Staffing and Enroute 

Air Traffic in the NAS 

Chapter V: Relations between Controller Performance and Air Traffic in Sectors and 

Centers of the NAS

Chapter VI:  Relations between ATC System Performance and Enroute Air Traffic in 

the NAS

Chapter VII: Conclusions 

Chapter VIII: Recommendations for Future Work

Chapter IX: Unrealized analyses
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The literature review performed to estimate three relations is contained in sections 3.1, 

3.2 and 3.3 of chapter III.

Chapters IV, V and VI contain the methodology, analyses, results and interpretation of 

results for the three estimated relations.

The conclusions based on the three estimated relations are presented in sections 7.1, 7.2 

and 7.3 of chapter VII.

Chapter IX discusses some analyses which were contemplated for estimating relations 

between ATC system performance and enroute traffic volumes in the NAS but not yet 

achieved, due to drawbacks of the NAS performance measures proposed in analyses 

which could bias the estimated relations and due to the unavailability of data.

An overview of the methodology employed to estimate the three relations is provided in 

section 3.4.
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CHAPTER III: LITERATURE REVIEW

3.1. Relations between enroute air traffic controller staffing and enroute air traffic 

in the NAS.

The relation between staffing of enroute air traffic controllers and enroute air traffic in 

NAS sectors and centers was studied in section 3.1. The effect of improvement in 

equipage, job experience, individual performance and age on the workload and 

performance of enroute air traffic controllers (hereafter, referred to as controllers) are not 

considered as factors in the formulation of this relation.

3.1.1. US national airspace system and air traffic controller positions staffed for 

enroute sectors.

The US national airspace is divided into 21 air route traffic controller centers (ARTCC). 

For controller staffing purposes each center’s airspace is subdivided into areas of 

specialization. 

An area consists of 5 to 8 sectors which are generally grouped for specialization and 

operational purposes. Sector airspaces can be visualized as three-dimensional cubes, 

which have defined vertices and boundaries in space. The areas of specialization are 

equivalent in terms of operational workload and workload complexity.  Controller 

workload in a sector is functionally divided into positions of radar controller (R 

controller), associate radar control (D controller) and hand-off controller. Rotational 

assignment of controllers is performed within each area of specialization. 
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Table 3.1 below shows the number of areas and sectors for 5 ARTCC`s in the NAS

LocID
Facility 

Name
State Areas Sectors

ZDC Washington VA 8 48

ZNY New York NY 6 30

ZJX Jacksonville FL 5 39

ZMA Miami FL 4 32

ZAB Albuquerque NM 5 38

Table 3.1 Number of areas and sectors in 5 ARTCC`s of NAS

3.1.2. Functional classification of enroute air traffic controller positions.

The authorized title for center air traffic controllers is provided in FAA (1999).The 

authorized title is given as “Air Traffic Control Specialist (Center)”.

FAA (1999) provides a description of the functions performed by enroute air traffic 

controller positions.

i) To control enroute air traffic 

ii) To provide approach control services and radar separation for IFR and VFR aircraft 

operating to and from non-approach controlled and non-controlled airports.

iii) To provide advisory services to pilots. These advisory services include information 

such as status of navigational aids, other traffic, weather and airport conditions, and status 

of restricted and military operating areas.
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FAA (1997) classifies air route traffic controllers into “R-controller”, “D-controller” and 

“Tracker”. It also lists the functions for each category of controllers. “The R-controller 

communicates with aircraft pilots via radio frequencies and coordinates with other 

controllers within his/her facility and other facilities as situation dictates. The D-

controller assists the R- controller by maintaining the flight progress bays, issuing 

clearances over the interphone and preplanning control activities. The D-controller 

reviews flight progress strips for new flights in conjunction with already existing flights 

to determine whether adequate separation will exist between aircraft. When the D-

controller is not using the communication system s/he monitors the radio frequency of the 

R-controller. The Tracker assists the R-controller by monitoring the R-controllers radio 

frequency and scanning the PVD (Plan View Display) to identify and resolve potential 

conflicts.”

FAA (1997) study also lists the functions of the A-side or flight data position. The flight 

data position removes printed progress strips from printers, inserts them into holders, and 

distributes them to appropriate sectors for posting in the flight progress bays.

3.1.3. Current method used for controller staffing.

There are two methods used to staff controllers in sectors. The two methods have been 

discussed below.

Short term controller staffing: 

The current staffing standards FAA (1997) for enroute air traffic controllers are 

developed using work measurement techniques (work sampling and time study). Work 
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measurement techniques determine the actual time required by a controller to perform a 

standardized set of air traffic control functions or tasks within a fifteen minute interval. 

The staffing standard is developed as a mathematical model to estimate the number of 

persons required to perform a standardized set of air traffic control functions or tasks. 

The mathematical model contains equations composed of compiled work times required 

to perform air traffic control functions or tasks.  FAA (1997) provides a staffing guide for 

the number of controllers required by function and the number of aircraft worked during 

a 15–minute interval. (Refer table 3.2)

Table 3.2 Number of controllers required to be staffed by function and number of aircraft 

worked

(Source: ARTCC Radar Sector Staffing Models, 1997)
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However during a meeting1 with air traffic controllers at the FAA Free Flight Office it 

was found that in practice the staffing of controllers and addition of controllers to sectors 

is not performed based on 15 minute radar controller staffing standards -FAA (1997). 

Instead facility managers and supervisors use their judgment and consider complexity to 

assign controllers to sectors subjected to different traffic levels.

1Meeting with Mr. Jeff Shearer, Mr. Ed Meyer, Mr. Dave Knorr and Mr. Antonio Rubiera 

at FAA Free Flight Office on 04/07/05.

Long term controller staffing: 

FAA (1997)2 and modified FAA (1991) controller staffing standards are used by FAA to 

predict future annual staffing requirements for ARTCC`s .APO forecasted annual center 

operations for future years and 15 minute radar controller staffing standards developed in 

FAA (1997) are used as inputs to estimate future controller staffing requirements for 

ARTCC`s. Long term staffing standards are used as a baseline for staffing controllers for 

days. In facilities managers support staffing based on the resources provided based on 

long term staffing standards. Managers could use overtime to meet the demand.

2Information provided by Mr. Elliott McLaughlin during meeting at FAA on 

05/20/2005.Changes have been made to the FAA 1991 staffing model as explained by 

Mr. McLaughlin.
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3.1.4. Relation between enroute air traffic, controller workload and ATC complexity

In this section the relation between enroute air traffic, controller workload and ATC 

complexity has been discussed.

3.1.4.1. ATC complexity and controller workload increases with enroute air traffic

FAA and other researchers have defined ATC (Air Traffic Control) complexity as a 

measure of difficulty in performing controller tasks (FAA (1995) and Grossberg (1989) 

as reported in FAA (1995)). Researchers have showed that a positive relation exists 

between ATC complexity and controller workload. Grossberg (1989) as reported in FAA 

(1995) has shown that ATC complexity affects the rate of increase of controller 

workload.

Characteristics of air traffic and sector airspace compose ATC complexity. Complexity 

factors related to characteristics of air traffic could be clustering of aircraft in the airspace 

Stein (1985) or number of intersecting flight paths, Mogford et al. (1993). Complexity

factors related to sector airspace could be sector geometry, Buckley et al. (1983) or sector 

size, Mogford et al. (1993).

FAA (1995) explains that the interaction of a given level of traffic complexity with 

sector complexity creates overall ATC complexity. FAA (1995) also identifies traffic 

density as a component of ATC complexity. Buckley et al. (1983) reported that traffic 

density has a greater impact on system performance measures than sector geometry

(airspace complexity). But, Buckley also reported that traffic density and sector geometry 

interact to effect system performance measures. On similar lines FAA (1985) reports that
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the interaction of air traffic characteristics (air traffic complexity) and physical 

characteristics of a sector (airspace complexity) generates overall ATC complexity and 

controller workload. It can be argued that traffic volume itself is the generator of ATC 

complexity and controller workload.

Researchers have found a positive relation among many air traffic complexity variables 

and controller workload. Using a simulation environment, Stein (1985) found a strong 

statistical correlation between controller workload (as measured by Air Traffic Workload 

Input Technique) and air traffic complexity variables. In Stein’s simulation study, air 

traffic controllers predicted controller workload using Air Traffic Workload Input 

Technique. Some measures of the activity in the airspace were the variables aircraft 

count, frequency of minimum separation violations, average number of aircraft in a small 

block of airspace, and planned actions. Three levels of task load (low, moderate and high) 

were developed by varying selected system variables. Responses of controllers were 

obtained using ATWIT technique for different levels of task load. Study found that the 

controller’s responses also reflected three levels of workload.  A positive relationship was 

obtained between taskloads i.e. system variables and controller workload responses using 

ATWIT. It can be seen that the air traffic complexity factors used in Stein’s (1985) study 

are generated by traffic volume itself. 

It is proposed that an increase in traffic volume will increase air traffic complexity factors 

which in turn will increase the controller complexity and workload. Based on a review of 

ATC complexity literature, Pawlak et al. (1996) states that “an increase in amount of air 
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traffic is related to an increase in complexity”. Based on a thorough review of ATC

complexity literature, Hilburn (2004) explains that traffic density in form of traffic count, 

density or load has been the single most widely analyzed variable for its influence on 

controller complexity and workload.

FAA (1999) also emphasizes the impact of traffic density on controller complexity and 

workload. It states that aircraft congestion has greatest impact on the difficulty and 

complexity of center controller positions. These complexity factors are present in 

different centers in varied combinations and intensity levels, and their impact becomes 

more pronounced with substantial increases in congestion of air traffic. Based on the 

airspace available, higher levels of air traffic congestion will cause more complex 

configurations of airspace to tackle more congested patterns of air traffic.

FAA (1999) explains that in congested control environment higher aircraft crossings, 

climbs and descents will occur in complex configurations of airspace. This will cause a 

need for increased precision and rapidness in controller’s coordination and control 

actions, while he coordinates among the other members of bigger controller workforce. 

With an increase in air traffic in centers, higher coordination will be required among the 

controllers and the level of criticality involved in the controller’s decisions and actions 

will increase. Optional plans available for the control and movement of aircraft will 

reduce. Under heavier levels of air traffic, the controllers will be subjected to continuing 

pressure to make rapid control decisions, and to communicate precisely and rapidly with 

pilots. Sustained air traffic levels will cause greater coordination problems and increase 
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the congestion in airspace. Higher levels of continued traffic congestion experienced by a 

controller will demand higher performance from the controller in terms of his judgment, 

skills and his ability to make accurate decisions by rapidly reacting to extremely stressful 

work situations.  

For developing an aggregate macroscopic relation between controller complexity (which 

generates controller workload) and traffic volume for the entire NAS the following 

hypothesis is proposed. It is proposed that for any sector or a group of sectors (centers) in 

the airspace, regardless of the physical characteristics of the sector (i.e. sector 

complexity) an increase in traffic volume will cause a proportional increase in controller

complexity and workload.

3.1.4.2. Consideration of ATC complexity and controller workload which is not 

generated by traffic volume and its characteristics

There are researchers who have shown that traffic volume and its characteristics do not 

generate the overall controller complexity and workload in a sector. Sridhar et al. (1998) 

as reported in Yousefi et al. (2003) proposed that the real airspace complexity cannot be 

captured by considering only the number of aircraft passing through a sector .Based on 

his analysis, Yousefi et al. (2003) reported that less complex sectors were handling more 

aircraft in NAS. 

Hilburn (2004) points out that researchers (Athenes et al. (2002), Mogford et al. (1995) 

and Kirwan et al. (2001)) have criticized traffic density for its inadequateness to capture 
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some aspects of ATC complexity. Based on a literature review of controller workload 

studies, Majumdar et al. (2002) proposed that aircraft count is not a suitable measure of 

controller workload. Majumdar et al. (2002) propose that the following air traffic 

complexity factors cause controller workload- traffic mix, climbing-descending aircraft, 

aircraft speeds and horizontal and vertical separation standards. 

ATC complexity consists of traffic complexity and airspace complexity. Based on 

literature review it was found that traffic volume causes traffic complexity. Traffic 

volume does not cause airspace complexity and the total ATC complexity. Airspace

complexity varies across sectors in NAS. However for developing an aggregate 

macroscopic relation between traffic volume and ATC complexity for sectors and centers 

in NAS, it is proposed that airspace complexity could be held constant. Hence ATC 

complexity and controller workload will increase proportionally with an increase in 

traffic volume. 

There are serious problems associated with the measurement of airspace complexity. This 

makes it difficult to measure the total ATC complexity. The problems associated with the 

measurement of total ATC complexity and controller workload for a sector or a group of 

sectors are explained in the next section.
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3.1.5. Measurement of ATC complexity

In this section the difficulties in measurement of ATC complexity and the ATC 

Complexity metric developed and employed by FAA to measure ATC complexity have 

been discussed.

3.1.5.1. Difficulties in measurement of ATC complexity

The difficulties in measurement of ATC complexity are listed below:

i. Lack of consensus on a measure of ATC complexity and controller workload.

There is a lack of consensus on a measure of ATC complexity and controller workload in 

the literature. Researchers have developed different metrics using different approaches 

and validation techniques to measure ATC complexity and controller workload. Hilburn 

(2004) explains that no single metric can be used to measure all possible forms of ATC 

complexity present in airspace. On similar lines (Jorna (1991) as reported by Majumdar 

et al. (2002)) explains that controller workload has various definitions in literature and 

several researchers have developed different models to measure controller workload.

It is difficult to measure complexity of different sectors in NAS using a single complexity 

metric. Different airspaces have different types of complexity making it difficult for a 

single complexity metric to measure complexity at different airspaces Hilburn (2004). 

Hilburn provides examples of researches wherein the developed complexity metrics were 

developed or validated at only one specific site, (example Pawlak et al. (1996)) which 

questions the applicability of the developed metrics for other sectors or centers. Hilburn
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(2004) also provides examples of research studies, in which the developed complexity

metrics showed a variation in performance at different facilities.

ii. Difficulties in measuring complexity during development of FAA (1991) and FAA 

(1997) controller staffing standards.

FAA (1991)

FAA 1991 reported problems in measuring ATC complexity for individual sectors. 

During the preparation of FAA Staffing Standard for Air Route Traffic Control Centers, 

(FAA 1991), three complexity factors were identified and collected to study their effect 

on controller workload. Complexity factors in this study were defined as “variables that 

make one sector different or more complex than another”. The three complexity factors 

collected for individual sectors were:

a) The number of navigational aids in a sector.

b) The number of airways in a sector.

c) The number of airway intersections in a sector.

During the model development process, a variation in time for controller work activities 

was observed between the results of staffing standard models and actual onsite 

observations. (Refer table 3.3)
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The study team analyzed that no single complexity factor affected the controller work 

activities. However the combined effect of the complexity factors affected the controller 

work activities to some degree and could explain some amount of variation. 

Model Standard deviation (minutes)

Low altitude sectors High altitude sectors

One controller model 2.21 Data not available 

Two controller model 1.98 1.92

Table 3.3 Standard deviation of differences in controller work times between the staffing 

models and actual onsite observations

Since, only three complexity factors were considered for analysis, it is possible that the 

impact of other complexity factors not considered in the study could explain this 

unexplained variation. 

FAA (1997)

During the development of FAA 1997 ARTCC staffing standards, no center or sector 

related ATC complexity was considered; instead measurement sites (centers) were 

selected from each of the four groups, which were stratified based on annual operations 

forecasted for fiscal year. The study team made an attempt to collect complexity data

during their onsite visits. However, during the data collection phase, the study team

estimated that the potential value of the collected data did not justify the amount of 

manual effort needed to collect the data and the data were not collected. The effect of 

complexity factors on controller workload was not studied in the FAA 1997 study.
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3.1.5.2. ATC Complexity metric developed and employed by FAA

FAA has developed “Hourly Classification Index” to measure the difficulty and 

complexity levels of a center’s work situations FAA (1999). Center specific “Hourly 

Classification Indices” are used to assign ATC grade levels to controllers. ATC grade 

levels of controllers are used as a basis for deciding wages of controllers. 

“Hourly Classification Index” increases with an increase in the values of the following 

metrics. These metrics measure traffic volume characteristics, and are used as 

intermediate inputs in the formula for estimating hourly classification index.

i) Weighted hourly count: Weighted hourly traffic count is used for estimating “Hourly 

Classification Index”. Formula for computing “weighted hourly count” assigns varying 

weights to different flight operations to reflect the complexity involved in performing 

activities related to those operations. 

ii) Airspace density- Airspace density is a measure of the number of aircraft present per 

unit area in the facility’s airspace during an average hour of operation.

iii) Airspace usage- Airspace usage is defined as the total time in minutes for all aircraft 

in center’s airspace (during the average hour of busiest 1830 hours) divided by the 

average hourly sector operations.

It can be argued that the above traffic complexity characteristics incorporated in the HCI 

formula are driven by traffic volumes. With an increase in air traffic, the magnitudes and 

the intensity levels of the complexity factors will increase. This in turn will increase the 

values of HCI for centers. The formula for measuring HCI does consider other air traffic 
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and sector related complexity characteristics like aircraft mix, proportion of domestic air 

traffic over water as compared to total domestic traffic, proportion of oceanic air traffic 

compared to total domestic air traffic, military operations and facility characteristics as 

intermediate inputs in the HCI formula.

Based on ATC complexity literature one could argue that the HCI does not capture all 

factors related to ATC complexity, which have been proposed and validated in the 

literature. The definition and development of HCI is suitable , since it is an macroscopic 

metric developed to measure complexity for centers and is vulnerable to the drawbacks of 

a macroscopic complexity metric explained in section 3.1.5.1.

HCI is operational since 1999 to date and is being efficiently used to assign grade levels 

to controllers and to decide their wages based on workload complexity. The efficient and 

successful operation of the HCI is a support to the hypothesis that complexity and 

workload can be measured in terms of air traffic volume and its characteristics.

3.1.6. Relation between air traffic operations and number of controllers staffed in 

sectors.

It is proposed that as the traffic volume (number of operations) handled by a center/sector 

increases the complexity and difficulty involved in performing the controller work 

activity (controller complexity) and controller workload increases. This will increase the 

controller task times for controlling same number of operations. The controller will spend

more time for handling the same number of aircraft operations and will control fewer 
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operations per unit time. This will warrant an increase in controller staffing per unit time 

in a sector as per 15 minute controller staffing standards FAA (1997).

The following findings from FAA (1997) support the proposed hypothesis.

i. Difference in controller task times for handling same number of operations

During the FAA (1997) staffing standard study, a series of data analyses was carried out 

to determine the statistically significant differences in the time measurement data 

attributable to differences among the eight centers participating in the study. During the 

analyses it was found that the amount of time spent by a controller or a staffing 

configuration at a center for the same number of total aircraft worked varied for different 

centers. The study team was unable to explain these differences.

These differences could possibly be explained by analyzing the annual operations 

forecasted for each center. The study team had classified the centers in the continental 

U.S. into four groups based on the annual operations forecasted for the fiscal year 1996. 

(Refer table 3.4).
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Table 3.4 Centers in continental U.S., forecasted center operations, and centers selected 

for measurement by center group

(Source: ARTCC Radar Sector Staffing Models, 1997)



26

The eight measurement centers were chosen from these groups. Table 3.5 shows the 

statistically significant differences in the time measurement data attributable to 

differences among the eight centers.

Table 3.5 Centers which appear significantly different by dataset

 (Source: ARTCC Radar Sector Staffing Models, 1997)

Based on the above differences, it can be inferred that controllers at centers belonging to 

higher level groups (groups which have higher annual operations forecasted for the fiscal 

year 1996) spent more time for the same number of aircraft worked as compared to 

controllers at centers belonging to lower level groups. From tables 3.4 and 3.5 it can be 

observed  that controllers at centers ZID and ZOB belonging to group I and center ZNY 

belonging to group II  spent more time for the same number of total aircraft worked as 

compared to centers ZAB and ZSE belonging to group IV and center ZLA belonging to 

group III.
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ii. Differential staffing requirement for low and high altitude sectors.

Results of FAA (1997) staffing standard study show that the activity time per aircraft for 

controllers assigned to low altitude sectors is higher than the activity time per aircraft 

(Refer table 3.6) for controllers assigned to high altitude sectors. 

Table 3.6 R controller’s work time per aircraft and number of aircraft worked per 15 

minutes

(Source: ARTCC Radar Sector Staffing Models, 1997)
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For single and two controller staffing configuration it can be seen that controllers 

assigned to low altitude sectors are able to control less aircraft operations per unit time as 

compared to controllers assigned to high altitude sectors. Refer table 3.7 below.

Table 3.7 Number of controllers required to be staffed by function and number of aircraft 

worked

(Source: ARTCC Radar Sector Staffing Models, 1997)

It can be concluded that higher ATC complexity and higher traffic volumes in low 

altitude sectors make them more difficult and complex to control than high altitude 

sectors. This increases the workload for the controllers assigned to low altitude sectors. 

Hence controllers assigned to low altitude sectors can control less aircraft per unit time as 

compared to controllers in high altitude sectors. With increase in air traffic operations 

(considering the same distribution of operations in low and high altitude sectors) more 
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controller staffing will be required in low altitude sectors compared to high altitude 

sectors for controlling same number of operations per unit time.

3.1.7. Factors affecting relation between controller staffing and enroute air traffic 

operations

Based on the literature review and results of FAA (1997) controller staffing standards it 

was found that the following factors affect relation between air traffic operations and 

staffing of controllers in sector and centers.

i. Diseconomies of staffing additional controllers to sectors.

In FAA (1997) a staffing guide for the number of controllers required by function and the 

number of aircraft worked during a 15 –minute interval is provided.

Table 3.6 shows that for a two controller staffing configuration (for both high and low 

altitude sectors) the R-controller’s activity time per aircraft decreases with assistance 

from a D-controller as compared to the single R- controller staffing configuration. This 

decrease in activity time per aircraft for R controller is not proportional to the addition of 

a D controller to the sector. 

For example the “All Communication and Hand/Arm” activity time per aircraft for high 

altitude sector decreases from 0.915 minutes to 0.664 minutes when the staffing of the 

sector is increased from a single controller to a two controller staffing configuration.
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As a result, the increase in number of “total aircraft worked” by 2 controllers (R 

controller and D-controller) is not proportional to the “total aircraft worked” by 1 

controller. (Refer table 3.2)

For example: In a high altitude radar sector, a single controller can handle a maximum of 

12 aircraft in 15 minute interval. On addition of a controller to the sector, the two 

controller staffing configuration can only handle a total of 17 aircraft. This increase in the 

number of aircraft handled (5 aircraft) is not proportional to the addition of one controller 

to the sector. Similar argument can be made for relation between addition of third and 

fourth controller to a sector and the increase in operations handled by three and four 

controller staffing configurations. 

Hence, based on the staffing standards, it can be seen that with an increase in air traffic 

operations, the assignment of additional controllers to the sectors will be more than 

proportional to the increase in aircraft operations in those sectors.

ii. Creation of additional NAS sectors through resectorisation 

Hopkin (1982) proposed that the strategy of creating smaller sectors to reduce traffic 

volume and the workload of the controller cannot be justified when the coordination 

workload surpasses the reduction in workload due to creation of smaller sectors (As 

reported in FAA (1995)). On similar lines Jorna (1991) and Wickens et al. (1997) 

propose that a decrease in the size of the sector or an increase in the number of 

controllers is not a solution to the problem of high workload as it increases the 

communication and coordination between sectors and controllers. 
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Magill (1998) states that the traditional response of ATC system to the increased traffic 

demand has been to resectorize airspace and to assign more controllers in parallel to 

control the traffic. However this process cannot be continued for an indefinite period, 

because if the sectors become too small, the increased coordination between neighboring 

sectors will offset the benefits obtained from staffing more controllers in parallel.

Magill (1998) explains that the size of the sectors cannot be reduced below a minimum 

size. This is because in smaller sectors the controllers will not get adequate time or

airspace to perform control actions. Coordination between sectors will become more 

complicated and delayed handoffs will degrade the consistency of the system. Andrews 

and Welch (1997) and Wickens et al. (1997) explain that decreasing sector size will 

reduce time spent per aircraft and will give less time to a controller to understand the 

situation. This in effect will increase workload. Mogford et al. (1993) has identified 

sector size as one of the factors, which affects decision making of the controllers.

FAA (1995) explains that creation of additional smaller sectors will increase the 

controller tasks of communication, handoffs and coordination among the sectors and 

controllers. FAA (1995) further reports that researchers have identified and measured the

tasks of communication, handoffs and coordination as air traffic complexity factors, 

which increase the controller workload.

Grossberg (1989) as reported in FAA (1995), FAA order 7210.46, Mogford et al. (1993) 

and Schmidt (1976) have identified coordination as a complexity factor which increases

controller workload. 
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Stein (1985) and Schmidt (1976) have identified handoff as a complexity factor which 

increases controller workload. 

Soede et al. (1971) as reported in FAA (1995) has identified communication and Schmidt 

(1976) has identified point outs, structuring and bookkeeping events as complexity 

factors which increase controller workload. 

It is proposed that with increasing air traffic operations and corresponding increase in 

controller workload, the number of controllers required per sector will eventually reach 

the maximum permissible number of controllers and the sectors will be divided. An 

increase in number of sectors in the NAS will cause a corresponding increase in the 

number of staffing of controllers. Creation of additional smaller sectors will increase the 

air traffic complexity and controller workload. This in turn will increase the time required 

by a controller to perform control tasks and warrant an increase in staffing of controllers 

as per FAA staffing standards

Figures 3.1 and 3.2 below show the number of static sectors and areas in NAS during 

period 2000 to 2004. 
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Figure 3.1 Annual increases in number of sectors in NAS 

Data source: ATO office
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Figure 3.2 Annual increases in number of areas in NAS 

Data source: ATO office

Number of areas and static sectors shown in graphs are annual metrics and these metrics 

show an increase over the years.
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Dynamic resectorisation is currently being carried out for sectors in NAS.  Depending on 

the amount of air traffic and the level of complexity of operations, two or more sectors 

are combined and managed by controllers at one work station. Several controller 

functions are also combined for performance by one controller during periods of low 

traffic volume in facilities FAA (1997). The dynamic resectorisation data was not 

available, since individual facilities record the data and the data are not sent to ATO 

office.

With an increase in enroute air traffic in NAS over the years, FAA has carried out 

airspace redesign by performing resectorisation and creating additional sectors to relieve 

air traffic congestion. From the above graphs it can be seen that there has been a small 

and gradual increase in number of sectors and areas in NAS.

iii. Assigning more sectors and functions to a controller during low traffic 

conditions.

With growth in air traffic operations during non peak periods, additional staffing of 

controllers will be required in the following scenarios.

1. FAA (1997) states that depending on the amount of air traffic and the level of 

complexity of operation two or more sectors can be combined and managed by 

controllers at one work station. During periods of low traffic volume in facilities, several 

controller functions are combined for performance by one controller. 

As air traffic increases, more ATC staffing will be required in scenarios wherein two or 

more sectors have been combined and managed by controllers at one workstation and for 
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sectors in which several controller functions are combined for performance by one 

controller.

2. Staffing of Flight data position:

FAA (1997) states that flight data positions are typically assigned as one per area. Since 

the peak workload for a flight data position can be distributed throughout periods of 

lighter workload, the effects of complexity and difficulty factors on workload are not to 

be considered. Hence, Flight data positions are staffed based on average staffing 

requirements (FAA 1997).

Increased air traffic operations in the areas to which flight data positions are assigned will 

have the following impacts on the staffing of these positions: 

a. Flight data positions are not staffed during local hours of 12 a.m.-6a.m.i.e. the 

midnight shift (FAA (1997). With an increase in air traffic operations distributed 

throughout different time periods of the day, it will be required to staff this shift in the 

future.

b. There are some centers in which the A-side position is not staffed and the A-side duties 

are performed by the R and D controllers at each sector. Such staffing configurations 

were observed at the Seattle Center (ZSE) and the Cleveland Center (ZOB) during the 

FAA (1997) revalidation study. With growth in sector operations and an eventual 

increase in the work load for R and D controllers, A-side positions at such centers will 

need to be staffed.
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Based on the above arguments, it is found that the staffing of flight data positions grows 

at least linearly with total aircraft activity count for an area.

3.1.8. Controller forecasting model developed by FAA for enroute air traffic center 

controllers

The current controller forecasting model uses FAA (1997) and modified FAA (1991)3

staffing models to predict future annual controller staffing requirements. APO forecasted 

annual center operations, 15 minute controller staffing standards (developed in FAA

(1997)) and 15 minute sector traffic count from Host Aircraft Management Execs 

(HAME) data are used as inputs to estimate future controller staffing requirements. The 

method used by FAA to predict future controller staffing requirements for center facilities 

is described below.

For 5th, 10th, 15th and 20th day of each month, 15 minute sector traffic count is obtained 

for all sectors of a center from the HAME database. HAME records 15 minute sector 

operations for all sectors of a center. 

Using the FAA (1997), 15 minute controller staffing standard and using the 15 minute 

HAME traffic count, controllers are assigned to all sectors of a center for 24 hour period

based on the type of sector i.e low or high, and based on the functional classification of 

controller i.e. R or D controller. 

For each center facility, a linear regression is performed by relating center operations as 

the independent variable and the predicted number of controllers as the dependent 

variable. APO forecasted operations for a center are used as an input in the above 
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regression model to compute the total number of controllers required in all sectors of the 

center. Hence for each facility, the annual staffing requirement corresponding to APO 

forecasted annual center operations is estimated from the above regression model. 

When the linear regression staffing standard models were validated by FAA (FAA (1991)

study) for each ARTCC facility by comparing the staffing standard calculations to the 

actual onboard staffing, accurate prediction results were obtained. Based on the linear 

regression employed in current controller forecasting model and validation results of the 

1991 study the following relation is found between controller staffing and operations. It is 

found that controller staffing grows atleast linearly with air traffic operations.

During a meeting at FAA on 05/20/2005, Mr. Elliott McLaughlin indicated that managers 

in facilities need to support staffing based on resources provided by the current controller 

forecasting model. However managers could use overtime to meet the demand. 

It was found that the current controller forecasting model has not been revalidated after 

its implementation. It is possible that the number of air traffic controllers required is 

greater than those predicted by the linear regression staffing model and a greater than 

linear relation exists between staffing of controllers and air traffic operations. Hence, 

there is a need to validate the current controller forecasting model. In analysis section the 

linearity assumption employed in the relation between actual air traffic operations and 

onboard staffing of controllers in centers is validated. Adequacy of controller staffing 

provided by current controller forecasting model was validated by comparing staffing 

standard predicted controller staffing with the actual on board staffing of controllers. 
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Order 1380.55, FAA (1998) states that the staffing standards for air route traffic control 

centers are updated at periodic intervals of 3 to 5 years. FAA (1997) ARTCC staffing 

standards guide has not been updated since 1997.

3Currently ATO is working on the expanded version of staffing standards. Types of 

sectors other than low and high altitude will be considered in the standards, since the 

implementation of RVSM impacts different stratums.

The FAA (1997) 15 minute radar controller staffing standards have been developed based 

on work load measurement technique (work sampling and time study) using 1997 data. 

Based on the findings in literature review it is proposed that with growth in air traffic 

operations, congestion effects will increase the complexity and difficulty involved in 

performing air traffic control activities. Time allowance for controller activities will 

increase. It is suggested that the “updated” staffing models, (staffing models used to staff 

controllers in a sector during a 15 minute period) will show a need to staff more 

controllers in a sector for the same aircraft count.

The adequacy of the 15 minute controller staffing model developed in FAA (1997) 

should be validated. Validation of the 15 minute controller staffing model was performed 

by ATO office (Mr. Elliott McLaughlin and his team) in a study entitled- “Trip Report 

Cleveland Air Traffic Control Facilities” in 2004. The study found that the number of 

controllers staffed onboard for 15 minute intervals based on the SISO data were greater 
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than or equal to the required number of controllers predicted by FAA (1997) -15 minute 

controller staffing model.

The validation of FAA (1997) -15 minute controller staffing model was performed for 

one facility. It is proposed that the validation should be carried out at more facilities. It is 

further suggested that the 15 minute radar controller staffing standards -FAA (1997) 

should be revalidated by performing work sampling and time study to estimate if the time 

allowances for controller activities have increased. The sector operations controlled by 

different staffing configurations during a 15 minute period should be estimated in the 

revalidated (updated) staffing standards.

The sector operations controlled by different staffing configurations during a 15 minute 

period, based on the updated 15 minute standards should be compared with the original 

FAA 1997, 15 minute standards.

FAA staffing standards are used as a baseline for staffing controllers for days

3Changes have been made to the FAA 1991 staffing model as explained by Mr. Elliott 

McLaughlin during meeting at FAA on 05/20/2005.

3.1.9. Summary of literature review in section 3.1

Based on findings in literature, an aggregate macroscopic relation is proposed between 

operations and complexity for sectors and centers in NAS. It is proposed that air traffic 

complexity will increase with air traffic volume in sectors and centers in NAS. Airspace 

complexity has not been considered in the formulation of this relation. This is because of 
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problems in measuring airspace complexity. Using HCI metric developed by FAA, it has 

been explained that traffic volume characteristics can be used to measure complexity and 

workload on controller. 

A macroscopic relation is proposed between controller staffing and traffic volume in 

sectors and centers of NAS based on the following findings from literature review.

1. As the traffic volume handled by a center increases, the center specific complexity i.e. 

difficulty involved in performing controller work activity increases.

An increase in the traffic volume handled by a center causes an increase in center specific 

complexity. This increase in complexity causes an increase in the work time of center 

controller for controlling the same number of operations per unit time. As the traffic 

volume handled by center increases, the work time spent by a center controller for 

controlling the same number of center operations per unit time increases. With increase in 

total center operations, a center controller will be able to handle fewer operations per unit 

time. Hence more controllers will be required to handle the same air traffic operations per 

unit time in the center.

As the traffic volume handled by a center increases greater controller staffing will be 

required to handle the same air traffic operations per unit time in that center.

2. Linear regression employed in the controller forecasting model developed by FAA.

3. Other factors which support the proposed relation between controllers and operations 

are summarized below and have been discussed in detail in literature review.

i. Diseconomies of staffing additional controllers to sectors. 

ii. Increase in no of sectors due to resectorisation

iii. Assignment of more sectors and functions to a controller in low traffic conditions.
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iv. Differential staffing requirement for low and high altitude sectors:

v. Varying mix of operations.

FAA 1999 states that “Normally, an increase in air traffic indicates a proportionally 

larger staff of controllers”. Points 1 and 3 discussed above support the hypothesis that the 

number of air traffic controllers required is atleast equal to or greater than those predicted 

by the linear regression staffing models. Since these model equations are linear, it is 

found that controller staffing grows atleast linearly with air traffic operations. Factors like 

equipage, age and individual performance of controllers, which affect relation between 

controllers and workload are held constant. A linear or a greater than linear relation is 

proposed between the future air traffic operations in the NAS and the number of enroute 

air traffic controllers required
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3.2. Relations between controller performance and air traffic in sectors and centers 

of the NAS

Relations between performance of controllers and air traffic in sectors and centers of 

NAS are studied in section 3.2.

3.2.1. Impact of air traffic congestion in sectors and centers

When workload exceeds the capacity of controllers staffed in a sector, controllers adopt 

varying strategies to regulate workload. In this section the strategies employed by the 

controllers to manage workload and their impact on the performance of controllers and 

air traffic control system have been studied.

Strategies used by controllers to handle workload caused by enroute sector 

congestion:

Researchers have proposed that controllers adopt varying strategies to regulate workload. 

Sperandio (1971) showed that under heavy traffic, controllers reduced the time spent 

processing each aircraft to achieve acceptable controller performance. Hence, the 

controller workload does not increase with air traffic volume. However the regulating 

strategy compromises on system performance measures like delay.

On similar lines Jorna (1991) discussed the validity of the statement “Controllers do not 

have control over their own workload”. Jorna explained that in the event of a high pace of 

incoming aircraft the controllers adopt the strategy of diverting them to holding areas. 

Jorna explains that such “parking” of aircraft represents one of the strategies available 

and used by a controller for active control of density of traffic which results in delays to 
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the aircraft. Author further explains that these delays can be considered as a clear effect 

of the controller workload, which is translated by the controller into delays.

FAA (1997) reported a strong correlation (-0.627) between the time per aircraft for all 

communication and hand arm activities and the total aircraft worked by a controller. This 

means that as the total number of aircraft worked increases, total amount of time devoted 

to each aircraft during 20-minute study trial decreases. The report states that “It is 

assumed that when a controller is not actively communicating or performing a hand/arm 

activity they are scanning the PVD, workstation, and work area in general to detect 

potential conflicts and to maintain awareness of the situation. Therefore the work 

elements (look at plan view display, flight progress strips and look at other) are 

considered as standby tasks. When aircraft activity is low, these activity times are usually 

high since it fills the time available until other work is required, as the workload increases 

the amount of look only time decreases”.

It can be concluded that the time spent by a controller in performing standby tasks of 

detecting potential conflicts and maintaining awareness of the situation could improve the 

system performance and reduce delays to flights being controlled by the controller.

Sperandio (1971) carried out an experimental study in an air traffic control tower to 

demonstrate how controllers adopt varying strategies to regulate workload. The 

controllers were asked to define the landing sequence of aircraft on a radar screen.  The 

number of total aircraft and number of aircraft to be controlled were varied on a radar 

display. Data required for performing the task was given at the controllers request by an 
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experimenter who recorded the order of requests as well as the control instructions given 

by a controller. The routing solutions chosen by the controller were also recorded.

Through statistical analysis of the landing sequences of aircraft, Sperandio found that the 

data required for controlling the first aircraft in a pattern of eight aircraft is same as the 

data required to define the total sequence in a pattern of only four aircraft. It was 

observed that the number of aircraft performance data required to define the landing 

sequence of aircraft decreases with increase in traffic. It was seen that under low traffic 

more data are required and data required decreases in a form of an inverted U curve. 

Sperandio found that under low traffic controllers use direct approach strategy and ask 

for performance data to verify and achieve separation between aircraft. However under 

high traffic, the controllers resort to standardized routings which requires less 

performance data to be used. In standardized routings, firstly the aircraft head towards a 

given fix which is the stacking point where the holding pattern is performed and then 

aircraft head toward runway as per the standardized procedure which is familiar to the 

pilots. It was found that under heavy traffic, controllers reduced the time spent processing 

each aircraft. Sperandio further reported that in case of direct routing, performance data 

were required for almost 85% of the aircraft. However for standard routing, performance 

data were required for only 33% of the aircraft.

According to the author these results can be interpreted in the following way .In case of 

low traffic the controllers are unconstrained, and there are many solutions to the problem. 

However, there are very few optimal or the accurate solutions to the problem which the 



45

controllers attempt to find. Again, in case of heavy traffic there are many solutions to the 

problem but these solutions are constrained by airspace, and operator’s limitations, which 

narrows down the number of optimal solutions. Under heavy traffic controllers choose 

methods which require less analysis and information processing. The author explains that 

with increase in traffic levels, the controller reduces the number of variables to be 

processed. In low traffic, the controller takes into account higher amount of data. 

However, in high traffic, the controller takes into account only data necessary to perform 

the standardized routings. The author defines workload as a function of operating 

strategies adopted by the controller. The controller uses economical strategies when his 

workload capacity is reached. 

Hence it is inferred that in case of low traffic the controllers attempt to find the most 

accurate or efficient solution which increases the system performance, i.e. decreases 

delays. But in case of high traffic, the workload of the controller increase due to the high 

amount of information processing required and also because of the limited solutions in 

the congested airspace. This forces the controllers to use substandard solutions which 

decrease the system performance i.e. increases delays. It was also observed that under 

heavy traffic the time devoted to process each aircraft decreases. The use of a 

standardized procedure indicates that the controller does not want to compromise safety 

by making active decisions under high traffic which could increase the possibility of 

errors.
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Similar results were obtained by Coeterier (1971) in his experiment at Amsterdam airport 

to analyze the variation in strategies adopted by approach controllers to establish the 

landing sequence of aircraft under different maneuvering conditions. Two runways were 

considered 19R north which had a lot of maneuvering space and 01R south which had 

restricted maneuvering space. Considering only the inbound traffic for Schipol airport, 

seven traffic situations were considered by varying the number of planes, data such as 

distance to the gate, height and speed of airplanes, geographical position of planes. 

The author explains that in the 19R runway situation the controller had a lot of 

maneuvering space. Due to the available flexibility for handling traffic in the current 

system, the controller had a great freedom to choose his strategy. Here the controller did 

not rely on “ready-made” procedures and made impromptu decisions to formulate his 

strategy for conflict solving and control. This required a great deal of attention and 

flexibility. On runway 01R, there was very little maneuvering space and in cases of 

conflict there were less possible solutions. Hence uniformity was observed between the 

strategies adopted by the controller because not much choice was observed amongst the 

strategies. Also planning has to be done at an earlier stage. Groups of airplanes consisting 

of more than 6 airplanes were handled in subgroups of two or three and a very high 

uniformity in strategy was observed among the controller subgroups. 

The author analyzed these strategies which showed a high degree of uniformity, i.e. 

agreement among controllers. It could be suggested that all  these strategies have a direct 

effect on delay of traffic. Although the maneuvering restrictions in this case were due to 
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the presence of restricted areas and airfield, similar maneuvering restrictions can be 

expected under conditions of airspace saturation due to heavy traffic. Hence it is 

proposed that similar strategies would be used by controllers under heavy traffic which 

would decrease system performance i.e. increase delays and reduce capacity. 

Based on the above case studies it can be seen that under heavy workload conditions the 

controller might not work on delay reduction or airspace capacity optimization. Hence, it 

is suggested that system performance measure such as delay is a good measure of 

controller performance under workload. 

A significant amount of research has been carried out to show that a positive relation 

exists between controller task performance and air traffic volume. In workload 

measurement experiments, effect of workload on controller performance has been 

studied. Controller task time and number of operational errors are some of the controller 

performance measures analyzed by the researchers. However the main problem in 

summarizing the results of these studies is that a variety of controller performance 

measures have been considered. It is proposed that some measure of system performance 

will be a better measure of controller performance under workload

During heavy traffic conditions in a sector, controllers reduce the time spent processing 

each aircraft to achieve acceptable controller performance in terms of aircraft handled per 

unit time. However the regulating strategy employed to manage controller workload 

affects the performance of the system.



48

3.2.2. Measures of controller performance and controller workload in sectors and 

centers

Relations are estimated between controller performance and controller workload in 

sectors and centers of NAS. Measures of controller workload, measures of controller 

performance and models developed in literature which relate two measures have been 

studied in this section. Based on the literature review suitable measures of controller 

workload and performance are chosen and a model is proposed to estimate relation 

between two variables. 

3.2.2.1. Measures of controller workload studied in literature

In U.S.A. and Europe, the capacity of an enroute sector in handling aircraft per unit time

is limited by controller workload. Capacity of a sector is defined as the maximum number 

of aircraft per unit time which can be handled by controllers such that the controller 

workload limits are not exceeded. (Majumdar and Ochieng (2002) and FAA (1997)).

The FAA has developed staffing standard formulas for staffing controllers in a sector for 

15 minute intervals based on the controller workload. In FAA (1997) controller workload 

is measured as “T_ worked”. “T_WORKED is defined as number of aircraft in a sector 

during a 15 minute time interval and is calculated by summing number of aircraft in 

sector at the start of the trial with the total number of aircraft entering sector during the 

trial” FAA ( 1997).
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Mills, S. H. (1998) proposed that measures of ATC activity- operations per unit time and 

flight seconds per unit time have limitations in measuring the true workload on controller. 

Hence Mills, S. H. (1998) developed Aircraft Activity Index as a measure of aircraft 

activity per unit time. Aircraft activity index is defined as:

Aircraft Activity Index =                                                                                                                        

Flight Count
X                 

Control Time

Epoch Time                        Epoch Time 

Wherein epoch time is a period of time for which analysis of airspace activity is being 

performed. Control time is total flight minute activity which occurred during the 

considered epoch. 

Consideration of ATC complexity in a measure of controller workload

FAA (1995) reports that Grossberg (1989) and Mogford et al. (1993) have measured 

climbing and descending aircraft flight paths and traffic respectively as complexity 

factors affecting controller workload. FAA (1999) lists mix of enroute and transitioning 

aircraft (aircraft climbing, and descending) as a factor, which could increase the 

complexity and difficulty level of workload in centers.

Majumdar, A., and Ochieng, W. Y. (2002) performed a regression analysis to determine 

factors which affect controller workload. They found that some of the variables related to 

aircraft profile data significantly affected controller workload.  Variables measuring 

number and transit time of flights which entered or exited sectors in climb, cruise, 
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descend or combination of climb-cruise, climb-cruise-descend, cruise–descend profiles

were affecting controller workload. 

Majumdar (a) reports that the traffic in a sector which is in cruise, ascend or descend 

profile impacts controller workload differently. He proposed the need to consider the 

interaction and quadratic effect of the cruise, ascend and descend traffic count in a sector 

for its impact on controller workload. Based on his statistical analysis he found that the 

following variable forms significantly affected controller workload

Square of traffic in cruise in a sector

Traffic in descend x traffic in cruise

Traffic in ascend x traffic in cruise

Traffic in descend x traffic in ascend

The above literature suggests a need to consider variables measuring mix of traffic in 

cruise and transition in a measure of controller workload.

3.2.2.2. Measures of controller performance studied in literature:

A variety of controller performance measures developed and analyzed in the literature 

were studied. Performance metrics were studied which measure the performance of 

controller under workload due to enroute congestion. 

3.2.2.2.1. Operational error as a measure of controller performance:

Based on literature review it was found that operational errors committed by controllers 

are not suitable measures of controller performance under high workload. Researchers 
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have found very weak relations between controller errors and controller workload and air 

traffic complexity.

 Fowler (1980) reported that controllers adapt to peaks of heavy traffic but become prone 

to errors as traffic lightens. Hilburn (2001) reports that Breitler, Lesko and Kirk (1996) 

found very poor and almost no correlation between complexity and operational errors. 

3.2.2.2.2. “Excess distance traveled by a flight” as a measure of controller 

performance

Bradford et al. (2000) evaluated the effectiveness of URET (User Request Evaluation 

Tool) for detecting and resolving conflicts between aircraft and between aircraft and 

airspace. They analyzed excess distances traveled by flights before and after 

implementation of URET (i.e. 1998 and 1999). 

Howell et al. (2003) considered excess distance traveled by flights in a center as a 

measure of enroute inefficiency. Howell et al. (2003) considered delays related to enroute 

sector capacity constraints and flight path conflict avoidance as two of the five sources of 

“enroute inefficiency”.

It is concluded that delays related to enroute sector capacity constraints and flight path 

conflicts are caused by traffic volumes in sector/center airspace. Hence excess distance is 

a suitable metric to study the effect of enroute congestion. Howell et al. (2003) and 

Bradford et al. (2000) have used the metric excess distance traveled by a flight. In both 

studies, excess distance was calculated as the difference between the actual flight path 
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length in the center and the great circle route distance between the entry and exit points of 

the flight in that center.

Mullikin et al. (2000) proposed a measure of flight efficiency for an airspace. He 

proposed the metric as the average difference between the actual distance traversed by 

each flight in an airspace area and equivalent great circle distance, plus average number 

of maneuvers per flight calculated for all flights over a 24 hour period.

Suitability of “excess distance metric” for measuring workload due to enroute congestion

1. Bradford et al. (2000) explain that controllers impose extra distances on flights to 

resolve flight path conflicts. Krozel et al (2002) also reports that conflict detection and 

resolution by ATC causes flights to vectoring (aircraft follow zig zag path) or stretching 

of flight paths. During discussions with controllers, Howell et al. (2003) found that for 

enroute environment the most common method used for conflict resolution is vectoring 

as compared to speed control and vertical maneuvering. In the terminal area speed control 

and vertical maneuvering are more commonly used to resolve conflicts, where planes 

undergo changes in altitude and speed.

2. Howell et al. (2003) and Bradford et al. (2000) explain that flight times are affected by 

winds in enroute airspace .But wind causes less variation in excess distance traveled by 

flights. 

Validity of “excess distance metric”:

Bennett (2004) reports that wind optimal distance provides the most efficient trajectory 

for a flight. However there are problems in estimation of wind optimal distance. Bennett 
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(2004) performed an analysis to determine if great circle routes could be used as a 

substitute for wind optimal distance. Actual routes were compared with GCR routes by 

excluding 50 mile stretch from airports for flight data of two sample days. Excess time 

and distance of flights were compared for actual routes, great circle routes and wind 

optimal routes. It was found that GCR routes could be used as a good substitute for wind 

optimal routes. 

Bradford et al. (2000) believe that GCR distance between entry and exit points if a flight 

in a center is a “reasonable measure of optimal distance.” 

Drawbacks of “excess distance metric”:

Based on the literature review it was found that the “excess distance metric” had the 

following drawbacks.

i. Excess distance does not capture the speed restrictions imposed on aircrafts due to air 

traffic congestion (Bradford et al. (2000) and Howell et al. (2003)). 

ii. Bradford et al. (2000) found that flights headed towards congested airports traveled 

greater excess distance compared flights headed to other destinations. After discussions

with controllers the authors learned that all routes in a center cannot experience 

improvements in direct routings (i.e. reduction in excess distance traveled by a flight)

because of implementation of URET. Based on their analysis of the ZID center the 

authors found that congestion in subsequent enroute centers and destination airports 

could restrict direct routings for the traffic flow in ZID.

Bradford et al. (2000) explain that flights with constraints imposed on them because of 

congestion in subsequent enroute centers and destination are not traveling under free flow 
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conditions i.e. “true enroute environment” in the current center airspace. These 

constrained flights may not be given direct routings even when there is less congestion in 

the center airspace in which they are traveling. It is proposed that care should be taken in 

choosing the data for analyses, such that the chosen centers and time periods represent 

free flow traffic conditions. 

3.2.2.2.3.. Time delay borne by a flight as a measure of controller performance 

Schonfeld and Ying (2003) developed a model, which relates air traffic operations per 

unit time traversing an airspace and delay to the flights which traverse the airspace during 

the same time interval. 

(Schonfeld and Luo, unpublished manuscript, 2003)

Schonfeld and Ying (2003) proposed the following queuing model for airspace “i”, time 

period “j” and constant “K”. Keeping all other factors constant, it is seen that the relation 

between airspace time delay and air traffic operations (sector demand) is quadratic with a 

second power.
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During discussions with controllers, Howell et al. (2003) found that speed control and 

vertical maneuvering are more commonly used to resolve conflicts in the terminal area 

where planes undergo changes in altitude and speed. There could be situations where 

speed control and vertical maneuvering could be performed to resolve potential conflicts 

in sectors and centers of enroute airspace. Conflicts in enroute airspace are caused by 
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traffic volumes (airspace congestion). Speed restrictions are also imposed on aircraft due 

to congestion in sectors and centers in enroute airspace.

Hence enroute airspace congestion could cause speed control, speed restrictions and 

vertical maneuvering to be performed on flights in enroute sectors and centers. These 

controller actions cause time delays to aircraft. Excess distance does not capture time 

delays imposed on aircraft. Bradford et al. (2000) and Howell et al. (2003) explain that 

excess distance does not capture effects of speed restrictions imposed on aircrafts.

Controllers could use a variety of control procedures to manage enroute congestion. 

Brennan (2003) explains the tools used by controllers to delay flights.

1. Controllers could apply ‘vectoring’ on flights. Vectoring causes the flights to follow a 

zigzag pattern to reduce their effective speed”

2. Flights could be put into a circular holding pattern

3. Flights could be rerouted.

Advantages of time delay as a measure of controller performance

Control procedures like vectoring, holding flights in a circular pattern and rerouting 

flights increase the excess distance traveled by flights and impose time delays on flights.  

It could be argued that an increase in excess distance traveled by an aircraft in airspace 

will cause a corresponding increase in time delay to that aircraft. 

Time delay is directly translatable into airline and air passenger costs.
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This is one of the main advantages of time delay compared to excess distance traveled by 

flight.

Based on the above findings there is a need to consider time delays imposed on flights in 

sectors and centers of enroute airspace as a measure of controller performance under 

workload. 

Depending upon the tools used by controllers, two forms of delays- excess distances and 

time delays are imposed on flights by the controllers due to enroute congestion.

3.2.2.3. Measurement of delays caused by sector and center congestion

In this section the suitability of simulation models to measure delays caused by sector and 

center congestion has been discussed. The need to use flight track data to measure delays 

caused by sector and center congestion has been explained.

i. Suitability of simulation models to measure delays caused by sector congestion 

FAA (a) .NASPAC is a discrete event simulation model used to measure performance of 

the system for 80 busiest airports in US. NASPAC computes delay incurred by aircraft 

while they wait to use air traffic controller resources like arrival and departure fixes.

4NASPAC can provide us with airborne delays at various queues- arrival fix, departure 

fix, sector boundaries and enroute flow restrictions.  DPAT is a discrete event simulation 

model used by MITRE which can also provide us with similar queues in airspace. DPAT 

and NASPAC can model the entire NAS.
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FAA (a).NASPAC computes sector entry delay imposed on flights.

5NASPAC model holds flights at sector boundary if the simulation logic estimates that 

the MAP has been exceeded. The determining factors in gaining entrance to the busy

sector depend on how busy the sector it is coming from is. The team has modeled 900 

controlled sectors. In future model the flights will be separated by distance rather than 

time and speed adjustments as well as holding patterns will be deployed

In sections, 3.2.2.2.2 and 3.2.2.2.3 it was found that controllers impose time delays and 

excess distance delays on flights because of sector congestion. The simulation models 

have built-in assumptions to impose time delays on flights due to sector congestion which 

may or may not reflect the actual time delays imposed on flights. The simulation models 

are not built to model the excess distances traveled by flights due to airspace congestion. 

The simulation models cannot estimate excess distances traveled by flights due to sector 

congestion.

It was realized that DPAT and NASPAC were not suitable for estimating excess 

distances traveled or time delays borne by flights because of congestion in individual 

sectors and centers of NAS.

4Email correspondence with Mr. Daniel Citrenbaum, FAA

5Email correspondence with Mr. Douglas Bart, FAA
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ii. The need to use flight track data to measure delays caused by sector and center 

congestion

It is concluded that actual recorded flight track data needs to be used to measure delays 

caused by sector and center congestion. Flight track data contains the following details of 

a flight: entry time, exit time in airspace, distance traveled in airspace, entry speed, exit 

speed in airspace and other details when the flights traverse sector and center airspaces. 

Using these data the measures of controller workload and controller performance 

(proposed in sections 5.1 and 5.2) can be calculated.

3.2.3. Model developed in literature to relate excess distances with congestion in 

centers

In this section the model developed in literature to relate excess distances with congestion 

in centers has been discussed.

Model developed by Howell et al. (2003): 

Howell et al. (2003) classified sources of inefficiency in enroute airspace into five 

categories – delays related to enroute sector capacity limits, metering aircraft because of 

terminal congestion, conflict avoidance, routing aircraft around severe weather and static 

inefficiencies present in the current airspace route structure. Howell et al. (2003)

considered delays related to enroute sector capacity constraints and conflict avoidance as 

a source of “enroute inefficiency”. It is proposed that both these enroute inefficiencies are 

caused by traffic congestion in sector/center airspace.
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For understanding the relation between enroute inefficiency and traffic levels, Howell et 

al. (2003) considered excess distance traveled by flights in a center as a measure of 

enroute inefficiency.ETMS data for each of the 20 enroute air traffic centers for eight 

Wednesdays and Thursdays of March 2002 were used in the analyses.

Traffic activity in a center was computed as the total aircraft handled by a center during 

each 15 minute time interval. For each center, the maximum traffic activity during a 15 

minute interval was set as a base, and the traffic activity during each 15 minute interval 

was expressed as a percentage of this 15 minute base. Excess distance was computed for 

each flight traveling in a center. Excess distance metric was computed for all flights in 

each of the 20 enroute centers for the considered time period.

Figure 3.3 shows the relation between normalized traffic activity during 15 minute 

interval and average excess distance for flights handled during 15 minute interval in a 

center, averaged over 20 enroute centers. 
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Figure 3.3 Relation between normalized traffic activity during 15 minute interval and 

average excess distance for flights handled during 15 minute interval in a center,

averaged over 20 enroute centers (Howell et al. 2003).

The plot distribution was classified into three regimes–opportunity regime, route 

structure regime and congestion regime.

Opportunity regime:

In the opportunity regime the normalized traffic activity is between 0% to 30% of the 

peak traffic activity. Some flights get direct routings in this regime. Since these flights are 

not restricted to fly on airspace structure, excess distance traversed by those flights is 

reduced 

Author explains that implementation of tools like URET which enable more direct 

routings will be effective in this region .These tools could reduce the excess distance in 
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this regime and increase the traffic activity levels at which flights are restricted to stay on 

the route structure.

Congestion regime:

In the congestion regime the normalized traffic activity is greater than 70% of the peak 

traffic activity. In this regime, terminal capacity constraints, sector capacity constraints 

and conflict avoidance cause an increase in the average excess distance. Authors propose

that tools which increase sector or terminal capacity (e.g. CPDLC, TMA, etc.) and tools 

which improve conflict resolution efficiency (e.g. URET) can reduce excess distance in 

this regime.

Center specific analysis was also performed using the same measures. Figure 3.4 shows 

the result of analysis performed for ZAB and ZAO centers.

Figure 3.4 Relations between normalized traffic activity during 15 minute interval and 

average excess distance for flights handled during 15 minute interval in a center (Howell 

et al. 2003)
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For each center average excess distance for all flights during a 15 minute interval was 

related to the normalized traffic activity corresponding to that 15 minute interval. Authors 

found that the relation between traffic levels and excess distance averaged over all 

centers did not show a significant increase in excess distance in congestion regime 

.However results for individual centers ZOA and ZAB showed an increase in excess 

distance in congestion regime. The levels of excess distance in the opportunity and route 

structure regimes was seen to be higher in ZOA compared to ZAB  and a significant 

upturn was seen in excess distance in congestion regime of center ZOA.

Authors explain that ZOA center has higher traffic activity and greater proportion of 

arrivals and departures occur in ZOA centers airspace compared to ZAB. This causes the 

centers airspace to become complex and ZOA is more susceptible to cause excess 

distance delays to flights traveling in its airspace under high traffic levels (i.e. congestion 

regime). 

3.2.4. Difficulties in estimating relations between flight delays/excess distances and 

congestion in sectors and centers.

The following difficulties were identified in estimating relations of time delays and 

excess distances with congestion in sectors and centers.

i. Factors affecting the time delays borne by flights and excess distances traveled by 

flights in airspace.

Howell et al. (2003) explain that flights could travel excess distances in airspace because 

of the following reasons. Flights could travel excess distances because of MIT 
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restrictions imposed on aircraft because of terminal congestion, routing aircraft around 

severe weather and static inefficiencies present in the current airspace route structure. 

During discussions with controllers it was found that time delay could be imposed on 

flights because of the same reasons which are mentioned above. Airspace congestion in a 

specific airspace does not necessarily cause flights to travel excess distances or bear time 

delays in the same airspace.

6During discussions with controllers, it was revealed that time delays borne by aircraft 

and excess distances traveled by aircraft in airspace could be because of congestion in 

any of the successive airspaces on the route of the flight.

6Discussions with controllers at FAA office on 04/07/2005

Impact of terminal congestion on controller performance measure “excess distance”

Howell et al. (2003) explains that MIT restrictions are imposed in the enroute airspace 

(by aircraft metering) due to terminal congestion hundred of miles away. Bradford et al. 

2000) also found that the metric “excess distance” was biased for data of ZID center. 

Authors found that the traffic in center ZID had constraints on northbound flows heading 

towards busy airports, Chicago, Detroit, Cleveland, Newark, JFK, and Philadelphia.

These constraints affected the free traffic flow conditions in center ZID. It was found that 

MIT restrictions imposed on flows heading towards these airports could go back as far as 

400 miles from the arrival airports.  Bradford et al. (2000) found that flights headed 

towards congested airports traveled greater excess distance in the current center 
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compared flights headed to other destinations. It is understood that all routes in a center 

cannot experience reduction in excess distance traveled by a flight because of less 

congestion in that center. Congestion in subsequent enroute centers and destination 

airports could cause the flights to travel greater excess distances in current center.

ii. Staffing of controllers in sectors and centers

a. Variation in number of controllers staffed in a sector or center could affect the 

performance of the controller team under same traffic levels. Understaffing of controllers

in sectors during some periods could cause controller workload and this could increase 

the excess distance or time delays imposed on flights by controllers.

b. Effect of inadequate controller staffing during different levels of traffic activity could 

also bias the relation to be estimated.

iii. Characteristics and composition of traffic flow

Control procedures and tools used by controllers to maneuver flights in airspaces impose 

excess distances and time delays on flights .These control procedures could be employed 

not only because of congestion  (workload ) but also because of the characteristics and 

composition of traffic flow i.e. (fast  aircraft behind slow ) . This could cause bias in the 

proposed relation. 

7During discussions with air traffic controllers it was found that excess distances and time 

delays imposed on aircraft due to characteristics and composition of traffic flow were too 

minor to affect the relations proposed in the analysis.
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7Discussions with controllers at FAA office on 04/07/2005

3.2.5. Considerations in developing models to estimate relations between flight 

delays/excess distances and congestion in sectors and centers

Based on the literature review it was found that the following points should be considered 

while developing models to models to estimate relations between delays and airspace 

congestion.

i. The need to perform analyses for sectors

Total excess distance traveled by a flight in a center is the sum of excess distances in the 

individual sectors. Thus, varying congestion levels in individual sectors could affect the 

total excess distance through the center. Similar argument can be made for time delays 

borne by flights in a center. Hence the proposed analysis needs to be performed for 

centers and sectors. 

ii. Care to be taken in choosing the data for airspaces and time periods

Data should be chosen such that the air traffic in the chosen center and sector airspaces

and time periods is not delayed due to airspace congestion in successive centers on the 

path of the flights. The air traffic in the considered airspace should not be delayed due to 

terminal congestion, equipment failures, weather and runway capacity constraints. Flights 

should not be delayed in the considered airspaces due to upstream or downstream events. 
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3.3. Relations between ATC system performance and enroute air traffic in the

National Airspace System (NAS)

Relations between ATC system performance and NAS enroute traffic are studied in 

section 3.3.

3.3.1. The need to consider entire NAS to estimate relations between delays and 

enroute traffic volumes by considering monthly and daily measures of delays and 

enroute traffic volumes in the NAS

In this section the need to consider entire NAS for estimating relations between delays 

and enroute traffic volumes by considering monthly and daily measures of NAS delays 

and NAS enroute traffic volumes has been discussed.

The enroute capacity of the NAS is not limited by the performance of controllers staffed 

in the sectors of NAS. Enroute airspace capacity is dependent on operational

effectiveness of the different programs employed by the air traffic control system, 

performance of controllers and coordination among different air traffic control units.

Due to spatial and temporal propagation of delays in NAS, there is a need to estimate the 

performance of entire NAS. Due to temporal propagation of delays in NAS there is a 

need to estimate monthly and daily measures of delays and enroute traffic volumes. The 

performance of ATC system needs to be evaluated in reducing delays caused by enroute 

traffic volumes in the entire NAS. 
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The following four factors make it necessary to consider entire NAS for estimating

relations between delays and enroute traffic volumes in NAS.

3.3.1.1. Strategic and tactical planning performed by ATC system and coordination 

among ATC units 

The following paragraphs explain the role of ETMS (Enhanced Traffic Management 

System) and TMU (Traffic Management Unit) in managing air traffic in NAS.

Enhanced Traffic Management System (ETMS) is used for prediction on national and 

local scales of the traffic surges, gaps, and volume based on current and anticipated 

airborne aircraft (FAA b). Leiden and Green (2000) explain that Traffic Management 

Unit (TMU) predicts sector congestion in advance (an hour or more) using tools which 

give a perspective of flow of  traffic entering a center from adjacent centers and traffic 

flow in sectors of a center. Coordination exists between the Traffic Management Unit and 

sectors to perform strategic planning for the sector. The specialist position in TMU 

develops solutions for efficient flow such that the capacity of sector is not exceeded. 

Reference website 1 explains that Traffic Management Specialists assess the predicted 

traffic flow into sectors and airports and employ least restrictive actions to ensure that 

traffic demand does not surpass capacity of the system.   

Leiden and Green (2000) explain that the TMC (traffic management coordinator) position 

within TMU becomes active less than an hour before the strategic planning needs to be 

performed. TMCs are staffed to supervise the busiest streams of traffic in a center. TMC 

maintains efficiency of these streams by devising plans to fill gaps and merge streams. 
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TMC coordinates plans with the area supervisor. Area supervisor supervises a group of 

sectors within a center. Area supervisor then coordinates with the sector controllers. The 

objective is to develop an efficient and flawless merging of traffic such that the sector 

containing merge points does not get overloaded. 

Inefficient functioning of air traffic flow management system can cause airspace and 

airport congestion and delays to flights. Hoffman and Voss (2000) report that Voss et al.

(1997) has shown that inefficiencies in airspace could be caused by problems in airspace 

design and a mismatch of flow management procedures to traffic conditions. Airspace 

design becomes inefficient because of changes in air traffic patterns over time. Airspace 

congestion is caused by inefficient airspace design.  ATFM (Air Traffic Flow 

Management System) manages and relieves airspace congestion. Authors explain that 

“An inefficient design is not cured by ATFM—the congestion is turned into ground 

delays”. Howell et al. (2003) propose that static inefficiency in the current airspace route 

structure is a source of enroute inefficiency which causes flights to travel excess 

distances.

3.3.1.2. Time delays imposed on flights and excess distances traveled by flights 

because of airspace congestion could be borne by flights away from the source of 

airspace congestion

In this section the tools and techniques used by controllers to handle airspace congestion

have been discussed. These tools and techniques impose delays on flights in airspaces

away from the source of airspace congestion.
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Tools used by controllers to handle airspace congestion

Based on the literature review it was found that congestion in enroute sectors, fixes and 

jet route segments are the most common sources of congestion in enroute airspace. 

Controllers could use a variety of control procedures to handle enroute congestion. 

Brennan (2003) explains the tools used by controllers to delay flights.

-Reduce ground speed of flight.

-Apply ‘vectoring,’ “flights follow a zigzag pattern to reduce the effective speed”

-Put flight into a circular holding pattern

-Reroute the flight.

Control procedures like vectoring, holding flights in a circular pattern and rerouting 

flights increase the excess distance traveled by flights. Flights which travel excess 

distances are delayed in time. It is concluded that time delay should be used to study the 

effect of airspace congestion. Time delays capture the effect of excess distances traveled 

by flights due to airspace congestion.

Techniques adopted by controllers and ATC system to handle sector congestion

Howell et al. (2003) explain that sector capacity (MAP) is used to perform enroute 

strategic planning. When MAP of a sector is exceeded, flights could be rerouted, or the

departing aircraft are held on the ground. This method does not affect the flights, which 

are already traversing in the enroute airspace. Leiden and Green (2000) explain that 

rerouting of traffic, imposing MIT restrictions and ground holds are the most common 

solutions used to solve enroute congestion problems. The objective of these solutions is 

to maximize efficiency without exceeding sector capacity. Wanke et al. (2003) explain 
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that traffic managers could use different methods among the ones discussed above to 

solve problems due to enroute sector congestion. 

The three procedures discussed below to handle sector congestion are implemented when

the sector demand exceeds MAP threshold of the sector. When the sector demand is less 

than the sector capacity, delays will not be imposed on flights traveling in that sector. 

Even in situations where sector demand has reached or exceeded sector capacity, delays 

will not be imposed on flights traveling in that sector. The procedures implemented to 

handle sector congestion will cause the flights to be delayed in other airspaces and in 

departure airports away from the source of airspace congestion.

i. Rerouting flights around congested airspace

Howell et al. (2003) explain that the sector capacity is defined by Monitor Alert 

Parameter (MAP) threshold. Enroute strategic planning is performed using MAP value of 

a sector. In event the sector capacity is exceeded the flights are rerouted around that 

sector. Wanke et al. (2003) also report that flights are rerouted around congested areas in 

the airspace.

Traffic management personnel from Cleveland center reported that in some cases alerts 

of sector exceeding capacity were given only fifteen seconds before sector capacity was 

predicted to exceed Leiden and Green (2000).In such situations flights are subjected to 

significant rerouting and delays to divert air traffic from the alerted red sector. During 

high traffic situations in a sector, the controller manages his workload by concentrating 

on communication and separation. It will not be practical to perform strategic planning in 

such situations.
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Flights which are rerouted due to sector congestion may not be rerouted in the same 

sectors. Klopfenstein et al. (1999) ranked the centers and sectors by the frequency of 

rerouting of flights which had filed flight plan to fly over those airspaces. On analyzing 

data for 6 days of July 1999, authors found that more than 40% of the flights which had 

filed flight plan to fly over centers ZLA, ZMA, ZBW, ZFW, ZHU, ZJX, and ZSE were 

rerouted. 

ii. Ground delays imposed on flights at departure airport

Howell et al. (2003) explain that flights could be delayed at the origin airport when the 

sector capacity is going to be exceeded. Studies of enroute delays conducted at FAA 

Command Center show that currently most of the sector capacity problems are solved by 

ground holding departing aircraft. This method does not affect the flights, which are 

already traversing in the enroute airspace. Wanke et al. (2003) report that sector 

congestion could cause ground delays and ground stops to be imposed on flights at 

departure airport.

iii. MIT restrictions imposed on flights

Wanke et al. (2003) report that sector congestion problems are solved by limiting access 

to airspace by imposition of miles-in-trail restrictions at the airspace boundary. Howell et 

al. 2003 explain that the use of MIT restrictions to tackle enroute congestion is frequent 

for flights departing from a major airport and taking a major jet route.
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During discussions with controllers it was found that congestion in a sector, airspace fix 

or jetway in the enroute airspace could cause miles in trail restrictions to be imposed on 

flights which have filed flight plans to fly through the congested areas. The effect of MIT 

restrictions imposed on enroute flights could eventually reach the origin airports. In such 

cases, ground delays are imposed on flights supposed to fly on the effected airways. The 

entire process of propagation of delay from airspace to the departure airport takes take 

place over time and space.

Wanke et al. (2003) performed aggregate analysis of MIT restrictions recorded by 

ATCSCC (Herndon, VA). Analysis for entire NAS for period from 1/28/02 TO 2/01/02 

was carried out. The geographic distribution of MIT restrictions showed that few MIT 

restrictions were used in Northwest ,Northeast (ZBW) and Southeast (ZJX and 

ZMA).ZOB and ZNY centers were subjected to most of the MIT`s.

3.3.1.3. Spatial and temporal propagation of delays in NAS 

Inaccurate sector demand prediction could cause an increase in controller workload in the 

sector. Krozel et al. (2002) found that errors in prediction of sector count and sector entry 

time cause inaccurate sector demand prediction. Author studied found the following 

sources of error in prediction of sector count and sector entry time.  Circular holding of 

flights causes entries in multiple sectors and enroute delay, which in turn causes sector 

entry time error. Conflict detection and resolution by ATC system causes vectoring

(aircraft follow zig zag path) of flights or stretching of flight paths. Wanke et al. (2003)

found that the predictions of sector demand were more affected by ground stops and



73

ground delays programs compared to MIT restrictions. Ground stops, ground delay 

programs and MIT restrictions are Traffic Management processes used by ATC system to 

manage enroute congestion. 

During interviews with traffic management personnel and center controllers, Leiden and 

Green (2000) found that in high traffic situations in a sector flights are subjected to 

significant rerouting and delays to divert air traffic from the alerted red sector. In such 

scenarios there is increased workload in the downstream sector, since the traffic levels 

expected for the downstream sector are not met. In some cases the red alerted sectors 

could travel from sector to sector along different directions in centers airspace. 

Circular holding, vectoring and rerouting of flights are the control procedures used by 

controllers under heavy workload conditions in the sector. However these procedures 

could cause increased traffic activity in the neighboring sectors which are affected by 

implementation of these control procedures. If the traffic activity in the affected sectors is 

greater than the expected demand in those sectors, then controllers in the affected sectors 

will be subjected to workload. Controller workload in the affected sectors could cause the 

controllers to implement delay imposing strategies on flights. Hence there could be 

spatial propagation of delays in sectors of the airspace.

Brennan et al. (2003) explains that controllers impose delay on flights due to limited 

resource upstream from flight. Upstream congestion point on the path of the fight could 

be constrained arrival rate at airport, congested sector or severe weather in an area. 
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Klopfenstein et al. (1999) have shown that arrival fixes could cause departure delays and 

airborne delays to flights. Airborne delays could be caused by airborne circular holding. 

Congestion on jet route segment could cause departure delays. 

Howell et al. (2003) report that the effects of terminal congestion can impact traffic 

hundred of miles before it enters the terminal area. Miles-In-Trail restrictions (MIT) 

imposed in the enroute airspace are a passback from the terminals. Flight paths of 

aircrafts entering an enroute center are metered by that center by imposing MIT 

restrictions. This MIT restriction is actually a “passback” from the center of the 

destination airport, and is employed as a metering strategy for flights entering that 

destination airport. MIT restrictions are imposed in the enroute airspace due to terminal 

congestion hundred of miles away. Wieland (2002) describes the magnitude of the spatial 

propagation of delays in NAS. He reports that a five to ten minute of an unplanned 

aircraft holding in NAS can affect an estimated 250 aircraft within 20 Seconds.

Brennan et al. (2003) explain that holding flights in airspace increases the demand at that 

airspace. This causes greater holding of flights and more delays to upstream flights.

Cascade of the delay is so rapid that it moves out from the terminal area to over 1000 

miles in 20 seconds. Delay caused by airborne holding at a specific location in airspace 

propagates rapidly in airspace. The delay at the original location also causes delays at 

later times to flights whose flight paths pass through the location where the delay 

occurred. Authors found that a delay causing event upstream on the route of the flight 

caused delays to flights even after the event had ended. Analysis performed by Brennan
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et al. (2003) demonstrates temporal and spatial propagation of airborne delay through 

national airspace system for one day’s worth of flights in NAS.

Hence it is seen that the delays caused by any source of enroute congestion i.e. 

congestion in sectors, fixes or jet route segments, could propagate over space and time. 

Brennan et al. (2003) considered both time and space axis in his analysis to study spatial 

and temporal propagation of delays caused by enroute congestion. 

3.3.1.4. ATC programs implemented in NAS

The air traffic control system tries to maximize throughput and minimize delays in 

national airspace system using air traffic control procedures and programs. Bradford et al. 

(2000) states that “The NAS is a large, complex system that will continue to change and 

adapt to new infrastructure enhancement, technologies or procedures." The performance 

of national airspace system is affected by the effectiveness of different programs and 

procedures implemented by air traffic control system. 

Numerous programs have been implemented by air traffic control system in NAS to 

handle congestion in airports and airspaces. A brief description of some of the programs 

currently implemented in the NAS to handle enroute congestion is provided.

1. Ground delay programs

a. EDCT (Expected Departure Clearance Times)

(FAA 2004) A GDP is a traffic management process implemented by the ATCSCC (Air 

Traffic Control System Command Center). Aircraft are held on ground to manage 
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demand and capacity at a specific location by assigning arrival slots. GDP are used for 

traffic management and to limit airborne holding. The EDCT for flights are computed 

based on estimated time enroute and the arrival slot. It is important that the aircraft depart 

as close as possible to the EDCT. This ensures that the aircraft reach the impacted 

location on time. An equitable assignment of delays to all system users can be achieved 

by using GDPs.

During the meeting with controllers at FAA it was revealed that GDP is used for 

managing airport congestion but its use is extended for managing enroute congestion. 

GDP is only implemented at selected airports in NAS. Welch and Lloyd (2001) explains 

that ground holding aircraft can reduce airborne delay to flight, however the flight still

lands behind the schedule time causing relative to schedule delays to flights.

b. Ground Stops 

(FAA 2004) Aircraft are asked to remain on the ground if they meet some specified 

criteria. This criterion could be airspace specific, airport specific or equipment specific. 

Normally ground stops GS`s could occur with little warning. GS is one of the most 

restrictive methods used for traffic management.  Order explains that one of the 

objectives of using ground stops is to prevent the sectors from reaching their saturation 

levels. 

2. Strategic Planning Team 

(FAA c)The strategic planning team (SPT) is comprised of personnel at the ATCSCC, air 

route traffic control centers and selected terminal facilities. SPT discuss current and 
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forecasted events and their impact on the system by scheduling telephone conferences 

approximately once every two hours.

3. Flow evaluation area (FEA) and flow constrained area (FCA)

(FAA c)The areas are three-dimensional volumes of airspace, along with flight filters and 

a time interval, which are used to identify flights. These areas are developed on an ad hoc 

basis. The purpose is to mange the aircraft in the airspace

4. National Route Program (NRP)

(FAA c) Using NRP, aircraft with level cruise flight above FL290 can request more 

optimal routes. Ref web site 2 explains that the NRP was initiated by FAA to “address 

the fuel and flight time concerns of the user community.”

5. Enroute sequencing program (ESP) 

(FAA c)In this program a departure time is assigned to an aircraft which will facilitate 

integration of aircraft into the enroute stream. 

6. National Airspace Redesign Program (NAR):

(FAA d) FAA has implemented the National Airspace Redesign program to increase the 

capacity and efficiency of the NAS. The NAR program has developed 21 strategic choke 

point actions for improving the air traffic system in the airspace between Boston, 

Chicago, and Washington, DC, which forms a congested triangle of airspace.
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3.3.2. Models proposed in literature

For the present study, relations need to be estimated between delays and enroute air 

traffic in the entire NAS by considering daily and monthly measures of delays and 

enroute traffic volumes. A detailed literature review was carried out to understand the 

previous research performed on this subject. The following literature was reviewed:

1. Analytical models, deductive models and simulation models developed to study 

relations between NAS performance and enroute traffic volumes in the NAS, or to study 

either the NAS performance or enroute congestion.

2. Delay metrics developed by researchers to measure different forms of delays caused by 

enroute congestion in NAS. 

3. Different measures of NAS performance developed by researchers.

4. Flight delay data recorded by FAA databases.

3.3.2.1. Use of simulation models to estimate relations between delays and enroute 

traffic volumes in NAS

Simulation models for NAS:

Numerous simulation models have been built to simulate US national airspace system or 

parts of the national airspace system. Simulation models can be used to estimate the 

proposed relation between enroute traffic volumes and delays caused by enroute 

congestion in entire NAS.
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NASPAC (National Airspace System Performance Analysis Capability), LMINET, 

ACES (Airspace Concept Evaluation System) and DPAT (Detailed Policy Assessment 

Tool) are the models developed to simulate US national airspace system. LMINET is a 

queuing network model of the NAS developed by the Logistics Management Institute.

Simulation models have been developed to simulate national airspace system of other 

countries. Hoffman and Voss (2000) report that TAAM (Total Airport and Airspace 

Modeler) a large scale simulation model, has been used by NavCanada in Ottawa to 

simulate the entire Canadian airspace. RAMS (Reorganized ATC Mathematical 

Simulator) has been used to simulate approximately 1000 nautical miles square of 

airspace from Britain to Poland, north to Scandinavia and south to Italy by the 

Eurocontrol experimental centre in Bretigny-sur-Orge, France.

Drawbacks of using simulation models to estimate the relations

Hoffman and Voss (2000) explain some of the disadvantages of large scale simulation 

models. Authors report large scale simulation models are slow and expensive to build. It 

is difficult to model the intricacies of air traffic management facilities using these 

simulation models.

Bennett (2004) also explains some of the drawbacks of current queuing models use to

model airspace systems. Author points out that the limitation on the capacity of

TRACON (Terminal Radar Approach Control) facility is not considered in the simulation 

models. Airspace performance is not modeled for situations wherein airspace demand is 
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less than capacity. The trajectories of flights in the models do not adapt to the conditions 

in the NAS. In reality tactical and strategic planning is performed by ATC system 

considering weather and congestion.

Zelinski et al. (2004) report that the ACES model (version 1.2) does not consider some 

key assumptions in simulating the NAS system. ACES model does not consider 

constraints on sector capacity and separation. The models can not simulate features like 

rerouting flights based on their flight plan and changes in enroute altitudes and cruise 

speeds of flights. The model can not simulate arrival terminal area and arrival surface 

delays. The model d oes not cancel flights regardless of the delays borne by flights due to 

congestion and every flight is required to complete its flight plan. Flights are held at their 

gates in the event the airspace demand exceeds capacity. Hence departure delay imposed 

on flights is greater than surface or enroute delay. 

Wieland (1997) discussed some of the drawbacks of DPAT model. He explains that 

DPAT lacks a detailed model for airports and cannot simulate gate assignments or 

taxiway movements

Current models developed to simulate US national airspace system are built on 

assumptions which do not reflect the current air traffic operating environment in NAS. 

Models cannot simulate the strategic and tactical planning performed by the ATC system 

to delay flights due to enroute airspace congestion, terminal congestion, weather and 

equipment failures. These simulation models do not model detailed aspects of the ATC 
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facilities and airports. Due to these limitations of simulation models it was decided not to 

use simulation models to estimate the proposed relation between airspace congestion and 

delays caused by airspace congestion. Actual recorded data on the movement of flights in 

the NAS consisting of their transit times, distances traveled and delays were used to 

estimate the proposed relations. 

Zelinski et al. 2004 reports results of 36 simulations of ACES which were run for 4 

demand sets and 9 weather days. Based on results it was found that departure delay 

increased from approximately 0% to 30% (when considered as a percent of total delay) 

with an increase in demand and a decrease in capacity. Due to an increase in departure 

delay the takeoff surface delay decreased from 70% to 45% and enroute delay decreased 

from 36% to 21%.However these results could be biased because of the underlying 

assumptions on which the ACES model has been built.

3.3.2.2. Models proposed in literature 

In this section studies have been discussed in which delays, enroute congestion and the 

relation between the two variables has been analyzed. An explanation has been provided 

as to why these studies cannot be used to estimate relations between delays and enroute 

congestion in NAS. 

i. Models to estimate operational capacity of NAS 

Wieland (2004) reports that Cocanower and Voss (1998) have modeled the instantaneous 

enroute capacity of airspace by applying the logistics equation to the ETMS data. Based 
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on their analysis they estimated the maximum instantaneous enroute capacity of NAS to 

be 4212 flights in 1997. Wieland (2004) reports that Donohue (1999) developed a macro 

model to determine airspace capacity by considering wake vortex separation standards, 

air traffic controller workload, volume of airspace and other factors. Based on his model, 

he determined that in 1999 the system operated at approximately 61% of its maximum 

capacity. He also found that significant delays occur when the system starts operating

above 50% of its capacity.

The above models determine the capacity of NAS and do not estimate a relation between 

airspace congestion and delays caused by airspace congestion.

ii. Comparison of airport throughput and airport capacity to identify problems of 

airspace congestion 

Hoffman and Voss (2000) proposed a deductive approach to identify airspace capacity 

problems. Authors compared arrival and departure throughput at an airport with the 

runway capacity and scheduled demand at the same airport over a 24 hour period. 

Analysis was carried out for a day to reduce the impact of winds. Days chosen for the 

study were such that the airport operating conditions and weather conditions were good 

and no major equipment problems were reported on those days.

The authors compared schedule departure demand, departure runway capacity and actual 

departures at EWR (Newark International Airport) for one good weather day of October 

1998.It was found that runway capacity for departures was underutilized although the 

scheduled departure demand exceeded the capacity several times during day. The authors 
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explain that ATM system was limiting departure throughput because of airspace 

congestion and not because of runway congestion. 

Authors found that runway capacity for arrivals was not underutilized for the scheduled 

arrival demand and low arrival throughputs were rarely seen. Author explains that flights 

arriving at that airport were not delayed in the airspace, since holding arrivals in airspace 

increases airspace congestion.

Congested airspace in the New York region was attributed as a cause for this demand 

capacity imbalance. Authors explain that EWR has lack of airspace for the organization 

and separation of arrival and departure flows and hence restrictions on departures were 

imposed at EWR. 

This approach can only be used to identify airspace capacity problems in enroute sector 

feeding traffic flow to the airports. Welch and Lloyd (2001) also found that delays to 

flights caused at low airport throughputs were most often due to insufficient capacity in 

enroute sectors which are feeding the airport. This approach can not be used to relate 

delays with enroute airspace congestion in entire NAS. 

iii. Relation between airborne delay and enroute congestion 

Alj and Odoni (a) estimated a relation between airborne delay and enroute congestion. 

Authors performed an analysis of airborne delays by considering 618 directional origin 

destination pairs connecting 27 US airports for period from 1995 to 2000. Authors found 

that approximately 40% of airborne delay taken by a flight on an origin destination pair 
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can be attributed to destination airport and remaining 60% of airborne delay can be 

attributed to airspace congestion. The analysis performed by Alj and Odoni (a) does not 

estimate total delays caused by enroute congestion. Ground delays caused by enroute 

congestion have not been considered in the analysis.

iv. Analysis of ground delays and ground stops:

Klopfenstein et al. (1999) analyzed ground stops and ground delay programs as 

inefficiencies in NAS. The locations, times and durations of these programs and their 

impact in terms of departure delays imposed on flights were studied. 

Wanke et al. (2003) performed aggregate analysis of Ground stops and Ground delay 

programs recorded by ATCSCC (Herndon, VA). Analysis for entire NAS for period from 

1/28/02 to 2/01/02 was carried out. The NE corridor was found to be imposing a larger 

number of GS`s. However it was found that no specific sector was imposing more GSs 

than other sectors and the use of GSs varied from one day to other. It was found that 

more GDPs were issued for certain airports. These airports were ATL, BOS, EWR, LAX, 

LGA, ORD, and SFO

In sections 3.3.1.2 - ii, 3.3.1.2 – iii and 3.3.1.4 it was found that delays due to enroute

congestion could be imposed on ground or in the air. It is proposed to estimate relations 

between different forms of delays by phase of flight and enroute traffic in NAS. There is 

a need to estimate a measure of total delays caused by enroute congestion in NAS. These 

delays consist of delays borne by flights on ground and in air .i.e. the delays borne by 
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flights during any phase of the flight. It is proposed to estimate relations between delays 

exclusively caused by enroute congestion and enroute congestion in NAS.

3.3.3. Queuing model developed by Wieland 2004 to estimate operational capacity of 

NAS using OPSNET data

Wieland (2004) determined the capacity of NAS by proposing a functional relationship 

between traffic volume and delays in NAS. He proposed a simple queuing relation 

between monthly operations handled by controllers in NAS and monthly total minutes of 

delays in NAS to estimate the operational capacity of NAS. OPSNET data were used in 

the analysis. Wieland (2004) states that considering the system capacity to be constant, an 

increase in traffic volume will cause an asymptotic increase in delays until traffic volume 

reaches the system capacity.  

Monthly operations handled by controllers from January 2000 to December 2004 were 

related to corresponding total delay recorded in OPSNET using a simple queuing 

relation. The simple queuing functional form showed a 75 % correlation. 

Despite of low explanatory power of the queuing model the author successfully validated 

his model by comparing results of the model to results of other studies.  Author explains 

that he is confident of his results since the results are estimated from recorded data and 

not from simulation models. 
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Reasons for high variance in data

A simple queuing relation; between traffic volume and delays showed a correlation 

coefficient of 75% (R squared of 56.25%). Refer to figure 3.5 below.

Figure 3.5 Relation between delays vs. NAS traffic volume from Wieland, 2004

Wieland (2004) provides an explanation for the low statistical power of the queuing 

model. He states that “from a statistical viewpoint, a queuing model of the NAS is not 

unreasonable, but the correlation is less than desirable due to high variance in the data”. 

He further explains that in a queuing relation between capacity and delays, as the system 

capacity is reached the delays soar with small fluctuations in volume and the delays show 

very high variance. 
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The author uses three simple queuing curves to fit the delay volume data. Refer to figure

3.6 below.

Figure 3.6 Relation between delays vs. NAS traffic volume plotted using three simple 

queuing curves from Wieland, 2004

The three curves showed a better correlation with the data .The correlation coefficients 

for the three curves ranged from 79 % to 89%. Author explains that the use of three 

queuing curves to fit the data provides a better explanation of the significant variation in 

the operations in NAS.

Factors affecting the proposed queuing relation

Wieland (2004) explains that the proposed relationship is valid only for the current state 

of the NAS. He explains that all other factors influencing the system capacity are held 

constant in his analysis. These factors include the airspace, airport, procedural restrictions 
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and scheduling patterns i.e.  mix of freight traffic and point – to – point and hub and 

spoke passenger traffic. 

Author explains that the relation is sensitive to any capacity changes in NAS. Airlines 

could increase capacity of the system without increasing delays, by scheduling greater 

number of flights during midnight and 5:00 AM local time. Operations in the system are 

currently scheduled at times which are convenient for passengers and cargo 

transportation. Author also explains that the capacity is affected by winds, control 

procedures, pilot skills and controller workload.

Author proposes that as the system capacity is approached and delays increase in NAS, 

there will be adjustments in the behavior of the users of the system. These changes could 

include excessive cancellations of flights, schedule adjustments, more frequent use of off 

peak times, serving different airports, and changes in size of aircraft and service 

frequency. Author also expects regulatory changes like the current slot auctioning at 

LGA airport to occur in NAS. Author explains that FAA has currently implemented the 

Operational Evolution Plan to incrementally increase the capacity of the NAS. Author

explains that this relation can not consider improvements planned for the future, or future 

changes resulting from a change of business practices adopted by the aviation service 

providers.
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3.3.4. Selection of delay data to measure delays in NAS

Different forms of delays recorded by FAA, and drawbacks and suitability of different 

forms of delays (for performing the proposed analysis) have been discussed in this 

section.

3.3.4.1 Delay databases maintained by FAA

FAA Aviation Policy and Plans (APO) data system maintains three databases which 

record flight delay data. A brief description of the three databases is provided below:

Aviation System Performance Metrics (ASPM):

Delays are estimated by comparing flight times to carrier flight plans filed with the FAA 

or with the air carrier schedules from the Official Airline Guide (OAG) and carrier 

reservation systems.

Airline Service Quality Performance (ASQP):  

Delays are estimated by comparing flight times to published carrier schedules (from 

OAG or carrier reservation systems).  

Air Traffic Operations Network (OPSNET): 

A detailed description of OPSNET database has been provided in section 3.3.5.

3.3.4.2 Drawbacks of data on delay relative to schedule:

ASQP and ASPM database estimate delays by comparing flight times to carrier schedule 

times. Based on the method used to estimate delays in the delay databases, two forms of 

delay data are available. 

a) Relative to schedule delay data i.e. ASPM and ASQP database

b) OPSNET data
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The suitability of both forms of data was studied to estimate relations between delays and 

enroute traffic volumes in NAS. Relative to schedule delay data are affected by the 

schedule padding performed by airlines. Relative to schedule delays are underestimated 

values of true delays in the system.

Alj and Odoni (a) found that airlines perform schedule adjustments in response to 

congestion in the system. True average delays were about 40% to 60% greater than 

average delays relative to schedule. Authors explain that ASQP data and relative to 

schedule delay are “poor indicators of true extent of air traffic delays” Alj and Odoni (a)

found that on average actual gate-to-gate times were shorter compared to scheduled gate 

to gate times. Based on their analysis authors suggest that airlines can predict gate –to –

gate times correctly, but are vulnerable to unpredictable departure times, which causes 

relative to schedule delays.

Willemain et al (2003) found that air carriers differed in their planning of the estimated 

enroute time of the flights. Some carriers were consistently different in their planning. He 

attributes a portion of this different to route planning. He found that the longest estimated

enroute times were likely to be overestimations and the data gave the appearance of 

padding. All carriers showed same patterns in his analysis.
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3.3.5. Suitability of OPSNET database for measuring traffic volumes and delays 

caused by enroute traffic volumes in the NAS 

OPSNET database records delays imposed on IFR traffic due to different causes. 

OPSNET database only records delays which are greater than 15 minutes in duration.  

Delays imposed by cause excessive center volume (airspace congestion) are also 

recorded. Controllers in ATC facilities record these delays. (FAA circular 7210.55C). 

OPSNET database also records greater than 15 minute delays imposed by FAA ground 

delay programs.

FAA circular 7210.55C states that “ Delays to Instrument Flight Rules (IFR) traffic of 15 

minutes or more, which result from the ATC system detaining an aircraft at the gate, 

short of the runway, on the runway, on a taxiway, and/or in a holding configuration 

anywhere en route must be reported. Facilities should make a cumulative delay 

calculation when an aircraft is held at more than one fix within a facility. The IFR 

controlling facility must ensure delay reports are received and entered into OPSNET”

All air traffic facilities (except Flight Service Stations) report the traffic volume handled 

on the previous day in OPSNET database. 

Currently the OPSNET database provides total number of delays, and total and average 

minutes of delays for days, months and years from January 1990 to date. OPSNET 

provides number of delays by category –departure/arrival/enroute/TMS; by class- air 

carrier/air taxi/general aviation/military and by cause - weather, excessive terminal 

volume, excessive center volume, equipment failure and runway capacity constraints.
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OPSNET database also provides data on ground delays. OPSNET database provides 

number, total and average minutes of ground stop delays, EDCT delays and total ground 

delays for days, months and years from January 1990. OPSNET provides delay metrics 

for individual centers, airports and air traffic control facilities. OPSNET can provide 

aggregated delay metrics by region, service area and entire U.S.

Merits and drawbacks of OPSNET database have been discussed for measuring delays 

caused by enroute traffic volumes in the NAS.

3.3.5.1. Drawbacks of delay data from OPSNET database

1. OPSNET data recording is not automated. Controllers use their judgment to estimate 

the cumulative delay borne by an aircraft when the aircraft is held at more than one fix in 

a facility. Since controllers themselves record the delays there could be variation in the 

data recording techniques used by different controllers at different facilities. This 

variation in OPSNET data recording procedures could bias the OPSNET data. 

Wieland (2004) explains that the procedures used for recording OPSNET data may be 

deficient. OIG 2001 found that manual recording of OPSNET data were causing 

problems of data accuracy and quality assurance (Wieland 2004) .OIG (2001) also 

reported that OPSNET data accuracy was not verified by putting any substantial efforts

(Wieland 2004).
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2. The greatest drawback of OPSNET is that it does not record delays which are less than 

15 minutes in duration. A major proportion of delays borne by flights are less than 15 

minutes in duration, which are currently not being recorded by OPSNET database.

3. OPSNET database records delays by five causes - weather, excessive terminal volume, 

excessive center volume, equipment failure and runway capacity constraints. OPSNET 

records only the number of delays by individual cause. OPSNET database does not 

record minutes of delays by individual cause-like enroute traffic volumes. OPSNET 

database records total minutes of delays by all causes in entire NAS. Hence the models 

are limited to analyzing the number of operations delayed by enroute traffic volume 

(center volume).

3.3.5.2 Merits of delay and traffic volume data from OPSNET database

1. The phenomenon of spatial and temporal propagation of delays in NAS has been 

discussed in section 3.3.1.3. The phenomenon of spatial and temporal propagation of 

delays makes it difficult to identify the cause of a flight delay which occurred at a 

specific time and location in NAS. It is difficult to distinguish delays caused by enroute 

congestion from delays by other causes. Bennett (2004) states that separation of enroute 

problems and terminal effects is difficult. OPSNET database is the only database which 

records caused by enroute traffic volumes (center volume). Controllers themselves 

identify the cause of the delays imposed on flights.
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2. Relative to schedule delay data are an underestimation of the true delays in the system, 

since relative to schedule data are affected by schedule padding performed by airlines. 

Controllers in ATC facilities record delays in OPSNET database along with the cause of 

those delays. Delays by cause “center volume” recorded in OPSNET provide a true 

representation of delays caused by enroute traffic volumes in NAS.

Delays by cause “center volume” recorded in OPSNET database are not biased by the 

effect of schedule padding performed by airlines, wind, aircraft equipment and variation 

in routes flown by flights. Wieland (2004) also explains that OPSNET delays are not 

affected by airline schedule padding and perceptions of passengers.

3. Wieland (2004) explains that OPSNET database provides a very accurate 

representation of traffic volume. OPSNET records traffic volume comprising of flights 

which do not file flight plans with the ATC system and traffic which does not follow 

Instrument Flight Routes (IFR). 

Wieland (2004) explains that most simulation studies of NAS can handle only air carrier, 

air taxi and IFR operating general aviation flights. Simulation studies can typically 

handle 40,000 to 60,000 flights per day. ETMS (Enhanced Traffic Management System) 

database records data of only those flights which file flight plans. ASPM database records 

data from large commercial planes operating at large airports. OAG record data of those 

flights for which passengers purchase tickets and a small sample of freight operations. On 

considering all the available data sources, OPSNET provides a complete record of air 

traffic volume.  
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4. OPSNET database records delays by four causes only. Wieland (2004) states that 

OPSNET does not record all delays caused by all sources for all flights operating in NAS. 

However he states that “Since OPSNET records only excessive delays, we need not 

worry about small “delay noise” that is generated by exogenous variables not correlated 

to volume”.

5. Alj and Odoni (a) explain that OPSNET database “severely underestimates delays”. 

However the authors explain that the airport rankings based on OPSNET delays were 

very similar to the airport ranking results based on the analysis of delays performed by 

authors. They suggest that OPSNET data can be useful for estimating relative extent of 

congestion at different airports.

Considering limitations and merits of OPSNET database it was decided to use OPSNET 

for the analysis proposed in section 6.5.1 and 6.5.2.1. The OPSNET database records 

only number of operations delayed because of enroute traffic volumes. Hence the 

analysis is strictly limited to analyzing the fraction of center operations delayed due to 

enroute congestion and fraction of delayed operations which are delayed due to enroute 

congestion. The proposed analysis has been explained in section 6.5.1.
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3.4. Overview of Methodology

Based on the literature review, analyses and models are proposed to estimate three 

relations listed below.

1. Relation between controller staffing and enroute air traffic in NAS

2. Relations between controller performance and air traffic in sectors and centers of NAS

3.  Relations between ATC system performance and enroute traffic volumes in the NAS

An overview of the methodology used to estimate the three relations is provided in 

sections 3.4.1, 3.4.2 and 3.4.3.

3.4.1 Relation between controller staffing and enroute air traffic in NAS

Based on the findings in the literature review it is found that a linear or more than linear 

relation is expected between controller staffing and enroute air traffic. In this section 

relations between controller staffing and enroute air traffic are explored. The following 

analyses are performed to estimate relations between controller staffing and enroute air 

traffic. 

1. Relations between center operations and onboard controller staffing in NAS centers are 

determined.

2. Relations between enroute air traffic and factors that affect controller staffing are 

estimated. 

3. Relations are estimated between number of dynamic sectors in a center and air traffic 

in the center. 

4. The adequacy of current controller forecasting model in predicting controller staffing 

required for NAS centers was assessed.
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Based on the available data from FAA, appropriate statistical analyses are employed to 

estimate the proposed relations. The relations are estimated for individual sectors and 

centers, and aggregate relations are also estimated for entire NAS.

3.4.2 Relations between controller performance and air traffic in sectors and centers 

of NAS

Based on the literature review measures of controller workload, measures of controller 

performance and models are developed in sections 5.1, 5.2 and 5.4 to estimate relations 

between controller performance and traffic volumes in sectors and centers of NAS.

In the literature review, it has been found that measures of controller performance (like 

delays incurred by flights or excess distances traveled by flights in airspace) could be 

affected by terminal congestion at destination airports, congestion in successive enroute 

centers on the path of the flight, weather and equipment failures. Hence care needs to be 

taken in choosing the data for airspaces and time periods so that flights in the considered 

data do not travel excess distances or bear time delays because of the causes mentioned 

above.

It is possible that the controller performance measures could be affected by congestion in 

successive centers/sectors on the route of the flights. Hence models are developed which 

relate controller performance in center/sector with congestion in successive center/sector 

on the path of the flight. A city pair analysis is also performed for all flights traveling 

between a specific city pair. Controller performance in any of the segments on the path of
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the flight along the city pair is related to congestion in all the successive segments on the 

route of the flight. 

The performance of R controller staffing configuration and R & D controller staffing 

configuration (in a sector) is compared, in terms of managing the air traffic activity 

assigned to each staffing configuration. In literature review it was found that excessive 

traffic demand in a sector causes workload on the controllers and the performance of 

controllers could deteriorate because of workload.

3.4.3 Relations between ATC system performance and enroute traffic volumes in the 

NAS

Analyses are performed to estimate relations between delays and enroute traffic volumes 

in the NAS. Measures of enroute traffic volumes and measures of delays caused by 

enroute congestion are developed. Based on the literature, daily and monthly measures of 

delays and enroute traffic volumes are used to estimate proposed relations for the NAS. 

Appropriate functional forms are chosen to estimate the proposed relations.

Analyses are proposed to estimate relations between delays specifically caused by 

enroute congestion and enroute traffic volumes in entire NAS. Different forms of delays 

used to reduce air delays caused by enroute congestion are identified by performing the 

following analyses:

i. Relations are estimated between different forms of delays and NAS enroute traffic 

volumes.

ii. Trends in variation of different forms of delays are studied. 
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Models and analyses proposed to estimate relations between delays and enroute traffic 

volumes are discussed. The results of models and interpretation of the results are 

discussed.
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CHAPTER IV: RELATIONS BETWEEN ENROUTE AIR TRAFFIC 

CONTROLLER STAFFING AND ENROUTE AIR TRAFFIC IN THE 

NAS

Three sets of analyses are performed to estimate relations between controller 

staffing and enroute traffic in NAS. In sets 4.1.1 and 4.1.2, relations are estimated 

between enroute air traffic and factors affecting controller staffing. In set 4.1.3, relations 

are estimated between center operations and onboard controller staffing in NAS centers. 

In set 4.1.5, relations are estimated between number of dynamic sectors in a center and 

air traffic in the center. With an increase in the number of dynamic sectors in a center, a 

corresponding increase in controller staffing will be required in that center.

In set 4.1.4, the adequacy of the current controller forecasting model in predicting 

staffing required for centers in NAS is assessed. Staffing predicted by the FAA model 

and onboard controller staffing (in centers) are compared.

The data and the method used to perform the analyses are discussed in section 4.1.

The results of the analyses and the interpretation of the results are discussed in section 

4.2.
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4.1. Proposed analysis

4.1.1. Relation between ATC complexity for centers and air traffic operations in 

centers.

4.1.2. Relation between air traffic operations and distribution of air traffic 

operations in centers during the peak 1830 hours and the second busiest 1830 hours 

of a 365 day period.

Relations are estimated between enroute air traffic and factors that affect controller 

staffing. The effect of increase in air traffic operations on factors which affect controller 

staffing is studied. In analyses 4.1.1. and 4.1.2, relations are estimated between enroute 

air traffic operations and the following factors:

-ATC complexity of the enroute air traffic control centers

-Growth in air traffic operations in centers during peak and off peak periods.

4.1.3. Relation between monthly onboard controller staffing in centers and monthly 

center operations

 Relations are developed between monthly air traffic operations and monthly onboard 

number of controllers staffed in centers. 

4.1.4. Validation of current controller forecasting model by comparing model 

predicted monthly staffing and actual on board monthly staffing of controllers

The current controller forecasting model is validated by comparing monthly predicted 

staffing and monthly onboard number of controllers staffed in centers.
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4.1.5. Relation between number of dynamic sectors in a center and that center’s air 

traffic operations 

It is proposed to estimate relation between number of sectors in a center and the air traffic 

operations handled by the center. Dynamic resectorisation is currently being carried out 

for sectors in NAS. FAA (1997) explains that depending on the amount of air traffic and 

the level of complexity of operation two or more sectors are combined and managed by 

controllers at one work station. 1Mr. McLaughlin from FAA explained that the 

combination of sectors in a center was done dynamically as the operations dictated and 

there was no way to track this information. The dynamic resectorisation data were not 

available, since individual facilities record the data and the data are not sent to ATO 

office. Hence this analysis could not be performed.

1Information provided by Mr. Elliott McLaughlin during meeting at FAA on 05/20/2005

4.2. Analyses and results

4.2.1. Relation between ATC complexity for centers and air traffic operations in 

centers.

The Hourly Classification Index (HCI) developed by FAA, (FAA 1999) was used to 

study the effect of increases in air traffic operations in a center on the complexity and 

workload of the controllers staffed in those centers. Relations were developed between 

HCI`s and center operations for five chosen centers –ZMA (Miami FL ARTCC), ZJX

(Jacksonville FL ARTCC), ZNY (New York NY ARTCC), ZDC (Leesburg VA ARTCC 

(DC)) and ZAB (Albuquerque NM ARTCC).
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HCI`s are computed at the end of each calendar month of a year. HCI is computed for a 

rolling 365 day period ending at the end of each month.

Center air traffic operations corresponding to the 365 day rolling time period (used in 

computation of HCI) were used in the analysis. 

Data source:

The ETAP ( Enroute Traffic Analysis Program) is used to compute HCI for centers. The 

input data files used to estimate HCI, and the output files from the ETAP program were 

provided by Mr. Matt Dunne from FAA`s ATO-A/IT office. Monthly data from 08/2001 

to 03/2004 were used in the analysis

Data organization and processing: 

The raw output data were organized in the format required for analysis.

Data analysis:

Regression analyses were performed considering the air traffic operations during the 365 

day period as the independent variable and the HCI for the corresponding 365 day period 

as the dependent variable. Different functional forms including power, exponential and 

linear forms were considered for the regression analysis.

Results:

Figures 4.1 to 4.5 show relations between HCI`s and center operations for five centers –

ZMA, ZJX, ZNY, ZDC and ZAB.These relations are estimated using 365 day rolling 

time intervals. 
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Figure 4.1 HCI vs. center operations (365 day rolling period) for the ZMA center
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Figure 4.2 HCI vs. center operations (365 day rolling period) for the ZJX center 
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Figure 4.3 HCI vs. center operations (365 day rolling period) for the ZNY center
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Figure 4.4 HCI vs. center operations (365 day rolling period) for the ZDC center
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Figure 4.5 HCI vs. center operations (365 day rolling period) for the ZAB center

It was found that the linear form fitted the data very well for 4 centers except ZMA 

(Rsquared of 0.51). Linear regression models for ZDC and ZJX centers showed very high 

explanatory power with an Rsquared of greater than 95 %. Regression models for centers 

ZNY and ZAB showed good explanatory power with R squared values of 0.84 and 0.75 

respectively. 

HCI is currently used by FAA to assign ATC grade levels to controllers. ATC grade 

levels of controllers form a basis for determining controller wages. Based on the analysis 

results it can be stated that ATC controller grade levels and salaries increase 

proportionally (linearly) with NAS center operations. With increase in air traffic 

operations in NAS, higher grade level controllers with higher pay scales will be required 

to be staffed in sectors of NAS.
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4.2.2. Relation between air traffic operations and distribution of air traffic 

operations in centers during the peak 1830 hours and the second busiest 1830 hours 

of a 365 day period.

Cav2/Cav1 is the ratio of total operations in the center during the second busiest 1830 

hours and the busiest 1830 hours of a year (FAA 1999). ETAP program computes 

“Cav2/Cav1” as an intermediate input in the estimation of “HCI”. Cav2, Cav1 and center 

operations are recorded for 365 day rolling time periods, which are used in computation 

of HCI. 

We estimate relations between ratio of “Cav2/Cav1” and center operations for five 

chosen centers –ZMA, ZJX, ZNY, ZDC and ZAB.

Data analysis:

Regression analyses are performed considering center operations during 365 day period 

as the independent variable and the ratio of Cav2/Cav1 for the corresponding time period 

as the dependent variable. Different functional forms including power, exponential and 

linear forms were considered for the regression analysis. 

Results: 

Figures 4.6 to 4.10 show relations between ratio of “Cav2/Cav1” and center operations 

for five centers –ZMA, ZJX, ZNY, ZDC and ZAB. These relations are estimated using 

365 day rolling time intervals. 
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Figure 4.6 Cav2/Cav1 vs. center operations (365 day rolling period) for the ZMA center
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Figure 4.7 Cav2/Cav1 vs. center operations (365 day rolling period) for the ZJX center
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Figure 4.8 Cav2/Cav1 vs. center operations (365 day rolling period) for the ZNY center
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Figure 4.9 Cav2/Cav1 vs. center operations (365 day rolling period) for the ZDC center
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Figure 4.10 Cav2/Cav1 vs. center operations (365 day rolling period) for the ZAB center

It was found that the linear form fitted the data very well for centers ZDC (Rsquared of 

0.8664) and ZNY (R squared of 0.78). A regression model for the ZAB center showed a 

low R squared value of 0.57. Regression models for ZMA and ZJX centers showed very 

low explanatory power with R squared values less than 0.01.

The growth in air traffic operations is getting uniformly distributed between peak and off 

peak periods in centers ZDC and ZNY. With increase in center operations during off 

peak periods, additional staffing of controllers and flight data positions will be required 

during off peak periods in centers like ZDC and ZNY. The effect of increase in off peak 

center operations on controller staffing has been discussed in section 3.1.7 of the 

literature review.
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4.2.3. Relation between monthly onboard controller staffing in centers and monthly 

center operations

Data used in analysis:  

2The data used in analysis sets 4.2.3 and 4.2.4 were provided by Mr. Elliott McLaughlin

from FAA. 

2 Data provided by Mr. Elliott McLaughlin during meeting at FAA on 05/20/2005

The following data are used in the analysis:

1. Annual enroute controller staffing standards for period 1999 to 2005.

These standards contain forecasted monthly air traffic controllers required in individual 

centers.

i. 2002 Air Traffic Enroute Staffing Standards for FY 2002

Produced: April 23, 2002

ii. 2003 Air Traffic Enroute Staffing Standards for FY 2003

Produced: March 19, 2003

iii. 2004 Air Traffic Enroute Staffing Standards for FY 2004

Produced: April 14, 2004

iv. 2005 Air Traffic Enroute Staffing Standards for FY 2005

Produced: April 14, 2004

2. The monthly center operations for 1999 – 2005, obtained from “The Air Traffic 

Activity Data System (ATADS)” website.
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3. Data on monthly onboard number of controllers staffed in individual facilities for 

period 1999 to 2005. 

4. Annual data for the number of areas and sectors in individual centers provided in 

staffing standards.

Results:

Figure 4.11 shows the relation between “monthly onboard controller staffing in all 

centers of NAS” and “monthly center operations in NAS”. Monthly data from September 

2001 to March 2005 are used for this analysis. 
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Figure 4.11 Monthly onboard controller staffing in all NAS centers vs. monthly center 

operations in NAS.

A linear relation was expected between operations and controllers required to be staffed 

in centers and sectors. However, the proposed relation was not found in the results in 

figure 4.11.
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It is possible that the proposed linearity in the relation between controllers and operations 

could be observed at individual centers.  Relations are estimated between “monthly 

onboard controller staffing” and “monthly center operations” for five individual centers –

ZNY, ZMA, ZJX, ZDC and ZAB. Figures 4.12 to 4.16 show the relations between 

“monthly onboard controller staffing” and “monthly center operations” for the five 

centers.  
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Figure 4.12 Monthly onboard controller staffing vs. monthly center operations for the 

ZNY center
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Figure 4.13 Monthly onboard controller staffing vs. monthly center operations for the 

ZMA center
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Figure 4.14 Monthly onboard controller staffing vs. monthly center operations for the 

ZJX center



115

360

370

380

390

400

410

420

150000 170000 190000 210000 230000 250000 270000 290000

Monthly center operations

M
o

n
th

ly
 o

n
b

o
ar

d
 c

o
n

tr
o

lle
r 

st
af

fin
g

Figure 4.15 Monthly onboard controller staffing vs. monthly center operations for the 

ZDC center
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Figure 4.16 Monthly onboard controller staffing vs. monthly center operations for the 

ZAB center

The expected linearity in relation was not observed in the plots for individual centers, 

possibly due to the following reasons:
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1. The variable “monthly onboard controller staffing” in individual facilities represents 

controllers who worked at a center facility in a month. An assumption is made that on 

average one controller works for a specific number of hours in a facility each month. 

However the validity of this assumption is subject to scrutiny. It is possible that 

controllers could work overtime, take leave and work for non uniform hours of shift. 

2. Monthly onboard controllers in centers could be overstaffed for the monthly center 

operations they are subjected to control in a center.

3. The FAA controller forecasting model discussed in section 3.1.8 uses the variable 

“Monthly air traffic operations in centers” to staff controllers in centers. The same 

variable has been used in the above analysis. The variable “Monthly air traffic operations 

in centers” does not capture ATC complexity related to characteristics of operations. 

Controllers are staffed in sectors based on ATC complexity involved in controlling the 

sector operations.

Proposed improvements in analysis 4.2.3

It was realized that the variable “Monthly onboard number of controllers staffed in a 

center” does not capture the monthly controller work hours in a center. It was decided to 

use the variable “Monthly controller work hours worked by all controllers in a center” for 

the revised analysis.
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SISO data were identified as a source. However great amount of processing is required to 

extract the data in the required format. Hence the proposed analyses are left for future 

studies. It is proposed to perform analysis 4.2.3 in the future using the SISO data.

4.2.4. Validation of current controller forecasting model by comparing model 

predicted monthly staffing and actual on board monthly staffing of controllers

Figure 4.17 shows the time series trend of the variables, “staffing standard forecasted 

monthly controller staffing in all centers of NAS” and “monthly onboard controller 

staffing in all centers of NAS”. 
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Figure 4.17 Time series trend of variables, staffing standard forecasted monthly 

controller staffing in all centers of NAS and monthly onboard controller staffing in all 

centers of NAS
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Figure 4.18 shows the variables, “staffing standard forecasted monthly controller staffing 

in all centers of NAS” and “monthly onboard controller staffing in all centers of NAS” as 

a function of monthly center operations in NAS.
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Figure 4.18 Staffing standard forecasted monthly controller staffing in all NAS centers 

and monthly onboard controller staffing in all NAS centers vs. monthly center operations 

in NAS.

Data for months from October 1999 to April 2005 were used for plotting figures 4.17 and 

4.18.

In these figures it can be seen that the monthly controller staffing predicted by FAA 

model is greater than the actual onboard controller staffing for all months from October 

1999 to April 2005.It can be concluded that the staffing standard provides adequate and 

greater than required monthly air traffic controllers in centers of NAS.
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CHAPTER V: RELATIONS BETWEEN CONTROLLER 

PERFORMANCE AND AIR TRAFFIC IN SECTORS AND CENTERS 

OF THE NAS

Measures of controller workload and controller performance are developed in this 

section. Models are developed to estimate relations between controller workload and 

controller performance in NAS sectors and centers.

Care is taken in choosing data for NAS components (sectors and centers) and periods so 

that controller performance metrics are not affected by terminal congestion at destination 

airports, congestion in successive enroute centers along flight paths, weather and 

equipment failures.

There is a danger that controller performance measures could be affected by congestion 

in successive centers or sectors on the flight paths. Models are developed to estimate 

relations between controller performance in a center/sector and congestion in successive 

center/sector along the path of the flight. A city pair analysis is also performed for all 

flights appearing along a path linking a specific city pair. Controller performance in any 

of the segments on the path of the flight along the city pair is related to congestion in all 

the successive segments on the route of the flight. 

In section 5.4 models are developed to estimate proposed relations. The models are 

estimated using regression analysis. 
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In section 5.4.4, the performance of R controller staffing configuration and R & D 

controller staffing configuration (in a sector) is compared, in terms of managing the air 

traffic activity assigned to each staffing configuration.

Measures of controller workload, controller performance, and models developed to 

estimate proposed relations are discussed in sections 5.1 to 5.4

The estimated models and the interpretation of results are discussed in sections 5.5 to 5.8.

NOTE: The division of US National Airspace System into centers and sectors has been 

explained in section 3.1.1. A center or a sector will be referred to as a NAS component.

5.1. Measures of air traffic activity (controller workload) in sectors and centers

“Flight-specific workload” is proposed below as a measure of controller workload for 

each flight traversing a center or a sector. “Flight-specific workload” is a measure of total 

flight activity seconds or total flight count handled by controllers in a NAS component 

(sector or center), while they are controlling one second of a flight under consideration.

 “Flight-specific workload” is defined in two forms:

i. Seconds of flight activity handled by controller per second of considered flight.

ii. Flight operations handled by controller per second of considered flight.

Both measures of flight-specific workload are used below.
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5.1.1. Suitability of metric “Flight-specific workload”

Howell et al 2003 uses total aircraft handled by a controller during a 15 minute interval as 

a measure of traffic per unit time. Normalized traffic activity for every 15 minute interval 

is related to average excess distance traveled by aircraft during that interval. Arguably, 

there could be bias in the relation between the two variables.  In a given interval, excess 

distance traveled by a flight which enters/leaves the airspace in the last/first minute of the 

interval will not be affected by the congestion due to total number of flights in the 

airspace during that interval. The interarrival and departure distribution of flights may not 

be uniform for different intervals. This could bias the metric average excess distance 

traveled by flights during each time interval.

5.1.2. Computation of metric “Flight-specific workload”

i. In this section, flight-specific workload is computed in terms of seconds of flight 

activity handled by controller per unit time.

 “Rolling time intervals” are specified for each flight. Considering the entry and exit 

times of a flight in airspace, traffic activity is computed only while the flight travels in 

the relevant airspace. The entry and exit times of the flight in the airspace denote the start 

and end times of the interval for that flight.

For each flight, traffic activity is considered only during the time when the flight 

traverses the airspace. 

(Total flight Seconds)i,j  denotes total flight activity seconds in the center or sector  

during time interval equal to duration of flight (i,j). 

(i, j) denote entry and exit times of  a flight in the airspace
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Since different flights have different durations, the bias due to different intervals for 

different flights was eliminated as follows:

Flight-specific workload is denoted as “Avg flight secs”

“Avg flight secs”= (Total flight Seconds) i,j/ [(observed duration of flight)i,j]

Above variable represents seconds of flight activity handled by a controller while he 

controls each second of activity of flight (flight under consideration) in the sector or 

center.  Hence, this is a measure of the workload on the controller. 

(Total flight seconds)i,j induces workload on the controller and causes the undelayed 

transit time of the flight to extend to the observed transit time in the airspace. There is a 

need to consider the total aircraft seconds during the “undelayed transit time” of flight 

through the airspace which causes the “undelayed transit time” to extend to “observed 

transit time of flight” through the airspace. 

Here an assumption is made that the aircraft activity present in the airspace during each 

minute of the undelayed transit time of the flight is approximately equal to the aircraft 

activity present in the airspace during each minute of the “observed transit time of flight”. 

The ETMS database does not estimate the planned duration of a flight (undelayed transit 

time) in a center or sector. Hence there is a need for the above assumption.

ii. In this section, flight-specific workload is computed in terms of flight operations 

handled by controller per unit time of the flight under consideration.

Flight-specific workload is denoted as “Avg flight count”
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“Avg flight count”= (Total flight Operations) i,j/ [(observed duration of flight)i,j]

→Variable represents flight operations controlled by a controller while he controls each 

second of activity of flight (flight under consideration) in the airspace. 

5.1.3. Incorporating ATC complexity in a measure of controller workload 

In this section, ATC complexity factors which could be included in the measure of 

controller workload developed in section 5.1.2 are discussed.

i. Type of operation (arrival/departure/overflight)

In section 3.2.2.1 of the literature review it was found that traffic count and transit times 

of aircraft traversing airspace in climb/descend and cruise profiles affect controller 

workload significantly and differently. 

The ETMS data used in the analysis do not provide details of flight profiles of operations  

-“climb”, “cruise”, “descend” and “climb-cruise-descent” flight profiles. Due to 

limitations of ETMS data, an approximation is made that operations with “climb”, 

“cruise”, “descend” and “climb-cruise-descent” flight profiles represent “departure”, 

“overflight”, “arrival” and “both” operations respectively. In the ETMS database 

“overflight” is a flight operation over an airspace and “both” denotes a flight operation 

which arrives and departs in the same airspace (center).

ii. Majumdar (a) showed that the interaction and quadratic effect of the cruise, ascent and 

descent traffic count in a sector affects the controller workload. In his analysis he 

considered the following variables and their functional forms: 
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(Traffic in cruise in a sector) 2

Traffic in descend x traffic in cruise

Traffic in ascend x traffic in cruise

Traffic in descend x traffic in ascend

The above variables measuring the interaction and quadratic effect of cruise, ascend and 

descend traffic count are included in the proposed measure of controller workload. Due to 

limitations of ETMS data, variables measuring interaction and quadratic effect of arrival, 

departure, overflight and “both” operations are included in the proposed measure of 

controller workload.

5.2. Measures of controller performance in sectors and centers

5.2.1. Measures of controller performance proposed for analysis 

Two measures of controller performance are proposed.

i. “Ratio of actual duration and GCR (Great Circle Route) distance of a flight” as a 

measure of controller performance:

ii. “Ratio of actual distance and GCR distance of a flight” as a measure of controller 

performance:

i. “Ratio of actual distance and GCR distance of a flight” as a measure of controller 

performance

Bradford et al. (2000), Howell et al. (2003) and Bennett (2004) defined excess distance 

traveled by a flight as the difference between actual distance traveled by the flight in the 

center and the GCR distance between the entry and exit points of the flight in the center.
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The ratio of actual distance traveled by flight in the center and the great circle route 

distance between the entry and exit points of the flight in that center is proposed here as a 

measure of excess distance traversed by a flight in that center.

Suitability of metric “ratio of actual distance and GCR distance of a flight” 

The excess distance metric proposed by Howell et al. (2003) is averaged for flights 

handled by the center during 15 minute intervals. Similarly excess distance metric 

proposed by Bradford et al. (2000) is averaged for flights in a center over a period of 

month. It is possible that the average value of excess distance (in an interval) could be 

biased for different time intervals. This bias could be caused by the variation in the length 

of actual flight paths traveled by the flights in the center during each interval.

ii. “Ratio of actual duration and GCR distance of a flight” as a measure of 

controller performance:

The ratio of actual duration of a flight in the center and the great circle route distance 

between the entry and exit points of the flight in that center is proposed as a measure of 

delay borne by a flight.

5.2.2. Consideration of operation type, user class of aircraft and physical class of 

aircraft in a measure of controller performance. 

Based on the literature review it appears that arrival operations and operations which 

arrive and depart in the same airspace (center) are most susceptible to imposed 

restrictions due to terminal congestion at arrival airports. These restrictions could cause 
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arrival and departure flights delays and excess distances even when the airspace they 

traverse is uncongested. Terminal congestion could bias the controller performance 

metrics for “arrival” and “both” operations. These controller performance metrics are 

developed to study the impact of airspace congestion on operations within the same 

airspace.

There is a need to analyze controller performance by considering each type of operation 

i.e. arrival, departure, overflight and “both”.  Dummy variables are introduced in 

regression models to study the performance of controllers in arrival, departure, overflight 

and “both” operations. 

Aircraft belonging to different user class and physical class could have different speeds 

and could be controlled using different methods by the controller. This could bias the 

controller performance metrics for different user and physical class of aircraft. User class 

and physical class of aircraft are also considered as dummy variables in studying the 

performance of controllers with aircraft belonging to different user and physical classes.

The following dummy variables are included in regression models developed in sections 

5.4.1 and 5.4.2

-Type of operations (arrival, departure, overflight and both.)

-User class of aircraft (air taxi, cargo, commercial, general aviation, military and other)

-Physical class of aircraft (piston, jet, turbo and other)
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5.3. Data used for analyses

5.3.1. ETMS boundary crossing data for centers and sectors in NAS

Based on discussions with Mr. Daniel Citrenbaum, Ms. Nancy Stephens and Mr. Barry 

Davis, ETMS boundary crossing data for enroute centers and sectors were identified as 

appropriate for analysis. ETMS boundary crossing data for enroute centers and sectors 

was used for the analysis. The boundary crossing data record information on flights and 

airspaces (centers and sectors) as the flights cross the boundaries of the airspace. A 

spatial database engine tracks the flights as they cross the centers and sectors and 

calculates the following metrics for a 24 hour period. Data include domestic and 

international flight. (international arrivals, departures and overflights).

5.3.2. Details of ETMS boundary crossing data:

The ETMS boundary crossing data contain the following details:

Flight and aircraft details:

i. Call sign

ii. Aircraft type

iii. GMT departure date of the flight

iv. Arrival airport and departure airport

v. Flight identifier as created during ATA lab processing

vi. ETMS generated flight identifier or new identifier created during the ATA Lab 

enhancement process

vii. Flag identifying international flights

viii. Physical class of the aircraft
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ix. User class of flight

Airspace (sector/center) details:

i. Name of the airspace through which the flight is crossing 

ii. Actual distance of the flight through the airspace

iii. GMT time at which the flight crosses into and out of the airspace volume

iv. Time spent in the airspace volume

v. Great circle route distance between the in/out intersection

vi. Flag for international flights that fly over US controlled airspace

vii. Sequence number of boundary crossings for flights; determines order in which a 

flight crosses through each airspace volume

viii. Flag for determining if the flight flew NRP (National Route Program)

ix. Flag to determine whether flight departed, arrived or overflew the current airspace 

volume

x. Altitude at which the flight crosses into and out of the airspace volume

xi. Latitude where the flight crosses into and out of the airspace volume

xii. Longitude where the flight crosses into and out of the airspace volume

xiii. Velocity of the flight when it crosses into and out of the airspace volume

5.3.3. Period of data used in analyses: 

Twenty-four-hour ETMS data for centers and sectors are used in the analysis. By using 

twenty-four-hour data the effect of winds on aircraft movements is minimized. Thus, the 
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impact of wind on the controller performance metrics developed in section 5.2 is 

minimized.

5.4. Proposed models

The following models are proposed to estimate relations between controller performance 

and air traffic in NAS sectors and centers.

5.4.1. Relations between controller performance and controller workload for the 

same center/sector

In this analysis, relations are estimated between measures of controller workload and 

controller performance developed in sections 5.1 and 5.2. It is assumed that the excess 

distance and delay borne by a flight is due to traffic activity in the airspace while the 

flight is traversing it.

It is proposed here that the relation between “ratio of actual distance and GCR distance of 

a flight in airspace (sector/center)” and “flight-specific workload” is linear with a positive 

slope. 

It is difficult to propose the precise relation between “ratio of actual duration and GCR 

distance of a flight in airspace (sector/center)” and “flight-specific workload”. It is 

proposed that the relation between these two variables is non-linear. A simple queuing 

relation could also exist between the two variables. Three functional forms are considered 

for relating “ratio of actual duration and GCR distance traveled by flight in airspace 

(sector/center)” to “flight-specific workload”. The three functional forms studied were 

power, exponential and linear.
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Statistical analysis is performed to estimate relations between dependent and independent 

variables. 

For 24 hour ETMS data, considering 15 -minute time intervals gives 96 sample data 

points. For performing statistical analysis more data points are required.  Hence, sample 

data points need to be increased. 

Controller workload measure “flight-specific workload” and controller performance 

measures are defined for each flight observation. Each flight observation is considered as 

a data point. One center in NAS handles an average of 8600 flights in 24 hours (Value is 

based on the ETMS data for 5 centers used in the analysis). The center data for 24 hour 

period gives us 8600 data points. 

Time intervals used in analysis: 

Rolling time intervals are specified for each flight observation. Entry and exit times of a 

flight in the airspace (sector/center) represent start and end points of time interval 

(i,j)considered for analysis of that flight. 

(Where i = in_time of the flight in the airspace (sector/center)

j = out_time of the flight in the airspace (sector/center)

j-i = duration of flight in the center airspace (sector/center) 
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Dependent variables: 

The following dependent variables are calculated for each flight:

Dependent variables for each flight 

observation with  interval (i,j)

Abbreviation

(Actual distance /GCR distance)ij Excess distance 

(Actual duration/GCR distance)ij Delay

Independent variables: 

Based on the definition of “flight-specific workload” metric explained in section 5.1, the 

following independent variables are defined for each flight observation. These 

independent variables compose the construct of “flight-specific workload”

Independent variables are calculated for each flight observation from the ETMS 

boundary crossing data for the airspace (center/sector). The following intermediate 

variables are used to compute the independent variables.

{A, D, O and B denote arrival, departure, overflight and both operations; overflights fly 

over an airspace and “B” (both) denotes a flight which arrives and departs in the same 

airspace}

Variables for each flight observation with  interval (i,j) Abbreviation

( Seconds of activity of all types of operations) i,j  Flight seconds

( Seconds of activity of arrival operations) i,j  Flight seconds of A

( Seconds of activity of departure operations) i,j  Flight seconds of D

( Seconds of activity of over flight operations) i,j  Flight seconds of O
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( Seconds of activity of both operations) i,j  Flight seconds of B

The above variables were also computed in terms of flight operations

The following independent variables are computed:

Independent variables for each flight observation 

with  interval (i,j)

Abbreviation

[( Flight seconds)i,j/time interval (i,j)] Avg flight secs

[( Flight seconds of A)i,j /time interval (i,j)] Avg flight secs  A

[( Flight seconds of D)i,j /time interval (i,j)] Avg flight secs  D

[( Flight seconds of O)i,j /time interval (i,j)] Avg flight secs  O

[( Flight seconds of A)i,j /time interval (i,j)]2

[( Flight seconds of D)i,j /time interval (i,j)]2 Squared avg  flight secs  D

[( Flight seconds of O)i,j /time interval (i,j)]2 Squared avg  flight secs  O

[( Flight seconds of A)i,j /time interval (i,j) 

* ( Flight seconds of O)i,j /time interval (i,j)]

Product A*O flight secs

[( Flight seconds of D)i,j /time interval (i,j) 

* ( Flight seconds of O)i,j /time interval (i,j)]

Product D*O flight secs

[( Flight seconds of A)i,j /time interval (i,j) 

* ( Flight seconds of D)i,j /time interval (i,j)]

Product A*D flight secs

[Dummy variable indicating type of operation arrival, 

departure, overflight, both] 

A/D/O/B

[Dummy variable indicating user class of a/c; 

commercial/GA/air taxi]

C/G/T

[Dummy variable indicating physical class of a/c; 

piston/jet/turbo]

P/J/T

The above independent variables were also computed in terms of flight operations.
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Functional forms used in analyses:

The following functional forms were used for relating dependent and independent 

variables.

Model with dependent variable Functional form 

(Actual distance /GCR distance) i,j Linear

(Actual duration/GCR distance)i,j Linear/second power/exponential

Statistical analyses: 

Regression analyses were performed for the following models:
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a) Models with dependent variable “ratio of actual distance and GCR distance of 

flight” 

Models 1.1. to 1.4: Controller workload is measured in terms of flight activity seconds in 

these models.

Dependent variable (Actual distance /GCR distance) i,j

Independent variables Model 

1.1

Model 

1.2

Model 

1.3

Model 

1.4

Avg flight secs P P P P

Avg flight secs A P P P

Avg flight secs D P P P

Avg flight secs O P P P

Product A *O flight secs P P

Product D *O flight secs P P

Product A *D flight secs P P

Squared avg flight secs O P

Arr/Dep/Over/Both P P P P

Comm./GA/Air taxi P/# P/# P/# P/#

Piston/Jet/Turbo #/P #/P #/P #/P

P denotes variable present in the model

The same model was estimated twice by alternately dropping either of the two variables denoted 

by “#”. This was done to avoid correlation between the two dummy variables.
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Models 2.1. to 2.4: Controller workload is measured in terms of flight operations in these 

models.

Dependent variable (Actual distance /GCR distance) i,j

Independent variables Model 

2.1

Model 

2.2

Model 

2.3

Model 

2.4

Avg flight count P P P P

Avg flight count A P P P

Avg flight count D P P P

Avg flight count O P P P

Product A *O flight count P P

Product D *O flight count P P

Product A *D flight count P P

Squared avg flight count O P

Arr/Dep/Over/Both P P P P

Comm./GA/Air taxi P/# P/# P/# P/#

Piston/Jet/Turbo #/P #/P #/P #/P
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b) Models with dependent variable “ratio of actual duration and GCR distance of a 

flight”

Models 3.1 to 3.6: Controller workload is measured in terms of flight activity seconds in 

these models.

Dependent variable (Actual duration /GCR distance) i,j

Independent variables Model 

3.1

Model 

3.2

Model 

3.3

Model 

3.4

Model 

3.5

Model 

3.6

Avg flight secs P P P P

Squared avg flight secs P P

Exp(avg flight secs) P P

Avg flight secs A P P

Avg flight secs D P P

Avg flight secs O P P

Squared avg flight secs A
P

Squared avg flight secs D P

Squared avg flight secs O P

Exp(avg flight secs A) P

Exp(avg flight secs D) P

Exp(avg flight secs O) P

Arr/Dep/Over/Both P P P P P P

Comm./GA/Air taxi P/# P/# P/# P/# P/# P/#

Piston/Jet/Turbo #/P #/P #/P #/P #/P #/P

P denotes variable present in the model
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Models 4.1 to 4.6: Controller workload is measured in terms of flight operations in these 

models.

Dependent variable (Actual duration /GCR distance) i,j

Independent variables Model 

4.1

Model 

4.2

Model 

4.3

Model 

4.4

Model 

4.5

Model 

4.6

Avg flight count P P P P

Squared avg flight count P P

Exp(avg flight count) P P

Avg flight count A P P

Avg flight count D P P

Avg flight count O P P

Squared avg flight count A P

Squared avg flight count D P

Squared avg flight count O P

Exp(avg flight count A) P

Exp(avg flight count D) P

Exp(avg flight count O) P

Arr/Dep/Over/Both P P P P P P

Comm./GA/Air taxi P/# P/# P/# P/# P/# P/#

Piston/Jet/Turbo #/P #/P #/P #/P #/P #/P

P denotes variable present in the model
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5.4.2. Effect of congestion in successive center/sector on flight path 

The difficulties in estimating relations between controller performance metrics and 

controller workload in sectors and centers have been explained in section 3.2.4. It is 

possible that traffic in the successive airspace on the flight path could increase distances 

or delays for flights in the current airspace.

Hence an analysis was proposed to relate air traffic activity in the successive airspace and 

the excess distances traveled and delays borne by flights in the current airspace. The 

following variables were used.

Dependent variables:

The following dependent variables were computed for each flight:

Dependent variables for interval (i,j) Abbreviation

(Actual distance /GCR distance)i,j Excess distance

(Actual duration/GCR distance)ij Delay

(i,j) denote the entry and exit times of flights in the considered airspace. 

The time interval (i,j) defines the duration of the flight in the airspace under 

consideration.  Traffic activity in the successive airspace on the flight path is computed 

for time interval (i,j). 

Independent variables: 

{A, D, O and B denote arrival, departure, overflight and both operations; overflights pass 

through an airspace while “B” denotes a flight which arrives and departs in the same 

airspace}
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Variables for each flight observation with  interval (i,j) Abbreviation

(Seconds of activity of all types of operations in successive 

airspace) i,j

Flight seconds in successive 

airspace

(i,j) denote the entry and exit times of flight in the current airspace.

Independent variables for each flight observation with  interval (i,j) Abbreviation

[(Flight seconds in successive airspace)i,j/time interval (i,j)] Avg flight secs in 

successive airspace

[(Flight seconds in successive airspace)i,j /time interval (i,j)] 2 Squared avg flight secs in 

successive airspace

exp[(Flight seconds in successive airspace)i,j/time interval (i,j)]  Exp avg flight secs in 

successive airspace

[Dummy variable indicating type of operation arrival, departure, 

overflight, both] 

A/D/O/B

[Dummy variable indicating user class of a/c; commercial/GA/air 

taxi]

C/G/T

[Dummy variable indicating physical class of a/c; piston/jet/turbo] P/J/T

The above independent variables were also computed in terms of flight operations.

Functional forms used in analyses:

The following functional forms were used for relating dependent and independent 

variables.

Model with dependent variable Functional form 

(Actual distance /GCR distance) i,j Linear

(Actual duration/GCR distance) i,j Linear/second power/exponential



140

Statistical analyses:

Statistical analyses are performed for the following models.

a)  Models with dependent variable “ratio of actual distance and GCR distance of a 

flight” 

Models 5.1. and 5.2: Controller workload is measured in terms of flight activity seconds 

in these models.

Dependent variable (Actual distance /GCR distance) i,j

Independent variable Model 

5.1

Model

5.2

Avg flight secs in 

successive airspace

P P

Arr/Dep/Over/Both P

Comm./GA/Air taxi P/#

Piston/Jet/Turbo #/P

P denotes variable present in the model
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Models 6.1. and 6.2: Controller workload is measured in terms of flight operations in 

these models.

Dependent variable (Actual distance /GCR distance) i,j

Independent variable Model 

6.1

Model 

6.2

Avg flight count in 

successive airspace

P P

Arr/Dep/Over/Both P

Comm./GA/Air taxi P/#

Piston/Jet/Turbo #/P

P denotes variable present in the model
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b)  Models with dependent variable “ratio of actual duration and GCR distance of a 

flight” 

Models 7.1 to 7.6: Controller workload is measured in terms of flight activity seconds in 

these models.

Dependent variable (Actual duration/GCR distance) i,j

Independent variable 7.1 7.2 7.3 7.4 7.5 7.6

Avg flight secs in 

successive airspace

P P P P

Squared avg flight secs 

in successive airspace

P P

Exp avg flight secs in 

successive airspace

P P

Arr/Dep/Over/Both P P P

Comm./GA/Air taxi P/# P/# P/#

Piston/Jet/Turbo #/P #/P #/P

P denotes variable present in the model
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Models 8.1 to 8.6: Controller workload is measured in terms of flight operations in these 

models.

Dependent variable (Actual duration/GCR distance) i,j

Independent variable 8.1 8.2 8.3 8.4 8.5 8.6

Avg flight count in 

successive airspace

P P P P

Squared avg flight 

count in successive 

airspace

P P

Exp avg flight count in 

successive airspace

P P

Arr/Dep/Over/Both P P P

Comm./GA/Air taxi P/# P/# P/#

Piston/Jet/Turbo #/P #/P #/P

P denotes variable present in the model

5.4.3. Analysis of flights traveling between a city pair

In sections 3.2.4 and 3.2.5, it is discussed that traffic in any of the NAS components on the 

flight path could impose excess distances or delays to the subject flight in any of the 

previous NAS components.

An analysis is proposed to relate air traffic activity in any of the NAS components on the 

route of the flight with the excess distances and delays borne by flights in preceding NAS 
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components. The following procedure was used to compute the dependent and 

independent variables.

Let us assume that all flights between a specific city pair traverse the same three centers 

on their route in the same sequence. Time interval (i,j,k) is specified for each flight. For a 

subject flight (i,j,k) denotes entry and exit times of a flight in airspace k. Thus, for a 

subject flight, time interval (i,j,2) denotes its entry and exit times in the second center on 

its flight path. 

The excess distances and delays borne by flights in the first center airspace are related 

with controller workload in the second and third center airspace on the flight path. 

Similarly, excess distances and delays borne by flights in the second center airspace are 

related to controller workload in the third center airspace on the flight path.

For time interval (i,j,1), controller workload is computed in the second and third centers 

on the flight path. Similarly, for time interval (i,j,2) controller workload is computed in 

the third center on the flight path.
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Dependent variable for each flight with interval (i,j,k):

(i,j) denote entry and exit times of flight in center “k” on the flight path.

Dependent variables for interval (i,j,k) Abbreviation

(Actual distance /GCR distance)i,j,1 Excess distance traversed by flight in first 

center on flight path

(Actual distance /GCR distance)i,j,2 Excess distance traversed by flight in 

second center on flight path

(Actual distance /GCR distance)i,j,3 Excess distance traversed by flight in third  

center on flight path

(Actual duration/GCR distance)i,j,1 Delay borne by flight in the first center on 

flight path

(Actual duration/GCR distance)i,j,2 Delay borne by flight in the second center 

on flight path

(Actual duration/GCR distance)i,j,3 Delay borne by flight in the third  center on 

flight path

For time interval (i,j,1), (i.e. the interval when the flight is traversing the first center), the 

controller workload in second and third centers on the flight path is denoted by CW 

(i,j,1,2) and CW (i,j,1,3) respectively. Similarly for interval (i,j,2) , (i.e. the interval when 

the flight is traversing the second center) the controller workload in the third center on 

the flight path is denoted by CW (i,j,2,3).  

Controller workload is measured by the independent variables. Controller workload is 

denoted as “independent variable (i,j,k,l)”. 
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Independent variables: 

Variables for each flight observation with  interval (i,j,k,l) Abbreviation

(Seconds of activity of all type of operations in center “l”) i,j,k,l Flight seconds in center “l”

 (i,j) denote the entry and exit times of flight in airspace “k”.

Independent variables for each flight observation Abbreviation

[(Flight seconds in airspace “1”)i,j/time interval (i,j,k)] Avg flight secs in center “l”

[(Flight seconds in airspace “l”)i,j /time interval (i,j,k)] 2 Squared avg flight secs in 

center “l”

exp[(Flight seconds in airspace “l”)i,j/time interval (i,j,k)] Exp avg flight secs in center “l”

The above independent variables were also computed in terms of flight operations.

Functional forms used in analyses:

The following functional forms were used for relating dependent and independent 

variables.

Model with dependent variable Functional form

(Actual distance /GCR distance) Linear

(Actual duration/GCR distance) Linear/Second power/exponential

Statistical analyses:

Regression analyses were performed for the following models:

a) Models with dependent variable “ratio of actual distance and GCR distance of a 

flight” 
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Models 9.1 and 9.2: Controller workload is measured in terms of flight activity seconds 

in these models.

Model 9.1:

Dependent variable (Actual distance /GCR distance) i,j,1

Independent variable Model 

9.1 

Avg flight secs in 

center “2”

P

Avg flight secs in 

center “3”

P

P denotes variable present in the model

Model 9.2:

Dependent variable (Actual distance /GCR distance) i,j,2

Independent variable Model 

9.2

Avg flight secs in 

center “3”

P

P denotes variable present in the model
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Models 10.1 and 10.2: Controller workload is measured in terms of flight operations in 

these models.

Model 10.1:

Dependent variable (Actual distance /GCR distance) i,j,1

Independent variable Model 

9.1 

Avg flight count in 

center “2”

P

Avg flight count in 

center “3”

P

P denotes variable present in the model

Model 10.2:

Dependent variable (Actual distance /GCR distance) i,j,2

Independent variable Model 

10.1

Avg flight count in 

center “3”

P

P denotes variable present in the model
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b. Models with dependent variable “ratio of actual duration and GCR distance of a 

flight” 

Models 11.1 to 11.6: Controller workload is measured in terms of flight activity seconds.

Models 11.1 to 11.3:

Dependent variable (Actual duration/GCR distance) i,j,1

Independent variable Model

11.1

Model

11.2

Model

11.3

Avg flight secs in 

center “2”

P P

Avg flight secs in 

center “3”

P P 

Squared avg flight secs 

in center “2”

P

Squared avg flight secs 

in center “3”

P

Exp avg flight secs in 

center “2”

P

Exp avg flight secs in 

center “3”

P

P denotes variable present in the model
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Models 11.4 to 11.6:

Dependent variable (Actual duration/GCR distance) i,j,2

Independent variable Model

11.4

Model

11.5

Model

11.6

Avg flight secs in 

center “3”

P P 

Squared avg flight secs 

in center “3”

P

Exp avg flight secs in 

center “3”

P
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Models 12.1 to12.6: Controller workload is measured in terms of flight operations in 

these models.

Models 12.1 to12.3:

Dependent variable (Actual duration/GCR distance) i,j,1

Independent variable Model

12.1

Model

12.2

Model

12.3

Avg flight count in 

center “2”

P P

Avg flight count in 

center “3”

P P 

Squared avg flight 

count in center “2”

P

Squared avg flight 

count in center “3”

P

Exp avg flight count in 

center “2”

P

Exp avg flight count in 

center “3”

P

P denotes variable present in the model
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Models 12.4 to12.6:

Dependent variable (Actual duration/GCR distance) i,j,2

Independent variable Model

12.4

Model

12.5

Model

12.6

Avg flight count in 

center “3”

P P

Squared avg flight 

count in center “2”

P

Exp avg flight count in 

center “2”

P

5.4.4. Performance comparison of R and R & D controller staffing configurations in 

a sector

Facility managers and supervisors use their judgment and consider complexity for 

assigning an additional D controller to a sector. Hence the traffic demand at which a D 

controller is added to a sector could be different for different sectors. The traffic activity 

and corresponding controller workload subjected to the two controller staffing 

configurations (R controller staffing configuration and R and D controller staffing 

configuration) is different. 

In the literature review it is found that controllers could impose delays and excess

distances on flights due to workload. It is estimated whether the air traffic activity 

imposed on the two controller staffing configurations causes either of them to impose 
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delays or excess distances on flights. The performance of the two staffing configurations 

is compared in managing the air traffic activity assigned to them.

The two measures of controller performance developed in section 5.2.1 were used to 

study the performance of each controller staffing configuration. Those two controller 

performance metrics are:

i. “Ratio of actual distance and GCR distance of a flight in a sector” for each flight 

controlled by a specific staffing configuration. 

ii. “Ratio of actual duration and GCR distance of a flight in a sector” for each flight 

controlled by a specific staffing configuration.

Data used for analysis

SISO data (Sign in Sign out data)

A sector can be staffed with the following configurations:

1. R controller staffing configuration

2. R controller and D controller (Hand off controller) staffing configuration

3. R controller, D controller and A controller staffing configuration

The SISO database records the start and end times of the shift of each controller who 

works at a specific position (R, D or A).

The controllers manually enter the start and end times of their work shifts. 

The start and end times of shifts are recorded to the second. The SISO information is 

recorded for all NAS centers.
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The SISO database also records the initials of the controller who enters the data.

Data source

The SISO data were provided by Mr. Matt Dunne, Manager of National Offload Program 

at the ATO-A/IT Office. 

Boundary crossing data for flights

The boundary crossing data from section 5.5 are used in this analysis. Data for four 

sectors (ZDC04, ZJX68, ZNY39 and ZMA20) are used. SISO data are used for the same 

sectors and periods which correspond to the boundary crossing data.

Analyses:

For each of the four sectors, the twenty-four-hour SISO data are matched to the 

corresponding twenty-four-hour boundary crossing data. 1SISO data and boundary 

crossing data for all sectors are recorded in GMT (ZULU) times.

1SISO data for all centers are recorded based on GMT (ZULU) times. Mr. Matt Dunne 

provided this information by email.

The following procedure was performed for each of the four sectors:

1. The periods of the day during which the R or R and D controller staffing configuration 

worked in a sector were determined. These periods were determined using SISO data. 

2. Flights were classified into two bins depending on whether the flight was controlled by 

an R or an “R and D” controller staffing configuration. Flights were sorted into bins 
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based on the “m_time” of the flight. The “m_time of a flight is calculated in the 

following way.

Let “a” and “b” denote the entry and exit times of a flight in a sector. The “m_time” of a 

flight is computed as a + (b-a)/2. The “m_time” is calculated as the midpoint of the 

duration of the flight in the sector’s airspace. 

Flights traversing the sector’s airspace during the 24 hour period are sorted into two bins 

based on “m_time” of the flights. By using “m_time” to classify flights, only those flights 

are considered which are present in the sector for maximum duration during the period 

when the sector was controlled by an R or an R & D staffing configuration. 

3. The average values of the controller performance metrics are computed for each bin. 

The average values in the two bins are compared. Unpaired unequal t tests are used to 

compare the average values.
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Analyses and interpretation of results

5.5. Selection of centers and sectors and details of data used.

5.5.1. Data used for analysis 

Twenty-four-hour ETMS boundary crossing data for the chosen centers and sectors is 

used in the analyses.

Selection of centers 

Five centers were chosen from 21 enroute air traffic control centers. The fraction of 

center operations delayed due to center congestion was used as the criterion for choosing 

centers which are most susceptible to delays caused by enroute congestion.

The fraction of center operations delayed due to center congestion is computed for 21 

centers from the OPSNET database. The values are computed for individual months from 

January to March 2005 and for entire period from January to March 2005.The centers 

with the highest fraction for the considered periods were chosen for analyses. These are: 

1. ZNY (New York NY ARTCC)

2. ZMA (Miami FL ARTCC)

3. ZAB (Albuquerque NM ARTCC)

4. ZJX (Jacksonville FL ARTCC)

5. ZDC (Leesburg VA ARTCC (DC))
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Selection of dates for five chosen centers

A specific date was chosen for each of the 5 centers. The date was chosen between 

01/01/2005 and 04/22/2005. As discussed in section 3.2.5 the data for centers and sectors 

were chosen based on the following considerations:

1. The center handled maximum operations on the chosen date

2. Flights in the considered centers were not delayed due to terminal congestion, 

equipment failures and weather on the chosen date. Data on traffic operations and delays 

(greater than 15 minute period delays) were obtained from OPSNET database. 

Data for centers and dates listed in table 5.1 were chosen for analyses

Table 5.1

Center Date Operations handled 

during 24 hour period

ZNY 3/11/2005 9418

ZMA 1/3/2005 8727

ZAB 3/24/2005 5879 

ZJX 2/7/2005 9117

ZDC 3/29/2005 9682

Selection of sectors and dates

One sector was chosen from each of the four centers (ZDC, ZJX, ZNY and ZMA).The 

sector which handled maximum operations among all sectors in a center was chosen. 

Data for the sector were taken for the same date as its center.

Data for sectors and dates listed in table 5.2 were chosen for analyses
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Table 5.2

Sector Date

Sector ZDC04 03/29/2005

Sector ZJX 68 2/7/2005

Sector ZNY 39 3/11/2005

Sector ZMA 20 1/3/2005

5.5.2. Additional data used for analysis:

The analysis for following sectors and centers was conducted with data for the following 

dates. The centers and sectors did not handle maximum traffic on the dates listed below. 

However flights traversing the centers and sectors on the chosen dates were not delayed 

due to terminal congestion, congestion in other enroute centers, equipment failures and 

weather. 

Data for centers and dates listed in table 5.3 were used for analyses

Table 5.3

Center Date

US Dom ZDC 04/15/2003

US Dom ZLA 04/15/2003

US Dom ZNY 04/15/2003
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Data for sectors and dates listed in table 5.4 were used for analyses

Table 5.4

Sectors of center US 

Dom ZDC

Date

Sector ZDC03 01/15/2005

Sector ZDC 04 01/15/2005

Sector ZDCDI 01/15/2005

5.5.3. ETMS data used in the analysis:

Twenty-four-hour ETMS boundary crossing data were obtained for the chosen centers 

and sectors.

Corrections in ETMS data

There were errors in data which were identified based on specifications in ETMS data 

dictionary. Flight observations which had the following errors were eliminated from the 

data.

1. Those with entry and exit speeds in airspace (center or sector) greater than 15 nmi/min

2. Those with duration of zero seconds in a sector or center. 

On average, for each center, 5% of the 24 hour data (individual flight observations) had 

errors.

Drawbacks of the ETMS data: 

ETMS database records information only for those flights which file flight plans with the 

ATC system. Military flights are excluded. 



160

5.6. Data processing tools and statistical softwares used for performing analyses

The following data processing tools and statistical software are used in the analyses.

Calculation of dependent and independent variables for the models

The following procedure was adopted for computing dependent and independent 

variables for each flight observation of each dataset. Macros were developed in Microsoft 

Excel to compute the independent variables from 24 hour ETMS data. On average the 

macro took 6 hours of processing time to compute independent variables for 5000 flight 

observations. All the data processing and formatting was performed using Microsoft 

Excel. 

Statistical softwares used for analysis

Intercooled Stata 7.0 was used as a statistical analysis tool 

The formatted data comprising dependent and independent variables were entered as 

input in the Stata program. 

5.7. Analyses and results

Relations are sought between controller performance and controller workload for the 

same airspace (center or sector) in model 5.4.1.

Flights could travel excess distances or bear delays in airspace because of congestion in 

any of the successive airspace on the route of the flight. Hence there is a need to analyze 

models developed in sections 5.4.2 and 5.4.3.
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In section 5.7.2, relations are estimated between excess distances and delays to flights in 

the subject airspace, and congestion in successive airspace.

In section 5.7.3, relations are estimated between excess distances and delays borne by 

flights in the current airspace, and congestion in any of the successive centers or sectors 

on the flight path.

The explanatory power of the models is determined by holding other factors constant.

5.7.1. Estimating relation between controller workload and controller performance 

for the same airspace.

a. Analysis for centers

Models 1.1 to 1.4, 2.1 to 2.4, 3.1 to 3.6 and 4.1 to 4.6 were analyzed for the following 

centers to estimate relations between controller workload and controller performance in 

the center airspace.

Center Date

US Dom ZNY 3/11/2005

US Dom ZMA 1/3/2005

US Dom ZAB 3/24/2005

US Dom ZDC 4/15/2003

US Dom ZLA 4/15/2003

US Dom ZNY 4/15/2003
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Statistical Analysis: 

Multivariate regression analyses were performed for the models using data for above 

centers. None of the models showed statistically significant results even at 10% level of 

significance.

Heteroscedasticity:

Results of regression analyses were checked for heteroscedasticity by using “hettest” 

command in Stata. Multivariate regression analyses were also conducted using robust 

standard errors. Robust standard errors correct the standard errors for heteroscedasticity.

The presence of heteroscedasticity was not detected in any of the models.

Multicollinearity:

Regression models were developed considering only the independent variables to see if 

there is any correlation among the independent variables. None of the regression models 

showed good explanatory power. These regression models showed that the independent 

variables were not statistically correlated with each other. Considering the effect captured 

by each independent variable, it may be concluded that the independent variables are not 

correlated with each other.

Scatter plots

Statistical analysis showed that the models had no explanatory power. Scatter plots were 

developed considering following dependent and independent variables to understand the 

relation between the variables. 



163

Dependent variables: 

i. Ratio of actual distance and GCR distance of flight

ii. Ratio of actual duration and GCR distance of flight

Independent variables:

1. Avg flight secs

2. Avg flight count 

Results for center USDom-ZDC (4/15/2003)

Results of models 1.1 to 1.4 and 2.1 to 2.4:

Figures 5.1 and 5.2 show relations between excess distance traveled by a flight in center 

and the following flight-specific workload metrics for the same center:

1. Avg flight secs

2. Avg flight count 
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Figure 5.1 Ratio of actual distance and GCR distance of flight vs. avg flight secs for 

center US Dom ZDC
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Center USDom-ZDC
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Figure 5.2 Ratio of actual distance and GCR distance of flight vs. avg flight count for 

center US Dom ZDC

Figures 5.3 and 5.4 show relations between the same variables shown in figures 5.1 and 

5.2. In this case the relations are shown for selected operations which are selected in the 

following way. 

Operations with the same aircraft type, physical class, user class and type of operation 

(arrival, departure, overflight or both) are considered. For center US Dom ZDC, 

operations belonging to following categories are shown in figures 5.3 and 5.4

Aircraft E145

Physical class Jet

User class Air taxi

Operation Overflight  



165

Center USDom-ZDC, Aircraft - E145, Physical class - jet, User class - 
airtaxi  and Operation -overflight 
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Figure 5.3 Ratio of actual distance and GCR distance of flight vs. avg flight secs (for 

selected operations of center US Dom ZDC)
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Figure 5.4 Ratio of actual distance and GCR distance of flight vs. avg flight count (for 

selected operations of center US Dom ZDC)
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Results of models 3.1 to 3.6 and 4.1 to 4.6:

Figures 5.5 and 5.6 show relations between delay borne by a flight in center and the 

following flight-specific workload metrics for the same center:

1. Flight-specific workload (in seconds) 

2. Flight-specific workload (in operations) 
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Figure 5.5 Ratio of actual duration and GCR distance of flight vs. avg flight secs for 

center US Dom ZDC
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Center USDom-ZDC
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Figure 5.6 Ratio of actual duration and GCR distance of flight vs. avg flight count for 

center US Dom ZDC

Figures 5.7 and 5.8 show relations between the same variables shown in figures 5.5 and 

5.6. In this case the relations are shown for selected operations which are selected in the 

following way. 

Operations with the same aircraft type, physical class, user class and type of operation 

(arrival, departure, overflight or both) are considered. For center US Dom ZDC, 

operations belonging to following categories are shown in figures 5.7 and 5.8

Aircraft E145

Physical class Jet

User class Air taxi

Operation Overflight  
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Center USDom-ZDC, Aircraft - E145, Physical class - jet, User class - 
airtaxi and Operation -  overflight

0

5

10

15

20

25

0 20 40 60 80 100 120

Avg flight secs

R
at

io
 o

f a
ct

u
al

 
d

u
ra

tio
n

 a
n

d
 G

C
R

 
d

is
ta

n
ce

 o
f f

lig
h

t

Figure 5.7 Ratio of actual duration and GCR distance of flight vs. avg flight secs (for 

selected operations of center US Dom ZDC)

Center USDom-ZDC, Aircraft - E145, Physical class - jet, User class - 
airtaxi and Operation - overflight
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Figure 5.8 Ratio of actual duration and GCR distance of flight vs. avg flight count (for 

selected operations of center US Dom ZDC)

The literature review revealed that “arrival” and ‘both” types of operation may have 

restrictions imposed on them due to terminal congestion at arrival airports. This could 
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bias the dependent variables. Scatter plots were also developed by considering only 

overflights or departure flights. However based on the trend seen in scatter plots, neither 

of the dependent variables is affected by the considered independent variables. The plot is 

almost flat in all cases. 

b. Analysis for sectors

Total excess distance traveled and total delay borne by a flight in a center is the sum of 

excess distances in the individual sectors. Thus, varying congestion levels in individual 

sectors could affect the total excess distance through the center. Models 1.1 to 1.4, 2.1 to 

2.4, 3.1 to 3.6 and 4.1 to 4.6 developed in section 5.4.1 were analyzed for the following 

sectors.

Sector  Date

Sector ZDC03 01/15/2005

Sector ZDC 04 01/15/2005

Sector ZDCDI 01/15/2005

Sector ZNY 39 3/11/2005

Sector ZMA 20 1/3/2005

Sector ZDC04 03/29/2005

Statistical Analysis: 

Multivariate regression analyses were performed for models 1.1 and 1.2 considering the 

data for the above sectors. None of the models showed statistically significant results 
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even at the 10% significance level. Statistical tests did not find heteroscedasticity or 

multicollinearity in the models developed for the above sectors.

Scatter plots

Scatter plots were developed considering the same dependent and independent variables 

which were considered for centers. Scatter plots were developed by considering only 

overflights and departure flights. Scatter plots showed no relation between the following 

dependent and independent variables.

Dependent variables: 

i. Ratio of actual distance and GCR distance of flight

ii. Ratio of actual duration and GCR distance of flight

Independent variables:

1. Avg flight secs

2. Avg flight count 

Results for sector ZDCDI (01/15/2005)

Results of models 1.1 to 1.4 and 2.1 to 2.4:

Figures 5.9 and 5.10 show relations between excess distance traveled by a flight in sector 

and the following flight-specific workload metrics for the same sector:

1. Avg flight secs

2. Avg flight count 
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Figure 5.9 Ratio of actual distance and GCR distance of flight vs. avg flight secs for 

sector   ZDCDI 
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Figure 5.10 Ratio of actual distance and GCR distance of flight vs. avg flight count for 

sector  ZDCDI  
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Figures 5.11 and 5.12 show relations between the same variables shown in figures 5.9 

and 5.10. In this case the relations are shown for selected operations which are selected in 

the following way. 

Operations with the same aircraft type, physical class, user class and type of operation 

(arrival, departure, overflight or both) are considered. For sector ZDCDI, operations 

belonging to following categories are shown in figures 5.11 and 5.12.

Aircraft CRJ2

Physical class Jet

User class Commercial

Operation Arrival operation

Sector ZDCDI, Aircraft - CRJ2, Physical class - jet, User class - 
commercial and Operation - arrival
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Figure 5.11 Ratio of actual distance and GCR distance of flight vs. avg flight secs (for 

selected operations of sector ZDCDI)
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 Sector ZCDI, Aircraft - CRJ2, Physical class - jet, User  class - 
commercial and operation - arrival
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Figure 5.12 Ratio of actual distance and GCR distance of flight vs. avg flight count (for 

selected operations of sector ZDCDI)

Results of models 3.1 to 3.6 and 4.1 to 4.6:

Figures 5.13 and 5.14 show relations between delay borne by a flight in sector and the 

following flight-specific workload metrics for the same sector:

1. Flight-specific workload (in seconds) 

2. Flight-specific workload (in operations) 
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Sector ZDCDI
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Figure 5.13 Ratio of actual duration and GCR distance of flight vs. avg flight secs for 

sector ZDCDI  
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Figure 5.14 Ratio of actual duration and GCR distance of flight vs. avg flight count for 

sector ZDCDI  
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Figures 5.15 and 5.16 show relations between the same variables shown in figures 5.13 

and 5.14. In this case the relations are shown for selected operations which are selected in 

the following way. 

Operations with the same aircraft type, physical class, user class and type of operation 

(arrival, departure, overflight or both) are considered. For sector ZDCDI, operations 

belonging to following categories are shown in figures 5.15 and 5.16.

Aircraft CRJ2

Physical class Jet

User class Commercial

Operation Arrival operation

Sector ZDCDI, Aircraft - CRJ2, Physical class - Jet, User class -
commercial and Operation - arrival
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Figure 5.15 Ratio of actual duration and GCR distance of flight vs. avg flight secs (for 

selected operations of sector US Dom ZDCDI)  
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Sector ZDCDI, Aircraft - CRJ2, Physical class - Jet, User class - 
commercial and operation - arrival
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Figure 5.16 Ratio of actual duration and GCR distance of flight vs. avg flight count (for 

selected operations of sector US Dom ZDCDI)  

c. t tests to estimate difference in  values of controller performance metrics under 

different levels of traffic activity in the airspace.

For the models estimated in section 5.7.1, scatter plots between dependent variable and 

independent variables were flat and showed no relation. Two tailed t tests were conducted 

for some of the models to determine if the value of dependent variables “ratio of actual 

distance and GCR distance of flight” and “ratio of actual duration and GCR distance of 

flight” was equal under different levels of traffic activity.

For the considered model, the data were divided into two sets by considering the median 

of data for variable “avg flight secs” or “avg flight count” as the break point between two 

data sets. Two tailed unequal, unpaired t tests were conducted to determine if the average 

value of dependent variable was equal in both the data sets.
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Two tailed t tests showed that there was no statistical difference in the values of excess 

distances traveled and delays borne by flights under different levels of traffic activity. 

Most of the models which were analyzed for t tests gave same results for t tests. Results 

in the models were statistically significant at 5 % significance level.

5.7.2. Effect of congestion in successive airspace on the path of the flight

In the center and sector analysis of model 5.4.1 in section 5.7.1, flights were not delayed 

in any airspace (center/sector) due to congestion in that airspace.

Models 5.1, 5.2; 6.1, 6.2; 7.1to 7.6 and 8.1 to 8.6 were analyzed,  to estimate relation 

between excess distances traveled and delays borne by flights in an airspace and air 

traffic activity in the successive airspace on the path of the flight. Data for the following 

centers and sectors were used in the analyses.

Flights which traveled consecutively through the US Dom ZDC and US Dom ZBW 

centers were considered in the data set for center analysis. 

Center Successive center Date

US Dom ZDC US Dom ZBW 04/15/2003

Similarly flights which traveled consecutively through the ZDC004 and ZDC 003 sectors 

were considered in the data set for sector analysis.

Sector Successive sector Date

ZDC04 ZDC03 01/15/2005
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Statistical Analysis: 

The data for the above centers and sectors were used to perform multivariate regression 

analyses for models in section 5.4.2. None of the models showed statistically significant 

results even at 10% level of significance. Statistical tests did not show the presence of 

heteroscedasticity or multicollinearity in the models.

Scatter plots

Scatter plots were developed between the following dependent and independent 

variables.

Dependent variables: 

i. Ratio of actual distance and GCR distance of flight in airspace

ii. Ratio of actual duration and GCR distance of flight in airspace 

Independent variables:

1. Avg flight secs in successive airspace (center/sector)

2. Avg flight count in successive airspace (center/sector)

a. Results for centers

Results of models 5.1, 5.2, 6.1 and 6.2

Figures 5.17 and 5.18 show relations between excess distance traveled by a flight in 

center US Dom ZDC and the following flight-specific workload metrics for center US 

Dom ZBW

1. Avg flight secs

2. Avg flight count 
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In this case relations are shown for selected operations which are selected in the 

following way. 

Operations with the same aircraft type, physical class, user class and type of operation 

(arrival, departure, overflight or both) are considered. Operations belonging to following 

categories are shown in figures 5.17 and 5.18

Aircraft E145

Physical class Jet

User class Air taxi

Operation Overflight

Aircraft - E145, Physical class - jet, User class - airtaxi  and Operation -
overflight
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Figure 5.17 Ratio of actual distance and GCR distance of flight in center US Dom ZDC 

vs. avg flight secs for center US Dom ZBW (for selected operations)
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Aircraft - E145, Physical class - jet, User class - airtaxi  and Operation -
overflight
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Figure 5.18 Ratio of actual distance and GCR distance of flight in center US Dom ZDC 

vs. avg flight count for center US Dom ZBW (for selected operations)

Results of models 7.1 to 7.6 and 8.1 to 8.6

Figures 5.19 and 5.20 show relations between delay borne by a flight in center US Dom 

ZDC and the following flight-specific workload metrics for center US Dom ZBW.

1. Avg flight secs

2. Avg flight count 

In this case relations are shown for selected operations which are selected in the 

following way. 

Operations with the same aircraft type, physical class, user class and type of operation 

(arrival, departure, overflight or both) are considered. Operations belonging to following 

categories are shown in figures 5.19 and 5.20.
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Aircraft E145

Physical class Jet

User class Air taxi

Operation Overflight

Aircraft - E145, Physical class - jet, User class - airtaxi and Operation - 
overflight
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Figure 5.19 Ratio of actual duration and GCR distance of flight in center US Dom ZDC 

vs. avg flight secs for center US Dom ZBW (for selected operations)
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Aircraft - E145, Physical class - jet, User class - airtaxi and operation - 
overflight
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Figure 5.20 Ratio of actual duration and GCR distance of flight in center US Dom ZDC 

vs. avg flight count for center US Dom ZBW (for selected operations) 

b. Results for sectors

Results of models 5.1, 5.2, 6.1 and 6.2

Figures 5.21 and 5.22 show relations between excess distance traveled by a flight in 

sector ZDC04 and the following flight-specific workload metrics for sector ZDC03

1. Avg flight secs

2. Avg flight count 
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Figure 5.21 Ratio of actual distance and GCR distance of flight in sector ZDC04 vs. avg 

flight secs for sector ZDC03
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Figure 5.22 Ratio of actual distance and GCR distance of flight in sector ZDC04 vs. avg 

flight count for sector ZDC03
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Figures 5.23 and 5.24 show relations between the same variables shown in figures 5.39 

and 5.40. In this case the relations are shown for selected operations which are selected in 

the following way. 

Operations with the same aircraft type, physical class, user class and type of operation 

(arrival, departure, overflight or both) are considered .Operations belonging to following 

categories are shown in figures 5.23 and 5.24
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Figure 5.23 Ratio of actual duration and GCR distance of flight in sector ZDC04 vs. avg 

flight secs for sector ZDC03
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Figure 5.24 Ratio of actual duration and GCR distance of flight in sector ZDC04 vs. avg 

flight count for sector ZDC03
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Results of models 7.1 to 7.6 and 8.1 to 8.6

Figures 5.25 and 5.26 show relations between delay borne by a flight in sector ZDC04 

and the following flight-specific workload metrics for sector ZDC03

1. Avg flight secs, and 2. Avg flight count 

Aircraft - B737, Physical class - jet, User class - commercial  and  
Operation - overflight 

0

0.2
0.4
0.6
0.8

1
1.2
1.4

0 2 4 6 8 10 12 14 16

Avg flight secs in successive sector

R
at

io
 o

f a
ct

u
al

 
d

is
ta

n
ce

 a
n

d
 G

C
R

 
d

is
ta

n
ce

 o
f  

fli
g

h
t

Figure 5.25 Ratio of actual distance and GCR distance of flight in sector ZDC04 vs. avg 

flight secs for sector ZDC03 (for selected operations)
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Figure 5.26 Ratio of actual distance and GCR distance of flight in sector ZDC04 vs. avg 

flight count for sector ZDC03 (for selected operations)
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Figures 5.27 and 5.28 show relations between the same variables shown in figures 5.25 

and 5.26. In this case the relations are shown for selected operations which are selected in 

the following way. 

Operations with the same aircraft type, physical class, user class and type of operation 

(arrival, departure, overflight or both) are considered .Operations belonging to following 

categories are shown in figures 5.27 and 5.28.
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Figure 5.27 Ratio of actual duration and GCR distance of flight in sector ZDC04 vs. avg 

flight secs for sector ZDC03 (for selected operations)
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Aircraft - B737, Physical class - jet, User class - commercial and  
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Figure 5.28 Ratio of actual duration and GCR distance of flight in sector ZDC04 vs. avg 

flight count for sector ZDC03 (for selected operations)

5.7.3. Analysis of flights traveling between a city pair:

Analysis in section 5.7.2 showed that there was no relation between excess distances 

traveled and delays borne by flights in an airspace and air traffic activity in the successive 

airspace on the path of the flight.  

It is possible that excess distance delays and delays borne by flights in a center could be 

caused by congestion in any of the successive centers on the path of the flight. Using 

models 5.1, 5.2, 6.1, 6.2, 7.1 to 7.6 and 8.1 to 8.6, relations are estimated between delays 

borne by flights and excess distances traveled by flights in any of the centers on the path 

of the flight and congestion in successive centers on the route of the flight. 

Analyses were conducted for all flights traveling from Dallas/Fort Worth International 

Airport (DFW) to Chicago O'Hare International Airport (ORD) on 04/15/2003.
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Statistical analysis of model 3.1 can be performed only for those flights, which fly 

through the same centers along their flight path, and all flights fly the centers or sectors in 

the same sequence.

The data considered for flights traveling from DFW to ORD airport showed that 65 

flights flew from DFW to ORD on 04/15/2003. However only 20 flights flew through 

three common centers in the same sequence. The 20 flights chosen for the analysis flew 

centers US Dom-ZFW, US Dom-ZKC and US Dom-ZAU in the same sequence.

Statistical Analysis: 

Multivariate regression analyses were performed for models 3.1 and 3.2 considering data 

for 20 flights. None of the models showed statistically significant results even at 10% 

level of significance. Statistical tests did not show the presence of heteroscedasticity or 

multicollinearity in the models.

In table 5.5, numbers are assigned to three centers, based on sequence in which 20 flights 

traversed three centers while traveling from DFW to ORD on 04/15/2003.

Table 5.5

Center Number Center Name 

Center 1 US Dom ZFW

Center 2 US Dom ZKC 

Center 3 US Dom ZAU
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Scatter plots

Scatter plots were developed considering dependent variables and the flight-specific 

workload metrics in the models.  Scatter plots showed no relation between dependent 

variables and independent variables.

Results of model 9.1:

Figures 5.29 and 5.30 show relations between excess distance traveled by a flight in 

center 1 and flight-specific workload (in seconds) in centers 2 and 3 respectively.
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Figure 5.29 Ratio of actual distance and GCR distance of flight in center 1 vs. flight-

specific workload (in seconds) in center 2
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Figure 5.30 Ratio of actual distance and GCR distance of flight in center 1 vs. flight-

specific workload (in seconds) in center 3

Results of model 10.1:

Figures 5.31 and 5.32 show relations between excess distance traveled by a flight in 

center 1 and flight-specific workload (in operations) in centers 2 and 3 respectively.
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Figure 5.31 Ratio of actual distance and GCR distance of flight in center 1 vs. flight-

specific workload (in operations) in center 2 
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Figure 5.32 Ratio of actual distance and GCR distance of flight in center 1 vs. flight-

specific workload (in operations) in center 3

Results of model 9.2: 

Figure 5.33 shows relations between excess distance traveled by a flight in center 2 and 

flight-specific workload (in seconds) in center 3.
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Figure 5.33 Ratio of actual distance and GCR distance of flight in center 2 vs. flight-

specific workload (in seconds) in center 3
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Results of model 10.2:

Figure 5.34 show relations between excess distance traveled by a flight in center 2 and 

flight-specific workload (in operations) in center 3.
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Figure 5.34 Ratio of actual distance and GCR distance of flight in center 2 vs. flight-

specific workload (in operations) in center 3

Results of models 11.1 to 11.3:

Figures 5.35 and 5.36 show relations between delay borne  by a flight in center 1 and 

flight-specific workload (in seconds) in centers 2 and 3 respectively.
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Figure 5.35 Ratio of actual duration and GCR distance of flight in center 1 vs. flight-

specific workload (in seconds) in center 2
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Figure 5.36 Ratio of actual duration and GCR distance of flight in center 1 vs. flight-

specific workload (in seconds) in center 3
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Results of models 12.1 to 12.3:

Figures 5.37 and 5.38 show relations between delay borne  by a flight in center 1 and 

flight-specific workload (in operations) in centers 2 and 3 respectively.
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Figure 5.37 Ratio of actual duration and GCR distance of flight in center 1 vs. flight-

specific workload (in operations) in center 2
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Figure 5.38 Ratio of actual duration and GCR distance of flight in center 1 vs. flight-

specific workload (in operations) in center 3
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Results of models 11.4 to 11.6: 

Figure 5.39 shows relations between delay borne by flight in center 2 and flight-specific 

workload (in seconds) in center 3.
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Figure 5.39 Ratio of actual duration and GCR distance of flight in center 2 vs. flight-

specific workload (in seconds) in center 3

Results of models 12.4 to 12.6: 

Figure 5.40 shows relations between delay borne by a flight in center 2 and flight-specific 

workload (in operations) in center 3.
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Figure 5.40 Ratio of actual duration and GCR distance of flight in center 2 vs. flight-

specific workload (in operations) in center 3

These analyses cannot be performed for sectors, since detailed ETMS data are not 

recorded for sectors. 

Result of models estimated in section 5.7

Common result for models 5.4.1 and 5.4.2:

The following common result was seen for models 5.4.1 and 5.4.2

In regression models with dependent variable “ratio of actual duration and GCR distance 

of flight”, dummy variables representing type of operations (arrival/departure/overflight 

and both) were statistically significant in some models. This could be because of the 

different speeds at which arrival, departure and overflight operations travel in the 

airspace. 
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Statistical relation was not seen between entry and exit speed of aircraft in the centers and 

the following variables:

i. Dummy variables representing type of operation (arrival/departure/overflight and both 

operation). 

ii. Dummy variable representing aircraft types.

It is possible that different types of operations have restrictions imposed on them because 

of terminal and airport congestion at arrival airports or congestion in the upstream 

enroute centers on the route of the flights.

5.7.4. Comparing the performance of R controller staffing configuration with R & D 

controller staffing configuration in a sector.

In this analysis four sectors and days were chosen based on considerations discussed in 

sections 3.2.4 and 3.2.5. The boundary crossing data for four sectors used in section 5.7 

were used in this analysis. SISO data for the same sectors and periods were used.

Analyses were performed for the four sectors and periods listed in table 5.6 below:
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Table 5.6

Sectors of center US 

Dom ZDC

Date

Sector ZDC04 03/29/2005

Sector ZJX 68 2/7/2005

Sector ZNY 39 3/11/2005

Sector ZMA 20 1/3/2005

For the four sectors, twenty-four-hour SISO data were matched to the corresponding 

twenty-four-hour boundary crossing data. 

An examination of the SISO data for four centers showed that the R controller staffing 

configuration and R and D controller staffing configuration were the two staffing 

configurations staffed in sectors of those centers.

Flights were classified into the two bins depending on whether the flight was controlled 

by an R controller staffing configuration, or an “R and D” controller staffing 

configuration. Flights were sorted into bins based on the “m_time” of the flight. The 

calculation of “m_time” has been explained in section 5.4.4.

The average values of the controller performance metrics are computed for each bin. 

Average values in the two bins were compared using unpaired unequal t tests. The two 

measures of controller performance listed below were used to study the performance of 

each controller staffing configuration. 
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The two controller performance metrics along with their abbreviations used to perform 

statistical analyses are listed in table 5.7.

Table 5.7

Controller performance metric Abbreviation

R controller 

staffing 

configuration

R and D controller 

staffing 

configuration

Ratio of actual distance and GCR distance 

for each flight controlled by a staffing 

configuration.

rdist rddist

Ratio of actual duration and GCR distance 

for each flight controlled by a staffing 

configuration.

rdelay rddelay

Results:

The performance of the two staffing configurations in a sector was compared in terms of 

managing the air traffic activity assigned to each staffing configuration.

In section 3.2.4 it has been discussed that excess distances traveled by flights in a sector 

and delays borne by flights in a sector could be due to a variety of reasons other than 

controller workload caused by air traffic. The care to be taken while choosing the sectors 

and periods for the sector data has been discussed in section 3.2.5. Based on those 

considerations, sector data were chosen for four sectors used in this analysis
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It is assumed that flights in the four chosen sectors traveled excess distances and incurred 

delays only because of workload on controllers staffed in those sectors. Based on this 

assumption results have been discussed.

The results of two tailed t tests for the two sectors are shown in tables 5.8 and 5.9. 

Results for sector ZDC04 are shown in table 5.8

. ttest  rddist= rdist, unpaired unequal

Two-sample t test with unequal variances

------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
rddist   |     351    1.011593    .0029405      .05509    1.005809    1.017376
 rdist   |     844    1.038807    .0314269    .9130055    .9771224    1.100491
---------+--------------------------------------------------------------------
combined |    1195    1.030813    .0222119    .7678381    .9872345    1.074392
---------+--------------------------------------------------------------------
    diff |            -.027214    .0315642               -.0891661    .0347382
------------------------------------------------------------------------------
Satterthwaite's degrees of freedom:  857.666

                Ho: mean(rddist) - mean(rdist) = diff = 0

     Ha: diff < 0               Ha: diff ~= 0              Ha: diff > 0
       t =  -0.8622                t =  -0.8622              t =  -0.8622
   P < t =   0.1944          P > |t| =   0.3888          P > t =   0.8056

. ttest  rddelay= rdelay, unpaired unequal

Two-sample t test with unequal variances

------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
rddelay  |     351    8.513875    .0682927    1.279463    8.379559     8.64819
rdelay   |     844    8.916538    .2660606    7.729506    8.394319    9.438757
---------+--------------------------------------------------------------------
combined |    1195    8.798266    .1890197    6.534178    8.427419    9.169114
---------+--------------------------------------------------------------------
    diff |           -.4026637    .2746855               -.9417256    .1363983
------------------------------------------------------------------------------
Satterthwaite's degrees of freedom:  947.832

        Ho: mean(rddelay) - mean(rdelay) = diff = 0

     Ha: diff < 0               Ha: diff ~= 0              Ha: diff > 0
       t =  -1.4659                t =  -1.4659              t =  -1.4659
   P < t =   0.0715          P > |t| =   0.1430          P > t =   0.9285

Table 5.8 Results of two tailed t tests for sector ZDC04 
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Results for sector ZJX 68 are shown in table 5.9

. ttest  rddelay= rdelay, unpaired unequal

Two-sample t test with unequal variances

------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
rddelay  |     720     9.23086    .2332915    6.259869    8.772846    9.688874
rdelay   |     335    9.054794    .1138595    2.083971    8.830822    9.278766
---------+--------------------------------------------------------------------
combined |    1055    9.174953    .1632437    5.302279    8.854633    9.495272
---------+--------------------------------------------------------------------
    diff |            .1760657    .2595938               -.3333564    .6854878
------------------------------------------------------------------------------
Satterthwaite's degrees of freedom:  982.341

            Ho: mean(rddelay) - mean(rdelay) = diff = 0

     Ha: diff < 0               Ha: diff ~= 0              Ha: diff > 0
       t =   0.6782                t =   0.6782              t =   0.6782
   P < t =   0.7511          P > |t| =   0.4978          P > t =   0.2489

. ttest  rddist= rdist, unpaired unequal

Two-sample t test with unequal variances

------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
rddist   |     720     1.00443    .0006322    .0169636    1.003189    1.005671
rdist    |     335    1.005208    .0006607    .0120937    1.003908    1.006508
---------+--------------------------------------------------------------------
combined |    1055    1.004677    .0004797    .0155814    1.003736    1.005618
---------+--------------------------------------------------------------------
    diff |       -.0007781    .0009145               -.0025729    .0010166
------------------------------------------------------------------------------
Satterthwaite's degrees of freedom:  882.042

        Ho: mean(rddist) - mean(rdist) = diff = 0

     Ha: diff < 0               Ha: diff ~= 0              Ha: diff > 0
       t =  -0.8509                t =  -0.8509              t =  -0.8509
   P < t =   0.1975          P > |t| =   0.3950          P > t =   0.8025

Table 5.9 Results of two tailed t tests for sector ZJX 68 

Results of t tests showed that the average values of controller performance metrics for 

both the controller staffing configurations (bins) were equal for sector ZDC04 and sector 

ZJX 68. 
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The performance of the two different controller staffing configurations was equal in 

sectors ZDC04 and ZJX 68.

Results for sectors ZNY39 and ZMA20:

Results for sector ZNY39:

Table 5.10 shows result of two tailed t tests for sector ZNY39.  For sector ZNY39, the 

controller performance metric “rddelay” was greater than “rdelay”. 
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. ttest  rdelay=  rddelay, unpaired unequal

Two-sample t test with unequal variances

------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
rdelay   |     803    9.940184    .0717295    2.032617    9.799384    10.08098
rddelay  |     304    10.22881    .1244418    2.169718    9.983927    10.47369
---------+--------------------------------------------------------------------
combined |    1107    10.01944     .062341    2.074186    9.897124    10.14176
---------+--------------------------------------------------------------------
    diff |         -.2886233    .1436346               -.5708034   -.0064432
------------------------------------------------------------------------------
Satterthwaite's degrees of freedom:  516.259

            Ho: mean(rdelay) - mean(rddelay) = diff = 0

     Ha: diff < 0               Ha: diff ~= 0              Ha: diff > 0
       t =  -2.0094                t =  -2.0094              t =  -2.0094
   P < t =   0.0225          P > |t| =   0.0450          P > t =   0.9775

. ttest  rdist= rddist, unpaired unequal

Two-sample t test with unequal variances

------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
rdist    |     803    1.014778     .001098    .0311139    1.012622    1.016933
rddist   |     304    1.017654    .0017074    .0297703    1.014295    1.021014
---------+--------------------------------------------------------------------
combined |    1107    1.015568    .0009246    .0307643    1.013753    1.017382
---------+--------------------------------------------------------------------
    diff |           -.0028768      .00203               -.0068641    .0011104
------------------------------------------------------------------------------
Satterthwaite's degrees of freedom:   568.67

        Ho: mean(rdist) - mean(rddist) = diff = 0

     Ha: diff < 0               Ha: diff ~= 0              Ha: diff > 0
       t =  -1.4172                t =  -1.4172              t =  -1.4172
   P < t =   0.0785          P > |t| =   0.1570          P > t =   0.9215

Table 5.10 Results of two tailed t tests for sector ZNY39 

The t test results for sector ZNY39 were statistically significant at 5% level of 

significance.

This means that the R and D controller staffing configuration imposed higher delays on 

flights compared to R controller staffing configuration.  
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Sector ZMA20:

Table 5.11 shows result of two tailed t tests for sector ZMA 20.For sector ZMA20, the 

controller performance metric “rdist” was greater than ‘rddist”. The controller 

performance metric “rdelay” was greater than “rddelay”. 

. ttest  rdist=rddist, unpaired unequal

Two-sample t test with unequal variances

------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
rdist    |      96    1.145994     .043897    .4301007    1.058848    1.233141
rddist   |     874    1.025223    .0027088    .0800803    1.019906    1.030539
---------+--------------------------------------------------------------------
combined |     970    1.037175    .0050986    .1587938     1.02717    1.047181
---------+--------------------------------------------------------------------
    diff |            .1207717    .0439805                 .033468    .2080754
------------------------------------------------------------------------------
Satterthwaite's degrees of freedom:  95.7247

        Ho: mean(rdist) - mean(rddist) = diff = 0

     Ha: diff < 0               Ha: diff ~= 0              Ha: diff > 0
       t =   2.7460                t =   2.7460              t =   2.7460
   P < t =   0.9964          P > |t| =   0.0072          P > t =   0.0036

. ttest  rdelay= rddelay, unpaired unequal

Two-sample t test with unequal variances

------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
rdelay   |      96     13.2395    .6261178    6.134677     11.9965     14.4825
rddelay  |     874    11.36218    .1450935    4.289469    11.07741    11.64696
---------+--------------------------------------------------------------------
combined |     970    11.54798    .1456621     4.53662    11.26213    11.83383
---------+--------------------------------------------------------------------
    diff |            1.877318    .6427096                .6030057    3.151629
------------------------------------------------------------------------------
Satterthwaite's degrees of freedom:  105.444

        Ho: mean(rdelay) - mean(rddelay) = diff = 0

     Ha: diff < 0               Ha: diff ~= 0              Ha: diff > 0
       t =   2.9209                t =   2.9209              t =   2.9209
   P < t =   0.9979          P > |t| =   0.0043          P > t =   0.0021

Table 5.11 Results of two tailed t tests for sector ZMA 20 

The t test results were statistically significant at 5% level of significance.
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The above results show that the R controller staffing configuration imposed higher delays 

and distance delays on flights compared to R and D controller staffing configurations.

In sector ZNY39, the R and D controller staffing configuration performed poorly 

compared to R controller staffing configuration for one controller performance metric.

In sector ZMA20, the R controller staffing configuration performed poorly compared to 

R and D controller staffing configuration for both the controller performance metrics.

For sectors ZNY39 and ZMA20 it was found that the performance of the two different 

controller staffing configurations was not equal and no specific staffing configuration 

performed better than the other.

The facility managers and supervisors use their judgment and consider complexity to 

assign an additional D controller to a sector. The traffic activity and corresponding 

controller workload subjected to the two controller staffing configurations is different. 

In two out of the four considered sectors, performance of the two different staffing 

configurations is not equal in managing the air traffic activity assigned to them. It could 

be concluded that the current method of staffing additional “D” controller to a sector 

could be inadequate for some sectors in NAS.  
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5.8. Comparison of results of models estimated in section 5.7 with results of Howell 

et al. (2003) 

Results of models estimated in section 5.7 are compared with relation between traffic 

activity and average excess distance for flights per unit time proposed by Howell et al 

2003. 

Figure 3.3 shows relation between normalized traffic activity during 15 minute interval 

and average excess distance for flights handled during 15 minute interval in a center, 

averaged over 20 enroute centers.

Based on the scatter plots developed for models in section 5.7.1, it can be proposed that 

current traffic levels in sectors and centers of NAS can be categorized into “route 

structure regime”. Howell et. al. (2003) explain that traffic levels in the airspace are such 

that flights are restricted to stay on route structure, but extensive maneuvering is not 

required to control traffic flow.

Howell at al 2003 propose that the normalized traffic activity is between 30% to 70% of 

the peak traffic activity in route structure regime. Excess distance traversed by flights in 

this regime is almost constant. The author proposes implementation of tools or initiatives 

(e.g. RVSM, RNP, choke point initiatives, airspace redesign, dynamic resectorisation, 

etc.) for improvement in this regime. These tools can reduce the inefficiency in the 

airspace structure and lower the “plateau value” of excess distance.
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CHAPTER VI:  RELATIONS BETWEEN ATC SYSTEM 

PERFORMANCE AND ENROUTE AIR TRAFFIC IN THE NAS

6.1 Organization of chapter

This chapter has been divided into nine sections. A summary of contents in each section 

has been provided below:

Sections 6.2 and 6.3:

Four analyses have been proposed to estimate relations between ATC system 

performance and enroute traffic volume in the NAS. Due to the drawbacks of NAS 

performance measures proposed in analyses and difficulties in performing the analyses,

there is a need to use recorded delay as a measure of system performance. It is proposed 

to extend the NAS model developed by Wieland 2004 to estimate relations between 

delays and enroute traffic volume in the NAS.

Section 6.4:

In section 6.4 the measures of delays and enroute traffic volume in NAS have been 

developed. The need to estimate relations for entire NAS by considering daily and 

monthly measures of time delays and enroute traffic volume has been explained. The 

need to develop month-specific models (models for same calendar months of a year) and 

the functional forms used to estimate relations have been explained.

Section 6.5:

Using the recorded delay data available from FAA databases measures of enroute traffic 

volume and measures of different forms of delays have been developed. Daily and 

monthly measures of delays have been developed.
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Monthly models are developed to estimate relations between monthly delay metrics and 

monthly enroute traffic volume. Similarly daily models are developed to estimate 

relations between daily delay metrics and daily enroute traffic volume. The statistical 

analyses used to estimate the models have been discussed.

Two types of models have been developed. Models developed to estimate relations 

between delays specifically caused by enroute congestion and enroute traffic volume in 

NAS. 

Models developed to estimate relations between different forms of delays and enroute 

traffic volume in NAS. Types of delays used to reduce air delays caused by enroute 

airspace congestion are identified by performing the following analyses:

Relations are estimated between different types of delays and enroute traffic volume in 

NAS. Analyses are proposed to study time series trend of different forms of delays, and 

trend in variation of delays with increase in enroute traffic volume 

Sections 6.6 to 6.7

Results of models and analyses proposed in section 6.5 have been discussed.

Sections 6.8 and 6.9

Results obtained in sections 6.6 and 6.7 are interpreted.

Based on the results a relation is proposed between delays and enroute traffic volume in 

the NAS .The reasons for the low explanatory power of the monthly and month-specific

models which estimate relations between delays and demand have been discussed. 

Drawbacks of the month-specific models and drawbacks of the delay data used to 

perform analyses have been discussed.
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6.2. Difficulties in estimating relations between ATC system performance and 

enroute traffic volume in the NAS.

Based on the literature review, four analyses were proposed to estimate relations between 

NAS performance measures and enroute traffic volume in the NAS. The four proposed

analyses are listed below and have been discussed in detail in the appendix:

1.1. Analysis proposed to estimate relations between flight times and enroute traffic 

volume in the NAS.

1.2. Analysis proposed to estimate relations between excess distances traveled by flights 

and traffic volume in the NAS.

1.3. Sector MAP values were used to measure NAS performance, for estimating relations 

between NAS performance and enroute traffic volume in the NAS.

1.4. Enroute delays caused by Traffic Management processes were used as measures of 

NAS performance, for estimating relations between NAS performance and enroute traffic 

volume in the NAS.

Analyses 1.1 and 1.2 could not be pursued further because of the bias caused by factors 

which affected relations between NAS performance measures (flight times and excess 

distances traveled by flights) and enroute traffic volume. Analyses 1.1 and 1.2 and their 

drawbacks have been discussed in the appendix. Analyses 1.3 and 1.4 could not be 

performed due to unavailability of required data.
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6.3. Analyses proposed to estimate relations between recorded flight delays and

enroute traffic volume in the NAS.

Due to the drawbacks of the analyses and NAS performance measures proposed in 

section 6.2, it was decided to use recorded delays as measures of ATC system 

performance in the NAS. Recorded delay data are used to estimate relations between 

delays and enroute traffic volume in NAS. In previous studies, models were developed 

which relate delays and air traffic in the entire NAS. Wieland 2004 has proposed a model 

which relates delays with air traffic volume in entire NAS. It is proposed to extend 

Wieland`s model to estimate relations between delays and enroute traffic volume in the 

NAS. In section 6.4 the proposed extension to Wieland`s model has been discussed.

6.4. Proposed extension toWieland`s model

In this section, analyses are proposed to estimate relations between delays caused by 

enroute congestion and enroute traffic volume in the NAS. 

6.4.1. Measure of enroute traffic volume in entire NAS:

Enroute traffic volume is measured as center operations per day or center operations per 

month in all centers of NAS.

6.4.2. Measure of delays caused by enroute congestion:

Delay is measured in terms of average minutes of delay per day or average minutes of 

delay per month caused by enroute congestion in NAS. Delay is also measured in terms 

of operations delayed per day or operations delayed per month due to enroute congestion

in NAS.
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6.4.3. The need to estimate relations for entire NAS by considering daily and 

monthly measures of delays and enroute traffic volume.

The need to consider delays as a measure of performance of NAS

Delays borne by flights are used as a measure of performance of NAS. Delays can 

capture the effect of excess distances traveled by flights due to enroute congestion. The 

advantages of delays over the “excess distance metric” are discussed in section 3.2.2.2.

Researchers have performed a variety of analyses on different types of delays. Mueller 

and Chatterji (2002) studied the distribution of departure and arrival delays. They found 

that departure delay fitted Poisson distribution and enroute and arrival delay fitted the

normal distribution. Delays can be classified into different types based on the phase of 

the flight i.e. arrival delays, departure delays, taxi delays, gate delays, enroute delays. 

Ground delays and ground stops are “Traffic Management processes”. Ground delays 

(EDCT) and ground stops delay flights at the departure airport.

It was found in the literature review that researchers have estimated relations between 

different forms of delays and airport and terminal congestion. Few studies have been 

conducted on delays caused by enroute congestion or to estimate relations between delays 

and enroute traffic volume. 

The need to estimate relations for the entire NAS by considering daily and monthly 

measures of delays and enroute traffic volume has been explained.
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The need to estimate relations for entire NAS

The following factors make it necessary to estimate the relations for entire NAS:

1. The effect of spatial and temporal propagation of delays in NAS has been discussed in 

section 3.3.1. Airspace congestion can cause delays to be imposed on aircraft in airspace 

or in airports. By analyzing the entire NAS, those delays caused by enroute congestion

which propagate to different regions of the national airspace system can be captured. 

2. Strategic and tactical planning is performed by the ATC system for entire NAS. 

Coordination exists among different ATC units in NAS. Programs implemented by the 

ATC system are implemented after considering the entire NAS. These factors make it 

necessary to evaluate the performance of the ATC system in reducing delays in entire 

NAS. All the above points have been discussed in detail in section 3.3.1of literature 

review.

3. Tools and techniques used by controllers to handle airspace congestion could cause 

delays to flights hundreds of miles away from the source of airspace congestion. This 

point has been discussed in detail in section 3.3.1.

The need to consider daily and monthly measures of delays and enroute traffic 

volume

It is necessary to estimate relations using monthly and daily measures of delays and 

enroute traffic volume in NAS, for the following reasons:
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1. Due to temporal propagation of delays, delays which occur in a specific period could 

be caused by airspace congestion in previous periods. A day or month is considered as 

the period for measuring delay. Average minutes of delay per day or average minutes of 

delay per month is treated as one data point for statistical analysis.  

Similarly operations delayed per day or operations delayed per month is considered as a 

data point for statistical analysis. A day or month is a sufficient period to capture the 

entire delay caused by an airspace congestion event which occurred at any instant during

the period. The phenomenon of temporal propagation of delays in NAS has been 

discussed in section 3.3.1.

2. Hoffman and Voss (2000) considered monthly averages for arrival delay, departure 

delay, average taxi out time and enroute time as indicators of airspace or airport 

congestion. They explain that airline schedules in US change approximately once every

month, and hence monthly averages are used for developing metrics. The authors studied 

the time series trend of these metrics.

6.4.4. The need to develop “Month-specific models” 

Adverse weather conditions in the national airspace decrease the operational capacity of 

the airspace. Month-specific weather effects could affect the monthly operational 

capacity of the national airspace. Operational capacity of the national airspace could be

different for each calendar month of the year.
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Air traffic demand in the NAS varies for different calendar months of the year. ATC 

system implements different programs in NAS during specific calendar months of the 

year. These programs are implemented to increase efficiency of the NAS and to reduce 

delays in the system.

Development of month-specific models:

Relations are estimated between delays caused by enroute congestion and enroute traffic 

volume by considering monthly data point for the same calendar month of all years. 

Twelve datasets are constructed for twelve months of a calendar year in the following 

way. In a dataset, each data point represents the same “calendar” month of all years from 

1990 to 2005. The dataset for January consists of all January’s from 1990 to 2005. 

Twelve data sets are constructed for twelve calendar months of the year.

6.4.5. Functional forms used to estimate relations

Wieland (2004) estimated a relation between monthly traffic volume in NAS and 

monthly total minutes of delays in NAS. Monthly operations handled by controllers from 

January 2000 to December 2004 were related to corresponding total monthly minutes of 

delays recorded in OPSNET. A simple queuing relation, delay = demand/(capacity-

demand) was used to relate the two variables.

Wieland (2004) explains that considering the system capacity to be constant, an increase 

in traffic volume will cause an asymptotic increase in delays until traffic volume reaches 

the system capacity.  He further explains that in a queuing relation between capacity and 
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delays, as the system capacity is reached the delays soar with small fluctuations in 

volume.

A hyperbolic function Y = X/ (A-B*X) is used to relate delays caused by enroute 

congestion with the enroute traffic volume in the NAS. 

The hyperbolic function is reasonable in representing a congested system whose service 

times increase very steeply as capacity is approached.

Zelinski et al. (2004) reports results of 36 simulations of ACES which were run for 4 

demand sets and 9 weather days. The results generated by ACES, for delays in NAS were 

analyzed.  The analysis of delays and demand in NAS showed that quadratic relations 

fitted the data with low and random residuals. These results support the hypothesis that a 

non linear relation exists between delays and demand in NAS. 

The following functional forms were used to estimate relations between delays and 

enroute traffic volume in NAS 

1. Hyperbolic functional form

Y = X/ (A-BX)  

2. Power relation 

 Y = A * X^B
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6.5. Proposed analys es (Extension to Wieland`s model (Wieland 2004))

Analyses proposed in this section are extension to Wieland`s model from Wieland (2004)

Wieland (2004) has considered total minutes of delays in NAS to estimate relations 

between delays and air traffic in NAS. Wieland (2004) has considered delays due to all 

causes. Enroute traffic volume is measured as center operations in all centers of NAS.

Two analyses are proposed to estimate relations between delays and enroute traffic 

volume. 1. In section 6.5.1, delays specifically caused by enroute congestion are used. 

OPSNET records delays due to enroute traffic volume imposed on flights on the ground 

(at the departure airport) or in the enroute airspace.

2. In sections 6.5.2 and 6.5.3, different forms of delays are identified (delays by different 

phase of flight – arrival delays, enroute delays, departure delays, gate delays and taxi 

delays) which are used to reduce air delays caused by enroute airspace congestion. Based 

on the literature review, forms of delays are identified which are used to reduce air delays 

caused by enroute airspace congestion. Relations are estimated between different forms 

of delays and enroute traffic volume to confirm if the delay types found in literature are 

used to reduce air delays caused by enroute airspace congestion.

6.5.1. Analysis performed using delays specifically caused by enroute congestion 

which are recorded by OPSNET database as delays by cause “center volume”

OPSNET database records delays by five causes - weather, terminal volume (terminal 

congestion), center volume (center congestion), equipment failures and runway capacity 

constraints. OPSNET records only the number of delays by individual cause. OPSNET 



218

database does not record minutes of delays by individual cause like center volume. The 

OPSNET database provides number of operations delayed due to five causes for days, 

months and years from January 1990. 

Measures of delays caused by “enroute congestion”

The advantages of using traffic volume and delay data recorded by OPSNET compared to 

other databases have been explained in section 3.3.5. of literature review. The most 

important reason for using OPSNET data are that OPSNET is the only database which 

provides data on delays due to center congestion. 

The OPSNET database only provides number of operations delayed due to center 

congestion. The number of operations delayed due to center congestion can be related 

with enroute traffic volume. Two delay metrics are defined to measure delays caused by 

enroute congestion.

1. “Fraction of center operations in NAS which are delayed due to enroute congestion”.

2. “Fraction of delayed operations delayed by enroute congestion”

1. “Fraction of center operations in NAS which are delayed due to enroute congestion”.

The above metric is computed as the ratio of number of operations delayed due to enroute 

congestion and center operations in NAS. 

2. “Fraction of delayed operations delayed by enroute congestion”
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The above metric is computed as the ratio of number of operations delayed by enroute 

congestion and the number of operations delayed by all causes. This metric is computed 

for entire NAS.

Both metrics are computed as monthly delay metrics for all months from 1990 to 2005. 

These metrics are also computed as daily delay metrics for days from April 2004 to April 

2005.

Measure of enroute traffic volume:

Enroute traffic volume is measured as total center operations in all centers of NAS.

Statistical analysis:

Regression analysis is performed to estimate relations between delay metrics and enroute 

traffic volume in the NAS. The two delay metrics listed below are used to develop 

models 1.1 and 1.2 and models 2.1 to 2.4 

1. “Fraction of center operations in NAS which are delayed due to enroute congestion”.

2. “Fraction of delayed operations delayed by enroute congestion”.

Monthly and daily models are developed by estimating relations between daily delay 

metric and daily center operations in NAS and monthly delay metric and monthly center 

operations in NAS. The following models are estimated by considering daily or monthly 

metrics and data for specified periods. 
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Monthly models

Period from 1990 to 2005 is considered for developing these models. 

Monthly delay metrics and monthly center operations are considered as data points. 

Regression analysis is performed for the following data sets.

Model 1.1 Data for period: 1990 to 2005 

Model 1.2 Twelve datasets are constructed for twelve months of a calendar year in the 

following way. In a dataset, data points represent the same “calendar” month of all years 

from 1990 to 2005. The dataset for January consists of all January’s from 1990 to 2005. 

Twelve data sets are constructed for twelve calendar months. Data from 1990 to 2005 is 

used for estimating these models. Hence forth model 1.2 will be referred to as month-

specific model.

Daily models

Period from 04/2004 to 04/ 2005 is considered for developing these models. 

Daily delay metric and daily center operations are considered as data points. Regression 

analysis is performed for the following data sets.

Model 2.1. Data for period: 04/ 01/2004 to 04/30/2005.

Model 2.2. Data for period: 01/01/2005 to 04/30/2005.

Model 2.3. Data for individual months from 04/2004 to 04/2005 

Model 2.4. Twelve datasets are constructed for twelve months of a calendar year in the 

following way. In a dataset, data points represent days of the same “calendar” month of 
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2004 and 2005. The dataset for January consists of all days of January 2004 and January 

2005. Twelve data sets are constructed for twelve calendar months. Data from 04/2004 to 

04/2005 is used for estimating these models.

6.5.2. Analyses performed using different forms of delays used to reduce air delays 

caused by enroute congestion

Forms of delays used to reduce air delays caused by enroute congestion

In section 3.3.1 of literature review it was found that when sector capacity (MAP) is 

exceeded flights could be ground delayed at departure airport by using ground holds or 

ground stops. In the same section it is discussed how the effect of MIT restrictions 

imposed on flights in airspace due to airspace congestion could reach the origin airport 

and cause flights to be ground delayed. 

During a meeting with controllers at FAA, controllers told that enroute airspace 

congestion could cause different types of delays to be imposed on flights at the origin 

airport. Controllers explained that taxi out delays and departure delays could be imposed 

on flights because of enroute airspace congestion. Based on the literature review and 

discussions with controllers, it was found that the following types of delays could be 

imposed on flights because of enroute airspace congestion:

1. Ground delays

2. Taxi out delay 

3. Departure delays
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In this analysis relations are estimated between different types of delays (which could be 

used to reduce air delays caused by enroute airspace congestion) and enroute traffic 

volume. Databases are identified which provide data on different types of delays. Based 

on the data provided by databases monthly and daily delay metrics are developed for 

different types of delays. Regression analysis is performed to estimate relations between 

delay metrics and enroute traffic volume.

6.5.2.1. Analysis of average ground delay and number of operations delayed by 

category-arrival, departure and enroute

Delays recorded by OPSNET database:

The following types of delays are recorded by OPSNET database.

Ground delays

OPSNET database provides data on ground stop delays and EDCT delays. 

OPSNET database provides number and average minutes of ground stop delays and 

EDCT delays. OPSNET computes ground delay as the sum of ground stop delays and

EDCT delays. Average ground delay is computed as ground delay minutes divided by 

total operations ground delayed. Analysis is performed using average minutes of ground 

delay. OPSNET provides average minutes of ground delay for days, months and years 

from January 1990. 

Number of operations delayed by category- departure/enroute and arrival 

OPSNET database records number of delayed operations belonging to each category –

departure, enroute and arrival. OPSNET database does not record minutes of delay by 

individual category- departure, enroute and arrival .The OPSNET database provides 
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number of delayed operations belonging to each category for days, months and years 

from January 1990. 

The following data are available for delays belonging to departure, enroute and arrival 

categories. 

1. Number of operations departure delayed 

2. Number of operations delayed enroute

3. Number of operations arrival delayed

Hence the models are limited to analyzing the number of delayed operations belonging to 

departure, enroute and arrival categories.

Three delay metrics are defined for delays belonging to arrival, departure and enroute 

categories.   

1. “Fraction of center operations which are departure delayed”.

2. “Fraction of center operations which are delayed enroute”.

3. “Fraction of center operations which are arrival delayed”. 

The above 3 metrics are computed as the ratio of delayed operations belonging to each 

category (arrival, enroute and departure) and center operations in NAS. 

Delay metrics developed from OPSNET database:

The four metrics listed below are developed from the delay data provided by OPSNET 

database.

1. Average minutes of ground delay



224

2. “Fraction of center operations which are departure delayed”.

3. “Fraction of center operations which are delayed enroute”.

4. “Fraction of center operations which are arrival delayed”. 

These four delay metrics are computed as monthly metrics for all months from 1990 to 

2005. These metrics are also computed as daily metrics for days from May 2004 to May 

2005.

Measure of enroute traffic volume:

Enroute traffic volume is measured as total center operations in all centers of NAS.

Statistical analysis:

Regression analysis is carried out to estimate relations between delay metrics and enroute 

traffic volume in the NAS. The four delay metrics listed below are used to develop 

models 1.1 and 1.2 and models 2.1 to 2.4.

1. Average minutes of ground delay. 

2. “Fraction of center operations which are arrival delayed”. 

3. “Fraction of center operations which are departure delayed”.

4. “Fraction of center operations which are delayed enroute”.

Monthly and daily models are developed by estimating relations between daily delay 

metric and daily center operations in NAS and monthly delay metric and monthly center 
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operations in NAS. The following models are estimated by considering daily or monthly 

metrics and data for specified periods. 

Monthly models:

Period from 1990 to 2005 is considered for developing these models.

Monthly delay metrics and monthly center operations are considered as data points. 

Regression analysis is performed for the following data sets.

Model 1.1. Data for period: 01/1990 to 04/2005 

Month-specific model 1.2. Twelve datasets are constructed for twelve months of a 

calendar year in the following way.In a dataset, data points represent the same “calendar” 

month of all years from 1990 to 2005. The dataset for January consists of all January’s 

from 1990 to 2005. Twelve data sets are constructed for twelve calendar months. Data 

from 01/1990 to 04/2005 is used for estimating these models.

Daily models:

Daily delay metric and daily center operations are considered as data points.

Models 2.1 to 2.4 (described in section 6.5.1) are estimated using the four delay metrics 

developed in this section.
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6.5.2.2. Analysis of average minutes of delay by category- airport departure delay, 

gate departure delay, taxi- in/out delay, airborne delay, block delay and gate arrival 

delay

Delays recorded by ASPM database:

The following forms of delays are recorded by ASPM database.

Relative to schedule delays and relative to flight plan delays 

ASPM database can compute delays by two procedures. ASPM database can compute 

delays by comparing actual flight times to scheduled flight times, and by comparing 

actual flight times to filed flight plan times. ASPM database can provide same type of 

delay in two formats:

i) Relative to schedule delay 

ii) Relative to flight plan delay

In section 3.3.5.2, drawbacks of relative to schedule delay data have been discussed. For 

this analysis it was decided to use relative to flight plan delays. Relative to schedule 

delays were compared with relative to flight plan delays for the same type of delay 

(average daily delay and average monthly delay). It was found that relative to schedule 

delays were greater than relative to flight plan delays. However both delays followed the 

same time series trend.

Different types of delays recorded by ASPM database

ASPM database provides average time delays for days, months and years from January 

1998.ASPM database provides data for the following types of delays. Definitions of 
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different types of delays are provided below. These definitions are taken from ASPM 

database.

1. Average gate departure delay 

Average gate departure delay is the difference between the actual gate out time and the 

filed flight plan gate out time 

2. Average taxi out delay

Average taxi out delay is the difference between taxi out time minus unimpeded taxi out 

time. 

3. Average airport departure delay 

Average airport departure delay is an estimated delay derived from the actual wheels off 

time minus the flight plan gate out time less the unimpeded taxi out time. 

4. Average airborne delay

Average airborne delay is the actual airborne time less the flight plan estimated time 

enroute (estimated enroute time of the flight filed in the flight plan). 

5. Average taxi in delay

Average taxi in delay is calculated as actual taxi in time minus unimpeded taxi in time. 

Taxi in delays may occur when a gate is not available for an arriving aircraft.

6. Average block delay

Average block delay is calculated as actual gate-to-gate time minus scheduled gate-to-

gate. 

7. Average gate arrival delay 

Average gate arrival delay is the difference between the actual gate in time and the flight 

plan gate in time. 
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Delay metrics developed from ASPM database:

The seven delay metrics which were extracted from ASPM database are listed below:

1. Average gate departure delay 

2. Average taxi out delay

3. Average airport departure delay 

4. Average airborne delay

5. Average taxi in delay

6. Average block delay

7. Average gate arrival delay 

The above metrics are obtained as monthly metrics for all months from 1998 to 2005. 

These metrics are also obtained as daily metrics for days from May 2004 to May 2005

Measure of enroute traffic volume:

Enroute traffic volume is measured as total center operations in all centers of NAS.

Statistical analysis:

Regression analysis is carried out to estimate relations between delay metrics and enroute 

traffic volume in the NAS. The seven delay metrics listed below are used to develop 

models 1.1 and 1.2 and models 2.1 to 2.4 

1. Average gate departure delay 

2. Average taxi out delay

3. Average airport departure delay 

4. Average airborne delay
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5. Average taxi in delay

6. Average block delay

7. Average gate arrival delay 

Monthly and daily models are developed by estimating relations between daily delay 

metrics and daily center operations in NAS and monthly delay metrics and monthly 

center operations in NAS. The following models are estimated by considering daily or 

monthly metrics and data for specified periods. 

Monthly models:

Period from 01/1998 to 04/2005 was considered for developing these models.

Monthly delay metrics and monthly center operations are considered as data points. 

Regression analysis is performed for the following data sets.

Model 1.1. Data for period: 01/1998 to 04/2005 

Month-specific model 1.2. Twelve datasets are constructed for twelve months of a 

calendar year in the following way. In a dataset, data points represent the same 

“calendar” month of all years from 1998 to 2005. The dataset for January consists of all 

January’s from 1998 to 2005. Twelve data sets are constructed for twelve calendar 

months. Data from 01/1998 to 04/2005 is used for estimating these models.

Daily models: 

Daily delay metric and daily center operations are considered as data points.
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Models 2.1 to 2.4 (described in section 6.5.1) are estimated using the seven delay metrics 

developed in this section.

6.5.3. Trends in the variation of different delay types

In this analysis the variation in different types of delays over time and with increase in 

enroute traffic volume is studied. The following delay metrics (delays by category) were 

obtained as monthly metrics for all months from 01/1998 to 05/2005 from ASPM 

database.

1. Average gate departure delay 

2. Average taxi out delay

3. Average airport departure delay 

4. Average airborne delay

5. Average taxi in delay

6. Average block delay

7. Average gate arrival delay

The above seven delay metrics are used in this analysis. Enroute traffic volume is 

measured as monthly operations in all centers of NAS.

Two plots were developed to study variation in trend of seven delay metrics.

1. Time series trend of monthly delay metrics for period: 01/1998 to 05/2005.

2. Variation in monthly delay metrics with increase in monthly enroute traffic volume in 

the NAS. Period from 01/1998 to 05/2005 was considered for this analysis.
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6.6. Analyses and results

In sections 6.5.1 and 6.5.2, monthly, month-specific and daily models are developed for 

estimating relations between delays and enroute traffic volume in NAS. These models are 

analyzed using regression analyses. WinSTAT the Statistics Add-In for Microsoft ® 

Excel is used for performing the regression analyses. Results of models and analyses 

proposed in section 6.5 are discussed in section 6.7.

6.7. Results 

6.7.1. Estimating relations between delays caused by enroute congestion and enroute 

traffic volume in the NAS

The two delay metrics listed below were considered as dependent variables in the 

regression models.

1. “Fraction of center operations in NAS which are delayed due to enroute congestion”.

2. “Fraction of delayed operations delayed due to enroute congestion”

Monthly models

Period from 1990 to 2005 was considered for developing these models. 

Monthly delay metric and monthly center operations are considered as data points. 

Regression analyses were performed for the following data sets.

Model 1.1 Data for period: 1990 to 2005 

A total of fifteen datasets were constructed by dropping each subsequent year 

from1990.For example the second dataset consisted of data from 1991 to 2005 and the 
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fifteenth dataset consisted of data from 2004 to 2005. Regression analyses were carried 

out for fifteen datasets.

1. Results for delay metric “Fraction of center operations in NAS which are delayed 

due to enroute congestion”. 

The best statistical fit was obtained for the following data.

Data for period: 01/1994 to 04/2005

Figure 6.1 shows relation between fraction of center operations delayed due to enroute 

congestion and monthly center operations in NAS. 
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Figure 6.1 Fraction of center operations delayed due to center volume vs. monthly center 

operations in NAS 
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Results of regression analyses are shown in table 6.1 below: 

Table 6.1

X-Variable: Monthly center operations in NAS

Y-Variable: Fraction of center operations delayed due to center volume

N A B R-Square

Y = A * X^B 136 2.759E-61 8.660 0.543

Y = X / (A + B*X) 136 3.123E+11 -78039.687 0.448

2. Results for delay metric “Fraction of delayed operations delayed due to enroute 

congestion”. 

The best statistical fit was obtained for the following data.

Data for period: 01/1993 to 06/2005

Figure 6.2 shows relation between fraction of delayed operations delayed due to enroute 

congestion and monthly center operations in NAS.
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Data Y = 2.85379E-38 * X^5.78312

Figure 6.2 Fraction of delayed operations delayed due to center volume vs. monthly 

center operations in NAS

Results of regression analyses are shown in table 6.2 below 

Table 6.2

X-Variable: Monthly center operations in NAS

Y-Variable: Fraction of delayed operations delayed due to   enroute congestion

N A B R-Square

Y = A * X^B 150 2.854E-38 5.783 0.380

Y = X / (A + B*X) 150 1.399E+07 -3.323 0.340
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Month-specific models:

Model 1.2 Data for period: 01/1990 to 06/2005.

Twelve datasets are constructed for twelve months of a calendar year in the following 

way. In a dataset, each data point represents the same “calendar” month of all years from 

1990 to 2005. The dataset for January consists of all January’s from 1990 to 2005. 

Twelve data sets are constructed for twelve calendar months. 

Eleven subsets are constructed for each calendar month. Eleven subsets were constructed 

from the dataset of each calendar month. Subsets were constructed by dropping each 

subsequent year from1990.For example the second subset for January consisted of all 

January’s from 1991 to 2005 and the eleventh subset for January consisted of all 

January’s from 2000 to 2005. 

Regression analyses were carried out for a total of 132 subsets which were developed 

from 12 datasets for 12 calendar months. For each calendar month, eleven subsets were 

analyzed. For each month, a subset was found which showed the highest R squared value 

for the model. R squared value is considered as a goodness of fit.

1. Results for delay metric “Fraction of center operations in NAS delayed due to 

enroute congestion”. 

Relation between fraction of center operations delayed due to enroute congestion and 

monthly center operations in NAS is estimated.
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Table 6.3 shows results of regression analyses for month-specific models for delay metric 

“Fraction of center operations in NAS delayed due to enroute congestion". 

R squared values are reported. 

Table 6.3

Month Years  Y =  A * X^B Years Y = 

X / (A - B*X)

January 95 to 05 0.85 95 to 05 0.78

February 94 to 05 0.70 94 to 05 0.66

March 94 to 05 0.72 94 to 05 0.60

April 93 to 05 0.71 93 to 05 0.72

May 93 to 05 0.83 93 to 05 0.85

June 93 to 04 0.70 93 to 04 0.65

July 93 to 05 0.67 93 to 05 0.76

August 93 to 05 0.67 93 to 05 0.70

September 99 to 05 0.68 99 to 05 0.79

October 94 to 05 0.83 95 to 05 0.75

November 94 to 05 0.74 94 to 05 0.56

December 93 to 05 0.76 93 to 05 0.63

The best statistical fit was obtained for the following data:

Month-specific model for May showed the best statistical fit. Data were considered for 

period from 1993 to 2005. 
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Figure 6.3 shows result of month-specific model for delay metric “Fraction of center 

operations in NAS delayed due to enroute congestion” for May.
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Data Y = X / (2837965 - 69238.2*X)

Figure 6.3 Fraction of center operations delayed due to center volume vs. monthly center 

operations in NAS (Month-specific model for May)

Results of regression analyses are shown in table 6.4 below 

Table 6.4

X-Variable: Monthly center operations in NAS

Y-Variable: Fraction of center operations delayed due to enroute congestion 

N A B R-Square

Y = A * X^B 13 9.925E-66 9.321 0.825

Y = X / (A + B*X) 13 2.838E+11 -69238.235 0.852



238

2. Results for delay metric “Fraction of delayed operations delayed due to enroute 

congestion”. 

Relation between fraction of delayed operations delayed due to enroute congestion and 

monthly center operations in NAS is estimated. 

Table 6.5 shows results of regression analyses for month-specific models for delay metric 

“Fraction of delayed operations delayed due to enroute congestion”. 

R squared values are reported.

Table 6.5

Month Years  Y =  A * X^B Years Y = 

X / (A - B*X)

January 94 to 05 0.74 95 to 05 0.74

February 93 to 05 0.58 93 to 05 0.65

March 93 to 05 0.61 93 to 05 0.54

April 93 to 05 0.60 93 to 05 0.64

May 93 to 05 0.63 93 to 05 0.63

June - - - -

July 93 to 05 0.63 93 to 05 0.77

August 93 to 05 0.35 93 to 05 0.47

September 91 to 05 0.55 91 to 05 0.45

October 93 to 05 0.68 95 to 05 0.62

November 92 to 05 0.58 94 to 05 0.50

December 93 to 05 0.72 93 to 05 0.68

Month-specific model for month of June showed very poor explanatory power.
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The best statistical fit was obtained for the following data.

Month-specific model for July showed the best statistical fit. Data were considered for 

period from 1993 to 2005. 

Figure 6.4 shows result of month-specific model for delay metric “Fraction of delayed 

operations delayed due to enroute congestion” for July
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Figure 6.4 Fraction of delayed operations delayed due to center volume vs. monthly 

center operations in NAS (Month-specific model for July)
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Results of regression analyses are shown in table 6.6 below 

Table 6.6

X-Variable: Monthly center operations in NAS

Y-Variable: Fraction of delayed operations delayed due to  center volume

N A B R-Square

Y = A * X^B 12 7.665E-31 4.628 0.625

Y = X / (A + B*X) 12 9.699E+06 -2.068 0.770

Daily models:

Models 2.1 to 2.4

Period from 04/2004 to 04/2005 was considered for developing these models. 

Daily delay metric and daily center operations are considered as data points. Regression 

analyses were performed for the following data sets.

Model 2.1. Data for period: 04/ 01/2004 to 04/30/2005.

Model 2.2. Data for period: 01/01/2005 to 04/30/2005.

Model 2.3. Data for individual months from 04/2004 to 04/2005 

Model 2.4. Twelve datasets were constructed for twelve months of a calendar year in the 

following way. In a dataset, data points represent days of the same “calendar” month of 

2004 and 2005. The dataset for January consists of all days of January 2004 and January 

2005. Twelve data sets were constructed for twelve calendar months. Data from 04/2004 

to 04/2005 is used for estimating these models.
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The above models were estimated by considering the two delay metrics as dependent 

variables. Regression analyses were carried out for all the models. All the models showed 

poor explanatory power. All the models had R squared values less than 0.4. 

6.7.2. Estimating relations between different forms of delays (used to reduce air 

delays caused by enroute airspace congestion) and enroute traffic volume in the 

NAS

6.7.2.1. Analysis of average ground delay and number of operations delayed by 

category-arrival, departure and enroute

The four delay metrics listed below are considered as dependent variables in the 

regression models.

1. Average minutes of ground delay

2. “Fraction of center operations in NAS which are departure delayed”.

3. “Fraction of center operations in NAS which are delayed enroute”.

4. “Fraction of center operations in NAS which are arrival delayed”. 

Monthly models:

Period from 1990 to 2005 was considered for developing these models. 

Monthly delay metric and monthly center operations are considered as data points. 

Regression analyses were performed for the following data sets.
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Model 1.1 Data for period from 01/1990 to 04/2005

A total of fifteen datasets were constructed by dropping each subsequent year from1990. 

For example the second dataset consisted of data from 1991 to 2005 and the fifteenth 

dataset consisted of data from 2004 to 2005. Regression analyses were carried out for 

fifteen datasets.

1. Results for delay metric “Average minutes of ground delay”.

The best statistical fit was obtained for the following data.

Data for period: 01/1990 to 04/2005

Figure 6.5 shows relation between average ground delay and monthly center operations 

in NAS.
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Data Y = X / (78438.9 - 6.49491E-03*X)

Figure 6.5 Average ground delay vs. monthly center operations in NAS
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Results of regression analyses are shown in table 6.7 below  

Table 6.7

X-Variable: Monthly center operations in NAS 

Y-Variable: Average ground delay

N A B R-Square

Y = A * X^B 184 5.915E-08 1.380 0.579

Y = X / (A + B*X) 184 7.844E+04 -0.006 0.579

2. Results for delay metric “Fraction of center operations which are departure 

delayed”.

The best statistical fit was obtained for the following data.

Data for period: 01/1995 to 04/2005

Figure 6.6 shows relation between fraction of center operations which are departure 

delayed and monthly center operations in NAS.
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Data Y = X / (4386948 - 881.809*X)

Figure 6.6 Fraction of center operations departure delayed vs. monthly center operations 

in NAS

Results of regression analyses are shown in table 6.8 below 

Table 6.8

X-Variable: Monthly center operations in NAS

Y-Variable: Fraction of center operations departure delayed

N A B R-Square

Y = A * X^B 124 1.784E-28 3.852 0.379

Y = X / (A + B*X) 124 4.387E+09 -881.810 0.390
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3. Results for delay metric “Fraction of center operations which are delayed 

enroute”

4. Results for delay metric “Fraction of center operations which are arrival 

delayed”.

Model 1.1 was estimated by considering the above delay metrics as dependent variables. 

Regression analyses were carried out for all the models. All the models showed poor 

explanatory power. All the models had R squared values less than 0.4. 

Month-specific models:

Model 1.2 Data for period: 1990 to 2005

Twelve datasets were constructed for twelve months of a calendar year in the following 

way. In a dataset, each data point represents the same “calendar” month of all years from 

1990 to 2005. The dataset for January consists of all January’s from 1990 to 2005. 

Twelve data sets were constructed for twelve calendar months. Regression analyses were 

carried out for 12 datasets. 

1. Results for delay metric “Average ground delay”.

Data from 01/1990 to 04/2005 is used for estimating month-specific models for delay 

metric “Average ground delay”.
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Relation between average ground delay and monthly center operations in NAS is 

estimated.

Table 6.9 shows results of regression analyses for month-specific models for average 

ground delay.

R squared values are reported.

Table 6.9

Period: 01/ 90 to 04/05 Y = A * X^B Y = X / (A - B*X)

January 0.62 0.64

February 0.52 0.52

March 0.62 0.61

April 0.55 0.55

May 0.74 0.75

June 0.76 0.77

July 0.82 0.82

August 0.69 0.70

September 0.48 0.49

October 0.64 0.69

November 0.68 0.67

December 0.71 0.72

The best statistical fit was obtained for the following data:

Month-specific model for July showed the best statistical fit. Data were considered for 

period from 01/1990 to 04/2005
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Figure 6.7 shows result of month-specific model for delay metric “Average ground 

delay” for July
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Data Y = X / (95466.9 - 1.17779E-02*X)

Figure 6.7 Average ground delay vs. monthly center operations in NAS (Month-specific

model for July)

Results of regression analyses are shown in table 6.10 below 

Table 6.10

X-Variable: Monthly center operations in NAS  

Y-Variable: Average ground delay

N A B R-Square

Y = A * X^B 15 2.532E-10 1.744 0.819

Y = X / (A + B*X) 15 9.547E+04 -0.012 0.823
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2. Results for delay metric “Fraction of center operations which are departure 

delayed”.

Data from 01/1994 to 04/2005 is used for estimating month-specific models for delay 

metric “Fraction of center operations which are departure delayed”.

Relation between fraction of center operations which are departure delayed and monthly 

center operations in NAS is estimated. 

Table 6.11 shows results of regression analyses for month-specific models for delay 

metric "fraction of center operations which are departure delayed"

Table 6.11 (R squared values are reported.)

Period:  01/ 94 to 04/ 05 Y =A * X^B Y = X / (A - B*X)

January 0.10 0.08

February 0.62 0.62

March 0.52 0.56

April 0.34 0.34

May 0.80 0.87

June 0.62 0.56

July 0.33 0.33

August 0.89 0.90

September 0.67 0.65

October 0.52 0.55

November 0.41 0.43

December 0.64 0.67
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Month-specific models for the month of January, April and July showed very poor 

explanatory power. These models had R squared values less than 0.4. 

The best statistical fit was obtained for the following data.

Month-specific model for August showed the best statistical fit. Data were considered for 

period from 01/1994 to 04/2005. 

Figure 6.8 shows result of month-specific model for delay metric “Fraction of center 

operations which are departure delayed” for August.
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Data Y = X / (2955848 - 575.854*X)

Figure 6.8 Fraction of center operations departure delayed vs. monthly center operations 

in NAS (Month-specific model for August)
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Results of regression analyses are shown in table 6.12 below 

Table 6.12

X-Variable: Monthly center operations in NAS

Y-Variable: Fraction of departure delayed center operations

N A B R-Square

Y = A * X^B 11 2.084E-28 3.858 0.890

Y = X / (A + B*X) 11 2.956E+09 -575.855 0.895

3. Results for delay metric “Fraction of center operations which are delayed 

enroute”

4. Results for delay metric “Fraction of center operations which are arrival 

delayed”

Model 1.2 was estimated by considering the above delay metrics as dependent variables. 

Regression analyses were carried out for all the models. All the models showed poor 

explanatory power. All the models had R squared values less than 0.4. 

Daily models:

Models 2.1 to 2.4

The daily metrics used to develop these models and the period considered to develop data 

sets are exactly the same as the ones used to develop daily models in section 6.7.1.  The 

above models were estimated by considering the four delay metrics as the dependent

variables. Regression analyses were carried out for all the models. All the models showed 

poor explanatory power. All the models had R squared values less than 0.4. 
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6.7.2.2. Analysis of average minutes of delay by category- airport departure delay, 

gate departure delay, taxi- in/out delay, airborne delay, block delay and gate arrival 

delay

The seven delay metrics listed below are considered as dependent variables in the 

regression models.

1. Average gate departure delay 

2. Average taxi out delay

3. Average airport departure delay 

4. Average airborne delay

5. Average taxi in delay

6. Average block delay

7. Average gate arrival delay 

Monthly models:

Period from 01/1998 to 04/2005 was considered for developing these models. 

Monthly delay metric and monthly center operations are considered as data points. 

Regression analysis is performed for the following data sets.

Model 1.1

A total of seven datasets were constructed by dropping each subsequent year from1998. 

For example the second dataset consisted of data from 1999 to 2005 and the seventh 

dataset consisted of data from 2004 to 2005. Regression analyses were carried out for 

seven datasets.
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1. to 7. Results for seven delay metrics

Model 1.1 was estimated by considering the seven delay metrics as dependent variables. 

Regression analyses were carried out for all the models. All the models showed poor 

explanatory power. All the models had R squared values less than 0.4. 

Month-specific models:

Model 1.2

Twelve datasets were constructed for twelve months of a calendar year in the following 

way. In a dataset, each data point represents the same “calendar” month of all years from 

1998 to 2005. The dataset for January consists of all January’s from 1998 to 2005. 

Twelve data sets were constructed for twelve calendar months. Regression analyses were 

carried out for 12 datasets.

1. Results for delay metric “Average gate departure delay”.

Relation between average “average gate departure delay” and monthly center operations 

in NAS is estimated. 

Regression analyses were carried out for all the models. All the month-specific models 

showed poor explanatory power except the month of November. 

The best statistical fit was obtained for the following data:

Month-specific model for November showed the best statistical fit. Data were considered 

for period from 01/1998 to 04/2005. 

Figure 6.9 shows result of month-specific model for delay metric “Average gate 

departure delay” for November
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Data Y = X / (1602004 - 0.32038*X)

Figure 6.9 Average gate departure delay vs. monthly center operations in NAS (Month-

specific model for November)

Results of regression analyses are shown in table 6.13 below 

Table 6.13

X-Variable: Monthly center operations in NAS

Y-Variable: Average gate departure delay

N A B R-Square

Y = A * X^B 7 1.513E-24 3.772 0.700

Y = X / (A + B*X) 7 1.602E+06 -0.320 0.715
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2. Results for delay metric “Average taxi out delay”.

Data from 01/1998 to 04/2005 is used for estimating these month-specific models.

Relation between average taxi out delay and monthly center operations in NAS is 

estimated.

Table 6.14 shows results of regression analyses for month-specific models for delay 

metric “Average taxi out delay".

R squared values are reported.

Table 6.14

Period: 01/98 to 04/05 Y = A * X^B Y = X / (A - B*X)

January 0.64 0.64

February 0.23 0.24

March 0.71 0.69

April 0.52 0.52

May 0.52 0.54

June 0.94 0.94

July 0.30 0.27

August 0.70 0.69

September 0.38 0.35

October 0.88 0.88

November 0.48 0.47

December 0.25 0.29

Month-specific models for the month of February, July, September and December 

showed very poor explanatory power. These models had R squared values less than 0.4. 
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The best statistical fit was obtained for the following data.

Month-specific model for June showed the best statistical fit. Data were considered for 

period from 01/1998 to 04/2005. 

Figure 6.10 shows result of month-specific model for delay metric “Average taxi out 

delay” for June
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Figure 6.10 Average taxi out delay vs. monthly center operations in NAS (Month-specific

model for June)
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Results of regression analyses are shown in table 6.15 below 

Table 6.15

X-Variable: Monthly center operations in NAS

Y-Variable: Average taxi out delay

N A B R-Square

Y = A * X^B 7 9.857E-25 3.762 0.944

Y = X / (A + B*X) 7 2.588E+06 -0.502 0.941

3. Results for delay metric “Average airport departure delay”.

Data from 01/1998 to 04/2005 is used for estimating these month-specific models.

Relation between average airport departure delay and monthly center operations in NAS

is estimated.

Table 6.16 shows results of regression analyses for month-specific models for delay 

metric “Average airport departure delay”.

R squared values are reported.

Table 6.16

Period: 01/98 to 04/05 Y = A * X^B Y = X / (A - B*X)

June 0.62 0.59

August 0.46 0.43

October 0.47 0.45

November 0.71 0.72

Month-specific models for all other months except above months showed very poor 

explanatory power. These models had R squared values less than 0.4. 
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The best statistical fit was obtained for the following data.

Month-specific model for November showed the best statistical fit. Data were considered 

for period from 01/1998 to 04/2005. Results of the model are tabulated below.

Figure 6.11 shows result of month-specific model for delay metric “Average airport 

departure delay” for November
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Data Y = X / (1091127 - 0.21454*X)

Figure 6.11 Average airport departure delay vs. monthly center operations in NAS 

(Month-specific model for November)
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Results of regression analyses are shown in table 6.17 below 

Table 6.17

X-Variable: Monthly center operations in NAS

Y-Variable: Average airport departure delay

N A B R-Square

Y = A * X^B 7 2.926E-23 3.598 0.708

Y = X / (A + B*X) 7 1.091E+06 -0.215 0.721

4. Results for delay metric “Average block delay”.

Data from 01/1998 to 04/2005 is used for estimating these month-specific models.

Relation between average block delay and monthly center operations in NAS is 

estimated.

Table 6.18 shows results of regression analyses for month-specific models for delay 

metric “Average block delay".

R squared values are reported.

Table 6.18

Period: 01/98 to 04/05 Y = A * X^B Y = X / (A - B*X)

September 0.54 0.55

October 0.93 0.90

December 0.41 0.43

Month-specific models for all other months except above months showed very poor 

explanatory power. These models had R squared values less than 0.4. 

The best statistical fit was obtained for the following data.
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Month-specific model for December showed the best statistical fit. Data were considered 

for period from 01/1998 to 04/2005. Results of the model are tabulated below.

Figure 6.12 shows result of month-specific model for delay metric “Average block delay” 

for December.
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Figure 6.12 Average block delay vs. monthly center operations in NAS (Month-specific

model for December)
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Results of regression analyses are shown in table 6.19 below  

Table 6.19

X-Variable: Monthly center operations in NAS

Y-Variable: Average block delay

N A B R-Square

Y = A * X^B 7 3.582E-28 4.240 0.925

Y = X / (A + B*X) 7 5.794E+06 -1.170 0.901

5. Results for delay metric “Average airborne delay”

6. Results for delay metric “Average taxi in delay”

7. Results for delay metric “Average gate arrival delay”

Model 1.2 was estimated by considering the above delay metrics as dependent variables. 

Regression analyses were carried out for all the models. All the models showed poor 

explanatory power. All the models had R squared values less than 0.4. 

Daily models:

Models 2.1 to 2.4

The daily metrics used to develop these models and the period considered to develop data 

sets are exactly the same as the ones used to develop daily models in section 6.7.1.  

The above models were estimated by considering the four delay metrics as the dependent 

variables. Regression analyses were carried out for all the models. All the models showed 

poor explanatory power. All the models had R squared values less than 0.4. 
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6.7.3. Trend analyses of different types of delays

The trends in variation of different types of delays over time and with increase in enroute 

traffic volume were studied. The following delay metrics (by category) were obtained as 

monthly metrics for all months from 01/1998 to 05/2005 from ASPM database. The delay 

metrics are extracted as “delays relative to flight plan” from the ASPM database.

1. Average gate departure delay 

2. Average taxi out delay

3. Average airport departure delay 

4. Average airborne delay

5. Average taxi in delay

6. Average block delay

7. Average gate arrival delay 

The above seven delay metrics are used in this analysis. Enroute traffic volume is 

measured as monthly operations in all centers of NAS.

Two plots were developed to study variation in trend of the seven delay metrics.

1. Time series trend of variation in monthly delay metrics for period: 01/1998 to 05/2005.

2. Variation in monthly delay metrics with increase in monthly enroute traffic volume for 

period: 01/1998 to 05/2005.

Figure 6.13 shows time series trend of variation in monthly delay metrics for period: 

01/1998 to 05/2005.

Figure 6.14 shows time series trend of variation in monthly enroute traffic volume.
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Figure 6.15 shows variation in the seven monthly delay metrics with increase in monthly 

enroute traffic volume.
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Figure 6.13 Time series trend of variation in seven monthly delay metrics
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Figure 6.15 Seven monthly delay metrics vs. monthly center operations in NAS

The variation in time series trend of monthly enroute traffic volume is fairly constant 

from January 1998 to June 2004. The trend of enroute traffic volume shows a slight 

increase from June 2004 to May 2005. The time series trends of different types of delays 

roughly follow the time series trend of enroute traffic volume. 

The variation in the trends of the seven monthly delay metrics with increase in monthly 

enroute traffic volume is shown in figure 6.15. The plot shows that an increase in enroute 

traffic volume is causing an increase in some types of delays, whereas other types of 

delays are unaffected by an increase in enroute traffic volume.

The following forms of delays are most affected by enroute traffic volume

1. Average airport departure delay

2. Average gate departure delay 

3. Average taxi out delay. 

4. Average block delay 
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Variation in trend of the following delays is fairly constant indicating that these delays 

remain unaffected by enroute traffic volume.

1. Average airborne delay

2. Average taxi in delay

6.8. Interpretation of results

6.8.1 Interpretation of results from section 6.7

The daily models performed very poor compared to monthly models and month-specific

models. All the thirteen delay metrics in sections 6.7.1 and 6.7.2 showed poor results for 

the daily models. It was found that twenty four hour period is not sufficient to capture the 

effect of temporal propagation of delays. The effects of temporal propagation of delay 

have been discussed in section 3.3.1 of literature review. 

A total of thirteen delay metrics were analyzed using monthly models and month-specific

models. Monthly models for four delay metrics showed high goodness of fit. Month-

specific models for eleven delay metrics showed significantly high goodness of fit 

compared to monthly models for the same metrics. The reasons for high explanatory 

power of month-specific models have been explained in next section.

All the models were estimated by using two functional forms, the hyperbolic functional 

form and power functional form. In all the models the two functional forms were 

compared for their goodness of fit .Both the functional forms performed equally well. 
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Results of models estimated using hyperbolic functional form have been discussed 

below:

Interpretation of results from section 6.7.1:

Monthly model for metric, “Fraction of center operations in NAS which are delayed due 

to enroute congestion” showed an R squared value of 0.45.Monthly model for metric 

“Fraction of delayed operations delayed due to enroute congestion” showed an R squared 

value of 0.34. 

The R squared values of monthly models were low indicating that much of the variation 

in the data was still unexplained. The month-specific models for both the delay metrics 

showed very high goodness of fit for all twelve calendar months of the year. The month-

specific model for the metric “Fraction of center operations in NAS which are delayed 

due to enroute congestion” showed the highest R squared value of 0.85 for month of 

May. Month-specific model for metric “Fraction of delayed operations delayed due to 

enroute congestion” showed highest R squared value of 0.77 for the month of July. 

Interpretation of results from section 6.7.2:

Relations were estimated between eleven different forms of delays and enroute traffic 

volume to identify the forms of delays used to reduce air delays caused by enroute 

congestion. The eleven different forms of delays used in this analysis are listed below:

1. Average minutes of ground delay

2. Fraction of center operations which are departure delayed.
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3. Fraction of center operations which are delayed enroute.

4. Fraction of center operations which are arrival delayed. 

5. Average gate departure delay 

6. Average taxi out delay

7. Average airport departure delay 

8. Average airborne delay

9. Average taxi in delay

10. Average block delay

11. Average gate arrival delay 

Results of monthly models:

Monthly models were estimated for eleven delay metrics. Monthly models for only two 

delay metrics - “average ground delay” and “fraction of center operations departure 

delayed” showed good explanatory power (R squared values greater than 0.4).

Monthly models for 9 other delay metrics showed very poor explanatory power.

Monthly models for delay metrics, “average ground delay” and “fraction of center 

operations which are departure delayed” showed R squared values of 0.50 and 0.39 

respectively. 



267

Results of month-specific models:

The results of month-specific models for delay metrics along with the calendar months 

are listed in table 6.20.

Table 6.20

1. Average ground delay 12 

months

2. Fraction of center operations 

which are departure delayed

12 months

3. Average taxi out delay       8 months January, March, April, May,

June, August, October and  

November

4. Average airport departure delay 4 months June, August ,October and 

November

5. Average block delay 3 months September, October and December

6. Average gate departure delay 1 month December

It was found that the following forms of delays are used to reduce air delays caused by

enroute congestion.

1. Ground delays

2. Taxi out delay              

3. Airport departure delay 

4. Gate departure delay
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Monthly models and month-specific models for the following delay metrics showed very 

low R squared values. It could be proposed that the following forms of delays are not 

used to reduce air delays caused by enroute congestion: 

1. Airborne delay 

2. Taxi in delay

3. Gate arrival delay 

Statistical analyses showed that there is a relation between block delay and enroute traffic 

volume. ASPM computes “average block delay” as the difference between actual gate-to-

gate time and scheduled gate-to-gate time. Hence, block delay includes airport departure 

delay, taxi out delay, airborne delay, taxi in delay, and gate arrival delay. Statistical 

relation was not seen between delay metrics-airborne delay, taxi in delay, and gate arrival 

delay and enroute traffic volume. Statistical relations were seen between enroute traffic 

volume and delay metrics -airport departure delay and taxi out delay.

It is possible that the explanatory power of the delay metric “block delay” is because of 

strong statistical relations between enroute traffic volume and delay metrics -taxi out 

delay and airport departure delay.

6.8.2 Interpretation of results from section 6.7.3

In sections 6.7.1 and 6.7.2, types of delays are identified which are used to reduce air 

delays caused by enroute congestion. Airport departure delay, gate departure delay and 

taxi out delay were identified as the types of delays used to reduce air delays caused by 

enroute congestion.
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In section 6.7.3, trend analyses of different types of delays over time and with increase in 

enroute traffic volume is studied. This analysis confirms the results of the statistical 

analyses which showed that airport departure delay, gate departure delay and taxi out 

delay are used to reduce air delays caused by enroute congestion.

6.8.3 Relation between delays and enroute traffic volume in the NAS

It is found that a hyperbolic function is applicable for estimating relations between delays 

and enroute traffic volume in the NAS. As the enroute traffic demand approaches NAS

capacity, a small increase in traffic demand causes an asymptotic increase in delays. The 

hyperbolic function used in the analyses fits the delay-volume data very well.

Wieland 2004 shows confidence in his models by explaining that the relations between 

delays and traffic volume are estimated from recorded data and not from simulation 

models. Similar to Wieland, confidence can be placed in the results of the estimated 

statistical models, since these models are estimated from delay and traffic data recorded 

by FAA databases.  

The monthly models developed by us gave poor results for all delay metrics. The R 

squared values of these monthly models ranged from 0.34 to 0.58. 

Month-specific analyses were performed for the same data which were used to estimate 

monthly models. Month-specific models gave very good results compared to monthly 

models. A significant proportion of variation in the data can be explained with the month-

specific models. It is proposed that the monthly operational capacity of enroute airspace 

could differ considerably for different calendar months of the year. Monthly capacity of 
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enroute airspace could differ for each calendar month of the year because of the 

following reasons:

i. Month-specific weather influences the monthly operational capacity of the enroute 

airspace. Operational capacity of enroute airspace is different for each calendar month of 

the year. Weather is responsible for the significant variation in the data in the models 

developed by us. Month-specific models can explain a significant proportion of variation 

in data, which is caused by weather.

ii. Air traffic demand in the NAS is different for each calendar month of the year. ATC 

system implements different programs in NAS during specific calendar months of the 

year .These programs are implemented to increase efficiency of the NAS and to reduce 

delays in the system.

6.8.4. Reasons for low explanatory power of the monthly and month-specific models

The following reasons are responsible for the low explanatory power of the monthly 

models and month-specific models estimated in sections 6.7.1 and 6.7.2.

i. Factors affecting the hyperbolic relation between delays and demand in the NAS

Wieland 2004 explains that the simple queuing relation used in his models is valid if the 

monthly enroute operational capacity of NAS is held constant.

Similarly, the hyperbolic function used in the estimated models is valid only if the 

monthly enroute operational capacity of NAS is held constant.
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The monthly enroute operational capacity of NAS could be affected by many factors. 

Wieland 2004 has explained factors affecting monthly enroute operational capacity of 

NAS, which have been discussed in section 3.3.3 of literature review. The factors 

proposed by Wieland 2004 are summarized below:

1. Airspace, airport and procedural restrictions

2. Scheduling patterns i.e.  Mix of freight traffic and point – to – point and hub and spoke 

passenger traffic. Scheduling greater number of flights during midnight and 5:00 AM 

local time. 

3. Change in control procedures, pilot skills, controller workload, and winds

4. Adjustments in the behavior of the users of the system which could include excessive 

cancellations of flights, schedule adjustments, more frequent use of off peak times, 

serving different airports, and changes in size of aircraft and service frequency. 

5. Regulatory changes like the current slot auctioning at LGA airport 

6. Programs implemented by FAA to increase the capacity of NAS like Operational 

Evolution Plan (OEP).

7. Planned future improvements and changes resulting from a change of business 

practices adopted by the aviation service providers. 

ii. Incorrect measurement of air traffic demand imposed on the NAS.

In section 3.2.2.1 of the literature review it has been explained that characteristics of 

aircraft and operations cause varying levels of ATC complexity. 
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ATC complexity affects the workload on the controllers and ATC system. Depending 

upon the characteristics of aircraft and operations, the same number of operations can 

cause different workload on the system. The current measure of system workload (NAS 

demand) is operations per unit time which does not capture the ATC complexity involved 

in controlling those operations. 

Kies 2004 explains that an increase in traffic volume of regional jets can cause increased 

congestion in enroute airspace and at some airports. Regional jets can also cause an 

increase in congestion and traffic complexity in transition airspace where climbs and 

descents of aircraft take place. 

The current model uses monthly operations as a measure of enroute air traffic demand. 

Monthly operations do not represent the ATC complexity imposed by those operations 

and the true demand imposed on the system. This could be one of the reasons for low 

variance in the monthly and month-specific models.

iii. Effect of localized airspace congestion in the NAS

The aggregate analysis for entire NAS using monthly and daily measures of enroute 

traffic volume and delays could average the effect of localized congestion and delays 

which occur at a specific place and time in NAS.

In section 5.7.1, it was found that congestion in a considered sector or center does not 

increase excess distances traveled by flights or time delays imposed on flights passing 
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through that sector or center. The problem of aggregating this analysis in time and space 

is that, the effect of traffic congestion in a sector will be averaged out.

Simulation software’s need to be developed which can model time delays (circular 

holding, MIT restrictions and ground delays) imposed on flights and excess distances 

traveled by flights (rerouting of flights around a sector and “vectoring”) because of 

congestion in parts (sectors, fixes and jetways) of enroute airspace.

6.9. Drawbacks of analyses

The drawbacks of analyses performed in section 6.7 have been discussed below:

6.9.1. Drawbacks of data used in the analyses

In the analysis, enroute traffic volume is measured in terms of center volume in all 

centers of NAS. OPSNET center volume data has been used for estimating enroute traffic 

volume. In section 3.3.5.2 of literature review, we have discussed the accuracy and 

advantages of OPSNET center volume data in representing the total enroute traffic in 

NAS.

The delay data from OPSNET and ASPM databases were used in the analysis. The delays 

provided by OPSNET and ASPM databases do not represent the total delays in the NAS. 

The drawbacks of delay and traffic volume data provided by each database have been 

discussed below:
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Delays from ASPM database:

By agreement with the FAA, ASPM flight data are filed by certain major air carriers for 

all flights to and from most large and medium hubs (31 airports). The ASPM database 

also includes data from the Airline Service Quality Performance (ASPM) database,

Enhanced Traffic Management System (ETMS) database and Aeronautical Radio, Inc. 

(AIRINC).  ASPM database provides delay and traffic data for 55 airports in NAS.

Delays from OPSNET database:

OPSNET provides data for delays and traffic volume for IFR traffic, non IFR traffic, 

flights which file plan and flights which do not file flight plan with the ATC system. 

OPSNET data are recorded by all air traffic control (ATC) facilities, except the flight 

service stations. OPSNET provides delay and traffic data for a total of 539 airports in 

NAS.  

Drawbacks of data: 

ASPM does not provide delay data for all flights in NAS; however unlike OPSNET 

database it provides delay data for less than 15 minute delays. Average delay from ASPM 

database was used in the analyses. It is assumed that the average delay from ASPM 

database represents the average delay for all traffic operations in NAS.

OPSNET provides delay data for all flights in NAS. However OPSNET provides delay 

data for only greater than 15 minute delays. In section 6.7, relations have been estimated 

between OPSNET delays and enroute traffic volume. These delay volume curves 

underestimate the total delays caused by enroute traffic volume.
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6.9.2. Drawbacks of month-specific models

The main drawback of the month-specific analysis is that few data points were available 

for regression analysis. Data points in the month-specific datasets varied from maximum 

of sixteen data points to a minimum of six data points.
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CHAPTER VII: CONCLUSIONS

In this study, relations are estimated among enroute traffic, controller staffing and 

ATC system performance. The following three main relations are estimated:

1. Relation between controller staffing and enroute NAS air traffic

2. Relation between controller performance and air traffic in NAS sectors and centers

3. Relation between ATC system performance and enroute NAS air traffic 

Conclusions for each of the three estimated relations are discussed separately in sections 

7.1, 7.2 and 7.3.

7.1. Relations between controller staffing and enroute air traffic in the NAS 

During discussions with controllers it was found that air traffic operations and ATC 

complexity are used as a basis for staffing controllers in sectors. In the literature it is seen 

that difficulties arise in the measurement of ATC complexity. In section 7.1.1 the impact 

of enroute traffic on ATC complexity and controller staffing is studied.

 In section 7.1.2 findings from the literature, the FAA controller forecasting model, and

FAA`s controller staffing standards and analyses are used to develop a relation between 

controller staffing and enroute traffic. The results of estimated relations between 

controller staffing and operations are discussed. The factors which bias the estimated 

relations between controller staffing and operations are explained in section 7.1.2.2.

7.1.1. Relation between enroute traffic, ATC complexity and controller staffing

For developing a macroscopic relation between controller complexity, controller 

workload and traffic volume for the entire NAS, it is proposed that regardless of airspace 
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complexity, an increase in traffic volume will cause increase in controller complexity and 

workload. The use of the HCI metric developed by FAA to staff controller positions 

supports the hypothesis that traffic characteristics can be used to measure complexity and 

workload on controller. (The HCI metric is discussed in section 3.1.5.2)

In section 4.1.1 relations are estimated between ATC complexity (HCI-Hourly 

Classification Index) and air traffic operations which show that center complexity 

increases linearly with center operations. ATC controller grade levels and salaries in 

centers increase linearly with NAS center operations.

Based on the literature review and analyses it is shown ATC complexity increases with 

enroute traffic. Hence the variable “operations per unit time” captures the ATC 

complexity involved in controlling those operations. In this study, operations per unit 

time is considered as a measure of controller staffing for sectors and centers and for 

entire NAS.   

7.1.2. Relation between controller staffing and enroute traffic

A proposed relation between controller staffing and enroute traffic is based on findings 

from the literature and FAA controller staffing standards. The FAA controller forecasting 

model (FAA 1991) uses linear regression to relate controller staffing with forecasted 

annual center operations. Hence, it is found that controller staffing grows at least linearly 

with air traffic operations. Findings from sections 3.1.6, 3.1.7 and 4.1.2 support the 

hypothesis that the numbers of air traffic controllers required are at least equal to those 
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predicted by the linear regression staffing models used by FAA. Since the controller 

staffing model equations are linear, it is found that the controller staffing grows at least

linearly with air traffic operations. The findings from sections 3.1.6, 3.1.7 and 4.1.2

which support the proposed relation are explained in section 7.1.2.1.

7.1.2.1. Findings from sections 3.1.6, 3.1.7 and 4.1.2 which support the proposed 

relation between controller staffing and enroute traffic.

Findings in the literature review, FAA controller staffing models and standards, and 

analyses are the basis for the hypothesis that the controller staffing grows at least linearly 

with air traffic operations. 

1. An increase in center operations will cause an increase in controller task times and 

controller staffing for handling same number of operations in center. This finding has 

been discussed in detail in section 3.1.6. 

2. There are diseconomies of staffing additional controllers to sectors. This finding has 

been discussed in detail in section 3.1.7.

3. The creation of additional NAS sectors through resectorisation causes an increase in 

controller staffing. This finding has been discussed in detail in section 3.1.7.

4. With growth in air traffic operations during off-peak periods, additional staffing of 

controllers will be required during off-peak periods. This finding has been discussed in 

detail in section 3.1.7.

In section 4.1.2 relations are estimated between the growth of air traffic operations during 

the peak 1830 hours and second busiest 1830 hours of a 365 day period in center. Results 

show that the relation between peaking factor and air traffic is linear for three out of five 

centers. Growth rate for operations is similar for peak and off-peak periods in some 
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centers. As center operations increase during off-peak periods, additional staffing of 

controllers and flight data positions will be required during those periods.

The entire NAS should be considered in estimating relations between controller staffing, 

and enroute traffic. It is discussed in the literature that coordination exists among 

different ATC units and the ATC system performs tactical and strategic planning for the 

entire NAS. Different programs implemented by ATC system are also implemented for 

entire NAS. 

In section 4.1.3 it is found that relations estimated between “monthly onboard controller 

staffing” and “monthly center operations” did not show the hypothesized expected 

relation in which controller staffing grows at least linearly with operations. 

Relations estimated for entire NAS and individual centers did not exhibit the proposed 

relation between controller staffing and enroute traffic. It is suggested that this 

unexpected result is biased by factors which affect the estimated relations. These factors 

are identified based on literature. The factors which bias the estimated relations between 

controller staffing and enroute traffic have been discussed in literature and are 

summarized in section 7.1.2.2 below.  

7.1.2.2. Factors which bias the estimated relations between monthly onboard 

controller staffing and monthly enroute operations in NAS centers
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1. The effect of improvement in ATC equipage and individual differences among 

controllers like work experience, age, training and performance of controllers could 

affect the estimated relations.

2. The strategic and tactical planning and air traffic management performed by ATC 

personnel other than the controllers could bias the relations between controller staffing 

and operations in sectors and centers of NAS.

3. Controllers are assigned different ATC grade levels. In the estimated relations it is 

assumed that controllers belonging to different grade levels are equal in terms of handling 

air traffic activity. Other ATC positions which control air traffic are not included in the 

measure of controller staffing.

4. The variable “monthly onboard controller staffing” in a center may not represent total 

number of controllers who worked at a center facility in a month. An explanation is 

provided in section 4.2.3. The variable “monthly onboard controller staffing” in a center 

does not capture the total controller work time spent by controllers in a month

Such analyses may be tried in the future with SISO data using the variable “Monthly 

controller work hours in a center”.

These results do not show the proposed relation between controller staffing and enroute 

traffic. This analysis should be repeated using variable “Monthly controller work hours in 

a center”. 

In section 4.1.4 the adequacy of controller forecasting model is evaluated by comparing 

model predicted controller staffing with the actual on board controller staffing. The result 
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of the analysis and its effect on the relation proposed between controller staffing and 

enroute operations is discussed below:

7.1.2.3 Assessing the adequacy of current controller forecasting model.

It is found that the FAA model predicted controller staffing is greater than the actual 

onboard controller staffing for the considered data. It can be concluded that the controller 

forecasting model (which uses linear regression to relate controllers and operations)

provides more than adequate air traffic controllers in NAS centers. Based on these results 

it is difficult to draw any conclusions regarding the proposed relation between controller 

staffing and enroute traffic. 

Analyses in section 4.1.3 do not support the hypothesized relation in which controller 

staffing increases at least linearly with air traffic operations. This is due to bias caused 

by factors which affect the estimated relations. These factors are discussed in section 

7.1.2.2. However findings in section 7.1.1 and 7.1.2 support the proposed relation 

between controller staffing and enroute traffic. Feasible analyses for estimating relations 

among controller staffing, enroute traffic and factors affecting controller staffing are 

limited by the data which the FAA records. 
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7.2 Relations between controller performance and air traffic in NAS sectors and 

centers

Controller workload and performance measures are developed for sectors and centers in 

NAS. Models are developed to estimate relations between controller workload and 

performance in sectors and centers. In the literature it is found that the controller 

performance metrics for a sector/center can be biased by congestion in successive enroute 

sectors/centers along flight paths. Hence models are developed to relate controller 

performance in a center/sector and congestion in successive centers/sectors. Flights 

between a city pair are analyzed, wherein controller performance in a center is related to 

congestion in all the successive centers on flight paths. Three models which are discussed 

in sections 5.4.1 to 5.4.3 are developed. In the literature it is found that controller 

performance metrics may be biased due to terminal congestion, weather, runway capacity 

constraints and equipment failures. Hence care is taken in choosing data for 

sectors/centers and time periods so that the flights are not delayed due to those causes.

In another analysis the performance of R and R & D controller staffing configurations in 

a sector is compared in managing the air traffic activity assigned to each configuration

The conclusions based on the analyses and results of estimated models are discussed 

below:

7.2.1. Conclusions based on results of the models used to estimate relations between 

controller performance and air traffic in sectors and centers 
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Relation between controller performance and air traffic in sectors and centers

Delays and excess distances traveled by flights are considered as measures of controller 

performance. Based on the literature, a relation in which delays grow nonlinearly and 

steeply as enroute traffic increases was expected for NAS sectors and centers. Similarly a 

linear relation with a positive slope was expected between excess distance traveled by 

flights and enroute traffic in sectors and centers of NAS.

Results from models show that there is no relation between controller performance and 

controller workload metrics. Results from scatter plots developed between controller 

performance and controller workload show almost flat relations in all cases. t test results 

also show that the values of controller performance metrics are equal under different 

levels of controller workload. Delay incurred by a flight in a center is the sum of delays 

in individual sectors. It is possible that varying congestion levels in individual sectors 

could affect the total delays in a center. Hence analyses are performed considering sector

airspaces. However results obtained are similar to results for centers.

This shows that the current air traffic activity in sectors and centers of NAS does not 

significantly affect the performance of the controllers in controlling the air traffic in the 

same sectors and centers. The demand has not reached the capacity in sectors and centers 

of NAS. The current air traffic activity in sectors does not force controllers to impose 

time delays or excess distances on flights. In the considered data it is found that the ATC 

system, controllers and programs implemented by ATC system are functioning efficiently 
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in controlling flights in sectors and centers so as not to delay flights because of 

congestion in same airspace. 

It is found that the current staffing methods provide adequate controller staffing for 

different levels of traffic activity in sectors. The performance of controllers in sectors is 

not degraded due to understaffing of controllers. 

It is found that the performance of a controller in a sector/center is not affected by

congestion in any of the successive sectors/centers along flight paths passing through that 

sector/center.

Comparison of results with the relation proposed by Howell et al 2003

Results are compared with the relation between traffic activity and average excess 

distance (traveled by flights), which has been proposed by Howell et al 2003.  Based on 

this comparison it is seen that the current traffic levels in sectors and centers of NAS can 

be categorized into the “route structure regime” (figure 3.3). Howell et. al. (2003) explain 

that traffic levels in the airspaces are such that flights are restricted to stay on route 

structure, but extensive maneuvering is not required to control traffic flow. Excess 

distance traversed by flights in this regime is almost constant.

Howell et al. 2003 propose that the normalized traffic activity in the route structure 

regime is between 30% to 70% of the peak traffic activity. Hence it is suggested that the 

current traffic activity is between 30% to 70% of the maximum activity which could be 

handled in sectors and centers. Howell at al 2003 propose implementation of tools or 
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initiatives to reduce the excess distance in this regime. They also report that the current 

congestion levels in sectors cause nominal delays because of sector capacity limitations.

Howell et al 2003 report results obtained by the FAA Technical Center using NASPAC 

simulation. That FAA study is reported to show that enroute sector capacity limitations 

by the year 2010 will cause “inefficiency” (excess distance delays) comparable to the 

delays caused in “route structure regime”.  That FAA study is also reported to show that 

by 2020 enroute sector capacity constraints will be the greatest cause of (inefficiency) 

delays.

The results of performance comparison of the R controller staffing configuration with R 

& D controller staffing configuration (in a sector) in managing the air traffic activity 

assigned to each staffing configuration are discussed below:

7.2.2. Performance comparison of R and R & D controller staffing configurations

For some sectors it is found that the performance of the two different controller staffing 

configurations is not equal and no specific staffing configuration performed better than 

the other. 

The facility managers and supervisors use their judgment and consider complexity in

assigning an additional D controller to a sector. The traffic activity and corresponding 

controller workload subjected to the two controller staffing configurations could be 

different. We conclude that the current method of staffing an additional “D” controller to 

a sector could be inadequate for some sectors in NAS.  The above results are based on the 

assumption that the controller performance metrics are affected only by controller 
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workload caused by air traffic in same sector, since required care is taken in choosing the 

sectors and time periods.

From data analyses, it is found that a single sector or center airspace is insufficient for 

estimating relations between controller performance and controller workload in the same 

sector or center. That is unsurprising, since congestion effects easily spill beyond a small 

airspace. It is concluded that the relations between controller performance and air traffic 

should be estimated considering entire NAS. The following difficulties are encountered 

while estimating relations between controller performance measures and air traffic 

congestion in a sector or center.

7.2.3. Difficulties in estimating relations between controller performance measures 

and air traffic congestion in a sector or center.

i. Factors which bias the controller performance metrics and estimated relations

Although care is taken in choosing data for sectors/centers and time periods the relations 

estimated between controller performance metrics and controller workload metrics could 

be biased. Based on statistical analyses for some models it is found that different types of 

operations could have restrictions imposed on them because of terminal and airport 

congestion at arrival airports or congestion in the upstream enroute centers on the route of 

the flights.

ii. Drawbacks in the data used to estimate relations 

1. It is found that simulation models are not suitable for estimating delays imposed on 

flights due to sector and center congestion. Simulation models employ built-in rules to 
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delay flights. Hence it is decided to use flight track data to measure delays caused by 

sector and center congestion. The ETMS boundary crossing data used for analyses had 

errors and did not consist of all flights traversing the airspaces. ETMS data are identified 

as the best source of flight track data recorded by FAA, so despite the above drawbacks 

ETMS data are the only source of flight track data which can be used for the proposed 

analyses.

2. There are drawbacks in models analyzed in section 5.4.3. Few data points are available 

for analysis. Analyses can be performed only for those flights which fly through the same 

centers in the same sequence along their flight paths. This analysis could not be 

performed for sectors since detailed ETMS data are not recorded for sectors.

7.3 Relations between ATC system performance and enroute air traffic in the NAS

It is found that the relations between controller (ATC system) performance and enroute 

air traffic cannot be estimated for individual sectors and centers in NAS due to the factors 

which bias the controller performance metrics and the difficulties in estimating these 

relations. These factors are discussed in section 7.2. 

Based on literature and the relations estimated for sectors and centers, it is found that the 

following considerations should be employed for estimating relations between controller 

(ATC system) performance and enroute air traffic.
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7.3.1. Considerations in estimating relations between ATC system performance and 

enroute air traffic in the NAS

i. The relations are to be estimated for entire NAS 

The enroute capacity of the NAS is not only limited by the performance of controllers 

staffed in its sectors. The performance of entire ATC system needs to be evaluated in 

reducing delays caused by enroute traffic volumes in the NAS. The factors which make it 

necessary to estimate relations for NAS are discussed in section 3.3.1.

ii. The relations are to be estimated by considering monthly and daily measures of 

delays and enroute traffic volumes

The factors which make it necessary to estimate relations by considering daily and 

monthly measures of delays and enroute traffic volume are discussed in section 3.3.1.

iii. The need to use recorded delay data to estimate relations 

The suitability of simulation models is studied to estimate relations between NAS 

performance and enroute traffic. The limitations of simulation models for estimating the 

relations are discussed in section 3.3.2.1. This necessitates the use of recorded data on the 

movement of flights in the NAS, consisting of flight transit times and distances traveled. 

Based on these data, analyses are proposed to estimate relations between flight times, 

excess distances traveled by flights and enroute traffic volumes. It is found that the NAS 

performance measures -flight times and excess distances are biased. These difficulties in 

estimating relations are explained in sections 9.1 and 9.2.
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Analyses are proposed considering sector MAP values and enroute delays caused by 

Traffic Management processes as measures of system performance. These proposed 

analyses are discussed in sections 9.3.1 and 9.3.2 and could not be performed due to 

unavailability of data.

A need is identified for using recorded delay data to estimate relations between recorded 

delays and enroute traffic volume in NAS. OPSNET data are identified as the best source 

of data on delays due to enroute traffic volumes. The advantages of OPSNET data are 

discussed in section 3.3.5.

Relations are estimated between delays (specifically caused by enroute congestion) and 

enroute traffic volume in the NAS. In the literature it is found that ground delays, taxi out 

delay and departure delays are imposed on flights at the origin airport to reduce air delays 

caused by enroute airspace congestion. Relations are estimated between eleven different

forms of delays and enroute traffic volumes to identify the different forms of delays used 

to reduce air delays caused by enroute airspace congestion. Time series trends and trends 

in variation of delays with increase in enroute congestion are useful for identifying delay 

types used to reduce air delays.

Daily and monthly models are developed for estimating relations between delay metrics 

and center operations in the NAS. In daily models, daily measures of delays are related 

with daily NAS center operations. In monthly models, monthly measures of delays are 

related with monthly NAS center operations. Month-specific models are also developed 
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considering same calendar month of successive years as data points. The following 

conclusions are reached based on results of analyses and estimated models.

7.3.2. Conclusions about relations between delays and enroute traffic volumes in the 

NAS

The daily models perform very poorly compared to monthly models and month-specific

models. All the considered delay metrics in analysis show poor results for the daily 

models. It is concluded that considering days as time periods is not sufficient for 

capturing the effect of temporal propagation of delays. Month-specific models show the 

highest goodness of fit, followed by monthly models. A total of thirteen delay metrics are 

analyzed using monthly models and month-specific models. Monthly models for four 

delay metrics show high goodness of fit. Month-specific models for eleven delay metrics 

show significantly higher goodness of fit compared to monthly models. The need to 

develop monthly models and month-specific models is discussed in sections 6.4.3 and 

6.4.4 respectively.

A significant variation in the data in the monthly models could be explained with the 

month-specific models. The monthly operational capacity of enroute airspace could differ 

considerably for different months during a year for the following reasons:

a. Month-specific weather effects could significantly affect the monthly NAS capacity.

b. Air traffic demand in the NAS is different for each calendar month. ATC system 

implements different programs in NAS during specific months.
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The following conclusions can be drawn based on the results of monthly models and 

month-specific models.

1. The hyperbolic function is applicable for relating the fraction of operations delayed 

due to enroute congestion and enroute NAS traffic volumes. The hyperbolic function is 

also applicable for relating the fraction of delayed operations which is delayed by enroute 

congestion and enroute traffic volumes in the NAS. The hyperbolic function fits the 

delay-volume data very well. These results show that as enroute traffic volumes, increase

the fraction of operations delayed due to enroute congestion and the fraction of delayed 

operations delayed due to enroute congestion increase hyperbolically. 

2. The hyperbolic function gives a good statistical fit when relations are estimated 

between different delay types and enroute traffic volumes in the NAS. The ATC system 

uses specific delay types to reduce air delays caused by enroute airspace congestion.

The following forms of delays are used to reduce air delays caused by enroute airspace

congestion: 

a. Ground delays

b. Taxi out delay              

c. Airport departure delay 

d. Gate departure delay

The ATC system appears to be quite efficient in keeping delays due to enroute congestion 

on the ground at the departure airports. This suggests that Ground Delay Programs have 

been effective in reducing air delays. 
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The following forms of delays are not used to reduce air delays caused by enroute

airspace congestion.

a. Airborne delay 

b. Taxi in delay

c. Gate arrival delay

Trend analysis of different types of delays performed in section 6.5.3 confirms the results 

of the monthly and month-specific models which show that taxi out delay, airport 

departure delay and gate departure delay are used to reduce air delays caused by enroute

airspace congestion. Variation in trend of airborne delay and taxi in delay is fairly 

constant, indicating that these delays remain unaffected by enroute congestion.

The statistical models are estimated from delay and traffic data recorded by FAA 

databases. Hence confidence can be placed in the results of these models, as suggested by 

Wieland 2004. However a significant variation in data is still unexplained by the models. 

There also some drawbacks in the estimated models. These drawbacks and the reasons 

for variation in data are explained below:

7.3.3. Drawbacks of monthly and month-specific models 

1. The delay-demand relations used in the models are valid only if the monthly enroute 

operational capacity of NAS is held constant, as suggested by Wieland 2004. There are 

factors which affect the enroute operational capacity of NAS, as suggested by Wieland 

2004, which are discussed in section 3.3.3 of literature review.

2. Measurement of true demand imposed on ATC system
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The characteristics of aircraft and operations lead to varying levels of ATC complexity 

and workload on controllers and on the ATC system. The monthly and month-specific 

models developed in sections 6.5.1 and 6.5.2 use monthly operations as a measure of 

enroute air traffic demand. The current measure of workload on controllers and ATC 

system is operations per unit time; it does not capture the ATC complexity involved in 

controlling those operations. Monthly operations do not represent the true demand 

imposed on the system and this could be one of the reasons for the low explanatory 

power of the models. 

Reasons for low explanatory power of the models are discussed in section 6.8.4

3. Drawbacks of delay data used to estimate models.

The delay data from OPSNET and ASPM databases do not represent the total delays in 

the NAS. ASPM does not provide delay data for all NAS flights. Hence it is assumed that 

the average delay from ASPM database represents the average delay for all NAS traffic 

operations. 

Although OPSNET provides delay data for all flights in NAS, OPSNET provides delay 

data only for delays exceeding 15 minutes. The delay volume curves estimated using 

OPSNET delays underestimate the total delays caused by enroute congestion.
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7.4. Models and results which can be incorporated in the FAA NAS Strategy 

Simulator

In this study relations are estimated among enroute traffic, controller staffing and NAS 

performance. The following findings, results and models can be incorporated in the NAS 

Strategy Simulator currently being developed by FAA.

1. A relation in which controller staffing increases at least linearly with enroute air traffic 

operations is found in the NAS. The relation between controller staffing and enroute air 

traffic in the NAS has been estimated in chapter IV.

2. It is found that the relation between center complexity (HCI metric developed by FAA) 

and center operations is linear in the NAS. The relation between controller grade levels 

(wages) and center operations is found to be linear in the NAS. In section 4.1.1 regression 

analyses were performed by relating HCI metric to center operations in centers. The 

above finding is based on the regression analyses conducted for five chosen centers in the 

NAS.  

3. The following models can be incorporated in the strategy simulator. These models 

were developed and estimated in sections 6.5, 6.6 and 6.7.

Model 1:

A monthly model is developed to estimate the relation between “Fraction of center 

operations delayed due to enroute congestion” and center operations in NAS 

Model 2:

A monthly model is developed to estimate the relation between “Fraction of delayed 

operations delayed due to enroute congestion” and center operations in NAS 
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Model 3:

A monthly model is developed to estimate the relation between “average minutes of 

delay due to enroute congestion” and center operations in the NAS.This model is 

developed using models 1 and 2 discussed above. 

Model 4: 

i. A monthly model is developed to estimate the relation between “average ground delay” 

and enroute traffic in the NAS.

ii. Monthly models are developed to estimate relations between the following delay types 

and enroute traffic in the NAS

1. Average taxi out delay              

2. Average airport departure delay 

3. Average gate departure delay

4. Fraction of center operations which are departure delayed
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CHAPTER VIII: RECOMMENDATIONS FOR FUTURE WORK

The recommendations for future research are discussed in sections 8.1 to 8.5. 

8.1. Relation between delays due to controller understaffing and controller 

staffing/enroute traffic in the NAS

CFMU (Eurocontrol Central Flow Management Unit) computes minutes of delays due to 

understaffing of controllers. The procedure used by CFMU can be adopted to estimate 

delays due to understaffing of controllers in the US National Airspace System

Using these delay data, relations should be estimated between delays due to understaffing 

of controllers and controller staffing/enroute traffic in the NAS.

8.2. Analyses using the variable “controller work minutes in a center”

In section 4.2.3 relations were estimated between monthly air traffic operations and 

onboard number of controllers staffed in centers.

In the present study, after it was realized that the variable “Monthly onboard number of 

controllers staffed in a center” does not capture the monthly controller work hours in a 

center, the variable “Monthly controller work hours worked by all controllers in a center” 

was substituted in the revised analysis. SISO data were applicable, but only after 

considerable processing to extract them in the required format. Analysis 4.2.3 should be 

repeated using the SISO data.

The variable “controller work minutes in a center” should be used to estimate the 

following relations: 

i. Controller staffing (controller work minutes) vs. enroute NAS traffic
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ii. Controller staffing (controller work minutes) vs. NAS delays

8.3. Models estimated using minutes of delays due to enroute congestion (delays 

recorded by OPSNET by cause center volume)

For the enroute airspace relations among variables controller staffing, operations and 

NAS performance measures are to be estimated for entire NAS and not for individual 

sectors and centers in NAS. Minutes of delays due to enroute congestion should be used 

to estimate relations between delays specifically caused by enroute congestion and 

enroute congestion in NAS.  

Monthly measures of delays and enroute congestion should be considered and monthly as 

well as month-specific models should be developed to estimate relations between delays 

and enroute congestion. 

Data on minutes of delays caused by enroute congestion 

The current FAA databases do not record minutes of delays caused by enroute 

congestion. The OPSNET database records operations delayed due to the cause “center 

volume”. In section 6.5.1 models were developed (and estimated in section 6.7.1)  to

relate delays specifically caused by enroute congestion and enroute traffic volumes in the 

NAS. The following measures of delays were used for performing these analyses.

1. “Fraction of NAS center operations delayed by enroute congestion”.

2. “Fraction of delayed operations delayed by enroute congestion”

Since the above variables do not measure delays, it becomes necessary to estimate delay-

demand relations using minutes of delays caused by enroute congestion. Data from 
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different databases (TMU (Traffic Management Unit) log, OPSNET) and data sources 

should be compiled to obtain data on minutes of delays caused by enroute congestion. 

The models proposed in section 6.5.1 should be estimated using variables –

1. “Average minutes/total minutes of delay due to enroute congestion”.

2. “Fraction of total time delays caused by enroute congestion”

The current online databases such as ASPM, FAA and OPSNET on the FAA APO 

website are very efficient in making the data accessible in form of a query model.

8.4. Revision of Position Classification Standard for ATC (FAA 1999), currently 

used by FAA to measure center complexities and assign controller grades & wages.

Considering the advancements made in simulation models to measure ATC workload, 

such models could be employed to measure different forms of ATC complexity which are 

currently not being measured by the FAA 1999 complexity guide. Currently FAA is 

revising controller staffing standards based on classification of sector complexity into 3 

types, namely sectors with parallel flight routes, sectors with intersecting flight routes and 

sectors with feeder traffic (i.e. with fixes). 

8.5. Revision and validation of FAA 1997 standards

Validation of the standards:

The validation of the 15 minute controller staffing model developed in FAA (1997) was 

performed by the ATO office (Mr. Elliott McLaughlin and his team) in a study entitled-

“Trip Report Cleveland Air Traffic Control Facilities” in 2004. The validation of FAA 
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(1997) -15 minute controller staffing model has been performed for one facility. It would 

be desirable to extend that validation to additional facilities.

Revision of standards:

The need to update the standards is explained in section 3.1.8.

8.6. Analyses to be performed after obtaining the required data 

8.6.1. Analysis 4.1.5 - Relation between number of dynamic sectors in a center and 

air traffic operations handled by that center 

The dynamic resectorisation data are recorded at the individual facilities, but not sent to 

the ATO office. These data should be obtained from individual facilities for performing 

the analyses.

8.6.2. Analysis 9.3.1 - Sector MAP values are used to measure NAS performance, for 

estimating relations between NAS performance and enroute traffic volumes.

Analysis 9.3.1 should be performed after obtaining the required data.

8.6.3. Analysis 9.3.2. Enroute delays caused by Traffic Management processes are 

used as measures of NAS performance, for estimating relations between NAS 

performance and enroute traffic volumes.

Analysis 9.3.2 should be performed after obtaining required data.
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8.7. Estimating three-dimensional relations among NAS enroute traffic demand, 

controller staffing and NAS performance. It is desirable to introduce a technology 

factor while estimating these relations, to study the effect of improvement in technology.
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CHAPTER IX: UNREALIZED ANALYSES

Based on the literature review, four analyses were proposed to estimate relations 

between ATC system performance and enroute traffic volume in the NAS. The four

proposed analyses have been explained below in sections 9.1 to 9.3.

In sections 9.1 and 9.2, analyses have been proposed to estimate relations between 

enroute traffic volumes in the NAS and the flight times and excess distances traveled by 

flights from origin to destination airports. Drawbacks were identified in both the 

analyses. These drawbacks could bias the proposed relations. 

Analyses 9.3.1 and 9.3.2 could not be performed due to unavailability of data required to 

perform those analyses.

Hence it is decided to use flight delay data recorded by FAA databases to estimate 

relations between delays and enroute traffic volumes in the NAS. In sections 6.5 to 6.8 

models are developed and analyzed to estimate these relations. Flight delay data 

recorded by FAA databases are used to estimate these models. 

9.1. Analysis proposed to estimate relations between flight times and enroute traffic 

volumes in the NAS

An analysis was proposed to study the effect of NAS enroute traffic volumes on the 

enroute flight times for flights between all city pairs in the NAS. Day or month was to be 

considered as the time interval for performing the analyses.

DFTI (Daily Flight Time Index) metric developed by Hansen (2004) was identified as a 

suitable measure of flight time traveled by an “average passenger commercial flight” in 
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NAS. Hansen 04 proposes DFTI as a measure of operational performance of NAS. DFTI 

is weighted average flight time for a set of city pairs. DFTI is calculated for 776 city-

pairs which were connected by 7000 daily flights during period from1995 to 2002. 

Hansen and Leung (2003).Hansen and Leung (2003) explain that DFTI (Daily Flight time 

Index) is a daily performance metric, which measures daily variation in flight time and 

the components of flight time. DFTI is the sum of weighted Daily Average Flight Time 

components (DAFT) - origin delay, taxi-out time, airborne time and taxi-in time. DAFT 

are weighted average flight times wherein weights have been applied to city pairs based 

on their representation. Weights are applied for maintaining day-to-day comparability. 

DFTI considers changes in schedule padding and changes in city-pair distribution of 

flights. Monthly adjustment of city pairs and their weights is carried out. In Hansen 2004 

DFTI is developed as a measure of total flight time which consists of components - daily 

average origin time, daily average airborne time and daily average destination time.

Hoffman and Voss (2000) explain that in high traffic conditions, speed controls over 

aircraft; traffic offloading and holding will increase the enroute time of a flight. It is 

proposed to estimate relations between total flight times and enroute traffic volumes for 

flights along a set of city pairs. It is proposed to estimate relation between daily and 

monthly DFTI values and daily and monthly center operations in NAS.

Drawbacks in the analysis

It was found that the proposed analysis could not be performed because of the following 

reasons:
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1. DFTI metric is not developed by considering all city pairs in NAS. It is possible that 

enroute congestion for the set of city pairs used to compute DFTI could be different from 

the enroute congestion estimated for entire NAS. 

2. Vast differences in the levels of enroute congestion between different city pairs could 

bias the variable “total enroute traffic volumes in the NAS” and its effect on “DFTI” 

metric. 

3. It was also found that variation in flight times along the same city pair could be 

because of a variety of causes other than enroute traffic volume. It would be difficult be 

isolate the effect of enroute congestion on flight times for a city pair. Willemain et al. 

(2003) and Alj and Odoni (a) report that the following factors cause variation in flight 

times for the same city pair.

a. Wind 

Wind causes variation in gate to gate times.  Alj and Odoni (a)

Willemain et al. (2003) found that ASPM data on estimated enroute times for certain 

origin destination pairs showed large and consistent changes. He explains that most of the 

unexplained variation in estimated enroute times is because of wind forecast errors. He 

found that wind had an impact on estimated enroute times after comparing directional 

estimated enroute times.

b. Length of the filed routes and routes flown by flights

Willemain et al. (2003) explains that the routes filed by carriers can show great 

differences and the filed routes could be different from the routes actually flown. 
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However he also explains that the variation in estimated enroute time is not caused 

mainly by the differences in routes. He found that there was an 11% relative variation in 

estimated enroute time, however there was only a 3% relative variation in length of filed 

routes.

c. Weather

Alj and Odoni (a) found that weather causes variation in gate to gate time. 

d. Airport congestion

Airport congestion affects gate-to-gate times. Alj and Odoni (a)

e. Aircraft equipment and ATM systems 

Willemain et al. (2003) also attributed a portion of variation in estimated time enroute to 

aircraft equipment and ATM systems. 

9.2. Analysis proposed to estimate relations between excess distances traveled by 

flights and enroute traffic volume in the NAS

9.2.1. Excess distances traveled by flights in enroute and terminal airspaces.

Howell et al. (2003) computed the excess distances traveled by flights from departure 

airports to arrival airports. Authors compared actual distance traveled by flights with the 

great circle route distance between the departure and arrival airports. Howell et al. (2003)

studied the impact of terminal congestion on the total excess distances traveled by flights. 

Authors considered “enroute airspace” to exist beyond 50 nmi circles around origin and 

destination airports. Excess distances traveled by flights in enroute airspace were 
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determined by comparing actual distances traveled by flights to GCR distances in the 

“enroute airspace”.  Analysis was performed using 24 hour flight track data from ETMS.

Authors concluded that terminal area restrictions cause excess distance traveled by flights 

to increase more as compared to enroute congestion. Authors report that 71 percent of the 

total excess distance traveled by a flight between departure and arrival airport is covered 

in the terminal airspace and remaining 29 percent of excess distance is traveled in the en 

route airspace.

Analysis performed by Howell et al. (2003) estimates the percentage of excess distance 

traveled by flight in enroute and terminal airspaces and percentage of excess distance 

traveled by flights because of terminal congestion. An analysis is proposed to study the 

effect of NAS enroute traffic volumes on the excess distances traveled by flights between 

all city pairs in the NAS. Day or month is to be considered as the time interval for 

performing the analysis.

9.2.2. Proposed analysis:

It is proposed to estimate the relation between NAS enroute traffic volumes and excess 

distances traveled by flights traveling between all city pairs in the NAS. Enroute traffic 

congestion is measured in terms of NAS center operations.
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Drawbacks in the analysis:

It was found that the proposed analysis could not be performed due to the following 

reasons:

1. Bennett (2004) performed an analysis to study the excess distance traveled by flights 

which encounter busy sectors along their flight path. He found that a single congested 

sector along the path of a flight can significantly affect the excess distance traveled by the 

flight. In the proposed analysis the effect of localized congestion in sectors of NAS could 

bias the relation between NAS enroute traffic volumes and the excess distances traveled 

by flights from arrival to departure airports. 

2. Drawbacks of measure “excess distance traveled by flights”

Excess distance metric cannot capture time delays imposed on aircraft due to airspace 

congestion. Ground delays imposed on flights due to airspace congestion cannot be 

captured by the excess distance metric .Drawbacks of excess distance metric have been 

discussed earlier in section 3.2.2.2. Howell et al. (2003) also admits that excess distance 

cannot capture ground delays imposed on flights and speed controls imposed on flights.

9.3. Analyses proposed to estimate relations between NAS performance measures 

and NAS enroute traffic volumes

9.3.1. Sector MAP value is used as a NAS performance measure for estimating 

relations between NAS performance and enroute traffic volume

MAP values for a sector:
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MAP (Monitor Alert Parameter) values for a sector define the capacity of a sector.

Monitor alert is a part of ETMS which evaluates traffic demand at all airports, sectors and 

fixes in US and produces an alert when demand is predicted to surpass capacity in a 

specific area. FAA (b).

Leiden and Green (2000) explain that monitor alert compares the predicted aircraft count 

in a sector (based on the ETMS data) with the sector capacity. When the sector aircraft 

count surpasses the MAP threshold, the traffic manager sends an alert along with the 

predicted traffic demand. TM specialists employ least restrictive actions to ensure that 

traffic demand does not surpass sector capacity. FAA (b) explains that the Traffic

Management Specialists evaluate the situation and assist in traffic flow control by 

providing spacing and routes.

In section 3.3.1 of literature review it has been explained that ATC system uses Traffic 

Management processes to manage demand when the MAP values are exceeded in a 

sector. These TM processes cause delays to flights.

Studies in which MAP values have been used

Cooper, Jr et al. (2001) report the following analysis in which MAP values have been 

used.

1. CAASD has evaluated the operational impacts of the changes in National Route 

Program (NRP).Sector counts for each sector were compared to the MAP values 

specified for that sector,  before and after the changes to NRP were made.  
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2. CAASD has also evaluated the operational impact of eliminating preferred routes by 

comparing sector counts for each sector to the MAP values.

Proposed analysis:

ATC system uses TM processes to prevent sector demand from exceeding sector MAP 

values. These TM processes cause delays to flights. The frequency and duration of events 

when MAP values are exceeded in sectors can be used as measures of system 

performance. The performance of ATC system is evaluated in managing enroute traffic 

volumes in the NAS. 

An “event” is defined as a situation in which the sector demand has exceeded the sector 

map value for a single sector in NAS. The following monthly and daily measures of 

system performance are developed:

1. Frequency of events in NAS 

2. Total duration of events in NAS

It is proposed to estimate relations between daily and monthly performance measures and 

enroute traffic volumes in the NAS. Enroute congestion in the NAS is measured in terms 

of NAS center operations.

Analysis 9.3.1 could not be performed due to unavailability of required data.
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9.3.2. Enroute delays caused by Traffic Management processes are used as measures 

of NAS performance, for estimating relations between NAS performance and 

enroute traffic volume

When demand exceeds capacity in parts of the enroute airspace i.e. sectors, fixes and jet 

routes, ATC system employs traffic management processes to manage air traffic demand. 

Ground delay programs (EDCT and Ground Stops) are employed to delay flights on 

ground. Data on ground delays is recorded by OPSNET database. 

ATC system uses the following TM processes to delay flights in air due to enroute 

congestion:

i. Miles in Trail restrictions

ii. Holding 

iii. Rerouting

Klopfenstein et al. (1999) analyzed the above control procedures to "identify, quantify, 

and understand the nature of inefficiencies in NAS". The locations, times and causes for 

implementing these procedures were studied. The impact of these TM processes was 

studied in terms of delays imposed on flights. The number of flights delayed and the total 

time delays imposed on flights were studied. Analysis was performed for entire NAS by 

considering days and weeks as time periods. Klopfenstein et al. (1999) studied the 

following characteristics of MIT restrictions:

-Frequency of MIT restrictions and durations for which the MIT restrictions were 

imposed.

-Reasons for imposing MIT restrictions
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-Number of flights affected by each restriction per unit time.

FAA Order 7210.3T states that FAA records a complete description of all TM 

actions/initiatives (e.g. ground delay programs, miles-in-trail (MIT), etc.) in TMU 

(Traffic Management Unit) log, with details including start and stop times, affected  

facilities and operations, and justification.

Proposed analysis:

It is proposed to evaluate the efficiency of ATC system in reducing enroute delays 

imposed on flights because of airspace congestion. ATC system uses the following TM 

processes to impose enroute delays because of airspace congestion:

i. Miles in Trail restrictions

ii. Holding 

iii. Rerouting

The TMU log contains data on number of operations delayed and total minutes of delays 

caused by each TM process implemented in NAS. TMU log records the cause for 

implementing each TM process. The TMU log data can be used to estimate enroute 

delays caused by airspace congestion. Data on TM processes implemented due to enroute 

congestion needs to be used. The following daily and monthly measures of enroute delay 

are estimated:

1. Number of operations delayed by TM processes, when TM processes are implemented 

due to enroute congestion only. 
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2. Total minutes of delays caused by TM processes, when TM processes are implemented 

due to enroute congestion only. 

It is proposed to estimate relations between daily and monthly measures of enroute delays 

and NAS enroute traffic volumes. NAS enroute traffic volume is measured as total center 

operations in all centers of NAS.

OPSNET database records delays greater than 15 minutes caused by center volume. 

These delays could be imposed on flights in ground and in air. Using the enroute delay 

estimation procedure explained above,  total minutes of delays (including less than 15 

minute delays) imposed on enroute flights because of airspace congestion can be 

estimated.

Analysis 9.3.2 could not be performed due to unavailability of required data.
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