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is a left invariant vector field in G. A similar theorem is proven to characterize

antihomomorphisms. We then study a Ricatti equation associated with a Rieman-

nian foliation, giving new proofs of several results of Walschap. We also give a

relationship that must hold between the fiber dimension and base dimension of a

Riemannian submersion, thus partially answering a question of Wilhelm. We then



turn to the study of homogeneous Riemannian foliations. First we give a sufficient

condition for a Riemannian foliation to be homogeneous, and use it to show that
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Chapter 1

Introduction

The central topic of this thesis is the study of Riemannian submersions. A Rie-

mannian submersion is a smooth submersion f : M → B between two Riemannian

manifolds (M, g) and (B, h) with the property that at any point p ∈M ,

gp(v, w) = hf(p)(f∗(v), f∗(w))

for any v, w in the tangent spaceMp toM at p, that are perpendicular to the kernel of

f∗. Here g and h are the metrics for M and B, respectively. A Riemannian foliation

of (M, g) is a smooth foliation of M locally given by Riemannian submersions. One

can characterize this notion as follows. A foliation F is Riemannian if and only if any

geodesic that starts out perpendicular to a leaf of the foliation, stays perpendicular

to any leaf of the foliation it meets. The definition makes the notion of Riemannian

submersion a natural counterpart to the notion of isometric immersion. Moreover,

every known metric (B, h) of positive curvature is the base space of a Riemannian

submersion of (G, g), where G is a compact Lie group with some left-invariant metric

g. Actually one construction suffices to cover all known cases. One takes a subgroup

H of G×G and lets H act on G in the following manner:

(h1, h2) · g = h1gh
−1
2

for (h1, h2) ∈ H and g ∈ G. If this action is free, then the orbit space G//H is

a manifold, called a biquotient. If one takes the metric on G to be left invariant
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and invariant by the action of H , one gets an action of H on G by isometries, and

then there is a unique metric on G//H such that the quotient map is a Riemannian

submersion. If one is lucky, this quotient metric has positive sectional curvature.

If one takes the metric on G to be bi-invariant, the quotient in any case will be

seen to admit a metric of non-negative sectional curvature. This is because bi-

invariant metrics on a compact Lie group have non-negative sectional curvature,

and Riemannian submersions are known to be curvature nondecreas ing. This idea

was first exploited in this way in [10] to construct a metric of non-negative sectional

curvature on a seven dimensional exotic sphere. It was later used in [5], [6] to

construct metrics of positive curvature on certain biquotients of SU(3), and in [1]

to construct metrics of positive curvature on certain biquotients of SU(5). These

metrics, together with the various homogeneous examples, make up almost all of

the list of known examples of complete Riemannian metrics of positive sectional

curvature. In fact, every known diffeomorphism type of manifold admitting positive

sectional curvature is a biquotient, but recently Dearricott has found positively

curved metrics on certain Eschenburg spaces which are not biquotient metrics (see

[3]). So the question to which this thesis is devoted is this: how far can this idea

be pushed? In other words, try to classify all Riemannian submersions of, say, a

given homogeneous space. This kind of question was asked in connection with the

search for new positively curved manifolds in [13]. This has been done in the past for

Riemannian submersions of Euclidean spheres, for instance in [18], [7], [25], [8], [9].

Also a partial study was made of Riemannian submersions of compact Lie groups

with totally geodesic fibers, concluding that under certain hypotheses, they were
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projection maps to coset spaces [19]. So a natural first question in this direction is

then the following. Is it the case that any Riemannian foliation of a compact Lie

group with bi-invariant metric is homogeneous? Namely, is there a Lie algebra of

Killing fields for the metric on G which span the leaf directions? In this thesis we

will examine several instances where the answer is yes. Our first case is the instance

of tori, with bi-invariant metric. In chapter 3 we will show that any Riemannian

submersion of a torus is the quotient of the torus by a subgroup, up to a fi nite

cover. In chapter 4, we will examine the relationship between homomorphisms of

Lie Groups and Riemannian submersions between Lie Groups. In chapter 5, we

will study a Ricatti equation associated to a Riemannian foliation, and use it to

derive restrictions on the existence of Riemannian foliations in positive and non-

negative curvature. No characterization of homogeneous Riemannian foliations is

known. In chapter 6, we will give a sufficient condition for a Riemannian foliation

of a Riemannian manifold to be homogeneous, and conclude with a proof that there

are no codimension 1 Riemannian foliations of compact simple Lie groups (with

bi-invariant metric) with closed leaves.
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Chapter 2

Basic Concepts

2.1 Basic Definitions

In this chapter, we will discuss the basic concepts associated to Riemannian submer-

sions and recall results of others. O’Neill [15] defined certain basic tensors associated

with them and wrote down formulas relating curvatures of base and total space. We

will review this work and other work here. As stated before, a Riemannian submer-

sion is a submersion f : (M, g) → (B, h) of smooth manifolds with the property

that at any p ∈ M ,

gp(v, w) = hf(p)(f∗p(v), f∗p(w))

for v, w ∈ TpM perpendicular to ker f∗p. The integrable distribution V in M defined

by the equation Vp = ker f∗p is called the vertical distribution of the submersion.

The distribution H defined by Hp = V⊥
p is called the horizontal distribution of the

submersion. One also uses V and H to denote the orthogonal projections onto

the distributions V and H, respectively. Often one uses Ev or Eh to denote these

projections as well. A vector field (or a vector) E on M is said to be vertical if

Ev = E, and horizontal if Eh = E. One usually uses letters like V,W to denote

vertical vectors and vector fields, and letters like X, Y to denote horizontal vector

fields.
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2.2 Basic Vector Fields

A vector field E is said to be basic if E is horizontal, and f -related to a vector field

on B. That is, E is the horizontal lift of a vector field on the base manifold B.

This is equivalent to saying that E is a horizontal vector field such that [E, V ] is

vertical for any vertical vector field V . For any vector field X̄ in B, there is a unique

basic vector field X in M which is f -related to X̄. X is called the basic lift of X̄.

Similarly, given p ∈ M and a horizontal vector x at p, there is a basic vector field

X on M such that Xp = x. To see this, extend f∗(x) to a vector field X̄ on B, then

let X be the basic lift of X̄.

2.3 The O’Neill tensors

In his paper [15], O’Neill defined two (2,1) tensors associated with the submersion

f . They are defined as follows:

TEF = (∇EvF v)h + (∇EvF h)v (2.1)

which gives the second fundamental form on each fiber, and

AEF = (∇EhF v)h + (∇EhF h)v (2.2)

which can be viewed as the ”second fundamental form” of the horizontal distribution

H. Here ∇ is the Levi-Civita connection of (M, g). We will record some of their

basic properties in this section.

Lemma 1. let f : M → B be a Riemannian submersion, and let the O’Neill tensors
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A and T be defined by the equations (2.1) and (2.2) above. Then A and T have the

following properties:

1. They exchange horizontal and vertical subspaces. That is, TE takes vertical

vectors to horizontal vectors, and vice versa, and AE does the same.

2. AE and TE are skew-symmetric operators. That is,

< AEF,G > = − < F,AEG >,

< TEF,G > = − < F, TEG >,

where <,> denotes the metric on M .

3. TVW = TWV , and AXY = −AYX.

4. on horizontal fields, AXY = (1/2)[X, Y ].

Some authors prefer to define the tensors A : H×H → V and S : H×V → V,

using the formulas AXY = (∇XY )v and SXV = −(∇VX)v, and then work with the

adjoints where necessary. This leads to cosmetic changes in some formulas, and in

Chapter 5, these cosmetic changes will lead to a derivation of a useful equation.

2.4 Holonomy

The distribution H is a connection (in the sense of Ehresmann [4]) on the bundle

f . Thus, given any smooth path c : [0, 1] → B in B, and any point p in f−1(c(0)),

there is a unique curve c̄ in M starting at p, such that f ◦ c̄ = c and c̄ is horizontal, ie

˙̄c(t) ∈ Hc(t) for all t. This enables one to compare the fibers of f over different points
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of the curve c in B. To do this, one defines a diffeomorphism hc : Fc(0) → Fc(1),

called the holonomy diffeomorphism. (Here Fb denotes the fiber of f over the point

b ∈ B). It is defined by sending p ∈ Fc(0) to c̄(1) ∈ Fc(1), the endpoint of the unique

lift c̄ of c starting at p.

We now show that hc : Fc(0) → Fc(1) is a smooth map with smooth inverse

hc̃, where c̃ is the path c traversed in reverse. To see that hc is smooth, choose a

tubular neighborhood U of c in B, and choose a smaller tubular neighborhood V

of c such that V̄ ⊆ U . One can then choose a smooth vector field X̃ in B with the

following properties: 1) X̃c(t) = ċ(t) whenever 0 ≤ t ≤ 1, and 2) X̃ = 0 outside of

U . Let X be the basic lift of X̃. Then X is a smooth vector field on M with the

property that the integral curve of X through p ∈ Fc(0) is the horizontal lift of c

starting at p. Therefore the local flow of X will carry Fc(0) diffeomorphically onto

Fc(t) for 0 ≤ t ≤ 1, since diffeomorphisms take submanifolds to submanifolds.

It follows that a Riemannian submersion f has the structure of a fiber bundle

with structure group the group of diffeomorphisms of the fiber Fb, for any given

b ∈ B. In fact the structure group is the group of holonomy diffeomorphisms

associated to loops in the base, with group structure given by concatenation of

loops. Notice that hc1 ◦ hc2 = hc1∗c2.

When c is a geodesic, the differential of hc can be described in terms of Jacobi

fields. In this case, since f is a Riemannian submersion, the horizontal lifts of c are

geodesics of M . Choose a point p ∈ Fc(0) and choose a curve α : (−ǫ, ǫ) → Fc(0)

representing a tangent vector v at p. At each point α(s) take the horizontal lift of

c, starting at α(t), denoted by cα(s). This gives you a variation θ(t, s) = cα(s)(t)
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of the geodesic c̄ starting at α(0) = p through geodesics. Hence the variation field

J(t) = θ∗(t,0)(∂s) of this variation is a Jacobi field along c̄. But since the endpoints

of the holonomy lifts generate a smooth curve α̃ in Fc(1), the tangent vector to α̃ at

t = 0 is (hc)∗(v). But then J(1) = α̃′(0) = θ∗(1,0)(∂s).

It is also possible to derive a formula for the covariant derivative of J along a

horizontal geodesic c. It is

J ′ = ∇ċJ = −Sċ(J) − A∗
ċ(J),

where A∗
ċ is the adjoint of Aċ. (We are, of course, using the other notation for

the O’Neill tensors here). To see this, we compute the vertical and horizontal

components of J ′. Since J ′h = −A∗
ċJ by definition, we see that the horizontal

component is as desired. To compute the vertical component of J ′, we again look

at the variation θ(t, s) of c through horizontal geodesics. Let the variation fields

associated to this variation be denoted by X(t, s) = θ∗(t,s)(∂t) for the horizontal

direction and W (t, s) = θ∗(t,s)(∂s) for the vertical direction. Then W (t, 0) = J(t),

andX(t, 0) = ċ(t). It follows that ∇XW = ∇WX, sinceX andW are variation fields

for the variation θ, and hence J ′v(t) = (∇XW )v(t, 0) = (∇WX)v(t, 0) = −Sċ(J).

2.5 Parallel Fields

Another type of vector field associated to the bundle f are the vertically parallel

fields. This comes from the connection ∇̂ on the vertical bundle V, defined by the

equation ∇̂ZV = (∇ZV )v for Z ∈ Γ(TM) and V ∈ V. Often, if we are discussing

vector fields V (t) along a curve c, we will write V ′v for ∇̂ċ(V ). Given a horizontal
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geodesic γ in M and a vertical vector v at γ(0), there is a vertical vector field V (t)

along γ which is parallel with respect to ∇̂, ie V ′v = 0, and such that V (0) = v. A

vector field V (t) along a curve c such that ∇̂ċV = 0, and which is also vertical, will

be said to be vertically parallel. We get an associated notion of parallel transport

which preserves the metric on V. That is, if v, w ∈ Mγ(0), the vertically parallel

fields V,W along γ extending v, w satisfy < v,w >=< V (t),W (t) > for all t. This

is because

< V (t),W (t) >′ =< V (t)′,W (t) > + < V (t),W (t)′ >

=< V (t)′v,W (t) > + < V (t),W (t)′v >

= 0.

Which means that < V (t),W (t) > is constant along γ. In a later chapter, we

will use vertically parallel fields along a horizontal geodesic to write down a matrix

Ricatti equation satisfied by a Riemannian foliation F .

2.6 Curvature Formulas

There exist a number of formulas using the O’Neill tensors to relate the curvature

of the base and the total space of the bundle f . They were first derived by O’Neill

and can be found in his paper [15]. We list them below for easy reference.

Lemma 2. If U, V,W, F are vertical vector fields and X, Y, Z,H are horizontal

vector fields, then the following equations hold:

< R(V, U)W,F >= < R̂(V, U)W,F > − < TUW,TV F > + < TVW,TUF > ({0})
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< R(V, U)W,X >= < (∇V T )UW,X > − < (∇UT )VW,X > ({1})

< R(V,X)Y,W >= < (∇XT )VW,Y > + < (∇VA)XY,W > ({2})

− < TVX, TWY > + < AXV,AYW >

< R(Y,X)Z, V >= < (∇ZA)XY, V > + < AXY, TVZ > ({3})

− < AY Z, TVX > − < AZX, TV Y >

< R(Y,X)Z,H >= < R∗(Y,X)Z,H > −2 < AXY,AZH > ({4})

+ < AY Z,AXH > + < AZX,AYH > .

Here R̂ denotes the curvature tensor of the intrinsic metric on the fibers, and R∗

is used to denote both the curvature tensor of the metric on B and its horizontal lift

to M .

The convention used to define the curvature tensor is RXY Z = [∇X ,∇Y ]Z −

∇[X,Y ]Z, the opposite of O’Neill’s paper. Like O’Neill, I have numbered these curva-

ture formulas by the number of horizontal vectors. Thus for example {0} is the first

formula on the above list, with no horizontal vectors. In the rest of this thesis I will

refer to them in this way. From the above formulas, we get the following expressions

for the sectional curvature of a two-plane in M . Before proceeding, recall that the

metric <,> on a Riemannian manifold N is extended to a fiber metric on the bundle

π : ∧(TN)k → N in a canonical way. Namely < A1 ∧ · · · ∧ Ak, B1 ∧ · · · ∧ Bk >=

det(< Ai, Bj >). The determinant in this last equation is the determinant of the

matrix whose (i, j) entry is < Ai, Bj >.

Lemma 3. Let f : M → B be a Riemannian submersion. If U, V are vertical vec-

10



tors and X, Y are horizontal vectors, then the following formulas give the sectional

curvature of a two-plane.

1. K(U ∧ V ) = K̂(U ∧ V ) − <TUU,TV V >−<TUV,TUV >
‖U∧V ‖2 .

2. K(U ∧X) = <(∇XT )V V,X>+<AXV,AXV >−<TV X,TV X>
‖X‖2‖V ‖2 .

3. K(X ∧ Y ) = K∗(X ∧ Y ) − 3<AXY,AXY >
‖X∧Y ‖2 .

Here K(A ∧ B) denotes the sectional curvature of the two-plane spanned by the

vectors A and B, K̂ denotes the intrinsic curvature of the fibers, and K∗ denotes

the sectional curvature of the manifold B.

The first formula above is of course simply the Gauss formula giving the in-

trinsic curvature of a submanifold. The formula {2} will be very useful in the last

chapter, and is the origin of the matrix Ricatti equation that we will derive and use

there. The third formula in the above lemma implies that Riemannian submersions

are curvature nondecreasing, and that the quantity

K(X ∧ Y ) +
3 < AXY,AXY >

‖X ∧ Y ‖2

is constant along the fibers when X and Y are basic.

2.7 Positive definite and Positive semi-definite Matrices

Here we will recall some facts about positive definite and positive semi-definite

matrices, and turn them into a form more convenient for our use. Suppose M is a

square symmetric matrix of order n. We say that M is positive semi-definite if and
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only if for anyX ∈ R
n, we have X tMX ≥ 0. We say thatM is positive definite if and

only if it is positive semi-definite and invertible. Given a set of vectors {v1, . . . , vk}

in an inner product space (V,<,>), we define their Gram matrix to be the matrix

G{v1,...,vk} whose (i,j) entry is < vi, vj >. Any Gram matrix is symmetric, since inner

products are symmetric. Here is a theorem connecting these notions which will be

needed in the sequel.

Theorem 4. Let {v1, . . . , vn} be a set of vectors in the inner product space (V,<,>).

Then their Gram matrix G{v1,...,vk} is positive semi-definite. If {v1, . . . , vn} is a

linearly independent set, then G{v1,...,vk} is positive definite. Conversely, suppose

that M is a positive semi-definite matrix. Then there is an inner product space

(V,<,>) and a set of vectors {v1, . . . vn} in V such that M = G{v1,...,vk}. Therefore,

the induced inner product on ∧k(V ) defined by < v1 ∧ . . . ∧ vk, w1 ∧ . . . ∧ wk >=

det(< vi, wj >) is positive definite.

Proof. Any matrix M such that M = PP t is positive semidefinite, since in this

case X tMX = X tPP tX = (P tX)t(P tX) ≥ 0 for X ∈ R
n. To write G{v1,...,vk} in this

way, choose an orthonormal basis {e1, . . . , en} of V , and let Pij =< vi, ej >. Then

G{v1,...,vk} = PP t. If the vectors form a linearly independent set, then the matrix P

is invertible, and hence G{v1,...,vk} is positive definite. Conversely, if M is a positive

semi-definite matrix, then by the spectral theorem there is an orthogonal matrix

Q such that QMQt = D, where D is a diagonal matrix with non-negative entries.

Therefore, defining P = Qt
√
D, where (

√
D)ij =

√

Dij, implies that M = PP t.

Now choose an inner product space (V,<,>) of dimension equal to the order of M ,
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and an orthonormal basis {e1, . . . , en} of V . Setting

vi =
∑

k

Pikek

shows that Mij =< vi, vj >, and hence that M = G{v1,...,vk}. For the last statement,

recall that a set of vectors {v1, . . . , vk} is linearly independent if and only if v1 ∧

. . . ∧ vk 6= 0. So if v1 ∧ . . . ∧ vk 6= 0, then

< v1 ∧ . . . ∧ vk, v1 ∧ . . . ∧ vk >= det(G{v1,...,vk}) > 0,

since we know that G{v1,...,vk} is positive definite in this case.
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Chapter 3

Riemannian Submersions of Tori

3.1 Statement of Theorem

In this chapter we will classify Riemannian submersions π : (T, g) → (B, h) where

T = (S1)n+k is an (n+ k)-dimensional torus with left-invariant metric g, and (B, h)

is a Riemannian manifold of dimension n. Recall that a Riemannian metric g on a

Lie group G is said to be bi-invariant if and only if the left and right translation

maps defined by Ly(x) = yx and Ry(x) = xy are isometries of the metric for all

y ∈ G. Any left invariant metric on a torus is automatically right invariant since

Tori are abelian Lie Groups. Here is the statement of the theorem we will prove in

this chapter.

Theorem 5. Let π : T n+k → Bn be a Riemannian submersion of a torus with

bi-invariant metric.

1. Suppose that the fibers of T are connected. Then Fe, the fiber of π containing

the identity of T is a closed subgroup of T , B is a torus, diffeomorphic to the

coset space T/Fe, and in fact π is the standard projection defined by π(x) = xFe

for x ∈ T .

2. Suppose the fibers of π are disconnected. Then there is a torus B̄ = (T n, g)

with bi-invariant metric g, a local isometric covering map ϕ : B̄ → Bn and
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a Riemannian submersion π̄ : T n+k → B̄ with connected fibers, such that

π = ϕ ◦ π̄.

3.2 Bi-invariant metrics on Tori

There are many possible bi-invariant metrics on T , so our first step is to describe

the bi-invariant metrics on T in a useful way. We do this in the following lemma.

In this chapter dm will denote the standard metric on R
m.

Lemma 6. Let (T, g) be an m-dimensional torus with bi-invariant metric g. Then

(T, g) is isometric to (Rm, dm)/L, where L is a free subgroup of (Rm,+) of rank m

and dm is the standard metric on R
m.

Proof. Think of T as R
m/Zm, where Z

m is the standard lattice in R
m, generated

by the standard basis vectors {e1, . . . em}. Pull back the metric g on T to R
m. This

gives R
m a bi-invariant metric since the covering map φ : R

m → T is a Lie group

homomorphism. Since (Rm,+) is abelian, this metric is flat. Since R
m is simply

connected, (Rm, (φ)∗(g)) is isometric to R
m with its standard metric dm. Choose

an isometry θ : (Rm, (φ)∗(g)) → (Rm, dm), and let L be the subgroup of (Rm,+)

generated by the images of the standard basis vectors {e1, . . . em}. Then L is a free

subgroup of R
m of rank m, and θ induces an isometry θ̂ : (T, g) → (Rm, dm)/L.

Thus from now on, we will think of (T, g) as (Rn+k, dn+k)/L, where L is a free

lattice subgroup of rank m in R
n+k.
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3.3 Proof in the case of connected fibers

Now, let π : T n+k → Bn be a Riemannian submersion, where the superscripts denote

the dimensions of the manifolds involved. To analyze π we will pass to a Riemannian

submersion π1 : R
n+k → B̃ between the universal covers of T and B so that we have

a commutative diagram:

R
n+k p−−−→ T n+k

π1





y

π





y

B̃
p̄−−−→ B

In this case π1 exists by covering space theory, and is smooth because the

covering maps p : R
n+k → T and p̄ : B̃ → B are local diffeomorphisms. We give

R
n+k and B̃ the pullback metrics, so that the covering projections p and p̄ are local

isometries. Notice that the domain of p, R
n+k, then gets the standard metric dn+k,

by the preceding lemma.

We can therefore analyze π1 using theorems of Gromoll and Walschap [11],

[12]. They proved that any Riemannian submersion of Euclidean space (Rm, dm)

with connected fibers was the orbit map of an isometric action on R
m by generalized

glide rotations. Since we will use this theorem in a key way, we quote the main result

of their two papers here.

Lemma 7. (Gromoll-Walschap) Suppose that f : (Rn+k, dn+k) →Mn is a Rieman-

nian submersion of Euclidean space with connected fibers. Then

1. The fiber F over a soul of M is an affine subspace of Euclidean space, which,

up to congruence, may be taken to be F = R × 0.
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2. Furthermore, f is the orbit fibration of the free isometric group action ψ of R
k

on R
n+k = R

k × R
n given by

ψ(v)(u, x) = (u+ v, φ(v)x), (3.1)

where u, v ∈ R
k, x ∈ R

n, and φ : R
k → SO(n) is a homomorphism.

Recall that a soul of a non-negatively curved manifold M is a compact, totally

convex submanifold without boundary of M . In the case of the theorem each soul

of M is a point ([2]).

Therefore we will know that π1 is the orbit map of an isometric group action of

R
k on R

n+k, once we establish that π1 is a Riemannian submersion of (Rn+k, dn+k)

with connected fibers.

We’ve established that π1 is a smooth submersion above, so we first need to

check that π1 is a Riemannian submersion. To see this, pick b ∈ R
n+k, and pass to

the differentials of each map at p. Then we have that p∗b and p̄∗π1(b) are isometries

on their respective tangent spaces. Since we now have a commutative diagram of

tangent maps, we see that p∗b takes ker (π1)∗b isomorphically to ker π∗, and hence

for v, w orthogonal to ker (π1)∗b, we have

< v,w > =< p∗b(v), p∗b(w) >

=< (π ◦ p)∗b(v), (π ◦ p)∗b(w) >

=< (p1 ◦ π1)∗b(v), (p1 ◦ π1)∗b(w) >

=< (π1)∗b(v), (π1)∗b(w) > .

Therefore π1 is a Riemannian submersion. The map π1 is therefore a fibration (see
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Chapter 2), and therefore the fact that the fibers are connected follows by looking

at the long exact sequence of the fibration π1.

Let ψ be the action guaranteed by the theorem of Gromoll and Walschap, and

let φ : R
k → SO(n) be the Lie group homomorphism generating the action. The

rest of the proof consists of analyzing the action (3.1) under the assumption that π

satisfies the relation

p1 ◦ π1 = π ◦ p.

The objective is to show that φ is the trivial homomorphism. Then we will

know that the action ψ is given by

ψ(v)(u, x) = (u+ v, x).

This will mean that the foliation generated by π1 is the one whose leaves are

the cosets of F . We begin by studying the fiber F guaranteed by the theorem of

Gromoll and Walschap. Observe that F is an orbit of the action ψ generating π1.

Our first aim is to show that the cosets F + v are also orbits of ψ, for v ∈ L.

By construction, F maps to a single point in B̃ and therefore to a single point in

B, which we call q. Fix v ∈ L. By definition, p(F + v) = p(F ), and therefore

π ◦ p(F ) = π ◦ p(F + v) = q. Choose f1, f2 ∈ F , and observe that by construction,

π1(f1 + v) and π1(f2 + v) are points in p̄−1(q). Since p̄−1(q) is discrete (as p̄ is a

covering map), and F +v is connected, π1(f1+v) = π1(f2+v), so that π1 is constant

on F + v. Since F + v is diffeomorphic to F , this means that F + v is also an orbit

of ψ for v ∈ L.
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Now that we know that the cosets F + v, for v ∈ L are also orbits of ψ and

fibers of π1, we can choose x ∈ F = Rn+k, and calculate φ(x) ∈ SO(n). To do this,

let F⊥ be the orthogonal complement of F in R
n+k, that is F⊥ = {(0, y) | y ∈ R

n+k}.

Fix v ∈ L again, and let (0, w) be the unique point of interesection of F + v and

F⊥. Observe that (0, w) is simply the orthogonal projection of v on F⊥. Since we

have seen that F + v is also an orbit, then the points (x, φ(x)w) must also lie in

F + v. But the orthogonal projection of any point (a, b), where a ∈ R
k and b ∈ R

n

on F⊥ is (0, b). Since the orthogonal projection of F + v on F⊥ is (0, w), we see

that φ(x)w = w.

The orthogonal projection onto F⊥ is a linear surjection; therefore since L is

a basis of R
n+k, we see that L must project onto a sp anning set of F⊥. On the

other hand, we can apply the argument in the previous paragraph to all the vectors

in L. Therefore we conclude that φ(x)w = w, where w ranges through a spanning

set in F⊥ = R
n. Therefore φ(x) = I ∈ SO(n) for all x ∈ R

k, and therefore φ is the

trivial homomorphism.

Now assume the fibers of π are connected. We know that any fiber of π1 must

map onto a fiber of π. Also the fibers of π1 are affine subspaces, which are mapped

by p onto closed submanifolds of T (namely, the fibers of π). Therefore the fibers

of π are totally geodesic since p is a local isometry. Since p is a homomorphism of

Lie groups, the fiber Fe of π containing the identity is a closed subgroup of T , being

the image under p of the fiber F̃eof π1 containing the identity. Moreoever, the other

fibers of π are cosets of Fe, since they are images of the cosets of F̃e under p.

19



3.4 Proof of Part 2

Here the fibers are disconnected. First an example to show that this can actually

happen.

Example The standard 2 torus T 2 is a double cover of the Klein bottle K. So

precomposing the covering projection p with the standard projection π : T 3 → T 2,

we get a Riemannian submersion p ◦ π with disconnected fibers if we give T 3, T 2,

and K their standard metrics. Observe that this submersion is a composition of a

covering map together with a Riemannian submersion with connected fibers, which

is what we want to prove in general. We now proceed to the proof of this statement.

Proof of Part 2. Suppose that π : T n+k → B is a Riemannian submersion with

disconnected fibers. We again study the lift of π to the universal covers of T and

B, getting a Riemannian submersion π1 : R
n+k → B̃. The fibers of π1 are again

connected, and as before the fibers of π are t he cosets of some affine subspace F

of R
n+k. Therefore, as before, the fiber of π1 containing the identity, namely F , is

mapped under p to some closed subgroup of T , p(F ) = Fe Moreover, the connected

components of the fibers of π are cosets of this subgroup.

This lets us define the torus in the theorem and the Riemannian submersion:

B̄ = T n+k/Fe, and π̄ is the orbit map. Then ϕ : T n → B is defined as ϕ(xFe) = π(x).

This is well defined, since if x and y belong to the same coset of Fe, then they must

be in the same fiber of π.

Since π1 is a Riemannian submersion, and p̄ is a covering map, we conclude that

there is a group of isometries of T acting transitively on the connected components
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of π. This action descends to a covering space action of B̄. Therefore ϕ is a covering

space projection.
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Chapter 4

Riemannian Submersions with Domain and Image a Lie Group

In this chapter we will consider the set of Riemannian submersions f : G → H ,

where G and H have left-invariant metrics, and characterize the ones which are

homomorphisms and the ones which are antihomomorphisms. We will also prove a

similar result for Riemannian foliations. In this chapter Lg : K → K will denote

the map Lg(x) = gx and Rg : K → K will denote the map Rg(x) = xg, for K a

Lie group. The letter eG will always be used to denote the identity element of the

group G, and similarly eH , eK and so on.

Here is the main theorem of this chapter.

Theorem 8. Suppose that f : G → H is a Riemannian submersion of Lie groups

with connected fibers, where G and H both have left-invariant metrics. Suppose also

that f(eG) = eH . Then:

1. f is a homomorphism if and only if the basic lift of any left invariant vector

field in H is a left invariant vector field in G.

2. f is an antihomomorphism if and only if the basic lift of any right invariant

vector field in H is a left invariant vector field in G.

Proof.

1. Suppose that f is a Lie group homomorphism. Let X be a left invariant vector
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field on H , and let X̄ be its horizontal lift to G. We want to show that X̄ is left

invariant. Since f is a homomorphism, we have (f ◦ Lg)(x) = (Lf(g) ◦ f)(x)),

for any g ∈ G. Since X̄ is the basic lift of X, we also have (df) ◦ X̄ = X ◦ f ,

where df is the differential of f and we think of X and X̄ as sections of the

tangent bundles of H and G, respectively. Therefore any left invariant vector

field V on G which is vertical at e ∈ G, is a vertical vector field:

(df)p(Vp) = ((df)p ◦ (dL)e)(Ve) = (dL ◦ df)e(Ve) = (dL)f(e)((df)e(Ve)) = 0.

Now let X ′ be the unique left invariant vector field X ′ such that X ′
e = X̄e.

Then I claim that X ′ = X̄. First, X ′ is horizontal, since X ′ is left invariant,

and therefore for any vertical V (which we can take to be left-invariant by

above)

< Vp, X
′
p >=< Ve, X

′
e >= 0

for any p ∈ G, since the metric is assumed to be left-invariant, and X ′
e is

horizontal. On the other hand, since X ′ is left invariant, we have

(df)p(X
′
p) = (df ◦ (dLp)e(X

′
e) = (dLf(p) ◦ df)e(X

′
e) = (dLf(p))p(Xf (e)) = Xf(p)

since X is left invariant.

Conversely, suppose that f : G → H is a Riemannian submersion with the

property that basic lifts of left-invariant vector fields are left-invariant. First

we show that Fe, the fiber of f containing eG, is a normal subgroup of G.

To see this, take v ∈ TeG with the property that v is orthogonal to He, the

horizontal space of f at e, and extend v to a left-invariant vector field V . Then
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since H can be taken to be spanned by left invariant vector fields, we see that

V is a vertical vector field, since for all p, and all basic X we must have that

< Vp, Xp >=< Ve, Xe >= 0. On the other hand V is an integrable distribution,

since any two vector fields belonging to V are f -related to the zero section of

H . This shows that V is a Lie subalgebra of g, the Lie Algebra of G. In fact, V

is spanned by left-invariant vector fields, and is also an ideal, since if X and Y

are basic fields, and V is vertical and left invariant, we have < [V,X], Y >= 0,

since the bracket of a basic field and a vertical field is vertical. Therefore, if E

is left invariant, we can write E = Eh +Ev where Eh and Ev are left invariant.

Therefore [E, V ] is vertical for any vertical, left-invariant V .

Therefore the fibers of f are the cosets pFe = (Fe)p of the normal subgroup

Fe of G. Moreover, since the fibers of f coincide with the fibers of the group

homomorphism G→ G/Fe, f must be a homomorphism.

2. First suppose that f is an antihomomorphism, that is f(xy) = f(y)f(x) for

all x, y ∈ G. In other words f ◦ Lx(y) = Rf(x)(y). Setting y = exp(tv) and

taking the derivative, we get the equation

(Rf(x))∗e(f∗e(v)) = (f∗)e((Lx)∗e(v)

for v ∈ Ge. Thus by a similar argument as above, we conclude that the basic

lift of a right invariant vector field in H is a left-invariant vector field in G.

Conversely if the basic lift of any right invariant vector field is left invariant,

we reason in a similar manner as above, to conclude that the fibers of f
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must coincide with the antihomomorphism f̄ : G → G/Fe defined by f̄(x) =

x−1Fe.
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Chapter 5

Restrictions on Existence of Riemannian Foliations

In this chapter, we will derive restrictions on the existence of Riemannian fo-

liations. We will show that under certain curvature assumptions, Riemannian

foliations of certain types cannot exist. The main technique will be an analysis

of a matrix Ricatti equation which we will derive in the first section below.

5.1 The Matrix Ricatti Equation of a Riemannian Foliation

In this section we will derive a matrix Ricatti equation satisfied by the leaves

of a Riemannian foliation. To do this, let γ be a horizontal geodesic, and let

S denote the second fundamental form of the leaves of the folation F , so that

Sγ̇V = −(∇V γ̇)
v,

for V a vertical vector at γ(t). Now extend V to a vertically parallel field

along γ as in Chapter 1. We will work with the connection

∇̂γ̇V = V ′v = (∇γ̇V )v

along the curve γ. Therefore

S ′v
γ̇ W ≡ (Sγ̇W )′v − Sγ̇(W

′v),
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for W a vector field along γ, since γ is a geodesic. In the case that W is

vertically parallel, this means that the second term on the right hand side is

zero, and so we find that

S ′v
γ̇ W ≡ (Sγ̇W )′v

Now we can state the equation from which we will derive our results in this

chapter. Before doing so, here is some notation. We can choose an orthonormal

basis {V1, . . . , Vk} of vertically parallel fields along γ. With respect to this basis

for V along γ, we can then define the k × k matrices S(t), R(t) and B(t) by

the following formulas:

(a) Sij =< Sγ̇Vi, Vj >,

(b) Rij =< R(Vi, γ̇)γ̇, Vj >,

(c) Bij =< Aγ̇A
∗
γ̇Vi, Vj >.

Theorem 9. Suppose that F is a Riemannian foliation of (M, g), of leaf

dimension k, and let γ be a horizontal geodesic. Then the following matrix

Ricatti equation holds along γ:

S ′ = S2 +R− B

where {V1, . . . , Vk} is an orthonormal basis of vertically parallel fields along γ,

and the entries of the k × k matrices S, R and B are given by the formulas

above.

In the above lemma, the matrices are therefore functions of the parameter t,

and differentiation is done componentwise, so that the matrix S ′ is simply the
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matrix whose (i, j) entry is the derivative with respect to t of the (i, j) entry

of S. We begin the proof by deriving an invariant form of the equation from

O’Neill’s curvature formula {2} stated in Chapter 1. This seems to first have

been found by Kim and Tondeur [14]. Walschap [22] gave a proof using holon-

omy Jacobi fields. We will give a different proof here, which mainly involves

translating curvature equation {2}, which uses the O’Neill tensors T and A,

into an equation using the tensors S and A, mentioned in the introduction.

Lemma 10. Let F be a Riemannian foliation of (M, g), let S denote the

second fundamental form of the fibers, and let A denote the A-tensor of the

folation F . Then the following equation holds along a horizontal geodesic γ.

S ′v = S2
γ̇ +Rv

γ̇ −Aγ̇A
∗
γ̇,

where Rv
γ̇(W ) ≡ (R(W, γ̇)γ̇)v.

Proof of Lemma. We start with O’Neill’s notation for A and T . Recall

that for two vertical vectors and two horizontal vectors, we have

< R(V,X)Y,W >= < (∇XT )VW,Y > + < (∇VA)XY,W >

− < TVX, TWY > + < AXV,AYW >

where R is the curvature tensor of (M, g). T hus, setting X = Y = γ̇ and

recalling that ∇EA is skew symmetric gives us

< R(V, γ̇)γ̇,W >=< (∇γ̇T )VW, γ̇ > − < TV γ̇, TW γ̇ > + < Aγ̇V,Aγ̇W > .
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Since (∇ET )F is skew-symmetric, we have

< R(V, γ̇)γ̇,W >= − < (∇γ̇T )V γ̇,W > − < TV γ̇, TW γ̇ > + < Aγ̇V,Aγ̇W > .

Now we switch notation. Recall that Sγ̇V = −(∇V γ̇)
v = −TV γ̇. Therefore

(∇γ̇S)γ̇V = −(∇γ̇T )V γ̇, and also S ′v
γ̇ (V ) = (∇̂γ̇S)γ̇(V ) = −(∇̂γ̇T )V γ̇. Hence

since < (∇̂γ̇T )V γ̇,W >=< (∇γ̇T )V γ̇,W >, we get the equation

< R(V, γ̇)γ̇,W >=< S ′v
γ̇ V,W > − < S2

γ̇V,W > + < A∗
γ̇V,A

∗
γ̇W >,

since Sγ̇ is a self-adjoint operator. Taking adjoints for A in the last right hand

term and making other cosmetic changes gives us the equation

< S ′v
γ̇ V,W >=< R(V, γ̇)γ̇,W > + < S2

γ̇V,W > − < Aγ̇A
∗
γ̇V,W >

which yields the result since W is arbitrary.

Now we are in a position to derive the matrix Ricatti equation.

Proof of Theorem. We work with the distribution V with fiber metric

g|V and the connection ∇̂EV = (∇EV )v, for E ∈ Γ(TM) and V ∈ Γ(V ).

Let {V1, . . . Vk} be an orthonormal basis of vertically parallel fields along the

horizontal geodesic γ. (Recall that we showed this was possible in Chapter 2.)

Now with the notations of the theorem, we have that

< S ′v
γ̇ Vi, Vj >=< Sγ̇Vi, Vj >

′

as noted above. This gives the result of the theorem, since S is self-adjoint.
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Now for some remarks. First, a Riemannian foliation is said to be substantial

at a point p ∈ M if and only if there is a horizontal vector Xp such that

AXp
: H → V is onto. (see [9]). This is of course equivalent to saying that

A∗
Xp

: V → H is injective. Second, let us examine the terms in the matrix

equation of the theorem:

B(t) = −S ′(t) + S2(t) +R(t) (5.1)

Now suppose (M, g) is positively curved. Then the bilinear form

(V,W ) →< (R(V, γ̇)γ̇,W >

is positive definite, and hence its matrix R(t) is positive definite for all t.

Similary if M is negatively curved, then R(t) is negative definite. Third, the

matrix B is the Gram matrix of the k-vector {A∗
γ̇V1, . . . , A

∗
γ̇Vk}. Hence B is

positive semi-definite. B is then positive definite at some point γ(t) if and

only if the k-vector A∗
γ̇V1 ∧ · · · ∧ A∗

γ̇Vk has non-zero length, which is in turn

true if and only if A∗
γ̇ is injective on V, ie if and only if F is substantial at the

point γ(t).

These observations enable us to prove several versions of a theorem first dis-

covered by Walschap [22]. To state the theorems we need a definition. A

Riemannian foliation F is said to be umbilic along γ if and only if Sγ̇ = c(t)I

for all t, where c(t) is a smooth function of t. Before proceeding, we state a

well-known and useful lemma.

Lemma 11. (a) Suppose that c : R → R is a differentiable function with the

property that c′ ≥ c2 for all t ∈ R. Then c must be zero.
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(b) Similarly, if c is a differentiable function such that c′ + c2 ≤ 0 for all t,

then c is constant.

Proof. To see the first statement Let F (t) be an antiderivative of c. Then by

differentiating twice, we see that the function G(t) = exp(−F (t)) is concave,

and bounded below by zero. Hence G is constant, and hence F is constant,

so that F ′ = c = 0. To see the second statement, notice that the function

G(t) = exp(F (t)) where F is an antiderivative of c, is concave and bounded

below.

Proposition 12. Suppose that F is a Riemannian foliation of (M, g), umbilic

along the horizontal geodesic γ. If (M, g) has positive sectional curvature, then

F is substantial at some point γ(t).

Proof Applying the hypothesis to the matrix Ricatti equation (5.1) gives us

the matrix equation

B(t) = (−c′(t) + c2(t))I +R(t).

Now by the remarks above, it suffices to show that B is positive definite at

some point t. Since by hypothesis, R is positive definite, we need only show

that at some point, (−c′ + c2)I is positive semi-definite, which is true if and

only if −c′ + c2 ≥ 0 at some point t. So if B is not positive definite, then

−c′ + c2 < 0 for all t. Hence c = 0 by the lemma, so that B(t) = R(t) for all

t, and hence B is positive definite.
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Observe that the above proof shows that if F is umbilic along γ, then in fact

F is totally geodesic along γ.

Theorem 13. Suppose that F is a Riemannian foliation of (M, g). If (M, g)

has negative sectional curvature, then F cannot be totally geodesic along any

horizontal geodesic γ.

Proof. If F is totally geodesic, then in (5.1) we have that S = S ′ = 0.

Therefore, B, a positive semi-definite matrix, is equal to R, a negative definite

matrix. Contradiction.

Of course, one can prove this by simply looking at the curvature equation {2}.

The following is a theorem originally found by Walschap ([22]). We give a new

proof below.

Theorem 14. Suppose that Fk is a Riemannian foliation of (Mn, g), which

is umbilic along the horizontal geodesic γ. If (M, g) has nonnegative sectional

curvature, and the leaf dimension k is greater than the codimension n − k,

then F is totally geodesic along γ.

Proof. Choose an orthonormal basis of vertically parallel fields {V1, . . . Vk}.

The hypothesis means that the k-vector A∗
γ̇V1(t)∧· · ·∧A∗

γ̇Vk(t) must be zero for

all t, since the vectors in that wedge product cannot be linearly independent.

Hence, in the matrix Ricatti equation

B(t) = (−c′(t) + c2(t))I +R(t),
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B(t) is positive semi-definite (but not positive definite!), R(t) is positive semi-

definite by the curvature assumption, and B(t) must have determinant 0, or

else the squared length of the wedge product A∗
γ̇V1(t)∧ · · ·∧A∗

γ̇Vk(t) would be

bigger than zero. Therefore (−c′(t) + c2(t))I can never be positive definite for

any t, or else B(t) would be positive definite. But this means that (−c′(t) +

c2(t)) ≤ 0 for all t. By the lemma, this means that c = 0, which means that

F is totally geodesic along γ.

Corallary 15. An umbilic riemannian foliation of the positively curved man-

ifold (Mn, g) must have leaf dimension smaller than its codimension. In fact,

it must be substantial at some point of any horizontal geodesic. Therefore

the dual foliation of an umbilic foliation in positive curvature must have an

n-dimensional leaf.

Wilking (unpublished) has defined the notion of dual to a Riemannian foliation.

Among the results he claims that are related to this notion is a proof that the

Sharafutdinov retraction to the soul of a non-negatively curved manifold is

smooth. The dual to a Riemannian foliation is defined as follows: Given a

(possibly singular) Riemannian foliation of (M, g) and a point p in M , the leaf

of the dual foliation through p is defined to be the set of points which can be

connected to p via a broken horizontal path.

Proof. We know that along a horizontal geodesic c, there is a t such that

F is substantial at p = c(t). Therefore, for Xp = ċ(t), A∗
Xp

is injective , and
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therefore dim(V) ≤ dim(H) − 1, since A∗
Xp

maps V to H ∩ ˙c(t)
⊥
, since A is

skew symmetric. To see the last statement, observe that the tangent space

to a leaf of the dual foliation must contain all brackets of horizontal vectors.

Since AXp
is onto, this means that the set of brackets [X, Y ] for X, Y ∈ H

spans Tp(M), because [X, Y ] = [X, Y ]h + [X, Y ]v = [X, Y ]h + 2AXY . Hence

the dual leaf at p has tangent space equal to all of TpM .

In fact, Wilking (unpublished) has shown that the dual to any (possibly singu-

lar) Riemannian foliation of a positively curved manifold consists of one leaf.

Wilhelm has asked if the dimension bound of the above corollary applies to

any Riemannian submersion of a positively curved manifold. This question

was the impetus for this work. In the next section we will give another partial

answer to it.

5.2 Restrictions Based on Curvature Bounds

In this section we will derive certain restrictions on the existence of Riemannian

submersions based on the curvature properties of the total space and the base

space. Here is the main theorem of this section.

Theorem 16. Suppose that f : M → B is a Riemannian submersion. Suppose

that M has sectional curvature greater than or equal to 1, and suppose that

the sectional curvature of any two-plane in B is less than or equal to Q. Then
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the fiber dimension p must satisfy the inequality

p ≤ 1

3
(dim(B) − 1)(Q− 1)

In particular, a quarter-pinched manifold cannot be the base space of a Rie-

mannian submersion of a manifold with fiber dimension greater than its codi-

mension.

Proof. We will begin by recalling a result of Kim and Tondeur ([14]). They

proved that a Riemannian foliation of a nonnegatively curved (M, g) of di-

mension p and codimension q is totally geodesic provided that |A| ≤ (pK
q

)1/2,

where K is the minimum of the sectional curvature of M , and |A| is defined to

be the supremum of |A∗
xy|, where x and y range through pairs of orthonormal

horizontal vectors.

Let f : M → B be a Riemannian submersion, where the minimum sectional

curvature of M is 1. (This can, of course, be assured by scaling the metric on

M). By the O’Neill equation, we have

1

3
(Q− 1) ≥ AXY

where X ∧ Y is an y horizontal two-plane in M . In other words,

|A| ≤ (
1

3
(Q− 1))1/2

Hence by the theorem of Kim and Tondeur, we conclude that if

p

q − 1
≥ 1

3
(Q− 1)
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the fibers of f must all be totally geodesic. This gives the bound of the

theorem. If the metric on B is also quarter pinched, then (Q− 1) ≤ 3, which

shows that the fiber dimension must not be bigger than the codimension.
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Chapter 6

Homogeneity Results

6.1 Definition of Homogeneous Riemannian Foliation

One of the aims of the research described in this chapter is to give a char-

acterization of the notion of homogeneous Riemannian foliation. But one

must be somewhat careful in defining the notion of a homogeneous Rieman-

nian foliation in the first place. There are several concepts appearing under

the word ”homogeneous” in the literature which are definitely not equivalent.

We’ll begin by recording several of these, together with several others that can

plausibly be called homogeneous.

Definition 17. A Riemannian foliation F of (M, g) is said to be strongly

homogeneous if and only if for any p, q ∈ M , there is an isometry of M which

preserves F and takes p to q.

This is far too strong. It of course implies that M is homogeneous, and if

π : M → B is a strongly homogeneous Riemannian submersion, then B is

homogeneous as well. This means that, for instance, the Riemannian sub-

mersions defining the Eschenburg spaces in [5] are not strongly homogeneous,

even though there is a group of isometries acting transitively on the fibers of

these submersions. Since foliations are defined by their leaves, one’s definition
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of homogeneous foliation should perhaps also respect the leaves. That is, it

makes sense to restrict p and q in the definition of strong homogeneity above

to lie in the same leaf. This is basically what Gromoll and Grove do in [9]:

Definition 18. (see [9]) A Riemannian foliation F of (M, g) to be homoge-

neous if and only if there is a group G of isometries of (M, g) preserving the

leaves of the foliation such that the isotropy group of each leaf L of F acts

transitively on L.

The Riemannian submersions defining the Eschenburg spaces in [5] are homo-

geneous in this sense. In constant curvature (which is all that Gromoll and

Grove are concerned with in [9]), a foliation satisfying this condition is auto-

matically Riemannian. However, this is not always the case. In [23] we see

examples of subgroups of Lie groups G with left-invariant metric, such that the

cosets do not form a Riemannian foliation of G with the given left-invariant

metric. With this in mind, we have the following definition:

Definition 19. (see [23]) A Riemannian foliation F of (M, g) is said to be

orbit homogeneous if and only if the leaves are locally the orbits of a group of

isometries of (M, g).

Since the local action fields associated to an orbit homogeneous foliation are

Killing fields for (M, g) where they are defined, we see that the second fun-

damental form of the horizontal distribution in the sense of Reinhart [20] is

identically zero, and so orbit homogeneous foliations are Riemannian.
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We will call an orbit foliation F almost-free if and only if the groups in the

definition act almost freely. That is, the isotropy groups of the actions in the

definition are finite.

Since we will be working with Killing fields rather than groups of isometries in

the theorems we prove in this chapter, we will end this section by translating

some of these notions into equivalent notions involving Killing fields.

Lemma 20. A Riemannian foliation F of (M, g) is orbit homogeneous if and

only if for every point p ∈ M there is a neighborhood U of p and a family of

Killing fields {K1, . . . , Kl} which span the leaf directions in U .

Proof. Notice that we have not specified the number l in the above lemma.

We can take the Lie algebra generated by the Ki to be the Lie algebra of a

group of isometries of M , such that the leaves of F are locally the orbits of

this action. Conversely, if F is orbit homogeneous, then the action fields will

serve as the Killing fields in the statement.

Lemma 21. An orbit homogeneous Riemannian foliation F of (M, g) is said

to be almost-free if and only if the leaves have dimension k, and for every

point p ∈ M , there is a neighborhood U of p and a family of k Killing fields

for (M, g) which span the leaf directions.

Proof. In this case, the group generated by these Killing fields must act

almost freely, because of the dimension condition.
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6.2 Known Homogeneity Obstructions

At present the only known obstructions to orbit homogeneity are the follow-

ing: Given a Riemannian foliation one defines the mean curvature form by

the equation ω(E) = trSEh. It is a horizontal form with values in the endo-

morphism bundle of V. Now if a Riemannian foliation is homogeneous, then

the mean curvature form is a basic vector field. If the Riemannian foliation is

also one-dimensional, and the mean curvature form is closed, then the folia-

tion is homogeneous. To see this, note that locally we have ω = dφ for some

smooth function. Then if T is a vector field locally spanning the foliation,

one checks that exp(−φ)T is a Killing field on (M, g). (for more details, see

[8]). However this is certainly not a sufficient condition. Observe that if F

is totally geodesic and one-dimensional, then any unit length vector field T

spanning F is a Killing field. However, this is not the case for the foliation

generated by the Hopf map S15 → S8 with fiber S7. In this case the only

symmetries of S15 taking each fiber of this map to itself are the identity and

the antipodal map (essentially because the octonions are non-associative). In

this chapter we will present a sufficient condition for a Riemannian Foliation

to be homogeneous. First we will discuss the holonomy map of a homogeneous

Riemannian foliation.
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6.3 The Holonomy of a Riemannian Foliation

In this section we will assume that the foliation F is spanned by a family

{K1, . . . , Kk} of holonomy fields, and we will compute the holonomy of F

along the horizontal geodesic γ.

Proposition 22. Suppose that the Riemannian foliation F of dimension l is

spanned by the family {K1, . . . , Kl} of Killing fields for (M, g). Let γ : [0, 1] →

M be a horizontal geodesic of M , and let vp be a vertical vector at p = γ(0).

Extend v to a vert ical Killing vector field K. Then the holonomy Jacobi field

J(t) extending vp along γ is given by J(t) = Kγ(t).

Proof. One can extend v to a Killing field by writing vp = c1K1 + · · ·+ clKl

for ci ∈ R, and then setting K = c1K1 + · · · + clKl. Now any Killing field

K restricted to any geodesic γ is a Jacobi field. This is because the local

flow of K is given by isometries, and hence generates a variation of γ through

isometries. K|γ, the variation field of this variation, is then a Jacobi field

along γ. But since our K is vertical, the geodesics of the variation generated

by K all project to the same geodesic in the base. That is, the geodesics of

the variation are all basic lifts of the same geodesic. Therefore the differential

of the holonomy map is given by the variation field of this variation. Observe

that this calculation is independent of the choice of Killing field extending

v.

41



6.4 An Obstruction To Homogeneity

The work in the previous section suggests finding Killing fields via the following

procedure: Suppose K is a vector field along the leaf L of F . Further suppose

that K is killing along the leaf L; that is, < ∇VK, V >= 0 for any vertical

vector. Then we can extend K to a vector field in a neighborhood of p ∈ L ⊂

M by holonomy. Under certain circumstances (by no means all) this process

will yield a vertical Killing field for (M, g) in a neighborhood of p ∈M . Here

is one case where it works.

Theorem 23. Suppose that F is a totally geodesic Riemannian foliation of

(M, g) of dimension k. Fix a leaf L of F and choose p ∈ L. Suppose that

there exist vector fields X1, . . . , Xk of L with the following properties:

(a) The Xi are tangent to the leaf L,

(b) The Xi are Killing along L; that is, < ∇VK, V >= 0 for any vertical

vector,

(c) There exist constants clij such that < [Xi, Xj], Xl >= clijXl along L

Then the Xi can be extended to Killing fields for (M, g) in a neighborhood of

p.

Proof. Observe that the condition above automatically implies that L must

have the structure of a Lie group, provided that the vector fields Xi are de-

fined everywhere on L (see [21]). Since the foliation is totally geodesic, any
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holonomy Jacobi field J along a horizontal geodesic γ is vertically parallel.

This is because J ′ = −Sγ̇J − A∗
γ̇J , so that J ′v = −Sγ̇ = 0. Therefore the

holonomy transformations are isometries, since holonomy transport coincides

with the parallel transport coming from the vertical connection ∇̂. Now we

extend each Xi to a vector field Ki near p using the holonomy maps. Ki is

well defined, if the neighborhood in which the extension takes place is small

enough. The Ki are smooth, since along each horizontal geodesic, Ki is the

solution to the differential equation K ′′
i = R(Ki, γ̇)γ̇ with initial conditions

Ki(0) = Xi(γ(0)), K ′
i(0) = −A∗

γ̇Xi(γ(0)). Therefore since the initial condi-

tions vary smoothly, Ki is smooth. Moreover, since we have seen that the

holonomy maps are isometries (as the leaves are totally geodesic), we must

have the bracket relations clij =< [Ki, Kj], Kl > among the extended vector

fields. Now we need only check that the Ki are Killing fields. This is equiv-

alent to saying that < ∇BKi, B >= 0 for any vector B and any i. We will

check this condition by writing B = Bh + Bv, expanding out < ∇BKi, B >

and checking that each of the four terms in the sum are zero:

(a) < ∇BvKi, B
v >= 0 along L by hypothesis. Since the holonomy maps are

isometries, they take Killing fields along L to Killing fields along L, and

therefore this is true wherever the extension is defined.

(b) < ∇BvKi, B
h >= 0 because F is totally geodesic.

(c) < ∇BhKi, B
h >= − < A∗

BhKi, B
h >= − < Ki, ABhBh >= 0.
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To see that < ∇BhKi, B
v >= 0 we note that the quantity in question is

tensorial in Bh and Bv, and so we extend Bh to a vector field Q such that

[Q,Ki] = 0. Then we have < ∇BhKi, B
v >=< ∇QKi, B

v >=< TQKi, B
v >=

0.

Corallary 24. Suppose that π is a Riemannian submersion of a compact Lie

group G with bi-invariant metric with totally geodesic fibers, with the property

that the fiber through the identity is a Lie subgroup of G. Then π is orbit

homogeneous and almost-free.

Proof. We begin by passing to the universal cover G̃ of G, and lifting the

foliation defined by π there. Since G̃ is locally isometric to G, the lifted

foliation is still Riemannian and totally geodesic. By hypothesis the left-

invariant vector fields tangent to the fiber through the identity must form a

Lie subalgebra of g. Therefore those fields satisfy the requirements of the

above theorem, and can therefore be extended by holonomy to Killing fields in

a neighborhood of the identity. But then we have a Lie algebra of local Killing

fields of G, which can be extended to a global Lie group of isometries of G, by

the theorem of Cartan (see [17]). Therefore the submersion π must be orbit

homogeneous and almost free, and similarly for the original submersion.

Ranjan ([19]) has shown that a Riemannian submersion of a compact simple

Lie group G with bi-invariant metric with connected totally geodesic fibers

must be the coset projection onto one of the coset spaces G/Fe or Fe\G,

provided that the fiber Fe through the identity e of G contains a maximal
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torus of G. (As part of his proof, he shows that Fe is a subgroup of G.)

6.5 Flat foliations of symmetric spaces

In this section we will discuss flat foliations of symmetric spaces of compact

type. A flat Riemannian foliation is one whose A tensor vanishes identically.

Here is the theorem that we will prove:

Theorem 25. Suppose that (M, g) is a simply connected symmetric space

of compact type and that F is a Riemannian foliation of M . If F is flat,

then M splits isometrically, and in fact F is homogeneous. In particular, a

codimension 1 Riemannian foliation of a compact Lie group with bi-invariant

metric must be homogeneous.

Proof. Recall that g must have nonnegative sectional curvature. Therefore

in the Riccati equation (5.1)

S ′ = S2 +R− B

we can take traces, getting the equation

s′ = s2 + tr((S − sI)2) + r − b

where S, R, and B are all k × k matrices, and s = 2
k+1

tr(S), r = tr(R) and

b = tr(B). Since F is flat, we have B = 0, and hence b = 0. Therefore s has

the property that s′ ≥ s2. Therefore s = 0, which implies that tr(S2) + r = 0,
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and hence S = 0 since S is symmetric. Therefore the leaves of a flat Rieman-

nian foliation in non-negative curvature are totally geodesic, and moreover the

vertizontal 2-planes (ie, those spanned by a vertical and a horizontal vector)

must be flat, s ince r = 0. Therefore the metric g must split locally along the

leaves of the Riemannian foliations H and V. (See also [24] for more on flat

Riemannian foliations. The method I used to show that S = 0 is well known.

I included it here for completeness.) Recalling the criterion of Escobales [7],

we conclude that at any point, the geodesic symmetry φp of M preserves F ,

since A = 0. Therefore, writing M = G/K where G is a compact Lie group

and K is the fixed point set of an involution of G, we see that G is a group of

isometries of M preserving the foliation F . Therefore near any point p ∈ M ,

we can find a set of Killing fields (the action fields of the action by G) which

lie tangent to the leaves of F . Therefore F is homogenous. The last sentence

in the statement follows because compact Lie groups with bi-invariant metric

are symmetric spaces of compact type, and codimension 1 Riemannia n foli-

ations must be flat. So if we lift the given foliation F to the universal cover

G̃ of G, we get a new foliation F̃ of G̃ which must also be of codimension 1.

Therefore the isometries of G̃ preserving F̃ induce local isometries of G, such

that the corresponding action fields lie tangent to the leaves of F . Therefore

F is homogeneous.

We also have the following theorem.

Theorem 26. Let (G, g) be a compact simple Lie group with bi-invariant
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metric G. There are no codimension-one Riemannian foliations of G with

closed leaves.

Proof. Suppose that F is such a foliation. The argument above shows that

F must have totally geodesic leaves, since (G, g) has non-negative curvature.

Observe that if f : G→ G is an isometry with the property that at some point

p ∈ G, f(Hp) = Hf(p), then for all q ∈ G , f(Hq) = Hf(q). In particular, f pre-

serves F if f(Hp) = Hf(p) for any point p. Therefore every geodesic symmetry

of G preserves F , and therefore every isometry in the identity component of

Isom(G) preserves F . Therefore, since G has a bi-invariant metric, we see that

for every g ∈ G, the map cg(x) = gxg−1 is an isometry of G preserving F .

Since cg fixes the identity of G, cg must therefore take the leaf of F through

the identity to itself for every g. I claim this leaf is therefore a subgroup of

G. To see this, pick v, w ∈ Ve, where Ve is the tangent space at the identity

to the leaf of F through e, set gt = exp(tw), and observe that the smooth

path v(t) = Adgt
(v) must lie in Ve. Therefore v′(0) = ad(w)(v) must lie in Ve.

Therefore the leaf of F through the identity i s not only a subgroup of G but

also a normal subgroup, since it is preserved by every cg. But then G cannot

be simple. Contradiction.
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