ABSTRACT

Title of Thesis: BACK AND FORTH: (RE) WEAVING AND (RE) KNITTING LOCUST POINT INTO THE FABRIC OF BALTIMORE CITY.

Degree Candidate: Akinsade, Olumide Oseyemi

Degree and Year: Master of Architecture, May 2004

Thesis Directed By: Assistant Professor Melissa Weese, AIA
School of Architecture

The identity of cities were defined by gothic cathedrals in the middle ages in the same way that industrial “palaces” of the industrial age codified a sense of identity for many major cities. These infrastructure that were built on the thriving manufacture of steel, automobiles e.t.c. saw their heyday during the industrial era are now witnessing a rapid transformation in form and function within today’s information driven era. How can a city or neighborhood retain its delicate ecosystem of industrial history, role, identity and function in the face of such epic global industrial transformation? This thesis will address and solve through master planning, these issues faced within the neighborhood of Locust Point in
Baltimore city. It will also seek to strengthen the community through adaptive reuse of its existing industrial buildings, the linkage of the community to the Baltimore harbor and connection to Fort McHenry, a national historic park.
BACK AND FORTH: (RE) WEAVING AND (RE) KNITTING
LOCUST POINT INTO THE FABRIC OF
BALTIMORE CITY.

By
Akinsade, Olumide Oseyemi.

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Master of Architecture
2004

Advisory Committee:

Assistant Professor Melissa Weese, AIA; Chair
Professor Ralph Bennett, AIA
Professor Sidney N. Brower
DEDICATION

I wish to dedicate this document to my parents, Ambrose and Roseline Akinsade, both of who were extremely supportive, encouraging and understanding of my temparaments during my tenure in academia and through the course of this thesis. I will also like to dedicate this document to Michael Scott Defrance (MUD). Your testament to humanity lives on in us your friends from those undergraduate years.
ACKNOWLEDGEMENTS

I would like to thank all of those who helped me during the last two years to complete graduate school and my thesis. Immense gratitude to you all for your understanding and concerns! I would like to thank my thesis committee as well as my dearest friends at RTKL Associates Inc. You guys have been very helpful to my growth and I appreciate it from the bottom of my heart!

Jo Schenider
Jared Jackson
Philip James
Monica Pascatore
Kuo Pao Lian (and Pavlina)
Joe Messier
Brian Martin
Ryan Kautz
Table of Contents

List of Figures ... vi

Chapter I The Site ... 6
 Site History .. 9
 Site Existing Conditions ... 11

Chapter II Site Investigation .. 13
 Site Analysis .. 15
 Site Drawings .. 18
 Site Survey ... 20
 Site Zoning .. 23
 Zoning Analysis ... 24

Chapter III Precedents ... 44
 Site Precedent Analysis ... 45
 Building Precedent Analysis 50

Chapter IV Design Analysis .. 60
 Design Goal .. 61
 Urban Strategy .. 65

Chapter V Program ... 65
 Program Description .. 66
 Program tabulations .. 68

Chapter VI Design Approach .. 73
 Parti study A .. 76
 Parti study B .. 81
 Parti study C .. 86
 Parti study D .. 90
 Parti study E .. 94

Chapter VII Design Conclusions ... 101
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII</td>
<td>Urban Solution</td>
<td>103</td>
</tr>
<tr>
<td>IX</td>
<td>Neighborhood Solution</td>
<td>109</td>
</tr>
<tr>
<td>X</td>
<td>Building Solution</td>
<td>124</td>
</tr>
<tr>
<td>XI</td>
<td>Bibliography</td>
<td>151</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baltimore, Maryland, circa 1800’s</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Locust Point, Baltimore, Maryland, 2003</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Locust Point, Baltimore, Maryland 1860</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Lot Divisions, Locust Point, 1876</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Figure Ground of Locust Point and adjacent neighborhoods</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Reverse Figure Ground of Locust Point</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Walkability Diagram of neighborhoods</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Figure Ground of Locust Point</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Image of Locust Point Railroad spurs</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Hierarchy of access road systems</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>Fort Avenue as an urban “zipper”</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>Floodplain diagram of Locust point</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>Image of Bethlehem Steel Yard</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>Industrial Sites, Locust point</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>Zoning Classification of Locust Point</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>Land Use Diagram in Locust Point</td>
<td>22</td>
</tr>
<tr>
<td>17</td>
<td>ADM Grain Elevator and Silo</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>ADM Grain Elevator and Silo, from Fort Avenue</td>
<td>23</td>
</tr>
<tr>
<td>19</td>
<td>Tide Point Company</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>Promenade at Tide Point Company</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>The Amstar. Domino Sugar Company</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>Baltimore & Ohio Railroads, at Locust Point</td>
<td>27</td>
</tr>
<tr>
<td>23</td>
<td>CSX Railroads serving industrial Locust Point</td>
<td>27</td>
</tr>
<tr>
<td>24</td>
<td>CSX Railroads and Train Yard Across Fort Avenue</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td>Local Street Connections Back Bay, Boston Massachusetts</td>
<td>30</td>
</tr>
<tr>
<td>26</td>
<td>Aerial Image of Back Bay, Boston Massachusetts</td>
<td>30</td>
</tr>
<tr>
<td>27</td>
<td>Existing Public Promenade, Baltimore Inner Harbor</td>
<td>31</td>
</tr>
</tbody>
</table>
Proposed Public Promenade, Baltimore Inner Harbor

Water Taxi Locations, inner harbor

Landscape and Park amenities in Locust Point

Latrobe Park “lined” with single family rowhouses

View corridors through and out of Locust point,

Typical residential scale and typology

Typical residential scale and typology

Religious Architecture

Religious Architecture

Typical “Local” Street Sections at Locust Point.

Typical Street Sections Fort Avenue, Locust Point.

Typical Sections at Locust Point. “Industry vs. Housing”

Typical Sections at Locust Point. Water’s edge.

Industrial adaptive reuse Figure ground of the Tate modern

Building and Site Section showing relationship to the Thames

Building plan showing programmatic, Tate modern

Conversion of Bankside Power Station

The tate Modern at the Bankside Power Station

The Port of Maine as a precedent; existing

The Port of Maine as a precedent, Final

Charlestown Navy Yard, boston, Massachusetts

Charlestown Navy Yard, boston, Massachusetts

The Gasometers, Vienna, Austria

Plans and Sections of the Gasometers, Vienna, Austria

The additive methodology; Adaptive Re-use

The additive methodology; Adaptive Re-use

The subtractive methodology, Adaptive Re-use

The subtractive methodology, Adaptive Re-use

View of building components

Aerial view of the “Lingotto”

View of building courtyard, “Lingotto”
59 Exterior view of “Adapted” building
60 Integrating building with Landscape
61 Exterior view of grain silo building
62 Interior view of grain silo building
63 Interior view of grain silo building
64 Historical timeline of Port Development
65 Land-Use; Road extensions for Locust point
66 Climatic diagramming of natural elements in Locust Point
67 Parti A: “Pier” versus” Anti-Pier”.
68 Diagram of Parti A
69 Site section for Parti A
70 Perspective
71 Aerial perspective looking at the ADM Silo
72 Parti B showing a park system
73 Diagram of Parti B
74 Site section for Parti B
75 Perspective
76 Aerial perspective looking at the ADM Silo
77 Parti C showing the ADM Site
78 Diagram of Parti C
79 Parti D showing the ADM Site
80 Diagram of Parti D
81 Site section for Parti D
82 Perspective
83 Parti E showing the existing railtracks
84 Diagram of Parti E
85 Site section for Parti E
86 Site section showing existing conditions
87 Site section
88 Site section
89 Figure Ground of Baltimore Harbor and outlying areas
Figure Ground of Baltimore Harbor. Proposed Zoning

Recreational park systems within downtown Baltimore

Existing and Proposed Rail lines. Baltimore City

Existing and Proposed Rail lines. Baltimore City

The peninsula of Locust Point

Locust Point. Existing conditions

Locust Point. Proposed Site Axonometric.

Proposed Site Plan. Locust Point

Diagram. Center of the neighborhood

Diagram. Figure ground of the neighborhood.

Diagram. Green spaces.

Diagram. Edge vs. Green spaces.

Diagram. Street Pattern.

Diagram. Street Pattern.

Proposed Site Plan. ADM Silo in Locust Point

Existing ADM Grain Silo plan in Locust Point.

Level B1 Floor Plan.

Ground Level Floor Plan

Level Two Floor Plan Restaurant Level

Level Three Floor Plan

Level Four Floor Plan

Level Five Floor Plan

Level Six Floor Plan

Typical Office Floor Plan

Office Level Floor Plan

Building Section

Building Cross-Section

Building Waterfront Elevation

Building Side Elevation

Building Rear Elevation

Overall Site Section
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>Public Pier Elevation</td>
<td>141</td>
</tr>
<tr>
<td>122</td>
<td>Typical Unit Layout</td>
<td>142</td>
</tr>
<tr>
<td>123</td>
<td>Enlarged Elevation and Section Detail</td>
<td>143</td>
</tr>
<tr>
<td>124</td>
<td>Waterfront Promenade Perspective</td>
<td>144</td>
</tr>
<tr>
<td>125</td>
<td>SILO Point Perspective (Waterfront)</td>
<td>145</td>
</tr>
<tr>
<td>126</td>
<td>SILO Point Perspective (Neighborhood)</td>
<td>146</td>
</tr>
<tr>
<td>127</td>
<td>SILO Point Perspective (Bridge)</td>
<td>147</td>
</tr>
<tr>
<td>128</td>
<td>SILO Point Perspective (Courtyard)</td>
<td>148</td>
</tr>
</tbody>
</table>
“Winding towers, textile factories, waterworks, workers’ estates and furnaces are witnesses to the cultural history of industrialization”

- Wolfgang Ebert
I – The Site
Baltimore, A Brief History.

Baltimore City is a port city on the eastern coast of the United States that began as a major trade route in the early 1700’s. The construction of the Baltimore & Ohio railroad system helped sustain the numerous industries that served the east coast. During and after WWII, the port saw a boom in the naval industry (ship building), and witnessed its highest level of industrial activity in sustaining major national and international industries.

![Map of Baltimore](Image)

Fig 1. Baltimore, Maryland, circa 1860’s (UMD Planning Dept.)

With the advent of the postindustrial age, major industries such as Procter & Gamble and Bethlehem Steel vacated the Baltimore waterfront and leaving the harbor a hodge podge of underdeveloped brownfields. These properties as a result became fertile feasting ground for developers, most of who were in a major rush to build without appropriate foresight or master planning initiative from the city or related jurisdictions with regards to accommodating new uses.
In July 1990, Baltimore City embarked on an urban design initiative that focused on the Key Highway corridor and the industrial components that line its edge along the harbor waterfront. This study investigated efforts that supported new industries and land use to replace the decaying factories, and sought to discourage land speculation. This master planning effort, which has since been implemented by the city, stopped short of addressing existing conditions of the adjacent neighborhoods next to Key Highway, for example Locust Point and how it could be appropriately knitted to the waterfront once the remaining industrial facilities depart.

Fig 2. Locust Point Neighborhood, Baltimore, Maryland
Locust Point, Baltimore; A Neighborhood in Flux

Locust Point originally known as Whetstone Point was purchased as an open field in the 1700’s after iron ore was discovered on the peninsula. This rich discovery helped spawn numerous industries that developed at the site at the height of the industrial age. Locust Point was originally divided into 76 lots for the first buildings that housed immigrant workers, many of whom worked in the first industries along the waterfront.

Fig 3. Locust Point, Baltimore, Maryland, circa 1860’s

During the 1800’s, The Port in Baltimore witnessed an influx of workers from overseas mostly of who were German and Polish in origin. The mass immigration to the new world during his period at the height of the industrial revolution came to establish the identity of many cities across the United States. Ellis Island in New York was a prime point of entry into the country with Locust Point in Baltimore a close second. Many if not most of these immigrants came seeking the promise afforded by the development of heavy industry along the
Baltimore waterfront. The site with its adjacent railway processed over a million European immigrants that either settled in Baltimore city or continued via train to other parts of the country.¹

Fig 4. Lot Divisions in Locust Point, Baltimore, Maryland, 1876 (UMD Planning)

Many of the immigrant population helped build Fort McHenry, a significant post during the war of 1812. The Fort that stands guard at the end of the peninsula is one of the more important historical sites in the nation as its strategic location was significant in preventing the British troops from invading the country. The Star Spangled Banner was written as a result of that war, extolling the bravery and resiliency of the American spirit during the war.

Locust Point: Existing Conditions

Locust Point, although initially built around the production of iron ore, grew to serve numerous other heavy industries during World Wars I and II. These included shipbuilding, grain processing and transfer, cargo transfer, and steel production. Most of the piers along with the train tracks that served them on the waterfront in Locust Point are relics of this industrial past and are currently owned by the Maryland Port Authority. The Piers are leased to private industrial operators long term or are held in trust for projected future operations.

Fig. 5

Figure Ground of Locust Point and the adjacent Communities around the Patapsco River.
The peninsula currently divides the Patapsco River, the neighborhoods of Federal Hill and Riverside are to its west, the neighborhood of Fells Point and Canton are to the north across the water and to the east is the location of the aforementioned Fort McHenry. (Fig 4). The site today remains a mixture of zoned classifications which include residences, commercial buildings, schools, offices and heavy to light industrial buildings (Fig. 5).
II – Site Investigation
Locust Point is a mixture of zoned ordinances, which range from residential to commercial, light to heavy industrial uses. The peninsula as shown in the reverse figure ground drawing (Fig 6) shows the dense urban fabric of the city at the water’s edge. The industrial nature of the peninsula has stripped most of the land of indigenous fauna at some sites enough for them to be classified as lands requiring legislation for cleaning and rebuilding.
Walkability of Neighborhoods

The Peninsula is made up of different neighborhoods and communities that are within walking distances from one another. The neighborhood of Federal Hill and its immediate neighbor Riverside have their centers within five minute walking distances of each other, with the heart of Locust Point situated five minutes from Fort McHenry (Fig. 7)
Each of the distinct neighborhoods share a common housing typology of modestly scaled two to three story row houses that have private yards in the rear. The extension of Key Highway to the I-95 Junction serves a separator between Locust Point and the other neighborhoods of Riverside and Federal Hill since its nature as a “highway” is not conducive to the modestly scaled neighborhoods it attempts to link. Interstate I- 95 that runs north south through the peninsula into Fort McHenry tunnel currently serves as a major conduit for the transfer of goods and once they arrive at the Port of Baltimore.

Fig. 8

Figure Ground. Locust Point Neighborhood at the Peninsula
The train system that once served all the heavy industries at the Port of Baltimore has “spurs” that deprive the neighborhood of Locust Point of a physical connection to the water’s edge. Today, industries that are remain at the edge of the water include The American Sugar and Refining Company (also locally known as “Domino Sugar”), The Maryland Port Authority and numerous other privately held heavy shipping industries. Although Locust Point as a thriving community sits off the peninsula on the Patapsco River, the neighborhood as a potential waterfront community is physically bounded by the industrial infrastructure that at a time was the original reason for being.

Many of these industries have slowly been shut down over the last few decades as a result of the emergence of newer technology and more efficient ways
of production. Examples of such defunct industries include Proctor and Gamble (Household product manufacturer, now called Tide Point), Archer Daniel Midlands (Grain storage and transfer), The Coca-Cola Company (Beverage manufacturer), the Phillips Seafood and Bethlehem Steel, whose old site boasts a new high-rise condominium.

Points of Access: Locust Point

The Peninsula has a platting of a grid road system that serves the community. The primary and secondary roads that run through the peninsula serve the industries as well as the neighborhood. The bisection of the Locust Point Peninsula by the introduction of Interstate 95 during the 1980s in a north-south direction is complimented by the extension of Key Highway that runs down from Federal Hill along the waterfront and turns at the edge of Locust Point to feed into I-95 (Fig. 10). The main road access into Locust Point is Fort Avenue, a primary datum that runs parallel to the I-95 and Key Highway. The highway cuts through Locust Point terminating at Fort McHenry in a dead end. Residential streets run in a regular pattern perpendicular to Fort Avenue to form the neighborhood of Locust Point. Other edges of Fort Avenue are bounded by numerous public land uses, including Latrobe Park, an elementary school, several industrial buildings and some row houses.
Fig. 10

Hierarchy of access and street systems in Locust Point and Adjoining neighborhoods
Topography of Locust Point

The Peninsula of Locust Point is a relatively flat site. The neighborhood is located on a site of 100 and 500-year floodplains. Fort McHenry is the highest point on the peninsula since the Fort was constructed above the existing floodplains as part of the star shaped earthworks that remains visible today. Most of the current residential as well as industrial buildings lie outside of the 100 and 500-year floodplains.

Fig. 11

Fort Avenue as Urban “Zipper” that links neighborhoods; Locust Point and Riverside.
The erosion of the industries is gradually making an impact on the livelihood of residents within the neighborhood. Most of the residents have historically depended on the industries for job, security and a sense of community identity. An example of this loss of industry is the Bethlehem Steel Company at the Inner Harbor. At the height of the industrial age in the United States and at the onset of WWI and WWII, Baltimore was one of the premier sites for shipbuilding.

Industrial Locust Point

Site Topography showing 100 and 500 year Floodplains
industries in the country. The port of Baltimore along with Bethlehem Steel played an important role in establishing the region and the country at large as a major player in maritime efforts.

The transformation of world economies from heavy industry to one that is mostly information-based saw major diminishing returns in the amount and size of cargoes in and out of the major ports in the country. Bethlehem Steel (Fig. 13), which served the Navy during the war moved to a site at the base of Federal Hill (The Propeller Yard), before pulling out of the Inner Harbor for good.

Fig. 13
Bethlehem Steel Navy Yard, Baltimore, Maryland
Site Zoning and Land-Use

The current zone classification of the Locust Point Peninsula is highly diversified since it mixes residential, business (B-1; B-2; B-3), institutional, park usage, light industry to heavy industrial uses (M-1; M-2; M-3). The zoning ordinances in this area are unlike most within the city since all types exist side by side. The edge of the peninsula is ringed with the heavy industrial
uses with a civic park (Fort McHenry) anchoring the end. The interior of the peninsula is devoted mostly to residential usage with a mixture of commercial, institutional and light industrial usage (Fig. 15).

A closer look at the Peninsula shows a finer grain of development that reveals the symbiotic relationships that historically and currently exists between these varied land uses. The intricate land uses reveal a high level of co-dependency of uses on one another. Most of the workers in Locust Point live in the immediate neighborhood and patronize the commercial institutions (retail stores, bars and pubs).
Industrial Uses in Locust Point

Archer Daniels Midland Company, ADM (Figs. 17 and 18), has operated a grain silo in the Port of Baltimore for the last 80 years. The 7.5-acre site that the company leases from the Maryland Port Authority was an active and vibrant industry within the city employing numerous people in the neighborhood. The Silo building, which has historically towered above Locust Point was shut down due to structural problems as well as the irrelevancy of old fashioned methods of production.
The ADM sits adjacent to the former Proctor and Gamble company now Tide Point (Fig. 19) as an empty reminder of the neighborhoods’ glorious
industrial past. The new industry at Tide Point attempts to engage the community by providing a promenade for the public at the waterfront; however the neighborhood is still disconnected from the waterfront since this connection is through the newly re-adapted facilities.
The Domino Sugar Factory (Fig. 21), a sugar refinery processing plant is another major industry that is on the waterfront at the Baltimore Harbor. The building, which was constructed as a 10 storey fully functioning plant in 1922, processes raw sugar into refined sugar and was once the largest sugar refinery in the world. Currently, the plant, though speculated to cease production soon, is once more at the height of resurgence, especially with a recent acquisition of added properties adjacent to its site.
One major component of these industries that served Baltimore is The Ohio railroad system. The system, which was platted at the water’s edge over 150 years ago, was the active generator of the urban form for Baltimore City (Figs 22, 23 and 24).
Fig 22. Baltimore & Ohio Railroads surrounding Locust Point.

Fig 23. CSX Railroads serving industrial Locust Point.
The train tracks still serve the remainder of the industries that are on the peninsula. The majority of the tracks currently serve as a car depot for CSX Railroads, a company that serves south Locust Point across I-95 (Fig. 24). Although a vital amenity for the industries along the waterfront, the railroad tracks are barriers that keep Locust Point away from the waterfront of the harbor.

Fig 24. CSX Railroads and Train Yard Across Fort Avenue.
Baltimore City and its Waterfront Amenities

The city of Baltimore, like any major city with adequate access to water, realizes the importance of revitalization along a particular waterfront. The urban realm of a city where its citizens inhabit the most (which often is along amenities like a waterfront) is inherently tied to the image ability of the city. Historically, the image ability of a city typically focuses on a center or node (for example a business district) or a decipherable edge (park or waterfront). Baltimore, with its Central Business District as its original node, has capitalized on its waterfront as a more prominent node. The 1970’s saw the installation of the Inner Harbor shopping pavilions, a venue that helped draw people to the waterfront from the core of downtown for leisure activities. This urban design initiative also sought to decongest the downtown area by affording the city inhabitants a “playground” on the old industrial waterfront, a place where city living and recreational amenities intermix.

Back Bay in Boston, Massachusetts (Figs 25 and 26) is an example of a waterfront edge that is relegated to public use as an amenity or promenade. The waterfront edge in Baltimore acts a seam that knits differing functions along the waterfront together. The edge is also a place where the fabric of the city, especially the Central Business District along Pratt Street meets the city’s natural amenity. Transportation uses such as water-taxis for commuters link different nodes along the waterfront to other sites on the harbor. The city could further promote this recreational effort by continuing the existing harbor walk promenade.
past the industries of Locust Point to one of the city’s major historic amenities, Fort McHenry (Figs 27 and 28).

Figs. 25. Local Street Connections and Patterns. Back Bay, Boston Massachusetts

Figs. 26. Aerial Image of Back Bay, Boston Massachusetts
Public transportation in and out of Locust Point is poor in that the roads and public transportation systems that serve the neighborhoods adjacent to it (Federal Hill and Riverside) trickle to a minimum further down the peninsula. The only local bus line that serves the community runs down Fort Avenue to Fort McHenry; however, it does not branch into Locust Point.
The water taxi as mentioned earlier serves local businesses across the water, the only stop in Locust Point is geared towards the office component at Tide Point, which is at the edge of the neighborhood, and does not serve the community directly (Figs 29).
The industrial nature of Locust Point puts it in direct conflict with the greenfield directives that may be at the heart of knitting it to its edges and to its adjoining neighborhoods. The lack of trees on most streets within the community is a deterrent to “dwelling” within the public realm. Although the buildings provide some shade for the sidewalks, most of the single lane streets are uninhabited during the daytime hours especially in the hot summer months due to its lack of vegetation. A park that is at the edge of the neighborhood, Latrobe Park is part of a local park system that serves as centers for neighborhoods along the
water’s edge. Latrobe is a local amenity that people throughout the neighborhood enjoy, especially with the location of the neighborhood community center on its grounds. The local elementary school in the neighborhood utilizes Latrobe Park as part of its playfield, while it acts as a necessary buffer and screen for the railroads that traverse the neighborhood on a regular basis.
View Corridors

As a neighborhood that is part of an “urban edge”, the views in and out of Locust Point are critical to how it is perceived both by residents within the community as well as the people without. The porosity that can be achieved to the water and beyond is a potent part of the amenity that Locust Point partially possesses. Although these connections exist, the view is mostly from within, since the industrial edge of the community is a “shield” that draws attention as one looks across from Fells Point or Canton. Locust Point is one of a few neighborhoods in Baltimore City at the waterfront with its best views outwards from the Fort Avenue (Fig. 32).
Urban Streetscapes (Local Architecture and Typology)

The typology of architecture that exists in Locust Point range from high tech industrial, to vernacular brick row houses. The types include religious and commercial architecture that have residences above them. The domestic buildings though modest in size are typically 2 storey structures with a half basement. The existing fabric typically looks onto spartan streets that are mostly treeless and barren. The street widths range from 30 – 40ft curb to curb and accommodate parking on both sides of the street. The religious buildings (Figs 35 and 36) are typically larger in scale and are secondary visual icons within the streetscape. This relationship or characteristic is due to the fact that all the buildings in Locust
Point including the waterfront are dominated by the ADM grain elevator and Silo (Fig. 35).

Fig 33. Typical residential scale and typology

Fig 34. Typical residential scale and typology
Fig 35. Religious Architecture (ADM Grain Silo in Background)

Fig 36. Religious Architecture
Fig 37. Typical “Local” Street Sections at Locust Point.

Fig 38 Typical Street Sections Fort Avenue, Locust Point.
Fig 39. Typical Sections at Locust Point.
“Industry vs. Housing”

Fig 40. Typical Sections at Locust Point.
Water’s edge.
III – Precedents
Site Precedents #1: Bankside and the Thames.

The industrial fervor that swept the world during the 19th and 20th century left its indelible mark on the cities in the United States as well as those in Europe. The river Thames is a determinant of the form of London since the city depended on the waterway for commerce and navigation. Numerous industries were erected along the banks of the river as result, especially with the advent of mass and rapid modes of production.

Electricity, a catalyst for development during the industrial age, prompted England to construct large power plants to serve industrial as well as the urban needs. The Bankside, as well as The Battersea power stations (designed by Sir Giles Gilbert Scott), were large industrial plants that housed enormous “turbine” components that help generate electricity for mass public consumption.

Fig 41. Industrial adaptive reuse Figure ground of the Tate modern
(Formerly Bankside Power Station)
As the industrial paradigm shifted globally, these monuments to power generation and consumption fell by the wayside. Rather than clear the site for a
building that serves today’s aesthetic desires and needs, the city of London converted the Bankside Power Station into a public museum, one that shows a highly successful example of adaptive reuse. The building now referred to as The Tate Modern was designed by Herzog and de Meuron with minimal reconstruction efforts to its façade. The interior was excavated and the main turbine hall is a cavernous volume that can be entered at various levels (Figs 41-45).

Fig 44. Conversion of Bankside Power Station
Site Precedent #2: Portland, Maine

Reclamation and redevelopment of an industrial waterfront entails assessing the needs that the port might serve by properly assessing and predicting what could work on the site through feasibility studies. These often include rezoning efforts coupled with master planning initiatives that would bring in variable land uses. In Portland Maine (Figs 46 & 47), the waterfront existed as one designated for heavy industrial usage. By rezoning the waterfront, new uses could be accommodated including commercial facilities, fishing complexes, a transportation ferry terminal along with business and residential uses. This approach to redevelopment through rezoning and redistricting ensures a higher
density of pedestrians that patronize the waterfront at most hours during the day, as opposed to a single usage that caters towards one type of activity.

Fig 46. The Port before “rezoning” to make it viable for mixed usage (ULI)

Fig 47. Revised Port showing its mixed usage (ULI)
Site Precedent #3: Charlestown Navy Yard, Boston, Massachusetts

The Charlestown Navy Yard in Boston, Massachusetts (Figs 48 and 49) is a similar example of the redistricting and rezoning that can revive and resuscitate a failing waterfront. This project has a diversified mix of uses that exist side by side and was initially planned in a “phased” process. This process allows the city to absorb the cost and construction effort that such a project demands. The phasing also allows for a safety net in case there is a change in market demand for portions of the development.

Fig 48. Charlestown Navy Yard, Boston Massachusetts (ULI)
Fig 49. Compartmentalization of a Port for differing uses (ULI)
Building Precedent #1: Gasometer Project, Vienna, Austria.

One if the characteristic of the city of Vienna is its ornate and grand architecture, most of which predates the industrial revolution. A second decipherable characteristic is the Ringstrasse that separates the old part of the city from the modern expansion. During the industrial age, the city constructed four large cylinders that were commonly referred to as “gasometers” and these mega structures that held natural gas that served as public utility. As part of a massive urban renewal effort, the structures were converted into a mixed-use project that included apartments, student’s dormitories, a retail mall, an auditorium and a cinema. The architects involved sought four distinct approaches to its adaptive reuse.

Fig 50. The Gasometers, Vienna, Austria
One was **additive** in nature, the second was **subtractive** while the remaining two took different vertical approaches as to how programmatic elements were stacked within them.

Fig 51 Plans and Sections of the Gasometers, Vienna, Austria

Fig 52. The additive methodology (Coop Himmelblau)
Fig 53. The additive methodology. Plans and Sections

Fig 54. The subtractive methodology
Fig 55. The subtractive methodology. View of Courtyard

Fig 56. View of building components
Building Precedents #2; Fiat Factory, Italy (Renzo Piano Workshop)

This project (The Lingotto) involves the adaptive reuse of an industrial factory for Fiat into a modern office building. Originally, the factory fabricated automobiles and tested them on its roof level. Italian futurists lauded the building as a marvel because it integrates in cohesive manner architecture with the testing of the product that was manufactured within it.

Fig 57. Aerial view of the “Lingotto’ with the existing rooftop car testing Raceway.

Fig 58. View of building courtyard, which is used for manufacturing
Fig 59. Exterior view of “Adapted” building

Fig 60. Integrating building with Landscape
Building Precedents #3; Grain Silo as Office; Ellerbe Beckett.

The building, a grain silo in Minnesota, was vacated by the original owners once it outlived its usefulness. As part of a renewal effort, the new owner sought to convert it by adaptively reusing it as an office (Figs 61-63). The challenge the architects faced ranged from structural issues and trying to insert a different function into the building envelope without altering the façade of the building in any major way. The main reason for this was because of historic preservation tax breaks that the developers can qualify for if they avoid any changes to the façade of the building. This resulted in the architect devising ways of introducing natural light into the building through unorthodox means of sky lighting and the use of reflective surfaces on the interior. The completed building currently serves as an office building in Minnesota.

Fig 61. Exterior view of grain silo building after Adaptive reuse.
Fig 62. Interior view of grain silo building after adaptive reuse. Reflective surfaces are used to get light into the center courtyard of the building.

Fig 63. Ground level view of interior courtyard.
IV – Design Analysis
Design Goal

Typically, a port is established by creating a simple docking system that allows for merchants to trade their wares with the inhabitants before they are transferred either manually or by domesticated animals inland along a “shoreline” road. This system remains unchanged until the merchants set up warehouses to store goods and trade with incoming vessels along the shoreline. Eventually, more docks are added to accommodate the extra shipments of cargo, all which are received into larger warehouses, as the water’s edge becomes a bonafide port. The shoreline road is then widened and a rail system introduced to move goods inland faster. This type of docking system normally pushes existing building fabric further inland to make room for needed infrastructure on the port for large ships are introduced. As the port grows, major highways are introduced to move goods and services along the shoreline. The train lines and tracks become obsolete as the development of faster and more economic means of goods transfer are created. The train tracks once useful normally become barriers to further development along the waterfront once the old port has outlived its usage. Highway bypasses are often established to reconnect back to the old port, which would have to be rezoned to accommodate newer uses like light industrial, offices and residential uses. This evolution causes a choking effect on the decaying waterfront. Eventually, the highway will be removed to re-establish a connection between the now fully developed city and the thriving waterfront. Fig. 64 shows a timeline diagram of the history of port developments from their inception to modern day revitalizations.
Fig 64. Historical timeline of Port Development from trading, to heavy industrial and conversion into mixed-use
The design intent for Locust Point will capitalize on its existing qualities and land uses by making the waterfront accessible to the people that live in the neighborhood. These qualities include the diversified zone classifications of the neighborhood and the natural context; that is, proximity to the water, proximity to Fort McHenry. These elements have to be carefully studied and researched to help design a viable and appropriate infrastructure for the neighborhood, one that works in harmony with the rich existing urban fabric and successfully connects to the city waterfront promenade.

Fig 65

Land-Use; Road extensions for Locust point, Baltimore, Maryland.
The existing neighborhood which today has about 1100 single family row houses will benefit from the addition of infrastructure that can help maintain a new critical mass that is introduced into the mix. The addition of single and multi-family housing components will help sustain the neighborhood by adding a higher density. The density added will help maintain the added land usage of daycare facility, library, community center, and senior housing e.t.c. The extension of Key Highway as an added infrastructure into the north western end of the peninsula with a spur that loops along the edge of the water will assure that the neighborhood does not get congested with traffic. This will also aid with the issue of parking which currently is a problem. This particular design intent also deals with the CSX train tracks that have historically cut the Locust Point from its edge by removing most of it and leaving a spur that currently serves the Domino Sugar Factory while proposing a mixture of uses to be built on the site of the existing tracks.

Fig 66. Climatic diagramming of natural elements in Locust Point
V – Program
The industrial nature of the peninsula creates communities along the waterfront, especially in Locust Point that lacks cohesion. This issue will be tackled by the overall creation on “setpeices” within the neighborhood to help organize the fabric into a decipherable whole. These buildings will operate with the existing infrastructure to create a finer urban fabric pattern that reaches the waterfront and connects to the adjoining communities seamlessly. The creation of an “Industrial Workshop” will be at the center of this new urban renewal effort. This will act as a place that teaches the community about the nature and sustainability of the industrial buildings in their neighborhood through adaptive reuse. As the concept of industry is evolves, Locust Point must take adaptive measures to accommodate its aging facilities which remains its main point of identity. The city of Baltimore must then devise a master plan that awaits the lighter industry that could be reinserted to replace the aging industries. The thesis with its definition of a “Workshop of Industry” will create a campus of buildings within the neighborhood that all act together in concert to strengthen Locust Point and solidify its sense of place within Baltimore.

Possible programmatic components that will make this feasible include the insertion of newer housing to accommodate the diversified families that live on the peninsula. The new housing will include live/work components that seek to keep the neighborhood intact utilizing the existing piers existing along the waterfront. Living facilities for an aging generation will be created within the community since most of these “aged” demographics are often forced to move due to the unavailability of proper facilities to cater to their needs. The need for
affordable daycare facilities for the families in the Locust Point is desperately needed to cater to the working families within the neighborhood. This facility will work in tandem with the main existing public school that serves the community and will be more accessible, compared to a current daycare facility that is located in the Tide Point facility which mainly cater to office workers at the facility. A modern public library that is linked to the Baltimore Public Library System will also serve the community as well as coexist with the school and daycare facilities in the neighborhood to further create a cohesive sense of community.

Locust Point currently has a healthy amount of stores that serve the neighborhood; however, these are mostly historic bar and pub establishments that does not serve the need of families in the neighborhood. The nearest grocery store that serves the neighborhood is located ten minutes away northwards towards the neighborhood of Riverside. The insertion of a neighborhood grocery, along with neighborhood corner stores plus a pharmacy will further enhance the sense of communal identity.

The workshop of industry, which will be a multi-media center will act as a facility to help redefine the concept of “industry” for Locust Point by creating training facilities for the populace and help introduce and train them for the lighter industries that are planned for the peninsula.

The creation of a park system as part of the general master planning that seeks to create public amenities for the community. The addition of a “linear park” along Key Highway will might alleviate issues of “separation and
detachment” that currently bisects the neighborhood and keeps it from the waterfront and its neighbors.

Proposed Locust Point Programmatic breakout:

Housing Components:

Row Houses

- Typical Single Family Row Houses. 2100 s.f. Internalized

Parking spaces (24 units per block) 8 individual street blocks

Multi-Family Apartment Housing (2 @ 120,350 s.f.)

Apartment building breakdown

- 8 Studio Units @530 s.f. (7% of program) 4,300 s.f.
- 52 One Bedroom Units @660 s.f. (47% of program) 34,320 s.f.
- 46 Two Bedroom Units @1000 s.f. (41% of Program) 46,000 s.f.
- 4 Three Bedroom units @ 1200 s.f. (4% of Program) 4,800 s.f.

- Parking Spaces 97 @ 270 s.f. /space 26,190 s.f.
- Storage spaces. 1 per level @ 300 s.f. 1,200 s.f.
- Laundry facilities 1 per level @ 400 s.f. 1,600 s.f.
- Leasing Office 540 s.f.
• Fitness facilities 700 s.f.
• Lobby 700 s.f.

Breakdown of Square Footage (Floor by Floor)

• First Floor Gross Floor Area 26,000 s.f.
• Second Floor Gross Floor Area 27,100 s.f.
• Third Floor Gross Floor Area 27,100 s.f.
• Fourth Floor Gross Floor Area 27,100 s.f.

Multi-Family Apartment Housing (ADM Grain Silo Building) 168,000 s.f.
 o 40 One Bedroom Units @ 900 s.f. 36,000 s.f.
 o 60 Two Bedroom Units @1600 s.f. 96,000 s.f.
 o 20 Three Bedroom Units @1800 s.f. 36,000 s.f.

Live/Work Pier Mixed-Use Housing (4 Blocks @ 27,000 s.f.) 108,000 s.f.

• Live/Work Flexible spaces. 1800 s.f. Per module. Internalized
 Parking spaces (15 housing modules per block).

Retail Components: 43,600 s.f.

• Neighborhood grocery store 25,000 s.f.
(Medium-sized store for Locust point)

- Pharmaceutical store 5,000 s.f.
 (Non-franchise type local pharmaceutical)

- Local corner stores **(ADM Grain Silo Building)** 3,600 s.f.
 (Live work component in Row houses) 3 @ 1,200 s.f.

- Financial institution 5,000 s.f.
 Small-sized local banking facility

- Outdoor Pier Recreation area/ restaurant/artist camp 5,000 s.f.
 - (Elevated boardwalk)

Public Library Component: (ADM Grain Silo Building)

32,000 s.f.

- Administration 3,400 s.f.
- Lobby 500 s.f.
- Reception 150 s.f.
- Waiting room 300 s.f.
- 5 Offices 750 s.f.
- Conference room 600 s.f.
- Copy/Fax room 100 s.f.
- Storage/ File Room 350 s.f.
Toilet Rooms 2 @ 150 s.f. 300 s.f.

Break / Lunch room 350 s.f.

Library 29,600 s.f.

- Library stacks 20,000 s.f.
- Computer resource center 2 @ 2500 s.f. 5,000 s.f.
- Conference rooms 2 @ 1000 s.f. 2,000 s.f.
- Audio/ Visual Center 1,000 s.f.
- Public restroom facilities 2 @ 300 s.f. 600 s.f.
- Limited service café 1,000 s.f.

Office Building Component: (ADM Grain Silo Building)

400,000 s.f.

- Typical gross floor area 21,000 s.f. @ 6 floors 126,000 s.f.
- Office Lobby 2,000 s.f.
- Loading /Service area 2,500 s.f.
- Parking spaces 100 @ 270 s.f. 270,000 s.f.

Multi-Media Technology Center 32,500 s.f.
The Multi-Media facility remains one that oscillates between temporary and permanence. The center will be a workshop where the populace can obtain training for new types of industries that are introduced to account for the old ones that are relics of the industrial age. This component contains kinetic, semi-mobile prototypical incubation pods (PIPs) that could be introduced in numerous industrial locales that are in a similar state of flux.

- **Administration** 2,800 s.f.
 - Lobby/ Reception 1,500 s.f.
 - 4 Offices 1,000 s.f.
 - Copy/Fax room 150 s.f.
 - Storage/ File Room 350 s.f.
 - Toilet Rooms 2 @ 150 s.f. 300 s.f.

- **Research facilities** 29,200 s.f.
 - Classrooms 4 @ 350 s.f 1,400 s.f.
 - Resource area 2,500 s.f.
 - Workshop Yard 5,000 s.f.
 - Storage Facilities 1,500 s.f.
 - Mechanical area 1,500 s.f.
 - Toilet Rooms 2 @ 150 s.f. 300 s.f.
 - Museum / Exhibit area 5,000 s.f.
Loading /Service area 2,000 s.f.
Parking spaces 25 spaces@ 270 s.f. 10,000 s.f.

Senior Assisted Living Facilities (4 Levels) 74,550 s.f.

- Administration 3,300 s.f.
 Lobby/ Reception 1,500 s.f.
 4 Offices 1,000 s.f.
 Copy/Fax room 150 s.f.
 Storage/ File Room 350 s.f.
 Toilet Rooms 2 @ 150 s.f. 300 s.f.

- Living area breakdown 71,250 s.f.
 - 10 Studio Units @530 s.f. 5,300 s.f.
 - 45 One Bedroom Units @660 s.f. 29,700 s.f.
 - 25 Two Bedroom Units @1000 s.f. 25,000 s.f.
 - Storage spaces. 1 per level @ 300 s.f. 1,200 s.f.
 - Janitorial facilities 550 s.f.
 - Fitness facilities 2,000 s.f.
 - Outdoor recreational area 5,000 s.f.
 - Community room 2,500 s.f.
<table>
<thead>
<tr>
<th>Facility</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daycare facilities</td>
<td>8,000 s.f.</td>
</tr>
<tr>
<td>Parking</td>
<td>562,000 s.f.</td>
</tr>
<tr>
<td>Parking Garage (ADM Silo Building) 20,500 s.f. @ 5 Levels</td>
<td>102,500 s.f.</td>
</tr>
<tr>
<td>Parking Garage (Infill Apartment Buildings) 2 Buildings</td>
<td>460,000 s.f.</td>
</tr>
</tbody>
</table>
VI – Design Process
Parti A: Centering the neighborhood

The approach in this scheme observes the characteristics at the waterfront by seeking a solution in the piers that line the edge. The piers, which historically have been used to dock ships, are currently inaccessible to the inhabitants of Locust Point, thus the approach of creating a “reversed pier” or “anti-pier” to introduce water as an amenity for the neighborhood. The hierarchical structure that currently dominates the neighborhood, the ADM grain silo is removed from the edge unlike its adjacent neighbors (Domino sugar plant and Tide Point) both of which intimately hug the waterfront. This parti looks at the creation of a waterfront for the ADM silo, by bringing the water inland. At the same instance, the newly created waterfront amenity re-centers the neighborhood by adding a desired density that frames this amenity. A fishing marketplace with restaurants is added to serve the pedestrians that utilize the boardwalk on their way to Fort McHenry. Additional housing (single attached row houses and high density multifamily dwellings are added along Fort Avenue.

The library, which is located in the ADM silo, along with offices and the workshop of industry, will overlook the amenity and the Baltimore Harbor beyond. The newly created center is also accessible by a spur extension of the Key Highway, which in turn serves the newly created live/work facilities on the piers that line the waterfront.

Fort McHenry is separated by the notion of a reversed pier, which allows it to exist as a real monument, one that is accessed by a bridge off Fort Avenue.
This idea implements the idea of a moat to create a physical edge to Locust Point and a new entryway for Fort McHenry.
Scheme 1: “Pier” versus “Anti-Pier”.
Fig. 68
Diagram of Parti A showing potential connectivity Between the waterfront and the neighborhood.
Fig 69. Site section for Parti A showing site and Building strategy.

Fig 70. Perspective from the harbor looking at the ADM Silo And the new waterfront amenity.
Parti B : Greening the Neighborhood

As part of a larger community of neighborhoods within the city, Locust Point is remarkably devoid of natural vegetation that helps to bolster its identity and articulate a good sensibility about its public realm. This is evident in the main streets where trees are scarce; adding to the industrial luster one feels upon entering the neighborhood. The approach in this parti takes a wide scope lens strategy to redefining the neighborhood by simply focusing a healthy amount of resources on its greenscape. Neighborhood parks frame the area for example;
Latrobe Park, Riverside Park and Federal Hill Park, all which are linked to the waterfront via Locust Point through a variety of trail systems. These trail systems run through the neighborhood and merge into an urban waterfront park that envelopes the ADM grain silo. The idea is an aggressive revitalization of the existing abandoned brown fields into green fields that litter the site, by placing them amidst these parks. The system at times link with the greening of major pedestrian and vehicular routes that weave through Locust Point especially to Fort McHenry. The trail also acts as a buffer between the newly expanded neighborhood and the I-95 interstate highway that runs parallel to the neighborhood, while lending itself to use as a public amenity.

Supplemental housing components are added as street liners along Fort Avenue, while the programmatic elements of office, library, workshop of industry reside in the ADM grain silo with commanding views overlooking the park and Baltimore city. A pedestrian pier serves the community by engaging the waterfront on two different height levels.
Parti B showing a park system of green spaces
Linking the neighborhoods.
Diagramming of Parti B showing a park system of green Spaces within the neighborhoods.
Fig 74. Site section for Parti B showing site and building strategy.

Fig 75. Perspective showing a linear trail linking to the green park With the ADM silo
Fig 76. Aerial perspective showing a linear trail linking to the green park
With the ADM silo.

Parti C: Re-centering the neighborhood

This approach investigates an idea of eliminating the ADM grain silo from
the center of Locust Point. The discrepancy in scale between the silo and the
neighboring buildings is one of the challenges that presents itself at the site. The
building currently as it sits remains the focal point for the neighborhood;
however, its use makes it a harsh neighbor to deal with in terms of adjacency.
The row houses that are next to the building are a tenth of its size, yet they have
existed symbiotically for generations. Since the ADM building no longer exists as
created, the need for buildings at the site that is scaled to other buildings is explored duly. The scheme addresses the neighborhood by scaling elements down appropriately, while at the same instance, provides gathering spaces that focus on the residents in the neighborhood and the waterfront. These newly re-adapted industrial facilities will hold needed infrastructure in the neighborhood, for example, the library, the assisted living senior housing, a daycare as well as the industrial workshop. Limited retail insertion as well as the pedestrian pier provides opportunities to engage the waterfront directly.

Housing components that line Fort Avenue leading to Fort McHenry provides increased density. These housing types range from single-family row houses to attached multi family apartment buildings.
Diagramming of Parti C showing the ADM Site with lower scaled buildings.
Fig. 78

Diagramming of Parti C showing low scaled buildings with Parks that address the neighborhood and the water.
Parti D: Refocusing the neighborhood

This Parti looks at the creation of “nodes” as places of refuge as well as destination points. Locust Point as it stands today exists without a center. The existing portion of Locust Point in this parti is focused around a newly created internally focused modest park that acts as a gathering place for the community. A second park that addresses the scale of the city is inserted into the scheme on the waterfront. This encourages interaction between the residents where they can gather around the hierarchical building within the neighborhood without being in the “destination” park, one that is more public in nature. The parks act simultaneously as exterior courtyard along with a more intimate interior one, both of which allows for a different protocol while one inhabits either of the spaces.

The new infrastructures of offices, library, workshop, retail and high density residential are located around the destination park, while the neighborhood park serves the “historic” part of Locust point.

Increased density is also provided by the housing components that line Fort Avenue leading to Fort McHenry. These range from single-family row houses to attached multi family apartment buildings.
Fig. 79 *Parti D showing a relatively small “neighborhood green” with the Larger “common green” across from the ADM Silo.*
Diagram of Parti D showing a relationship of the small “neighborhood green” and the larger “common green”
Fig 81. Site section for Parti C showing site and building strategy.

Fig 82. Perspective showing a public green with ADM tower.
Parti E: Limited Intervention

This parti looks at an approach that does as little as possible to disturb the fabric of Locust Point as it currently stands. The ADM silo as it stands will be converted to a mixed-use facility of library, offices, parking, and limited retail. The building is fitted with a new entrance that seeks to lure the traffic away from the existing fabric of Locust Point. The entry way is lined with buildings that step up in scale from modest row houses to mid-sized multi family dwellings. This allows for a less disruptive relationship of scale between the ADM silo and the neighboring row houses. Added fabric is provided across the existing tracks that currently cut through the neighborhood by a separate road systems off entry and exit onto Fort Avenue.

The elevated pier is accessed from the ADM grain silo building and provides limited access to the waterfront for patrons of the library or the office workers. This option assumes that the industries that are in the neighborhood, for example, the Amstar sugar factory, the CSX rail, and others will be stay on the site permanently.
Fig. 83

Parti E showing the existing rail tracks with mid sized blocks Inserted to create a new entry for the ADM off Fort Avenue
Diagram of Parti E showing buildings wrapping the ADM Silo
With a new address.
Fig 85. Site section for Parti E showing site and building strategy.
Fig 87. Site section.
Fig 88. Site section.
VII – Design Conclusion
The waterfront of Baltimore city is an important asset to the city, one whose revitalization and redevelopment must be adequately studied by the Department of City Planning to ensure successful execution. By comprehensively designing the waterfront and the adjoining neighborhoods through rezoning etc, the city will benefit from a concrete master plan that will solve some of the cities immediate and long term land use issues. It will also ensure that the waterfront as amenity is given to the people as opposed to the richest developer.

This thesis proposes solutions on a *macro* as well as on a *micro* scale that looks at how the city can use existing infrastructures to aid in refocusing its waterfront and appropriately rezoning. The purpose of such a proposal ensures that the city can still manage and maintain its ports, ports that have shaped and molded the identity of Baltimore over centuries, while at the same time allows for newer uses on the waterfront.
VIII – Urban Solution
Waterfront rezoning

The waterfront of the City of Baltimore exhibits a pattern of uniform grids that is legible and rigid around the waters edge in the form of various neighborhoods and localities e.g., Fells Point, Canton, Federal Hill and portions of Locust Point. This extensive waterfront land, which runs from Dundalk to Port Covington, is still for the most part industrial in nature as shown in the diagram below. With the encroachment of living, work and recreation as active players along the Baltimore waterfront, these industrial zones are feeling the impact of expanded living on land that for centuries remained industrial.

![Diagram of Baltimore Harbor and outlying areas](image)

Fig 89. Figure Ground of Baltimore Harbor and outlying areas.
The Promenade

The design intent of this thesis seeks ways of alleviating the issue of encroachment of industrial land by “rezoning” the waterfront in a clear manner. The departure of industries from the northern leg of the Baltimore harbor lays out a clear idea on how this will be accomplished.

A current proposal of a cruise terminal for the inner harbor as well as Fort McHenry at the end of the Locust Point peninsula are key role players in this thesis as “anchors” for the new master plan for the inner harbor. These public amenities could serve as utilities for rezoning the waterfront in the immediate inner harbor for living, working, shopping and recreation (Fig 78). The existing

Fig 90. Figure Ground of Baltimore Harbor. Public zones dedicated for living, work and play starting at Canton Cruise Terminal to Fort McHenry.
Interstate 95 serves as a conduit for goods from the industrial edge as well as a physical “mediator” between Industrial infrastructure and city living. (Fig. 77).

Green Amenity.

As part of reclaiming the Baltimore waterfront for increased amenity uses by rezoning industrial uses outside the inner harbor waterway, this thesis provides the new waterfront promenade a linkage to existing recreational uses within the city fabric. Fort McHenry as a national park at the edge of Locust Point peninsula is appropriately integrated into the outlying parks within the city, such as, Patterson Park, Federal Hill, Riverside Park and Latrobe Park in Locust Point (Fig. 91).

Fig 91. Recreational park systems within downtown Baltimore.
The linking of the various parks adds visibility and easy access to one of the nation’s most important parks, which at the moment is under utilized as a bankable asset for the inner harbor and the city of Baltimore at large.

Transportation

The Peninsula of Locust Point could be better connected to the general fabric of the city by capitalizing on efforts already underway to expand a rail line into Fells Point across the inner harbor leg of the Patapsco. The proposed “Red Line” will be the main east-west line that will take commuters across the downtown area. Currently, the MTA (Maryland Transport Authority) lines travel across the city in a north-south direction. This thesis proposes an additional leg that taps into the Fells Point leg of the Red Line that runs through the Locust Point Peninsula. The proposed rail line will use some of the existing rail lines that were historically utilized on the peninsula to service industrial buildings for the transportation of commuters from Federal Hill, Riverside and Locust point through Fort McHenry. The loop of expanded MTA rail will complement added infrastructure of roads, and water taxi stops at Locust Point.
Fig 92. Existing and Proposed Rail lines. Baltimore City.

Proposed MTA rail line.

Fig 93. Existing and Proposed Rail lines. Baltimore City.
IX–Neighborhood Solution
In creating a new master plan for the Peninsula, the ADM silo becomes the new center for the neighborhood of Locust Point. The waterfront is rezoned to accommodate new types of uses on the existing piers. These uses include pier housing, commercial uses of offices, retail and some parkland. The scale of the new uses, most of which re-adapt industrial buildings are the same with what exists in Tide Point whose heights are in the 70 ft range.

There is an urban design guideline that governs the proposed buildings along the waterfront and how they relate to the existing infrastructure of Locust Point.

Some of the guidelines are as follows:

- Streets running perpendicular from the neighborhood to the waterfront must have unobstructed views of the waterfront.
- Buildings on the waterfront must adhere to a height limit of no more than 65 feet in height.
- Buildings on the waterfront, especially on the piers must allow a setback of no less than 20 feet from the edge of the water to allow for pedestrian promenade on the waterfront.
- Buildings on the waterfront must allow pass through or breezeways on the ground level so as not to block pedestrian flow along the waterfront.
- The Buildings along the Key Highway extension must uphold the street edge to create a liner along the road.
- Buildings along Key Highway extension must incorporate arcades on the ground level to engage the public intimately.
• Building uses for the waterfront must include a variety of uses in any particular building, e.g. retail and office or retail and residential, or office and residential.

In addition, the existing ADM transfer pier on the waterfront is preserved as a public infrastructure to compliment the new building uses and is used as a public park with areas designated for artist shops. There is provision for a linear contemplative park atop the structure for pedestrian usage.

Key Highway is extended towards Fort McHenry where it terminates Fort Avenue by a circle that slows traffic headed towards the park. The extension of Key highway is a four-lane road that handles the traffic from the new uses along the waterfront as well as the trucks that visit Tide Point and The Domino Sugar factory. The width of the road is visually minimized by allowing parking on two of the lanes along with a median that the Light Rail passes on. The sides of the light rail tracks landscaped appropriately to allow for bicycle paths, which further physically and visually breaks the roads width. The light rail stops in front of the ADM silo building at a stop that also handles the water ferry users that visit Locust Point.

As part of the neighborhood master planning, the scale of the ADM building is further broken down by the insertion of large-scale residential blocks around it to mediate between the scale of the neighborhood row houses and the silos. Key Highway extension is also framed with multi family residential blocks, which shows the edge of the new Locust Point responding to the scale of the city.
The addition of blocks of row houses on the eastern side of the ADM silo all the way up to the Key Highway extension compliments the existing “historic” row houses that currently is in Locust Point and puts the tower in the center of the neighborhood with its main façade opening up towards the public plaza on the waterfront.

Numerous public parks and greens are also inserted into the existing fabric as well as the new pattern to create areas where the community can congregate without having to be on the waterfront. A supermarket is also added along I-95 to allow for easy truck access from the interstate.
Fig 94. The peninsula of Locust Point with the neighborhood of Riverside (Foreground
Fig 95. Locust Point. Existing conditions of Housing, Industry, Parkland and Transportation infrastructure.
Fig 96. Locust Point. Proposed Site Axonometric.
Fig 97. Proposed Site Plan. Locust Point
Fig 98. Diagram. Center of the neighborhood
Fig 99. Diagram. Figure ground of the neighborhood.
Fig 100. Diagram. Green spaces.
Fig 101. Diagram. Edge vs. Green spaces.
Fig 102. Diagram. Street Pattern.
Fig 103. Diagram. Street Pattern.
Fig 104. Proposed Site Plan. ADM Silo in Locust Point
X – Building Solution
The ADM grain silo building is conceived of as a mixed-use modern building. The building that originally held 182 individual grain silos (Fig. 104) included a “Working House” tower component where grains are received from a conveyor system, which stretches to the waterfront. The grains are then transferred across the top of the grain silos where they are dropped in for storage.

This thesis investigates how these components can be reused as pieces, which can support one another; much in the same way the building was conceived originally. The conveyor system which was moved grains is “re-conceived” as a system which now moves people laterally back and from the waterfront functions. The conveyor system now converted to a pedestrian bridge connects to the building, much in the same way it did originally. It serves a function of not only complimenting the recreational component of the waterfront (The public plazas), it also serves as a civic structure where people along the promenade can gather, shop in the artist galleries that are inserted into it.

The original working house of the grain silo building is redesigned as one that is geared towards “services”. The service sector in an economy is an integral part of industries, even when they are mostly heavy industries. This is even more important when the definition of industry shifts towards one based on information like in today’s society. The work house is re-imaged as the component that holds on to its past and at the same instance looks towards the future. The tower, which is mostly of commercial use, consists of retail on grade, a community library on two levels, a multi-media technology center on two levels and office spaces as the remaining floors. Tectonically, the tower’s floor plate is expanded on all four
sides by cantilevering floor plates from the existing structure of the existing tower and then given a new taut skin. The condition creates a “Double skin” for the building and one can perceive the “old” through the “new” while one is inside or outside the building. Occupants can also experience these temporal characteristics of the building by passing through the existing façade to the new one. The building when viewed from the exterior shows the same characteristic. During the daytime, the new skin reflects the redeveloped waterfront while the existing building dissipates from view. When the building is lit at night however, one sees the old tower within the new one (Fig 126). The new façade is also louvered to allow for natural ventilation of the office floors.

The storage silos are the major component of the building closest to the residents. As a result, the community center is relocated to the base of the grain silos. Access to the community / recreation center is through a public green that further centers the row houses at that end around the amenity space. The silos on this façade are peeled back to reveal the entrance of the community center. Retail components are at street level with large sidewalks to encourage restaurants to provide seating spaces. The silos are further excavated and a variety of residential units are inserted with parking embedded in the building. The units range from one to three bedroom units on 10 levels. There is a community gathering space on top of the parking deck with a skylight that gives residents views into the recreation room below. The silo that was once a repository of grains now becomes a vessel for families along the waterfront.
The ADM grain silo renamed SILO Point is designed to help knit the neighborhood of Locust Point to rest of the fabric of Baltimore city. The overall master plan tackles the scale of the neighborhood, the waterfront redevelopment addresses the scale of the city and SILO Point as a mixed use, Transit Oriented Development project on the waterfront becomes the mediator between the neighborhood and the city of Baltimore.
Fig 105. Existing ADM Grain Silo plan in Locust Point.
Fig 106. Level B1 Floor Plan.
Fig 107. Ground Level Floor Plan
Fig 108. Level Two Floor Plan Restaurant Level.
Fig 109. Level Three Floor Plan. Community Library.
Research and Archives.
Fig 110. Level Four Floor Plan Community Library.
Reading Rooms and Offices.
Fig 111. Level Five Floor Plan Multi-Media Technology Center
Bridge Connection to Waterfront Pier.
Fig 112. Level Six Floor Plan Office Level.
Fig 113. Typical Office Level Floor Plan.
Fig 114. Office Level Floor Plan. Eroded Façade level With Office Balcony.
Fig 115. Building Section revealing Mixed-use component of Community Center, Retail, Library Multi-Media center, residential and parking.
Fig 116. Building cross section through converted Grain Silo.
Residential, Community Center, Retail and Parking.
Fig 117. Building Waterfront Elevation.
Fig 118. Building Side Elevation.
Fig 119. Building Rear Elevation.
Fig 120. Silo Point. Overall Site Section. Neighborhood through Waterfront.
Fig 121. Silo Point. Proposed pier as public promenade including artist crates and shops.
Fig 122. Typical Residential Unit Layouts.
Fig 123. Office Curtain Wall Enlarged Detail. Elevation and Section.
Fig 124. Waterfront Perspective with “artist” Pier, Foreground.
Fig 125. Silo Point Perspective. View along Loop-road along Waterfront.
Fig 126. Silo Point Perspective. View from neighborhood
Fig 127. Silo Point Perspective. View from Recreational Pier.
Fig 128. Silo Point Perspective. View from Interior Courtyard.
XI - Bibliography
Ackerman, Kurt

Beirne, Francis F.

Frampton, Kenneth.

Kay, Jane.

Keith, Robert

Kirjapaino, Oy, Hangon.

Mayer, Harold M. And R. Wade

Nash, Krausse, Monk
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Publisher and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reich, Larry</td>
<td>The Baltimore Harbor</td>
<td>Baltimore: Department of City Planning.</td>
</tr>
<tr>
<td>Warren, Marrion and Mame Warren</td>
<td>Baltimore: when she was what she used to be. 1850-1930</td>
<td>Baltimore: Johns Hopkins University Press, 1983.</td>
</tr>
</tbody>
</table>