
ABSTRACT

Title of dissertation: RICH AND EFFICIENT VISUAL DATA REPRESENTATION

Mohammad Rastegari, Doctor of Philosophy, 2016

Dissertation directed by: Prof. Larry S. Davis

Increasing the size of training data in many computer vision tasks has shown to be very effec-

tive. Using large scale image datasets (e.g. ImageNet) with simple learning techniques (e.g.

linear classifiers) one can achieve state-of-the-art performance in object recognition compared

to sophisticated learning techniques on smaller image sets. Semantic search on visual data has

become very popular. There are billions of images on the internet and the number is increasing

every day. Dealing with large scale image sets is intense per se. They take a significant amount

of memory that makes it impossible to process the images with complex algorithms on single

CPU machines. Finding an efficient image representation can be a key to attack this problem.

A representation being efficient is not enough for image understanding. It should be compre-

hensive and rich in carrying semantic information. In this proposal we develop an approach to

computing binary codes that provide a rich and efficient image representation. We demonstrate

several tasks in which binary features can be very effective. We show how binary features can

speed up large scale image classification. We present learning techniques to learn the binary

features from supervised image set (With different types of semantic supervision; class labels,

textual descriptions). We propose several problems that are very important in finding and using

efficient image representation.
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“When David Marr at MIT moved into computer vision, he generated a lot of excitement, but

he hit up against the problem of knowledge representation; he had no good representations for

knowledge in his vision systems.”

Marvin Minsky
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Chapter 1

Introduction

In the past decade the usage of large databases for object and speech recognition have shown that

simple learning methods such as linear classifiers and K-Nearest Neighbors can result in com-

parable performance to complex learning methods. This has led to widespread discussion about

how much “Data Matters”, which posits that having more data is more effective than having a

complex model. Resolving the extent to which “data matters” is confounded by computational

and algorithmic challenges in learning a complex model on a large-scale dataset.

On the one hand, the problem of learning complex models on big data has been addressed by

investigating the use of high-performance and parallel computing. A complementary approach

to dealing with big data is developing efficient data representations which enable efficient pro-

cessing. Representing data using compact binary codes is one of the most powerful ways to

achieve efficient data representation. It has received significant attention during the past years.

Binary codes are attractive image representations for image search and retrieval because they are

easy to match, and the capacity of the space of even very short binary codes is so large that all of

the digital images in the world can be indexed with relatively short binary codes. 64-dimensional

codes can index about 1019 images - 5 times the estimated number of bits created in 2002 and

likely similar to the number of digital images in existence. Unfortunately, it is not known how to

perfectly encode visual information into binary codes to enable efficient search and retrieval. So

far, encoding visual or textual information into binary codes has been based on preserving some

notion of distance or similarity in the original visual feature space. Most of the binary code

construction methods encode images so that the Hamming distances between similar looking

images are smaller than for dissimilar images. But it is obvious that images that share the same

semantics (e.g. same category of objects, scene, action, . . . ) can have very different visual

appearance. Therefore, if binary encoding is to be more generally useful for recognition and

image understanding, we require an encoding method that can capture the semantics of the data.

However, finding such an encoding method might be as difficult as the recognition task itself. It
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depends on what level of semantics we want to represent with the binary codes. For instance,

in categorization, we might want to encode each image by a binary number that indicates the

category number assigned to that image. But this is equivalent to solving the categorization task,

which is difficult.

1.1 Main Objective

The main objective in this PhD is finding efficient representations of data (so far compact binary

codes) that A) capture enough semantics to enable accurate recognition and understanding in

a variety of tasks in machine learning. B) can be extracted efficiently from the original feature

space (in my research mostly visual and textual space) to make it practical to be applied to large-

scale data and complex models. Finding such a representation should lead to significant progress

in a wide range of machine learning problems. I am also interested in exploiting these binary

codes for discovering efficient learning algorithms. In pursuing these goals, I have completed

several projects on image and text understanding. Some of them are published in prestigious

conferences and others are submitted or still in progress. We showed how a certain class of

binary codes can efficiently and accurately solve a variety of problems in computer vision. We

introduced the notion of predictability of code bits, which enables each bit of the binary code

to be reliably predicted from the original feature space. We showed that predictability plays

an important role in recognition problems. In recent work, we showed that domain adaptation

can significantly benefit from predictable binary codes and give significant improvement over

state-of-the-art techniques. We elucidated a close relation between predictable code bits and

visual attributes. My research has shown how these predictable codes can be effectively applied

to a wide variety of tasks (Patch based image restoration, cross modality hashing, video cluster-

ing, biometric recognition, etc. ). This is especially true in the case of high dimensional data

where even operations like hashing become expensive because of costly projection operators.

Unlike most hashing methods that sacrifice accuracy for speed, we propose a novel method that

improves the speed of high dimensional image retrieval by several orders of magnitude without

any significant drop in performance. In the remainder of this thesis I will describe what have

been done so far and the main problems that I am interested in addressing.

1.2 Binary Coding

I began my research on binary codes for efficient object recognition. We assumed that we

are given binary codes for images and wanted to address the problem of object-class retrieval

in large image data sets: given a small set of training examples defining a visual category,

the objective is to efficiently retrieve images of the same class from a large database (Tens
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of millions of images) using a PC with a single CPU. We proposed two contrasting retrieval

schemes achieving good accuracy and high efficiency. We introduced a novel ranking procedure

that provides a significant speedup over inverted file indexing when the goal is restricted to

finding the top-k (i.e. the k-highest ranked) images in the data set. My algorithms for object-

class retrieval can search a 10 million item database in just a couple of seconds on a PC and

produced categorization accuracy comparable to the best known class-recognition systems. The

details are presented in 2 The result of this work was published in IEEE International Conference

on Computer Vision (ICCV) 2011 [2].

In contrast to conventional binary embedding methods, we were looking for a binary embedding

that discriminates between object categories and at the same time can be well predicted from

visual data. The most discriminative codes (like assigning unique codes to examples from the

same category) are extremely hard to predict from visual data. And the most predictable codes

may contain very little information about categories, therefore resulting in poor discrimination.

A code is discriminative, if examples of different categories appear far away from each other

and instances of the same category lie close by. Each bit of a code is generated by checking

on which side of a hyperplane an instance lies. We proposed that a bit is predictable (can be

reliably predicted from visual data), if the corresponding hyperplane for generating that bit has

a large margin from data points. We proposed a model that balances between discrimination and

predictability of the codes. Each bit in that model corresponds to a meaningful characteristic

of an image - it can be thought as a visual attribute. By looking at images on both sides of a

hyperplane corresponding to a bit, we could clearly see that images on each side often shared a

common visual characteristic (e.g. rounded shape objects, animals, tall buildings, etc.). Using

these binary codes as image features, we achieved state-of-the-art classification accuracy on very

challenging datasets (Caltech256, ImageNet). Chapter 3 gives a comprehensive explanation of

this work.This work was published in the European Conference on Computer Vision (ECCV)

2012 [3].

These discriminative binary codes turned out to be very useful for other tasks. Collecting large

and effective training data is crucial for building accurate visual models, but expensive. We

designed a method exploiting these binary codes to expand the visual coverage of training sets

that consist of a small number of labeled examples. This method adds images to a category

from a large unlabeled image pool. We showed significant improvement in category recognition

accuracy evaluated on a large-scale dataset, ImageNet. The result of this work was published in

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013 [4].The details

of this work are presented in Chapter 5

Predictability of each bit is a crucial factor for a binary code to be a robust feature. This encour-

aged me to use the notion of predictability in Domain Adaptation, where training (source) and

testing (target) data are drawn from different distributions (domains). We proposed an iterative
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algorithm that learns predictable binary codes in the target domain and uses them as features

in the source domain. This simple method showed very impressive results on several challeng-

ing datasets. A paper describing this work appeared in the IEEE International Conference on

Computer Vision (ICCV) 2013 [5].Chapter 7 provides the details.

Very often, class labels of an image serve as a semantic representation. But semantics can also

be conveyed through sentences paired with an image, which describe image contents. Typically,

we have paired data from two different modalities or views (e.g. Visual, Textual). This raises

the interesting problem of how to embed the data from two different views into a shared binary

space. Such a shared binary space would enable very accurate and efficient cross-modality

search. For example, given an image, we can generate a binary code that is very similar to

the binary code for the sentence describing that image and vice versa (sentence-to-image). We

took advantage of the predictability of bits and designed a dual-view hashing algorithm. Briefly,

we used the binary values of each bit in the first view as a label for learning a max-margin

hyperplane in the second view (and vice-versa). We thus learned shared predictable binary

codes across the two views. A paper on this project appeared in the International Conference on

Machine Learning (ICML) 2013 [6].Chapter 4 elaborates the details of this work.

Another application of these binary codes is image search when the query consists of a number

of words. We refer to this as multi-attribute query. Users often have very specific visual content

in mind that they are searching for. The most natural way to communicate this content to an

image search engine is to use keywords that specify various properties or attributes of the con-

tent. In a multi-attribute image search, some combinations of attributes can be learned jointly,

resulting in a better classifier. For example, when looking for “white, furry, dog” it might be

better to train a white-furry classifier and fuse it with a dog classifier. Detecting which conjunc-

tion of the attributes to be selected is very expensive. A naive approach is to learn classifiers

for all possible combinations and evaluate them on a validation set and pick the combination

that gives the best validation accuracy. But we want to do this all at query time. It is not pos-

sible to do them offline because we do not know what attributes will be requested by user at

query time. We exploit the binary space and developed an efficient optimization that gives a

score to each combination of attributes without learning any classifier at query time. We use

the intuition that geometric notions that capture the compactness (intra- class variance) of the

set of images that satisfy a combination (e.g. white-dog), and the margin of these images from

other distracter images (inter-class variance) provide good proxies for the likely effectiveness

of a classifier trained to recognize the combination. We showed that these geometric quantities

could be evaluated efficiently in a discriminative binary space. We published a paper out of this

work at IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)

2013 [7]. Chapter 6 presents the general idea and details of this work.
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In Chapter 8 we point to very important criteria on evaluation of binary coding methods. We

found in many recent papers that when they compare results from different binary coding, they

are not conducting a fair comparison. The common misunderstanding relates to the goal of bi-

nary code learning methods. Some binary coding methods optimize codes to preserve Euclidean

distance in the original feature space while others optimize to preserve angular distance. Many

papers directly compare the output of these methods, but they are not directly comparable. In

chapter 8 we propose appropriate evaluation methodologies for these methods; our comparative

experimental results reveal different performance previously reported methods.

In Chapter 9 we proposed a fast technique for binary encoding that can be used for efficient

high dimensional image retrieval tasks. This method uses a fixed computational budget to learn

a projection matrix that generates binary codes. To do this, we propose to learn computation-

ally bounded sparse projections for the encoding step. To further increase the accuracy of the

method, we add an orthogonality constraint on projections to reduce bit correlation. We then in-

troduce an iterative scheme that jointly optimizes this objective, which helps us obtain fast and

efficient projections. We demonstrate this technique on large retrieval databases, specifically

ImageNET, GIST1M and SUN-attribute for the task of nearest neighbor retrieval, and show that

our method achieves a speed-up of up to a factor of 100 over state-of-the-art methods, while

having on-par and in some cases even better accuracy.

In Chapter 10 we focused on the problem of large scale retrieval using ANN. A new general

approach for multi-dimensional n-ary coding -Linear Subspace Quantization (LSQ)- was in-

troduced for ANN. LSQ achieves lower reconstruction error than other n-ary coding methods.

Furthermore, it preserve the similarities in the original space, which is important when it is used

directly for learning tasks. Experiments show that LSQ outperforms other binary and n-ary cod-

ing methods on large scale image retrieval. We also compared the performance of binary and

n-ary coding methods for this task. We showed that n-ary coding outperforms binary coding

when distance estimation is used to reduce the search computation cost. However, in combina-

tion with Subset Indexing, interestingly, binary coding works better for retrieval.
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Chapter 2

Binary Codes for Large Scale
Object-Class Retrieval

2.1 Overview

Over the last decade the accuracy of object categorization systems has dramatically improved

thanks to the development of sophisticated low-level features [8–10] and to the design of pow-

erful nonlinear classification models that can effectively combine multiple complementary de-

scriptors [11]. However, these categorization systems do not scale well to recognition in large

image collections due to their large computational costs and high storage requirements.

In a parallel line of research, the efficiency of image retrieval systems has rapidly progressed

to the point of enabling real-time search in millions of images [12]. Scalability to large data

sets is typically achieved by casting image search as a text retrieval problem. The analogy with

text-retrieval is made possible by representing each image as a sparse histogram of quantized

features, known as visual words [13]. However, this representation is best suited to implement

low-level notions of visual similarity. As a result, these systems are primarily used to detect

near duplicates [14] or to find images containing the same object instance as the one present in

a given query photo [15, 16]. Hashing methods have been used to compute low-dimensional

image signatures encoding the overall global structure present in an image [17]. While such

representations can be used to efficiently find photos matching the global layout of a query

image, they have not been shown to be able to produce good categorization accuracy.

The objective of this work is to bridge these two independent lines of research. We borrow

data structures and methods from image retrieval – such as sparse and compact descriptors,

inverted files, as well as algorithms for approximate distance calculation – to develop a system

for accurate and efficient object-class search in large image collections: given a training set of
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examples defining an arbitrary object class (not know before query-time), our algorithms can

efficiently find images of this category in a large database. We envision such system to be used

as a tool to interactively search in collections of unlabeled images, such as community-provided

pictures or albums of personal photos.

Our approach uses the binary “classeme” descriptor of Torresani et al. [18] as representation for

images. The binary entries in this descriptor are the Boolean outputs of a set of nonlinear object

classifiers evaluated on the image. These base classifiers are trained on an independent data set

obtained using text-based image search engines. Intuitively, the classeme descriptor provides a

high-level description of the image in terms of similarity to the set of base classes. The approach

is analogous in spirit to image representations based on attributes [19–21], which are human-

defined properties correlated to the classes to be recognized. As classeme vectors provide a

rich semantic description, they have been shown to produce good categorization accuracy even

with simple linear classification models, which are efficient to evaluate. Furthermore, these

descriptors are compact in size (the dimensionality of the binary vector is 2625, corresponding

to only 329 bytes/image) and thus allow storage of large databases in memory for efficient

recognition.

In this work we investigate the benefits of using sparse classification models with attribute fea-

tures, i.e. classifiers that are explicitly constrained to use only a small set of attributes for the

recognition of a new query category. The sparsity of the models enables the advantageous use

of inverted files [22] for efficient retrieval. Furthermore, we present a new ranking algorithm

which exploits the sparsity of the classifier to find the top-k images with even lower compu-

tational cost. We show that this simple approach produces a 24-fold speedup over brute-force

evaluation.

We compare these sparsity-based retrieval models with a system that uses vector quantization

to efficiently approximate the ranking scores of images in the database. We demonstrate that

at the cost of a small drop in accuracy, this algorithm achieves similar efficiency and superior

scalability in terms of memory usage.

2.2 Background

As already pointed out above, sparse retrieval models have been extensively used in image

search [13, 15, 16]. Among the methods in this genre, the min-hash technique of Chum et

al. [14] bears a close resemblance to our approach. It measures similarity between two images

in the form of an approximate weighted histogram intersection. This measure can be efficiently

calculated using inverted lists over sketch hashes, which are tuples of randomly-selected feature

subsets. However, the weights of the histogram intersection must be defined a priori, before the
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creation of the index, and therefore this approach can only implement static similarity measures.

Our task instead requires tuning the similarity measure for every new query category. The

approach in [23] also uses inverted lists defined over feature subsets, called visual phrases.

The visual phrases are binary “same-class” classifiers trained to recognize whether two given

images belong to the same class or to different classes, regardless of the category. In principle

this model could be adapted to be used for class retrieval. However, the visual phrases output

only a Boolean value and thus cannot provide a ranking.

The idea of training sparse classification models on attribute vectors is similar in spirit to the

“Object Bank” approach of Li et al. [24]. The Object Bank is a high-level image representation

encoding the spatial responses of a large set of object detectors applied to the image. However,

the dimensionality of these representation is too high to allow storage in memory for large

collections (each descriptor contains 44,604 real values), which is the problem considered here.

Li et al. have shown that the Object Bank descriptor can be compressed down to compact sizes

using regularization terms enforcing feature sparsity. However, the feature selection is optimized

with respect to a fixed set of classes, and the generalization performance of the selected features

has not been demonstrated on novel classes. The focus of our work instead is on the design of

compact models and efficient methods that can support search of arbitrary novel classes.

Our algorithm for approximate ranking shares similarities with efficient techniques for approxi-

mate nearest neighbor search. Most of these methods operate by embedding the original feature

vectors into a low-dimensional space via hashing functions or nonlinear projections such that

the Hamming distance or the L2 distance in this space approximates a given metric distance in

the original high-dimensional space [25–27]. In particular, Jain et al. [28] have proposed an al-

gorithm that learns a Mahalanobis distance from similarity constraints and encodes this learned

distance metric into randomized locality-sensitive hash functions. The resulting system enables

efficient and accurate class recognition in large data sets. The work of Kulis and Grauman [29]

has extended this approach to generate locality-sensitive hashing functions that can approximate

arbitrary kernel distances. However, these methods optimize the categorization metric and the

embedding space with respect to a fixed set of classes during an offline training stage, before the

search. Instead our problem statement requires to efficiently learn at query time the classification

model for a category that is not known in advance.

2.3 Object-Class Search

We now formally define our problem statement and introduce the notation that will be used in the

rest of the paper. We assume we are given a database ofN unlabeled images, from which binary

vectors are extracted during an offline stage. We indicate with xi ∈ {0, 1}D the binary classeme

descriptor computed from the i-th image in the database. These feature vectors are stored in an
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index for subsequent efficient retrieval. At query time we are given a set of n+ training images

belonging to an arbitrary query category as well as n− negative examples. In a practical appli-

cation the negative set could be a fixed “background” collection containing examples of many

different categories (we consider such scenario in one of the experiments). We indicate with D̃
the labeled training set obtained by merging these two sets, i.e., D̃ = {(x̃1, ỹ1), . . . , (x̃n, ỹn)}
where x̃i is the binary classeme vector of the i-th training example, ỹi ∈ {0, 1} indicates its

binary label and n = n+ + n− (note that we use the ˜ symbol to differentiate training example

x̃i from database example xi). The objective of the system is to efficiently retrieve relevant

database images and rank them according to the probability of belonging to the query category.

We evaluate the accuracy of the retrieval system in terms of precision at k. Again, we want to

emphasize that the object classes provided at query time are not known in advance. Thus, the

system must be able to learn the retrieval model exclusively from the set D̃.

Since our objective is to retrieve images belonging to the query class, we employ binary clas-

sifiers as retrieval models and use their classification output as ranking score. We restrict our

study to linear classifiers, since they are efficient to learn as well as to evaluate. Thus, the rank-

ing score for database example x is computed as hθ(x) = θ · x, where θ is a D-dimensional

vector of parameters (we incorporate a bias term in the weight vector by adding a constant entry

set to 1 for all examples). Our classifiers are learned by optimizing an objective function of the

form:

E(θ) = R(θ) +
C

m

m∑
i=1

L(θ; x̃i, ỹi) (2.1)

where R is a regularization function aimed at preventing overfitting, L is the loss function pe-

nalizing misclassification, and C is a hyper-parameter trading off the two terms.

2.4 Efficient category retrieval via sparsity

Retrieval efficiency can be achieved by forcing the classifier hθ to be sparse, i.e., by requiring

the parameter vector θ to have very few non-zero entries so that the evaluation cost will be a

small fraction of D per image. To realize this efficiency we can use an inverted file with D

entries, each providing the list of database images containing one of the D binary features.

2.4.1 Sparse classifiers

The literature on sparse linear classifiers is vast and review of these methods is beyond the scope

of this paper. In our work, we restrict our attention to the following sparse classification models

due to their good balance of feature sparsity and accuracy:
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• L1-LR: this is a `1-regularized logistic regression classifier [30] obtained by defining

R(θ) = ||θ||1 and L(θ; x̃i, ỹi) = log(1+exp(−ỹiθ ·x̃i)). The `1-regularization is known

to produce sparser parameter vectors than the more conventional `2-regularization.

• FGM: this is the Feature Generating Machine described in Tan et al. [31]. It minimizes

a convex relaxation of the constrained optimization obtained by setting R(θ) = ||θ||2,

L(θ,d; x̃i, ỹi) = max(0, 1 − ỹi(θ � d) · x̃i)2 and by enforcing constraint 1 · d ≤ B

where � denotes the elementwise product between vectors, d ∈ {0, 1}D is a binary

vector indicating the active features, and B is a hyperparameter controlling the number

of nonzero weights. A cutting plane algorithm is employed to efficiently find the sparse

features defined by vector d. This method has been shown to produce state-of-the-art

results in terms of sparsity and generalization performance.

We contrast these sparse classifiers with a traditional linear SVM using an L2 regularization

term. We denote this classifier with L2-SVM.

2.4.2 Top-k pruning

In this subsection we present an algorithm that exploits sparsity to efficiently find the top-scoring

k images in the database using the linear retrieval functions described above. This approach is

well suited to our intended retrieval application since a user is typically interested in only the top

search results. The key-idea of this ranking algorithm is to update lower and upper bounds on

the scores of the images to gradually prune the candidate set without complete calculation of the

classification outputs. An upper bound u(i) and a lower bound l(i) is defined for every image i

in the database. The upper bound u(i) is first initialized to score u∗, which is the highest possible

score achievable given the weight vector θ. Such score is obtained when a binary feature vector

contains nonzero values precisely in the positions where the weight vector θ has positive values

and it contains 0 in the entry positions where the weights are negative. Analogously, l(i) is

initialized to the lowest possible score l∗, which occurs when the entries of the feature vector are

0 in positions where the weights are positive and 1 where the weights are negative. Then, these

bounds are updated by considering one weight entry at a time. Let pd be the entry considered

in the d-th iteration. Let us assume that θ(pd) is positive (the case when this value is negative

is analogous). Then, if the binary vector of the i-th image contains a 1 in position pd, the

lower bound l(i) will be incremented by θ(pd); if instead xi(pd) is 0, the upper bound u(i)

will be decremented by θ(pd). Thus, we see that at each iteration d the gap between the lower

and the upper bound for each image i is decreased by amount θ(pd). In order to produce the

fastest reduction of this gap, we process the weights in descending order of absolute values.

Furthermore, for efficiency in our implementation we only store and update the lower bound for

each image, since the upper bound is trivially obtained by adding an iteration-dependent value
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which is constant for all images. This derives trivially from observing that at any iteration d

the gap between the bounds for every image i is: u(i) − l(i) = u∗ − l∗ −
∑d

d′=1 |θ(d′)|. At

each iteration, after updating the bounds, the algorithm identifies the set A of k images having

highest lower bounds (this can be done in a linear scan over the vector l). Then, in the pruning

step, the method eliminates from further consideration the images having upper bound smaller

than the minimum lower bound in the set A, since such images cannot rank in the top-k. The

pruning rate will obviously depend on the distribution of the weights in the vector θ and the

statistics of classemes. Intuitively, the pruning rate will be high when θ is sparse and when the

weight magnitudes decay rapidly when sorted in decreasing order. Indeed in the experiment

section we empirically demonstrate that the algorithm runs faster when the weight vector has

such characteristics.

The pseudocode of the algorithm is given below.

Algorithm 1 Top-k pruning method
Input: Database examples x1, . . . ,xN , weight vector θ, sorting indices p1, . . . , pD s.t. |θ(p1)| ≥
|θ(p2)| ≥ . . . > |θ(pD)|.

Output: Indices of top-k images: A ⊆ {1, . . . , N}.
1: Initialize candidate set: C := {1, . . . , N}
2: Set A to contain the indices of k randomly chosen images.
3: l∗ :=

∑
d s.t. θ(d)<0 θ(d)

4: u∗ :=
∑
d s.t. θ(d)>0 θ(d)

5: ∀i : u(i) := u∗, l(i) := l∗

6: for d = 1 to D do
7: for all i ∈ C such that xi(pd) == 1 do
8: if θ(pd) ≥ 0 then
9: l(i) := l(i) + θ(pd)

10: else {case θ(pd) < 0}
11: u(i) := u(i) + θ(pd)
12: for all i ∈ C such that xi(pd) == 0 do
13: if θ(pd) ≥ 0 then
14: u(i) := u(i)− θ(pd)
15: else {case θ(pd) < 0}
16: l(i) := l(i)− θ(pd)
17: Update A to contain indices of top-k lower bounds
18: Prune candidate set:

C = C − {i s.t. u(i) < minj∈Al(j)}
19: if |C| == k then
20: break

2.5 Efficient approximate ranking

The algorithm presented above achieves high efficiency by quickly removing from consideration

images that cannot rank in the top-k. Instead, in this subsection we present an algorithm that

performs fast retrieval by approximating the ranking score with a measure that can be computed

efficiently. The exact score calculation is approximated via vector quantization. However, our
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descriptors are binary vectors, and as such they are not suited to be quantized. Thus, we first

apply PCA to transform each binary-valued classeme vector xi ∈ {0, 1}D into a real-valued

lower-dimensional vector x̂i ∈ RD′ , where D′ < D 1. Then, we quantize each vector x̂i using

the product quantization method of Jégou et al. [32, 33]. This approach can provide very good

vector approximation at low computational cost both during the learning of the cluster centroids

as well as at quantization-time. The method splits each vector x̂ into v sub-vectors x̂1, . . . , x̂v,

each of length D′/v. Then, each sub-vector is quantized independently using a codebook of w

cluster centroids learned from training data using k-means clustering. Thus, the complete vector

x̂ is quantized as q(x̂) by the following quantizer function q(.):

q(x̂) =


q1(x̂

1)
...

qv(x̂
v)

 (2.2)

where qj(x̂j) ∈ RD′/v is the nearest cluster centroid to sub-vector x̂j in the dictionary learned

for the j-th sub-block of features. While quantizers are usually employed to reduce the dimen-

sionality of the data, we use them here primarily to speed-up the calculation of the score. Given

the weight vector learned in theD′-dimensional space, the idea is to approximate the exact rank-

ing score calculation θ̂ · x̂i with θ̂ · q(x̂i). Note that this approximate score can be computed as

follows:

θ̂ · q(x̂i) =
v∑
j=1

θ̂
j · qj(x̂ji ) . (2.3)

The efficiency stems from the fact that the terms θ̂
j · qj(x̂ji ) can be read from a lookup table

computed in a preprocessing stage for all v centroids of each sub-block j. The creation of this

table for all sub-blocks will have cost of O(wD′). But then computing the approximate score

in eq. 2.3 will amount to simply adding together v values read from the look-up table. Thus, the

overall complexity of calculating the ranking scores for all images in the databases, including

the preprocessing, will be O(wD′ + vN).

As discussed in full detail in [32], choosing the number of PCA dimensions D′ poses a chal-

lenging dilemma. When D′ is large, the PCA projection error is small, but there is a subsequent

large quantization error. In principle this quantization error can be fought off by increasing v

and w at the expense of a larger code size and a higher computational cost for quantization and

learning. On the other hand, choosing a small D′, leads to a large projection error followed

by a small quantization error. In our problem the choice of D′ has an even greater importance:

since we are training our linear classifier in the PCA subspace, the choice of D′ will dictate

the Vapnik-Chervonenkis (VC) dimension, i.e., the capacity of our classification model [34]. A
1We also tried to use real-valued classeme vectors and achieved similar results. Here we prefer presenting the

method based on binary classemes in order to compare the different methods in a scenario where they are all applied
to the same input representation.
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FIGURE 2.1: Class-retrieval precision versus search time for the ILSVRC2010 data set: x-axis
is search time; y-axis shows percentage of true positives ranked in the top 10 using a database
of 150,000 images (with n−test = 149, 850 distractors and n+

test = 150 true positives for each
query class). The curve for each method is obtained by varying parameters controlling the

accuracy-speed tradeoff (see details in the text).

linear classifier defined in a D′-dimensional space has VC dimension D′ + 1. Thus, using a

large D′ will allow us to obtain more powerful classifiers. In the experiment section we analyze

empirically how D′, w, v affect the accuracy, the speed, as well as the memory usage.

Another practical issue to consider is that the PCA components, by construction, have different

variance, with the first few entries typically capturing most of the energy in the signal. A naı̈ve

application of product quantization would subdivide a vector according to the order of compo-

nents so that the j-th sub-block would consist of the consecutive feature entries from position

(1 + (j − 1)D′/v) to (jD′/v). However, such strategy would blindly allocate the same number

of centroids for the most informative components (the ones in the first sub-block) as well as for

the least informative. We address this problem using the solution proposed in [32]: we apply a

random orthogonal transformation after PCA so that the variances of the resulting components

will be more even. We then quantize the examples and train our retrieval models in this space.

2.6 Experiments

In this section we empirically evaluate the proposed algorithms and the several possible parame-

ter options on challenging data sets under the performance measures of retrieval accuracy, speed

and memory usage. We denote the top-k pruning method with TkP and the approximate ranking

technique with AR.
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FIGURE 2.2: (a) Distribution of weight absolute values for different classifiers (after sorting
the weight magnitudes). TkP runs faster with sparse, highly skewed weight values. (b) Pruning

rate of TkP for various classification model and different values of k (k = 10, 3000).

Retrieval evaluation on ILSVRC2010 (150K images). We first evaluate our methods using

the data set of the Large Scale Visual Recognition Challenge 2010 (ILSVRC2010) [35], which

includes images of 1000 different categories. We use a subset of the ILSVRC2010 training set

to learn the classifiers: for each of the 1000 classes, we train a classifier using n+ = 50 posi-

tive examples (i.e., images belonging to the query category) and n− = 999 negative examples

obtained by sampling one image from each of the other classes. To cope with the largely un-

equal number of positive and negative examples (n− >> n+) we normalize the loss term for

each example in eq. 2.1 by the size of its class. We evaluate the learned retrieval models on the

ILSVRC2010 test set, which includes 150,000 images, with 150 examples per category. Thus,

the database contains n+
test = 150 true positives and n−test = 149, 850 distractors for each query.

Figure 2.1 shows precision versus search time for AR and TkP in combination with different

classification models. Since AR does not use sparsity to achieve efficiency, we only paired it

with the L2-SVM model. The x-axis shows average retrieval time per query, measured on a

single-core computer with 16GB of RAM and an Intel Core i7-930 CPU @ 2.80GHz. The y-

axis reports precision at 10 which measures the proportion of true positives in the top 10. The

times reported for TkP were obtained using k = 10. The curve for AR was generated by varying

the parameter choices for v and w, as discussed in further detail later. The performance curves

for “TkP L1-LR” and “TkP L2-SVM” were produced by varying the regularization hyperparam-

eter C in eq. 2.1. While C is traditionally viewed as controlling the bias-variance tradeoff, in

our context it can be interpreted as a parameter balancing generalization accuracy versus spar-

sity, and thus retrieval speed. In the case of “TkP FGM” we have kept a constant C (tuned

by cross-validation), and instead varied the sparsity of this classifier by acting on the separate

parameter B. From this figure we see that AR is overall the fastest method at the expense of

search accuracy: a peak precision of 22.6% is obtained by TkP using L2-SVM but AR with

the same classification model achieves only a top precision of 17.5% due to a combination of

fewer learning parameters (in this experiment we used D′ = 512), PCA projection error and
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quantization error. As expected, we note that TkP runs faster when used in combination with

L1-LR or FGM rather than L2-SVM, since it benefits from sparsity in the parameter vectors to

eliminate images from consideration. However, we see that sparsity negatively affects accuracy,

with L2-SVM providing clearly much better precision compared to L1-LR.

In our experiments we found that TkP typically exhibits faster retrieval in conjunction with L1-

LR rather than FGM. We can gain an intuition on the reasons by inspecting the average distribu-

tion of weight absolute values in figure 2.2(a). The average distribution for each classification

model was obtained by first sorting the weight absolute values for each query in descending or-

der and then normalizing by the largest absolute value. For this experiment we chose B = 1000

for the FGM model. We can see that although for this setting the weight vectors learned by

FGM are on average more sparse than those produced by L1-LR, the normalized magnitude of

the L1-LR weights decays much faster. TkP benefits from the presence of these highly skewed

weight magnitudes to produce more aggressive pruning. Figure 2.2(b) shows the average pro-

portion of database pruned by the top-k method as a function of iteration number (d) for k = 10

and k = 3000. As anticipated, a smaller value of k allows the method to eliminate more images

from consideration at a very early stage.

We now turn to study the effect of parametersD′, v, w on the efficiency and accuracy of AR. Fig-

ure 2.3 shows retrieval speed and precision obtained by varying v andw forD′ ∈ {128, 256, 512}.
Increasing the dictionary size (w) reduces the quantization error while raising the quantization

time: note the slightly better accuracy but higher search time when we move from parameter

setting (D′ = 512, v = 256, w = 26) to (D′ = 512, v = 256, w = 28). The number of sub-

blocks (v) critically affects the retrieval time: reducing v lowers a lot the search time but causes

a drop in accuracy. Finally, note how D′ impacts the accuracy since it affects both the num-

ber of parameters in the classifier as well as the projection error: using a large D′ is beneficial

for accuracy when v and w are large; however, when the number of cluster centroids is small,

lowering D′ improves precision since this mitigates the quantization error.

Finally, we also ran an experiment simulating real-world usage of an object-class retrieval sys-

tem where a user may provide a positive training set but no negative set. In such cases one could

use a “background” set for the negative examples. Thus, here we used as negative examples for

each query, n− = 999 randomly chosen images from all 1000 categories, thus possibly con-

taining also some true positives (i.e., images of the query class). As expected, we found the

precisions of the L1-LR and L2-SVM classifiers to be nearly unchanged by the few incorrectly

labeled examples: precisions at 10 in this case are 18.75% and 22.55%, respectively.

Retrieval results on ImageNet (10M images). We now present results on the 10-million

ImageNet dataset [36] which encompasses over 15,000 categories (in our experiment we used

15203 classes). We used a subset of 950 categories as query classes. For each of these classes
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FIGURE 2.3: Effects of parameters D′, v, w on the accuracy and search time of AR for the
ILSVRC2010 data set. A small v implies faster retrieval at the expense of accuracy. Using a
larger value forw reduces the quantization error at a small increase in search time. LoweringD′

decreases the power of the classifier (VC-dimension) and increases the PCA projection error,
thus negatively impacting precision.

we capped the number of true positives in the database to be n+test = 450. The total number of

distractors for each query is n−test = 9, 671, 611. We trained classifiers for each query category

using a training set consisting of n+ = 10 positive examples and n− = 15, 202 negative images

obtained by sampling one training image for each of the negative classes. We omit from this

experiment the FGM model as its training time is over 300 times longer than the time needed

to learn the L1-LR or L2-SVM classifier and thus its use on such a large scale benchmark

is difficult (as a reference, learning a L1-LR or an L2-SVM classifier for a query category

in this experiment takes around 2 seconds). The results are summarized in figure 2.4, once

again in the form of retrieval time versus precision at 10. We can see that on this data set,

TkP provides clearly the best accuracy-speed tradeoff with near peak-precision achieved for an

average retrieval time of just a couple of seconds. The plot reports time for k = 10, but we

found that when setting k = 3000 the retrieval time of TkP increases by only roughly 35%

compared to the case k = 10. AR is once again very fast but it provided lower precision due

to the issues pointed out above. In this figure we are also including the retrieval times obtained
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FIGURE 2.4: Search time versus retrieval precision at 10 for the 10-million ImageNet dataset.
For each query class, there exist n+test = 450 positive images and n−test = 9, 671, 611 dis-

tractors in the database.

with a simple architecture of inverted lists, with each list enumerating the images containing one

particular classeme. Retrieval with inverted files obviously yields the same accuracy as TkP but

it is more than 7 times slower. Overall, TkP with L1-LR provides a 24-fold speed-up compared

to brute-force evaluation.

We would like also to comment on the memory usage. The inverted file architecture requires

the most space. We represented the image IDs in inverted files using one byte per image: we

achieve this by storing only ID displacements (which in our experiment happened to be always

smaller than 255) between consecutive images in the list. Despite this clever encoding the total

storage requirement for the 10M data set was roughly 9GB. TkP was implemented using a bit

map of all classemes for all images which takes a space of (2659/8) × N bytes for a database

containing N images, which in this case amounts to about 3GB. AR is the most space-efficient:

it requires only v log2w bits to represent each image using vector quantization and the cluster

centroids are stored in only D′w real values. Thus on the 10M data set, the memory usage of

AR was only 1.8GB. This is clearly the most scalable approach in term of memory usage.

Object-class retrieval accuracy on Caltech256. Our choice of retrieval models and features

was primarily motivated by computational complexity constraints. Thus, a natural, legitimate

question is: how much accuracy have we sacrificed for the sake of this efficiency? We answer

this question by comparing the retrieval accuracy of our approaches with the state-of-the-art

class-recognition system of Gehler and Nowozin [11], which has been shown to produce the

best categorization results to date on several recognition benchmarks. This classifier combines

non-linear kernel distances computed from multiple feature descriptors. Its high computational
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L1-LR L2-SVM FGM LP-β
precision@25 28.2% 30.2% 29.6% 32.8%

training time (seconds) 0.044 0.028 11.04 253.7

TABLE 2.1: Caltech256 evaluation: precision at 25 and training time for the state-of-the-art
LP-β classifier as well as for linear classifiers trained on binary classemes. The training set
sizes are n+ = 50 and n− = 255. The number of true positives in the database is n+

test = 25
and the number of distractors are n− = 6400. The precisions of these simple linear models
approach the accuracy of the LP-β classifier which is recognized as one of the best object

classification systems to date.

complexity and large feature storage requirements makes it impossible to use in large image

databases such a those considered in this paper. Thus, we carry out our this accuracy com-

parison on the small Caltech256 data set. We use as low-level features for LPbeta the same

13 descriptors that were used to learn the classemes [18], so as to have a comparison between

methods on common ground. We train the retrieval models on each Caltech256 class separately

by choosing n+ = 50 positive examples of the query category and n− = 255 negative examples

obtained by sampling one image from each of the other categories. We report the precision on

ranking a database of 6,400 images including n+
test = 25 true positives and n−test = 6, 375 dis-

tractors obtained by choosing 25 examples from each of the other 255 classes. Table 2.1 shows

that our simple retrieval models applied to binary classeme vectors achieve accuracy compara-

ble to that of the much more computationally expensive LP-β classifier and are several orders

of magnitude more efficient to train as well as test.
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Chapter 3

Learning Semantic Binary Codes
(Attribute Discovery)

3.1 Overview

We describe a method that represents images with binary codes. In training, we infer codes for

training images, and learn classifiers to predict the codes; in testing, we apply those classifiers

to a test image to produce a code. An established literature shows how such binary codes can

be used for image retrieval (e.g via hashing) and for image classification (e.g, via multi-class

classification).

Image retrieval emphasizes appearance similarity, and many similar looking objects belong to

the same category. This means that images that look similar (resp. dissimilar) should have

similar (resp. dissimilar) codes. We call this property unsupervised similarity. These kinds of

appearance similarity are not particularly discriminative. To ensure discrimination one needs to

produce same (resp. dissimilar) codes for members of same(resp. different) categories. We call

this property discriminative similarity. Our code construction balances unsupervised similarity

with discriminative similarity.

Our codes are learned from category information on a per-image basis, meaning that training

images within the same category may have different codes. We see this as an important inno-

vation. It is natural, because not all objects within a category share all properties. Furthermore,

doing this allows us to balance the discriminative information in a particular bit with our ability

to predict the bit. One might try to train a system to predict a fixed code for each image within a

category; however, there is no evidence that one can predict these codes accurately from images.

Each bit in our codes can be thought of as a visual attribute whose name is not known. Like
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attributes, our codes lead to natural models of categories. Later in the process, we infer what is

shared within each category by selecting the most informative bits per category.

Our experimental evaluations show that our codes can produce state of the art retrieval and

classification performance results on Caltech256. We also perform extensive evaluations on

ImageNet. Our bit codes behave like attributes, and we show that our method has discovered

visual attributes (Figure 3.8). Like attributes, our bit codes can be used as features to recognize

objects in categories not used for training the code (Figure 3.9). We show that learning codes on

a per-image basis outperforms that of category-based codes. Finally, the space produced by our

learned codes can model within category variations (Figure 3.10).

3.2 Background

Binary codes are attractive image representations for image search and retrieval, because they

are easy to match, and the capacity of the space of very short binary codes is so large that all of

the digital images in the world can be indexed with relatively short binary codes. 64-dimensional

codes can index about 1019 images; 5 times the estimated number of bits created in 2002 and

likely similar to the number of digital images in existence [37]. Unfortunately, it is not known

how to perfectly encode visual information into the binary codes to enable efficient search and

retrieval.

Binary codes have been usually used as hash keys where the hashing functions are learned to

preserve some notion of similarity in the original feature space. Important examples include:

locality sensitive hashing [38], where similar objects have high probability of collision; param-

eter sensitive hashing [39], where the hash code is adjusted to improve regression performance;

kernelized locality sensitive hashing [40], which results in fast image search and retrieval; bi-

nary reconstructive embedding [41], which encourages distances between binary codes to mirror

distances in the original image feature space; efficient retrieval [2]; and semantic hashing [42],

which encourages distances between codes to mirror semantic similarities, approximated by

category memberships. Semantic hashing methods can produce very efficient image search

methods for collections of millions of images [43]. Semantic hashing methods use a restricted

boltzman machine; extensions include stacking multiple restricted boltzmann machines [44].

Alternatively, Norouzi and Fleet [45] model the problem of supervised compact similarity-

preserving binary code learning as a Latent SVM problem and defined a hashing-specific class

of loss functions. None of these approaches would necessarily result in discriminative codes.

In fact, Figure 3.5 shows that preserving patterns in the original feature space may hurt dis-

crimination in both supervised and unsupervised methods. Our experiments demonstrate that

our codes achieve significantly better performances compared to state of the art supervised and

unsupervised binary code methods.
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Rotating the original feature space, then quantizing, is another approach. In spectral hashing

[46], compact binary codes are calculated by thresholding a subset of eigenvectors of the lapla-

cian of the affinity graph. Spectral hashing has been shown to outperform RBM and boosting

SSC in [39]. Raginsky and Lazebnik [47] project the data to a low dimensional space and then

use random quantizations, after [48]. Lin et al [49] use an iterative learning method to produce

binary codes whose hamming distance correlates to the similarities explained by the affinity

matrix of the data in the original feature space; doing so requires long codes. Jégou et al. [50]

jointly optimize for the search accuracy, search efficiency and memory requirements to obtain

their binary codes. Gong and Lazebnik [51] iteratively minimize (ITQ) the quantization error

of projecting examples from the original feature space to vertices of a binary hypercube. This

method is capable of incorporating supervision by using CCA instead of PCA. ITQ has shown

to produce state of the art results. Our experiments show that ITQ follows the patterns in the

original feature space very well. This, however, may result in poor discrimination. We show

that our binary codes consistently outperforms ITQ.

Many methods are unsupervised [46, 47, 51]. Some methods use a notion of similarity between

labeled pairs of examples [42, 45, 49, 51]. Further, Wang et al. [52] get improvements over

LSH and spectral hashing from a semi-supervised approach that minimizes the empirical loss

over the labeled examples and maximizes the variance and independence of unlabeled examples.

In either case, all methods assume that images that look “similar” should have the same label,

but this is not always true for object categories.

Each bit in a binary code can be thought of as a split of the feature space into two half-spaces.

Farhadi et al. [53, 54] construct thousands of random splits of the data, then pick the most

predictable ones to generate random codes. Their splits are predictable and have high validation-

set accuracy, but are not necessarily discriminative. Classeme features [55] are splits of data that

produce state of the art results, but again there is no explicit discriminative component to the

construction.

Alternatively, one could build codes out of object attributes [56] [57]. Such codes are easily

interpreted semantically, but no explicit discriminative construction is yet known. Semantic at-

tributes can also be discovered by selecting attributes that reduce the amount of confuision and

are nameable [58, 59]. In terms of supervision, attributes are typically supervised or as recently

shown they can be used in a semi-supervised fashion [60]. We do not use any supervision in

terms of attributes. There is good evidence that random splits of data can produce informative

bit strings [53, 55]. We differ from these constructions, because our method is explicitly dis-

criminative. Furthermore, instead of learning bits independently, we learn bit vectors as a whole.

Wang et al. [61] implicitly learns for discriminative codes by learning for hash functions that

can sequentially correct the mistakes of the previous codes. We differ from them, because we
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FIGURE 3.1: Each bit in the code can be thought of as a hyperplane in the feature space.
We learn arrangements of hyperplanes in a way that the resulting bit codes are discriminative
and also all hyperplanes can be reliably predicted (enough margin). For example, the red
hyperplanes (II,V) are not desirable because II is not informative(discriminative) and IV is not
predictable (no margin). Our method allows the green hypeplanes (good ones) to sacrifice
discrimination for predictability and vice versa. For example, our method allows the green
hyperplane (I) to go through the triangle class because it has strong evidence that some of the

triangles are very similar to circles.

explicitly optimize for discrimination in a max margin framework, we learn for the binary codes

as a whole (not one by one), and we optimize jointly for discrimination and predictability.

3.3 Learning Discriminative Binary Codes

Our goal is to learn codes for each instance in the training set such that a) the codes can be reli-

ably predicted from the visual data and b) if we represent each image with its learned codes then

discrimination becomes easier. Our system consists of two main parts: learning binary codes

for each instance and then performing search or classification in the space of binary codes. For

learning our binary codes, we optimize for two criteria jointly: we want our codes to be as dis-

criminative as they can, while maintaining predictability of the codes. The most discriminative

codes (like assigning unique codes to examples of the same category) are extremely hard to

predict from visual data. And the most predictable codes may contain very little information

about categories resulting in poor discrimination. Our model balances between discrimination

and predictability of the codes. In our view a code is discriminative if examples of different

categories appear far away from each other and instances of the same category lie close by.

However, we don’t enforce these discriminative constraints as hard constraints but assign codes

22



to each image in a way that the resulting codes have enough discriminative power and yet can

be reliably predicted from images. Such a code allows for simple, efficient and very accurate

classification and searches. For performing search and classification in the space of binary codes

we use KNN and linear SVM. In Section 3, we demonstrate that KNN search in the space of

our binary codes outperforms KNN on other state-of-the-art binary code spaces on Caltech256.

We also show that linear SVM classifiers using our codes results in even higher accuracies with

very few training examples per category.

Throughout this work we use the term “splits” when we refer to bits of a code. Each bit can

be visualized as a hyperplane that separates instances that have value 0 versus the ones that

have value 1. Each bit of our codes is generated by checking which side of a hyperplane an

instance lie. In [53], the splits are learned by randomly setting a subset of examples to positive

and another subset to negative. Some of these splits can be reliably predicted from data. In

[53], the splits are sorted based on how well they can be predicted from the data. The top

K splits produce a K dimensional binary code. This procedure does not necessarily result in

discriminative binary codes and the codes may need to be very long to ensure good performance.

We believe the procedure to learn the splits and the procedure to find good binary codes should

be learned jointly. This results in binary codes that are predictable and have built-in margins.

This means that each code is associated with a cell in an arrangement of hyperplanes in the

feature space (Figure 3.1). The family of such arrangements is rich, meaning that we can find

good codes.

Assume that we are given a training set {xi, yi} where i ∈ {1, 2, ..., N}, xi ∈ Rd, and yi ∈
{1, 2, ..., C} and we plan to learn k splits, meaning that our final binary code is k-dimensional.

To train each split s ∈ {1, 2, ..., k} we have to learn for labels to give us positive and negative

training examples ls where ls ∈ {−1, 1}, −1 for negative and 1 for positive training examples.

For each instance i in the training set, we are learning for lsi indicating which side of the split

s the ith example should appear. When learning for these codes our goal is to learn for a set of

labels for each instance in a way that those labels can be reliably predicted from visual data and

the learned codes leave enough space between categories. The final binary codes are the actual

predictions of each split classifier s trained with ls as training labels. We call these predictions

bsi ∈ {0, 1}. bsi indicates which side of the split s the ith example actually lies. In other words, bsi
is the prediction of a classifier that uses lsi as training labels; l is what we want and b is what we

can actually predict. We can stack all the labels and the predictions from all the split classifiers

to form the final binary vector for each instance i in the training set: Li = [l1i , l
2
i , ..., l

k
i ], and

Bi = [b1i , b
2
i , ..., b

k
i ].

We are looking for binary codes that (a) can be reliably predicted from the original features and

(b) provide enough margins between examples from different categories. To do that we learn

to allocate codes to instances by searching for the whole code that jointly optimizes these two
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criteria. We do not optimize bits one by one as we can not guarantee uncorrelated binary codes.

Our formulation looks like a combination of max margin models for linear SVMs to satisfy (a)

and pushing for large inter class and small intra class distances for (b). We achieve such codes

by optimizing:

min
w,ξ,L,B

1

2

∑
c∈{1:C}

∑
m,n∈c

d(Bm, Bn) + γ
∑

s∈{1:k}

‖ws‖2 (3.1)

+λ1 ·
∑

i∈{1:N}

s∈{1:k}

ξsi −
λ2

2

∑
c′∈{1:C}

p∈c′

∑
c′′∈{1:C}

c′ 6=c′′,q∈c′′

d(Bp, Bq)

s.t. lsi (w
s
′
xi) ≥ 1− ξsi ∀i ∈ {1 : N}, s ∈ {1 : k}

bsi = (1 + sign(ws
′
xi))/2 ∀i ∈ {1 : N}, s ∈ {1 : k}

ξsi > 0 ∀i ∈ {1 : N}, s ∈ {1 : k}

where d can be any distance in the hamming space, Bi = [b1i , b
2
i , ..., b

k
i ], w

s is the weight vector

corresponding to the sth split, ξsi is the slack variable corresponding to the sth split and ith

example, C is the total number of categories, k is the number of splits, N is the total number of

examples in the train set, lsi is the training label for the ith example to train the sth split, and bsi
indicates the prediction results of ith example using the split s.

This is an extremely hard optimization problem, but we may not need to find the global min-

imum to obtain good binary codes. “Good” local minima are capable of producing promising

discriminative binary codes. To go down the objective function in the optimization 1 we use

an iterative block coordinate descent method. In algorithm 6 we described our optimization

steb-by-step.

We initialize by choosing B to form orthogonal codes that come from projections along PCA

directions. In our experiments we find that this initialization yields promising results. The

supplementary material describes the (minor) effects of other choices of initialization. We then

initialize ws to predict these codes. Notice that the w’s are independent given a fixed B, so we

can use an SVM.

We now proceed by iterating three steps in sequence. First, we update B for fixed wsi , ξ
s
i ;

this proposes an improvement in the codes that should achieve improved separation. This is an

iterative procedure that is started at the current value of B. We use stochastic gradient descent

(step 4) with an important optimization. SinceB is binary, if bsi is 0 then the sum of differences is

the number of 1s and vise versa. We can pre-compute number of 0s and 1s for each sth element

of B. This way, we decrease the complexity of computing sum of differences from O(N2K) to
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Algorithm 2 Optimization

Input: X = [x1, ...xN ] (xi is low-level feature vector for ith image).
Output: B (Bi = [b1i , b

2
i , ..., b

k
i ] is binary code for ith image ).

1: Initialize B by: B ← Projection of X on first k components of PCA(X)
2: Binarize B: B ← (1 + sign(B))/2
3: repeat
4: Optimizing forB in minB

1
2

∑
c∈{1:C}

∑
m,n∈c d(Bm, Bn)−

λ2
2

∑
c′∈{1:C}p∈c′

∑
c′′∈{1:C}c′ 6=c′′,q∈c′′ d(Bp, Bq)

(see supplementary materials for details )
5: lsi ← (2bsi − 1) ∀i i ∈ {1 : N}, ∀s s ∈ {1 : k}
6: Train k linear-SVMs to update ws ∀s, s ∈ {1 : k} using L as training labels (lsi : label for ith image when

training sth split)
7: bsi ← (1 + sign(ws

T

xi))/2 ∀i, s i ∈ {1 : N}, s ∈ {1 : k}
8: until Convergence on optimization 1

O(NK). Second, we update L using B and then (Fixing L,B) we update wsi , ξ
s
i by training

SVMs using L as training labels. This produces a set of SVM’s to predict these improved codes.

Each bit of B represents a labeling of instances that we want an SVM to reproduce. We can

therefore compute optimal wsi and ξsi with an SVM code. Third, we update the current value

of B to reflect the codes that these SVM’s actually predict; this biases the update of B in the

direction of codes that can be predicted. While this optimization procedure doesn’t guarantee

descent in each iteration, we have found that we get descent in practice (Figure 3.3). This is

most likely because the steps balance the goodness of the code (updated in the first step), with

our ability to predict it (second, third steps). In our experiments, we did not tune the parameters;

λ1,γ are set to 1 and λ2 is set to normalize for the size of categories. Figure 3.3 shows the

behavior of the objective function and all the terms in equation 1 after each iteration.

Once converged, optimization 1 provides us the weight vectors ws∗ for split classifiers that tend

to produce binary codes with built-in margins. We use ws∗ to project the data to the space of the

binary codes.

Using Codes: There are several ways to use the resulting binary codes. We evaluate our codes

in a) using them as hash codes and performing KNN on the codes (called KNN in our experi-

ments), b) using them as features and learning SVM classifiers for each category (called SVM),

c) using the codes as features while accepting that these features might be redundant and using

L1 regularized models to pick category specific codes (e.i. for each category we learn a L1-

regularized SVM and pick the bits correspond to larger absolut weight value of the L1-SVM)

and then learn normal SVM classifers using related bits.

3.4 Experimental Evaluations

Tasks: The main tasks of our experiments are in classification and category retrieval. We com-

pare our method in several different settings with the state of the art bit-code-based methods.

We also compare our method with state of the art classification techniques. Our bit learning

25



FIGURE 3.2: We compare our binary codes(DBC) with Locality Sensitive Hashing(LSH),
Spectral Hashing(SpH), and supervised version of Iterative Quantization(ITQ) under several
different settings: changing the length of binary codes (32,64,128,256), classifiers (linear SVM
or KNN), original features (Classeme, ColorSift) and also with L1 selection of category specific
bits (DBC-L1). Our codes (DBC) consistently outperforms state of the art methods like SpH
and ITQ by large margins. The test set contains 25 examples per category. Due to space
limitations only very few of experimental settings can be showed. Please see supplementary

material for all plots.

FIGURE 3.3: Our optimization procedure finds descent directions in our challenging objective
function. This figure shows that all terms in the objective function actually improves after each

iteration.

algorithm results in interesting observations about the data like attribute discovery. Also, we

qualitatively evaluate our method in retrieval and attribute discovery. Our method is also appli-

cable to novel category recognition.

Datasets: We test our method on Caltech256 [62], and ImageNet [63] (ILSVRC2010). Both of

these dataset have large number of categories (256 and 1000) with huge intra-class variations.

Category retrieval on Caltech256 is a challenging task because the number of categories is much

higher than typical experiments and also the intra-class variations are much higher than typical

datasets like MNIST. There are around 30000 images belonging to 256 categories [62]. On

average, there are about 120 images per category.

Features: For experiments on Caltech256 we use two different sets of features that have been

shown to produce state-of-the-art results on Caltech256: Classeme and ColorSift. We use

Classeme features [55] because they have shown to outperform other features [55]. The Classeme

features are of 2659 dimensionality. We also use ColorSift features as they show promising per-

formances on classification tasks [64]. We use ColorSift bag-of-words features by building a
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FIGURE 3.4: Our method outperforms state of the art binary code methods (LSH, SpH, and
supervised TTQ) on ImageNet(1000 categories, 20 per catgeory for training). Left plot com-
pares precesion @25 vs. the code length. The test set contains 150 images per category. The
right plot shows precision-recall curve for the same dataset using 512 dimensional codes. Our

codes consistently outperforms all other methods.
1000-word dictionary using ColorSift features provided by [65]. To make these features more

discriminative we use homogeneous kernel map [66] on top of SIFT-BoW. The homogeneous

kernels have shown to produce best results in many classification tasks [66]. Both of these

features are among the most discriminative features. For ImageNet experiments we also use

Classeme features.

Controls: To evaluate our method we perform series of extensive evaluations and comparisons.

For our method, we change the following settings: the length of binary codes k (32, 64, 128, 256,

512), the number of training examples per category (5 0r 50), the original features (Classemes or

ColorSift), the classifier (LSVM [67] or KNN), and the use of L1 selection of category specific

bit strings. To compare with methods in the literature we compare our results with Locality Sen-

sitive Hashing(LSH) as a standard baseline, with the supervised version of Iterative Quantization

(ITQ) [51] as the best supervised method and Spectral Hashing (SpH)[46] as the state-of-the-

art unsupervised method in producing binary codes. Our experimental evaluations demonstrate

that our method consistently outperforms state-of-the-art methods under all the combinations

of above settings. To evaluate our method on a large scale dataset we test it on ImageNet. We

used 1000 category from ILSVRC2010 (ImageNet Challenge). For each category we randomly

chose 20 examples for training and 150 examples for testing. Our results show that our codes

also outperform state-of-the-art binary code results on this dataset.

Measurements: In case of SVM, we use the top k images to compute precision and recall

values. Varying k = [1 : 5 : 100] traces out the precision-recall curves. In case of using

KNN, for each number of nearest neighbors we can compute a precision and recall. Varying this

number makes a precision recall curve.

Results: There are four main categories of results. First, we compare our method with the state

of the art bit-code methods on Caltech256 and ImageNet. We also show interesting qualitative

results. Second, we compare our results with the state of the art method on Caltech256. Third,

we compare our method on novel category recognition with the state of the art method of [68].

27



FIGURE 3.5: Our method produces state of the art results on Caltech256. A linear SVM
with only 128-bit code is as accurate as multiple kernel learning method of LPBeta (marked
with a big star) that uses 13000 dimensional features. As we increase the size of the code we
outperform the LPBeta method significantly. This figure compares our category specific codes
(DBC-L1) , our codes without L1 selection (DBC), ITQ and SPH on precesion at 25 versus
the number of training examples per category on caltech 256. One interesting observation is
that the ITQ method does a great job in following the original features (Classeme) with 512
codes. This however hurts the performance as 128 and 256 dimensional codes outperforms the
original features. This confirms our intuition that following the patterns in the original feature

space does not necessarily result in good performance numbers.

FIGURE 3.6: This figure qualitatively compares the quality of retrieved images by our method
comparing to that of ITQ and SpH. Each row corresponds to the top five images returned
by three different methods: ours, ITQ and spectral hashing. This retrieval is done by first
projecting the query image to the space of binary codes and then running KNN in that space.
Notice how, even with relatively short codes(32 bits), our method recovers relevant objects.
This menas that the discriminative training of the code has forced our code learning to focus on
distinctive shared properties of categories. Our method consistently becomre more accurate as

we increase the code size.

Fourth, we show qualitative results that reveal interesting properties of our method. We show

promising attribute discovery results and also projections of the resulting bit code space.

Comparisons to the state of the art bit-code methods: Figure 3.2 compares our method

(DBC, DBC-L1) with LSH,SpH, and supervised version of ITQ by varying the number of bi-

nary codes. We perform extensive evaluations on all combinations of different settings. Space

does not allow showing all comparisons in all settings, please see supplementary material for

all comparisons. The settings that we show here are: (from left to right on Figure 3.2) using

KNN on 512-dimensional bit coses when 50 training examples per category are observed dur-

ing training using Classeme features, using SVM on 128-dimensional bit codes when 5 training

examples per category is observed during training using Classeme features, and using SVM on

256-dimensional bit codes when 5 training examples per category is observed during training
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FIGURE 3.7: This figure qualitatively compares the quality of retrieved images by our method
comparing to that of ITQ and SpH. Each row corresponds to the top five images returned by
three different methods: ours, ITQ and spectral hashing. This retrieval is done by first project-
ing the query image to the space of binary codes and then running KNN in that space. Notice
how, even with relatively short codes(32 bits), our method recovers round objects. Our method
is consistent in terms of returned images as we increase the code size. With 256 dimensional

code our method returns 5 correct images.

using ColotSift features. In all possible settings, including these three, our method outperforms

state of the art bit code methods. We also show that DBC-L1 performs better than DBC in all

settings. The gap between the DBC and DBC-L1 increase as the number of bits decreases. The

huge gap in the lower number of bits is due to the fact that in DBC-L1 we chose the bits to be

specific at each category. In all of the experiments we use the same random selection of train

and test set.

Our experiments show that as we increase the neighborhood size in KNN our method can still

find the right categories (see supplementary materials). This implies that our hash cells remain

pure as we increase the size of the neighborhood. This confirms that the optimization 1 managed

to produce codes with enough margins. It is also worth noting that with such small training set

per category linear SVM achieves excellent results using our codes.

In figure 3.5 we compare all the methods in terms of the precision at top-25 ranked images

with different code length. We also compared our method with product quantization [69] for

5tr/cl and follow the same experimental setup. Product quantization got the precision of 0.04,

0.05, 0.064, 0.08, 0.09 for 32, 64, 128, 256, 512 bits repectively. Our method outperforms all

the methods in all different code lengths. The Left plot in Figure 4 shows this comparison on

ImageNet. For all other comparisons on Caltech256 please see the supplementary material. In

these experiments, the test set contains 25 images per category . Figure 3.6 and 3.7 qualitatively

compare our discriminative binary codes with ITQ and SpH in an image retrieval task. We

show the top five retrieved images for the query image. It is interesting to see that even with

32 dimensional code our method is capable of extracting relevant properties. Our method is

consistent in terms of returned images as one increases the code size.

Comparison to the state of the art models on Caltech256: Figure 3.5 compares our results

with state-of-the art methods on Caltech256. We use the same features as the state-of-the-art
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FIGURE 3.8: Discovering attributes: Each bit corresponds to a hyperplane that group the data
according to unknown notions of similarity. It is interesting to show what our bits have dis-
covered. On two sides of the black bar we show 8 most confident images for 5 different hy-
perplanes/bits (Each row). Note that one can easily provide names for these attributes. For
example, the bottom row corresponds to all round objects versus objects with straight vertical
lines. The top row has silver, metalic and boxy objects on one side and natural images on
the other side, the second row has water animals versus objects with checkerboard patterns.
Discovered attributes are in the form of contrast: both sides have its own meaning. These at-
tributes are compact representations of standard attributes that only explain one property. For

more examples of discovered attributes please see supplementary material.

method of LPBeta (The big star in the figure). With only 128 bits we can achieve the same results

as the state of the art method of LPBeta that uses 13000 dimensional features. By increasing

the number of bits our codes outperform the multiple kernel learning method of LPBeta. This

shows that DBC can be significantly more discriminative than state-of-the-art features. We also

compare with the classeme features. In this Figure we perform the same test with other binary

code method. ITQ is doing a great job in getting close to the original features of Classeme by

using 512 binary codes. However, it gets worse comparing to using 128 or 256 codes. This is

mainly due to the fact that ITQ minimizes the quantization error of binarization and this does

not necessarily result in better discrimination. Our method consistently gets better with more

and more bits.

Novel Category Recognition: So far, we have shown that our codes are discriminative for

categories they have been trained on. Similar to cross category generalization of attributes, we

also evaluate our method on categories that have not been observed during training. For that,

we learn the binary codes on 1000 categories of ImageNet with 20 examples per category and

test our codes on Caltech256. We make sure that none of the 1000 categories intersect with 256

categories on Caltech. We adopt an experimental setting from [68] for which training data is

available. Figure 3.9 shows that our method outperforms PiCodes [68], the state of the art novel

category recognition method. We used the same low-level features as in [68].

Attribute Discovery: Binary codes can be though of as attributes. Our algorithm discovers

attributes that can be named without much difficulty. Figure 3.8 shows some of the attributes

discovered by our method. Each row shows 8 most confident examples for both sides of a

hyperplane that corresponds to a bit in our code. Our learning procedure can discover attributes
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FIGURE 3.9: Our codes can be used across the trainining categories (novel categories): we
use 1000 categories of ImageNet to train our codes and use the codes to recognize objects in
Caltech 256. The 1000 categories from ImageNet do not intersect with those of Caltech256.

Our method outperforms state of the art methods in novel categories.

FIGURE 3.10: Projection of the space of binary codes: We use multidimensional scaling and
project our 64 dimensional codes into a two dimensional space. It is interesting to show that our
method clearly balances between discrimination and learnability of the codes: round objects
like wheel and coins appear close by while horses and camels are faraway. The head of the
horse and the head of camels are close to each other and far way from side views of them.

Supplementary material includes more examples of these projections.

like is round, is boxy, is natural, has checkerboard pattern, and etc. More discovered attributes

can be find in supplementary material. Our model learns strong contrasts that are discriminative.

As a result of this each side of the discovered attributes has its own meaning. The discovered

attributes are compact versions of standard attributes. Standard attributes describe only one

property. But our discovered attributes are in the form of contrasts. For example, the first row

contrasts boxy and silver objects against natural objects. If the bit that corresponds to the first

row is 1 this means that the attribute boxy is 1 and if the bit is zero this means that the attribute

natural is 1. It is also very interesting to look at the space of binary codes. To do that, we project

our binary codes into a 2-dimensional space using multidimensional scaling. Figure 3.10 shows

an interesting balance between discrimination and classification. In the projected space round

things like wheels and coins are close together despite belonging to different categories. At

the same time, round things are far away from horse and camel examples. Examples of the

head of horse and camels are closer together than those to side views of horses and camels.

Category memberships are suitable proxies for visual similarity but should not be enforced as

hard constraints. Our model manages to balance between discrimination in terms of basic level

categories and learnability of the codes from visual data.
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Chapter 4

Predictable Dual-View Hashing

4.1 Overview

Binary codes are attractive representations of data for search and retrieval purposes due to their

efficiency in computation and storage capacity. For example, 64-bits binary codes can index

about 1019 images, five times the estimated amount of data created in 2002 and quite likely the

total number of digital images in existence [37].

Hashing is a common method for assigning binary codes to data points (e.g.,, images). The

binary codes are used as hash keys where the hash functions are learned to preserve some notion

of similarity in the original feature space. Such binary codes should have the general hash

property of low collision rates. In addition, suitable binary codes for search and retrieval should

also maintain high collision rates for similar data points. The latter property is essential in a

similarity based retrieval settings [51, 70, 71].

The binary codes can be learned either in a unsupervised manner that models the distribution

of samples in the feature space [71] or in a supervised manner that uses labels of the data

points [72]. Unsupervised methods can be adversely affected by outliers in distributions and

noise, and the supervised methods require expensive manual labeling.

It is often the case that information about data are available from two or more views, e.g.,,

images and their textual descriptions. It is highly desirable to embed information from both

domains in the binary codes, to increase search and retrieval capabilities. Utilization of such

binary codes will create a cross-view Hamming space with the ability to compare information

from previously incomparable domains. For example in the text and image domain, image-to-

image, text-to-image, and image-to-text comparisons can be preformed in the same cross-view

space. Such approaches have received attention recently due to the emergence of large amounts

of data in different domains being available on the internet.
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To date, most approaches proposed embedding dual-views in Hamming space use canonical

correlation analysis (CCA) [73–75]. The CCA based approaches are less sensitive to feature

noise and require no manual labeling. However, bits learned by CCA do not explicitly encode

the proximity of samples in the original feature space since CCA enforces orthogonal bases and

aims to reduce the modality gap with little consideration of the underlying data distribution.

To address this issue, we propose a dual-view mapping algorithm that represents the distribution

of the samples with non-orthogonal bases inspired by a notion of predictability proposed in [3].

Predictable codes ensure that small variations of the data point positions in the original space

should not result in different binary codes. In other words, a particular bit in the binary code

should be identical (predictable) for all data samples that are close to each other in each view.

To maintain such predictability, we employ a max-margin formulation that enforces confident

prediction of bits.

Furthermore, we propose a joint formulation for learning binary codes of data from two dif-

ferent views. We assume that a latent Hamming space exists for the data, and optimize the

hash functions that map the data from each view to this common space, while maintaining the

predictability of the binary codes. Knowing the hash functions in the original views supports

cross-modal searches.

The rest is organized as follows: Section 5.2 reviews related work. Section 5.3 presents the

details of our approach including optimization methods. Experimental analysis and comparisons

to state-of-the-art methods are presented in section 10.4.

4.2 Background

As our work lies in the intersection of hashing methods and mutil-view embedding, we briefly

describe related work in both domains. We also review specific applications that could be en-

abled via our method.

Gionis et al. [38] introduced Locality Sensitive Hashing (LSH) where similar objects have high

probability of collision. Along this direction, Shaknarovich et al. [39] use parameter sensitive

hashing and apply it to human pose estimation. Kulis and Grauman [40] extend LSH with

kernels and show fast image search for example-based searches and content based retrieval.

Kulis and Darrell [41] also proposed a binary reconstructive embedding method for minimizing

the differences between Euclidean distances in the original feature space and the Hamming

distances in the resulting binary space.

Semantic hashing, proposed in [42], learns compact binary codes that preserve correlations be-

tween distances in the Hamming space and semantic similarities approximated by category
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memberships. This is accomplished by learning a deep generative model, called a Restricted

Boltzman Machine (RBM) which has a small number of nodes in a deepest level that produce

a small number of binary values. Torralba et al.[43] extend this idea to efficient image search

method on the scale of millions of images. Nonlinear mapping to binary codes has been ad-

dressed in [44] by stacking multiple RBM’s. Norouzi and Fleet [45] model the problem of

supervised learning of compact similarity-preserving binary code using a Latent SVM problem

and define a hashing-specific class of loss functions. None of these approaches, however, nec-

essarily captures the semantics of an image. In fact, enforcing preservation of patterns in the

original feature space may hurt discrimination in both supervised and unsupervised methods.

Utilization of textual captions for image understanding has recently received considerable atten-

tions in the research community. Farhadi et al. [76] introduce a CRF based method to model

a semantic space that text and images can be mapped to via triples of object, subject and verb.

In [77] strategies of creating image-text datasets via Amazon Mechanical Turk are investigated.

Kulkarni et al. [78] propose a method for generating natural language descriptions from images

by parsing a large set of texts and performing object recognition on image sets. Li et al. [79]

propose a simple but effective N-gram based method that can produce simple descriptions of

pictures. The generated descriptions are not identical to the text corpora, i.e.,, they compose

a sentence entirely from scratch. Recently, several works presented methods for Multi-Modal

hashing [80–82]; most of them having high computational complexity which limits their appli-

cability.

Ordonez et al. [83] created a large-scale dataset of images and captions, and proposed a method

for generating textual captions for images from this dataset. A method for recognition of visual

texts and non-visual texts is proposed in [84]. Kuznetsova et al. [85] use multiple noisy captions

for images from the web and combine them to produce a more meaningful sentence for an image.

Berg et al. [86] approach the problem of text generation to emphasize the visually salient aspects

of an image.

4.3 Dual-View Hashing

Without loss of generality, we assume that the two views are visual (image) and textual (descrip-

tion). However, our approach is applicable to any domain, and this assumption only facilitates

the discussion.

We use the following notation; XV represents data in the visual space and XT indicates data in

the textual space. X∗ is a d∗ × n matrix whose columns are vectors corresponding to the points

in either spaces. d∗ is the dimension of either visual or textual space which might be different.

xi∗ is the ith column of X∗. ∗ is a placeholder for V or T .
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4.3.1 Dual-View Embedding

Our goal is to find two sets of hyperplanes WV ,WT ∈ Rd∗×k (k is the dimension of the com-

mon subspace, i.e.,, length of binary code) that map the visual and textual space into a common

subspace. Each hyperplane (each column of W∗) divides the corresponding space into two sub-

spaces; each point in a space is represented as -1 or 1 depending on which side of the hyperplane

it lies in. wi∗ indicates the ith column of W∗. Among the infinite possible hyperplanes, the ones

that binarize the points in the visual space and the textual space consistently are desirable for

our purpose. This objective can be achieved by minimizing the following function:

min
WV ,WT

‖sign(W T
V XV)− sign(W T

T XT )‖22 (4.1)

However, Eq.(4.1) is a non-convex combinatorial optimization problem; it has a trivial solution

when both WV and WT are zero. To avoid the trivial solution and force each bit to carry the

maximum amount of information, we add constraints to enforce low correlation of the bits. With

these constraints, we can reformulate the problem as:

min
WV ,WT

‖W T
V XV −BT ‖22 + ‖BT BT

T − I‖22

+ ‖W T
T XT −BV‖22 + ‖BVBT

V − I‖22
s.t.

BT = sign(W T
T XT )

BV = sign(W T
V XV)

(4.2)

where minimizing ‖B∗BT
∗ − I‖22 enforces low correlation of bits. This optimization cannot be

directly solvable, but it can be solved approximately by relaxing B∗ [87] and applying CCA

[73], which leads to the following generalized eigenvalue problem:(
SVV SVT

ST V ST T

)(
wV

wT

)
= λ

(
SVV 0

0 ST T

)(
wV ,

wT ,

)
(4.3)

where SVT (= XVX
T
T ) is the covariance matrix between visual and textual features and w∗ is a

column of W∗.

Although CCA can find the underlying subspace, binarizing data in this subspace by sign(W T
∗ X∗)

suffers from high quantization error. To reduce the quantization error, an iterative method is

proposed in [51] that searches for a rotation of data points. Their approach, however, is not ap-

plicable to more than one domain. In addition, the approach assumes orthogonality of all of the

projected hyperplanes, i.e.,, the columns of W∗. But the orthogonality is not always necessary
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FIGURE 4.1: Comparison of learned hyperplanes by our method (PDH) and canonical correla-
tion analysis (CCA). Note that the hyperplanes learned by the PDH divide the space, avoiding
the fragmentation of sample distributions by the help of predictability constraints implemented

by max-margin regularization.

and sometimes harmful. In contrast, we replace orthogonality of the hyperplanes by the notion

of predictability of binary codes in the following section.

4.3.2 Predictability

Predictability is the ability to predict the value of a certain bit of a sample by looking at that

bit of the nearest neighbors of that sample. For example, if the ith bit in most of the nearest

neighbors of a sample is 1 then we would predict that the ith bit of that sample would be also 1.

Consider the situation where a hyperplane crosses a dense area of samples; there would be

many samples in proximity to each other that are assigned different binary values in the bit

position corresponding to that hyperplane. Such binary values obtained by that hyperplane

are not predictable. Intuitively, the binary values determined by a hyperplane are predictable

when the hyperplane has large margins from samples. Figure 7.2 illustrates the hyperplanes

determined by CCA in green lines in a 2D single domain (view). Note that CCA hyperplanes

cross dense areas of samples and are orthogonal to each other whereas our PDH hyperplanes do

not. If we binarize the samples by CCA hyperplanes, samples in the red circle will have different

binary codes from each other, even though they are strongly clustered. The hyperplanes that are

shown by orange lines represent our method (PDH), which enforces large margins from samples.

To learn the predictable W , we regularize the formulation with max-margin constraints. In fact,

we learn multiple SVMs in visual space with respect to training labels in the textual space and
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vice versa. The final objective function is:

min
WV ,WT ,ξV ,ξT

‖BT BT
T − I‖22 + ‖BVBT

V − I‖22+∑
‖wVi‖+

∑
‖wT i‖+ C1

∑
ξV + C2

∑
ξT

s.t.

BT = sign(W T
T XT ),

BV = sign(W T
V XV),

Bij
T (wVi

TXj
V) ≥ 1− ξijV ∀i, j,

Bij
V (wT i

TXj
T ) ≥ 1− ξijT ∀i, j.

(4.4)

Despite the complex appearance of the optimization, it is a perfect setting for block-coordinate

descent and can be solved by an Expectation Maximization (EM) iterative algorithm. A detailed

description of our iterative algorithm is as follows:

First, we fix all the variables except WV and ξV . Then we solve for these variables, which is

multiple linear SVMs; one for each bit. To learn the ith SVM, we use columns ofXV as training

data and the elements of the ith row of BT as training labels. Second, using the outputs of

these SVMs, WV , we compute BV = sign(WVTXV). Third, we update BV to minimize the

correlation between bits via minimizing ‖BVBT
V −I‖22. Since this problem is not trivial to solve,

we use spectral relaxation [71] by creating a Gram matrix S = BT
VBV and a n × n diagonal

matrix D(i, i) =
∑

j S(i, j) as the relaxed problem:

min
BV

tr(BV(D − S)BVT )

s.t. BVBV
T = I.

(4.5)

The solutions are the k eigenvectors of D − S with minimal eigenvalues, which we binarize

by taking the sign of the elements. Fourth, we run the same three steps to compute WT . We

repeat all the steps until convergence of the objective function. More details of the algorithm are

provided in Algorithm 6

For initializing values for optimization, we tried several random values and the values obtained

using CCA. But the results are not sensitive to the initialization, since in each block coordinate

descent step, the objective function is convex. Thus, we use the values obtained by CCA for all

initializations.

Since our objective function is not convex and we use block coordinate descent to optimize, the

solution we obtain is not the global minimum. But our experiments suggest that the obtained

local minima is good enough.
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Algorithm 3 Predictable Dual-View Hashing

Input: XV , XT ∈ Rd∗×n.
Output: BV , BT ∈ Bd∗×k.
1: WV ,WT ∈ Rd∗×k ← CCA(XV , XT , k)
2: BV ← sign(WVTXV)
3: BT ← sign(WT TXT )
4: repeat
5: WV ←Weights of k linear SVMs (for ith SVM: training features are columns ofXV and training labels are

elements of ith row of BT )
6: BV ← sign(WVTXV)
7: Update BV using Eq. (4.5)
8: WT ←Weights of k linear SVMs (for ith SVM: training features are columns ofXT and training labels are

elements of ith row of BV )
9: BT ← sign(WT TXT )

10: Update BT using Eq. (4.5)
11: until convergence
12: BV ← sign(WVTXV)
13: BT ← sign(WT TXT )

4.4 Experiments

First, we show that our optimization algorithm solves the proposed objective functions. Then

for the empirical validation, we present both quantitative and qualitative results for image cat-

egory retrieval. In the quantitative analysis, we perform image classification and compare the

mean average precision (mAP) obtained by our method with several state-of-the-art binary code

methods. In qualitative analysis, we show that the sets of images retrieved by our binary code

with both image and text queries contain semantically similar images. Our MATLAB software

is available1.

4.4.1 Datasets and Experimental Setup

For the dual-view situation, we need a dataset of images that are annotated with sentences. We

use two datasets; PASCAL-Sentence 2008 introduced by [76] (one view is visual and the other is

textual) and a recently collected large scale dataset, SUN-Attribute database (one view is visual

and the other is semantic (attribute)) [88].

4.4.1.1 PASCAL-Sentence Dataset 2008

The images in the PASCAL-Sentence dataset are collected from PASCAL 2008, which is one

of the most popular benchmark datasets for object recognition and detection. For each of the

20 categories of the PASCAL 2008 challenge, 50 images are randomly selected; in total, there

are 1,000 images in the dataset. Each image is annotated with 5 sentences using Amazon’s

Mechanical Turk. These sentences represent the semantics of the image.
1http://umiacs.umd.edu/ mrastega/pdh/
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Image Features: Our image features, following [76], are collections of responses from a variety

of detectors, image classifiers and scene classifiers. Given an image, we run several object

detectors on the image and set the threshold low enough so that each fires at least in one location.

Then, we report the location of the most confident detector along with the confidence value. If

we have 20 detectors, for each of the detectors we report [xi, yi, ci] which xi,yi are the coordinate

of the location at which the detectors fired and ci is the confidence value for that detector. Image

and scene classifiers are SVMs trained on each category of objects on the global low-level GIST

descriptor [89].

Text Feature: Text features are also from [76]. We construct a dictionary of 1,200 words from

the sentences of the entire dataset that are frequent and discriminative with respect to categories.

There are no prepositions and stop words in the dictionary. Let us call this set S. For a given

sentence, we go through each word and compute its semantic similarity with all the words in

S as a feature for that word. As a feature of the sentence, we simply sum all the vectors in

each sentence. The semantic distance between two words is computed by the Lin similarity

measure [90] on the WordNet hierarchy.

4.4.1.2 SUN Attribute Dataset

The SUN-Attribute dataset is a large-scale dataset [88] that includes 102 attribute labels anno-

tated by 3 Amazon Mechanical Turk worker for each of the 14,340 images from 717 categories,

which is a subset of the scene images from the SUN Dataset [91]. In total, there are four million

(4M) labels. For each of 717 categories, there are 20 annotated scenes.

Image Features: We use the precomputed image features used in [88, 91], i.e.,, Gist, 2×2 His-

togram of Oriented Gradient, self-similarity measure, and geometric context color histograms.

Attribute Features: Each image has 102 attributes and each attribute has multiple annotations.

In total, there are four million labels that are annotated by Amazon Mechanical Turk work-

ers with bad-worker filtering and good-worker cultivating strategies [88]. Some examples of

annotated attributes are vegetation, open area, camping, hiking, natural light, leaves etc.

4.4.1.3 Experimental details

We use Liblinear [92] to learn SVMs for learning W∗. The parameters used for linear SVMs

are C1 = 1 and C2 = 1 in Eq. 4.4. We did not tune those parameter. We also used linear SVM

for category retrieval. We reduce the dimensionality of visual features in the SUN dataset from

19,080 to 1,000 by PCA.
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4.4.2 Optimization Analysis

As we use a block coordinate descent algorithm to optimize the objective function, we cannot

guarantee that our algorithm reaches the global optimum. Our experiments shows that we reach

a reasonable local optimum most of the time. To illustrate this, we measure the objective value

and see if it decreases (in the minimization task) or not. In figure 4.2, we observe that the

objective values does decrease as the iterations go on. After only a few iterations (15) the

differences between the textual binary codes (binary codes extracted from text data) and the

visual binary codes (binary code extracted from images) are very small- less than 3 bits. The

number of bits we use for this experiments is 32.
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FIGURE 4.2: The objective function of Eq.(4.1) decreases as iterations of our block coordinate
descent continue. ‘Bit Error’ refers to the number of bits that differ in the obtained binary codes

from two different views. (32bit code learning)

4.4.3 Bit Error by Hamming Space Size

We investigate the Hamming distance of two obtained binary codes (value of Eq. 4.1) as a

function of binary code length; 16, 32, 64, 128 and 256. Figure 4.3 shows that the number of bits

that differ between binary codes from visual and text domains is almost always approximately
1
10 of code length.
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FIGURE 4.3: The error between textual and visual binary codes is a linear function of the
length of the binary code. ‘Bit Error’ refers to the number of bits that differ in the obtained

binary codes from two different views.
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4.4.4 Image Category Retrieval

We retrieve images from an image pool by giving one or more samples (image or text/attribute)

of a particular category as a query. In quantitative analysis, we compute the mean average

precision (mAP) of retrieved images that belong to the same category of the query. In qualitative

analysis, we present the images retrieved for a query by our method.

4.4.4.1 Quantitative Results

For quantitative analysis, we conduct a category retrieval experiment similar to [2, 3, 55]. We

divided the dataset into two train/test segments. We trainW∗ using the training set. We compute

the binary features for all the images (train and test). We take a set of images of a particular

category as query set and train a classifier by taking the query set as positive samples and images

from other categories in the training set as negative set. Then, we apply the classifier to all the

samples of the test set, rank them by their classification confidence value and retrieve the top-K

samples. We report precision and recall as an accuracy measure. By varying K in top-K we

can draw a precision-recall curve. Since we are considering multiple categories, we report mean

precision and recall.

We compare our binary code with several binary code methods including Iterative Quantiza-

tion (ITQ) [51], Spectral Hashing (SH) [71] and Locality Sensitive Hashing (LSH) [38]. Our

method is referred to as Predictable Dual-view Hashing (PDH). We are not comparing our

method with [3] because their method is not applicable to Dual-View. They require category

labels of samples as supervision to train their binary codes. We used supervised ITQ coupled

with CCA which uses data in two views to construct basis vectors in a common subspace.

Figure 4.4 and Figure 4.5 show mean average precision (mAP) of retrieved images by our

method and other methods as a function of the number of bits. We presents the results with

various numbers of queries given. As shown in the figure, our method (PDH) consistently out-

performs all other methods.The high ranked images are not necessarily visually similar to the

query. When we have few instances in the retrieval set the baseline methods have better precision

because the high ranked images are the most visually similar to a query. This is not unexpected,

since we optimize for cross-domain similarity, not visual similarity. We can directly compare by

average precision(AP). As recall increases and the number of relevant images from the database

tat are visually similar to the query are exhausted, the PDH dominates the other methods in

precision.
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Category Retrieval with 1 example per each category
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Category Retrieval with 6 examples per each category
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Category Retrieval with 10 examples per each category
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FIGURE 4.4: The result of category retrieval on PASCAL-Sentence dataset. Our method
(PDH) is compared with three other baselines , Iterative Quantization (ITQ), Spectral Hash-
ing (SH) and Locality Sensitive Hashing (LSH). We run experiments under different settings.
We vary the code length (32, 64, 128 and 256) and we also vary the number of examples per

each category in query by (1, 6 and 10)

4.4.4.2 Qualitative Results

We also present qualitative results of how our binary code performs. We perform two qualitative

evaluations.

First, we conduct Image2Image retrieval. Given an image as a query, we retrieve the top-K

closest images. Unlike the previous experiment we do not use an SVM but simply compute the

Hamming distance of all other samples to the query sample and report the top-k most similar.

Figure 4.6-(a) shows the retrieval for four query images which are represented by 32 bits. We

report the top-5 most similar images. These retrieved images have significant semantic similarity

to their query image.
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Category Retrieval with 5 examples per each category
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Category Retrieval with 10 examples per each category

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mean Recall

M
ea

n
 P

re
ci

si
o

n

nbits=16 with 10tr/c

 

 

PDH
ITQ
SH
LSH

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Mean Recall

M
ea

n
 P

re
ci

si
o

n

nbits=32 with 10tr/c

 

 

PDH
ITQ
SH
LSH

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mean Recall

M
ea

n
 P

re
ci

si
o

n

nbits=64 with 10tr/c

 

 

PDH
ITQ
SH
LSH

FIGURE 4.5: The result of category retrieval on SUN Dataset. Our method (PDH) is compared
with three other baselines , Iterative Quantization (ITQ), Spectral Hashing (SH) and Locality
Sensitive Hashing (LSH). We run the experiment under different settings of the problem. We
changed the code length (32, 64, 128 and 256) and we also changed the number of examples

per each category in query by (1, 6 and 10)

Second, we perform a Text2Image retrieval task. Instead of using an image as query we use

a sentence as query and we retrieve images for which this query sentence could be a good

description. We map the sentence to our binary space and then identify similar points (images)

in that space and report the top-k most similar. In figure 4.6-(b) we illustrate the retrieval set

for five different sentences using 32 bit codes. Most of the retrieved images have content that is

semantically similar to their query sentence.
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Query  Retrieval Set  

(a)

Bike riding in a field 

Cows standing in a village 

Laptop placed on the table 

Persons standing in a room 

Plane flying on the air 

(b)

FIGURE 4.6: (a) Image2Image retrieval. Given an image as a query, we find most similar
images by nearest neighbor search in 32 bit PDH. (b) Text2Image retrieval. Given a sentence

as query, we find the most descriptive images by nearest neighbor search of 32 bit PDH.
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Chapter 5

Expanding Visual Categories using
Binary Attributes

5.1 Overview

Designing generalizable classifiers for visual categories is an active research area and has led to

the development of many sophisticated classifiers in vision and machine learning [93]. Build-

ing a good training set with minimal supervision is a core problem in training visual category

recognition algorithms [94].

A good training set should span the appearance variability of its category. While the internet

provides a nearly boundless set of potentially useful images for training many categories, a

challenge is to select the relevant ones – those that help to change the decision boundary of a

classifier to be closer to the best achievable. So, given a relatively small initial set of labeled

samples from a category, we want to mine a large pool of unlabeled samples to identify visually

different examples without human intervention.

This problem has been studied by two research communities: active learning and semi-supervised

learning. In active learning, the goal is to add visually different samples using human interven-

tion, but to minimize human effort and cost by choosing informative samples for people to

label [1, 95, 96]. Even though the amount of human intervention is minimized and its cost is

getting cheaper via crowd sourcing, e.g.,, Amazon Mechanical Turk, it is still preferable to not

have humans in the loop because of issues like quality control and time [95].

Semi-supervised learning (SSL) aims at labeling unlabeled images based on their underlying

distribution shared with a few labeled samples [97–99]. In SSL, it is assumed that the unlabeled

images that are distributed around the labeled samples are highly likely to be members of the la-

beled category. However, if we need to dramatically change the decision boundary of a category
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to achieve good classification performance, it is unlikely that this can be done just by adding

samples that are similar in the space in which the original classifier is constructed.

To expand the boundary of a category to an unseen region, we propose a method that selects

unlabeled samples based on their attributes. The selected unlabeled samples are not always in-

stances from the same category, but they can still improve category recognition accuracy, similar

to [100, 101]. We use two types of attributes: category-wide attributes and example-specific at-

tributes. The category-wide attributes find samples that share a large number of discriminative

attributes with the preponderance of training data. The example-specific attributes find samples

that are highly predictive of the hard examples from a category - the ones poorly predicted by a

leave one out protocol.

We demonstrate that our augmented training set can significantly improve the recognition ac-

curacy over a very small initial labeled training set, where the unlabeled samples are selected

from a very large unlabeled image pool, e.g.,, ImageNet. Our contributions are summarized as

follows:

1. We show the effectiveness of using attributes learned with auxiliary data to label unlabeled

images without annotated attributes.
2. We propose a framework that jointly identifies the unlabeled images and category wide at-

tributes through an optimization that seeks high classification accuracy in both the original

feature space and the attribute space.
3. We propose a method to learn example specific attributes with a small sized training set,

used with the proposed framework. We then combine the category wide and the example

specific attributes to further improve the quality of image selection by diversifying the

variations of selected images.

The rest of the chapter is organized as follows: Section 5.2 reviews related work. Section 5.3

presents the overview of our approach. Section 5.4 describes our optimization framework for

discovering category wide attributes and the unlabeled images as well as a method to capture

exemplar specific attributes. Section 5.5 describes the details of the dataset configurations used

in our experiments. Experimental results that demonstrate the effectiveness of our method is

presented in Section 10.4.

5.2 Background

Our work is related to active learning, semi-supervised learning, transfer learning and recent

work about borrowing examples from other categories.
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Active Learning The goal of active learning is to add examples with minimal human supervi-

sion [1]. [95] provides a comprehensive survey. Recently, Parkashet al. proposed a novel ac-

tive learning framework based on interactive communication between learners and supervisors

(teachers) via attributes [96]. It requires fairly extensive human supervision with rich informa-

tion.

Semi-Supervised Learning Semi-supervised learning (SSL) adds unlabeled examples to a train-

ing set by modeling the distribution of features without supervision. [97] is a detailed review

of the SSL literature. Ferguset al. proposed a computationally efficient SSL technique for large

datasets [98]. Our approach also uses a large dataset and scales linearly in the size of that dataset;

it differs from conventional SSL approaches because we do not use the distribution of sample

in the original feature space, but in an attribute space. Recently, Shrivastavaet al. proposed a

SSL based scene category recognition framework using attributes, constrained by a category

ontology [99]. They leverage the inter-class relationships as constraints for SSL using semantic

attributes given by a category ontology as a priori. Our approach is similar to their work in terms

of using attributes, but aims to discover attributes without any structured semantic prior.

Transfer Learning and Borrowing Examples Our work is related to recent work on transfer

learning [102] and borrowing examples [100, 101, 103].

Ruslanet al. [103] proposed building a hierarchical model from categories to borrow images of

a useful category for detection and classification. They assume that the images in a category are

not diverse and adding all images from some selected category will help to build a better model

for the target category. The assumption, however, is bound to be violated by visually diverse

categories.

Instead, Limet al. [100] propose a max-margin formulation to borrow some samples from other

categories based on a symmetric borrowing constraints.

Kim and Grauman [101] propose a shape sharing method to improve segmentation based on the

insight that shapes are often shared between objects of different categories.

Attributes Research on attributes recently has been drawing a lot of attention in the computer

vision community because of their robustness to visual variations [104–106]. Attributes can, in

principle, be used to construct models of new objects without training data - zero shot learn-

ing [105]. Recently, Rastegari et al. [107] propose discovering implicit attributes that are not

necessarily semantic for category recognition. The discovered attributes preserve category-

specific traits as well as their visual similarity by an iterative algorithm that learns discriminative

hyperplanes with max-margin and locality sensitive hashing criteria.
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5.3 Adding Samples to a Category

Given a handful of labeled training examples per category, it is difficult to build a generaliz-

able visual model of a category even with sophisticated classifiers [93]. To address the lack of

variations of the few labeled examples, we expand the visual boundary of a category by adding

unlabeled samples based on their attributes. The attribute description allows us to find examples

that are visually different but similar in traits or characteristics [104–106].

Based on recent work on automatic discovery of attributes [107] and large scale category-labeled

image datasets [108], we discover a rich set of attributes. These attributes are leaned using an

auxiliary category-labeled dataset to avoid biasing the attribute models towards the few labeled

examples. The motivation here is similar to what underlies the successful Classemes represen-

tation [109] which achieved good category recognition performance by representing samples by

external data that consists of a large number of samples from various categories.

Across the original visual feature space and the attribute space, we propose a framework that

jointly selects the unlabeled images to be assigned to each category and the discriminative

attribute representations of the categories based on either a category wide or exemplar based

ranking criteria. Sec. 5.4.1 presents the optimization framework for category wide addition of

unlabeled samples to categories. This adds samples that share many discriminative attributes

amongst themselves and the given labeled training data. The same framework can be applied

to identify relevant unlabeled samples based on their attribute similarity to specific instances of

the training data. This only involves a simple change to one term of the optimization, and is

based on how ranks of unlabeled samples change as labeled samples are left out, one at a time,

from the attribute based classifier. So, the optimization runs twice - one to identify samples that

share large numbers of discriminative attributes within class and a second to find samples that

share strong attribute similarity with specific members of the class, and the two sets of samples

are then combined to create the augmented training set for the class. We refer to the first as a

categorical analysis and the second as an exemplar analysis.

5.4 Joint Discovery of Discriminative Attributes and Unlabeled Sam-
ples

5.4.1 Categorical Analysis

We simultaneously discover discriminative attributes and images from the unlabeled data set in

a joint optimization framework formulated in both visual feature space and attribute space with

a max margin criterion for discriminativity. Unlike [99], we do not require a label taxonomy to
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find the shared properties. Also unlike [100], we do not need to learn the distributions of the

unlabeled images in the original feature space.

For each category c, we will construct a classifier in visual feature space, wvc , using the set

X = {xi|i ∈ {1, . . . , l, l+1, . . . , n}} that consists of the initially given labeled training images

{xi|i ∈ {1, . . . , l}} ⊂ X and the selected images from the unlabeled image pool {xi|i ∈
{l + 1, . . . , n}} ⊂ X . The subset of images from the unlabeled set is assigned to a category

based on identifying discriminative attribute models. Since the problems of determining the

discriminative attributes and selecting the subset of unlabeled data to assign to a category are

coupled, we learn them jointly. Additionally, we want to mitigate against unlabeled samples

being assigned to multiple categories, so a term M(·) is added to the optimization criteria to

enforce that. The joint optimization function is:

min
Ic∈I,wvc ,wac

∑
c

(
αJvc (Ic, w

v
c ) + βJac (Ic, w

a
c )
)
+M(I)

subject to

Jvc (Ic, w
v
c ) = ‖wvc‖22 + λv

n∑
i=1

ξc,i

Ic,i · yc,i(wvcxi) ≥ 1− ξc,i, ∀i ∈ {1, . . . , n}

Jac (Ic, w
a
c ) = ‖wac‖22 + λa

n∑
j=1

ζc,j −
n∑

k=l+1

Ic,k

(
wacφ(xk)

)
Ic,j · yc,j(wacφ(xj)) ≥ 1− ζc,j , ∀j ∈ {1, . . . , n}

n∑
k=l+1

Ic,k ≤ γ, Ic,k = 1, ∀k ∈ {1, . . . , l}

M(I) =
∑∑
c16=c2

Ic1 · Ic2,

(5.1)

Ic ∈ {0, 1} is the sample selection vector for category c, and indicates which unlabeled samples

are selected for assignment to the training set of category c. Ic,i = 1 when the ith sample is

selected for category c. xi ∈ RD is the visual feature vector of image i. yc,i ∈ {+1,−1}
indicates whether the label assigned to xi is c (+1) or not (−1). φ(·) : RD → RA is a mapping

function of visual feature to the attribute space that is learned from auxiliary data, where RD and

RA denote visual feature space and attribute space, respectively. α and β are hyper-parameters

for balancing the max margin objective terms for both the visual feature and attribute based

classifiers. γ is a hyper-parameter for specifying the number of selected images.

Jvc (Ic, w
v
c ) and the second constraint of Eq. 5.1 are a max-margin classification terms in visual

feature space. Jac (·) and the forth constraint of Eq. 5.1 are a max-margin classifier in the attribute
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space (TA) with a selection criterion (TR); we divide it as follows:

Jac (Ic, w
a
c ) = ‖wac‖22 +

n∑
j=1

ζc,j︸ ︷︷ ︸
TA

−
n∑

k=l+1

Ic,k

(
wacφ(xk)

)
︸ ︷︷ ︸

TR

. (5.2)

TR essentially chooses the top γ responses of the attribute classifier from the unlabeled set by

the fifth constraint of Eq. 5.1. The term M(Ic) penalizes adding the same sample to multiple

categories (sixth constraint of Eq. 5.1).

The objective function is obviously not convex due to the interconnection of the two spaces by

the example selecting indicator vector I and the attribute mapper φ(·). However, if the Ic’s

were known and we fix either Jvc (Ic, w
v
c ) or Jac (Ic, w

a
c ), the function becomes convex and can

be solved with an iterative block coordinate descent algorithm. At each iteration we fix one

of the terms and the entire objective function becomes an ordinary max margin classification

formulation with a selection criterion. Each iteration of the block coordinate descent algorithm

updates the set of indicator vectors I . At the first iteration, the initial value of I is determined by

training the attribute classifierwac on the given labeled training set. Then, after the two SVM’s in

both spaces are updated, we update I . Since there is no proof of convergence for the algorithm,

we iterate it a fixed number of times - 1∼ 5 in practice. The iterations could be controlled using

a held out validation set, but since our premise is that labeled samples are rare we do not do that.

5.4.2 Exemplar Analysis

The discriminative attributes learned in Sec. 5.4.1 capture commonality among all examples in

a category. We refer them as categorical attributes. Each example, however, has its own char-

acteristics that may help to expand the visual space of the category by identifying images based

on example-specific characteristics. To discover exemplar attributes, a straightforward solution

would be to learn exemplar-SVMs [110]. The exemplar-SVM, however, requires many negative

samples to make the classifier output stable. For our purposes, though, we can accomplish the

same thing by analyzing how the ranks of unlabeled samples change when a single sample is

eliminated from the training set of the attribute SVM. If an unlabeled sample sees its rank drop

sharply from its rank in the full-sample SVM, then the training sample dropped should have

strong attribute similarity to the unlabeled sample.

This is illustrated in Figure 5.1. The top row shows the ten initial labeled orange samples. The

leftmost column shows unlabeled samples sorted by their rank in the attribute classifier learned

from that set. Then we construct leave one out attribute classifiers, and each column shows

the new rankings of unlabeled samples when each image at the top of the column is eliminated
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from the training set. Eliminating the half orange (second sample, top row) from the training set

reduces the rank of the globally best unlabeled sample from 1 to 10.

First, letwac be the attribute classifier for the current training set for category c (while the process

is initialized based on the labeled training set, after each iteration we use the additional unlabeled

samples added to the category to construct a new attribute classifier). Let wa
c,j̄

be the attribute

classifier learned when the ith sample is removed from the training set. We next describe how we

use the ranks of unlabeled samples in these two classifiers to modify TR in Eq. 5.2. Basically,

we are going to re-rank the unlabeled samples based on their rank changes from wac to wa
c,j̄

. We

want samples whose ranks are lowered dramatically by the elimination of a single sample from

the training set to be highly ranked by the re-ranking function. This can be accomplished by

computing the following score based on rank changes, and sorting the unlabeled samples by this

score:

ej(xi) =
µ

rg(xi)
− ν

rj(xi)
, (5.3)

where xi is a sample from the an unlabeled pool, rg(·) and rj(·) are the rank functions of wac and

wa
c,j̄

respectively. µ and ν are the balancing hyper-parameters for two ranks. TR is then simply

determined by first selecting the new top ranked sample from each leave one out SVM, then the

second ranked, until a fixed number of samples are selected (skipping over duplicates). This set

is then used to re-learn the feature and attribute based SVM’s and the entire process iterates.

5.5 Dataset

We construct a dataset from a large scale dataset for category recognition, ImageNet [108] using

its standard benchmark subset, ILSVRC 2010 dataset. We will publicly release our dataset for

future comparison.1 It consists of approximately 1 million images of 1,000 categories. The

images are downloaded from a photo sharing portal2. It provides fine grained category labels

such as specific breed of dogs, e.g.,, Yorkshire Terrier and Australian Terrier.

We randomly choose 11 categories among natural objects such as vegetable and dogs as the

categories of interest. Those categories have very large appearance variations due to factors

including non-rigid deformation, lighting, camera angle, intra-class appearance variability etc..

For each category, we randomly choose ten images as an initial labeled training set and 500

images as a testing set. The unlabeled image pool consists of images that are arbitrarily chosen

from the entire 1,000 categories in the ILSVRC 2010 benchmark dataset, but includes at least

50 samples from each of the categories to be learned. The size of the image pool varies in the
1http://umiacs.umd.edu/∼jhchoi/addingbyattr/
2http://www.flickr.com
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FIGURE 5.1: Unlabeled images ordered by confidence score by wac and a set of wa
c,̄i

’s
(column wise). The first row shows the labeled training samples (10 examples). The left most
column is a list of unlabeled images ordered by confidence score by wac . Rest of the columns
are lists of unlabeled images ordered by each wa

c,̄i
’s. Note that an image of halved orange in the

second column makes the first ranked images in the left most column (by wac ) go down because
the halved orange was removed in the training set of wa

c,̄i
.

experiments but is much larger (from 5,000 to 50,000) than the initial training set. For learning

the attribute space and the mapper, it is expected that the attribute mapper should capture some

attribute of the categories of interest. For this purpose, we use 50 labeled samples from 93

categories that are similar to the 11 categories to learn the attribute space.

52



5.6 Experiments

The main goal of our method is to add unlabeled images to the initial training set in order

to classify more test images correctly. We demonstrate the effectiveness of our method by

improvements in average precision (AP) of category recognition. We also evaluate our approach

under various scenarios including the precision (purity) of the unlabeled image pool and the size

of the initial labeled set and also the effect of parameters including number of selected examples.

Moreover, we evaluate the effect of selecting images that are not from the category of interest.

5.6.1 Experimental Setup

Visual feature descriptors: We use various visual feature descriptors including HOG, GIST

and color histograms. Since the feature dimensionality is prohibitively large, we reduce the

dimension to 6,416 by PCA.

Attribute discovery: We use the binary attribute discovery method of Rastegariet al. [107]

as the attribute mapping function, φ(·) in Eq. 5.1. We learn the mapper with default hyper-

parameter sets as suggested in [107]. We use 400 bits in most of our experiments. We also

present performance as a function of the number of bits.

Max margin optimization: We use LibLinear [92] for training all max-margin based objective

functions. To address the non-linearity of visual feature space, we use homogeneous kernel

mapping [111] on the original features with the linear classifier. For the hinge loss penalty

hyper-parameter, we use 0.1.

Parameters: For the parameter in Eq. 5.1, we use α = 1, β = 1. For categorical attribute only,

we mostly use γ = 50 except ones in Section 5.6.4. For combining exemplar and categorical

attributes, we mostly use γ = 20 and γi = 3 except for Section 5.6.4. We investigate algorithm

performance as a function of γ in Section 5.6.4. For the parameters of the scoring function for

exemplar-attributes in Eq. 5.3, we use µ = 1 and ν = 1.

5.6.2 Qualitative Results

Our method discovers examples that expand the visual coverage of a category by not only adding

the examples from the same category but also examples from other categories. Figure 5.2 illus-

trates qualitative results on the category Dalmatian for both categorical and exemplar attributes

analyses. The selected examples based on categorical attributes exhibit characteristics com-

monly found in the labeled examples such as dotted, four legged animal. The exemplar at-

tributes, on the other hand, select examples that exhibit the characteristic of individual labeled

training examples.
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Selected	  by	  Categorical	  A+ributes	   Selected	  by	  Exemplar	  A+ributes	  
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1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

FIGURE 5.2: Qualitative results of our method. Note that the selected examples by cate-
gorical attributes display characteristics commonly found in the labeled training examples such
as ‘dotted’, ‘four legged animal’. In contrast, the exemplar attributes select the examples that

display the characteristic of individual example.

5.6.3 Comparison with Other Selection Criteria

Given our goal of selecting examples from a large unlabeled data with only a small number

of labeled training samples, we do not compare with semi-supervised learning methods because

they need more labeled data to model the distribution. Since our method does not involve human

intervention, we do not compare to active learning.

We compare to baseline algorithms which are applicable to the large unlabeled data scenario.

The first baseline algorithm is to select nearest neighbors. The second baseline selects images by

an active criterion that finds examples close to a learned decision hyperplanes [1]. Both baseline

algorithms selects images based on analysis in the visual feature space.

As shown in Table. 5.1, the two baseline strategies decrease mean average precision (mAP).

However, our method identifies useful images in the unlabeled image pool and significantly

improves mAP by 7.64%. Except for the category Greyhound, we obtain performance gain

from 2.77% - 16.36% in all categories. The added examples serve not only as positive samples

for each category but also as negative samples for other categories. The quality of the selected

set can change the mAP significantly in both ways.

5.6.4 Number of Selected Examples

As we select more examples, controlled by γ in Eq. 5.1, the chances of both selecting useful

images and harmful images for a category increase simultaneously. We vary the number of

selected examples and observe mean average precision as shown in Figure 5.3. The category

wide attributes identify useful unlabeled images. In addition, the exemplar attributes further

improve the recognition accuracy.
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Category Name Init. NN ALC Cat. E+C
Mashed Potato 45.03 34.02 51.15 61.39 63.92
Orange 29.84 16.29 26.97 40.61 41.05
Lemon 32.21 27.58 32.43 35.37 34.23
Green Onion 25.06 16.50 19.66 38.57 40.20
Acorn 13.09 11.05 15.41 19.35 20.10
Coffee bean 58.29 43.89 56.62 64.65 66.54
Golden Re-
triever

14.54 15.57 12.61 17.54 18.61

Yorkshire
Terrier

29.62 13.62 27.63 41.41 45.65

Greyhound 15.24 15.73 15.64 14.75 15.22
Dalmatian 43.84 27.97 37.91 54.42 57.23
Miniature Poo-
dle

26.10 12.50 21.16 28.87 30.21

Average 30.26 21.34 28.84 37.90 39.36

TABLE 5.1: Comparison of average precision (AP) (%) for each category with 50 added
examples by various methods. ‘Init.’ refers to initial labeled training set. ‘NN’ refers to addi-
tion by ‘nearest neighbor’ in visual feature space, ‘ALC’ refers to addition by ‘active learning
criteria (ALC)’ that finds the examples close to the current decision hyperplanes [1]. ‘Cat.’
refers to our method of select examples using categorical attributes only. ‘E+C’ refers to ad-
dition using categorical and exemplar attributes. The size of the unlabeled dataset is roughly

3,000 from randomly chosen categories out of 1,000 categories.

5.6.5 Adding Examples from Similar Categories

Among the selected images per category, some examples are true instance of the category. We

refer to these as exact examples and the rest as similar examples. We are interested in how much

the similar examples improve category recognition. First, we examine the purity of the selected

set in Figure 5.4. The purity is the percentage of exact samples in the set. Surprisingly, even

though the purity values seem low, they still improve classification performance.

We now investigate how much the similar examples improve the average precision (AP) by

removing the exact examples from the selected set. The blue bars in Figure 5.5 represent the AP

using just the similar examples. It is interesting to note that using only the similar examples still

improves the APs over the initial labeled set.

In addition, it is also interesting to observe how the performance changes when we add the same

number of similar examples as the size of the initially selected image set (50). This is shown as

green bars in Figure 5.5. All results are obtained using categorical attributes only. (The results

using both exemplar and categorical attributes are similar so are omitted).
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FIGURE 5.3: Mean average precision (mAP) of 11 category by our method varying the
number of unlabeled images selected. The red, green and blue are the mAP using the initial
labeled set (Init. Set), the augmented set by our method using category wide attributes only (+

by C only) and categorical+exemplar attributes respectively. (+ by E+C)
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FIGURE 5.4: Purity of added examples. Red bars denote the purity of selected images using
category wide attributes only (+ by C only) and the green bars are obtained from categori-

cal+exemplar attributes (+ by E+C).

5.6.6 Precision of Unlabeled Data

The unlabeled data can be composed of images from many categories. The precision of the

unlabeled data is defined as the ratio of size of the unlabeled images from extraneous categories

to the size of the entire unlabeled image data. The larger the unlabeled data, the lower we expect

its precision to be (imagine running a text based image search using the category name and
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FIGURE 5.5: Mean average precision (mAP) as a function of the purity of the selected
examples. The navy colored bars are obtained using the initial labeled set (baseline). The blue
bars use only similar examples among the selected 50 examples. The green bars use 50 similar
examples to compare with the result of our selected 50 examples (orange bars) including both
similar and exact examples. The red bars are obtained using a set of 50 ground truth images,
which is the best achievable accuracy (upper bound). Even the similar examples alone improve

the category recognition accuracy compared to just using the initial labeled set.

accepting the first k images returned). It is interesting to observe how robust our method is

against the precision of unlabeled data.

We start with an unlabeled set (550 images, 50 from each of the 11 categories) of precision

1.0, and reduce precision by adding images from other categories. The number of the unrelated

images ranges from 2,500 to 50,000, which are randomly chosen from the entire 1,000 categories

of the ImageNet ILSVRC 2010 dataset.

As shown in Figure 5.6, we observe that the accuracy improvement by our method using cate-

gorical attributes is quite stable even when precision is low.
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FIGURE 5.7: Mean average precision (mAP) as a function of the size of the initial labeled
set. The number of added samples is 50 in all experiments.

5.6.7 Size of Initial Labeled Set

We next explore how the size of the initial labeled set effects accuracy. We systematically vary

the size from 5 to 50 and show mAP compared to an SVM learned on the initial training set -

see Figure 5.7. The mAP gain for the smallest initial labeled set (5) is the highest as expected.

When the number of samples is larger than 25, our method (+ by C only) does not improve

the mAP much, although it still improves by 1.18 − 2.74%. Interestingly when there are many

samples in the initial training set (e.g.,, more than 25), the exemplar traits begin to reduce the

mAP.
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FIGURE 5.8: Comparison of our exemplar attribute discovery method (Sec. 5.4.2) to ex-
emplar SVM. Our method outperforms the exemplar SVM in terms of category recognition

accuracy by APs without the extra large negative example set (size = 50,000).

5.6.8 Comparison to Exemplar SVM

We also compare the effectiveness of our proposed exemplar attributes discovery method (Sec. 5.4.2)

to a conventional exemplar SVM [110]. It is straightforward to integrate the exemplar SVM into

our formulation (Eq. 5.1): by setting label yc,j to 1 for the jth example, the label coresponding

to the examples in the same category to 0 and the rest to 1. To stabilize the exemplar SVM

scores, we employ 50,000 external negative samples to learn each exemplar SVM while we use

the small original training set for our method. Figure 5.8 shows that our exemplar attribute dis-

covery method outperforms the exemplar SVM by large margins even without the large negative

example set.
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Chapter 6

Multi-Attribute Queries: To Merge or
Not To Merge?

Ear	  

Dog	  
Furry	  

Dog	  

Furry	  

Ear	  

FIGURE 6.1: In a multi-attribute image search, some combinations of attributes can be learned
jointly, resulting in a better classifier. In this paper, we propose a model to predict which
combinations will result in a better classifier without having to train a classifier for all possible
cases. For example, when looking for dog, furry, ear, our method selects to train a furry-dog
classifier and fuse it with an ear classifier. We compare this selection with the default case

where one classifier is trained per attribute. Here we show top five retrieved images.
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6.1 Overview

We often find ourselves searching for images with very specific visual content. For instance, if

we witness a crime we might help law enforcement agents search through mugshots of criminals

to find the specific individual we saw. Victims of disasters may search through hospital databases

to find missing loved ones. Graphic designers may search for illustrations of specific styles. Bird

watchers may search for photographs of birds with a particular appearance to identify its species.

In such scenarios, the most natural way for users to communicate their target visual content is to

describe it in terms of its attributes [104, 105] or visual properties. Given the specificity of the

desired content, the user typically needs to specify multiple attributes in order to appropriately

narrow the search results down.

A common way of dealing with such multi-attribute queries is to train classifiers for each of

the attributes individually and combine their scores to identify images that satisfy all specified

attributes. If a user is interested in images of white furry dogs, one would run three classifiers

and combine them (white & furry & dog) to indirectly get a white-furry-dog classifier. However

this may not be the most effective or most efficient solution. White furry dogs may have a very

characteristic easy-to-detect appearance, and running just one white-furry-dog classifier trained

to directly detect only white furry dogs could result in more accurate and faster results. But

there may not be enough white furry dog examples to train such a classifier. Or, white furry

dogs may look a lot like the rest of the dogs leading to a harder classification problem and

poorer performance than combining three independent classifiers. Given a multi-attribute query

such as white furry dog, it is critical to determine which combinations of classifiers should be

trained to ensure effective and efficient retrieval results: white-furry & dog, or white-furry-dog,

or white & furry & dog, etc.

An exhaustive solution to this problem would involve training all possible combinations of the

multiple attributes involved (5 combination in the case of white furry dogs), and evaluating their

accuracy on a held out set of images to determine the optimal combination. This would be com-

putationally expensive especially as the number of attributes in the query grows, and requires

sufficient amount of validation data. We propose an optimization approach that given a multi-

attribute query, efficiently identifies which components would be beneficial i.e.,which attributes

should be merged, without having to enumerate and train all possible combinations. We use the

intuition that geometric notions that capture the compactness (∼intra-class variance) of the set

of images that satisfy a combination (e.g.,white-dog), and the margin of these images from other

distractor images (∼inter-class variance) provide good proxies for the likely effectiveness of a

classifier trained to recognize the combination. We show that these geometric quantities can be

evaluated efficiently in a discriminative binary space. We evaluate our algorithm on aPascal and

Bird200 datasets and show that our method can find combinations that are both more accurate

and faster than independent classifiers.
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6.2 Background

We now describe the connections of our work to existing work on dealing with multi-attribute

queries and visual phrases. We also briefly mention other uses of binary spaces in literature.

Multi-attribute queries: Attributes or semantic concepts are often used for improved multime-

dia retrieval [112–118]. Fewer works have looked at the challenges that arise in multi-attribute

queries in particular. Siddiquie et al. [119] model the natural correlation between attributes to

improve search results. For instance, if a face has a mustache then it is likely to be a male face.

Scheirer et al. [120] recently proposed a novel calibration method to more effectively combine

scores of independent multiple attribute classifiers. Our work is orthogonal to these efforts. We

are interested in identifying which attributes should be merged to then train a classifier directly

for the conjunction for improved search results. Note that we identify beneficial conjunctions for

each given multi-attribute query, and do not reason about global statistics of pre-trained attribute

classifiers.

Visual phrases: The attribute combinations we reason about can be thought of as being analo-

gous to the notion of visual phrases introduced by Sadeghi et al. [121]. They showed that some

object combinations correspond to a very characteristic appearance that makes detecting them

as one entity much easier. For instance, one can detect a person riding a horse more accurately

if modeled as one entity, than detecting the person and horse independently and then combining

their responses. They used a pre-defined vocabulary of visual phrases. Our work is distinct

in that it deals with attribute combinations rather than object compositions. More importantly,

the goal of our work is to identify which combinations should be trained on a per query basis.

Li et al. [122] proposed an approach to identify which groups of objects should be modeled

together. They reason about consistent spatial arrangements of objects in images. This would be

analogous to reasoning about ground truth attribute co-occurrence patterns when dealing with

multi-attribute queries. In contrast, in our work we explicitly reason about the variation in ap-

pearances of images under the different attribute combinations. As a result, the combinations

we identify are grounded to the appearance features of images, which significantly affect the

accuracy of resultant classifiers.

Binary spaces: There has been significant progress in recent years in mapping images to binary

spaces. One might learn a mapping that preserves correlations between semantic similarities

and binary codes [? ], or local similarities [38, 51, 123]. Recently, discriminative binary codes

have shown promising results in mapping images to a binary space where linear classifiers can

perform even better than sophisticated models [124]. We use this mapping to project images to

a binary space where computing simple geometric measures like compactness or diameters of a

group of images and their margins from other images is very efficient.
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6.3 Finding Learnable Components

Given a multi-attribute query, our goal is to figure out which combinations of attributes would

be better to use without having to train classifiers for all possible combinations. What makes

a combination desirable? The most important criteria is the learnability of a combination. In

other words, we should learn a classifier for a combination of two attributes if it results in a

better classifier for the conjunction than combining scores of independent attribute classifiers

post-training. For three attributes like white and furry and dog1, a combination can include

multiple components like white and furry-dog. We argue that geometric reasoning in terms of

the tightness and margin of each component in a combination is a reasonable proxy for what

would have happened if we would have trained a classifier for each component in the combi-

nation. Geometrically speaking, a good combination should have components that occupy tight

regions of the feature space and have large margins. Figure 6.2 shows an illustration where

purple instances are the ones that have both blue and red attributes. What justifies learning a

red-blue classifier instead of red and blue classifiers independently is that purple instances oc-

cupy a tight area in the feature space with big margins from other blue and red instances. If it

was not the case, then we could have learned separate red and blue classifiers; they are more

widely applicable and would not sacrifice training data. To efficiently compute these geometric

measurements we propose to map the images from the original feature space into a binary space

where discriminative properties are preserved. In this section we assume that such a mapping

exists. Later in the experiments we show that our formulation is not very sensitive to the choice

of the mapping as long as discriminative properties are preserved/enhanced in the binary space.

This is not a restrictive condition as most existing binary mapping approaches in literature meet

this criteria.

We estimate the learnability of a combination based on the diameter of the components in the

combination and the margin within and across components. To setup notations, let’s assume

there are n attributes involved in a given multi-attribute query, A = {a1, ..., an}. For example,

{white,furry,dog}. There are 2n different ways to form components. For instance, {white},
{furry,dog}, {white,dog}, {furry}, etc. The set of all possible components is the powerset of

A, which we call S = {S1, S2, ·, Sm},m = 2n. A combination is a subset of S that covers A

e.g.,{{white,furry}, {dog}}, which we write as {white-furry,dog} in shorthand. We define the

learnability of a combination C as

L(C) =
∑
c∈C

[
∑

c′∈C,c′ 6=c
K(c, c′) +

∑
a∈c
K(c, c \ a)−D(c)]

where c indexes components in the combination C, a indexes attributes in each component,D(c)
is the diameter of each component defined as maxx,y∈c d(x, y) where x and y are images that

1For generality of discussion, we treat all words involved in a query as “attributes”

63



K	  

K	  

FIGURE 6.2: What makes merging two attributes desirable? When instances that satisfy both
attributes occupy a tight region in the feature space and have enough margin to the instances
that have one of the attributes. This figure depicts a case where training a merged red-blue
classifier is beneficial. Because purple dots (instances that have both red and blue attributes)

have small diameter (D) and enough margins (K) with the rest of blue and red dots.

belong to a component and d is the distance between them. The diameter captures the range of

visual appearances of images within a component. The higher the variety of appearances, the

less learnable the corresponding component. K(c, c′) is the margin between two components c

and c′ defined as minx∈c,y∈c′ d(x, y). This captures how distant the images belonging a compo-

nent are from images of other components. The more distant they are, the easier it is to learn a

classifier for the component. Finally, K(c, c \ a) is the margin between images that satisfy all

attributes of a component, and those that satisfy all but one attribute. For example the margin

between purple and red in Figure 6.2. For components that consist of only one attributes the

within component margins are zero.

We are interested in finding the optimal combination C∗ that obtains best learnability score and

covers all members of A without being inefficiently redundant . We can formulate this problem

as the following integer program:

max
x

L(S � x)− λ|x|

ZTx ≥ 1

x ∈ {0, 1}m

(6.1)

where � is the set selection operator, Z is an m× n binary set system matrix indicating which

attributes appear in which component, λ is the trade off factor between the number of compo-

nents in a combination (efficiency) and the learnability score, and x is the indicator vector that

identifies which components will make it to the final combination.
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Set covering problem can be reduced to our problem. The optimization 6.1 is harder than stan-

dard weighted set covering problem because our learnability function L defines over all compo-

nent in a combination. The corresponding weighted set cover formulation requires the weight-

ing function to be defined over each component independently. The interdependencies between

components in our learnability function make this optimization NP-hard. However, our learn-

ability function doesn’t face an interdependency issue in case of two attributes. This suggests

defining a gain function for pairs of attributes that takes into account the same measurements

(diameter and margins) as in our learnability function:

G(ai, aj) = K(aiaj , ai) +K(aiaj , aj)−D(aiaj)

Given two attributes, positive values for the gain function recommend merging the two attributes

and negative values encourage training separate classifiers for each attribute and then merging

their scores. The higher the gain function the higher is the reward for merging two attributes.

Our gain function exposes an interesting property that helps prune the search space drastically.

Lemma 6.1. If attributes ai and aj are merged because G(ai, aj) ≥ 0 then for any other

attribute ak, G(aiaj , ak) ≥ G(ai, ak) or G(aj , ak)

Proof. It’s simple to show that if A ⊂ B then D(A) ≤ D(B), and if C ⊂ D then K(A,C) ≥
K(B,D). We can show that G(aiaj , ak) = K(aiajak, aiaj)+K(aiajak, ak)−D(aiajak)+ >

K(aiajak, aiaj) + K(aiajak, ak) − D(aiak)+ > K(aiak, ai) + K(aiak, ak) − D(aiak)+ =

G(ai, ak). The same holds for G(ai, aj).

What this lemma implies is that once two attributes are merged, we need not consider merg-

ing any other attribute with either of these attributes individually. This suggests the following

recursive greedy solution to find the highest scoring and covering combination.

Our greedy solution starts with computing the gain for all pairs of attributes. It picks the pair

with the highest gain. If the highest gain is positive, then we merge those attributes and add a

new merged-attribute to our set of attributes and remove the two independent ones. Meaning that

if ai and aj provide the biggest positive gain we add aiaj as a new attribute to A and remove

ai and aj from the set. The Lemma above shows that it is safe to remove the independent

attribute from the set as no other attribute can join either of ai or aj independently and result in

higher scoring combination. The new A now has n− 1 elements. We can recursively repeat this

procedure till we cover all attributes. If there is no pair with positive gain, we move to triplets.

This never happened in our experiments.

Efficient Computation of Geometric Measurements: Margins and diameters can be com-

puted efficiently in a binary feature space; O(NK) where N is the number of images and k is
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the dimensionality of bit vectors. The core part for computing both margin and diameter is to

compute the average of all pairwise distances. A naive algorithm would be to go over all pairs

and compute their distances and get mean of them. But since we are using binary codes for each

dimension of the binary codes we can compute number of zero bits and number of one bits.

Then the sum of the distance of any given bit to all other bits can be computed in O(constant).

Algorithm 1 explains this algorithm more formally.

Algorithm 4 Efficient Sum of Pairwise Hamming Distances
Input: B1 , B2 are a binary matrix of size N ×K.
Output: S: sum of hamming distances between all pairs of rows in B1 and B2.
1: for k = 1→ K do
2: Z(k)←

∑
k B2(:, k) Comment: Counting Number of zeros in kth dimension of B2

3: O(k)←
∑
k ¬B2(:, k) Comment: Counting Number of ones in kth dimension of B2

4: for i = 1→ N do
5: for k = 1→ K do
6: if B1(i, j) = 0 then
7: P (i, j)← O(k)
8: else
9: P (i, j)← Z(k)

10: S ←
∑
P Comment: Sum of all elements in P

6.4 Experiments

We evaluate our method in several different settings. We conduct experiments on two challeng-

ing datasets: the aPasclal [104] and the Caltech Bird200 dataset [125]. We compare our method

with four different baselines described later. We also test our method with different binary code

mapping methods and show that our method is robust to the choice of binary mapping. We also

evaluate the impact of different binary code sizes on the performance of our approach. In addi-

tion to accuracy, we also compare the running time of our method to that of baselines. We find

that our low complexity O(NK) gives us one order of magnitude speed up. We also present

qualitative results and analysis that reveal the tendencies of different attributes to merge with

other attributes.

6.4.1 Datasets

aPASCAL [104]: This dataset contains the 20 PASCAL object categories. On average each

category has 317 images. Each image is labeled by 64 attributes that describe different object

properties such having a particular body part, types of materials, etc. We experiment with the

low-level features provided by the author of [104] on the data set website and also train/test

splits provided with the dataset. The features and attribute annotations are not labeled for entire

image. They are computed only for bounding box of the objects.
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Caltech-UCSD Bird200 [126] This data set is a challenging subordinate recognition dataset. It

includes 200 different species of North American birds with on average 300 images per category.

Each image is annotated with 312 bird attributes such as color and shapes of wings, beaks, etc.

We used the low-level features provided by [127] describing color, shape and contours. Similar

to aPascal, here, we don’t use entire image, we ony use the area that the bounding box of the

image specifies for a bird in that image. We devide each category in half and took one haf as

train set and the other half as test set.

6.4.2 Baseline Methods

We compare our method with four different baseline approaches for selecting the combinations

to be trained for a given multi-attribute query: Default (DEF): As the name suggestions, this ap-

proach uses the most natural strategy of training classifiers for each of the attribute independently

and then combining the result scores. Random Selection (RND): This approach randomly se-

lects a combination from all possible combinations and learns a classifier for each component of

that combination. Upper Bound (UPD): Here we exhaustively train all possible combinations,

evaluate their performance on the test set, and select the best one. The resultant performance

corresponds to the upper bound one can hope to achieve by picking the optimal combinations to

train. Of course, our proposed approach avoids training all possible combinations, and selects a

good combination very efficiently. A comparison to this upper bound informs us of the resultant

loss in performance by trading it off for efficiency. Best Attribute First (BAF): Intuitively, if

an attribute predictor is accurate enough (in the limit, perfect), there is no benefit to merging it

with another attribute. This baseline is based on this intuition. It determines which attributes

to merge by looking at their prediction accuracies on the test set. Attributes with an accuracy

higher than a threshold are left alone, while the rest are merged. We search for a threshold that

gives us highest overall accuracy on all the queries.

6.4.3 Evaluation

Having identified the best combination (e.g.,{white-furry,dog}), we train a classifier for each

of the components {white,furry} and {dog} using (with C = 1). All training images that are

both white and furry are positive examples to train a white-furry component classifier, and all

remaining images are negative examples. Given a test image, we compute its score for each of

the component classifiers. A naive way of combining these component classifiers would be to

threshold the scores and compute a logical-AND. However in practice, the scores of the different

classifiers are not calibrated. We use [128] to calibrate the scores, which fits a weibull distri-

bution to the scores of a classifier to generate probability estimates. We later show the benefits

of this calibration. We threshold the calibrated probabilities and compute the logical-AND to
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FIGURE 6.3: We evaluate our method on retrieving images in aPascal test set using 3-attribute
queries. We compare it with three baselines and also the best possible upper bound. We use
512-dimensional bit codes for this experiment. Each point in this plot corresponds to average
recalls over selected combinations on several fixed precisions. The threshold for BAF is 0.7.

determine if a test image is positive (relevant to the multi-attribute query) or not. Varying the

threshold gives us a precision-recall curve. One might argue that by taking the product of the cal-

ibrated scores and then thresholding that we may get better performance. But in our experments

it drops the performace remarkably. In order to report results across multiple queries, we aver-

age the recall across all queries for fixed precision values to obtain an “average” precision-recall

curve.

Comparison with Baselines: We generated 500 random 3-attribute queries that had atleast 100

corresponding images in the train and test splits. We also generated another set of 500 3-attribute

queries that had between 5 and 50 examples in the train and test splits. This allows us to evaluate

our approach on queries with sufficient as well as few examples. Figure 6.3 shows our results

for the aPascal. We see that our method outperforms all baselines, and is not significantly worse

than the upper-bound, especially at high recall. For these experiments we used 512 bits codes

extracted using Discriminative Binary Codes [124]. Figure 6.4 shows results using 4-attribute

queries, with similar trends. Figure 6.5 shows our results on the Birds dataset with queries of

length 3. Our method outperforms the baselines by large margin. The effects of different parts

in learnability function at 0.2 precision is as follow: Recall .15 .45 .61. K(c, c′): 102 170 213.

K(c, c \ a): 23 56 79. D(c): 162 106 62. Increase in the margin and decrease in the diameter

results in better recall.

Binary Code Length: We now investigate the effect of different length of binary codes on the

performance of our method. Figure 6.6 shows results aPascal using the same length 3 queries

described earlier. Using fewer bits hurts performance. Figure 6.7 shows similar trends on the

Birds dataset.
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FIGURE 6.4: We evaluate our method on retrieving images in aPascal test set using 4-attribute
queries. Experimental setup is similar to that of Figure 3. The threshold for BAF is 0.82 .

FIGURE 6.5: We evaluate our method on retrieving images in Bird test set using 3-attribute
queries. Experimental setup is similar to that of Figure 3.

Sensitivity to Binary Mapping Methods: We now evaluate our model using binary codes

generated by different methods. We chose two state-of-the-art binary mapping methods DBC

[124] and ITQ [51] and also classical LSH [38]. Table 6.1 compares the performance of our

approach using these three methods on the aPascal dataset. Here we use mean of the average

recalls over all fixed precisions (MAR) as a measure for comparison. We used 512 bits for all

of the methods. DBC perform slightly better because DBC preserves categorical similarities

between images. We trained DBC on the whole train set of aPascal dataset. To make the most

of ITQ we used the attribute labels of the train set to learn ITQ coupled with CCA. The binary

codes produced by ITQ-CCA are expected to preserve pairwise similarities. For both cases we

use their publicly available MATLAB code. Our model is not sensitive to the choice of binary

mapping (compare DBC and ITQ) as long as discriminative properties can be preserved.

Running Time Evaluation: Here we report the run time of our approach. First, we only con-

sider the average time required to find the best combination for a given query. Table 6.2 com-

pares our method with UPD on 1000 queries of length 3 on the aPascal dataset. Our method
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FIGURE 6.6: We investigate the effects of the dimensionality of binary space on our perfor-
mance on the aPascal dataset.

FIGURE 6.7: We investigate the effects of the dimensionality of binary space on our perfor-
mance on the Bird dataset.

Method MAR
Upper Bound 0.4007

DBC-512bits 0.3348
ITQ-CCA-512bits 0.3257
LSH-512bits 0.3071

TABLE 6.1: Comparison between different binary mapping methods in terms of Mean Average
Recall.

is one order of magnitude faster than UPD which verifies that our algorithm for computing the

sum of pairwise distance in the binary space is very fast and efficient. Second, we consider the

entire retrieval task which involves identifying the best combination, learning the corresponding

component classifiers and finally evaluating them on test images. Table 6.3 compares our model

with UPD and DEF. Interestingly, our method is also faster than DEF. This is because in DEF
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Method Time(Second)
Upper Bound 35.325
Ours 0.508

TABLE 6.2: Time for finding best combination: Trying all possible combinations of attributes
and picking the best one is very expensive. This table compares the time needed to compute
the upper bound versus the time that our algorithm needs to decide which combination to pick.

Method Time(Second)
Upper Bound 167.68
Default 42.56
Ours 22.34

TABLE 6.3: Average Retrieval Time : Comparisons between the entire time needed to perform
the default case, our method, and the upper bound. This table assumes that no classifiers for

the default case are trained off line.

FIGURE 6.8: Calibration Effects

we always need to train n(n: query length) classifiers but in our model on average we need to

learn 1.4 classifiers. This comparison assumes that no computations are being done off line.

One advantage of DEF over our method is that training and testing in DEF can be done off line.

Calibration Effect: As discussed earlier, calibration is very important when combining multiple

component classifiers. Figure 6.8 empirically verifies this by comparing the performance of

UPD with and without calibration on the aPascal data set. Without calibration the performance

is almost 5% worse.

Qualitative Evaluation: Finally, we look at some qualitative retrieval results comparing our

approach to DEF and UPD. Figure 6.10 presents top five images retrieved by different methods

for several multi-attribute queries.
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FIGURE 6.9: Some attributes have the tendency to be merged and some prefer to stay sepa-
rated. The bigger the names in this figure the higher the tendency of the attribute to merge.
It is interesting to see that attributes like occluded tend to merge frequently. This is probably
because of the fact that the appearance of attributes like this varies a lot as they appear with
other attributes. On the other side, attributes like beak and furniture leg tend to be separated as

their appearance does not change in combinations.

We now look at which attributes tend to merge with other attributes often, and which ones

typically stay un-merged. We created a wordle using wordle.net as seen in Figure 6.9. The

bigger the font size of a word, more likely is the corresponding attribute to merge with other

attributes.
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FIGURE 6.10: Qualitative comparisons between our method, the default case and the upper
bound. Green boxes correspond to merged classifiers and red ones are for independent classi-
fiers. It is interesting to see that when considered beak, wing and bird independently, retrieved
images are mixed between planes and birds. This is due to the labeling in aPascal that both
birds and planes wing and beaks are labeled with the same label. Once merged with bird the

classifier can find the right images.
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Chapter 7

Domain Adaptive Classification Using
Predictable Binary Attributes

7.1 Overview

Discriminative learning algorithms rely on the assumption that models are trained and tested

on the data drawn from the same marginal probability distribution. In real world applications,

however, this assumption is often violated and results in a significant performance drop. For

example, in visual recognition systems, training images are obtained under one set of lighting,

background, view point and resolution conditions while the recognizer could be applied to im-

ages captured under another set of conditions. In speech recognition, acoustic models trained by

one speaker need to be used by another. In natural language processing, part-of-speech taggers,

parsers, and document classifiers are trained on carefully annotated training sets, but applied to

texts from different genres or styles where there is mismatched distributions of words and their

usages.

For these reasons domain adaptation techniques have received considerable attention in ma-

chine learning applications. Some previous efforts [129–132] consider semi-supervised domain

adaptation where some labeled data from the target domain is available. We focus on the unsu-

pervised scenarios when there is no labeled data from the target domain available. Some earlier

work in unsupervised domain adaptation assumes that there are discriminative ”pivot” features

that are common to both domains [133, 134]. While such methods might work well in language

domains, in visual world typical histogram-based image descriptors (visual words) can change

significantly across domains. A recent work [135] considers the labeled source data at the in-

stance level to detect a subset of them (landmarks) that could model the distribution of the data

in the target domain well. A drawback of such methods is that they do not use the information
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FIGURE 7.1: This figure summarizes the overall idea of our method. (a) shows a classifier
that is trained on data for two categories from the source domain (internet images). In (b) we
classify the data from the target domain (webcam images) using the classifier trained in (a). In
(c) and (d) we want to use roughly predicted labels in the target domain to find hyperplanes that
are discriminative across categories and also have large margins from samples. (c) illustrates a
hyperplane that perfectly separates positive and negative samples but has a small margin. (d)
shows two hyperplanes that are not perfectly discriminative but they are binarizing data in the
target domain with a large margin. The binarized samples by these two hyperplanes are linearly

separable.

from all the samples in the source domain available for training the classifier, as they use only

landmark points and prune the rest.

Another research theme in domain adaptation is to assume there is an underlying common sub-

space [136–138] where the source and target domains have the same (or similar) marginal dis-

tributions, and the posterior distributions of the labels are also the same across domains. Hence,

in this subspace a classifier trained on the labeled data from the source domain would likely

perform well on the target domain. However, transforming data only with the goal of modeling

the target domain distribution does not necessarily result in accurate classification. Our goal is

to identify a transformation that not only models the distribution of a target domain, but also is

discriminative across categories.

We propose a simple yet effective adaptation approach that directly learns a new feature space

from the unlabeled target data. This feature space is optimized for classification in the target

domain. Motivated by [139], our new feature space, composed of binary attributes, is spanned

by max-margin non-orthogonal hyperplanes learned directly on the target domain. Our new

binary feature sets are discriminative and at the same time are robust against the change of

distributions of data points in the original feature space between the source and target domains.

We refer to this property as predictability. The notion of predictability is based on the idea that

subtle variations of the data point positions in the original space should not result in different

binary codes. In other words, a particular bit in the binary code should be identical (predictable)

for all the data samples that are close to each other in the feature space. Figure 7.1 illustrates the

essential idea behind our approach.
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Our experimental evaluations show that our method significantly outperforms state-of-the-art

results on several benchmark datasets which are extensively studied for domain adaptation. In

fact in many cases we even reach the upperbound accuracy that is obtained when the classifier is

trained and tested on the target domain itself. We also investigate the dataset bias problem, re-

cently studied in [140, 141]. We show that our adaptive classification technique can successfully

overcome the bias differences between the datasets in cross-dataset classification tasks. The joint

optimization criteria of our model can be solved efficiently and is very easy to implement. Our

MATLAB code is online available1.

7.2 Background

While it is still not clear how exactly to quantify a domain shift between the train (source) and

test (target) data sets, several methods have been devised that show improved performance for

cross-domain classification.

In language processing, Daume et al [142] model the data distribution corresponding to source

and target domains as a common shared component and a component that is specific to the indi-

vidual domains. Blitzer et al [133, 134] proposed a structural correspondence learning approach

that detects some pivot features that occur frequently and behave similarly in both domains.

They used these pivot features to learn an adapted discriminative classifier for the target do-

main. In visual object recognition, Saenko et al [129] proposed a metric learning approach that

uses labeled data in the source and target domains for all or some of the corresponding categories

to learn a regularized transformation for mapping between the two domains.

In unsupervised settings where there is no label information available from the target domain,

several methods have been recently proposed. Pan et al [136] devise a dimensionality reduction

technique that learns an underlying subspace where the difference between the data distributions

of the two domains is reduced. However they obtain this subspace by aligning distribution

properties that are not class-aware; therefore it does not guarantee that the same class from

separate domains will project onto the same coordinates in the shared subspace. Gopalan et al

[137] take an incremental learning approach, following a geodesic path between the two domains

modeled as points on a Grassmann manifold. Gong et al [138] advance this idea by considering

a kernel-based approach; i.e. they integrate an infinite number of subspaces on that geodesic

path rather than sampling a finite number of them. In [135], Gong et al, however, consider only

a subset of training data in the source domain for their geodesic flow kernel approach; the ones

that are distributed similarly to the target domain, .
1http://www.umiacs.umd.edu/ mrastega/paper/dom.zip
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In [140, 141], the varying data distribution between the train and test sets have been studied

under the ”dataset bias” They point out how existence of various types of bias, such as capture

and negative set bias, between datasets can hurt visual object categorization. This is a similar

problem to domain adaptation where each dataset can be considered as a domain.

Another set of related methods are those that use binary code descriptors for recognition. Farhadi

et al [143, 144] used binary feature for supervised transfer learning. Recent method shows

that even with a few bits of binary descriptor one can reach state-of-the-art performance in

object recognition. Gong et al [51] optimized to find a rotation of data that minimizes binary

quantization error. They used CCA in order to leverage labels’ information. In [139] they

proposed a technique to map the data into a hamming space where each bit is predictable from

neighboring visual data. At the same time the binary code of an image needs to be discriminative

across the categories. Our method is motivated by their approach. We are also looking for a

set of discriminative binary codes but in our problem data comes from different domains with

mismatched distributions in the feature space. In section 7.3 we explain how our method solves

this problem by a joint optimization over solving a linear SVM and finding a binary projection

matrix.

7.3 Adaptive Classification

Our goal is to identify useful information for classification in the target domain. We repre-

sent this information by a number of hyperplanes in the feature space created using data from

the target domain. We call each of these hyperplanes, an attribute. These attributes must be

discriminative across categories and predictable across domains. We explain our notion of pre-

dictability in section 7.3.2. We use these attributes as feature descriptors and train a classifier on

the labeled data in the source domain. When we apply this classifier to the target domain, we

achieve a much higher accuracy rate than the baseline classifier for the target data. The baseline

is simply a classifier trained on the source data in the original feature space.

Each attribute is a hyperplane in feature space; it divides the space into two subspaces. We

assign a binary value to each instance by its ”sidedness” with respect to the hyperplane. We

construct a K-bit binary code for each image using K hyperplanes. To produce consistent

binary codes across domains, each binary value needs to be predictable from instances across

domains. Predictability is the key to the performance of our method. We also want the attributes

to be discriminative across categories. i.e. the K-bit attribute descriptors of the samples from

same category should be similar to each other and different from the other categories.
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7.3.1 Problem Description

First we explain the notations that we use throughout this section. Superscripts S and T indicates

source and target domains respectively and superscript T indicates matrix transpose. xi is a d-

dimensional column vector that represents the ith instance feature and X is a matrix created by

concatenation of all xi’s. li is the category label of the ith instance. Without loss of generality,

we assume that li ∈ {1,−1}. A is a d ×K matrix whose kth column, ak, is the normal vector

of a hyperplane (attribute) in the original feature space. w is the K-dimensional normal vector

of a classifier that classifies one category from the others in the binary attribute space. sign(.) is

the sign function

We want to directly optimize for better classification in the target domain. Therefore, we need

to find K hyperplanes, ak, in the target domain such that when we use sign(ATxi) as a new

feature space, and learn a classifier on source data projected onto this space, we can predict

the class labels of the data in the target domain. Of course we do not have the class labels for

the data in the target domain lTi . In order to train the classifier and attributes (hyperplanes) in

target domain, we add a constraint to our optimization to force the lTi to be predictable from

the source domain’s classifier. More specifically, our optimization is a combination of two max-

margin SVM-like classifiers that are interconnected via the attribute mapping matrix A.

min
A,wS ,wT ,lT ,ξS ,ξT

‖wS‖+ ‖wT ‖+ C1

∑
ξS + C2

∑
ξT

s.t.

lSi (w
ST sign(ATxSi )) > 1− ξSi ,

lTj (w
T T sign(ATxTj )) > 1− ξTj ,

lTj = sign(wS
T

sign(ATxTj )),

(7.1)

It is not straightforward to solve the optimization in Eq 7.1 because matrix A in the constraints

requires a combinatorial search for the optimal solution. But if we constrain the possible solu-

tions for A, then we can solve it efficiently. As we will explain in section 7.3.2, we do this by

forcing predictability constraints on all the ak vectors.

7.3.2 Predictability

In different domains data appears with different distributions. Consider a picture of a car taken

by a mobile phone’s camera and the same picture taken from a professional high quality camera.

Due to differences in the two photo capturing systems such as resolution, the two images will

be mapped to two different points in visual feature space despite being the same object from the

same category. For better classification, however, ideally we would like to create a feature space
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FIGURE 7.2: Comparison of predictable hyperplanes and orthogonal hyperplanes. Note that
the hyperplanes learned by large margin divide the space, avoiding the fragmentation of sample
distributions by the help of predictability constraints implemented by max-margin regulariza-

tion.

that would map these two images onto the same or nearby points. In other words, we would like

to have a class-compact and domain-invariant feature space for these images. For a sample, an

attribute is a binary value derived from a hyperplane in the raw feature space. If this hyperplane

produces different binary values for samples that are nearby to each other, then we say that the

values coming from this hyperplane are not predictable. Therefore, this attribute would not be

robust against the variations of samples from different domains in the raw feature space.

Predictability is the ability to predict the value of a given bit of a sample by looking at the

corresponding bit of the nearest neighbors of that sample. For example, if the kth bit in most of

the nearest neighbors of a sample is 1 then we can infer that the kth bit of that sample would

also be 1.

Consider the situation where a hyperplane crosses a dense area of samples. There would be many

samples in proximity to each other that are assigned different binary values. The binary values

obtained by this hyperplane are thus not predictable. The binary values obtained by a hyperplane

are predictable when the hyperplane has large margin from samples. There are several methods

that try to model the transfer of distribution between domains [136–138]. All of these methods

rely on discovering some orthogonal basis of the feature space such as principle components.

However these orthogonal basis are not appropriate as hyperplanes for attributes. Figure 7.2

illustrates a demonstration of the hyperplanes defined by orthogonal basis (PCA) in green lines.

Note that PCA hyperplanes cross dense areas of samples. If we binarize the samples by the

PCA hyperplanes, then samples in the red circle will have different binary codes even though

they are nearby each other and strongly clustered. The hyperplanes that are shown in orange are

our predictable attributes, which enforce the large margins from samples.

To enforce the predictability constraint on binary values of attributes, we regulate our optimiza-

tion by adding a max-margin constraint on A as follows:
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min
A,wS ,wT ,lT ,ξS ,ξT ,ξA

‖wS‖+ ‖wT ‖+ ‖A‖F+

C1

∑
ξS + C2

∑
ξT + C3

∑
ξA

s.t.

lSi (w
ST sign(ATxSi )) > 1− ξSi ,

lTj (w
T T sign(ATxTj )) > 1− ξTj ,

lTj = sign(wS
T

sign(ATxTj )),

bkj = sign(aTk x
T
j ),

bkj(a
T
k x
T
j ) > 1− ξAkj ,

(7.2)

Where bkj is the binary value of the kth bit (attribute) of the jth sample in the target domain.

In fact, each attribute is a max-margin classifier in feature space and bjk is the label of the jth

sample when classified by the kth attribute classifier. This optimization can be easily conducted

using block coordinate descent. If we fix wT and A, then solving the optimization for wS is a

simple linear SVM in the attribute space. Accordingly, once we determine wS , we can compute

lT . Then solving for wT and A is a standard attribute discovery problem in the target domain

and can be solved using the method (DBC) in [139]. We iterate over these two steps: finding

wS , and then solving for wT and A. We don’t know how to obtain a good initialization for wT

and A, but luckily we don’t necessarily need them. We only need to have an initialization for lT

so that we can solve the attribute discovery problem forA and wT . An intuitive way to initialize

lT is to learn a classifier on the labeled data in the source domain, xS and lS , and then apply it

on xT , the data in the target domain. Algorithm 1 summarizes our method.

Algorithm 5 Adaptive Classification
Input: XS , lS , XT , K.
Output: lT , A, wS , wT .
1: θ ← Learn a classifier on XS and lS

2: lT ← Test the classifier θ on XT //Initialization for lT

3: repeat
4: wT , A← DBC(XT ,lT ,K)
5: wS ← Learn a linear SVM on sign(ATXS) and lS

6: lT ← sign(wS
T

sign(ATXT ))
7: until convergence on lT

7.4 Experiments

We first evaluate our method on two benchmark datasets extensively used for domain adaptation

in the contexts of object recognition [129, 135, 137, 138, 145] and sentiment analysis [134,

135, 137]. We compare our method to several previously published domain adaptation methods.

Empirical results show that our method not only outperforms all prior techniques in almost
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all cases, but also in many cases we achieve the same-domain classification, the upper bound,

accuracy, i.e. when the classifier is trained and tested on the target domain itself.

Furthermore, we test the performance of our method on an inductive setting of unsupervised

domain adaptation. In the inductive setting we test our adapted classifier on a set of unseen

and unlabeled instances from target domain- separate from the target domain data used to learn

the attribute model. And finally, we investigate the dataset bias problem, recently studied in

[140, 141], and we show that our adaptive classification technique can successfully overcome

the bias differences in both single and multiple source domains scenarios.

7.4.1 Cross-Domain Object Recognition

First, we evaluate our method for cross-domain object recognition. We followed the setup of

[135, 138] which use the three datasets of object images studied in [129, 137, 145]: Amazon

(A) (images downloaded from online merchants), Webcam (W) (low-resolution images taken

by a web camera), and DSLR (D) (high-resolution images taken by a digital SLR camera) plus

Caltech-256 (C) [146]as a fourth dataset. Each dataset is regarded as a domain. The domain

shift is caused by factors including change in resolution, pose, lighting, background, etc. The

experiments are conducted on 10 object classes common to all 4 datasets. There are 2533 images

in total and the number of images per class ranges from 15 (in DSLR) to 30 (Webcam), and up

to 100 (Caltech and Amazon). We used the publicly available feature sets 2, and the same

protocol as in all the previous work were used for representing images: The 64-dimensional

SURF features [147] were extracted from the images, and a codebook of size 800 was generated

by k-means clustering on a random subset of Amazon database. Then, the images from all

domains are represented by an 800-bin normalized histograms corresponding to the codebook.

We report the results of our evaluation on all 12 pairs of source and target domains and compare

it with methods as reported in [135] (Table 1). The other methods include transfer compo-

nent analysis (tca) [136], geodesic flow sampling (gfs) [137], Geodesic Flow Kernel (gfk)[138],

structural correspondence learning (scl)[133], kernel mean matching (kmm) [148], and a metric

learning method (metric) [129] for semi-supervised domain adaptation, where label information

(1 instance per category) from the target domains is used. We also report a baseline results of no

adaptation, where we train a kernel SVM on labeled data from the source domain in the original

feature space. A linear kernel function is used for the SVM. For each pair of domains the per-

formance is measured by classification accuracy (number of correctly classified instances over

total test data from target).

As explained in [135], due to its small number of samples (157 for all 10 categories), DSLR

was not used as a source domain and so the results for other methods have been reported only
2http://www-scf.usc.edu/ boqinggo/da.html
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A→ C A→ D A→W C → A C → D C →W W → A W → C W → D D →W D → C D → A

No Adaptation 41.7 41.4 34.2 51.8 54.1 46.8 31.1 31.5 70.7 38.2 34.6 38.2
TCA [136] 35.0 36.3 27.8 41.4 45.2 32.5 24.2 22.5 80.2 N/A N/A N/A
GFS [137] 39.2 36.3 33.6 43.6 40.8 36.3 33.5 30.9 75.7 N/A N/A N/A
GFK [138] 42.2 42.7 40.7 44.5 43.3 44.7 31.8 30.8 75.6 N/A N/A N/A
SCL [133] 42.3 36.9 34.9 49.3 42.0 39.3 34.7 32.5 83.4 N/A N/A N/A
KMM [148] 42.2 42.7 42.4 48.3 53.5 45.8 31.9 29.0 72.0 N/A N/A N/A
Metric [129] 42.4 42.9 49.8 46.6 47.6 42.8 38.6 33.0 87.1 N/A N/A N/A
Landmark [135] 45.5 47.1 46.1 56.7 57.3 49.5 40.2 35.4 75.2 N/A N/A N/A
Ours 47.2 48.7 46.3 57.65 49.68 44.1 40.4 35.5 84.0 86.1 35.5 39.7

TABLE 7.1: Cross-domain Object recognition: accuracies for all 12 pairs of source and
target domains are reported (C: Caltech, A: Amazon, W : Webcam, and D: DSLR). Due to its
small number of samples, DSLR was not used as a source domain by the other methods and so
their results have been reported only for 9 pairings. Our method significantly outperforms all
the previous methods except for 2 out of 3 cases when DSLR , whose number of samples are

insufficient for training our attribute model, is the target domain.

for 9 out of 12 pairings. Table 1 shows that our method outperforms all the previous methods in

all cases except when DSLR is the target domain. The culprit is the small number of samples

in DSLR being insufficient for training the attribute model. In all our experiments, we used a

binary attribute space with 256 dimensions. To learn each attribute hyperplane we used linear

SVM coupled with kernel mapping. None of the hyperparameters for SVM classifiers and DBC

model were tuned. They were all left at their default values. One might get better results by

tuning these parameters.

7.4.2 Cross-Domain Sentiment Analysis

Next, we consider the task of cross-domain sentiment analysis in text [134]. Again we compare

the performance of our approach with the same set of domain adaptation methods as reported in

[135] and listed in section 7.4.1. We used the dataset in [134] which includes product reviews

from amazon.com for four different products: books (B), DVD (D), electronics (E), and kitchen

appliances (K). Each product is considered as a domain. Each review has a rating from 0 to 5, a

reviewer name and location, review text, among others. Reviews with rating higher than 3 were

classified as positive, and those less than 3 were classified negative. The goal is to determine

whether the process of learning positive/ negative reviews from one domain, is applicable to

another domain. We used the publicly available feature sets for the collection in which bag-of-

words features are used and the dimensionality of data is reduced to 400 (the 400 words with

the largest mutual information with the labels).

Table 7.2 shows the results; our method outperforms all the previous methods by a relatively

large margin (25% average improvement over baseline and 19% over state-of-art).
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K → D D → B B → E E → K

No Adaptation 72.7 73.4 73 81.4
TCA [136] 60.4 61.4 61.3 68.7
GFS [137] 67.9 68.6 66.9 75.1
GFK [138] 69.0 71.3 68.4 78.2
SCL [133] 72.8 76.2 75.0 82.9
KMM [148] 72.2 78.6 76.9 83.5
Metric [129] 70.6 72.0 72.2 77.1
Landmark [135] 75.1 79.0 78.5 83.4
Ours 92.1 93.15 94.94 95.65

TABLE 7.2: Cross-Domain Sentiment Classification: accuracies for 4 pairs of source and
target domains are reported. K: kitchen, D: dvd, B: books, E: electronics. Our method

outperforms all the previous methods.

7.4.3 Comparing to Same-Domain Classification

How accurate are the domain adapted classifiers compared to classifiers trained on labeled data

from the target domain? To investigate this, we divide each dataset into two equal parts, one of

which is used for training and the other for testing. This balances the number of samples used

for within domain training and testing and cross domain adaptive training and testing.

Table 7.3 shows the results for all 16 pairs of domains in sentiment dataset and 4 pairs of domains

from object recognition datasets. In the latter we could use only the two domains (Caltech,

Amazon) that had sufficient number of samples to be divided into two groups (train/test)

The rows correspond to the source domains and columns to the target domains. We can see how

on this data set our adaptive classification method reaches the upper bound performance in all

cases.

7.4.4 Transductive vs Inductive Cross-Domain Classification

In the previous experiments, we follow the same protocol as [135, 138] for a fair comparison.

So, we had access to all the samples in the target domain at training time and our goal was to

predict their labels. This is a transductive learning problem except that the test data was drawn

from a different domain. In an inductive setting we do not have access to the test data at training

time. So, to create an inductive setting for the unsupervised domain adaptation problem, we

make only a fraction of the data from the target domain accessible at training time for learning

our adaptive feature space. The rest, which we refer to as out-of-sample data from the target

domain, is set aside for inductive classification tests.

Table 7.4, reports the results for this experiment on the sentiment data set where we have bal-

anced number of samples across domains. Our adaptive classification results on out-of-sample

data still outperform the corresponding performance for in-sample data by other methods in 3
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K E B D

K 97.9 97.4 96.6 95.2
E 97.9 97.4 96.5 95.4
B 97.8 97.4 96.6 95.3
D 97.7 97.3 96.6 95.4

C A

C 75.6 92.2
A 74.4 92.2

TABLE 7.3: Comparing to Same-Domain Classification : (Left) Accuracies for all 16 pairs
of source and target domains in sentiment dataset are reported in the left table. K: kitchen,
D: dvd, B: books, E: electronics. (Right) Accuracies for 4 pairs of source and target domains
are reported. C: Caltech, A: Amazon. Rows and columns correspond to source and target
domains respectively. Our method reaches the upper bound accuracies (diagonal) for cross-

domain classification.

K → D D → B B → E E → K

In-samples No Adaptation 72.7 77.1 75.2 82.8
Adapted (Ours) 97.2 96.6 98.0 98.1

Out-samples No Adaptation 70.5 75.6 74.4 82.8
Adapted (Ours) 77.5 76.9 80.7 84.4

TABLE 7.4: Transductive vs Inductive Cross-domain Classification: The first two rows
show the results in transductive setting where all the data from the target domains are accessible
during training. The last two rows show the results in inductive setting where we test our
classifier only on a subset of data in the target domain that was not accessible during training

time

out of 4 cases. Nevertheless, it does show a drop in performance compared with our own in-

sample results. As we show later, however, this is not necessarily the case. In section 7.4.5

we show how our out-of-sample results reasonably perform compared to the corresponding in-

sample ones. (table 7.5)

7.4.5 Dataset Bias

Most of the images in the datasets studied in sections 7.4.1 and 7.4.2 contain the object of interest

centered and cropped on a mostly uniform background. To evaluate our method on a wider range

of images with unconstrained backgrounds and clutter, as well as to see how it deals with the

data set bias problem addressed in [140, 141], we extend our cross-domain object recognition

experiments to four widely used computer vision datasets- Pascal2007 [149], SUN09 [150],

LabelMe [151], Caltech101 [146].

We follow the same protocol as [141], where they run experiments on five common object

categories- ”bird”, ”car”, ”chair”, ”dog”, and ”person”. We used the publicly available feature

sets for this data 3. Using a bag-of-words representation, Grayscale SIFT descriptors [152] at

multiple patch sizes of 8, 12, 16, 24 and 30 with a grid spacing of 4 were extracted. Using

k-means clustering on randomly sampled descriptors from the training set of all datasets, a

codebook of size 256 is constructed. The baseline SVM is implemented using Liblinear [92]
3http://undoingbias.csail.mit.edu/features.tar
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Caltech LabelMe Pascal07 SUN09
In-samples No Adaptation 78.7 71.6 76.1 70.9

Adapted (Ours) 99.4 92.7 92.6 94.9
Out-samples No Adaptation 79.1 75.1 75.0 74.2

Adapted (Ours) 94.6 86.4 90.1 87.8

TABLE 7.5: Cross-Dataset Object Recognition: The 4 rightmost columns show the classi-
fication results for when we hold out one dataset as the target domain and use the other 3 as
source domains, in both the inductive (first two rows) and transductive (last two rows) settings.

The reported results are averaged over 5 categories of objects.

coupled with a Gaussian kernel mapping function [153]. The results are evaluated by average

precision (AP).

Table7.5 reports the results of our cross-dataset classification in both the inductive (in-sample)

and transductive (out-of-sample) settings. Each column of the table correspond to the situation

where one dataset is considered as the target domain and all the remaining datasets are con-

sidered as the source domain (multi-source domain). These result shows that our approach is

robust against varying biases when the training data comes from multiple datasets and the test

data comes from another one. The reported results are averaged over all 5 categories. The aver-

age performance improvement by our adaptive method over the baseline (no adaptation) is 28%

for out-of-sample data and 18% for in-sample data. The only related work that we are aware

of that has performed theses cross-dataset classifications experiments with the same settings is

[141] where they report an average performance improvement of only 2.5% across all datasets

and all categories.

7.4.6 Effectiveness of Predictability

Now, we show the importance of the predictability of attributes by quantitative and qualitative

evaluations.

Quantitative evaluation: To see how learning binary attributes by itself is contributing to our

performance increase, we ignore the adaptation and use the attribute features learned only from

the source domain. In this setting we learn the binary attribute space from the labeled data in

the source domain, project the data from both source and target domain onto this space where

we train a classifier on the source data and test it on the target data. We then compare the results

with corresponding ones by our adapted model. We used the same experiment setup in section

7.4.5 for this evaluation (Figure 7.3).

Qualitative evaluation: Here we show that the discovered attributes are consistent across do-

mains. We pick an attribute classifier learned by our method, then we find images (from both

source and target) that are most positively and negatively confident when classified by this at-

tribute classifier. In Figure 7.4 the left two rows use DSLR as source domain and Amazon as
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FIGURE 7.3: Quantitative Evaluation of Predictability: The blue bars show the classifi-
cation accuracies when the classifier is simply trained on the data from the source domain in
original feature space (baseline). The red bars show the results when the classifier is trained in
a binary attribute space learned from the data in the source domain (source binary). The green
bars show the results of our adapted model when the classifier is trained on labeled source data
in a binary attribute space learned in the target domain (adapted binary). In average the source
binary model is increasing the performance by 10% over the baseline while the adapted binary

model does that by 28%

Source: 
DSLR 

Target: 
Amazon 

Source: 
Amazon 

Target: 
Webcam 

FIGURE 7.4: Qualitative Evaluation of Predictability: This figure illustrates two examples
where an attribute hyperplane (green arrow), learned by our joint optimization, discriminates
visual properties consistently across two different domains. In the left case, the hyperplane is
discriminating between the objects with round shapes vs the ones with more surface area. In
the right example, the hyperplane is discriminating the keypad-like objects against the more
bulky ones. The dashed part of the arrow indicates that the same hyperplane which is trained

in target domain is applied in the source domain.

target. Similarly, the right two rows use Amazon as source and Webcam as target. The green

arrow represent an attribute classifier which is trained on target domain. The dashed part of the

arrow illustrates that the same hyperplane which is trained in target domain is applied in the

source domain. Images on the right side of the green arrow are the most positive and on the left

side are the most negative one. As can be seen in both cases the attribute classifiers are con-

sistent across domains. In the first case, the attribute consistently separates round shapes from

dark-volumed shapes in both domains and in the second case, the attribute consistently discrim-

inates between objects with keypad and objects with dark-volumed shape. This observation is

consistent with our intuition of predictability in our optimization.
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Chapter 8

Evaluation of Binary Coding Methods

8.1 Overview

Binary codes are attractive representations of data for similarity based search and retrieval pur-

poses, due to their storage and computational efficacy. For example, 250 million images can be

represented by 64 bit binary codes by employing only 16 GB of memory. Hashing is a com-

mon method to convert high dimensional features to binary codes whose Hamming distances

preserve the original feature space distances. Although shorter codes are more desirable due

to direct representation in hash tables, longer binary descriptors of data have also been shown

to be efficient for fast similarity search tasks. For example, Norouzi et al. [154] proposed a

multi-index hashing method, and Rastegari et al. [2] introduced a branch and bound approach to

perform exact k-nearest neighbors search in sub-linear time with long binary codes.

There are two major categories of hashing methods. One group is based on random projections

of data. For example, Datar et al. [155] introduced locality sensitivity hashing (LSH) and pro-

vide theoretical guarantees on retrieval in sub-linear time. Locality Sensitive Hashing refers to

a wide range of techniques but we use the term LSH for the random projection based technique

as is common in the vision and learning communities. Data driven approaches, on the other

hand, employ a learning procedure for binary code mapping. For instance, Weiss et al. [156] in-

troduced Spectral Hashing (SPH) and [157] Multidimensional Spectral Hashing (MDSH); they

formulate the problem as an optimization that reduces to an eigenvalue problem. Furthermore,

Gong and Lazebnik [158](ITQ) and Norouzi and Fleet [159] (CK-means) proposed methods to

minimize the quantization error of mapping the data to a binary hypercube via rotation. These

methods are based on vector quantization. Product Quantization [160] is an instance of Carte-

sian K-means[159] that does not optimize for rotation and Orthogonal K-means is the binary

version of CK-means that number of subspaces are equal to the number of bits. There is another

class of binary code learning methods that are supervised [3, 161, 162]. In these methods pairs
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of similar samples are provided for training and metric is learned. We experimentally observed

that given a good supervision, MLH[161] performs similar to ITQ. We restrict our attention to

unsupervised methods – there is no specification of similar or dissimilar samples.

A common task used for evaluating performance of binary codes is a range searching task –

find all samples within distance r of a query point. The performance of different methods in

preserving feature space distances in the Hamming space depends on the distribution of data in

the original feature space and the way that data is normalized before codes are designed. Re-

cent papers [157, 159, 163–169] showed comparisons without taking these factors into account.

In particular, some methods preserve cosine similarity [158], while others preserve Euclidean

distance [157, 163]. We should not compare the performance of these methods blindly.

Our main contribution is to show that in many published comparisons, this distinction has not

be accounted for sufficiently. When the goal is preserving cosine similarity, it is necessary to

normalize the orriginal features by mapping them to the unit hypersphere before learning the

binary mapping functions. On the other hand, when the goal is to preserve Euclidean distance,

the original feature data must be mapped to a higher dimension by including a bias term in

binary mapping functions. Our experiments reveal very different results in the performance of

the binary code methods when these constraints are enforced. We show that the state-of-the-art

technique OK-means [159] and MDSH [157] most of the times, in first scenario, performs worse

than Iterative Quantization (ITQ)[158], which is an older method. LSH [155] most of the time

performs better than every other method in the second scenario for long binary codes.

It is not obvious how to enforce the bias term for methods that preserve cosine similarity. In-

spired by [3], we propose a geometrical intuition on learning Iterative Quantization (ITQ)[158]

augmented by a bias term. This binary embedding leverages correlation using the notion of

predictability introduced by Rastegari et al. [3, 6]. A particular bit in a predictable binary code

is (ideally) identical in all neighboring data samples. Rastegari et al. [3, 6] use predictability to

represent nearest neighbor preservation via a max-margin formulation. However, they had su-

pervision in the form of specification on similar samples which results in tractable optimization.

We show that for unsupervised discovery of predictable binary codes the max-margin formu-

lation is intractable. But, by employing a bias term in ITQ we can easily produce predictable

codes. Further, we show that even more predictable binary codes can be obtained by random

perturbations of the hyperplane parameters at each iteration of quantization. Our experimental

evaluation on three datasets shows that augmenting ITQ with a bias term (Predictable Hashing)

often outperforms LSH and state-of-the-art data-driven methods.

The principle contribution of this work is methodological – a specification of appropriate method-

ology for comparing binary coding methods. When these methods are employed, the relative

performance of coding algorithms is often very different from results reported in the literature.
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Additionally, we propose a variation of iterative quantization (ITQ), using predictability of the

bits, which involves extending the ITQ algorithm with a bias term.

8.2 Experimental Settings and Notations

In order to evaluate the accuracy of binary codes we measure precision and recall for the task

of r-nearest neighbor retrieval. First we partition the data into two sets; train and test. On the

training partition we learn the binary codes and on the testing partition we use that model to

extract the binary codes. We take the actual nearest neighbors in the original feature space as

ground truth. Then we use the binary codes to find the nearest neighbors in binary space using

Hamming distance. Given a query sample, we retrieve the samples around the query in the

Hamming space within radius r. For each r we compute the precision and recall. Therefore by

varying r we construct the precision-recall curve.

8.2.1 Datasets

We consider three datasets from the computer vision community for image retrieval tasks and

object recognition. ImageNet20K [170] ImageNet includes 17000 categories of objects. We

used the benchmark of ImageNET referred to as ISLVRC2010 which has 1000 categories; for

each category we randomly selected 20 samples. In total we have 20K images. This setting is

followed by [3]. We used BoW (with 1000 codewords of SIFT features), SPHoG, GIST and LBP

as visual features; we concatenated them into a long feature vector and used PCA to reduce the

dimensionality to 1000. 1MGist [160] This dataset contains 1M internet images and their GIST

features; it has 960 dimensions. This dataset was created by Jégou et al. [160] and has been used

for approximate nearest neighbor search in the vision community. SUN14K [171] This dataset

has 700 categories of images. Unlike ImageNet, this dataset is for scene recognition. We used

the portion of this dataset used for attribute based recognition by Patterson and Hays [172]. It

has 14K images and we used the visual features extracted by Patterson and Hays [172] which

have 19K dimensions. We randomly selected 1K dimensions.

8.2.2 Methods

We compare different state-of-the-art binary embedding methods on the image retrieval task.

The methods we evaluate are: Iterative Quantization (ITQ) [158], Orthogonal K-means(OK-
means)[159], Spectral Hashing (SPH) [156], Multidimensional Spectral Hashing (MDSH) [157],

Locality Sensitive Hashing (LSH) [173]; we compare with two variant of LSH – one with the

bias term (LSHbias) and the other without (LSHnobias). We present ITQ augmented with a
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bias term as Predictable Hashing (PH). We used the online available software for ITQ, MDSH

and OK-means provided by their authors.

8.2.3 Notation

We denote the data matrix by X ∈ RD×N where D is the dimensionality of the space and N is

the number of data points. A data point is represented by xi which is the ith column of X . The

output binary codes are represented by B ∈ {1,−1}K×N where K is the number of bits and bi
is the ith column of B.

8.3 Preserving Cosine Similarity

Our goal here is to map points that have high cosine similarity in the original feature space to

binary codes that have small Hamming distance. If we regard the binary codes as hash buckets,

this is equivalent of bucketing or discretizing the orientation in the original feature space. One

way to accomplish this is to use LSH, but force each random hyperplane to pass through the

origin (We assume the data are mean centered, i.e. mean of the data is at the origin). In LSH,

each data point is projected to a K dimensional subspace using K random projections. Each

projection is a hyperplane in the original D dimensional space. We denote wk as the normal

vector for the kth hyperplane. The values of the elements of wk are randomly drawn from a

stable distribution. A datapoint xi in RD is binarized to 1 or −1 by a random hyperplane wk
depending on which side of the hyperplane wk it lies in. This binarization is simply achieved by

taking the sign of wTk xi. By using K random hyperplanes, we generate a K dimensional binary

code for each data point, creating a K dimensional Hamming space.

To compare such a method to one that preserves Euclidean distance, we must make sure that

the comparison is fair. This can be ensured by simply normalizing the data by mapping it to

the surface of the unit hypersphere. In this case, Euclidean distance is inversely proportional

to cosine similarity, ‖xi − xj‖ = 2(1 − cos(θij)) where θij is the angle between xi and xj .

Therefore, all methods that preserve Euclidean distance will preserve cosine similarity as well.

Unit-norm normalization is a very popular normalization method for visual features. For the

intensity based features it provides some robustness to illumination and for high dimensional

histogram feature it captures the pattern of the histograms which somewhat ameliorates the

curse of dimensionality.

Gong and Lazebnik [158] did not explicitly show that ITQ preserves cosine similarity. It is

simple to see that what ITQ is optimizing for is the best rotation of the unit(binary) hypercube

so that the nodes of the hypercube have minimum distance from data points minR,B ‖RX −B‖
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where R is a rotation matrix . When the data are not normalized, there is a large amount of

error caused by different magnitudes of data points compared to the locations of the nodes of

the hypercube. But when the data is normalized to the hypersphere the only source of error is the

angular difference from data points to the nodes of the hypercube. Therefore, ITQ will achieve

its best performance when the data are normalized.

In SPH and MDSH the affinity between data points A(xi, xj) = exp(−‖xi − xj‖2/2σ2) is

more correlated with Euclidean distance but normalizing the data makes it more correlated with

cosine similarity.

Figure 8.1 shows the precision-recall curves for performing nearest neighbor retrieval on each

dataset. In each experiment, we used a specific code length and in the ground truth we fixed the

number of nearest neighbors. These are reported in the title of each plot. ”Dball” indicates the

average number of nearest neighbors and ”nbits” is the number of bits(code length). Figure 8.2

shows the effect of the number of bits on the accuracy of retrieval. We vary the number of

bits (Code length) by 32, 64, 128, 256 and 512. For each code length we measure the average

precision by varying the radius size.

In Fig 8.1 and Fig 8.2 we show the results of comparing all methods when the data are appropri-

ately normalized. ITQ consistently performs the best. This is contrary to the results presented in

[159] and [157] that claimed that OK-means and MDSH outperform ITQ. In the GIST and Ima-

geNet datasets OK-means and ITQ exhibit comparable results. We examined the distribution of

eigenvalues of the data in each dataset and observed in GIST and ImageNet the eigenvalues are

more uniformly distributed than the SUN dataset. This indicates that the intrinsic dimensions of

feature spaces of GIST and ImageNet (which is BoW) are less correlated than the feature space

of SUN (which is a combination of BoW, GIST, SSIM and color histogram).

8.4 Preserving Euclidean Distance

Here we train a model so that points with low Euclidian distance in the original feature space

have small Hamming distance in the Hamming space. In this scenario the performance of LSH

is significantly better than suggested by results published in conjunction with recently developed

data driven approaches. When the length of binary codes are sufficiently large, LSH outperforms

these data driven methods. This is mainly because these data driven methods need a mechanism

avoid selecting hyperplanes that are redundant - that code the training data very similarly. They

do this by enforcing that vectors of encoded bits be uncorrelated across hyperplanes. We will

explain why this constraint on correlation is too strong, and limits performance of data-driven

methods. Furthermore, we investigate different data distributions, and illustrate and reason about

the cases in which LSH performs better. We propose a simple coding scheme based on the notion
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FIGURE 8.1: Precision-Recall curves with different number of NN on different datasets when
data are normalized
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FIGURE 8.2: Average Precision vs Code length when data are normalized

of predictability that allows ITQ to learn binary codes that model the correlation between the

original features. We show that predictability allows the method to be data driven without the

need to enforce orthogonality of the bits. Our solution outperforms LSH up to fairly large code

lengths.

8.4.1 In Defense of LSH

The power of LSH has been underestimated in many recent papers [157, 158, 161]. We assume

that nearest neighbors in the original Euclidean space are measured by the `2-norm. According
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FIGURE 8.3: Impact of the bias term in LSH on GIST dataset: (a) shows average precision vs. code
length. (b) shows precision-recall curve at 256bit code length. (c-e) shows the correlation between bits

generated by ITQ,MDSH and LSHbias respectively

to Datar et al. [155], the chance of preserving nearest neighbors in the Hamming space by LSH

will be higher when the random values of wk come from a normal distribution.

In LSH each random hyperplane can have a bias term. This bias term can shift the hyperplane

away from the origin, but should not move the hyperplane out of the region that the data points lie

in. The diameter of the region that contains the data points is defined by d which is the distance

between the two farthest points and the radius of the region is r = d
2 . If we assume that data

points are mean centered, then the bias term for each random hyperplane is a real value chosen

uniformly from the range [−r, +r]. Inspecting the authors’ codes in many binary hashing papers

for image retrieval [158]1 [174]2 [161]3 [157]4, reveals that they do not include a bias term for

random hyperplanes in LSH when comparing their methods with LSH for preserving Euclidean

distance.

One may think that since the original feature space for images is usually very high dimensional

and the bias term just adds one more dimension, that its impact should be negligible. We show

that the impact of the bias term is considerable when the length of the binary code is large. Figure

8.3 (a) shows a comparison on the GIST dataset, which is commonly used in image retrieval.

When we increase the number of bits, the performance of LSH with the bias term (LSHbias)

significantly increases. LSHbias even outperforms state-of-the-art data driven methods. Two

questions arise immediately: Why do data driven methods perform worse than LSHbias? and

Why, with short code lengths, does LSHbias not perform as well as with larger code lengths?

To answer these questions we investigate two well known data driven methods for producing

binary codes – Spectral Hashing (SPH) and Iterative Quantization (ITQ). SPH constructs binary

codes with uncorrelated bits that minimize the expected Hamming distance between datapoints,

i.e. pairs of points that have small distances in the original feature space, should also have small

Hamming distances in the binary code space. Their optimization leads to a mapping of data into
1http://www.unc.edu/˜yunchao/code/smallcode.zip
2http://www.cse.ohio-state.edu/˜kulis/bre/bre.tar.gz
3https://subversion.assembla.com/svn/min-loss-hashing/trunk
4http://www.cs.huji.ac.il/˜yweiss/export2.tar
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the space of eigen functions. The binary codes are produced by thresholding that mapped data

using orthogonal axes in the eigen space. ITQ searches for a rotation of the data (after reducing

the dimensionality by PCA) which when theresholded with respect to orthogonal axes results in

small quantization error. The orthogonality of the axes leads to uncorrelated bits in the binary

codes. Although these two approaches (SPH and ITQ) optimize different objectives, they share

the common hard constraint that forces the bits to be uncorrelated. This hard constraint actually

degrades the power of these methods. Figure 8.3(b) shows the precision-recall curves for 256

bit binary codes of different methods and (c-e) shows the correlation between the bits in ITQ,

MDSH and LSHbias respectively in 256 bit codes. The bits in LSHbias have more correlation

than MDSH and ITQ, but still LSHbias performs better. This observation is contrary to the

popular belief that bits in binary codes should be uncorrelated.

Suppose a bit value for a point in the feature space is created by a hyperplane w which crosses

the data points in RD. In order to generate a K-bit binary code for each sample, we need K

hyperplanes. We stack all the normal vectors of the hyperplanes in a D ×K matrix W where

the kth column of W is the normal vector for the kth hyperplane. If we want the bits to be

uncorrelated then we must have BTB ≈ I . The bits are generated by B = sign(W TX)

therefore:

BTB = sign(XTW )sign(W TX) ≈ I (8.1)

By relaxing the binary values (ignoring the sign function), we have XTWW TX ≈ I . Let

S = WW T . Now we can rewrite the equation as XTSX ≈ I . This indicates that matrix S

must be high rank. But since S is generated by the outer product of W with itself, its rank

cannot be more than min(D,K) (W is D ×K). In most binary hashing methods we want the

number of bits to be fewer than the original dimensionality of the feature space. Thus D > K.

Therefore, the rank of S must be K. This means that the K hyperplanes have to be orthogonal.

Furthermore, to obtain uncorrelated bits, all the hyperplanes must pass through the mean of the

data points. This forces the hyperplanes to have almost equal portions of the data points on each

side. Figure 8.4-(a) shows a case of distribution of data in which data points (shown in blue)

are highly correlated. To create a 2-bit binary code for this data we use two lines (hyperplanes

in R2). The red lines indicate the orthogonal directions of PCA on this data. By rotating these

red lines we can produce all the possible orthogonal directions that cross the mean of the data

(In this figure the data are mean centered). However, the best way of splitting these data by

two lines (to produce binary codes that preserve the nearest neighbors of each point) is given

by the green lines. The green lines are not orthogonal and they do not cross the mean of the

data points. Moreover, the bits produced by the green lines are also highly correlated. Here it

makes sense that the bits be correlated, because the data itself are highly correlated. In most

real world situations there are correlations between data. Therefore, binary codes should indeed

model these correlations. The translations of the hyperplanes are very important for modeling
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FIGURE 8.4: (a) on highly correlated data orthogonal splits cannot produce effective binary codes. (b)
We search for predictable splits by rotating the augmented plane on the unit sphere. The blue points are
the original points in 2D that are mapped to a higher dimension and the green points are the projections

of the original points after a proper rotation has been found

these correlations. The bias term in LSH is the key factor, because it allows the hyperplanes to

move freely in space.

One way to measure linear correlation between data points is to look at the eigenvalues of the

principle components of the data. If all the components have equal eigenvalues, the data are

not linearly correlated. There may be nonlinear correlations between the data but capturing

nonlinear correlations is not trivial, and, in fact, is an area of current research; one can use

Kernel-PCA[175]. If there were no strong correlations between data, then the bias term is not

needed. In such a situation, data driven methods with the constraint of uncorrelated bits would

work perfectly.

We next investigate the second question; Why, with short code lengths, does LSHbias not per-

form as well as with large code lengths? Consider two data points binarized by LSH into K

bits. If all K bits of these two instances are equal, then the probability that these two points

are neighbors is 1 − 2−K . This is simply the confidence of being neighbors given the K bit

Hamming similarity of random projection binary codes. This confidence value increases expo-

nentially with K. When K is very small, ITQ performs significantly better than other methods

because it first reduces the dimensionality of data to K via PCA. We know that the first few

components of PCA usually have similar eigenvalues. This means that when the dimensionality

of data is drastically reduced, they will not be highly correlated in the reduced space. For ex-

ample, consider a 3D space where the data points are uniformly distributed on a plane. When

you project the points on the first two eigenvector , which is the plane that fits data the best, the

projected points are no longer correlated in the 2D space. Therefore, it is safe to enforce the

constraint of uncorrelated bits during code construction.

Now the question is: how can we take correlation into account for learning the binary codes?

In the next section we propose a method that uses the notion of predictability and employs a
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bias term in the hyperplanes for learning in ITQ. We do not claim that our method outperforms

LSHbias for all large numbers of bits, but our method shows superior empirical performance

using fairly large code length (256 and 512 bits).

8.4.2 Predictable Embedding: Enforcing bias term in ITQ

The concept of predictability in binary codes was introduced for attribute discovery [3] and dual-

view hashing [6]. It is the ability to predict the bit value of an arbitrary bit in a binary code of

a sample by looking at the same bit of the binary codes of the nearest neighbors of that sample.

For example, if the kth bit of a predictable binary codes is 1 then the kth bit of predictable

binary codes of the neighbors of that sample are also highly likely to be 1 (in other words, the

bit value can be easily predicted as 1). Rastegari et al. [3, 6] proposed that a bit value produced

by a hyperplane is predictable when the corresponding hyperplane has max-margin from data

points. However, in both their approaches, they need labels for data to learn the max-margin

hyperplanes. In [3], their goal was to produce binary codes that preserve the classification

performance compared to the original feature space, therefore they use the class labels of each

sample. In [6], their goal was to learn a shared Hamming space between two modalities (e.g.

textual and visual). They use the bit values in one modality as labels for samples in the other

modality. For our purpose, however, unlike the general predictable binary code setting, we

do not have label information for samples to learn max-margin hyperplanes. We formulate an

optimization function based on a max-margin criteria that does not require label information, as

follows:
min
w,ξ
‖w‖22 + C

∑
ξi

s.t.

∀i, sign(wTxi)(w
Txi) > 1− ξi

∀i, ξi > 0.

(8.2)

Given that each bit in the space is generated by a hyperplane, we seek a hyperplane w that has

max margin from data points X . To enforce the max-margin constraint in equation 8.2 we use

sign(wTxi) as the label of the ith sample. We embedded the bias term into the xis by [xi; 1].

Equation 8.2 is combinatorial due to the sign function and so it is not practical to solve this

optimization directly.

Predictability involves finding a hyperplane that passes through a region of data points with large

margin. ITQ similarly looks for gaps between the main axes (e.g. X and Y which are orthogonal

to each other) and the data points. If we can find a mapping of data that has a gap between

the mapped points and the main axes, a simple quantization algorithm (ITQ) would construct

predictable hyperplanes. To achieve this, we lift all the data points into a space with one more

dimension by representing them using homogeneous coordinates. This is nothing more than
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enforcing a bias term for hyperplanes. To learn these bias terms we simply apply ITQ to the

lifted data. Next we present a geometrical interpretation.

For illustration purposes, suppose the data lies on a 2D plane; by adding one more dimension

we simply lift up the plane on to Z = 1 in the X-Y -Z coordinate system. By rotating this plane

with respect to the origin we obtain a configuration in which the gaps between the data points

are aligned with the axes in the X-Y coordinate system. Once we achieve that, we project the

data back to the X-Y plane. The translation is implicitly determined by rotation in the higher

dimension.

Figure 8.4 (b) illustrates the process of adding one more dimension, rotation and projection. As

can be seen, the axes on the original planes (green axes) are centered at the mean of the data

points (blue points) which is in the dense area of the points. Quantizing the data using these

axes will assign different binary codes to the points around the center. By rotating the data on

the plane we can never obtain a good quantization from the axes of the plane because the center

point is an invariant of such rotations. Thus, the data around the center are always assigned

different binary codes (i.e., not predictable) while they are highly clustered. By rotating the

plane of lifted data around the origin of the unit sphere and projecting it back to the X-Y plane

we obtain the green points which are well separated by the main axes (blue axes). Basically, by

rotating in higher dimension we achieve an affine transformation of data in the original space

(In this figure X-Y ) that can squeeze or stretch the data to align gaps between the data with the

main axes.

Formally, we first reduce the dimensionality of the feature vectors toK by PCA and append 1 to

X to lift the points into the space that is larger than the original one by 1 dimension. We denote

the augmented and dimension-reduced vector by X̂ = [X; 1T ] where 1 is a vector of ones. The

optimization is minB,R ‖B −RX̂‖2F s.t. RRT = I . This optimization is identical to the one in

ITQ. We can solve it with same iterative procedure as ITQ. One might think the same strategy

would have a similar effect on Orthogonal K-means but it does not. In OK-means, in contrast

to ITQ, the optimization for finding the best rotation is in the original feature space, not in the

PCA reduced space. In OK-means the space will be divided to K partitions. After finding a

global rotation, each partition will be quantized into two parts using a k-means like procedure.

Therefore, the bias term will be effective on one partition at a time which is equivalent to being

applied to a single bit at each iteration. We have not observed any difference in performance by

enforcing a bias term in OK-means; therefore, we do not include them in our results.

Figure 8.5 shows the precision-recall curves for performing nearest neighbor retrieval on each

dataset. These results shows the LSH with bias (LSHbias) and ITQ with bias (PH) are outper-

forming other methods most of the times. Again, this is contrary to results published in previous

papers [157, 159] on these methods. It can be observed that OK-means gives better performance

only for short binary codes in the GIST and ImageNet datasets, but as we increase the number
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FIGURE 8.5: Precision-Recall curves with different number of NN on different datasets
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FIGURE 8.6: Average Precision vs Code length

of bits it performs worse than PH and LSHbias. As explained before, the feature space of those

two datasets are less correlated compared to the SUN dataset.

Figure 8.6 shows the effect of the number of bits on the accuracy of retrieval. We vary the

number of bits (Code length) by 32, 64, 128, 256 and 512. For each code length we measure the

average precision by varying the radius size.
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8.4.2.1 Predictability with p-stable perturbation

Since the optimization in ITQ is solved by a block coordinate descent algorithm, it may get

stuck in local minima. In order to escape from the local minima, we again use the notion of

predictability. As mentioned earlier, the bits produced by a hyperplane are predictable when the

hyperplane has max-margin from data points. Equivalently, we can say that small changes to

the predictable hyperplane should not change the binary values of the bits. This is because the

hyperplanes are located within the gaps of the data and small changes will not flip a point to the

other side of a hyperplane.

If we apply small perturbations to the normal vector of a predictable hyperplanes, the binary

codes should be unchanged. If they do change, the perturbations can allow the solution to

escape from a local minima. Formally, we are looking for a set of hyperplanes W (a D × K
matrix), whose columns are normal vectors of hyperplanes, that produce the same binary codes

for samples even when their coordinates are perturbed. With the perturbation, we can rewrite

our criteria as follow:
min
B,R
‖B −W T X̂‖2F

s.t.

W = tR+ (1− t)E,

RRT = I,

(8.3)

where E is a K ×K matrix of random values from the standard normal distribution and t is a

balancing parameter for the amount of perturbation. We fix t = 0.9 in all of our experiments.

One can tune this parameter to obtain better performance. This optimization is the same as ITQ

but we apply small perturbations to the estimated rotation matrix at each iteration. The reason

that the random perturbation values in E should be drawn from the standard normal distribution

is because we need this mapping to preserve the neighbors under the `2-norm. As discussed

in [173], the parameters of a random projection should come from a p-stable distribution to

preserve `p-norm neighbors in the original feature space. The standard normal distribution is a

2-stable distribution, therefore it preserves neighbors under the `2-norm.

To measure the improvement due to random perturbations we performed an experiment without

perturbation and compare with our full model (see Figure 8.7).
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FIGURE 8.7: Impact of random perturbation in our method. We compare PHnoR (without random
perturbation) with PH (random perturbation).
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Chapter 9

Computationally Bounded Retrieval

9.1 Overview

Many computer vision problems can be formulated as a nearest neighbor search in some large

dataset. When the data involved is high dimensional, doing this search efficiently becomes

crucial but also extremely challenging. This is especially the case for the task of content based

image retrieval, where efficiency is a requirement due to the high dimensionality of the data and

the increase in size and availability of these databases.

The most common retrieval approaches are tree based and hashing based methods. In tree

based approaches, the search space is embedded into a tree structure. At query time, the tree

is traversed until a leaf node is reached, which points to a set of images that are similar to

the query image. Then a final search is conducted over this set of images to find the nearest

neighbor. Decision trees [176] and kd-trees[177, 178] are two such methods. When the number

of dimensions grows, these conventional approaches often become less efficient, since the time

or space requirements of these approaches often grows exponentially with the dimensionality.

Hashing based methods, on the other hand, reduce the number of dimensions involved with

projections. This in turn removes the exponential dependence on dimensionality that trees suffer

from. For instance, Locality Sensitive Hashing (LSH) uses random projections for the encoding

step [38]. The images are indexed by hash tables, and at test time the query is encoded into

an index that points to these hash tables. Typically the encoding step is the bottleneck in these

image retrieval methods.

We focus primarily on image retrieval using binary codes [179]. In this approach, each image

is encoded into a binary code such that the nearest neighbors in the corresponding Hamming

space remain the same as the actual nearest neighbors in the original feature space. These

binary codes can be used as hash keys to construct a hash table for real-time nearest neighbor
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FIGURE 9.1: Comparison of the accuracy (area-under-the-curve) and computational cost of
the proposed algorithm (SBE) with the kd-tree method for different sparsity values. The curves
correspond to increasing code lengths for SBE and decreasing bucket size for kd-tree. Our

method achieves the same accuracy as a kd-tree while being 100 times faster.

search [180]. Calculating the binary code, i.e. encoding, is in this case evaluating a mapping

function f from some d-dimensional inputs to k-dimensional outputs. However if d and k are

large, computational efficiency of f becomes a bottleneck at test time. Since the output is binary,

this can be treated as a linear classification problem per bit. Even though there have been several

efforts on making non-linear classification more efficient [181, 182], none of these methods are

faster than linear classifiers, whereas making f more efficient would require sub-linear time

complexity classifiers.

Typically, a single bit in a binary code is obtained by a dot product between the normal vector of

a hyperplane and the feature vector, which implies O(dk) time complexity. In [183] a bilinear

projection is employed to reduce the time complexity to O(d
√
k). Recently, [184] proposed

to use the columns of a circulant matrix as linear projections. This enables faster projection to

generate k-bits (k > 1) by Fast Fourier Transform (FFT) which is O(d log(d)). We propose an

optimization that learns a sparse projection to binary codes with a constraint on the computa-

tional budget.

We propose to find a mapping f that quantizes the data into binary values while: 1-minimizing

the quantization error, and 2-minimizing the computational cost of f . We introduce two opti-

mizations that employ `1-norm to constrain the computational operations in f based on the given

sparsity rate α. In the first case we assume the binary codes are given and we only optimize for

the mapping function f . In the second case we jointly optimize for binary codes and f . The

joint optimization also introduces a new framework for learning binary codes, where the linear

mapping function can be replaced by any arbitrary function.
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We demonstrate our method in several image retrieval datasets (ImageNet, GIST, SUN) for

nearest neighbor search. Our method achieves a high accuracy while having orders of magni-

tude less operations in comparison with the state-of-the-art methods on fast binary embedding.

Surprisingly, our joint optimization even outperforms the baseline iterative quantization (ITQ)

method [51] in terms of accuracy for some values of α. α provides a way of controlling the

trade-off between speed and accuracy. Figure 9.1 shows that we achieve comparable accuracies

to the kd-tree method using our algorithm, which requires only a fraction of the time a kd-tree

requires.

9.2 Background

Most binary coding methods generate binary codes by projecting the data on linear hyperplanes

that is followed by a binarization step (e.g. sign function). Given a data point x ∈ Rd, a k-bit

binary code is generated by a hash function h(x) ∈ {+1,−1}k

h(x) = sign(WTx); (9.1)

where W ∈ Rd×k .There are two common approaches for generating the projection matrix W;

1- Random projection: Elements of W are randomly chosen from a Gaussian distribution.

This approach has been referred to as LSH in literature[38, 185, 186]. 2-Data dependent: The

matrix W is learned from a set of training data to be optimized for a particular task (e.g. nearest

neighbour retrieval or semantic search). There are many works on data dependent hashing [51,

187–191]. ITQ [51] is one of the popular methods that shows high accuracy in retrieval. It

minimizes the quantization error over the training data after the dimensionality is reduced by

PCA. In order to have uncorrelated bits in ITQ, the projection matrix is constrained to be a

rotation matrix.

Q(R,B) = min‖RPX−B‖ s.t. RRT = I (9.2)

where P ∈ Rk×d is the projection matrix from PCA and X ∈ Rd×n is the data matrix, such that

each column in X is a d dimensional feature vector. B ∈ {+1,−1}k×n is the data in quantized

form, and R ∈ Rk×k is the rotation matrix. The optimization is an iterative process over two

steps; 1- fix R and solve for B, and 2- fix B and solve for R.

When x is a high dimensional vector, the computation time for this projection is prohibitive,

since the computational complexity is O(dk). As discussed earlier, the computation cost for

the binary projections can be very crucial in many applications. To overcome this cost [183]
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presents bilinear projection (BITQ) as an efficient way of generating binary codes.

h(x) = sign(RT
1 ZR2) (9.3)

where Z ∈ R
√
d×
√
d is the reshaped version of data vector x (vec(Z) = x) and R1,R2 ∈

R
√
d×
√
k are forced to be rotation matrices. This can be reformulated as follow:

h(x) = sign((RT
1 ⊗R2)x) (9.4)

where ⊗ is the tensor product. The computational complexity of bilinear projection in Equa-

tion 9.3 isO(d
√
k+
√
dk). Since d >> k, the dominant part of complexity would beO(d

√
k).

Similar to ITQ, there is an iterative process which can find the optimal R1,R2 to minimize

quantization error.

In [184] Circulant Binary Embedding (CBE) is proposed for fast projection. The hashing func-

tion in CBE is in this form:

h(x) = sign(CDx) (9.5)

where C ∈ Rd×d is a circulant matrix where the elements of the ith column of C can be gen-

erated by one circular shift of (i− 1)th column. and D is a diagonal matrix. The operation in

Equation 9.5 can be implemented efficiently via Fast Fourier Transform (FFT) and the compu-

tational complexity of Equation 9.5 will be O(d log(d)).

In order to achieve faster projection in both BITQ and CBE, the projection matrix is forced to

have a certain structure. In BITQ the projection has to come from a tensor product of two smaller

rotation matrices and in CBE the projection matrix has to be a circulant matrix. These limitations

on the structure of projection matrix can be seen as a type of regularization. In this work, we

present a method that learns a sparse projection matrix W by directly regularizing the projection

matrix using `1-norm. We can obtain very sparse projection matrices with this method, with

sparsity rates of 0.1, 0.01 or even 0.001, which enables fast and accurate binary projection. Our

results shows that we can reach comparable accuracies in retrieval with a sparsity rate of 0.01.

Figure 9.2 illustrates the computational cost of complexities dk, d log(d), d
√
k and αdk with

respect to the number of bits (k), where α is the sparsity rate of our proposed method. Evidently,

αdk is more efficient with growing d.
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FIGURE 9.2: Complexity growth as a function of dimensions

9.3 Learning Computationally Constrained Binary Codes

Most machine learning problems can be formulated as learning of a prediction function fw :

X → Y which is a many-one mapping between some input space X and an output space Y
that is parameterized by a parameter vector w. Given a set of n training input-output pairs

{(xi,yi)}ni=1, the conventional empirical risk minimization approach for learning the optimal

parameter vector w∗ involves solving the following optimization problem:

w∗ = argmin
w

n∑
i=1

`(yi, fw(xi)). (9.6)

where `(y, ŷ) is a loss function that measures the discrepancy between the prediction ŷ and the

ground truth output y.

The choice of the representation of the prediction function fw and the loss function ` results in

different learning algorithms. For instance, a simple but popular representation for the prediction

function for binary classification problems is:

fw(x) = sign(wTx) , (9.7)

where sign is element wise sign function {sign : R 7→ {+1,−1}}. In many large-scale com-

puter vision and machine learning tasks, such as image labeling or classification, the inputs are

high-dimensional, i.e. d is large. Many tasks also require multiple computations of the predic-

tion function for a single input. For instance, this is the case for the problem of foreground-

background segmentation where the task is to assign each pixel the foreground or background

label by computing the predictor in a sliding window fashion. Furthermore, one may need this

computation to work in real time: more than 20 frame per second. In these case, even comput-

ing the simple linear mapping defined in Equation 9.7 may become computationally expensive
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because of the large number of multiplication required to compute the dot-product between w

and x.

In the case of binary codes learning the parameter vector w is replaced by a parameter matrix W.

In this paper, we focus on binary code predictors that tie themselves to a fixed computational

budget. Specifically, we consider the case where there is a limit on the number of arithmetic

operations that can be performed at test time. More formally, we want to solve the computation-

bounded risk minimization problem that is defined as:

argmin
W,b

∑n
i=1 `(bi, fw(xi)) (9.8)

st. τ(fw) ≤ l (9.9)

where bi ∈ {−1, 1}k is the desired binary code for xi and τ measures the computation com-

plexity of evaluating the prediction and l is the required computational bound. For the case of

predictor defined in Equation 9.7, the above problem translates to

argmin
W,b

∑n
i=1 `(bi, sign(W

Txi)) (9.10)

st. ‖w‖0 ≤ l (9.11)

where ‖w‖0 denotes the `0 norm that counts the number of non-zero components of W since

only these many multiplications are needed to evaluate the function.

In contrast to the classification problem, there are no ground truth labels for our task of bi-

nary code learning. In fact, the classifier and the labels should both be estimated, which is a

complicated task. In the next subsection we explain how to learn an optimal computationally

bounded function when the desired binary codes are given. In subsection 9.3.2, we propose a

joint optimization that solves for both binary codes and the mapping function jointly.

9.3.1 Sparse Projection When Binary Codes Are Given

To improve the computation cost of f , a relatively straightforward idea is to make the matrix W

sparse. When ‖W‖0 ≤ l, i.e. when number of non-zero entries of W is at most l, then clearly

f can be computed in O(l). However, directly solving for `0-norm is intractable. Therefore,

sparsity is often incorporated by introducing an `1 penalty on the parameter matrix W followed

by thresholding.

In our approach we minimize the quantization error in the original feature space, which is in

essence similar to ITQ which minimizes the quantization error in the PCA space. However, we
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force the W to be a sparse matrix.

W∗ = argmin
W
{‖WTX−B‖F + λ|W|`1} (9.12)

Here |.|`1 operator on a matrix is equivalent to sum of the absolute values of the elements in that

matrix. We assume that the binary codes B are computed as a part of training via one of the

best binary coding methods (e.g. ITQ). It can be shown that the optimal solution for W can be

computed independently for each column of W. Given the matrix B from the output of ITQ

(Equation 9.2), we can rewrite Equation 9.12 as follows:

W∗ = argmin
W
{
k∑
i=1

‖wiTX− bi‖`2 + λ|wi|`1} (9.13)

where wi and bi are ith row of WT and B respectively, and λ is a trade-off parameter. Equa-

tion 9.13 is a minimization over sum of k positive elements such that the parameters in each

element is independent. Therefore, the global minimum is equivalent to the sum of the mini-

mum values in each element:

W∗ = argmin
W
{
k∑
i=1

min
wi
{‖wiTX− bi‖`2 + λ|wi|`1}} (9.14)

w∗i = argmin
wi

{‖wiTX− bi‖`2 + λ|wi|`1} (9.15)

W∗ =
[
w∗1 w∗2 . . . w∗k

]
(9.16)

Intuitively, elements in each row of B can be considered a binary class label for the columns

of X. Similarly, each column of W can be considered a classifier that predicts the binary

labels. Therefore, we can reformulate the optimization for ith column of W as a max-margin `1
regularized linear classifier:

argmin
wi

|wi|`1 + C
n∑
j=1

ξj

subject to bi(j)(wiTxj) ≥ 1− ξj , j = 1, . . . , n.

(9.17)

Here xj is the jth column of X. We solve this optimization efficiently by using LibLinear [192].

After obtaining the optimized w, we zero out the dimensions with small absolute values to

reach the sparsity rate of α. This is done simply by sorting the absolute values in w and pick a

threshold based on the given sparsity rate (e.g. if the sparsity rate is 0.1, we zero out 90% of the

smallest values). Computational complexity of obtaining a binary code for a point x is O(αdk)
where α is the sparsity rate of W. Our experimental results show that even for very sparse

projections with α = 0.01, the accuracy drop is insignificant. As discussed earlier, for high
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dimensional data, generating short binary codes will lead to much less number of operations

than BITQ and CBE as explained on Figure 9.2. In the next subsection we discuss a case, where

the binary codes are not given during the training phase and we should optimize for both B and

W.

9.3.2 Joint Optimization

So far, binary codes were supplied in the training phase. These binary codes could be obtained

from the output of any compelling binary coding method (e.g. ITQ). As there is no guarantee

that the exact codes can be reconstructed by sparse mapping, we need to incorporate the search

for binary codes into the main objective. Similar to the Equation 9.12, we aim to minimize the

quantization error while maintaining the low `1-norm. In contrast to Equation 9.12, B is an

unknown variable.

(W∗,B∗) = argmin
W,B

{‖WTX−B‖F + λ|W|`1} (9.18)

To solve this optimization problem, one might consider an EM like iterative update of variables;

1- fix B and solve for W as described in Section 9.3.1, 2- fix W and solve for B which is

B = sign(WTX). However, solving this optimization does not entail a desirable solution.

The reason is, there is no control over dependency of bits of binary codes, i.e. there is no

constraint on B. Usually, low correlation can be achieved by an orthogonality constraint over the

parameters of the mapping function. In our case, it would be equivalent to have WTW = I as a

constraint in the objective. However, having this constraint along with the `1 penalty complicates

the optimization problem, since orthogonality and sparsity of the mapping function are two

competing constraints on minimizing the quantization error. Therefore we employ the iterative

optimization procedure explained above, but this time considering only one of the constraints at

each step.

To solve the optimization of Equation 9.18, we replace the matrix B with an explicit sign func-

tion of an orthogonal projection of the data as follows:

(W∗,P∗) =argmin
W,P

{‖WTX− sign(PTX)‖F + λ|W|`1}

s.t. PTP = I

(9.19)

where P ∈ Rd×k is an orthogonal matrix. This orthogonal projection ensures the low corre-

lation between the bits, and also in contrast to Equation 9.18, it provides an update for binary

codes which is not directly dependent on W. Again, we employ the iterative two steps block-

coordinate descend technique, where we iterate between solving for W and P. When P is

fixed, the problem would be the same as what we had in Section 9.3.1; the optimal W can be
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obtained via linear `1-SVMs. When W is fixed, the remaining optimization is as follows (let

M = WTX):

P∗ =argmin
P
{‖M− sign(PTX)‖F }

s.t. PTP = I

(9.20)

The optimized solution for P in Equation 9.20 is not unique. Let’s define P as the optimal

solution set for P∗. Solving this optimization is intractable due to the non-linearity of the sign

function. Instead of solving 9.20, we claim that using the following optimization gives an opti-

mal P:

P∗∗ =argmin
P
{‖ sign(M)−PTX‖F }

s.t. PTP = I

(9.21)

The above optimization(9.21) is an orthogonal procrustes problem and has a closed form so-

lution. P∗∗ = V(1:k,:)
TU where (U,D,V) = svd(sign(M)XT) 1. It can be shown that

P∗∗ ∈ P . Lets consider a single element in M as M(i,j). In 9.20 we would have :

P∗(:,i) =argmin
P(:,i)

{‖M(i,j) − sign(P(:,i)
TX(:,j))‖}

s.t. P(:,i)
TP(:,i) = 1

(9.22)

if M(i,j) ≥ 0, the optimal solution set

P(:,i) = {∀p ∈ Rd| pTX(:,j) ≥ 0, pTp = 1} (9.23)

The optimal solution from Equation 9.21 is P∗∗(:,i) = sign(M(i,j))
X(:,j)

‖X(:,j)‖
. Replacing P∗∗(:,i) with

p in Equation 9.23 proves that P∗∗(:,i) ∈ P(:,i). Analogously, we can prove the same solution

when M(i,j) < 0. Therefore, an optimal solution for 9.21 would also be an optimal solution for

Equation 9.20.

In Algorithm 6 we show all the steps in our joint optimization for binary code learning. The joint

optimization has an advantage over original ITQ formulation: in contrast to ITQ, the mapping

function is directly learned over the original feature space, not on the PCA reduced space. Our

experiments verify that the proposed method can outperform ITQ while being at least ten times

faster.

In the next section we show an extensive set of experiments to evaluate all the parts of our

proposed method in comparison to the other state-of-the-art methods.
1The (:) notation is the same as being used in MATLAB
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Algorithm 6 Sparse Binary Embedding

Input: X ∈ Rd×n, k(number of bits), λ, α, niter.
Output: W ∈ Rd×k, B ∈ {1,−1}k×n.
1: P← random orthogonal matrixd×k

2: repeat
3: L← sign(PTX)
4: W← `1 − LinSVMs(train data = X, train labels = L, hyperparameter = 1− λ)
5: M←WTX
6: (U,D,V)← svd(sign(M)XT)
7: P← V(1:k,:)

TU
8: Objective← ‖M− L‖
9: until convergence on Objective

10: W← zero out values in columns ofW to reach the sparsity rate α
11: B← sign(WTX)

9.4 Experiments

In this section, we measure the accuracy and computational cost of our method on different

datasets for image retrieval. The sparsity of our mapping function also proves to be beneficial

when the data is noisy. Therefore, we also present an evaluation on retrieval from noisy data.

9.4.1 Experimental Setting

Datasets: We consider three datasets in our experiments; ImageNet[193], GIST-1M[194], and

SUN14k[195]. Each dataset is randomly partitioned into three sets: train, query and base. The

parameters (mapping functions) are trained on the training set and we use each sample in the

query set to find its nearest neighbor in the base set. ImageNet includes 1000 categories of

images and has 1281167 images in total. We specifically used the ISLVRC2012 benchmark

dataset. 100K, 1K, 1180K samples were picked for training, query and base respectively. We

used CNN features extracted by Caffe [196] with 4096 dimensions. Gist1M [194] contains

1M images and their 960 dimensional GIST features. This dataset has frequently been used

for approximate nearest neighbor search in the computer vision community. It has a standard

partitioning of training(500K), query(100) and base(1M) sets. SUN14K[195] is a dataset of

700 categories of images, which is mainly used for scene recognition. We used this dataset

because of its high dimensional features (19080 dimensions). This dataset has been used for

attribute based recognition and dual-view hashing by Patterson and Hays [195] and Rastegari

et al. [197]. It has 14K images and the visual features extracted by Patterson and Hays [195],

which is a concatenation of GIST, PHOG and BoW. The reason that we chose these datasets

are: ImageNet: to evaluate our method on the state-of-the-art ConvNet (CNN) features that

showed great potential for recognition[198], GIST1M: to evaluate the accuracy of our method

on a standard image retrieval dataset, and SUN14K: because of its feature set that allows us to

evaluate the efficiency of our method on very high dimensional spaces. In order to have a fair
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FIGURE 9.3: Number of operations vs. Accuracy (AUC, Recall ): In this plot each curve
represents a method and each point on the curve corresponds to a code length (number of bits)

which change from left to right as follows: [16, 32 64, 128, 256]

comparison with other baselines, it is very important to pre-process the data by mean centering

and normalizing them to unit hyper-sphere [184, 199].

Methods: To best of our knowledge, there are two other works that focus on fast binary embed-

ding [183, 184]. Similar to [184], we use ITQ [51] as a baseline method which is not an efficient

method but it gives the best accuracy among other binary embedding techniques [199]. Cir-

culant Binary Embedding (CBE)[184] and Bilinear Iterative Quantization (BITQ) are used as

competitor methods in terms of efficiency and accuracy. These methods have two versions: one

with random paramaters (CBE-rand, BITQ-rand) and another one with optimized parameters

(CBE-opt, BITQ-opt). Here we only use the optimized versions for comparison. Our method is
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abbreviated by (SBE) which stands for Sparse Binary Embedding. We distinguish between the

optimization in Section 9.3.1 by (SBE-B) and the joint optimization in Section 9.3.2 by (SBE-
opt). In most experiments, we measure our method with a sparsity rate of α = 0.01, however,

we also explore the sparsity rates 0.1 and 0.001 in Section 9.4.4. For these comparisons, we

used the ITQ, BITQ and CBE software that is available online.

9.4.2 Nearest Neighbor Retrieval

In this section, we demonstrate the accuracy of the nearest neighbor retrieval task on the bench-

mark datasets. We present both recall rate and precision in the form of area-under-curve (AUC)

(Subsection 9.4.4). Similar to [184], the steps of this experiment for each method is as follows:

1- Learn a model using the training set. 2- Create the binary codes for all the samples in the

base set. 3-Pick one sample from query set and find its K-nearest neighbors in the base set by

using Euclidean distance in the original features space and consider this as ground-truth nearest

neighbor set. 4- Generate the binary code for the query sample and retrieve N nearest neigh-

bors from base set by calculating the Hamming distances on the binary codes. 5- Compare the

retrieval from binary codes with the ground-truth retrieval and measure the recall rates. This

process is repeated over all samples in the query set and the average recall rate is computed. By

varying N at K = 100, we measure recall rate at different amount of retrieval tasks and plot a

curve using these values. Figure 9.4, 9.5 and 9.6 show the recall rate as we change the number

of retrieval in different code length (bit). The curve of SBE-opt is on top of all the competitor

methods most of the times. It even out-performs the method ITQ, which is the most accurate

out of all the baseline methods.
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FIGURE 9.4: Recall curves for GIST1M dataset
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FIGURE 9.5: Recall curves ImgeNet dataset
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FIGURE 9.6: Recall curves for SUN dataset

9.4.3 Analysis of the objective in joint optimization

Here we present a comparison of the optimization functions proposed in Section 9.3.2. We

refer to Equation 9.18 as the Naive Update. This optimization produces highly correlated bits

which may have high quantization error. The new formulation presented in Equation 9.19 that

handles the orthogonality constraints is referred to as Orthogonal Update. In Figure 9.7, the first

row demonstrates the correlation between the bits of the binary codes generated from the two

optimization functions. As it can be seen, in contrast to Orthogonal Update, the bits resulting

from Naive Update are highly correlated. In Figure 9.7, the second row shows the quantization
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error after each iteration. The quantization error, as expected, goes up for Naive Update but for

the Orthogonal Update it goes down.
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FIGURE 9.7: Analysis on the optimization of the objective function on sparse binary coding

Another claim was that Naive Update should converge much faster than the Orthogonal Update,

since the latter has two competing constraints. This is shown in Figure 9.7, third row.

9.4.4 Coding Efficiency vs. Accuracy

In this section we compare the efficiency of our method with other competitor methods. In

order to present a fair comparison, instead of reporting the running time, we report the number

of arithmetic operations (NOP) used for each method. Figure 9.3 shows an evaluation over NOP

and accuracy which is measured by AUC and average recall rate. Each curve in Figure 9.3 depict

one method and each point on the curve corresponds to a code length (number of bits) which

is in the range of [16, 32, 64, 128, 256]. Evidently, in ImageNet SBE can achieve comparable

accuracy with 128 bits while being 1000 times faster than other methods. The dark green curve

corresponds to CBE is growing vertically in the plot. This is because the complexity of CBE

d log(d) is independent of the number of bits and only depends on the number of dimensions in

the original feature space.
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9.4.5 Retrieval Running Time Analysis

Since the main application for our fast binary encoding method is retrieval, we compared it with

kd-tree as a baseline for a nearest neighbor retrieval task. We used multiple index hashing as

a retrieval technique on top of our binary codes. For each eight consequent bits, we generate a

hash table to index the samples in the database. At query time, we perform b
8 look-ups. b is the

number of bits in our binary code. We score the collected indexes by counting the number of

time that they have been retrieved from the hash tables. Then, we pick the k indices with the

highest score as the k nearest neighbors. We vary the number bits by [16, 32, 64, 128, 256] and

compute the AUC and running time. In kd-tree we vary the bucket size by [22, 24, 28, 210, 212]

and compute the AUC and running time. The results on GIST1M are depicted in Figure 9.1. We

used the built in kd-tree toolbox in MATLAB for this comparison.

9.4.6 Retrieval from Noisy Data

The sparsity of the projection matrix in our method makes it possible to have accurate retrieval

with noisy data. In Figure 9.8 we show the performance of our method in comparison with others

on the noisy data in ImageNet. Noisy data is created by randomly selecting some dimensions of

each sample and change their values to either 0 , 1 or -1. As it can be seen our method can reach

higher accuracy compared to ITQ with high noise ratio.

Noise Ratio (in percent)
0 50 100

A
U
C

0

0.2

0.4

0.6

0.8

Retrieval with noisy data 128 bit

SBE-opt
SBE-B
ITQ
CBE-opt
BITQ-opt

FIGURE 9.8: Retrieval with noisy feature on ImageNet
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Chapter 10

On Large-Scale Retrieval: Binary or
n-ary Coding?

10.1 Overview

Large-scale retrieval has attracted a growing attention in recent years due to the need for image

search based on visual content and the availability of large-scale datasets. In this chapter we

focuses on the problem of approximate nearest neighbor (ANN) search for large-scale retrieval.

Approaches for solving this problem generally fall into two subcategories; Fast Distance Esti-
mation [194, 200] and Fast Subset Indexing[38, 176, 180, 185, 186]. Fast Distance Estimation

methods reduce computation cost by approximating the distance function. Distance computation

is very expensive in high dimensional feature spaces. On the other hand, Fast Subset Indexing

methods reduce the cost by constraining the search space for a query to a subset of the dataset

instead of the whole dataset.

A general technique for ANN search (both Fast Distance Estimation and Fast Subset Indexing)

is to discritize the feature space into K regions. Different coding methods can be used for this

purpose. One of the classic methods is one-hot encoding using K-means. K-means is a classic

quantization technique that quantizes data into K regions (clusters). Data is coded using a K

bit binary code, in which only one bit is one (representing the appropriate cluster) . Although

K-means works well for small values of K, it becomes intractable for large K.

An alternative method to one-hot encoding using K-means is binary coding. One can code the

K clusters with m = log2(K)1 dimensional binary codes by relaxing the one-hot encoding

constraint and allowing multiple bits to be one. This is equivalent to partitioning the space
1Without loss of generality, we assume that K is selected such that m is a natural number.
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FIGURE 10.1: Difference between Subspace Clustering (Part A) and Subspace Reduction (Part B) for
generating n-ary codes. The example shows the simple case of generating 2-dimensional 3-ary codes. In
Subspace Clustering, data is clustered into 3 clusters in the two defined subspaces (e.g. the code for the
red cross is [2, 2]T ). In Subspace Reduction, data is transformed into a two dimensional space and each

dimension is discretized into 3 bins (e.g. the code for the red cross is [2, 3]T ).

into two regions m times. Many binary coding methods have been designed to address this

problem[38, 51, 188, 190]. While binary coding is more scalable, it has a high reconstruction

error.

Binary coding can be relaxed by allowing each dimension to be n-ary instead of binary (i.e. take

on integer values between 1 and n). In this case, K clusters can be coded with m = logn(K)

dimensional n-ary codes. We introduce a new categorization for methods that generate n-ary

codes. We explore two general approaches to generate m-dimensional n-ary codes: 1- Sub-
space Clustering: In this approach, the original feature space is divided into m subspaces and

each subspace is quantized into n clusters. 2- Subspace Reduction: Here, the dimensional-

ity of the original feature space is reduced to m and each dimension is quantized into n bins.

Figure 10.1 illustrates these approaches. Multi-dimensional quantization methods (e.g. PQ, CK-

means)[194, 200, 201] adopt the first approach to perform n-ary coding. They solve the problem

for any m and n (including n = 2 which leads to binary coding based on the first approach). On

the other hand, many binary coding methods(e.g. ITQ, LSH) [38, 51, 188, 190] are instances of

the second approach. However they are limited to the case where n = 2.

Most recent papers on quantization [200, 201], compared their proposed methods with binary

coding methods only with respect to Distance Estimation (i.e. typically employing exhaustive

search over the data, where the approximated distance is mimicking the ordering of images

based on Euclidean distance in the original feature space). This leaves the question of ”which

binary or n-ary coding performs better for ANN search using Subset Indexing?” unanswered.

The contributions of this approach are twofold. First, a new general approach for multi-dimensional

n-ary coding is introduced. Based on that, Linear Subspace Quantization (LSQ) is proposed as

a new multi-dimensional n-ary encoder. Unlike previously proposed n-ary encoders in which

the Euclidean distance between n-ary codes is not preserved, the distances in LSQ coded space
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correlate with the Euclidean distance in the original space. As a result, the codes can be used

directly for learning tasks. Furthermore, LSQ does not make the restrictive assumption of divid-

ing space into independent subspaces, which is common in n-ary encoders. Experiments show

that LSQ outperforms such encoders. Second, it is shown that n-ary coding does not always

outperform binary coding in retrieval. We show that binary coding works better when Subset

Indexing is used and present an explanation based on the two approaches to coding. To the

best of our knowledge this has not been identified previously. However, it is very important for

large-scale retrieval.

The rest of this chapter is organized as follows. In section 10.2, the general formulation for

both Subspace Clustering and Subspace Reduction is presented. Additionally, the LSQ coding

method is described and its relation to other methods and its properties are discussed. Section

10.3, describes the ways n-ary and binary coding methods can be exploited in combination

with distance estimation and subset indexing to reduce search cost in retrieval. Experiments are

reported in Section 10.4.

10.2 n-ary Coding

ANN search methods discretize the feature space into a set of disjoint regions. n-ary coding can

be used for this purpose. An n-ary code of length m is defined by an m-dimensional vector in

{1, 2, . . . , n}m. The goal is to transform data into m-dimensional n-ary codes that reconstruct

the original data accurately.

First, consider constructing a one-dimensional n-ary code. A common objective for quantization

methods is to minimize the reconstruction error, referred to as quantization error. In other

words, given a set of data points X ∈ RD×N where each column is a data point x ∈ RD, the

quantization objective can be expressed as:

min
Q
{‖X−Q(X)‖2F } (10.1)

where Q maps a vector x (column in X) into one element of a finite set of vectors C =

{c1, c2, . . . cn} in RD referred to as a codebook. The index of the codebook vector assigned

to a data point is its one-dimensional n-ary code. K-means optimizes this objective when the

size of the codebook is equal to K.

Using the one-hot encoding notation, the optimization in 10.1 can be written as follows:

min
B,C
{‖X−CB‖2F } (10.2)

118



where B ∈ {0, 1}K×N is a binary matrix in which each column is a 1-way selector - all of its

elements but one are zero.

In order to generalize one-dimensional n-ary codes to m-dimensional codes, we explore two

approaches: Subspace Clustering and Subspace Reduction. Although the former has been ex-

plored in the literature, the latter has not. Without loss of generality, we assume that the data are

mean centered (i.e. mean(X) = 0D×1) and scaled to [−1, 1] by mapping the data to the unit

hyper-sphere. In [51, 199], it is shown that it is very beneficial to normalize the data to the unit

hyper-sphere.

10.2.1 Subspace Clustering

Here, to generate m-dimensional n-ary codes, the original feature space is divided into m sub-

spaces and each subspace is discretized into n regions. To this end, in 10.2, the number of

clusters can be set to K = nm and the selector can be allowed to include m non-zero elements

as follows:

min
B,C
{‖X−

[
C1 C2 . . . Cm

]


B1

B2

...

Bm

 ‖2F } (10.3)

Here Ci and Bi are the codebook and its related one-hot encoding in the i’th subspace. In gen-

eral, the optimization of 10.3 is intractable. As a result, Product Quantization[194] and Cartesian

K-means [200] solve a constrained version of this problem where the subspaces created by the

Cis are orthogonal. In other words, {∀i, j| i 6= j Ci
TCj = 0n×n}. Intuitively, the original

space is divided into m independent subspaces and each is clustered into n regions. We next

present another approach to n-ary coding in which no such constraint is imposed.

10.2.2 Subspace Reduction

Subspace Reduction maps the data into an m-dimensional space and discretizes each dimension

into n bins. The goal is to perform this discretization to minimize the reconstruction error in the

original space. Formally, the optimization problem can be written as follows:

min
f,f̃
{‖X− f̃(qn(f(X)))‖2F + λR(f̃)} (10.4)
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where f : RD 7→ Rm is the mapping function and is applied to each column of X, f̃ : Rm 7→
RD, (m ≤ D) is the reconstruction function which projects the data back to the D dimensional

space in which the reconstruction error is computed. In order to prevent overfitting, the recon-

struction function must be regularized. R is a regularizing function that limits the variations in

f̃ , λ is a parameter controlling the amount of regularization, and qn is a uniform quantizer that

is applied to each element of its input and is defined as:

qn(x) =


θn(1) x < θn(1)+θn(2)

2

θn(2)
θn(1)+θn(2)

2 ≤ x < θn(2)+θn(3)
2

...

θn(n)
θn(n−1)+θn(n)

2 ≤ x

(10.5)

where θn(i) = −1 + 2(i−1)
n−1 generates n uniformly distributed values in [−1, 1]. In other words,

qn(x) is a general quantizer that maps any real value in [-1,1] into one of n uniformly distributed

values in [−1, 1]. For example, q2(x) is the sign function {∀x ≥ 0| sign(x) = 1, ∀x <

0| sign(x) = −1} and q3(x) maps x into one of the three values {−1, 0, 1}.

To summarize, optimizing 10.4 identifies a mapping and a reconstruction function such that the

quantized data in the space generated by the mapping function can be reconstructed accurately

by the reconstruction function. It should be noted that anm-dimensional n-ary code is generated

by qn(f(X)).

10.2.2.1 Linear Subspace Quantization (LSQ)

LSQ is a multidimensional n-ary coding method based on Subspace Reduction where linear

functions are used as the mapping and the reconstruction functions in 10.4. Assume that f(x) =

WTx and f̃(x) = VTx where W ∈ RD×m and V ∈ Rm×D. Employing the Frobenius norm

as the regularizing function, the optimization problem in 10.4 becomes:

min
W,V
{‖X−VTqn(W

TX)‖2F + λ‖V‖2F } (10.6)

To solve this problem, we propose a two step iterative algorithm. Subsequently, the convergence

of the proposed algorithm will be proven.

• Learning LSQ:

The optimization for W and V in 10.6 can be solved by a two step iterative optimization algo-

rithm (i.e. fixing one variable and updating the other). The steps are as follows:
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1. Fix W and update V: For a fixed W, define H = qn(W
TX); then we have a closed form

solution for V as

V = (HHT + λI)−1HXT (10.7)

2. Fix V and update W: In this step, W is updated as:

W = V† (10.8)

where V† is the Moore Penrose pseudoinverse of V. In the following we prove that the

pseudoinverse is an optimal solution for 10.6 when V is fixed.

The algorithm iterates between step 1 and 2 until there is no progress in minimizing 10.6.

• Convergence of LSQ:

In order to prove the convergence of the algorithm, we show that both steps reduce the objective

value. The optimality of the first step can be easily shown by simple linear algebra. Here, we

focus on proving that the second step reduces the objective value.

Given that argmin
Y
{‖B −AY‖} = argmin

Y
{‖A†B −Y‖}, the solution of the optimization in

10.6 for fixed V is equivalent to the solution of the following problem:

min
W
{‖V†TX− qn(WTX)‖2F } (10.9)

Defining M = V†
T
X, the optimal solution for W can be formulated as:

W∗ =argmin
W
{‖M− qn(WTX)‖2F } (10.10)

It should be noted that the optimal solution is not unique. Therefore,W is defined as the optimal

solution set for W∗. The goal is to prove that V† ∈ W .

Let A∗ = W∗TX. We first prove that qn(A∗) = qn(M). Suppose, to the contrary, that

qn(A
∗) 6= qn(M). Consequently, there should be at least one i and j, such that qn(A∗(i, j)) 6=

qn(M(i, j)). Since qn(A∗) is defined in the optimal solution of the optimization 10.10, its

corresponding objective value should be less than that of any other feasible point. This leads

to the conclusion that (M(i, j) − qn(A∗(i, j)))2 < (M(i, j) − qn(M(i, j)))2 (Note that even

if more than one element differs between qn(A∗) and qn(M), the inequality holds for at least

one of them). However, this contradicts the definition of qn(x) in 10.5 since qn(x) should map
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FIGURE 10.2: LSQ fitting 2D data using a q3 quantizer. Data points are shown by orange crosses. The
blue circles indicate the quantization levels in different dimensions. LSQ reduces the reconstruction error

by performing a linear transformation over the quantized hyper-cube.

M(i, j) into qn(A∗(i, j)) (It should be noted that qn(A∗(i, j)) is in the range of qn(M(i, j))).

So for any i and j, qn(A∗(i, j)) = qn(M(i, j)). Therefore, qn(M) = qn(A
∗). Considering the

definition of M and A∗ completes the proof that V† ∈ W .

Finally, since both steps in our optimization reduce the objective value, LSQ converges to a local

optimal value of optimization 10.6.

• Relation to ITQ:

ITQ is a special case of LSQ when n = 2 and W, V are rotation matrixes where W=VT. Our

experiments show that the binary codes generated by LSQ leads to higher accuracies than the

binary codes generated by ITQ.

• Geometrical Interpretation:

LSQ finds a linear transformation of a quantized hyper-cube that best fits the data. Figure 10.2

illustrates a simple 2D example in which the q3 quantizer is fit to the data by a rotation.

10.2.2.2 LSQ as an n-ary Embedding

While binary encoding techniques try to minimize the reconstruction error, the resulting codes

preserve similarities between samples. In other words, the Hamming distance in the binary

space approximates the Euclidean distance in the original feature space. As a consequence of

this property, these binary codes can be exploited as feature vectors for learning tasks in the

embedded space. Many recent approaches based on this property have been proposed to make

learning more efficient [190, 202].

In subspace clustering methods (e.g. CK-means), the cluster indices generated by the quantizer

can not be viewed as a similarity preserving embedding. This is due to the fact that there are no

constraints on assigning these indices to clusters. In subspace reduction methods (e.g. LSQ),
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each dimension of an n-ary code has a finite(discrete) set of real values as its domain. For each

dimension, the distances between these discrete values correlates with the distances between

the data points in the original feature space in the direction of that dimension. Therefore, the

Euclidean distance in the quantized data correlates with the Euclidean distance in the original

feature space.

One could post process CK-means to generate similarity(distance) preserving codes by assign-

ing the appropriate indices to cluster centers after completion of the training stage. These indices

can be obtained by finding a 1D subspace for each of the subspaces generated by CK-means.

A simple model could compute PCA over the cluster centers in each subspace to reduce the

cluster centers into 1D real values. However, in 10.4.5, a classification experiment is performed

in which the n-ary codes are used as features. The result shows that, as an embedding, LSQ

outperforms CK-Means by a large margin even after refining the CK-Means index assignments

to clusters.

10.3 K-NN Retrieval using Data Encoding

A large source of computational cost in nearest neighbor search is the distance computation

between the query and all the samples in the dataset. In order to speed upK-NN search, one can

either speed up the computation of the distance function and/or reduce the number of distance

computations by limiting the search space for a given query. We refer to the first strategy as

Distance Estimation and the second as Subset Indexing. In the following subsections, we show

how Subspace Clustering and Subspace Reduction coding techniques can be used for each of

these strategies.

10.3.1 Retrieval by Distance Estimation

Data coding can reduce the cost of distance computation since the Euclidean distance can be

efficiently estimated in the coding space.

• Distance estimation using Subspace Clustering n-ary codes:

Once data is coded, the Euclidean distance between two points can be estimated as the sum

of distances between the assigned cluster centers to those data points in each subspace [194].

This is known as the symmetric distance. The distances between the n cluster centers in each

subspace can be pre-computed in an n×n table. Then, computing the symmetric distance can be

implemented efficiently by m look-ups and additions of table elements, one for each subspace.
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FIGURE 10.3: Retrieval using Multiple Index Hashing (a) n-ary Coding: each dimension of the query
is a key index to its corresponding table. Each table has n rows which points to set of samples in the base
set with the same value in that dimension. (b) Binary Coding: In this case, binary codes are partitioned
into sets of b consecutive bits (here b = 3) and each set is used as a key index for the corresponding table.

Tables have 2b rows containing samples with the same value in the corresponding bits.

More formally,

d(x,y) =

m∑
i=1

Li(c(ui(x)), c(ui(y))) (10.11)

where ui(x) project x into the ith subspace, c(u) is the cluster index to which u belongs, and

Li is the pre-computed distance table for the ith subspace. If we consider x as the query and y

as a data point from the database, c(ui(y))) can be pre-computed. Therefore the complexity is

O(mN) for each query, where N is the total number of points in the database.

• Distance estimation using subspace reduction n-ary codes:

As mentioned earlier, the Euclidean distance between quantized data by subspace reduction

approximates the Euclidean distance in the original feature space. Therefore we need only

compute the distance between coded values. This has complexity O(mN), which is the same

as the complexity of subspace clustering.

• Distance estimation using binary codes:

For the binary codes, Hamming distance is used as the distance metric. Computing Hamming

distances using m-bit binary codes has complexity O(mN) for each query.

10.3.2 Retrieval by Subset Indexing

Another way to speed up nearest neighbor search is to limit the search space. Hashing techniques

[38] and tree based methods[176] limit the search space by constraining search to a subset of

samples in the database. This is accomplished by indexing the data into a data structure (e.g.
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hash tables or search tree) at training time. Multiple index hashing [180, 203] is one such data

structure that can be used for binary and n-ary codes.

•Multiple index hashing using n-ary codes:

In this approach, for m-dimensional n-ary coding, we create an index table Ti, i = 1, . . . ,m

for each dimension. Each table has n tuples (Idxj ,Lj), j = 1, . . . , n. where Idxj corresponds

to one of the n values in a dimension of the code and Lj is a list of those data points’ indices

such that the value of the ith dimension in their code is Idxj . At query time, for each dimension

of the code, a set of data indices is retrieved. Figure 10.3(a) illustrates this technique. For each

index in the union of these sets, we assign a score s between 1 and m which indicates that a

particular index has been retrieved from s dimensions. The samples with higher scores are more

likely to be similar to the query sample. By sorting the indices based on their score, we can

choose the top-K samples as the K-NN’s. If the total number of retrieved indices were less

than K, we change the value in one of dimensions in the query code that has minimum distance

to the quantized query point in the original space. Then we retrieve a new set and repeat the

process until the total size of the retrieval set is greater than or equal to K.

•Multiple index hashing with binary codes:

Similar to n-ary codes, binary codes can be used for multiple index hashing. However, in this

case each set of b consecutive bits are grouped together to create the indices for accessing the

tables. Considering b = log(n), this partitioned binary code can be seen as an n-ary code. As

a result, the same technique can be applied for multiple index hashing as discussed previously.

This case can be seen in Figure 10.3(b).

10.3.2.1 Subset Indexing: Binary or n-ary Coding?

As mentioned earlier, n-ary coding does not always outperforms binary coding for large-scale

retrieval. More precisely, when Subset Indexing is used to reduce the search cost, binary coding

achieves better search accuracy. This is due to the fact that quantization does not necessarily

preserve the similarities (or distances) between data. In other words, a good quantizer Q that

minimizes the quantization error in 10.1, does not always preserve relative distances between

data. Formally:

‖x1 − x2‖ ≤ ‖x1 − x3‖;

‖Q(x1)−Q(x2)‖ ≤ ‖Q(x1)−Q(x3)‖
(10.12)
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This is important when retrieval is carried out by subset indexing. There, binary codes may

retrieve the nearest neighbors better than n-ary codes. Figure 10.4 illustrate an example of 2-

dimensional 8-ary codes and their corresponding binary codes, which have 6 bits (6 = 2 log(8)).

Each bit is generated by a line based on which side of the line the point lies. The green dots are

the points in the database and the red diamond is a query point. In this figure the binary code for

the query sample is 110000. In the subspace clustering view, we cluster each dimension into 8

clusters. In this case, all points in the yellow region will be retrieved by multiple index hashing.

As can be seen, none of the actual nearest neighbors can be retrieved. But, when we use the

binary codes for multiple index hashing all the actual nearest neighbors are retrieved. This is the

blue region (i.e. the union of the region created by the first three bits (110) and the second three

bits (000) of the query code). Our experimental evaluation confirms that when subset indexing

is used for retrieval, binary codes outperform n-ary codes. Although, n-ary codes are more

accurate for quantization, they are not accurate for ANN with subset indexing.

10.4 Experiments

We report experiments on three well-known datasets, namely GIST1M [194], CIFAR10 [204],

and a subset of ImageNet [193] which is used for the ILSVRC2012 challenge. GIST1M contains

1M base feature vectors, 500K training samples and 1K query samples. For CIFAR10, we ran-

domly selected 20K samples as our training set, 500 samples as query images and the remaining

39500 images as the base samples. Raw pixel values are used as features for this dataset. The

ImageNet ILSVRC2012 dataset consists of 500K training samples, 250K base samples, and 1K

query images. We used ConvNet as the state-of-the-art feature extractor for this dataset. The

ConvNet features are extracted by Caffe [205].

Following [200], we used recall as the performance measure for retrieval. The training set is

used to train the coding model and the learned model is applied for coding the base and query

126



0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

CIFAR10: Recal @R for 256 bits

Number of retrieved samples

R
ec
a
ll

LSQ(N)-5
LSQ(N)-8
LSQ(B)-5
LSQ(B)-8
CKmeans-5
CKmeans-8

(A)

0 5000 10000
0

0.2

0.4

0.6

0.8

1

GIST1M: Recal @R for 256 bits

Number of retrieved samples

R
ec
a
ll

LSQ(N)-5
LSQ(N)-8
LSQ(B)-5
LSQ(B)-8
CKmeans-5
CKmeans-8

(B)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

ImageNet: Recal @R for 256 bits

Number of retrieved samples

R
ec
a
ll

LSQ(N)-5
LSQ(N)-8
LSQ(B)-5
LSQ(B)-8
CKmeans-5
CKmeans-8

(C)

FIGURE 10.5: The Recall@R curves for retrieval using distance estimation for 256 bits. Each diagram
shows the curve for different methods and different numbers of bits per code dimension. (a) Results on

CIFAR10 dataset. (b) Results on GIST1M dataset. (c) Results on ImageNet dataset.

set. For each point in the query set, we find its R nearest neighbors and report the recall at R.

By varying R we draw the recall curves.

As mentioned earlier, retrieval can be made faster using two approaches: distance estimation and

subset indexing. The performance of different methods can vary with respect to which approach

is used. Therefore, each method is examined with respect to both and an analysis is presented.

The nearest neighbors in the original feature space are defined as ground truth for each query

image. For making the comparison fair, in each experiment the number of bits which can be

used by each coding method is limited to the same fixed budget. e.g. a 2 dimensional 8-ary code

requires 6 bits of memory. (3 bits per code dimension).

10.4.1 Retrieval using Distance Estimation

Figure 10.5, shows the Recall@R curves on different datasets using a budget of 256 bits. In this

figure, LSQ(N) and LSQ(B) refer to the n-ary and binary versions of the LSQ method respec-

tively. The recall@R curves are shown for different number of bits per code dimension, which

controls the number of quantization steps for n-ary encoders (e.g. for LSQ(N)-5 or LSQ(B)-5

the quantizer has 32 levels or 5 bits). As can be seen, the performance of n-ary codes is better

than binary codes. Also, LSQ outperforms CK-means on all three datasets.

Figure 10.6 explores the effect of the number of bits on the different methods. We fixed the

number of bits per code dimension to 5 (e.g. the CK-means algorithm would learn 32 clusters

per segment) and report the area under the Recall@R curve. Again, LSQ performs better than

CK-means.
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FIGURE 10.6: The Area Under Recall@R curves for retrieval using 5 bits per code dimension ( i.e. 32
quantization steps). Each diagram shows the curve for different methods and different amount of total bit

budget. (a) Results on CIFAR10 dataset. (b) Results on ImageNet dataset.
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FIGURE 10.7: The Recall@R curves for retrieval using subset indexing for 256 bits. Each diagram
shows the curve for the best n-ary and binary coding method in this task (CKmeans and Binary LSQ
respectively). (a) Results on CIFAR10 dataset. (b) Results on GIST1M dataset. (c) Results on ImageNet

dataset.

10.4.2 Retrieval using Subset Indexing

As discussed in section 10.3.2, either binary or n-ary coding can be used to speed up search

with Subset Indexing. This approach limits the search to a small number of samples by indexing

subsets of the database (subset indexing). Here, the performance of binary and n-ary coding is

compared. We compare the retrieval results of the best n-ary encoding for this task(CK-means)

to the best binary coding(the binary version of LSQ).

Figure 10.7, shows the recall@R curves for this experiment with varying numbers of bits per

code dimension for a fixed budget of 256 bits. In N-ary-k, k bits are used for quantizing each

dimension and additionally indexing in the multi-index hashing method(i.e. 2k quantization

steps for each dimension). Similarly, in Binary-k, k consecutive bits are used for indexing in the

hashing method. The effect of changing the budget of the encoder on the retrieval task can be

seen in Figure 10.8. These figures illustrate that the binary encoding techniques outperform the

n-ary encoders when the subset indexing technique is used, as discussed in Section 10.3.2.
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FIGURE 10.8: The Area Under Recall@R curves for retrieval using 5 bits per code dimension. Each
diagram shows the curve for the best n-ary and binary coding method for this task and different bit budgets.

(a) Results on CIFAR10 dataset. (b) Results on GIST1M dataset. (c) Results on ImageNet dataset.

32 64 128 256
0.5

0.6

0.7

0.8

0.9

1

GIST1M: Area Under Curve

Number of bits

A
re
a
U
n
d
er

C
u
rv
e

LSQ(B)
OKmeans
ITQ

(A)

32 64 128 256
0.4

0.5

0.6

0.7

0.8

ImageNet: Area Under Curve

Number of bits

A
re
a
U
n
d
er

C
u
rv
e

LSQ(B)
OKmeans
ITQ

(B)

FIGURE 10.9: The Area Under precision recall curves for binary methods. Each diagram shows the
curve for different methods and different bit budgets. (a) Results on GIST1M dataset. (b) Results on

ImageNet dataset.

Discussion: These experiments confirm that when retrieval is performed by distance estima-
tion, it is better to use n-ary coding with n > 2 based on subspace reduction (e.g. LSQ). On the

other hand, when subset indexing is used for retrieval, binary coding outperforms n-ary coding.

10.4.3 Comparison of binary coding methods

Both CK-means and LSQ can be viewed as generalizations of binary encoding where the number

of quantization steps can be more than two. Here, the number of quantization steps is set to two

and the binary versions of LSQ and CK-means (namely LSQ(B) and OK-means respectively)

are compared with ITQ using subset indexing. Figure 10.9, shows the area under the recall

precision curve for these three binary coding methods under varying bit budgets. As can be

seen, the binary version of LSQ outperforms ITQ and the binary version of CK-means.

10.4.4 Convergence of the algorithms

In Figure 10.10, the convergence of different binary coding methods are shown. For this experi-

ment, GIST1M is used. As can be seen, LSQ converges much faster than OK-Means. Also note

that the final reconstruction error of LSQ is much smaller than ITQ and OK-means, reflecting

the fact that LSQ reconstructs the data more accurately using the same memory budget.
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FIGURE 10.10: The convergence of different coding algorithms. (a) LSQ(B) (b) ITQ (c) OK-Means.
Note different scale of reconstruction error are required.
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FIGURE 10.11: Classification accuracy using the codes of different methods as feature vectors.

10.4.5 n-ary Codes as Feature Vectors

The codes constructed by LSQ can be used as feature vectors to perform learning tasks. Fig-

ure 10.11 shows the performance evaluation of a classification task using different codings as

features. As proposed in sec 10.2.2.2, for CK-means, we refine the index assignments to clus-

ters by mapping the cluster centers in each subspace into a one dimensional space using PCA

and convert each dimension of the code to the corresponding value in this 1D space. It can

be seen that our proposed quantization method outperforms CK-means even after refining the

CK-Means index assignments.
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Chapter 11

Conclusion

We showed how an efficient and rich representation of visual data can be obtained via several

learning process. We also showed how we can use these data for better understanding of visual

information when dealing with large-scale databases. Over the past decade, the usage of large

databases for object and speech recognition has shown that simple learning methods, such as

linear classifiers and K-Nearest Neighbors, can achieve comparable performance to complex

learning methods. This has led to widespread discussion about how much data matters, which

posits that having more data is more effective than having a complex model. Resolving the

extent to which data matters is confounded by computational and algorithmic challenges in

learning a complex model on a large-scale dataset.

On the one hand, the problem of learning complex models on big data has been addressed by

investigating the use of high-performance and parallel computing (for example, deep neural

networks ). A complementary approach to dealing with big data is developing efficient data rep-

resentations which enable efficient processing. Representing data using compact binary codes

is one of the most powerful ways to achieve efficient data representation. It has received signif-

icant attention during the past years. In my research, I contributed to progress on constructing

effective binary representations of visual data by shifting the goal of image retrieval using bi-

nary codes from near-duplicate retrieval to semantic retrieval. My goal was to find efficient

representations of data that A) capture enough semantics to enable accurate recognition and un-

derstanding in a variety of tasks, and B) can be extracted efficiently from the original feature

space (in my research mostly visual and textual space) to make it practical to be applied to large-

scale data and complex models. Finding such a representation leads to significant progress in

a wide range of machine learning problems. In pursuing these goals, I have completed several

projects on image and text understanding. Some of them are published in prestigious confer-

ences and others are submitted or still in progress. I showed how a certain class of binary codes

can efficiently and accurately solve a variety of problems in computer vision. I introduced the
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notion of predictability of code bits, which enables each bit of the binary code to be reliably

predicted from the original feature space. I showed that predictability plays an important role

in recognition problems. In recent work, we showed that domain adaptation can significantly

benefit from predictable binary codes. I elucidated a close relation between predictable code

bits and visual attributes (category independent semantic descriptors which form the basis for

most zero shot - no training data - visual learning algorithms). My research has shown how

these predictable codes can be effectively applied to a wide variety of tasks (patch based im-

age restoration, cross modality hashing, video clustering, biometric recognition, etc. ). In the

remainder of this statement I will describe what I have accomplished so far and the main prob-

lems that I plan to address in the future.
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