Title of Dissertation: QUANTITATIVE TRAIT LOCi AND PROMOTER ANALYSIS OF THE BOVINE BUTYROPHILIN GENE

Abiy Zegeye, Doctor of Philosophy, 2003

Dissertation directed by: Professor Ian H. Mather
Department of Animal and Avian Sciences

The butyrophilin gene (BTN1A1) has been described in all mammalian species so far investigated. BTN1A1 is a likely QTL candidate that affects an economically important trait in dairy animals because it is specifically expressed in lactating mammary tissue and the gene product BTN1A1 may function in the secretion of milk lipid. Five PCR-RFLP intragenic markers were identified. Three of the five markers are bi-allelic, however, the two 5'-most markers may be multiallelic loci. The markers were further used to conduct a QTL analysis to examine any allelic substitution effects on economically important milk production traits, namely, total protein, percent protein,
total fat, percent fat, somatic cell score, herd life, and milk yield. One significant effect was detected for percent protein. Other effects were not significant, but this could possibly be due to the skewed allelic frequency distribution, or because the variable nucleotides were either intronic or coded for a conservative amino acid substitution.

The 5' flanking region of bBTN was cloned and sequenced. Computational and transient transfection assays were conducted to identify regions of bBTN that are important for its expression. A computational analysis was conducted to compare and analyze the 5' flanking region of cow, goat, human and mouse sequences. Several regions of homology were identified that code for shared binding motifs. However, neither the transcription start site (TSS) nor the other segments of similarity in the proximal promoter region were analogous to other 'milk protein genes' such as the caseins and α-lactalbumin, and other widely studied non-mammary-specific genes. Transient transfection assays in HC11 cells indicate the region from -1kb to -0.45 kb is sufficient to drive the expression of a reporter gene. bBTN appears to contain a novel set of elements that define the (TSS) and proximal promoter modules. A more incisive examination will circumscribe the major cis-acting elements.
QUANTITATIVE TRAIT LOCI AND PROMOTER ANALYSIS OF
THE BOVINE BUTYROPHILIN GENE

by

Abiy Zegeye

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2003

Advisory Committee:

Professor Ian H. Mather, Chair
Professor Albert Ades
Professor Stephen M. Mount
Professor David A. O'Brochta
Professor Tom E. Porter
ACKNOWLEDGEMENTS

I am indebted to many family, friends and colleagues that have been supportive through the years. I thank Dr. Ian Mather for his guidance and mentorship and all the committee members who were always available to consult with and offered understanding and support. Dr. Larry Douglass was of great help in deciphering the statistical analysis. The many graduate and undergraduate student lab mates all deserve mention for making the work place pleasant and provided a respite from the routine. Of notable mention is Dr. Sherry L. Ogg for her patience and guidance throughout the years. Friends and family have been a constant source of encouragement, assistance and understanding. Many in the department have been a source of ideas, lab material, and friendly advice. I convey special thanks to Elizabeth Yoseph for being a true friend and counselor. Gratitude is due to my father, brothers, sisters, aunts, and in-laws for their constant belief and trust in me. Most of all, I would like to thank my wife, Fikir, who has been my unending source of energy, comfort, friendship and support. Tsinu, my son, has made all the effort worthwhile.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Methods</td>
<td>24</td>
</tr>
<tr>
<td>1. Materials</td>
<td>24</td>
</tr>
<tr>
<td>2. Isolation and characterization of the 5’ flanking region of bBTN</td>
<td>25</td>
</tr>
<tr>
<td>3. Construction of chloramphenicol acetyl transferase (CAT) reporter plasmid</td>
<td>26</td>
</tr>
<tr>
<td>3.1 pbBTN1.7/CAT</td>
<td>26</td>
</tr>
<tr>
<td>3.2 pbBTN1.2/CAT</td>
<td>28</td>
</tr>
<tr>
<td>3.3 pCAT-Basic/+1.7 and pCAT-Basic/-1.7</td>
<td>28</td>
</tr>
<tr>
<td>3.4 pbBTN1.7/CAT/+1.7 and pbBTN/CAT/-1.7</td>
<td>31</td>
</tr>
<tr>
<td>3.5 pbBTN1.2/CAT/+1.7 and pbBTN/CAT/-1.7</td>
<td>31</td>
</tr>
<tr>
<td>4. Isolation of nucleic acid</td>
<td>31</td>
</tr>
<tr>
<td>4.1 Ribonucleic acid</td>
<td>31</td>
</tr>
<tr>
<td>4.2 Deoxyribonucleic acid</td>
<td>32</td>
</tr>
<tr>
<td>4.2.1 Mammalian DNA isolation</td>
<td>32</td>
</tr>
<tr>
<td>4.2.2 Bacterial plasmid isolation (Maxi-preps)</td>
<td>33</td>
</tr>
<tr>
<td>4.2.3 Bacterial plasmid isolation (Mini-preps)</td>
<td>35</td>
</tr>
<tr>
<td>5. Detection of RNA by Northern blot analysis</td>
<td>35</td>
</tr>
<tr>
<td>6. Detection of DNA by Southern blot analysis</td>
<td>36</td>
</tr>
<tr>
<td>7. Polymerase chain reaction (PCR)</td>
<td>37</td>
</tr>
<tr>
<td>8. Maintenance and microscopy of HC11 cells</td>
<td>37</td>
</tr>
<tr>
<td>8.1 Media and incubation conditions</td>
<td>37</td>
</tr>
<tr>
<td>8.2 Making HC11 subclones</td>
<td>38</td>
</tr>
<tr>
<td>8.3 Expansion and storage of HC11 and subcloned cells</td>
<td>39</td>
</tr>
<tr>
<td>8.4 Staining and microscopy of HC11</td>
<td>39</td>
</tr>
<tr>
<td>9. Transient transfection and harvest of HC11 cell lysates</td>
<td>40</td>
</tr>
<tr>
<td>9.1 Transfection of HC11 cells</td>
<td>40</td>
</tr>
</tbody>
</table>
9.2 Harvest of HC11 cell lysates 41

10. CAT and β-galactosidase assays 41
 10.1 Estimation of protein content 41
 10.2 β-galactosidase assay 41
 10.3 CAT assay 42

11. Computational assay 43
 11.1 QTL analysis 43
 11.2 Quantitation of Northern blots 44
 11.3 Quantitation and statistical analysis of promoter activity 44
 11.4 DNA sequence comparison and analysis 44
 11.4.1 Identifying sequence features 45
 11.4.2 Local multiple and pairwise alignments 47
 11.4.3 Selection of segments of similarity (SoS) 47
 11.4.4 Detection of putative TF-binding sites and modules 47
 11.4.5 Alignments of TSS region and search for core promoter elements 48
 11.4.6 Collation and comparison of TF sites prevalent in all four species 48
 11.4.7 Search for commonly occurring ‘milk gene’ TF sites 48

Results 49

Screening for RFLPs 49
Genotype of grandsires 55
Genotype of sons 55
Allelic distribution 55
QTL analysis 58
Cloning and subcloning of bBTN 5’ flanking region 60
Cloning of CAT reporter vectors 66
Endogenous mBtn1a1 expression in HC11 cells 67
Promoter assay for CAT expression 67
LIST OF TABLES

Table 1:	List of promoter constructs and their components	30
Table 2:	Endonucleases and respective polymorphisms	51
Table 3:	Restriction fragment length polymorphism marker genotype of grandsires	56
Table 4:	Number and frequency of informative sons	57
Table 5:	Observed genotype and gene frequency of bBTN	59
Table 6:	Sequence delineation of bBTN, gBTN, hBTN1A1 and mBtn1a1 used in comparative sequence analysis	76
Table 7:	Repeat elements in the bBTN, gBTN, hBtm1a1 and mBTN1A1	78
Table 8:	Pairwise similarity index of orthologous BTN genes	81
Table 9:	Summary of putative TF binding sites	84
LIST OF FIGURES

Figure 1: pCAT/Basic vector map
Figure 2: pbBTN1.7/CAT vector map
Figure 3: Schematic of strategy for computational analysis of bovine butyrophilin (bBTN)
Figure 4: Location and sequence of primers used to amplify regions of bBTN
Figure 5: Amplicon F2/R2 polymorphism
Figure 6: Amplicon F1/R1 polymorphism
Figure 7: Amplicon F3/R3 polymorphism
Figure 8: Allelic substitution effect on seven economically important traits
Figure 9: Map and sequencing strategy of bBTN 5’ flanking clone
Figure 10: Northern blot of total and messenger RNA from HC11 cells
Figure 11: Comparison of potential bBTN putative promoter activity
Figure 12: Light microscopy of confluent HC11 cells
Figure 13: Northern analysis of total RNA from subclones 9 & 16, and early passage HC11 cells
Figure 14: Comparison of potential bBTN putative promoter activity in clone 9 cells
Figure 15: Location of SoSs and repeat elements in four BTN genes
Figure 16: Multiple sequence alignment of transcription start site region of bBTN paralogous genes
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>artificial insemination</td>
</tr>
<tr>
<td>AL-CAM</td>
<td>activated leukocyte cell adhesion molecule</td>
</tr>
<tr>
<td>ADRP</td>
<td>adipocyte-differentiation related protein (adipophilin)</td>
</tr>
<tr>
<td>BoLA</td>
<td>bovine leukocyte antigen</td>
</tr>
<tr>
<td>BRE</td>
<td>TFIIB recognition element</td>
</tr>
<tr>
<td>BTA</td>
<td>Bos taurus chromosome</td>
</tr>
<tr>
<td>bBTN</td>
<td>bovine butyrophilin protein</td>
</tr>
<tr>
<td>bBTN</td>
<td>bovine butyrophilin gene</td>
</tr>
<tr>
<td>BTN</td>
<td>butyrophilin gene</td>
</tr>
<tr>
<td>BTN</td>
<td>butyrophilin protein</td>
</tr>
<tr>
<td>CAT</td>
<td>chloramphenicol acetyl transferase</td>
</tr>
<tr>
<td>CDS</td>
<td>coding sequence</td>
</tr>
<tr>
<td>CLOX</td>
<td>cut-like homeodomain</td>
</tr>
<tr>
<td>CPRG</td>
<td>chlorophenol red β-D-galactopyranoside</td>
</tr>
<tr>
<td>DBDR</td>
<td>dairy bull DNA repository</td>
</tr>
<tr>
<td>DDEV</td>
<td>daughter deviations</td>
</tr>
<tr>
<td>DHIA</td>
<td>Dairy Herd Improvement Association</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPE</td>
<td>downstream promoter element</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>rER</td>
<td>rough endoplasmic reticulum</td>
</tr>
<tr>
<td>EVI1</td>
<td>ectopic virus integration site 1</td>
</tr>
<tr>
<td>Ermap</td>
<td>erythroid membrane-associated protein</td>
</tr>
<tr>
<td>FA</td>
<td>fatty acid</td>
</tr>
<tr>
<td>FABP</td>
<td>fatty acid binding protein</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>FMF</td>
<td>familial Mediterranean fever</td>
</tr>
<tr>
<td>GAS</td>
<td>γ-interferon activation sequence</td>
</tr>
<tr>
<td>gBTN</td>
<td>goat butyrophilin gene (gBTN)</td>
</tr>
<tr>
<td>GDD</td>
<td>granddaughter design</td>
</tr>
<tr>
<td>GNIP</td>
<td>glycogenin interacting protein</td>
</tr>
<tr>
<td>GR</td>
<td>glucocorticoid receptor</td>
</tr>
<tr>
<td>H</td>
<td>hydrocortisone</td>
</tr>
<tr>
<td>hBTN1A1</td>
<td>human butyrophilin gene</td>
</tr>
<tr>
<td>I</td>
<td>insulin</td>
</tr>
<tr>
<td>IE</td>
<td>insulin and epidermal growth factor</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IHP</td>
<td>insulin, hydrocortisone and prolactin</td>
</tr>
<tr>
<td>Inr</td>
<td>initiator</td>
</tr>
<tr>
<td>JAK</td>
<td>janus tyrosine protein kinase</td>
</tr>
<tr>
<td>LAMP</td>
<td>limbic-system-associated membrane protein</td>
</tr>
<tr>
<td>LAP</td>
<td>liver-enriched activating proteins</td>
</tr>
</tbody>
</table>
INTRODUCTION

The purpose of this project was to examine the possible involvement of the mammary specific gene, butyrophilin (BTN), in lactation and its potential gene level regulation. BTN has to date been described in several mammalian species. In those species tested, BTN is expressed primarily during lactation, and also immediately preceding the onset and following the cessation of lactation. A natural upshot, therefore, is to ask what lactation-associated trait(s) it might affect, and what control element(s) confer it mammary/lactation specific expression. Answers to these questions will provide potential tools to customize the composition of milk by either selecting for a 'desirable' allele of BTN or introducing recombinant genes under the regulation of the BTN promoter.

Members of the class Mammalia are distinguished from other vertebrates by the possession of mammary glands. Natural selective pressures may have led to the evolution of apocrine sweat glands in the skin into a gland that secretes water, nutrients and antibodies solely for the sustenance of the neonate (Oftedal, 2002). Processes that allowed the newborn to suckle and digest milk also co-evolved. In a natural setting, the mammary gland's capacity for milk synthesis tapers and finally ceases, coincident with the infant's diversification of diet and thus reduced dependence on milk.

In contrast to other mammals, the customary use of milk in the human diet has two distinguishing peculiarities: the use of cross-species milk (cow, goat, camel, etc.) and the consumption of milk past infancy, and in some cases into adulthood. The nutritive value of this 'unnatural' dietary habit is not a matter of contention. In fact, milk and other dairy products are an integral part of the diets in many parts of the world. This demand
has led to the multibillion-dollar dairy industry of today.

In order to meet the growing demand for milk, improvements in dairy animals has mainly focused on selection for increased production, higher feed conversion efficiency and health. Traditionally, this was achieved by measuring quantifiable traits and preferentially breeding those animals that meet or surpass a set threshold.

Today, technological and scientific advances provide tools, not only to improve the quantity of milk production, but also to customize (alter) its composition. Molecular biology tools, such as genetic markers, have given researchers the means by which to select for desired traits. Further, the potential economic windfall from the expression and harvest of large quantities of recombinant ‘pharma-proteins’ is becoming increasingly apparent. Most recently, achievements in the cloning of ungulates (Campbell \textit{et al.}, 1996; Wilmut \textit{et al.}, 1997; Cibelli \textit{et al.}, 1998; Kato \textit{et al.}, 1998; Baguisi \textit{et al.}, 1999; Kubota \textit{et al.}, 2000) by somatic cell nuclear transfer makes the mass production of such custom designed dairy animals promising. Interestingly, the viability of cloned embryos derived from cattle fibroblast cells increases after several passages of the donor cells (Kubota \textit{et al.}, 2000); and unlike sheep clones, cattle clones attain a phenotypically youthful state as compared to age-matched cells from whence the nuclei were derived (Lanza, \textit{et al.}, 2000).

In the present study, the mammary-specific bovine butyrophilin (bBTN) gene was used as a genetic marker to investigate allelic substitution effects on several quantitative milk production traits, including milk fat content. bBTN is a good candidate to serve as a genetic marker because of its exclusivity to the mammary gland and its purported role in milk fat secretion (for review see Mather, 2000). Of the major components of milk, milk
fat is economically the most expensive and also the most variable respondent to environmental factors (for review see Bauman and Griinari, 2003). Therefore, identifying a genetic basis by which to manipulate milk fat content has the potential of reducing production costs and meeting the increased demands for low-fat milk.

Not only is BTN expression limited to the mammary gland, but it is also dependent upon the physiological state of the mammary gland. BTN message is observed in the period prior to and during lactation (Banghart, et al., 1998; Ogg et al., 1996). The tissue and temporal limitation manifest of BTN is indicative of a well-established control mechanism that directs its expression. Therefore, delineating and deciphering the cis-acting regions that confer specificity to BTN expression pattern can potentially be used to drive expression of exogenous genes. The potential commercial benefits of using such a lactation-specific promoter offer new possibilities to utilize the mammary gland as a bioreactor for customized milk.

The onset of lactation is a culmination of a series of developmental phases. The events that define the development of the mammary gland are analogous in most true placental mammals (Eutheria), although species-to-species differences do occur. For the developmental biologist, the mammary gland is a made-to-order model system since most of the developmental changes occur post-partum in the adult, during puberty, gestation and lactation. Another defining feature is its dependence on endocrine hormones for development and differentiation.

At birth, the anlage of the mammary gland comprises a rudimentary ductal structure. The surge of hormones that accompany pubescence further increases the branching and expansion of the ducts into the mammary fat pad. Cells at the terminal
buds of these ducts are populated with precursors to two types of cells: secretory epithelial and myoepithelial cells. Another round of proliferation is initiated during pregnancy and continues through parturition, which involves extensive arborization of the ductal system and formation of lobulo-alveolar structures. The alveoli are roughly spherical structures lined with terminally differentiated mammary epithelial cells (MECs) with their apical surfaces facing centrally located lumini. At parturition, the differentiated MECs synthesize and secrete milk into the lumini that subsequently leaves the gland destined to be consumed by the neonate. In most species, the sequence of growth and differentiation is asynchronous, so that at any given time the gland is populated with cells at different stages of development (Robinson et al., 1995; Andres et al., 1995).

Milk synthesis and secretion rapidly shuts down at the onset of involution. Upon cessation of lactation, the secretory MECs undergo apoptosis; this major remodeling causes the mammary gland to revert to a state morphologically comparable to that of an adult virgin. The cycle of proliferation and differentiation followed by synthesis and secretion of milk recurs with each subsequent gestation and parturition (for review see Dosogne et al., 2000).

Milk is a heterogeneous mixture of a colloidal suspension of proteins and milk fat, in an aqueous medium containing lactose, minerals and other minor components. The proportion of each constituent differs from one species to another, reflective of the needs of their respective offspring. However, except some minor differences (mentioned below), the qualitative make-up of milk is very similar among mammals.

Lactose is the major sugar in milk and a crucial osmole that draws water into the
milk that is being synthesized. This sugar is unique to the mammary gland and a source of readily available calories for the newborn. Another major caloric source is milk fat. Almost all milk-fat is in the form of globules of triglyceride enwrapped in a bilayer membrane called the milk-fat-globule membrane (MFGM) (Welsch et al., 1990).

There are two classes of milk protein: the caseins and the whey proteins. Caseins make up about 80% of total milk protein (McKenzie, 1970 & 1971) and are found as micelles in suspension. Two of the caseins, α-casein and β-casein are calcium-binding phosphoproteins that form the core of the micelle; while κ-casein forms the outer casing that stabilizes the micelle. The micellar structure is what makes caseins water-soluble. Lowering the pH of milk removes the calcium ions from the caseins thus making them water insoluble phosphoproteins. After casein precipitation, the remaining protein fraction is made up of what are known as whey proteins. The major whey proteins are α-lactalbumin, β-lactoglobulin (found in ruminants, pigs and some other species) and whey acidic protein (WAP) found in rodents. Minor components such as immunoglobulin, lactoferrin, transferrin and serum albumin are also present (Levieux and Ollier, 1999).

Another source of proteins is the MFGM. The MFGM has both integral as well as peripheral proteins associated with it. Because proteins associated with the MFGM do not comprise a large proportion of milk proteins, it is unlikely that they contribute much to the nutritional value of milk. However, some MFGM proteins may play a protective role against possible infections in the neonate (Peterson et al., 1998; Peterson et al. 2001). Three MFGM associated proteins: namely, the integral membrane protein butyrophilin (BTN), the soluble protein xanthine oxidase (XO) and the lipid-embedded protein adipocyte-differentiation related protein (ADRP) (Heid et al., 1996), could play a
structural and/or functional role in lipid secretion. TIP47 (tail-interacting protein 47; also known as PP17-placental tissue protein 17) is a close homolog of perilipin and adipophilin, which is associated with intracellular lipid droplets as well as being one of the components of the MFGM (Cavaletto et al., 2002). Although its role in milk-fat biology is not defined, TIP47 retrieves mannose-6-phosphate receptor from lysosomal compartments back to the trans-Golgi network (TGN) (Diaz and Pfeffer, 1998). Other proteins found in the MFGM are CD36 (previously called PASIV) (Greenwalt and Mather, 1985) and fatty acid binding protein (FABP) (Bohmer et al., 1987). Co-immunoprecipitation data indicate possible interaction between these two proteins in the MFGM (Spitzberg et al., 1995). The development of CD36 null mice (Febbraio, et al., 1999) is further evidence of the importance of this protein in the metabolism and regulation of the cytoplasmic fatty acid (FA) pool. Proteins such as the heavily glycoslated integral protein mucin 1 (MUC1), lactadherin [also known as breast antigen 46 (BA46), or periodic acid Schiff 6/7 (PAS6/7)], and trace quantities of other soluble and membrane proteins, conceivably arising during the secretion of milk-fat droplets complete the list [for a review see, Mather, 2000].

Despite the fact that the synthesis of milk constituents is accomplished by the MECs lining the alveoli, not all constituents are synthesized in the same subcellular location, nor do they all exit the cell by the same mechanism. Milk proteins (soluble and colloidal) and lactose originate from the rER and Golgi complex, respectively, and exit into the alveolar lumen via exocytosis from secretory vesicles (Sasaki et al., 1978). On the other hand, milk lipids exit the cells by an evagination process directly from the cytoplasm. Notwithstanding other cell types which also produce and accrue lipid
droplets, the secretory epithelium of the mammary gland does not utilize the conventional
secretory pathway for fat droplet secretion (Mather and Keenan, 1998). Hence, efforts to
understand the extrusion process of lipid droplets from MECs has not benefited from
tissue comparative studies.

The synthesis of neutral lipids is imperative for lactation, as evidenced by the di-
acylglycerol transferase knock-out (Dgat-/-) mouse in which lactogenesis was wholly
arrested (Smith et al., 2000). There is now growing evidence that synthesis of fatty-acids
and their concomitant esterification to glycerol takes place in the vicinity of the ER; quite
possibly in the hydrophobic core of the ER membrane (Zaczek and Keenan, 1990;
Keenan, et al., 1992). Once synthesized, the triacylglycerols nucleate, by an as yet
unknown mechanism, to form droplets enclosed in a proteinaceous material and
conceivably the cytoplasmic amphipathic monolayer of the ER membrane (Zaczek and
Keenan, 1990; Wu, et al., 2000). Therefore, membrane spanning proteins with
hydrophilic lumenal moieties, such as BTN, are presumed to be excluded from the
monolayer surrounding the lipid microlipid droplets. Mammary lipid droplets are
associated with the chaperone/translocon plug BiP (Ghosal, et al., 1994), ADRP (also
known as adipophilin) (Heid, et al., 1996), the calcium binding chaperone, calreticulin
(Ghosal, et al., 1994), and protein disulfide isomerase (Ghosal, et al., 1994). Lipid
droplets in other non-MECs are also associated with other proteins including: the
adipocyte specific protein, perilipin (Blanchette-Mackie et al., 1995), the ATPase,
lipotransin (Syu and Saltiel, 1999), and the cytoskeletal protein, vimentin (Franke et al.,
1987; Lieber and Evans, 1996). BiP (Prattes, et al., 2000) and ADRP (Ye and Serrero,
1998) are also associated with the lipid droplets in non-MECs.
The precise mode by which nascent microlipid bodies are able to dissociate from ER membrane into the cytoplasm is not known. However, Keenan et al. (1992), using an in vitro assay, showed that a small cytosolic factor stimulates their release from the ER. Henceforth, the triglycerides coalesce to form larger and larger droplets that vectorially move towards the apical plasma membrane. The factors that mediate the progressive coalescence of the lipid droplets while in transit to the plasma membrane remain to be clearly identified. Some evidence from in vitro assays suggests that calcium, cytosolic proteins or exogenous gangliosides might be involved (Valivullah et al., 1988).

Although there is lingering dissent among researchers studying milk lipid secretion (Wooding, 1971; Wooding, 1973; Kralj, and Pipan, 1992), the widely accepted model (Mather and Keenan, 1998) posits that milk-fat globules abut the apical plasma membrane possibly through interactions with membrane-associated proteins. The ensuing sequence of events that leads to the progressive and complete envelopment of the globule by apical membranes, and finally its pinching-off and expulsion into the lumen are less understood. Since the MFGM originates from apical membranes, apical-limited membrane associated proteins, such as BTN, ostensibly play an important role in the steering and/or extrusion process of the milk-fat globules.

The name for the mammary specific protein BTN was coined from the Greek terms ‘butyros’ and ‘philos’ to reflect its co-localization with milk-fat globules (Franke, et al., 1981). In the years since the first cow cDNA clone was isolated (Jack and Mather, 1990), BTN gene has been described in several mammalian species ranging from humans to dolphins (Hare et al., 2002) and shows a high degree of nucleic acid sequence similarity across many species. Genomic organization of BTN is such that the exons
closely correlate to functional protein domains. BTN is a type I transmembrane glycoprotein with two exoplasmic Ig-like domains, a centrally located transmembrane domain (Banghart et al., 1998), and two predicted Ig-folds on the cytoplasmic side (Seto, et al., 1999). The cytoplasmic Ig-folds are encoded by the so-called B30.2 domain. This domain is present in many genes and will later be discussed in more detail.

Labeling studies have shown that BTN preferentially sorts to the apical surface of secretory MECs (Franke et al., 1981; Johnson and Mather, 1985). Moreover, although there is no evidence that BTN is a major integral protein of the apical surface of MECs, it is by far the most abundant protein spanning the cow MFGM (Mather et al., 1980; Franke et al., 1981; Mondy and Keenan, 1993); indicating a preferential accumulation of this protein to exit sites of milk-fat globules.

Several isoforms of BTN have been detected that arise partly due from variable glycosylation reactions (for review see, Mather, 2000). A novel species of BTN, derived from an alternative splicing reaction that removes the IgC domain, is also present in human MFGM (Cavaletto et al., 2002).

Completion of the first sequence maps of the human and mouse genomes provides the opportunity to hunt for paralogous genes to butyrophilin. In addition to the eponymous butyrophilin gene (recently designated as BTN1A1 in humans - hBTN1A1), there are several other strongly related and closely positioned genes. Sequence analysis of the human extended major histocompatibility complex I (MHCI) region revealed six other BTN-like genes telomeric to hBTN1A1 that are now collectively grouped into the BTN gene family (Rhodes et al., 2001; Ruddy, et al., 1997). The subfamily BTN1A only comprises hBTN1A1, while subfamilies BTN2A and BTN3A each comprise three
members. Based on the cDNA sequence of the BTN-like genes, polypeptides of the BTN family share about 40% primary sequence identity (Ruddy et al., 1997). Unlike the prototypical BTN1A1 gene, expression of the other BTN-like genes is not specific to the mammary gland (Ruddy et al. 1997; Rhodes et al., 2001). Mouse Btn1a1 is not in the MHC region of chromosome 17 but rather is in synteny with other MHC-associated genes on chromosome 13 (Amadou et al., 1995).

Mammals are thought to have arisen sometime at the end of the Jurassic or the beginning of the Cretaceous period (Oftedal, 2002). If the arrival of BTN into the genomic repertoire is ancillary to the emergence of lactation, this in an evolutionary time-scale, is quite recent. Henry et al. (1997a) describe BTN as a mosaic which originated by exon shuffling of two distinct progenitor genes: one progenitor contributing the two exoplasmic Ig-domains, and possibly the transmembrane domain; and the second progenitor supplying the cytoplasmic end, comprising a pair of heptad repeats and the highly conserved B30.2 domain. The ancestral exons that combined to form the BTN open reading frame (ORF) also contributed to the configuration of other ORFs (Vernet et al., 1993; Henry et al., 1997a). In the following sections I discuss proteins that share sequence similarities with BTN: described here with the prospect that similarities at the level of the primary structure will convey some insight into the possible function(s) of BTN.

By virtue of its two exoplasmic immunoglobulin (Ig) folds, BTN shows strong to weak similarity with some members of the Ig-superfamily. Notable among these are the B7 family of co-stimulatory molecules (Linsley et al., 1994; Henry et al., 1999) that are expressed on the surface of antigen presenting cells and the activated leukocyte-cell
adhesion molecule (AL-CAM). Moreover, protein level sequence homology searches in
the SWISSPROT database also reveal shared homology with several neuronal specific
proteins such as myelin oligodendrocyte glycoprotein (MOG) (for review see Henry et
al., 1999), neural cell adhesion molecule (N-CAM), and the limbic-system-associated
membrane protein (LAMP). There is now experimental evidence that molecular mimicry
of human MOG by bBTN could be the cause of a pathogenic immune response.
Antibodies raised against bBTN from cows' milk cross react with hMOG possibly
leading to the neurodegenerative autoimmune disease, multiple sclerosis (Stefferl et al.,
2000; Kennel et al., 2003; Guggenmos et al., 2004).

A class of MHC associated proteins known as B-G (chicken) (Vernet et al., 1993)
and B-G-like (crane) (Jarvi et al., 1999) exhibit similarity to BTN within the exoplasmic
domain. The homology between B-G and BTN covers the first Ig-loop, while that of B-
G-like extends to the second Ig-loop as well. Both B-G and B-G-like genes code for a
transmembrane domain. Taken together, these and the previously mentioned homologies
to the exoplasmic domain of BTN indicate that BTN in the mammary gland has
additional functions unrelated to milk-fat secretion.

The transmembrane domain of BTN is located near the center of the protein,
dividing the polypeptide into two nearly equal halves. The cytoplasmic side possesses a
pair of putative heptad repeats, the B30.2 domain and a short C-terminal tail.

Of particular interest is the highly conserved B30.2 domain which was first
identified as a 166 amino acid region found on the carboxy terminus of four proteins; of
which BTN was one (Jack and Mather, 1990). Three highly conserved motifs, named
LDP, WEVE and LDYE, anchor the homology of the B30.2 region (Henry, et al.,
Computer based analysis programs for secondary structure and putative folds predict that the B30.2 domain comprises up to 15 β-strands that form two Ig-like loops (Seto, et al., 1999).

While the function of the B30.2 domain remains to be conclusively established, since its initial description, numerous other proteins with seemingly unrelated functions have been found to carry this domain. The domain is found in both membrane bound as well as soluble proteins, but always towards the C-terminal region of the proteins so far identified. However, the N-terminal ends of these same proteins are manifold. Besides the paralogous BTN-family members, the only other protein that possesses a B30.2 domain and an Ig-like domain on its amino-terminus is the transmembrane protein, erythroid membrane-associated protein (Ermap), which share an overall amino acid identity of 36% and an additional similarity of 22% (Ye et al., 2000).

Several proteins that possess the B30.2 domain in the carboxy-terminus apparently associate with microtubules (MTs). One such protein is MID1. Mutations in the C-terminal region of MID1 cause the genetic disorder Optiz syndrome (Quaderi et al., 1997) by abrogating its MT associating property (Schweiger, et al., 1999; Cainarca et al., 1999; Cox et al., 2000). Another related protein, MIR1, also has a B30.2 domain and associates with MTs in a cell-cycle dependent manner (Stein et al., 2002). In both MID1 and MIR1, MT association appears to be regulated by a phasic phosphorylation/dephosphorylation event (Liu et al., 2001; Stein et al., 2002). The amino-terminus of MID1 has a zinc-binding domain known as RING-BBox- ciòled- ciòled (RBCC) domain. The RBCC domain (also known as TRIM – tripartite motif) is also a feature of some other proteins that possess a B30.2 domain (discussed later). MIR1 has only the coiled
coil domain on its amino-terminus, and thus does not constitute all three motifs.

The recessive genetic disorder known as familial Mediterranean fever (FMF) is caused by a mutation(s) in the B30.2 domain of the pyrin/marenostrin gene (The International FMF Consortium, 1997; The French FMF Consortium, 1997). Interestingly, the MT inhibitor agent colchicine has been the most widely used drug treatment for FMF since the early 1970s (Zemer et al., 1974; Dinarello et al., 1974). However, contrary to this apparent link, work by Mansfield et al. (2001) indicates that the interaction between pyrin and MTs is not via the B30.2 domain.

The kinase sp1A and RYanodine receptor were found to have triplicates of a B30.2-like domain which was given the name SPRY (for sp1A/RYanodine) (Ponting et al., 1997). Sequence comparisons to the B30.2 domain reveal that the amino-terminus of SPRY is truncated and preliminary fold analysis predicts that SPRY lacks one of the two putative Ig-like folds (Seto et al., 1999). The SPRY domain is found in the proteins of a multitude of organisms and proteins of equally diverse functions. Although no functional properties were attributed specifically to the SPRY domain, recent in vitro interaction and in vivo functional assays show that the SPRY domain of RanBPM is implicated in interactions with MET, a receptor protein-tyrosine kinase (RPTK). Unlike the B30.2 domain, SPRY is not limited to the C-terminal segment of a protein.

Another protein, GLFND (not an abbreviation) was recently isolated and shown to bind to MTs partly through its C-terminal SPRY domain (Manabe, et al., 2002). Yeast two-hybrid screens using zyxin, (Schenker and Trueb, 2000) and 14-3-3ζ (Birkenfeld et al., 2003) as bait also revealed a novel protein named BSPRY (for B-Box and SPRY domain). The functional significance of these interactions has yet to be determined.
The putative coiled-coiled domain of BTN potentially plays a role in self-aggregation or cross-interaction with other proteins, as these domains typically serve as protein oligomerization motifs (for review see, Burkhard et al., 2001). This possibility is supported by the identification of high molecular weight aggregates of BTN from purified MFGM (Banghart, et al., 1998; Goldfarb, 1997; Cavaletto et al., 2002), and isolates of aggregates of GST fusion proteins of the cytoplasmic domain of mouse butyrophilin (mBtn1a1) (Rao and Mather, unpublished).

At this juncture, it is important to mention homologues of BTN whose function is attributed to their non-B30.2/SPRY domains. These comparisons may not lend direct deductive parallels as to BTN's possible function. The N-terminal non-B30.2/SPRY region of estrogen-responsive finger-protein (efp) (Inoue et al., 1993), xenopus nuclear factor 7 (xnf7) (Reddy et al., 1991), stimulated trans-acting factor 50 (Staf50) (Tissot and Mecht, 1995), ret finger protein (RFP) (Takahashi et al. 1988), pAw33 (Bellini et al., 1993) and Sjogren's syndrome antigen (SS-A/Ro) (Chan et al., 1991; Itoh et al., 1991) all constitute an RBCC domain that is a putative transcription regulator (Saurin et al., 1996).

Despite the longer N-terminal end of the B30.2 domain as compared to the SPRY domain, the level of similarity between the two domains is unmistakable (Seto et al., 1999). Even as we discuss B30.2 and SPRY domains as being separate entities, it is quite possible that one was derived from the other, or else, that both domain families belong to the same super-family.

The cytoplasmic B30.2 domain and/or the exoplasmic Ig-folds present in BTN are doubtless important for the function of BTN in lactation … most likely in milk-fat secretion. Milk-fat-droplets exiting secretory MECs are enveloped by the apical plasma
membrane that forms the MFGM (Mather, 2000). Franke et al. (1981) have observed that lipid droplets from the cytoplasm travel towards the apical cell surface and upon extrusion are enveloped by MFGM that is enriched with BTN and XO, implying that BTN and XO concentrate at designated milk-lipid exit areas; or that BTN and XO concentrate in areas of milk-fat globule secretion. BTN makes up the major integral protein of the MFGM in many species and is thought to be a major player in the milk-fat globule extrusion process (for review see Mather, 2000).

In order to gain an understanding of the functional role of BTN, Mather and Ogg (unpublished) have recently generated a mouse model in which the mBtn1a1 is ablated. Microscopic examination of mammary tissue of these mice reveals a dramatic alteration in both the histology of secretory MECs as well as the structure of the MFGM. The milk-fat secretion process was severely compromised, despite a seemingly unrelieved milk-lipid synthesis. This is believed to explain the large lipid droplets observed occupying nearly the entire cytoplasm. The phenotype exhibited by these mBtn1a1-ablated mice is the first compelling evidence that BTN is required for the proper secretion of milk fat. The exact sequence of events and all of the cohorts involved in this process are not fully understood. Still, XO was demonstrated to be one of the principal components of milk-fat secretion process (Vorbach et al., 2002) most likely by interacting with the cytoplasmic side of BTN (Ishii et al., 1995; Rao and Mather, unpublished). Preliminary morphological examination of mammary tissue derived from a mouse model where only one allele of XO has been ablated is a close phenocopy of the mBtn1a1 ablated mouse (Vorbach, et al., 2002).

As most present day genes probably arose from the rearrangement of a limited
number of primogenitor exons (Dorit and Gilbert, 1991), a linear comparison of the homologous domains of proteins/genes, can only offer limited insight towards deciphering the various functional elements of a protein. Nonetheless, the usefulness of syllogistical comparison of certain conserved modular domains cannot be discounted, particularly if taken in the context of other relevant factors such as tertiary structure, cellular localization, interacting partner(s) or the nature of the active site.

The potential role of BTN in milk-fat secretion does not parlay one into ascribing it as its sole function, nor that BTN's function is mediated via interaction with only XO. The evolution of BTN from two distinctly unrelated genes, whose present day descendants exhibit varied tissue distributions and functions, is suggestive of other tasks in milk-fat secretion or even secondary unrelated functions.

The expression profile of BTN is, nonetheless, a strong indicator that BTN's function is related to lactation. Genes important for mammary gland development, milk synthesis and secretion, and involution are subject to precise control that allows for the ordered episodic and cyclic physiological stages that constitute a functional secretory organ. Changes in gene expression profile, such as that of BTN, that occur commensurate with the developmental and/or functional stages of the mammary gland present a unique opportunity to study the temporal and spatial control of mammary-specific genes.

Despite exceptions in certain species and for some genes, the expression of most 'milk genes' is initiated during pregnancy and terminated shortly after the onset of involution. Therefore, not only are these genes tissue specific, but they also display temporal patterns that coincide with the physiological status of the mammary gland.
Multiple studies on the expression of milk protein genes, both *in vitro* and *in vivo*, reveal an elaborate axis of control that involves many hormones, growth factors and growth inhibitors (for example, Vonderhaar and Ziska, 1989; Stocklin *et al*., 1996) and the extracellular substratum (for example, Streuli, *et al*., 1991; Aggeler *et al*., 1988). The mammary gland is a complex system, thus ascribing the role of transcriptional effector to one or a few hormones is inherently flawed. Nonetheless, a trio of lactogenic hormones, *viz* insulin (I), prolactin (PRL), and hydrocortisone (H), have been identified as major *trans*-acting factors required for the transcriptional induction of 'milk genes' *in vitro*. These studies focused on the major 'milk genes', *i.e.* the caseins and whey proteins, primarily because their relatively high level of expression makes them ideal candidates for such investigations.

In addition to the major constituents of milk, such as caseins and lactose, which are exclusive to the mammary gland, less abundant proteins which are required for the proper synthesis and secretion of milk constituents, such as *α*-lactalbumin (Vilotte and Soulier, 1992) and BTN (Banghart, *et al*., 1998; Ogg *et al*., 1996) are also restricted to secretory MECs.

In species so far investigated, and similar to the traditional mammary specific markers such as *β*-casein, the expression of BTN is confined to the mammary gland. This is in contrast to the other BTN-family members that have a wider tissue distribution (Ruddy *et al*. 1997; Rhodes, *et al*., 2001). A corollary can thus be drawn that a regulatory element(s) dictates the expression of BTN distinct from the other BTN-like genes and possibly similar to other 'milk genes'.

BTN and casein are purported to be transcribed in the same subpopulation of
MECs (Molenaar et al., 1995). So far, characterization of BTN gene expression has largely relied on the detection of transcript from tissue (Aoki et al., 1997; Banghart et al., 1998). However, a more incisive investigation of the elements that direct BTN expression necessitates other approaches. Variation amongst animals and the lack of an effective and reproducible means of introducing reporter genes into the mammary gland has necessitated the reliance on established cell lines. With all the shortcomings of not being a facsimile of 'true' physiological conditions, established cell lines provide a means by which one can delineate important regulatory elements with a modicum of exertion and a fair degree of reproducibility.

There are no well established bovine MECs. The only widely available MEC line was obtained by transforming Holstein primary mammary alveolar cells with the simian virus-40 (SV40) large T-antigen (Huynh et al., 1991). Although this cell line is commonly used as a model to study mammary gland infections, efforts to characterize it have shown it to comprise a non-homogenous population of cells (Zavizion et al., 1995).

However, there are better characterized mouse MECs. COMMA-1D cells were isolated from mid-pregnant Balb/c mice and characterized for epithelial and mammary specific properties (Danielson et al., 1984). HC11 cells were later subcloned by Ball et al. (1988) from the COMMA-1D cell line and exhibited the same mammary specific benchmarks as COMMA-1D cells, without the extracellular matrix requirements (Chammas, et al., 1994). HC11 cells display characteristics of terminally differentiated lactating mammary epithelial cells as measured by expression of the β-casein gene in response to lactogenic hormone (IHP - I, H, and PRL) treatment (Ball et al., 1988). Moreover, they also make their own substratum providing a condition that many
investigators have shown is a requirement for the proper expression of milk genes (Chammas et al., 1994).

Work done by Aoki et al. (1997) using COMMA-1D and HC11 cells demonstrated that there is a marked difference between the level of expression of BTN and β-casein. Further, BTN mRNA is expressed in HC11 cells in the presence of basal media supplemented with the trio of lactogenic hormones; but the addition of lactogenic hormones elicits a less dramatic enhancement of expression as compared to that of β-casein (Aoki, et al., 1997) pointing to a possible separate or parallel mode of regulation. Therefore, it is probable that the promoter of BTN may possess elements that are both shared with and divergent from that of β-casein.

The cloning of several genes integral in the signaling pathway required for lactogenesis has allowed the use of non-mammary cells in efforts to define important cis-elements (Jolivet et al., 1996). However, it is prudent to rely on well characterized cells that resemble mammary cells in some benchmarks of differentiated MECs. Therefore, all transfection assays in this study were done with the HC11 mouse mammary cell line.

The identification of cis-acting regulatory elements of bBTN has implication in its use for the expression of chimeric genes in the mammary gland, providing a means by which to alter the composition of milk. Further, genetic variation in the bBTN gene or promoter has potential use as a marker for quantitative trait loci (QTL) analysis. Over the past several decades, classical selection and breeding techniques to increase the quality and quantity of milk production in dairy animals has registered measurable and steady gains. In 1950 the yearly milk production per cow in the U.S. was 5,314 lbs in contrast to 18,204 lbs in the year 2000, while the population of dairy cows went down by more than
half during the same period (Blayney, 2002). The advent of molecular biology applications has brought with it new possibilities. For example, quantitative trait loci (QTL) analysis, marker assisted selection (MAS), cloning of whole organisms, etc. present new tools to improve the genetic make-up of dairy animals.

The theory of particulate inheritance elements (Mendel, 1865) does not hold true for many traits. In fact it is now an established fact that many traits display continuous variation. Phenotypic manifestation of continuous quantitative traits is due to effects and interplay of multiple loci with environmental factors. Each of these loci is a QTL. Ever since the pioneering work of Tanksley and Rick (1981) linking enzyme variation in tomato to a quantifiable trait, both the qualitative and the quantitative aspects of QTL analysis have evolved to suit other species and needs. A case in point is the circumstances peculiar to large dairy farms, where (1) commercial breeding programs are driven by economic benefits and are not purely research oriented, (2) most, if not all, economically important traits are sex limited, and (3) heavy reliance on artificial insemination (AI) technology from a few high genetic merit bulls, has necessitated a custom-tailored approach.

Even though there is a lag in the compilation of genomic sequences of farm animals, efforts are underway to identify and catalogue genetic markers. Since its inception, the Cattle Genome Mapping Project (Keele et al., 1994; USDA, http://www.marc.usda.gov/ genome/genome.html) has grown to provide searchable databases for markers on all 29 autosomal chromosomes and the X chromosome.

Although some QTL analyses in dairy animals have relied on the use of variants of already known genes as markers (for example, Bovenhuis and Weller, 1994; Lagziel,
et al., 1999), this approach limits the discovery of putative QTLs to regions of the chromosome that are closely linked to the known genes. Traditional genetic markers such as microsatellites, restriction fragment length polymorphisms (RFLPs), tandem repeats, etc. are the preferred choices. In particular, the use of RFLP markers for QTL mapping has been extensive since the early 80s (Botstein et al., 1980).

Previous searches to identify genetic markers in BTN have yielded a single-stranded conformational polymorphism (SSCP) in the 3' UTR (Karall et al., 1997) and an RFLP in the coding region of the 3'-most exon (Taylor et al., 1996). Lee et al. (2002) also reported five RFLPs in Korean Holstein-Friesian and identified two allelic forms of bBTN.

In order to identify the locus that influences a certain quantitative trait in livestock, current QTL analysis approaches utilize multiple genetic markers to narrow down the likelihood of a certain locus being statistically associated with a defined quantitative trait, and subsequent comparative analysis with publicly available human and rodent genome databases.

In livestock, genome-wide scans to detect regions of chromosomes that influence a trait of interest are limited in their effectiveness depending on the rate of recombination between the putative QTL and the marker. This approach, although of great value, is prone to 'noise' effects that could arise from the linkage disequilibrium of a true causal locus to a gene of interest.

Given a choice of available markers, the most commonly used method to improve the power of detecting QTLs, in a scenario where the putative QTL and the marker do not map to the same locus, is interval mapping (Lander and Botstein, 1989). When a marker
which lies at the same locus as a candidate gene is obtainable, it practically ensures linkage of the two and thus accords several advantages. If marker and candidate gene lie on a single locus, a QTL mapping study (1) does not underestimate the phenotypic effect of the QTL, (2) does not require as many progeny to be scored; and, (3) is independent of tight linkage/small effect or loose linkage/large effect conundrum (Lander and Botstein, 1989).

The design used to apply QTL analysis in dairy animals has to take into account the specific conditions that are peculiar to the commercial dairy industry (see above for list). Weller et al. (1990) developed a method of analyzing the inheritance pattern of genetic markers/genes in multi-generational dairy half sib families. Dubbed the granddaughter design (GDD), this method was particularly pertinent to dairy animals since it employed the scoring of genotypic(marker)marker information from sons of heterozygous grandsires, and the collection of phenotypic data from granddaughters. The GDD is by far the most widely used model for QTL analysis in dairy cattle worldwide.

The GDD affords a comparable power of detecting QTLs for less number of marker scorings as opposed to a daughter design, where both the genotyping and phenotyping are done on the same animal (Weller et al., 1990).

BTN is one a few mammary/lactation specific genes so far identified. This study tried to address two questions: what confers mammary specificity to BTN expression? and how does allelic variation in BTN affect milk production traits? To these ends, two specific aims were formulated:
I QTL analysis of bBTN:

- to identify intragenic polymorphic markers of bBTN, and

- to utilize these markers to determine if bBTN is a QTL affecting economically important milk production traits.

II Analysis of the cis-regulatory elements of bBTN:

- to clone a sizable region of the 5' flanking sequence of the bBTN,

- to perform computational modeling of the putative promoter region of bBTN

- to utilize transient transfection assays to delimit important cis-acting regions that potentially control bBTN expression.
METHODS

1. Materials

Dextran sulfate, sodium hydroxide, polymyxin B agarose, acetyl-CoA, porcine insulin, epidermal growth factor, hydrocortisone, Dulbecco's phosphate buffered saline (D-PBS, Ca^{2+}, Mg^{2+} free), chloroform, isoamyl alcohol, 2-propanol, diethylpyrocarbonate (DEPC), ethidium bromide, casein enzymatic hydrolysate (NZ amine), MgSO_4·7H_2O, glycerol, boric acid and polyethylene glycol were all obtained from Sigma (St. Louis, MO). Phenol was obtained either from Sigma or Amersham Biosciences Corp. (Piscataway, NJ). Prolactin was a gift from the USDA Hormone Program (Beltsville, MD). RPMI-1640 media, PCR Supermix ®, trypsin, gentamicin, sodium bicarbonate (cell culture grade), TRIzol, FAST Track ® mRNA isolation kit, and agarose were acquired from Invitrogen Life Technologies (Carlsbad, CA). The radiocompounds [^{14}C]-chloramphenicol and α[^{32}P]-dCTP were obtained from American Radiolabeled Chemicals (St. Louis, MO), and Dupont NEN (Boston, MA) or Amersham, respectively. DNA polymerase I Klenow fragment, DNA ligase, S1 nuclease, DNA polymerase and DNA size marker were from Promega (Madison, WI). While all endonucleases used were either from Promega or New England Biolabs (Beverly, MA). RNAs, proteinase K, and chlorophenol red -β- D- galactopyranoside (CPRG) were obtained from Boehringer Mannheim (Indianapolis, IN). ULTRAhyb hybridization buffer, formaldehyde loading dye, and RNA size marker were procured from Ambion (Austin, TX). Characterized fetal bovine serum (FBS) was obtained from Hyclone (Logan, UT) or Atlanta Biological (Norcross, GA). The Prime IT ® II kit and NucTrap...
® push column were obtained from Stratagene (La Jolla, CA). Yeast extract, tyroptone, and bacto-agar were acquired from Beckton Dicknson (Sparks, MD). Gene Porter cell transfection kit was from Gene Therapy Systems (San Diego, CA). Magna Lift nylon membranes were obtained from Micro Separations Inc. (Westboro, MA). Ethyl acetate was obtained from JT Baker Chemical Company (Phillipsburg, NJ), while thin layer chromatography (TLC) plates were acquired from EM Science (Gibbstown, NJ). ORIGEN freeze media was procured from IGEN International Inc. (Gaithersburg, MD). BSA ® protein assay kit and sodium dodecyl sulphate were obtained from Pierce Biotechnology (Rockford, IL) and Biorad Inc. (Hercules, CA), respectively. All other reagents were obtained from Fisher Scientific (Newark, DE). Micron-100 and 0.22µm filters were obtained from Millipore (Bedford, MA).

2 Isolation and characterization of the 5' flanking region of bBTN

A bovine genomic library was obtained from ClonTech Laboratories Inc. (Palo Alto, CA). The library consisted of bovine genomic DNA fragments generated by partial digestion with MboI and cloned into the BamH1 cloning site of the EMBL3 SP6/T7 phage vector.

XL1-Blue host cells were used to amplify and screen the library. The screening process was essentially as per the company's protocol with slight modifications. NZYM agarose plates and LB (Luria-Bertani) soft top agar were used on 150mm plates; this was found to improve the ease of manipulation of phage DNA in down stream processes. Plaques were replica-lifted with Magna Lift ® (Micro Separation Inc., Westboro, MA) nylon membrane. The membranes were then placed for two 2 min steps each on
Whatman™ paper soaked in denaturation (1.5m NaCl, 0.5N NaOH) and neutralization (1M Tris-HCl, pH 7.4, 1.5M NaCl) solutions. Excess denaturation and neutralizing solutions on the nylon membranes were blotted on fresh Whatman® paper (membrane not allowed to dry) in between steps. The membrane was placed on a 10X SSC soaked Whatman® paper in a Stratalinker® (Stratagene, La Jolla, CA) to cross link the DNA to the nylon membrane.

The library was screened using a 0.9kb bBTN cDNA probe representing the 5' end of bBTN extending from exon 1B to exon 4. The probe was radioactively labeled by random priming using the Prime IT®II kit (Stratagene, CA) and α[32P]-dCTP (Dupont NEN, MA). Unincorporated nucleotides were removed by NucTrap® (Stratagene, CA).

3. Construction of chloramphenicol acetyl transferase (CAT) reporter plasmids

The pCAT®-Basic vector (Promega, Madison, WI; GenBank accession № X65322) lacks eukaryotic promoter and enhancer elements (Figure 1) and thus was selected to assay for sequences that could potentially have cis-acting regulatory elements (example, Feltus et al., 1999; Grønning et al., 1999). The pCAT-Basic® was the initial vector from which all CAT reporter constructs were ultimately derived.

3.1 pbBTN1.7/CAT

A 1.7 kb piece that encompasses 1042 bp of the 5' putative promoter, 750 bp of the 5' UTR and intron A was excised from its pBluescript® II KS phagemid vector by digestion with XhoI and BamHI. The XhoI site resides in exon 1B of bBTN, while the BamHI site is part of the multiple cloning site of the pBluescript II KS vector. The 5'
Figure 1: pCAT-Basic vector plasmid features. This plasmid was the starting material for constructing pCAT-Basic/+1.7 and pCAT-Basic/-1.7 by inserting 3' sequence of bBTN at the NdeI site in correct and reverse orientations, respectively.
overhang ends were blunt-ended with DNA polymerase (Klenow) and inserted into the pCAT-Basic® vector that had been linearized with SalI and blunt-ended.

This reporter test construct was named pbBTN1.7/CAT (Figure 2, Table 1). The 1.7 kb insert comprised sequence that extends up to 49 bp upstream relative to the bBTN native translation start site and includes ~1 kb of 5' flanking region.

3.2 pbBTN1.2/CAT

This test construct has a putative promoter that is approx. 0.45 kb situated 5' of the CAT gene. Since the pbBTN1.7/CAT was used as a starting material to generate pbBTN1.2/CAT, all other features were the same. To this end, approx. 0.6 kb of 5' sequence pbBTN1.7/CAT's insert was removed by digestion with ApaI and PstI, located in the insert and the 5' multiple cloning site respectively. The ends were blunt-ended with S1 nuclease and religated creating the construct named pbBTN1.2/CAT (Table 1).

3.3 pCAT-Basic/+1.7 and pCAT-Basic/-1.7

These two constructs were generated from pCAT-Basic®. A 1.7 kb NdeI fragment (courtesy of H. Davey, AgResearch, Ruakura Research Centre, Hamilton, New Zealand) that encompasses 273 bp of 3' UTR, the polyA element and 1394 bp of 3' flanking region of bBTN was inserted at the sole NdeI site 1.2 kb 3' of the CAT gene (Figure 2). Two clones were isolated in which the inserted sequence was either in the correct or reverse orientation and named pCAT-Basic/+1.7 and pCAT-Basic/-1.7, respectively (Table 1).
Figure 2: pbBTN1.7/CAT. A pCAT-Basic vector with the 1.7kb bBTN insert. Notice the pBluescript ® II KS MCS is at the 3' end of the putative promoter. Although not depicted, all other vector plasmid features are the same as in Figure 1 above. pbBTN1.7/CAT was the starting material for constructing pbBTN1.2/CAT by the excision of 0.6 kb of the insert's 3' end between PstI and ApaI.
Table 1: List of promoter constructs and their components

<table>
<thead>
<tr>
<th>Name of construct</th>
<th>Sequence element(s) inserted to pCAT-Basic Vector</th>
<th>Size in bps</th>
<th>Location of insertion</th>
<th>Orientation of insertion</th>
<th>Description of inserted element</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCAT-Basic</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>pCAT-Basic/+1.7</td>
<td>1667<sup>1</sup> 3’ of CAT gene</td>
<td>Forward</td>
<td>273bp 3’ UTR and polyA element; plus 1394bp 3’ flanking region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCAT-Basic/-1.7</td>
<td>1667 3’ of CAT gene</td>
<td>Reverse</td>
<td>273bp 3’ UTR and polyA element; plus 1394bp 3’ flanking region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pbBTN1.2/CAT</td>
<td>1160<sup>2</sup> 5’ of CAT gene</td>
<td>Forward</td>
<td>452bp 5’ putative promoter region of bBTN; plus 708bp of 5’UTR of bBTN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pbBTN1.7/CAT</td>
<td>1750<sup>3</sup> 5’ of CAT gene</td>
<td>Forward</td>
<td>1042bp 5’ putative promoter region of bBTN; plus 708bp of 5’UTR of bBTN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pbBTN1.2/CAT/+1.7</td>
<td>1667 3’ of CAT gene</td>
<td>Forward</td>
<td>273bp 3’ UTR and polyA element; plus 1394bp 3’ flanking region</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1750 5’ of CAT gene</td>
<td>Forward</td>
<td>1042bp 5’ putative promoter region of bBTN; plus 708bp of 5’UTR of bBTN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pbBTN1.7/CAT/+1.7</td>
<td>1667 3’ of CAT gene</td>
<td>Forward</td>
<td>1042bp 5’ putative promoter region of bBTN; plus 708bp of 5’UTR of bBTN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1667 3’ of CAT gene</td>
<td>Forward</td>
<td>273bp 3’ UTR and polyA element; plus 1394bp 3’ flanking region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pbBTN1.2/CAT/-1.7</td>
<td>1667 3’ of CAT gene</td>
<td>Reverse</td>
<td>273bp 3’ UTR and polyA element; plus 1394bp 3’ flanking region</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1750 5’ of CAT gene</td>
<td>Forward</td>
<td>1042bp 5’ putative promoter region of bBTN; plus 708bp of 5’UTR of bBTN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pbBTN1.7/CAT/-1.7</td>
<td>1667 3’ of CAT gene</td>
<td>Reverse</td>
<td>273bp 3’ UTR and polyA element; plus 1394bp 3’ flanking region</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ GenBank accession number AF005497, nucleotide positions 7768 - 9434
² GenBank accession number AF005497, nucleotide positions 591 - 1751
³ GenBank accession number AF005497, nucleotide positions 1 - 1751
3.4 pbBTN1.7/CAT/+17 and pbBTN1.7/CAT/-1.7

These two constructs possess both 5' and 3' sequence of bBTN. The 5' sequence is as described for pbBTN1.7/CAT, while the 3' insert encompasses 273 bp of 3' UTR, the polyA element and 1394 bp of 3' flanking region of bBTN. The two constructs were derived from pbBTN1.7/CAT reporter vector. The 1.7 kb NdeI fragment (described above) was inserted at the sole NdeI site 1.2 kb 3' of the CAT gene. Two test constructs were prepared in which the inserted sequence was either in the correct or reverse orientation and named pbBTN1.7/CAT/+17 and pbBTN1.7/CAT/-1.7, respectively (Table 1).

3.5 pbBTN1.2/CAT/+1.7 and pbBTN1.2/CAT/-1.7

These two constructs were generated from pbBTN1.2/CAT. They possess 5' bBTN sequence as described in pbBTN1.2/CAT. Further, the 1.7 kb 3' NdeI fragment of bBTN, described above, was inserted at the NdeI site of pbBTN1.2/CAT thereby generating two plasmid constructs in which the inserted 3' sequence was either in the correct or reverse orientation and named pbBTN1.2/CAT/+1.7 and pbBTN1.2/CAT/-1.7, respectively (Table 1).

4. Isolation of nucleic acid

4.1 Ribonucleic acid (RNA)

Total RNA from HC11 cells and lactating mouse mammary tissue were isolated using the method of Chomczynski and Sacchi (1987) or with TRIzol® reagent (Invitrogen Life Technologies, Carlsbad, CA) as per the manufacturer's instructions.
mRNA was isolated using the Fast Track® mRNA isolation kit (Invitrogen Life Technologies) directly from HC11 cells strictly as specified by the company.

4.2 Deoxyribonucleic acid (DNA)

4.2.1 Mammalian DNA isolation

Bovine genomic DNA from sperm and polymorphonuclear (PMN) leukocytes was isolated for genotyping. Blood was collected into vacutainers from the tail vein of cows and kept on ice until processing. The samples were centrifuged at 1300g for 5 min to separate the plasma, buffy coat, red blood cells (RBCs) and polymorphonuclear (PMN) pellet. All of the plasma and buffy coat, and most of the RBC layer was removed by aspiration. The pelleted PMN cells were resuspended in the remaining RBC layer. The RBCs were lysed by adding 2X the volume of ddH2O and mixing for exactly 45 seconds, and quickly reconstituted by adding an equal volume of 2.7% saline solution. The sample was then centrifugated at 1900g for 5 min to sediment the PMN cells and resuspended in 10ml of PBS. PMN cells were washed twice in 30ml PBS and lysed in a mixture of 10mM Tris-HCl pH 8.0, 10mM EDTA and 1% sodium dodecyl sulfate (SDS). An equal volume of buffer containing 10mM NaCl, 10mM Tris-HCl, pH 8.0, and 10mM EDTA was added, followed by RNase and proteinase K treatment as described (Sambrook et al., 1989). The DNA was recovered by treatment with phenol:chloroform and precipitated with ethanol.

Sperm samples were washed thrice with TEN(1) buffer (0.1M Tris pH 8, 0.01M EDTA, 1.0M NaCl) and the cells recovered centrifugation at 1500g for 3 min between washes. Sperm cells were then resuspended in TEN(1) buffer containing 1% SDS,
40mM dithiothreitol (DTT) and proteinase K (1µg/µL) and digested at 37°C overnight or until the sperm heads had been disrupted. DNA was recovered from the lysate by extraction with phenol:chloroform mixture and precipitation with ethanol.

4.2.2 Bacterial plasmid isolation (Maxi-preps)

Bacterial plasmid for routine molecular use, except for transfection, was prepared as follows. Bacterial cells grown in Luria-Bertani (LB) medium were harvested by centrifugation and resuspended in GTE-1 (25 mM Tris-HCl, pH 7.5, 50 mM glucose, and 1 mM EDTA). Cells were lysed by the addition of lysis buffer (0.2N NaOH, 1% SDS). Three molar NaOAc pH 4.8 was added to the lysate and the sample centrifuged for 10 min at 2000g. The supernatant was removed and a 1.25X volume of ice cold isopropanol added followed by centrifugation for 10 min at 2000g to sediment the precipitated nucleic acids. The pellet was resuspended in TE (100mM Tris-HCl pH 8, 10mM EDTA) and 1.25X volume of 5M LiCl and the mixture incubated on ice for 5 min. RNA was pelleted by centrifugation at 2000g for 10 min and 2.5 volumes of ice cold ethanol added to the supernatant. A mostly plasmid DNA was sedimented by centrifugation for 10 min at 2000g, and dried. The pellet was resuspended in TE and incubated with RNase A for 30 min. An equal volume of a cold mixture of 1.6M NaCl and 13% PEG (6000) was added to the digested sample, mixed well and incubated on ice for 5 min. Sample was centrifuged at 20000g for 5 min and the supernatant removed (repeated until much of the supernatant was cleared). The pellet was resuspended in TE and treated with two rounds of chloroform extraction, followed by phenol:chloroform extraction until a clear interface was obtained. Plasmid DNA was precipitated by the addition of 3M NaOAc pH 5.5 and
Plasmid DNA for transfection analysis was processed to remove endotoxins by a method modified from Ausubel et al. (1988). Bacteria were grown in LB medium and the cells treated with GTE-2 (50 mM glucose, 25 mM Tris-CL, pH 8.0, and 10 mM EDTA). To the resuspended cells, a 2X volume mixture of 0.2 N NaOH, 1% SDS was added followed by a 1.5 volume mixture of 3M potassium acetate and 1.18 M formic acid. The lysate was then centrifuged to remove high molecular weight genomic DNA, proteins, and other cellular debris; and the aggregates filtered out by passing the lysate through several layers of cheesecloth. Nucleic acid was precipitated by the addition of an 0.6 volume of isopropanol, and the precipitate washed with 70% ethanol and air dried. The nucleic acid pellet was then resuspended in a small volume of GTE and treated with RNase at 37°C. Plasmid DNA was recovered after treatment with mixtures of phenol, chloroform and isoamyl alcohol, and precipitated by the addition of an 0.25 volume of 10 M ammonium acetate and two volumes of ethanol at -80°C for 10 min. Plasmid DNA was recovered by centrifugation at 20000g, washed with 80% ethanol and air dried. The DNA was resuspended in 2 ml TE and 0.8 ml 30% PEG 8000/1.6M NaCl added. After incubation overnight at 4°C, the precipitated DNA was recovered by centrifugation at 20000g for 20 min, resuspended in TE, purified by treatment with phenol/chloroform and precipitated with one quarter volume of 10 M ammonium acetate and two volumes of ethanol as above.

Endotoxins were removed by adsorption on polymyxin B agarose (Sigma, St. Louis, MO). The polymyxin B column (0.75 ml packed volume in 3ml syringe) was washed with 25 ml of polymyxin buffer (300 mM NaCl, 50 mM Tris-HCl pH 7.6, 1 mM ethanol.
EDTA). The concentration of the NaCl, EDTA and Tris-HCl in the plasmid DNA solution was adjusted to match that of the polymyxin buffer. The eluant was collected and the plasmid precipitated in 10M ammonium acetate and ethanol, as described above.

4.2.3 Bacterial plasmid DNA (mini-preps)

Bacterial plasmid was prepared on the mini-scale by alkaline lysis using protocol developed by Birnboim and Doly (1979) and modified by Sambrook et al. (1989).

5. Detection of RNA by northern blot analysis

Total RNA (20µg) or mRNA (2 µg) was denatured by heating to 65°C for 15 min and separated by size by electrophoresis in agarose gels containing formaldehyde as previously described (Lehrach et al., 1977; Rosen et al., 1990). The gels were then soaked in 2X volumes of 10X SSC twice, for 20 min each, and transferred to nylon membrane by capillary action in the presence of 10X SSC. RNA was cross-linked to the membrane by exposure to UV light using a Stratalinker® (Stratagene). Membranes were then incubated with either ULTRHyb ® for 1 h or 2X Denhardt's solution/0.1% SDS/50% and 0.2µg/ml heat-denatured sheared salmon sperm DNA for 4 h.

DNA probes were labeled with [32P]-dCTP random primers using a PRIME IT ® kit and mBtn1al cDNA fragments as template. DNA probes were hybridized to the membrane overnight at 42°C in either ULTRAHyb® (Ambion) or 2X Denhardt's solution/0.1% SDS/50% formamide/5X SSPE/10% dextran sulfate and 0.2 µg/mL heat denatured sheared salmon sperm DNA. After hybridization, the membrane was first rinsed with 2X SSC prewarmed to 42°C and then washed at 50°C three times with 2X
SSC/0.1% SDS for 20 min each time. Membrane was then exposed either to radiographic film at -80°C or analyzed with a PhosphoImager™ (Molecular Dynamics).

6. Detection of DNA by Southern blot analysis

DNA fragments generated by complete digestion with restriction enzymes were resolved by electrophoresis in agarose gels as described (Southern, 1975). The gel was then soaked in a 2X gel volume of denaturation solution (0.5N NaOH/1.5M NaCl) for 40 min with one change of denaturation solution after the first 20 min. The gel was then soaked in a 2X volume of neutralization solution (0.5M Tris-HCl pH 8.0/3 M NaCl) for 60 min, with one change of solution after the first 30 min. DNA was transferred via capillary action in 10X SSC buffer overnight to a nylon membrane and crosslinked by exposure to UV light as described for RNA above.

Membranes were prehybridized by incubating at 65°C for 4 - 6 h in 0.76M NaCl/46mM sodium citrate/8.52% dextran sulfate and 0.25µg/ml heat denatured sheared salmon sperm DNA. The radioactive probe was prepared as described for northern blots above using bBTN cDNA as template. The membranes were then incubated overnight in a fresh hybridization solution (same as pre-hybridization) preheated to 42°C. Prior to the wash step, the membranes were first rinsed in 2X SSC preheated to 50°C. The wash involved two 5 min washes with 6X SSC, 0.1% SDS at RT°C followed by a 3 min wash with 0.1X SSC, 0.1% SDS preheated to 65°C. Membranes were exposed to x-ray film at -80°C.
7. Polymerase chain reaction (PCR)

A touch-down approach was employed for all PCR reactions that started the reaction with the annealing cycle set 3°C above the optimal temperature. This was followed by a drop of 1°C after two cycles until the optimal annealing temperature was reached; and final 30 cycles at the optimal annealing temperature.

For the initial screening for RFLPs, the PCR mixtures contained in a final volume of 25µl: PCR Supermix® (Invitrogen Life Technologies) (22.5µl), primers (125-130 ng each) and genomic DNA (100ng). For the larger scale genotype scoring, a 96 well system was used employing a PCR mix with 35 - 50 ng of template genomic DNA. Nonetheless, the PCR reactions still employed the touch-down approach described above.

8. Maintenance and microscopy of HC11 cells

HC11 cells were isolated as a subclone of COMMA-1D cells (Danielson et al., 1984) by Ball et al. (1988). Early passages were obtained from C. Shmenko (Univeristy of Calgary, Canada) and D. J. Jerry (University of Massachusetts, MA) and cells of unknown passage were obtained from I. Vijay (University of Maryland at College Park, MD).

8.1 Media and incubation conditions

Cells were maintained on plastic tissue culture plates in an atmosphere of 95% air/5% CO₂ at 37°C. The base medium consisted of RPMI-1640 (Invitrogen Life Technologies, CA) plus 10% heat inactivated characterized fetal bovine serum (FBS) and 0.25mg/ml of gentamicin (Invitrogen Life Technologies, CA). In order to constitute an
HC11 growth medium, porcine insulin and epidermal growth factor (IE) (both from Sigma) were added to the base medium to a final concentration of 5 µg/ml and 0.01µg/ml, respectively. Induction medium was constituted from the base medium by addition of I (5µg/ml), H (Sigma) (1µg/ml) and PRL (USDA Hormone Program, Beltsville, MD; or Sigma) (5µg/ml).

8.2 Making HC11 subclones

HC11 cells were plated in growth medium until they attained confluency. Cells were then detached from the plastic substrata by digesting with trypsin. Briefly, at confluency, cells were washed twice with 5ml prewarmed Dulbeco's phosphate buffered saline (D-PBS: CaCl₂ and MgCl₂ free, Sigma) and treated with 3mls of trypsin (Invitrogen, Carlsbad, CA) diluted to 0.25% in D-PBS was added to 100 mm plates (1ml in 60 mm plates) and the cells were then incubated for 15-20 min to detach them from the plastic surface. Trypsin action was stopped by adding an equal volume of pre-warmed base media. The cells were then serially diluted to about 10^5 per ml and 2µl of this dilution plated on 60mm plates in the presence of growth medium (fresh medium being changed every two days). When the colony foci grew to be visible to the naked eye, the cells were bounded by cloning cylinders and allowed to reach confluency within the confines of the cylinders. Cells were then harvested by use of trypsin digestion within each cloning cylinder in a scaled-down version of the procedure described above, and each colony plated on a fresh 60mm plate with growth medium.
8.3 Expansion and storage of HC11 and subcloned cells

Cells incubated in trypsin (described in section 8.2) were harvested by gentle pipeting and the suspension centrifuged at low speed for 2 min. Cells harvested from a single 100 mm plate were plated onto four similarly sized plates and incubated in growth medium. Generally, cells incubated under such conditions attain confluency within 24 h.

Cells were expanded in this manner over several passages and harvested by trypsin digestion as described above. Cell suspensions from two 100 mm plates were combined and pelleted with low speed centrifugation. The pellets were then resuspended in Origen® (IGEN International Inc., Gaithersburg, MD) cell-freezing media and stored in liquid nitrogen.

A fresh sample from a frozen stock was rapidly thawed at 37°C and used for each subsequent transient transfection experiment. To the thawed stock, an equal volume of prewarmed base medium was added to remove DMSO present in the freezing medium. Cells were then centrifuged at 200g for 2 min.

8.4 Staining and microscopy of HC11

Cells were cultured on glass cover slips placed in 60 mm plates and grown until they attained confluency. Cover slips were then removed and cells fixed by treatment with glutaraldehyde. Fixed cells were either directly examined by phase contrast; or else stained with Mayer's haematoxylin stain and then examined by phase contrast.
9. Transient transfection and harvest of HC11 cell lysates

9.1 Transfection of HC11 cells

Transient transfection of HC11 cells with test constructs and the pcDNA3.1/HisB/lacZ (β-galactosidase) internal control were done using the serum-free transfection system Gene Porter ® (Gene Therapy Systems, Inc., San Diego, CA). Briefly, confluent HC11 cells from one 100 mm tissue culture plate were trypsinized (as discussed above) and replated onto twelve 60mm plates in the presence of growth medium. Cells were allowed to grow to 40 – 50% of confluency. The growth medium was then removed, and cells washed twice with prewarmed RPMI-1640 medium that does not contain FBS and gentamicin. As much washing medium as possible was removed by pipeting. Each plate was then transfection with 1.5µg of test plasmids plus 0.5µg of β-galactosidase endotoxin-free plasmids using 1ml lipid-based transfection reagent as per the manufacturer's instructions (Gene Therapy Systems). After four hours of incubation at 37°C in the transfection reagent, an equal volume of prewarmed RPMI-1640 that contains 20 % FBS and twice the concentration of IE as found in the standard growth media (described in section 8.1), was added to the plates bringing the final volume to 2ml. Cells were then allowed to grow for 12 h and a fresh supply of 5 ml growth medium provided until cells attained confluency. Once confluent, the growth medium was replaced with an induction medium or a test medium where one or more of the lactogenic hormones had been excluded. After 24 h of incubation in induction/test media, cells were harvested as per the procedure described below.
9.2 Harvest of HC11 cell lysates

Cells were washed three times with 3ml of prewarmed D-PBS. After the final wash, 1ml of the TEN (40mM Tris-HCl pH7.5, 10mM EDTA, 150mM NaCl) was added and plates allowed to stand for 5 min. Loosened cells were harvested by gentle scraping using a rubber policeman and transferred to 1.5 ml centrifuge tubes. The harvested cells were then centrifuged at 12,000g for 10 sec to pellet the cells. As much of the TEN supernatant as possible was removed and the cells resuspended in 250mM Tris-HCl pH 8.0.

Cells were lysed by three rounds of freeze-thawing at –80°C and 37°C. The lysate was then centrifuged at 19000 g for 5 min and at 4°C to pellet cellular debris. The lysate supernatant was collected and transferred to fresh microcentrifuge tubes and the volume of the samples adjusted to 180µl by adding cold 250mM Tris-Cl pH 8.0.

10. CAT and β-galactosidase assays

10.1 Estimation of protein content

In order to standardize the amount of protein used in each assay, the protein content of HC11 lysates was estimated by the BCA® protein assay procedure as described by the manufacturer (Pierce Biotechnology Inc., Rockford, IL) (Smith et al., 1985).

10.2 β-Galactosidase assay

The measured activity of the co-transfected pcDNA3.1/His/lacZ served as an
internal transfection control. Based on the BCA protein estimation, lysate with an estimated 40 µg of total protein content was used for a single β-galactosidase assay.

The assay conditions described by Sambrook et al. (1989) were modified, particularly in regards to the substrate for β-galactosidase. A reaction mix was prepared to a final concentration of 1X magnesium buffer (1mM MgCl, 50 mM 2-mercaptoethanol), and 1.5 mM chlorophenol red β-D-galactopyranoside (CPRG), and 0.1M sodium phosphate buffer added to a final volume of 1.2 ml, minus the required volume for the lysate. The mix was added directly into a cuvette and warmed to 37°C. The lysate was added into the prewarmed reaction mix, mixed and the absorbance measured at 570nm for 12 min at 37°C.

10.3 CAT assay

A combination of two methods (Sambrook et al., 1989; Berger & Kimmel, 1987) was used to measure the CAT activity. In brief, an estimated 100µg of total protein from the cell extract was mixed with 250 mM Tris-HCl pH 8.0 to bring the volume to 159µl, to which 1 µl of [¹⁴C]-chloramphenicol (American Radiolabeled Chemicals, Inc., St Louis, MO) was added. Twenty microliters of acetyl-CoA (Sigma) was added last to a final concentration of 0.4gm/ml to start the reaction and to bring the final reaction volume to 180µl. The reaction mixture was incubated at 37°C for 4 h, after which, 1ml ethyl acetate was added to end the reaction and to simultaneously extract the acetylated [¹⁴C]-chloramphenicol from the aqueous phase. After a 5 min centrifugation at 19000 g, 900 µl of the upper organic phase was collected, transferred to a fresh microfuge tube and air dried under vacuum. The reaction product was redissolved in 25 µl of ethyl acetate and
immediately spotted on a thin-layer chromatography (TLC) plate. The plate was placed in a developing chamber with a running buffer of chloroform:methanol (95:5 ratio). The TLC plate was then exposed to a phosphor-imaging plate.

11. Computational analyses

11.1 QTL analysis

The QTL analysis was based on the design developed by Weller et al. (1990) in a mixed model analysis (SAS, NC). The design assumes QTL marker effect to be fixed and followed the model:

\[Y_{ijkl} = G_i + S_{ijk} + M_{ij} + e_{ijkl} \]

The \(Y_{ijkl} \) is DDev trait value of granddaughter \(l \) (daughter of sire \(k \), granddaughter of grandsire \(i \)) that received marker \(j \). \(S_{ijk} \) is the effect of sire \(k \) (son of grandsire \(i \)) that carried the marker \(j \). \(M_{ij} \) is the effect of marker \(j \) of grandsire \(i \). The design represents a hierarchical nested analysis.

Basically, sons of heterozygous grandsires were genotyped, and quantitative trait measurements of daughters from the homozygous sons analyzed. Each allele (marker designated by a notation) is scored in half-sib sons and traced to the daughter subgroups, and an analyzed utilizing a mixed model analysis in SAS. The least square means of the daughter deviations for health and milk production traits were estimated and an F-test conducted to evaluate the significance of differences between the least square means. A least square difference test was conducted to detect significant differences between the trait values of animals receiving alternative alleles of \(bBTN \).
11.2 Quantitation of northern blots

Images from northern blots were captured with a phosphor-imager (Molecular Dynamics) and quantified using ImageQuant software (Amersham Biosciences Corp., Piscataway, NJ). The density of each band was measured by estimating the number of pixel values in each delimited area. The pixel values for each band of interest were normalized against similarly acquired pixel values for control bands.

11.3 Quantitation and statistical analysis of promoter activity

Bands representing single and double \(^{14}\text{C}\)-acetylated chloramphenicol were delimited and their pixel intensity values minus the background pixel intensity values measured. The net pixel values were then normalized to their respective average \(\beta\)-galactosidase activities.

Corrected pixel values were subjected to a one-way analysis-of-variance using the SAS statistical software. Basically, a procedure that handles mixed variables was used to estimate the least square means and to conduct pairwise comparisons.

11.4 DNA sequence comparison and analysis

BTN of four type genera, namely: cow, goat, human and mouse were the basis for cross-species primary structural analysis. Sequences of the four species were obtained from either cloned sequence or from the GenBank database. Transcription start sites (TSSs) were established by means of several approaches: (1) cow and human: based on previous published experimental evidence, and as annotated in GenBank, (2) goat: by comparative exon mapping against the cow sequence; and (3) mouse: exon mapping
against cDNA cloned sequence (Open Biosystems). Except for the 5' flanking region of the goat BTN (gBTN) which is circumscribed by the length of available sequence (704bp), both boundaries of the other sequences and the 3' end of the gBTN sequence were all based on these inherent properties relative to their axial TSS. Although, the sequences were delimited by these attributes, due to inherent qualitative differences the length of sequence extending relative to the TSS was non-axisymmetrical and non-congruent.

11.4.1 Identifying sequence features

The fragments selected for sequence analysis were scanned for CpG islands using the EMBOSS program of the European Bioinformatics Institute launched via Vector NTI © (InforMax). Search criteria were set at an observed/expected ratio of >0.60, length >100, and C+G > 50%.

Repeat elements were identified by submitting sequences to the National Research Council - Institute for Advanced Biomedical Technologies' WebGene program launched from the Vector NTI© platform. Searches for repeating elements in the human and mouse sequences were analyzed against a species-specific database, while the cow and goat genes were compared against a database for other vertebrates. A segment of gBTN that was not picked by the program but was highly homologous to a repeat region in the cow sequence was assumed to be a repeat region.

Repeat elements were precluded from subsequent analysis to obviate the detection of spurious putative transcription factor (TF) binding sites. Figure 3 is a flow diagram representing the sequential steps in the analysis of the primary sequence of the BTN promoter and adjoining 5’UTR.
Figure: Schematic of strategy of putative TF binding sites of butyrophilin gene

- Identifying TSSs
- Alignment of TSS and its flanking sequence
- Search for core promoter elements
- MatInspector (identification of putative TF binding sites)
- Multiple alignment
- Screen for repeat elements
- Selection of SoS
- Compare TF sites in SoS
- Search for common milk gene TF sites
- ModelInspector (automated search of promoter module database)
- Compare TF sites that appear in all four sequences
11.4.2 Local multiple and pairwise alignments

Local multiple alignments were conducted via the web-based DiAlign package of the GEMS Launcher hosted by the Genomatix © (Quandt et al., 1995; www.genomatix.de). Alignments were scored based on similarity against the shortest sequence, and assigned a percentage similarity value and a similarity index. Similarity values (relative to the maximum similarity) for each pairwise alignment were generated.

11.4.3 Selection of segments of similarity (SoSs)

Selection of segments of similarity for phylogenetic footprinting was heuristic and based on the degree of relative local alignment value. The selection was restricted to regions for which sequences from all four species were available.

11.4.4 Detection of putative TF binding sites and modules

The sequences were submitted to the GEMS Launcher program hosted by Genomatix. This program made use of MatInspector (professional version 6.2.2) to search the vertebrate TF matrix family library (version 3.3). In order to minimize false positive matches, the optimized matrix threshold was established as a criterion for searching and selecting putative TF binding sites. Generally, the output provides footprint and anchor positions in the sequence and the random expectation values as computed against the random occurrence of the matrix in a random 1kb DNA fragment. The aligned sequences were also submitted to Genomatix © for an automated screening of promoter modules that were previously described and held in a databank library.
11.4.5 Alignment of TSS region and search for core promoter elements

The sequence spanning -60 to +40 relative to the TSS in all four species was subjected to multiple alignment. A search for core contextually positioned promoter elements TATA-box, downstream promoter element (DPE), initiator (Inr) and TFIIB recognition element was conducted (See review by Smale and Kadonaga, 2003).

11.4.6 Collation and comparison of TF sites prevalent in all four species

Putative transcription sites that were present in all four species, including those present in segments that showed only weak similarity, were singled out and compiled for further analysis. The compilation was searched for modular patterns of occurrence.

11.4.7 Search for commonly occurring 'milk gene' TF sites

The output of all the putative TF binding sites was searched for sites that match those described for other 'milk genes' (See review by Rosen et al., 1999).
RESULTS

Screening for RFLPs

Genomic DNA samples from thirteen Holstein dairy animals were collected, viz, three bulls and ten cows, to screen for RFLPs using a PCR approach. Three primer pairs that encompass the intragenic region of \(btN \) were used to generate PCR fragments that cover the 5' end, central region and the 3' end of the gene (Figure 4). Polymorphisms were identified by digesting the amplified DNA fragments (amplicons) with a panel of six- and four-base cutting endonucleases.

Several RFLPs were identified in all three amplicons utilizing the endonucleases \(HpaII, TaqI, HaeIII, MboI, \) and \(Tru9I \) (Table 2). Subsequent sequencing of the polymorphic sites revealed a single polymorphism in the F2/R2 amplicon using \(MboI \) and \(Tru9I \) (Figure 5), while a two nucleotide substitution resulted in the polymorphism that was detected by \(TaqI \) (Figure 6) in the F1/R1 amplicon. Another RFLP due to a single base pair substitution was also detected by \(HpaII \) the in F1/R1 amplicon (Figure 6). The only RFLP detected in F3/R3 amplicon was a \(HaeIII \) polymorphic site (Figure 7). All the RFLPs were detected with four base cutters.

All of the RFLPs, except the one identified by \(HaeIII \), are intronic. The single nucleotidie substitution in the F3/R3 amplicon predicts an amino acid substitution of lysine to arginine, and is in the B30.2 domain. However, the polymorphic position is not a conserved residue in the B30.2 domain. The significance of this substitution has not been biochemically evaluated.
A) Location of primers used for amplifying regions of the bBTN gene. Boxes represent exons (corresponding numbers shown above), and lines represent introns. Primers are indicated by arrow heads, with primer pairs sharing the same number.

B) Sequence of primer used for PCR and their corresponding attributes.

<table>
<thead>
<tr>
<th>Primer pairs</th>
<th>Region amplified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Sequence (5’ to 3’)</td>
</tr>
<tr>
<td>1F</td>
<td>CTGAAGTTCCCCGACAAAACTCG</td>
</tr>
<tr>
<td>1R</td>
<td>CTCTGCATCTTCACCCACCAC</td>
</tr>
<tr>
<td>2F</td>
<td>CTTCTTCCAAGGCTGAC</td>
</tr>
<tr>
<td>2R</td>
<td>CTTACTGAGCTCTTTCCAGG</td>
</tr>
<tr>
<td>3F</td>
<td>TCCCGAGAATGGGTTCTG</td>
</tr>
<tr>
<td>3R</td>
<td>CACTGCCTGAGTTCACCTCAT</td>
</tr>
</tbody>
</table>

Figure 4: A) Location of primers used for amplifying regions of the bBTN gene. Boxes represent exons (corresponding numbers shown above), and lines represent introns. Primers are indicated by arrow heads, with primer pairs sharing the same number. B) Sequence of primer used for PCR and their corresponding attributes.
Table 2: Endonucleases and the respective polymorphisms

<table>
<thead>
<tr>
<th>Primer pair</th>
<th>Amplicon size (in bps)</th>
<th>Endonuclease</th>
<th>PCR-RFLP</th>
<th>Ref. location</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1/R1</td>
<td>576</td>
<td>HpaII</td>
<td>CAGG↓CGG</td>
<td>1938-1941</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TaqI</td>
<td>ACAA↓CGA</td>
<td>2074-2077</td>
</tr>
<tr>
<td>F2/R2</td>
<td>683</td>
<td>MboI</td>
<td>↓GATC↓AATC</td>
<td>5495-5498</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tru9I</td>
<td>TTGA↓TAA</td>
<td>5493-5496</td>
</tr>
<tr>
<td>F3/R3</td>
<td>893</td>
<td>HaeIII</td>
<td>AGCC↓CC</td>
<td>6804-6807</td>
</tr>
</tbody>
</table>

1 Four-base-pair endonuclease recognition sequence with cut sites denoted by downward arrows and nucleotide substitution in bold.
2 Locus on bBTN based on Genbank sequence accession number Z93323.
Figure 5: Amplicon F2/R2 (683bps): A) examples of animals homozygous (lane 1) and heterozygous (lane 3) for the presence of the MboI recognition sequence. PCR products denoted as 'u' are pre digestion; and 'c' are post digestion. B) Restriction enzyme sites of MboI. Polymorphic site is boxed. Locus numbers are as in Figure 2.
Figure 6: Amplicon F1/R1 (576bp): restriction digest profiles of grandsires. A) *Taq*I endonuclease; examples of animals that are homozygous for the absence of the endonuclease recognition sequence (lane 3), and for animals that are either heterozygous (lane 8) and homozygous (lane 7) for presence of the endonuclease recognition sequence. B) *Hpa*I endonuclease; examples of animals homozygous (lane 9), and heterozygous (lane 10) for presence of endonuclease recognition sequence. Notice also other banding patterns in samples 1 and 11. C) Restriction enzyme sites of *Hpa*II and *Taq*I. Polymorphic sites are boxed. Locus numbers are as in Figure 2.
Figure 7: Amplicon F3/R3 (893bps): A) restriction digest profiles of grandsires. HaeIII endonuclease. Examples of homozygous (lane 2) and heterozygous (lane 3) for endonuclease recognition sequence. B) Restriction enzyme sites of MboI. Polymorphic site is boxed. Locus numbers are as in Figure 2.
Genotype of grandsires

The presence of a large number of half-sib families in the commercial dairy population of the United States and the routine measurement and collection of quantitative and qualitative traits in these herds allows the utilization of the GDD for the detection of QTLs. To this end, genomic DNA from twenty proven grandsires was screened for the identified PCR-RFLPs (Figures 5, 6 and 7) described above.

Results of the entire genotypic profile of the grandsires are presented in Table 3. Grandsires 10, 13, and 15 possessed heterozygous marker genotypes and their families were thus selected for QTL analysis in a GDD. Both grandsires 8 and 9 are heterozygous at the TaqI marker locus; however, they both exhibited homozygosity at all other marker loci tested. The grandsire 9 family was thus included in the QTL analysis specifically for the one marker that exhibited heterozygosity.

Genotype of sons

Genomic DNA of sons of the four selected grandsires was genotyped for the identified PCR-RFLP markers. The number of informative sons per grandsire for each marker was greater than 50, while the total number of informative sons per marker ranged from 68 to 259. None of the grandsires had less than 45% informative sons (Table 4). Sons with homozygous marker genotypes were selected for QTL mapping.

Allelic distribution

The markers in amplicons 2 and 3 suggest that bBTN has two alleles; however, haplotypes generated from the polymorphic markers of amplicon 1 indicate more than
Table 3: RFLP marker genotypes of grandsires

<table>
<thead>
<tr>
<th>Grandsire Id No.</th>
<th>Intron 2 Exon 5 to Intron 6</th>
<th>Exon 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TaqI</td>
<td>MboI§</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>AA</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>AA</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>AB</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>AB</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>AA</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>AA</td>
</tr>
<tr>
<td>7</td>
<td>BB</td>
<td>AA</td>
</tr>
<tr>
<td>8</td>
<td>AB</td>
<td>AA</td>
</tr>
<tr>
<td>9*</td>
<td>AB</td>
<td>AA</td>
</tr>
<tr>
<td>10*</td>
<td>AA</td>
<td>AB</td>
</tr>
<tr>
<td>11</td>
<td>BB</td>
<td>AA</td>
</tr>
<tr>
<td>12</td>
<td>AB</td>
<td>AA</td>
</tr>
<tr>
<td>13*</td>
<td>AA</td>
<td>AB</td>
</tr>
<tr>
<td>14</td>
<td>AA</td>
<td>AA</td>
</tr>
<tr>
<td>15*</td>
<td>AB</td>
<td>AB</td>
</tr>
<tr>
<td>16</td>
<td>AA</td>
<td>AA</td>
</tr>
<tr>
<td>17</td>
<td>AA</td>
<td>AA</td>
</tr>
<tr>
<td>18</td>
<td>AA</td>
<td>AA</td>
</tr>
<tr>
<td>19</td>
<td>AA</td>
<td>AA</td>
</tr>
<tr>
<td>20</td>
<td>AA</td>
<td>AA</td>
</tr>
</tbody>
</table>

* Families of these grandsires were selected for further QTL analysis.
† The selection of the allele letter denotations do not reflect dominance or recessiveness.
§ Only 5 of 20 identified MboI genotypes are heterozygous, i.e. an estimated heterozygosity of 0.25.
Table 4: Number and frequency of informative sons in each grandsire family

<table>
<thead>
<tr>
<th>RFLP Marker</th>
<th>Grandsire ID</th>
<th>No. informative sons/grandsire</th>
<th>% informative sons/grandsire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tru9I</td>
<td>10</td>
<td>68</td>
<td>57.35</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>68</td>
<td>57.35</td>
</tr>
<tr>
<td>HpaII</td>
<td>10</td>
<td>72</td>
<td>52.78</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>124</td>
<td>44.35</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>58</td>
<td>37.93</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>254</td>
<td>45.27</td>
</tr>
<tr>
<td>TaqI</td>
<td>9</td>
<td>52</td>
<td>55.77</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>61</td>
<td>55.74</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>113</td>
<td>55.75</td>
</tr>
<tr>
<td>MboI</td>
<td>10</td>
<td>73</td>
<td>54.79</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>123</td>
<td>44.72</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>63</td>
<td>39.68</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>259</td>
<td>46.33</td>
</tr>
<tr>
<td>HaeIII</td>
<td>10</td>
<td>68</td>
<td>55.88</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>90</td>
<td>47.78</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>63</td>
<td>38.10</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>221</td>
<td>47.51</td>
</tr>
</tbody>
</table>
two alleles have been detected. Particularly in the intron 2 region, the restriction enzyme
HpaII did not provide a clear pattern that corresponded with the sequence available nor with the allelic identification obtained from the other RFLP sites: nor did the TaqI marker loci of the same amplicon (Figure 6).

Gene diversity analysis using the MboI marker in the sons of grandsire families 10, 13, and 15 provides a frequency distribution of each allele. Although there are nearly twice as many A alleles in the population of dairy bulls examined, the observed heterozygosity for the bBTN loci remains close to 0.5 with the observed AA genotype at four times that of the BB genotype (Table 5).

QTL analysis

Records of economically important quantitative traits were obtained from the National Dairy Herd Improvement Association (DHIA). Data on seven yield traits, namely, milk, protein, percent protein, fat, percent fat, herd life and somatic cell score (SCS) were utilized as weighted daughter deviations to test allelic substitution effects.

Analysis of allelic substitution at the various RFLP loci within the bBTN gene was conducted. More than one marker loci was analyzed for most grandsire families for each quantitative trait tested.

Most allelic substitution effects tested for all the available economically important traits showed no statistically significant difference. Only one statistically significant effect was detected in grandsire family 15 for percent protein (P < 0.01). All other results indicate that no effects on the quantitative traits investigated are due to the allelic inheritance patterns of bBTN. In some instances, the standard error estimates were larger.
Table 5: Observed genotype and gene frequency of bBTN MboI marker loci.

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Count</th>
<th>Genotypic frequency</th>
<th>Allele Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>96</td>
<td>0.37</td>
<td>A</td>
</tr>
<tr>
<td>AB</td>
<td>139</td>
<td>0.54</td>
<td>0.64</td>
</tr>
<tr>
<td>BB</td>
<td>24</td>
<td>0.09</td>
<td>0.36</td>
</tr>
</tbody>
</table>
than the effect due to allelic substitution, indicating that variability in the measured
quantitative traits is mostly explained by factors other than allelic differences (Figure 8).

The single significant difference found was limited to one grandsire family and to
only one PCR-RFLP in intron 2. In addition, grandsire family effects were assessed
simultaneously with the QTL analysis, which revealed that tested significantly for sire
effect on percent protein and other quantitative traits on the most part due to the grandsire
15 component. Therefore, the marginal significance detected for percent protein may be
incidental to a grandsire family effect.

Since the MboI (intrinsic) marker strictly segregated with the HaeIII (exonic)
marker, any QTL analysis performed on the former is reflective of the latter. None of the
economical traits tested showed any significant allelic substitution effects for these two
markers.

Cloning and subcloning of bBTN 5' flanking region

A 0.9kb bBTN cDNA fragment, which extends from the start of exon IB to exon
III, was used to screen a cow genomic library (ClonTech®). A positive clone >15kb
designated 5'bBTN was picked and plaque purified for further use. For ease of
manipulation, smaller fragments of 5'bBTN were generated by digestion with restriction
enzymes and inserted into the multiple cloning site of the pBluescript II KS ® phagemid
vector (Stratagene, La Jolla, CA). The cloned DNA was sequenced either directly from
the phage vector, or from the smaller fragments that were subcloned into the pBluescript
II KS ® vector (Figure 9).
DDev Protein

DDev % Protein

15 13 10 15 13 15 13 10 15 9 10

HaeIII HpaII MboI TaqI Tru9I

Grandsire/Marker

Allelic substitution effect
Allelic substitution effect

DDev Fat

DDev % Fat

Grandsire/Marker

Allelic substitution effect

Grandsire/Marker

HaeIII HpaII MboI TaqI Tru9I
Figure 8: Allelic substitution effects on seven economically important traits by RFLP marker for each grandsire family. Traits are presented as weighted daughter deviations (DDev) adjusted for dam predicted transmitting ability (PTA). Statistical significance LSD\textsubscript{0.01} denote by asterisk.
Figure 9: Map of the bovine genomic clone of bBTN and its flanking sequence, depicting the restriction sites of the various subclones, and sequencing strategy.
The 15 kb cloned DNA includes 12kb of 5' flanking region of bBTN. A single subclone of 2.5 kb was generated by digestion with SacI/XhoI. Two subclones with sizes of 4.2 kb and 3.3 kb were generated by digestion with EcoRI and represent contiguous segments (verified by mapping against GenBank accession № AF037402, Husaini et al., 2001); while a 2.3 kb fragment was generated by digestion with SacI. The 2.5 kb SacI/XhoI subclone overlaps with the 3.3 kb clone. The 3.3 kb fragment contains all of the 5' UTR and 1 kb of proximal promoter region and was thus the starting material for preparing promoter reporter constructs (Figure 2).

The cloned cow DNA was sequenced to verify congruency and compared with the 6.8 kb sequence in the database (Accession № AF037402, Husaini et al., 2001) that encompasses 5.6 kb of the 3' end of the cloned 5'bBTN. Other regions of the cloned DNA were sequenced directly from the phage DNA after purifying the phage DNA using a microcon-100 filter (Millipore ®, Bedford, MA).

Cloning of CAT reporter vectors

The basic reporter plasmid, pCAT-Basic Vector ® (Promega: Madison, WI) (Figure 1), was used to make test reporter constructs to assay for promoter/enhancer activity of the bBTN 5' and 3' flanking regions. This basic vector lacks eukaryotic promoter and enhancer sequences. Eight reporter vectors were constructed that encode either, or both, the 5' or 3' regions of bBTN. The 5' fragment covers 0.7 kb of the 5' UTR and either 0.45 kb or 1.04 kb of flanking sequence and were inserted 5' of the CAT reporter gene. The 3' fragment encompassed 273 bps of 3' UTR and 1.4 kb of flanking sequence and was inserted 3' of the CAT reporter gene in the correct or reverse
orientation (Table 1). A positive assay control for CAT activity was provided by pcDNA3/CAT (Invitrogen ® Carlsbad, CA) which contains a CAT gene driven by the cytomegalovirus promoter that allows constitutive expression in mammary cells and the basic reporter plasmid served as a negative control.

Endogenous mBtn1a1 expression in HC11 cells (initial cell line)

Currently, there is no well established and characterized cow mammary cell line that is homogenous and displays the hallmarks of mammary differentiation. Therefore, all transient transfections for ensuing CAT expression assays were performed in the HC11 mammary cell line, derived from mid pregnant BalbC mice (Ball et al., 1988). In order to establish a lactogenic hormone combination for endogenous mBtn1a1 expression in HC11 cells, mBtn1a1 was detected by Northern blot of total RNA or mRNA from cells incubated in medium containing either insulin (I), insulin + hydrocortisone (IH), or insulin + hydrocortisone + prolactin (IHP). An G3PDH probe was used as an internal loading control for the mRNA Northern assay. The HC11 cells express endogenous mBtn1a1 message on either plastic or matrigel substrata, but require the combination of IHP in the induction media for maximum expression levels (Figure 10).

Promoter assay for CAT expression

To identify the cis-acting elements present in the putative promoter and enhancer regions of bBTN, the reporter constructs were co-transfected along with a control plasmid encoding β-galactosidase, a reporter to correct for transfection efficiency, at a 3:1 ratio. At confluency, the transfected cells were incubated in the presence of the lactogenic
Figure 10: A) Northern blot analysis of total RNA (20µg per sample) from HC11 cells grown on either plastic, attached matrigel (A-matrigel), or floating matrigel (F-matrigel) for 24 h in the presence or absence of the lactogenic hormones insulin (I), hydrocortisone (H), and prolactin (P). Tissue from lactating mouse mammary gland as control is shown to the right of the figure. B) Northern blot analysis of mRNA (2 µg) from HC11 cells grown on plastic in the presence or absence of lactogenic hormones I, H and P.
hormone combination IHP. Cell lysates were assayed for CAT activity by following the acetylation of [C14]-labeled chloramphenicol. A PhosphoImager (Molecular Dynamics) was used to obtain quantifiable estimates of 14C-chloramphenicol counts. Promoter activity was measured as relative pixel counts (surrogate measurements for acetylation) from a volume integration analysis (minus local background) using ImageQuant software version 5.2.08 (Molecular Dynamics, Inc.) and was normalized to the β-galactosidase activity measured from the same lysate.

Statistical analysis and results

Results of the CAT expression analyses are presented in Figure 11. Using a mixed model procedure, normalized CAT activity levels were subjected to analysis-of-variance followed by least square differences test to detect any statistically significant differences between the least square means (SAS Institute, NC). The statistical analysis conducted excluded the pCMV/CAT and no transfection controls, since these are experimental controls that would not provide a relevant comparison to the performance of the test constructs. Data from normalized relative pixel values were evaluated for test of normality prior to statistical analysis. Furthermore, since the variances amongst the samples were not homogenous, samples were grouped into variance groupings to the best fit model (using Bayesian information criteria).

The pbBTN1.2/CAT construct, containing the 0.45 kb 5' putative promoter fragment, had a small statistically non-significant difference from the pCAT-Basic control. However, the inclusion of the additional 0.5 kb piece in the pbBTN1.7/CAT construct yielded the highest level of CAT expression, indicative of an important cis-
Figure 11: Comparison of potential promoter activity: CAT activity was measured indirectly from pixel values obtained from densitometric readings. The pixel values were normalized to the co-transfected β-gal levels. The two experimental controls, no transfection and pCMV/CAT, are not displayed. (Different letters signify LSD at p < 0.1). All assays were replicated five times, except pBasic/CAT/-1.7 which had four replicates.
element in this region. The CAT expression detected with the 1.2kb construct which included the 1.7 kb 3’ fragment (in either orientation, i.e. pbBTN1.2/CAT/+1.7 or pbBTN1.2/CAT/-1.7) was statistically not different from the highest expressing construct, but distinctly different from the pCAT-Basic control.

The results obtained from the introduction of the 3’ fragment to either the pbBTN1.2/CAT or pbBTN1.7/CAT vector seems bifurcated. While the statistical differences were not clearly evident, the 3’ fragment appears to depress the enhanced expression activity that was attained by the 0.5kb piece in pbBTN1.7/CAT, while it increased the expression level of pbBTN1.2/CAT. This is suggestive of an interplay between the 3’ region and the 5’ region in coordinating expression of the CAT reporter gene. The clearest example of the depressive activity of the 1.7kb 3’ fragment was seen with the pbBTN1.7/CAT/-1.7 construct, with which the ability to drive expression of the reporter gene was statistically non distinguishable from the least active pCAT-Basic negative control.

Clone 9: a subclone isolated from HC11 cell line

Subsequent tests on HC11 cells revealed that they had lost the property of expressing endogenous mBtn1a1 in response to IHP induction. Therefore, it was necessary to identify and isolate a new subpopulation of cells that have a higher expression level of endogenous mBtn1a1. A subclonal cell line, clone 9, was isolated from the previous HC11 cells. Low power microscopic examination reveals that clone 9 cells are more uniform in gross morphology as compared to low passage HC11 cells (Figure 12). A Northern blot analysis for the expression of endogenous mBtn1a1 reveals
Figure 12: Light microscopy of a confluent culture of HC11 cells. Phase contrast (A-C) and Mayer's hematoxylin stained (D) of subclone 9 cells (A,D) as compared to low passage HC11 clones 1 (B) and 2 (C). Bars represent 20µm.
that, in clone 9 cells, expression is less dependent on the presence of all the lactogenic hormones in the induction media (Figure 13). Additionally, a subclone 16, isolated along with clone 9, also expresses mBtn1a1 in the presence of IHP, however, at a comparatively lower level when inspected in context of G3PDH internal control (Figure 13).

CAT assay in clone 9 cells

CAT assay using a limited set of the CAT test constructs and the basic vector control in clone 9 cells reveals statistically significant differences (p < 0.05) (Figure 14). Pairwise mean comparisons show that the pbBTN1.7/cat and pbBTN1.7/CAT/+1.7 constructs provided significantly higher CAT expression levels as compared to the basic control and pbBTN1.2/CAT constructs. However, the pbBTN1.7/cat and pbBTN1.7/CAT/+1.7 constructs were statistically the same as were the pbBTN1.2/CAT and the basic control. In congruity with results obtained in the original HC11 cells, the ~0.5kb 5' end of the putative promoter region provides a significant effect towards expression of the reporter gene.

Features of BTN sequences analyzed

The CAT assay results were complemented with a computational approach to identify potentially important cis-acting elements. Features and length that delineate the boundaries of the sequences set for comparison are presented in Table 6. The 5' flanking regions of the sequences ranged in size from 1042bp in cow to 704bp in goat; and 1000bp each in human and mouse. The 3' boundary of the sequences extends to the last
Figure 13: Northern blot analysis of 20 µg of total RNA derived from early passage clone 1, 2 and 3 (all cultured in the presence of IHP), clone 9 cells (cultured under I, IH, IP or IHP) and subclone 16 (cultured in the presence of IHP). Bar graph represents average mBtn1 normalized to G3PDH from two Northern blots; except clone 16 which was not replicated.
Figure 14: Comparison of potential promoter activity in clone 9 cells. CAT activity as measured indirectly from pixel values obtained from densitometric readings for some of the CAT test constructs and the basic vector. No transfection control and pCMV/CAT are not displayed. (Different letters signify LSD at p < 0.05). All samples were replicated four times.
Table 6: Sequence delineation of bBTN, gBTN, hBTN1A1 and mBtn1a1 used in comparative sequence analysis

<table>
<thead>
<tr>
<th>Species</th>
<th>5' flanking (bp)</th>
<th>5'UTR to CDS</th>
<th>Total size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>1043</td>
<td>707</td>
<td>1750</td>
</tr>
<tr>
<td>Goat*</td>
<td>704</td>
<td>733</td>
<td>1437</td>
</tr>
<tr>
<td>Human</td>
<td>1000</td>
<td>944</td>
<td>1944</td>
</tr>
<tr>
<td>Mouse</td>
<td>1000</td>
<td>695</td>
<td>1695</td>
</tr>
</tbody>
</table>

* Transcription start site of gBTN assigned based on high degree of homology to bBTN sequence and thus does not agree with the annotation with sequence deposited in Genbank
nucleotide before the start of their CDS, except in bBTN that stops 6 nts short of its CDS.

TSSs in the sequences of cow (cloned fragment described previously), mice (accession № U67065), and human are delineated by exon mapping. However, in light of no published experimental evidence to substantiate the TSS of gBTN (accession № AY036083), TSS was determined by superposing it to the bBTN exon structure (therefore, it is not in congruency with the TSS annotated in the GenBank database).

Preparatory to the comparative analyses of the orthologous BTN genes, repeat regions in bBTN and its orthologues in goat, human and mouse were identified using species-specific repeat element databases for human and rodent, while that of cow and goat was based on a database compiled for ‘other’ mammals. The identified repeat regions are presented in Table 7 and figure 15, and are masked for all subsequent sequence alignments and analysis.

Several repeat elements were identified in the 1042 bp 5’ flanking region of bBTN. Four of these repeat elements, ART2A, BCS, BOVTA and BTALUL1 overlap and together extend for 207 bp, while the fifth repeat element, MIR, spans 114 bp and is situated closer to the TSS at -237 bp (Table 7, Figure 15).

A similar search to identify repeat elements in the available 704 bp sequence from the 5'-flanking region of gBTN revealed a BCS/BTSC element covering 278bp. An additional 92 bp region contiguous to the 3' end of BCS/BTSC was found to be highly homologous to a repeat region identified in the cow sequence and was thus also excluded from subsequent phylogenetic analysis (Table 7, Figure 15).
Table 7: Repeat elements in the bBTN, gBTN, hBtn1a1 and mBTN1A1 5' flanking regions

<table>
<thead>
<tr>
<th>Species</th>
<th>Type of repeat element</th>
<th>length (bp)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goat</td>
<td>BCS</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unnamed</td>
<td>92</td>
<td>Homologous to repeat in cow</td>
</tr>
<tr>
<td>Cow</td>
<td>ART2A/BTSC/BTALUL1</td>
<td>207</td>
<td>Overlaps with a BCS element</td>
</tr>
<tr>
<td></td>
<td>MIR</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>Monomer (T)<sub>n</sub></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monomer (aaat)<sub>n</sub></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alu</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td></td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>
Figure 15: Location of SoSs and repeat elements in four BTN genes. The transcription start site and direction (arrow) was used as a reference point in this presentation. Boxes represent segments of similarity (SoS) and thick lines represent repeat elements. 3' end
One major and two minor repeat elements were identified in the most proximal 1kb of 5' flanking region in hBTN1A1. An Alu repeat covering 292bp and a contiguous (aaat)5 tetramer were identified. Further, a simple monomer T repeat was located at -153 to -144. A relatively short 98bp repeat element was identified in mBtm1a1 (Table 7, Figure 15).

Pairwise and multiple alignments

The 5' prime flanking regions plus 5'UTR up to the CDS (see Table 7, Figure 15) sequences (minus their respective repeat elements indicated above) of the BTN gene of the four species were analyzed by pairwise sequence alignments. The overall similarity between cow and goat sequences is highest at 65%, with the mouse sequence being the most divergent from all the others (Table 8).

A multiple alignment of the region in the immediate vicinity of the TSS of BTN in the four species and subsequent search for widely described elements found in other genes, namely: Inr, TATA-box, DPE, TFIIB recognition element (BRE) and CpG islands yields none of the conserved core promoter elements in bBTN, gBTN, and mBtn1a1. However, a DPE is present in hBTN1A1 correct orientation and location relative to the TSS (Figure 16). No other core promoter elements were identified in hBTN1A1. Therefore, the promoter of BTN appears to be atypical of other commonly found genes and may possess as yet unidentified core promoter elements.

In a multiple alignment of all the sequences, the most similar region is located in the first introns and spans 22bp of which 18bp are identical and an additional 3 bases are conserved. Other homologous segments were also identified and given the designation segments-of-similarity (SoS) (Figure 15).
Table 8: Pairwise similarity index of orthologous BTN genes

<table>
<thead>
<tr>
<th></th>
<th>gBTN1 (1437bp)</th>
<th>hBTN1A1 (1944bp)</th>
<th>mBtn1a1 (1695bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN (1750bp)</td>
<td>1.00¹</td>
<td>0.259†</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>65%²</td>
<td>39%</td>
<td>19%</td>
</tr>
<tr>
<td>gBTN (1437bp)</td>
<td></td>
<td>0.205</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>36%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>hBTN1A1 (1944bp)</td>
<td></td>
<td></td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26%</td>
</tr>
</tbody>
</table>

¹ The similarity value of 1.00 marks the two most similar sequences, and does not necessarily denote perfect identity.
² Proportion of identical nucleic acid residues as a percent of the shorter sequence.
† The similarity coefficient is calculated relative to the maximum similarity.
Figure 16: A) Multiple sequence alignment (ClustalW) of -60 to +40 region of bovine, caprine, human and murine BTN genes. TSSs are indicated by bold italics, CT-motif in cow and goat BTN are boxed, and the DPE motif in hBTN1A1 is underlined. Consensus of identical and conserved sequences are indicated in bold below the four sequences. B) Manual positional alignment of 60bp of the immediate 5' flanking region of BTN in the four species. Identical and conserved sequences are indicated.
Phylogenetic footprinting

Three of the SoSs are upstream of the TSS, one in the perimeter of the TSS and two downstream of the TSS. SoS3 is 41bp long and encompasses the TSS of cow, goat and mouse, but not of human BTN. SoS3 exhibits 56% identity across all four species with an additional 27% conserved bases.

A phylogenetic scan of the entire sequences of BTN from all four species identified 664 putative TF binding sites. Comparison of the putative TF binding sites in the six SoSs yielded several interesting features.

The region immediately around the TSS shows conservation across all species, except in mouse, some elements vicinal to the TSS are more preponderant than expected and appear in the same order of sequence in all species. ELK1 and NRF2, both members of the ETSF family of TFs, make-up the 5’ boundary and includes GKLFL1, BARBIE, and CP2. In cow and goat, these sets of TF footprints extend from about -10 to +39 and -11 to +39, while in human it covers the region -93 to -44. The mouse sequence shows only limited and spurious similarity sharing only the MZF1 site with bBTN and the E2F site with hBTN1A1 (Table 9).

SoS1 and SoS2 are of comparable size and reside in the first introns, with SoS2 being the one that is closer to the TSS. SoS2 proffered little similarity of putative TF binding sites across species. In all species, except humans, SoS2 possesses an EVI1 site, which in the case of cow and goat, overlaps with a GKLFL1 site. On the other hand, SoS1 has a core similarity in its distribution of putative TF sites. The partially overlapping elements Hox1-3 and GATA (2 or 3) are present in all four species. In the cow and goat,
Table 9: Summary of putative TF binding sites in the six SoS regions identified by multiple alignment of bBTN, gBTN, hBTN1A1 and mBtn1A1.

<table>
<thead>
<tr>
<th>Species</th>
<th>SoS1</th>
<th>SoS2</th>
<th>SoS3</th>
<th>SoS4</th>
<th>SoS5</th>
<th>SoS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>LMO2COM (+287)</td>
<td>HNF4 (+205)</td>
<td>MZF1 (-28)</td>
<td>STAT1 (-83)</td>
<td>ATATA (-202)</td>
<td>ATATA (-400)</td>
</tr>
<tr>
<td></td>
<td>PLZF (+303)</td>
<td>E2F (+207)</td>
<td>ELK1 (-2)</td>
<td>XFD (-74)</td>
<td>MEIS_HOXA9 (-201)</td>
<td>MEIS_HOXA9 (-395)</td>
</tr>
<tr>
<td></td>
<td>HOX1-3 (+313)</td>
<td>GKLFL (+227)</td>
<td>GKLFL (+7)</td>
<td>CLTR_CAAT (-54)</td>
<td>GKLFL (-191)</td>
<td>FREAC7 (-394)</td>
</tr>
<tr>
<td></td>
<td>GATA2 (+316)</td>
<td>EVII (+231)</td>
<td>BARBIE (+14)</td>
<td>SATB (-390)</td>
<td>IRF3 (-189)</td>
<td>SATB1 (-393)</td>
</tr>
<tr>
<td></td>
<td>OCT1 (+316)</td>
<td>CP2 (+39)</td>
<td></td>
<td></td>
<td>E2F (-186)</td>
<td>TATA (-395)</td>
</tr>
<tr>
<td></td>
<td>CART1 (+317)</td>
<td></td>
<td></td>
<td></td>
<td>E2F (-184)</td>
<td>BRN3 (-392)</td>
</tr>
<tr>
<td></td>
<td>CEBPB (+322)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SATB (-390)</td>
</tr>
<tr>
<td></td>
<td>TALIBETAITF (-333)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MYT (-376)</td>
</tr>
<tr>
<td></td>
<td>NEUROD1 (+333)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MZF (-370)</td>
</tr>
<tr>
<td></td>
<td>TGIF (+337)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHR (+352)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat</td>
<td>STAT3 (-280)</td>
<td>MOK2 (+201)</td>
<td>ELK1 (-2)</td>
<td>XFD (-74)</td>
<td>HNF3B (-206)</td>
<td>ATATA (-666)</td>
</tr>
<tr>
<td></td>
<td>ETS1 (+295)</td>
<td>GKLFL (+229)</td>
<td>GKLFL (+7)</td>
<td>CLTR_CAAT (-54)</td>
<td>AMEF (-202)</td>
<td>MEIS_HOXA9 (-661)</td>
</tr>
<tr>
<td></td>
<td>PLZF (+305)</td>
<td>EVII (+233)</td>
<td>BARBIE (+14)</td>
<td>BTEB3 (-52)</td>
<td>CRX (-200)</td>
<td>FREAC7 (-660)</td>
</tr>
<tr>
<td></td>
<td>HOX1-3 (+315)</td>
<td>CP2 (+39)</td>
<td></td>
<td></td>
<td>GKLFL (-190)</td>
<td>SATB1 (-659)</td>
</tr>
<tr>
<td></td>
<td>GATA3 (+318)</td>
<td></td>
<td></td>
<td></td>
<td>IRF3 (-188)</td>
<td>TATA (-659)</td>
</tr>
<tr>
<td></td>
<td>TALIBETAITF2 (+335)</td>
<td></td>
<td></td>
<td></td>
<td>NMP4 (-187)</td>
<td>BRN3 (-658)</td>
</tr>
<tr>
<td></td>
<td>NEUROD1 (+335)</td>
<td></td>
<td></td>
<td></td>
<td>E2F (-183)</td>
<td>SATB (-656)</td>
</tr>
<tr>
<td></td>
<td>TGIF (+339)</td>
<td></td>
<td></td>
<td></td>
<td>VDR_RXR (-179)</td>
<td>HNF1 (-651)</td>
</tr>
<tr>
<td></td>
<td>CHR (+354)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MZF (-636)</td>
</tr>
<tr>
<td>Human</td>
<td>TATA (+224)</td>
<td>MYOOGF (+107)</td>
<td>NEUROD1 (-120)</td>
<td>OCT1P (-132)</td>
<td>RFX1 (-281)</td>
<td>IRF1 (-499)</td>
</tr>
<tr>
<td></td>
<td>GATA1 (+235)</td>
<td>ZID (+166)</td>
<td>NRF2 (-85)</td>
<td>AHR (-124)</td>
<td>GKLFL (-271)</td>
<td>CDPCR3 (-479)</td>
</tr>
<tr>
<td></td>
<td>GKLFL (+236)</td>
<td>EVII (+177)</td>
<td>BARBIE (-83)</td>
<td></td>
<td>E2F (-269)</td>
<td>SATB1 (-478)</td>
</tr>
<tr>
<td></td>
<td>CART1 (+239)</td>
<td>E2F (-78)</td>
<td></td>
<td></td>
<td>NMP4 (-265)</td>
<td>HNF (-473)</td>
</tr>
<tr>
<td></td>
<td>HOX1-3 (-241)</td>
<td>CP2 (-44)</td>
<td></td>
<td></td>
<td>EVII (-261)</td>
<td>TST1 (-468)</td>
</tr>
<tr>
<td></td>
<td>GATA2 (+244)</td>
<td></td>
<td></td>
<td></td>
<td>IRF2 (-260)</td>
<td>SOX5 (-463)</td>
</tr>
<tr>
<td></td>
<td>OCT1 (+244)</td>
<td></td>
<td></td>
<td></td>
<td>EVII (-256)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CART1 (+245)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEBPB (+250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP1 (+250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTBF (+262)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>HIF1 (+331)</td>
<td>EVII (+134)</td>
<td>MYOD (-45)</td>
<td>MZF1 (-73)</td>
<td>TTF1 (-212)</td>
<td>TAL1ALPHA (557)</td>
</tr>
<tr>
<td></td>
<td>GATA (+341)</td>
<td>PAX5 (+168)</td>
<td>ARE (-16)</td>
<td>SP1 (-69)</td>
<td>GATA3 (-556)</td>
<td>GATA (-556)</td>
</tr>
<tr>
<td></td>
<td>CART1 (+345)</td>
<td>MZF1 (+182)</td>
<td></td>
<td></td>
<td>VBP (-556)</td>
<td>PDX1 (-553)</td>
</tr>
<tr>
<td></td>
<td>HOX1-3 (+347)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GATA2 (+350)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FREAC2 (+360)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEF1 (+372)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RBPJK (+379)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
these core elements are supplemented by PLZF, NEUROD1, TGIF and CHR. The
human and cow sequence also have the same ordered series of putative TF binding sites
for HOX1-3, GATA2, OCT1, CART1 and CEBP that fully or partially overlap. The
mouse SoS1 however is the most dissimilar from the rest, but does possess a CART1
element binding site (Table 9).

SoS4 is the shortest region of similarity and the only similar binding sites are
XFD and CLTR_CAAT which are present in cow and goat. SoS5 also shows little
congruency in terms of putative TF binding sites. GKLF binding sites are present in all
but mouse, and there are partially overlapping sites for IRF3 and E2F in cow and goat
BTN.

SoS6 is the most similar in terms of putative binding sites in cow and goat BTN,
with one of the total of nine binding sites alternately coding for either MYT1 or HNF1 in
cow and goat respectively. The only elements in human BTN that are also present in cow
and/or goat BTN are SATB1 and HNF1. As in the other regions, mouse BTN is most
dissimilar from the other three species.

A wider scan of putative transcription sites that are present in all four species,
regardless of whether they localize to the SoS, was also conducted. No patterns of
collocation of the putative TF (or family of TF) binding sites were discernable.
Furthermore, submission of the entire multipely aligned sequences to the Genomatix ©
website did not match with any previously described transcription modules.
DISCUSSION

Background

Coeval with the formation of the Holstein-Friesian Association of America in the 1880s, artificial selection in the high yielding Holstein-Friesian dairy breed has been particularly rigorous. With improvements in selection and breeding technologies, the selection pressure has been steadily growing.

Of the tools at the disposal of modern animal breeders, marker assisted selection conceivably affords the most direct control by which to hasten the rate of genetic gain of desirable traits in farm animals. The initial step towards this aim is to identify (or locate) genetic markers that will serve as flag posts along the length of the chromosome of interest. The first of such maps for the cow were published by Bishop et al. (1994) and Barendse et al. (1994) encompassing markers on all autosomal chromosomes as well as the X chromosome. Currently, an international collaboration to identify and map genetic markers in dairy animals hosts three websites listing more than 2,000 markers (http://www.cgd.csiro.au/cgd.html; http://locus.jouy.inra.fr/; http://sol.marc.usda.gov). Although the potential benefit from these markers is undeniable, without a higher density map, or markers specifically shown to tightly co-segregate with a gene of interest, they will not be of immediate practical use to breeders.

bBTN allelic distribution

In lieu of indiscriminate markers reposed in the database, we employed a PCR-RFLP approach to identify intragenic markers within the bBTN gene. Five PCR-RFLPs were detected; one in exon 8 and the rest were intronic (Table 2). Sons of four
informative grandsire families were genotyped for these markers and the resulting data used to construct an allelic frequency distribution (Table 5).

Based on the characterization of the marker sites in amplicons 1 and 2, bBTN appears to be bi-allelic with one variant (here dubbed allele A) making-up nearly 2/3 of the allelic pool in the half-sib families tested. In a similar study in Korean Holstein-Friesians, Lee et al. (2002) show that bBTN is bi-allelic with the allele distribution exhibiting the same skewed distribution. The largely skewed distribution favoring allele A is testimony to non-random selection pressures that forced bBTN out of conformity to the theoretical Hardy-Weinberg equilibrium (Hardy, 1908; Weinberg, 1909). It is to be noted however, there are several possible haplotypes as supported by the polymorphism detected in amplicon 1. Otherwise, this 5' region of the gene that comprises the two exons that code for the Ig-like folds, may exhibit a higher level of variability as evidenced by restriction patterns that were unexplainable from the available sequence (Figure 6).

As can be witnessed from the availability of data on hundreds of paternal half-sib daughters in the dairy bull DNA repository (DBDR) database, human interference has greatly impacted the level of genetic composition of genes relevant to many production and type traits. The interposition of human selection pressure on the natural progression of genetic drift and diversity has likely contributed to the skewing of the frequency of bBTN alleles, particularly those related to milk production and health. Extrapolating from this premise, it is also likely that genes that are in linkage disequilibrium to these highly selected loci were impacted by the selection pressure as well.
Allelic substitution effect of bBTN

Bovine butyrophilin is located on chromosome 23 in close proximity to the BoLA (bovine leukocyte antigen … cow MHC), PRL, and myelin oligodendrocyte glycoprotein genes (Ashwell et al., 1996a, Brunner et al., 1996; McShane et al., 2001). The syntenic region in humans, p-arm of chromosome 6, codes for all these genes as well. However, the mouse genome has undergone rearrangements. Thus mBtn1a1 and PRL are found on chromosome 13, while the mouse H2 (MHC) genes are found on chromosome 17.

The first finding that linked the BoLA region to a single milk production trait, percent fat, was reported by Hines et al. (1986). However, even though predicted transmitting ability was detected, no differences in phenotype were observed. Despite the scanty density of mapped markers, it was the first study that conclusively established a discernible genetic influence of the BoLA region on a milk production trait.

To date, the only two genes located in the BoLA region that are candidates to directly influence milk production traits are bBTN (Ashwell, et al., 1996b) and PRL (Hallerman et al., 1988). The role of PRL in the physiological phenomenon of lactation is well known. Recent works by Horseman et al. (1997) and Ormandy et al. (1997) in which one or both alleles of PRL were ablated conclusively establishes this fact. On the other hand, the role of BTN was a matter of speculation until the recent generation of an mBtn1a1 knockout mouse that revealed its importance for milk-fat secretion (Ogg and Mather, unpublished).

The findings by Hines et al. (1986) could thus be due to the direct effect of bBTN and/or PRL, or an indirect effect of the BoLA or other vicinal genes. Prolactin, although predominantly expressed in the pituitary, is also found in other cell types and plays roles
unrelated to mammary gland functions and lactation. BTN, on the other hand, is a mammary-specific gene whose function in lactation was not past well-founded conjectures (for review see Mather, 2000; Mather and Keenan, 1998).

In order to elucidate if bBTN is a factor that influences milk production/health traits, the PCR-RFLP markers identified in bBTN were used in a QTL analysis. In a GDD model, a QTL analysis was conducted testing the hypothesis that substitution of one bBTN allele by another (as measured by its surrogate PCR-RFLP marker) will result in a significant difference in several economically important dairy traits, namely: milk yield, protein, fat, percent protein, percent fat, SCS and herd life.

The findings from this analysis reveal that in the four grandsire families in the study, none, but one of the markers tested showed a putative QTL effect. One marker in a single grandsire family showed a significant putative QTL effect on percent protein (Figure 8). However, it is difficult to draw any broader inferential conclusions from this sole statistically significant finding. None of the other grandsire families show significance for this particular trait among all the markers tested. In fact, there is not even a statistically non-significant but trend-setting pattern. Thus the significant effect observed could be the result of the effect of grandsire and not the marker site.

A similar QTL study, but using a genome wide scan of US Holstein DBDR families using 70 markers (Ashwell and Tassell, 1999) showed that chromosome 23 has a significant QTL effect on productive life and udder type trait. Another genome wide scan of North American Holstein-Friesian resource families with 174 markers (4 markers for chromosome 23) yielded no significant effect on the tested milk and health traits, a marker on BTA23 came closest to the threshold for SCS. Given that the BoLA resides
on this chromosome the results obtained are further evidence of the unreliability of the existing QTL detection methods. Moreover, Ashwell and Tassell (1999) did not report similar findings in the DBDR family; but did report significant QTL effect on SCS in an earlier publication (Ashwell, et al., 1996b).

In contrast to genome-wide scans, the chances of ascribing a putative QTL to a specific gene, bBTN, were greatly improved in this study by using intragenic markers. Our findings confirm the inconsistency that has plagued the use of QTL analysis methodologies to unequivocally establish a genetic link between a measurable production/health trait and a given genetic marker (or gene).

While the statistical outputs do not support an association between bBTN and the tested quantitative traits, this does not rule out the fact that bBTN could very well play a role in lactation. In fact, the work done by Ogg and Mather (unpublished) in a mouse model system unambiguously demonstrates that the expression of BTN is essential for the regulated secretion of milk-fat.

The findings from the QTL study and the experimentally validated role of BTN in milk-fat secretion appear discordant. However, there are three possible mutually non-exclusive explanations: 1) BTN is one of several possible quantitative genetic factors involved in milk-fat secretion, 2) the genetic differences between the two alleles are in regions of the gene that do not markedly alter its functional attributes, and 3) generations of selection pressure have limited the genetic variability, thus the scarcity of the BB genotype has increased the threshold required for the detection of statistically significant differences.

Complex traits, such as milk production and health, present a challenge in terms
of dissecting each genetic component that exerts influence on a phenotype. In addition to bBTN, other factors such as XO and ADRP conceivably contribute to the milk-fat secretion process (Banghart et al., 1998; Heid et al., 1998; Vorbach et al., 2002). bBTN maybe one-of-several equally important components in this process. Therefore, differences between the two alleles of bBTN might not be extricable from the effects of other players. Additionally, the heritability of these genetic factors is not large, so that the impact that environmental factors play in the expression of economically important phenotypes cannot be discounted.

The only exonic PCR-RFLP detected in bBTN resides in the last and largest exon coding for the cytoplasmic domain (Table 2). A substitution of nucleotide A to G translates to a conservative basic amino acid substitution of lysine to arginine. The remaining four PCR-RFLPs all reside in non-coding regions of the gene. Therefore, the two allelic forms of bBTN might not significantly differ in the discharge of their functions, thereby reducing the likelihood of detecting statistically discernable differences. Also, the power to detect a QTL effect by the PCR-RFLP markers were limited by the fact that the BB genotype was only represented in 9% of the tested half-sib sons, thereby making a sensitive comparison amongst the quantitative traits at best recalcitrant to current analysis methods. The rarity of genotype BB is a direct result of the skewing of the allelic frequency of bBTN. Artificial selection pressures have, by design or inadvertently, favored the accumulation of allele A. By design, because the selection for dairy production/health traits might have been more desirably influenced by allele A than allele B. Otherwise, bBTN might be closely linked to other sought-after genetic factor(s) that preferentially segregate with allele A, one credible candidate being
The near genetic uniformity of a subpopulation of dairy breeds presents an obstacle in employing a QTL approach for detecting loci (gene) consequential to economically important traits. The only viable means by which to get around this limitation is to cross different breeds with maximal divergence in the phenotypic attribute of interest. This approach, although a theoretically viable option, cannot be practically applied to existing commercial populations without significant costs.

Expression of mBtn1a1 in HC11 cells

Several modes of regulation are ascribed to the control of 'milk genes' both *in vivo* and *in vitro*. Transcription is one level of control by which expression of most 'milk genes' is made sentient to the physiological status of the mammary gland. In addition to the contribution of the extracellular matrix (for example see Streuli *et al.*, 1991), several hormones are known to play a significant role (for example see Stocklin *et al.*, 1996). In the HC11 mouse mammary cell line system, a trio of lactogenic hormones, *viz* insulin, hydrocortisone, and PRL have been identified as major *trans*-acting factors required for the transcriptional induction of the major 'milk genes'.

The molecular processes by which PRL exerts its effect in mammary cells has been extensively worked out since its role in mammary gland development was initially recognized (Nandi, 1958). Schmitt-Ney *et al.* (1991) and Watson *et al.* (1991) were the first to independently identify STAT5 (signal transducer and activation of transcription) as the downstream effector of PRL signaling. Prolactin acts via the cell surface receptor PRL-R, which leads to the signaling cascade known as the JAK2/STAT pathway (Rui *et
The end point of this pathway is the binding of active STAT5 dimer to the γ-interferon activation sequence (GAS) element on target genes, such as the 'milk genes', which induces transcription (Gouilleux et al., 1994; Wakao et al., 1994).

The wide-ranging role of insulin in mammary gland physiology has been a field of interest since Nandi (1958) showed its importance for structural integrity in a mammary explant system. The effect of insulin depends on the physiological status of the mammary gland. During the developmental phase, insulin is primarily involved in stimulating DNA polymerase activity thus contributing to the progression of the cell cycle (Lockwood et al., 1967). With the onset of lactation, the functions of insulin shifts to maintaining mammary tissue (Kumaresan and Turner, 1965; Merlo, et al., 1996) and transcription of mammary specific genes such as α-lactalbumin (Prosser et al., 1987) and β-casein (Nicholas, et al., 1983). However, a direct requirement of insulin for lactation in vivo has not been definitively established, as it has been shown to be nonessential in lactogenesis (Kyriakou and Kuhn, 1973) and milk yield (Hove, 1978). The I required by mammary cells in vitro cultures likely functions as substitute for IGF-1 (reviewed by Neville et al., 2002).

Although hydrocortisone (H) exerts its influence via the glucocorticoid receptor (GR), its precise mode of action independent of other factors has yet to be fully elucidated (Mills and Topper, 1970). Studies done on the endogenous expression of 'milk genes' in rabbit mammary explants and HC11 cells, show that H (in the presence of I) appears to have a more direct and rapid effect on the expression of WAP, and little influence on the expression of β-casein (Doppler et al., 1991; Puissant and Houdebine,
1991). On the contrary, PRL by itself does not induce expression of WAP, but in conjunction with H induces triple the level of expression attained with either H or I alone (Hobbs et al. 1982; Doppler et al., 1991). In HC11 cells, it was found that maximal expression of β-casein expression was attained in the presence of both HC and PRL (Doppler, et al., 1989). These and other data (see also Stoecklin et al., 1996; Cella et al., 1998) suggest that the terminal effectors in the PRL and HC signaling pathways converge providing a combined regulatory mechanism.

In addition to the documented linear effects of each lactogenic hormone, significant progress has also been made in defining the various interactions among these hormones and their resultant effects. As briefly mentioned earlier, the interaction between the downstream effects of H and PRL affects the quantity of 'milk gene' expression. Immunoprecipitation studies show that GR and Stat5 are physically associated throughout the various stages of mammary gland development (Doppler et al., 1989; Cella et al., 1998; Stoecklin et al., 1996). Moreover, their interaction results in a functionally active transcription regulator that could either repress (Stoecklin et al., 1996) or enhance expression of target genes (Cella et al., 1998).

Several researchers have established that BTN, in vivo, is restricted to the mammary gland, and more specifically to the phases surrounding lactation (Ogg et al, 1996; Banghart et al, 1998). Aside from the qualitative examination of the temporal and tissue specificity of BTN expression, very little is known about the cis- and trans-acting factors involved in either the induction or the cessation of transcription. Notwithstanding the lack of a more incisive examination, at least in vivo, the expression profile of BTN supposes a well regulated control mechanism.
The only preliminary work done to characterize trans-acting factors on the expression profile of BTN in an established cell line was done by Aoki et al. (1997) in HC11 cells. In the study, no measurable enhancement of mBtn1a1 expression was attained by treating the cells with the accepted triad of lactogenic hormones, IHP. Further, the study was limited to the expression of endogenous BTN and therefore did not provide an insight into the identity of potential cis-acting elements, nor provide conclusive evidence as to the individual effects of the lactogenic hormones tested.

The second phase of the present study attempted to explicate the trans-acting factors influencing expression of endogenous mBtn1a1 in HC11 cells. HC11 cells were incubated in the presence or absence of I, H and PRL, and in the presence or absence of matrigel. By northern blot, mBtn1a1 message was only detected in the presence of all three lactogenic hormones, with or without matrigel (Figure 10). This result was also corroborated using mRNA samples isolated from HC11 cells treated with IHP on plastic (Figure 10).

Therefore, the expression of mBtn1a1 in HC11 cells is responsive to treatment with IHP, and is independent of a supplementary substratum. This result is in agreement with the widely held view that the expression of 'milk genes', in this case mBtn1a1, in HC11 cells requires the presence of IHP (Ashktorab et al., 1999). Moreover, when HC11 cells are cultured in an induction medium, the presence or absence of matrigel does not measurably alter the transcription of mBtn1a1. This is could either be because HC11 cells produce and deposit their own substratum (Chammas et al., 1994), or because the expression of mBtn1a1 in HC11 cells is not dictated by the presence or absence of a substratum.
TAZ: a subclone of HC11 cells

Although HC11 cells are the most widely used mammary cell lines to investigate hormone responsiveness and promoter assays, they are notoriously non-homogenous at times reverting to basal, as opposed to luminal, cells (Deugnier, et al., 1999). The original HC11 cell clone lost its mBtn1a1 expression in response to lactogenic hormone, IHP, which might be due to a growing heterogeneity in the cell population. To circumvent inconsistencies that might arise from this non-homogeneity, and in an attempt to obtain a more uniform subclone with an increased level of mBtn1a1 expression, single colonies of HC11 were propagated and screened. In the presence of IHP, subclone 9, hereto named TAZ (for tatsächlich ausdrückend zellen) was found to express an increased level of mBtn1a1 message as compared to contemporaneously isolated HC11 subclone (Figure 13). Interestingly, the tight hormonal control displayed by the original HC11 cells is diminished in TAZ cells (compare Figure 10 and Figure 13) where mBtn1a1 expression is detectable even in cells treated only with I. Aside from the novel mBtn1a1 expression profiled in TAZ cells, light microscopy revealed a more uniform morphology of the TAZ subclones as compared to the parental HC11 cells (Figure 12). TAZ subclones therefore represent a manifestly distinct form of a mouse mammary cell line in which expression of mBtn1a1 is not dependent on the presence of all three lactogenic hormones.

Phylogenetic footprinting

The transcription of BTN during and around lactation points to potential cis-acting elements that exert control over the regulated expression. A computational
approach was used to examine the putative promoter region of BTN in four species in which sequence data was available.

A region of the 5' flanking sequence of orthologous cow, goat, human and mouse BTN genes, starting from about -1kb and extending to the start of the CDS, minus their respective repeat elements (Tables 7, Figure 15), were analyzed for core promoter elements, previously described 'milk gene' elements, and shared transcription modules amongst the four species.

Prior to alignment and analysis of the orthologous sequences, the TSSs were delineated by either referring to experimentally determined annotations in the GenBank DNA sequence repository, or by exon mapping. This criterion was used to assess the TSS for cow, human and mouse sequences. The gBTN sequence archived in the GenBank database (accession No AY036083) however was not experimentally established. Therefore, an arbitrary determination was made to map its TSS by exon mapping against bBTN (based on the high degree of homology) (see Tables 8). Using this method, an additional exon was revealed further 5' in gBTN. This is in agreement with the exon/intron organization and location of the start of the CDS observed in cow, human and mouse sequences.

The region of the orthologous genes extending from -60 to +40, with the TSS as a quasi-axisymmetrical center, was subjected to multiple alignment analysis (Figure 16). The alignment did not reveal a strikingly evident homology. Yet, an interesting feature in bBTN and gBTN, is a 21bp stretch of region straddling the TSS and exclusively comprising pyrimidines (Figure 16). Fifteen base pairs of this pyrimidine rich CT-motif is found immediately downstream of the TSS and shares a near perfect homology with
both the human and mouse sequences, the exception being a 3 bp insertion that interrupts
the homology in both human and mouse sequences. In the mouse sequence, the
additional inserted trimer is itself entirely made-up of pyrimidines.

The TSS region was then screened for core promoter elements widely described
in both mammary and non-mammary genes as essential for the assembly of a
preinitiation complex (PIC), viz. TATA-box, CAAT-box, pyrimidine-rich Inr element
(for review see Roeder, 1996) and/or the recently identified DPE (Burke and Kadonaga,
1997; Burke and Kadonaga, 1996). None of the four genes possessed these elements,
with the exception of hBTN1A1 which contained a DPE (Figure 16) at the prescribed
position of +28 to +32. This is in stark contrast to other 'milk genes' such as cow κ-
-casein (Alexander et al., 1988), cow lactoferrin (Teng, 2002), and mouse WAP
(Campbell et al., 1984) that possess canonical or noncanonical TATA- and CAAT-boxes.

A comparison of the pyrimidine-rich sequence straddling the TSS with the loose
Inr element consensus sequence YYA+1N(T/A)YY (Roeder, 1996) reveals that the CT-
motif of bBTN and gBTN diverge at two points: at position +1, both have C instead of the
conserved A residue; and at position +3, both have a C instead of T/A. In addition to the
ones described for the cow and goat sequence, hBTN1A1 has an additional divergence at
position +5.

An inspection of other cow 'milk genes', namely all the caseins, α-lactalbumin,
and β-lactoglobulin reveals that they do not posses such a pyrimidine rich region in the
vicinity of their respective TSSs. Perhaps, the pyrimidine rich sequence is a novel
element, or a variant Inr element that is required for basal expression of BTN.

Notwithstanding, the parallel functionality of the entire 21 bp CT-motif in all four
species is questionable since it is primarily located upstream of the TSS in the human and mouse genes, as contrasted to its straddling position in the cow and goat sequences. The differences in the TSS seen between the cow and goat on one hand and the mouse and human on the other, could plausibly be due to the trimer insertions of the latter. Further deletion/substitution studies could shed light on this issue.

In view of the absence of traditionally present core promoter elements, a manual positional-alignment was performed to determine if there are any conserved elements positioned equidistant from the TSS. A couple of short conserved stretches of sequences are observed (Figure 16). The first, GCAG/C, is at position -23 to -20 (cow, goat and human), and -22 to -19 (mouse). The second is a 4bp stretch of pyrimidines located at -15 to -12 (cow, goat and human), and -14 to -11 (mouse). The relevance of these tetramers is not clear, and no similar patterns have been previously described in other genes.

A phylogenetic footprinting was conducted on all four orthologous sequences of ~0.7kb (gBTN), ~1kb (hBTN, hBTN1A1 mBtn1a1) using GEMS Launcher© software (Genomatix Software GmbH) (Quandt et al., 1995) to detect and characterize putative TF binding sites. These sequences were devoid of repeat elements, and their 5’ ends extended to their respective CDS start sites, as described above.

The GEMS Launcher identified a total of 664 putative TF binding sites, that is, on average, about one TF binding site per 10 bp. In order to systemize the search and maximize the chances of revealing regulatory networks of higher order transcription modules, six segments of the highest homology across all species were selected (Table 9, Figure 15) for comparison. These homologous locales were named segments of
similarity (SoS) and numbered 1 - 6.

The overall homology of the bBTN and gBTN is high (Table 8), and the level of homology within these islands of homology, i.e. SoSs is even higher. Therefore, there is an increased coincidence of the same putative TF binding sites occurring in the same SoS. As regards the putative TF sites in the human and mouse sequence, even though they share high sequence homology with their ruminant orthologues in the SoSs, the homology does not extend to coding for a large number of shared putative TF binding sites. A closer examination of each SoS is discussed.

SoS6 is the most 5' SoS relative to the TSS, representing a putative distal promoter module. The putative binding sites for SATB1 (Special AT-rich sequence-binding protein 1) (Dickinson et al., 1997) is present in all but in mouse. SATB1 is a tissue-specific chromatin remodeling protein that effectively controls gene expression in thymocytes by affecting higher order architecture (Cai et al., 2003). An HNF (hepatic nuclear factor 1) (Tronche and Yaniv, 1992) is also present in the goat and human sequences, but not in the cow and mouse sequence. Interestingly, in humans a member of the CLOX (cut-like homeodomian) family of transcription factors, CDPCR3 (Harada et al., 1995), is present sharing the same footprint as SATB1. Liu et al. (1999) describe that the CLOX family member, CDP, and SATB1 interact in vivo via their DNA binding domains. This interaction was demonstrated to interfere with the DNA binding ability of both proteins. Moreover, overexpression of CDP was shown to override the transcriptionally repressive effect of SATB1 on MMTV promoter activity (Liu et al., 1999). It is possible that both TFs work from the same overlapping putative binding site, where in the absence (or lower level) of CLOX, SATB1 negatively regulates BTN, which,
upon elevated expression of CLOX is depressed both by binding SATB1 directly as well as competitively binding to the shared cis-element. A computer based model construction of cow genes expressed during lactation found CLOX to be a common denominator in all the promoters examined (Malewski and Zwierzchowski, 2002).

The CLOX/SATB1 shared footprint is conspicuously absent throughout all the mouse SoSs examined -- although, this or a similar site maybe present at a more distal location. The absence of this putative cis-element could very well be one of the reasons why a transgene using mBtin1a1 5' flanking region did not drive the expression of a reporter gene (Mather and Ogg, unpublished work). It is also to be noted that SoS6 in the cow is found both in the bBTN1.7/CAT and bBTN1.2/CAT transfection vectors; therefore SATB1/CLOX can not by itself account for upregulating the core promoter. It is likely that another one or more modules located further upstream work cooperatively.

A member of the Hox family of TFs is also present in cow and goat SoS6. A triple ablation mouse model of Hoxa9 and two of its paralogs, Hoxb9 and Hoxd9, illustrates that this TF is required for mammary gland differentiation, post-pregnancy (Chen and Capecchi, 1999).

SoS5 lies along the notional proximal-distal promoter boundary. GKLF (Shields and Yang, 1998) putative binding sites are found in all but the mouse segment. GKFL is principally expressed in skin, oral and other epithelial cells where it is thought to be involved in terminal differentiation. (Garrett-Sinha et al., 1996). The ablation mouse model of GKLF is lethal soon after birth and has been shown to be important for the barrier integrity of the epidermis (Segre et al., 1999). The relevance of this TF towards expression of mammary genes has not been previously established, nonetheless, its
involvement in the terminal differentiation of other epithelial cells could be very well duplicated in the mammary gland. GKLF is demonstrated to be required for the expression of one of the components of laminin-5, the major extracellular matrix deposited by mammary epithelial cells (Miller et al., 2001). From our results, expression of mBtn1a1 was neutral to the presence or absence of a matrigel substratum. Therefore, a direct or indirect effect of GKLF on the expression of BTN can not be inferred.

E2F (Kovesdi et al., 1986) was traditionally perceived as a factor that, in partnership with pRb (retinoblastoma), is involved in controlling cell cycle progression. More recently the versatility of this group of TFs is becoming evident. A well-designed work by Müller et al. (2001), using human bone tissue derived U2OS cells, discovered that E2F may induce the expression of more than 1200 genes. Given the wide-ranging action of E2F, and its role in several distinct cellular processes, if it does contribute to the expression of BTN, this effect is unlikely to be tissue/lactation specific.

The human SoS5 has three putative binding EVI1 sites. No link to lactation and to the mammary gland has so far been established for the other putative sites occurring in SoS5 of more than one species, namely, IRF3 and NMP4.

The SoS4 is the region of high homology that most typifies the proximal promoter region in terms of proximity to the TSS. The cow and goat segments possess putative binding sites for BTEB3 (Martin et al., 2000) and STAT1; while the mouse sequence possesses a site for Sp1. BTEB3 and SP1 are members of the large SP1-like family of TFs. The Krueppel-like factors (KLF), of which GKLF is one, is a sub-group within the extended Sp1-like family. The zinc-finger motifs are the standard feature of all Sp1 family members, but their other domains are variable, and display contrariety in their
regulatory properties (for example, see Kwon *et al.*, 1999). One means by which this group of TFs display regulatory specificity is by the pattern of tissue distribution, with, for example, Sp1 present in most tissues (Hagen *et al*., 1994), while Sp4 is restricted to nervous tissue (Hagen *et al*., 1992). Another emerging means of regulation is by competition for the same binding sites, but by exerting opposing effects as was demonstrated by the inhibition of Sp1 activation by GKLF (Zhang *et al*., 1998).

TATA-less promoters have been shown to require Sp1-binding sites (Dynan and Tjian, 1983), and Sp1 activation is enhanced in the context of TATA-less promoters (Colgan and Manley, 1995). Furthermore, Sp1 binding is implicated in establishing one or more TSSs (Kollmar *et al*., 1994; Lu *et al*., 1994; Boam *et al*., 1995). The exact location does not seem to be strictly defined, but spans within the -50 to -150 range.

The Sp1 (in mouse) and BTEB3 (in cow and goat), anchored at -69, -54 and -52 respectively could serve as the elements that define the TSS and probably interact with a masked Inr sequence to establish a PIC. It is also of significance that there is a positional disparity in the actual start of transcription downstream of the Sp1/BTEB3 elements. Boam *et al*. (1995) demonstrated that mutating the native Inr sequence results in Sp1 directing transcription from several other sites. Comparison of the TSS locale (Figure 16) of all four species depicts the mouse TSS to be 15bp downstream of the comparatively homologous section of the cow and goat TSS. The cow/goat + 1CCC positionally correspond to the mouse -16 AGC, with the additional trimer CTT at -10 creating a significant divergence from its coordinate ruminant sequence. The Inr sequence disparity seen in mBtm1a1 conceivably contributes to its promiscuous transcriptional start sites as observed by Mather and Ogg (unpublished).
The human SoS4 region does not possess any of the SP1/BTEB/KLF family putative binding sites. Since SoS4 in humans lies over 100bp upstream of the TSS, an extended search over the -50 to -150 region relative to the TSS was conducted, but did not yield any putative binding sites to the Sp1/BTEB/KLF binding sites. However, Oct1P and Ahr putative binding sites were detected. Oct1P (Verrijzer et al., 1992) is a member of the larger POU domain TFs that share a similar DNA binding domain. Oct-1 is ubiquitously expressed and has not to date been implicated in regulating mammary specific genes. AhR (aryl hydrocarbon/dioxin receptor) heterodimerizes to the AhR-nuclear translocator (Arnt) and is responsible for responses to seemingly dissimilar synthetic and naturally occurring xenobiotic insults (Gu et al., 2000). Thus far, no high affinity endogenous ligand has been identified for Ahr (for review see Denison and Nagy, 2003). Despite a close association observed between AhR-Arnt and the estrogen receptor in mammary cells (Safe et al., 2000), Le Provost et al. (2002) have conclusively determined that AhR-Arnt is not essential. So the relevance of the presence of Oct1P and Ahr putative binding sites is not evident.

hBTN1A1 lacks the Sp1/BTEB present in the cow, goat and mouse sequence to potentially serve as a yardstick for the TSS. However, the DPE located at about +30 could very well serve an important role. Burke and Kadonaga (1996, 1997) have shown that DPE acts in cooperation with an Inr to bind TFIID and direct PIC assembly in TATA-less promoters. However, even though hBTN1A1 possesses a DPE element located at the exact distance from the TSS (discussed earlier), it lacks a classical Inr. Therefore, it can be hypothesized that, in hBTN1A1, the DPE serves as the sole element that orients the assembly of the PolII transcription machinery, or else the Inr found in
hBTN1A1, and its homologues in cow, goat and mouse define a new class of Inr sequences.

SoS3, in terms of position relative to the TSS is located straddling the TSS in cow and goat, but resides in the proximal promoter in human and mouse BTN. Therefore interpretation of the significance of putative TF binding sites, will have to be taken in the context of their co-location (Table 9). A putative TF binding site common to all species in SoS3 is BARBIE (so named to reflect that it is a barbiturate responsive element), a site that is widely described as a response element associated with the cytochrome P450 family of genes. Moreover, AhR, has also been described in relation to its role in cytochrome P450 expression. No previous work has attempted to define the role of the BARBIE box on expression of 'milk genes'. The descriptions of E2F and GKLF have been provided above in relation to their occurrence in both cow and goat SoS5. It is to be noted, that the segments of similarity are only a reflection of the degree of local homology and do not show location relative to TSS. Thus SoS3 in hBTN1A1, unlike the cow and goat, spans from -120 to -44, and thus is still 5' of its TSS. In this context, the presence of E2F may have a similar and as yet undefined significance. A computational approach to define regulatory elements important for genes in the mammary gland has identified E2F as one of a number candidates that potentially play a dual role in regulation both the 'milk genes' as well as the 'involution genes' (Malewski and Zwierzchowski, 2002).

CP2 putative TF binding site is present in all but the mouse SoS3. CP2 TF is expressed in many types of tissues (Jane et al., 1995; Murata et al., 1998) but so far described as binding elements further 5' of the TSSs in α-globin (Kim et al., 1990) and
cytochrome P450 genes (Sueyoshi et al., 1995).

The singular distinction of SoS2 is that the EVI1 putative cis-element is present in the first intron in all the species examined. EVI1 (ectopic virus integration site 1) is a contributor to retrovirally induced myeloid leukemia (Mucenski et al., 1988) and a known transcription repressor (Bartholomew et al., 1997) in coordination with co-repressors (Chakraborty et al., 2001; Palmer et al., 2001). EVI1’s significance towards mammary specific genes is not apparent from its tissue distribution and regulatory functions ascribed to it in relation to hematopoietic differentiation.

The SoS phylogenetic comparisons indicate that the BTN promoter does not conform with the promoters of other well characterized 'milk genes'. TF-binding sites that are well characterized in other 'milk genes' are not found in the SoSs. Moreover, at least in TAZ cells, mRNA synthesis appears to be unaffected by treatment with the lactogenic hormones, IHP. This of course, is in line with the absence of the classical response elements for PRL and HC. Therefore, the BTN promoter most likely presents a nouvelle network of transcription factor binding sites that are capable of directing mammary gland and lactation specificity. The SATB1-CLOX and Sp1/BTEB/KLF putative binding sites offer the best candidates to have biologically relevant effects on the expression of bBTN.

Further, the lack of a previously described Inr in the TATA-less promoters of all four species of butyrophilin points to separate a mechanism by which core promoter elements can direct the PIC to the proper TSS, or else these TSS possess a new as yet uncharacterized Inr element.
Promoter analysis of bBTN

To identify potential regulatory elements in bBTN a number of CAT reporter constructs that encoded either 5' only, or 5' and 3' flanking regions of bBTN (Table 1) were transfected into the original HC11 cell line and the subcloned TAZ cells. For maximal inductive response, the cells were all cultured in IHP-containing induction media and the CAT activity subsequently quantified as a measure of promoter activity.

A region of the promoter that spans -453 to -1042 (construct pbBTN1.7/CAT) was found to be sufficient to drive expression of the reporter gene significantly above the background (pBasic/CAT) control. This elevated expression was observed in both the original HC11 cells (Figure 10) and TAZ subclone (Figure 13) cells. The construct pbBTN1.2/CAT, encoding a shorter 5' flanking region, registered a slight and statistically insignificant CAT activity when compared to the basal control.

The addition of the 3' flanking region of bBTN does not alter the promoter activity of the 5' flanking region. This is illustrated when comparing pbBTN1.7/CAT vs. pbBTN1.7/CAT/+1.7 and pbBTN1.7/CAT/-1.7, and pbBTN1.2 vs. pbBTN1.2/CAT/+1.7, pbBTN1.2/CAT/-1.7 as assayed in the original HC11 cells. A similar result was obtained when comparing the pbBTN1.7/CAT vs. pbBTN1.7/CAT/+1.7 in the TAZ cells.

The data thus indicate that while the core and proximal promoter regions are sufficient for basal transcription, the distal promoter region is essential for an elevated expression of bBTN. Furthermore, the 3' end flanking region makes little or no contribution to controlling transcription.

It is therefore plausible that the -453 to -1042, region of bBTN representing the distal promoter sequence, possess one or a few TF cis-elements that exert a positive
effect on the core promoter, either as an activator or derepressor. These putative cis-
acting elements are thus thought to provide a regulatory platform from whence trans-
acting factors can convey mammary specificity and impart lactation dependency. In
order to shed light on the putative transcription factor binding sites and their modular
organization, a phylogenetic footprinting of the cow, goat, human and mouse gene
sequences was carried out.

Future directions

This paper investigates two questions about the bBTN. First, we analyzed the
allelic substitution effects of bBTN on quantitative production and health traits in dairy
cattle. Secondly, we utilized two approaches to decipher the putative proximal promoter
region most important for the expression of bBTN. On the one hand, we employed
reporter constructs in a transient transfection assay to delimit a segment important for its
expression. On a parallel approach, we applied a computational phylogenetic comparison
to identify conserved regions across four species and the corresponding putative
transcription factor binding sites.

Efforts to select for an economically more favorable allele of BTN in Holstein-
Friesians are not supported by the findings in this study. The skewed allelic distribution
points to some selective pressure that favored allele A. This skewed allelic distribution
maybe accounted for by one or more QTLs that are closely linked to BTN. However,
without direct evidence that relates the allelic difference to a phenotypic difference, there
is no significant advantage that can be gained by using one of the alleles of BTN as a
factor in a MAS program. A more conclusive result could feasibly be obtained in a
future study by using phenotypically divergent subpopulation of animals.

On the other hand, the use of the putative promoter of bBTN, specifically the region extending to -1kb, could likely serve to drive exogenous gene expression in the mammary gland system. Given that the bBTN1.7/CAT construct was able to drive expression of a reporter construct in a cross-species cell line (HC11 cells), \textit{in vitro}, it may perform better in a ruminant \textit{in vivo} system. However, the computational promoter analysis raises more questions than it answers. The Inr and putative promoter regions of BTN largely do not conform to known and conserved elements of 'milk' and other widely described genes. It is unlikely that the proximal putative region of lactation specific genes contain the much sought-after 'master switch' that activates all 'milk genes'. It still remains to be determined which narrowly delimited regions (elements) of bBTN are crucial for its expression. A more incisive study utilizing either point mutations or extensive deletion constructs could reveal important elements and lead to the description of the modules that regulate the expression of bBTN. Further, comparing results obtained here with that obtained from a transient transfection assay in non-mammary cells could help establish which regions confer mammary specificity.
APPENDIX

Multiple alignment of sequence of the 5' flanking region and 5' UTR of BTN paralogous genes from four species, namely, cow, goat, human and mouse.

```plaintext
bBTN  1  gaattcagca gaaagtgtat cagtaagttta acaaaaaatgt ggacAAAGAC TTGTGTATAA ACTGCACTAT
bBTN  71  TTATAATAGG CAAAAACCC AAGATGTCGC ATGATCTCAG GAATTAtagg aaccttcaat atgataaaT
bBTN 141  ATAGCTATTA ACAATGGTTTC AAATTACATA Annnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn

hBTN  1  ---------- ---------- ---------- ---------- ---------- ---------- ----------
hBTN  29  TTCAATAGGG AAAAAATCCC CAAATGTCGC ACAATCATGG CAATT---- --AAAATATCT

mBtn  1  ccataccctc cccccg---- ---------- ---------- ---------- ---------A AGTGCAGTCT
mBtn 28  TTATACTAGA AAAAGACTA GAATCtCaT C ATAATCTGCA CAAATA---- --TTATATAT
mBtn 73  ATGCGTATTA GCTATGCTAT GAACTAtgca ggaaaactta ctatgaactt actgatatat

bBTN  211  nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn
bBTN 281  nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn

hBTN  120  ---------- TTGCTTAT TATGATATAC ATAAGC---- ---------- ---------- ----------
hBTN 143  ATATAAATTA ATAATATTAT GAGTTACACA Aaaagtctaa ttga---- --AAAATATCT
hBTN 179  ---------- ---------- ---------- ---------- ---------- ---------- ----------
hBTN 281  nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn

mBtn  143  attgttctct aatTTTATTT TATATTTATG TACAGC---- ---------- ---------- ----------
mBtn 179  ---------- ---------- ---------- ---------- ---------- ---------- ----------
mBtn 351  nnnnnnnnn nnnnnnnnn nnnnnnnat tatataaaag tatatcaaat tATATAATAC ATCAGTCTCTA
mBtn 351  nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn
mBtn 143  ---------- ---------- ---------- ---------- ---------- ---------- ----------
mBtn 179  ---------- ---------- ---------- ---------- ---------- ---------- ----------
mBtn 421  TTAC---- ---------- T GGAGGCTATC ATTACTTgct gacattatga gtagtttacta cctt----AA

mBtn 198  AAAC---- ---------- T Gttt---- ---------- ---------- ----------
```

110
<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>TTTTTTTGAC GCAGTAGTTC CAAGACTTGT CTATTTATAA</td>
</tr>
<tr>
<td>gBTN</td>
<td>TCTTTTTGAC ACAGTAGTTC TAAGACTTGT CTATTTATAA</td>
</tr>
<tr>
<td>hBTN</td>
<td>GGAACCAAC ATTAATGA GTGTTATGCC TCACAGTTCC CTTCCTTATAA</td>
</tr>
<tr>
<td>mBTN</td>
<td>TTTCTTTGAC ACAGTAGTTC TAAGACTTGT CTATTTATAA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>GCCCATTTTC TGtTTTGTAC AGACAGGAG GAAGCTTAAG TGCTTTCCA-</td>
</tr>
<tr>
<td>gBTN</td>
<td>GCCAATTTGC TGgTTTGTAC CGACAAGATT GACTAACCTT AGGGTGTTAG GTGGGATGGc agccaga---</td>
</tr>
<tr>
<td>hBTN</td>
<td>GCCGCTCTCC ATTCTggagg cagtcgagg ctggaggacc</td>
</tr>
<tr>
<td>mBTN</td>
<td>GCCCATTTTC TGtTTTGTAC AGACAGGAG GAAGCTTAAG TGCTTTCCA-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>GccgggACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>gBTN</td>
<td>------ACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>hBTN</td>
<td>Gtgtaaacta aaaatccata ctggGGATGG AGGCTGAGAG GAGGTTTCAG GGGCAAATGa ccagaacact</td>
</tr>
<tr>
<td>mBTN</td>
<td>GCCGCTCTCC ATTCTggagg cagtcgagg ctggaggacc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>GccgggACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>gBTN</td>
<td>------ACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>hBTN</td>
<td>Gtgtaaacta aaaatccata ctggGGATGG AGGCTGAGAG GAGGTTTCAG GGGCAAATGa ccagaacact</td>
</tr>
<tr>
<td>mBTN</td>
<td>GCCGCTCTCC ATTCTggagg cagtcgagg ctggaggacc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>GccgggACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>gBTN</td>
<td>------ACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>hBTN</td>
<td>Gtgtaaacta aaaatccata ctggGGATGG AGGCTGAGAG GAGGTTTCAG GGGCAAATGa ccagaacact</td>
</tr>
<tr>
<td>mBTN</td>
<td>GCCGCTCTCC ATTCTggagg cagtcgagg ctggaggacc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>GccgggACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>gBTN</td>
<td>------ACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>hBTN</td>
<td>Gtgtaaacta aaaatccata ctggGGATGG AGGCTGAGAG GAGGTTTCAG GGGCAAATGa ccagaacact</td>
</tr>
<tr>
<td>mBTN</td>
<td>GCCGCTCTCC ATTCTggagg cagtcgagg ctggaggacc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>GccgggACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>gBTN</td>
<td>------ACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>hBTN</td>
<td>Gtgtaaacta aaaatccata ctggGGATGG AGGCTGAGAG GAGGTTTCAG GGGCAAATGa ccagaacact</td>
</tr>
<tr>
<td>mBTN</td>
<td>GCCGCTCTCC ATTCTggagg cagtcgagg ctggaggacc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>GccgggACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>gBTN</td>
<td>------ACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>hBTN</td>
<td>Gtgtaaacta aaaatccata ctggGGATGG AGGCTGAGAG GAGGTTTCAG GGGCAAATGa ccagaacact</td>
</tr>
<tr>
<td>mBTN</td>
<td>GCCGCTCTCC ATTCTggagg cagtcgagg ctggaggacc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>GccgggACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>gBTN</td>
<td>------ACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>hBTN</td>
<td>Gtgtaaacta aaaatccata ctggGGATGG AGGCTGAGAG GAGGTTTCAG GGGCAAATGa ccagaacact</td>
</tr>
<tr>
<td>mBTN</td>
<td>GCCGCTCTCC ATTCTggagg cagtcgagg ctggaggacc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>GccgggACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>gBTN</td>
<td>------ACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>hBTN</td>
<td>Gtgtaaacta aaaatccata ctggGGATGG AGGCTGAGAG GAGGTTTCAG GGGCAAATGa ccagaacact</td>
</tr>
<tr>
<td>mBTN</td>
<td>GCCGCTCTCC ATTCTggagg cagtcgagg ctggaggacc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BTN</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBTN</td>
<td>GccgggACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>gBTN</td>
<td>------ACTG AAAGTCTACC CTT-GGCAGA AGGCAAGGAG GAAGCTTAAG GCGCAAATGA TGCTTTCCA-</td>
</tr>
<tr>
<td>hBTN</td>
<td>Gtgtaaacta aaaatccata ctggGGATGG AGGCTGAGAG GAGGTTTCAG GGGCAAATGa ccagaacact</td>
</tr>
<tr>
<td>mBTN</td>
<td>GCCGCTCTCC ATTCTggagg cagtcgagg ctggaggacc</td>
</tr>
</tbody>
</table>
Legend:
Region of highest homology (gray shading).
Segment-of-similarity (double underlined).
TSS *(bold italics).*
Repeat element represented with 'n.'

Dickinson LA, Dickinson CD and Kohwi-Shigematsu T(1997). An atypical homeodomain in SATB1 promotes specific recognition of the key structural

specifically to the apical pole of secretory-epithelial cells in lactating mammary tissue. *Experimental Cell Research.* 158:144-158.

125

Ogg SL and Mather IH, unpublished.

