Robert C. Cleverdon, Doctor of Philosophy, 1950

OBSERVATIONS ON THE PHYSIOLOGY OF AEROBIC THERMOPHILIC SPOROGENOUS
BACILLI IN SUPPLEMENTED CASEIN HYDROLYZATE MEDIA

Thesis and abstract approved: Michael J. Pelczar Jr.

Professor in charge of thesis
Associate Professor of Bacteriology,
Department of Bacteriology.

August 24, 1949.
OBSERVATIONS ON THE PHYSIOLOGY OF AEROBIC THERMOPHILIC
SPOROGENOUS BACILLI IN SUPPLEMENTED CASEIN
HYDROLYZATE MEDIA

By

Robert C. Cleverdon

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy

1950
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>historical introduction</td>
<td>1</td>
</tr>
<tr>
<td>II EXPERIMENTAL</td>
<td></td>
</tr>
<tr>
<td>A. Cultures</td>
<td>16</td>
</tr>
<tr>
<td>B. Materials and general methods</td>
<td></td>
</tr>
<tr>
<td>III RESULTS</td>
<td>16</td>
</tr>
<tr>
<td>A. Vitamin requirements</td>
<td>16</td>
</tr>
<tr>
<td>1. Essential vitamins for stenothermophiles</td>
<td>16</td>
</tr>
<tr>
<td>2. Essential vitamins for eurithermophiles</td>
<td>22</td>
</tr>
<tr>
<td>B. Vitamin replacements</td>
<td>24</td>
</tr>
<tr>
<td>1. Niacin replacement by niacinamide and diphosphopyridine nucleotide</td>
<td>29</td>
</tr>
<tr>
<td>2. Biotin replacement by desthiobiotin, oleic acid, pimelic acid and</td>
<td>33</td>
</tr>
<tr>
<td>3. Attempts to grow stenothermophiles in chemically defined media</td>
<td>37</td>
</tr>
<tr>
<td>4. Growth curves of organism 10, a stenothermophile</td>
<td>43</td>
</tr>
<tr>
<td>E. Morphological observations</td>
<td>50</td>
</tr>
<tr>
<td>F. Assay of a cell-free preparation from B.</td>
<td>54</td>
</tr>
<tr>
<td>1. steatothermophilus BRS 91 for amylolytic activity</td>
<td></td>
</tr>
<tr>
<td>IV DISCUSSION AND SUMMARY</td>
<td>59</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number, source and growth temperature range of cultures employed.</td>
<td>11</td>
</tr>
<tr>
<td>Effect of addition of glucose, phosphate, and trace salts on the growth of 10 stenothermophiles, at 55 C and 65 C, in casein hydrolysate and in a "natural" medium.</td>
<td>11</td>
</tr>
<tr>
<td>Vitamin requirements of 12 stenothermophiles in casein hydrolysate medium, 55 C and 65 C.</td>
<td>17</td>
</tr>
<tr>
<td>Growth response of Group 1 stenothermophiles to varying amounts of biotin, niacin, and thiamine, in casein hydrolysate medium, at 55 C and 65 C.</td>
<td>19</td>
</tr>
<tr>
<td>Growth response of Group 2 stenothermophiles to varying amounts of biotin, niacin and thiamine, in casein hydrolysate medium.</td>
<td>20</td>
</tr>
<tr>
<td>Growth response of Group 3 stenothermophiles to varying amounts of biotin, niacin and thiamine, in casein hydrolysate medium, at 55 C and 65 C.</td>
<td>21</td>
</tr>
<tr>
<td>Growth response of 7 eurithermophiles, to varying amounts of biotin, niacin and thiamine, in casein hydrolysate medium, at 55 C and 65 C.</td>
<td>23</td>
</tr>
<tr>
<td>Growth of B. coagulans BRS 27, at 35 C and 55 C, in casein hydrolysate medium, with combinations of niacin, thiamine and biotin.</td>
<td>25</td>
</tr>
<tr>
<td>Response of 10 stenothermophiles which require niacin, when supplied niacinamide and DPN, in casein hydrolysate medium, at 55 C and 65 C.</td>
<td>27</td>
</tr>
<tr>
<td>10. Response of Micrococcus pyogenes var. sulcatus to niacin and the DPN preparation, at 35 C, in casein hydrolysate medium containing biotin, 0.04 µg per ml, and thiamine, 1.0 µg per ml.</td>
<td>28</td>
</tr>
</tbody>
</table>
11. Response of eurithermophiles to niacinamide and DPN, as replacements for niacin, in casein hydrolyzate medium, at 45 C and 55 C. 30

12. Oleic acid, pimelic acid, Tween-80 and desthiobiotin as replacements for biotin, in casein hydrolyzate, at 55 C and 65 C. 32

13. Response of 12 stenothermophiles to varying amounts of desthiobiotin in casein hydrolyzate medium, at 55 C and 65 C. 34

14. Response of 7 eurithermophiles to desthiobiotin as a replacement for biotin, in casein hydrolyzate medium, at 45 C and 55 C. 35

15. Plate counts of organism 10, a stenothermophile, in optimal casein hydrolyzate medium and in tryptose yeast extract medium, at 20 C, 35 C, 45 C, 55 C and 65 C. 36

16. Generation times of organism 10 at 45 C, 55 C and 65 C, in casein hydrolyzate and in tryptose yeast extract media. 37

17. Amylolytic activity of 3 crude preparations from E. steaerothermophilus, at 37 C, 40 C, 55 C and 65 C, at pH 6.6 and pH 6.8. 38
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Growth curves of organism 10 at 20°C and 35°C in casein hydrolysate and in trypsinase yeast extract media.</td>
<td>39</td>
</tr>
<tr>
<td>Growth curves of organism 10 at 45°C in casein hydrolysate and in trypsinase yeast extract media.</td>
<td>39</td>
</tr>
<tr>
<td>Growth curves of organism 10 at 55°C in casein hydrolysate and in trypsinase yeast extract media.</td>
<td>40</td>
</tr>
<tr>
<td>Growth curves of organism 10 at 65°C in casein hydrolysate and in trypsinase yeast extract media.</td>
<td></td>
</tr>
<tr>
<td>B. cosgulans NRS 27, grown at 35°C, 24 hours, in casein hydrolysate medium. Cells stained by Giemsa. 1800X.</td>
<td>47</td>
</tr>
<tr>
<td>B. cosgulans NRS 27, grown at 55°C, 24 hours, in casein hydrolysate medium. Cells stained by Giemsa. 1800X.</td>
<td></td>
</tr>
<tr>
<td>B. stearothermophilus NRS 91, grown at 55°C, 24 hours, in casein hydrolysate medium. Cells stained by Giemsa. 1800X.</td>
<td>48</td>
</tr>
<tr>
<td>B. stearothermophilus NRS 91, grown at 65°C, 24 hours, in casein hydrolysate medium. Cells stained by Giemsa. 1800X.</td>
<td></td>
</tr>
<tr>
<td>Organism 10, grown at 55°C, 72 hours, in casein hydrolysate medium. Stained by malachite green-safranin method. 1800X.</td>
<td>49</td>
</tr>
</tbody>
</table>
HISTORICAL INTRODUCTION

The influence of environmental temperature on growth and multiplication of all forms of life cannot be overestimated, and a great bulk of work has disclosed much pertinent knowledge of the temperature requirements and tolerances of a wide variety of bacteria. The study of bacterial growth at temperatures higher than 40°C has received an enormous amount of attention of investigators. Excellent and exhaustive reviews, including the early and descriptive work, and the later more quantitative work, are available (Robertson, 1927, Casman, 1933, and Gaughan, 1947).

Definition of optimum growth temperature for bacteria is based upon rate of increase in number of cells, but it is customarily described from simple observations considered by some as arbitrary and inadequate (Dorn and Rahn, 1939, and Hansen, 1933). Determination of temperature requirements for growth of bacteria is usually made by incubation of suitably inoculated media at a variety of temperatures, and after lapse of time, examining the media for best apparent growth, or estimating the crop of cells, total or viable, or determining the concentration of a metabolic product. Dorn and Rahn (1939) have shown that the temperature optima for rate of fermentation and rate of growth are different for a thermophilic streptococcus. Hansen (1933) found that the rate of growth and maximum cell crop possessed different temperature optima, for a thermophilic member of genus Bacillus.
The present classification of the thermophilic members of genus

as low as described by Kenne

Hansen (1937) found that their organism grew at temperatures

at temperatures as low as 10°C. Impey and Gorson (1960) and

of the thermophilic by their slow but continuous and substanti

Hansen (1937) found the suitability

phillite, green fresh snow (collected, 1926) and deep ocean bottom and

which have never been in contact with soil but have been known to yield theero-

ty" and possible taxonomic stigmata. Proving extremely important

because of their ubiquity, relative ease of handling, importance in research—

Thermophilic members of genus Bacillus have been much studied

a method proposed arbitrarily by Dorn and Waage (1933) and Hansen (1937).

studies, their method of study was examination of soil samples for growth.

less of genus Bacillus were capable of growth over a wide range of temper-

60°C as well as 30°C. Cornman and Batch (1919) showed that many organ-

but not at 90°C and the "thermotolerant thermophilic", which grew well at

two groups: the "thermotolerant thermophilic", which grow well at 60°C,

Hansen and Gorson (1937) studied the thermophilic bacteria into

durate (Robertson, 1917).

but which do not presumably grow at such temperatures are called the "

Hansen and Davey, 1936), those which withstand elevated temperatures,

1927), those which grow at 55°C but not at 70°C are termed o-

Tanner, 1927), those which grow at 55°C and 70°C are commonly called facultative (powerful and

descriptive of these thermophiles: the thermophilic bacteria which grow

or tolerance, have competed the bacteriologist to adopt vocabulary

observations of differences in growth temperature requirement,
Bacillus is chaotic. It is based on cell measurements, condition of sporangia, and a few biochemical characters, which are acknowledged to be quite variable. Smith, in Bergey's Manual (Breed, et al., 1948), stated:

The data on the species of this group are so meager that it is not possible to offer a rational system of classification. Many of the characters used for separating the various species are probably as variable in this group as they have been found to be in the mesophilic group. Lacking a knowledge of the limits of variability and lacking other pertinent data, the present arrangement is regarded as temporary only.

In an attempt to elaborate a reasonable scheme of classification, Gordon and Smith (1949) examined about 200 strains of thermophilic sporogenous bacilli, and proposed the recognition of two general types, as regards temperature relationships: (1) those which grow at the usual temperatures (30°C to 40°C), but not at 65°C; and (2) those which fail to grow at the usual temperatures, but grow well at 65°C. They adopted the name Bacillus coagulans Hammer (Hammer, 1915, Hussong and Hammer, 1929, and Surles and Hammer, 1932) as representative of the former type, and Bacillus stearothermophilus Donk (Donk, 1920) as representative of the latter group. Some of the cultures they studied, which had been identified as Bacillus thermoacidurans Berry (Berry, 1933) were shown to grow at 37°C and 55°C, but failed to grow at 65°C, and were therefore called B. coagulans; others so labeled grew well at 65°C, and were therefore called B. stearothermophilus. Numerous other named strains studied were considered to be unnamed.

It has been shown that as thermophilic bacteria grow rapidly at elevated temperatures, they also die rapidly (Hansen, 1933, Imenecki and Soltzeva, 1945). Stained smears reveal enormous numbers of "ghost
calls*, and the visible count was found to vary from the total count by 50 to 100 per cent. As the cells grow rapidly, and autolyse, enzymic material accumulates rapidly in the medium. The production of amylase from thermophilic members of genus Bacillus is said to be commercially feasible (Imsenecki and Solnizeva, 1944). Plewe (1927) indeed, contended that the diastase and catalase of some thermophilic soil bacteria were active at temperatures where those enzymes of mesophilic bacteria were denatured. Gaughan (1949), using resting cells and manometric methods, showed by detailed quantitative analysis of the respiratory enzymes of thermophiles, that the energies of activation are of the same magnitude as for "mesophilic" enzymes.

Studies of growth processes, using resting cells, were criticized by Bahn and Schroeder (1941), because the cells are static and thus incapable of producing new enzymes for those which are either consumed or thermally inactivated. Investigations of growth processes of thermophiles might be facilitated by the use of a simple satisfactory medium.

The literature abounds with reports of simple media which are satisfactory for growth of common soil saprophytes of the genus Bacillus, as well as the supposedly more fastidious organisms. Glinka-Tschernorutsky (1933), for example, found that many strains of Bacillus mycoides grew well in a medium composed of MgSO₄, K₂HPO₄, NaCl, FeSO₄, CaCl₂, and glucose, when supplemented with any of several ammonium salts. Growth was improved, however, by the addition of 15 amino acids. Indeed, growth was better in this inorganic salt - amino acid medium than in peptone broth, as measured by total nitrogen (Kjeldahl). Werner (1933), Stührk (1935) and Heigener (1935) were able to grow many of their strains of
The objectives of the present work were: (1) to determine the

organisms that have been unattached.

phillogenic requirements. The field of essential nutrients for these

phyllofixation, the Fixation (1760) stated in the theories of these

were found. Cunningham (1760) stated in the theories of these

or reports of theo, of phyllofixation, for attaining these theophyllum of gene products.

in the proportion in physiological units, supplemented with nucleic acid,

proved over that in the theories of these, when supplemented by amino acids, aromatic acids, and glutamine. He did not mention that

the organisms required, vitamins, thiamine, nicotine, and pyridine, he did not mention that

matino acids, aromatic acids, and glutamine. He did not mention that

organic von

germ that produces unattached

production suffices in a medium similar to the inorganic salt medium of
EXPERIMENTAL

Cultures

Source and maintenance of cultures. A collection of "flat-sour organisms" was obtained from the National Canners Association, Washington, D. C., through the kindness of Dr. John Yeasir. These are unidentified numbered cultures isolated from a variety of spoiled foods. Two cultures were obtained from the American Type Culture Collection, Washington, D. C., through the kindness of Dr. R. E. Gordon. One culture was obtained from the U. S. Food and Drug Administration, through the kindness of Dr. Arthur P. Dunnigan. One strain was a University of Maryland stock culture. Six cultures were isolated from soil and mouse feces, by enrichment in nutrient broth (24 hours at 55 C) and subsequent streaking on dry nutrient agar plates, in such a manner as to obtain isolated colonies. Repeated streaking of single colonies was considered to assure purity. This collection of cultures was considered representative.

Taxonomic study of the cultures employed was limited to demonstration that all were facultative, sporogenous, gram-positive to gram-variable rods, and to determination of growth at 35 C, 55 C and 65 C. This last was done by the simple method of smearing a drop of 20 to 24 hour broth culture (55C) over the entire surface of a tube of slanted agar, and incubating at the three temperatures. Growth at 55 C and 65 C was always quite prompt, while at 35 C sometimes did not appear until 3 days. All cultures at 35 C were examined up to 3 weeks. Table 1 shows the sources,
Table 1

Number, source, and growth temperature range of cultures.

<table>
<thead>
<tr>
<th>Number</th>
<th>Source</th>
<th>Isolated from</th>
<th>Growth at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>35°C</td>
</tr>
<tr>
<td>10</td>
<td>Univ. Md.</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>26</td>
<td>NCA*</td>
<td>corn</td>
<td>+</td>
</tr>
<tr>
<td>1356</td>
<td>NCA</td>
<td>hominy</td>
<td>+</td>
</tr>
<tr>
<td>1492</td>
<td>NCA</td>
<td>pumpkin</td>
<td>+</td>
</tr>
<tr>
<td>1503</td>
<td>NCA</td>
<td>peas</td>
<td>+</td>
</tr>
<tr>
<td>1518</td>
<td>NCA</td>
<td>corn</td>
<td>+</td>
</tr>
<tr>
<td>1792</td>
<td>NCA</td>
<td>corn</td>
<td>+</td>
</tr>
<tr>
<td>1805</td>
<td>NCA</td>
<td>corn</td>
<td>+</td>
</tr>
<tr>
<td>2156</td>
<td>NCA</td>
<td>corn</td>
<td>+</td>
</tr>
<tr>
<td>4103</td>
<td>NCA</td>
<td>string beans</td>
<td>+</td>
</tr>
<tr>
<td>4298</td>
<td>NCA</td>
<td>corn</td>
<td>+</td>
</tr>
<tr>
<td>NRS 91</td>
<td>ATTC**</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>1215</td>
<td>NCA</td>
<td>hominy</td>
<td>+</td>
</tr>
<tr>
<td>1264</td>
<td>NCA</td>
<td>pumpkin</td>
<td>+</td>
</tr>
<tr>
<td>1460</td>
<td>NCA</td>
<td>peas</td>
<td>+</td>
</tr>
<tr>
<td>1508</td>
<td>NCA</td>
<td>corn</td>
<td>+</td>
</tr>
<tr>
<td>1734</td>
<td>NCA</td>
<td>beets</td>
<td>+</td>
</tr>
<tr>
<td>1863</td>
<td>NCA</td>
<td>milk</td>
<td>+</td>
</tr>
<tr>
<td>4160</td>
<td>NCA</td>
<td>milk</td>
<td>+</td>
</tr>
<tr>
<td>3401-1</td>
<td>FDA***</td>
<td>tomato juice</td>
<td>+</td>
</tr>
<tr>
<td>NRS 27</td>
<td>ATTC****</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>E-1</td>
<td>isolated</td>
<td>fertile soil</td>
<td>+</td>
</tr>
<tr>
<td>E-2</td>
<td>isolated</td>
<td>fertile soil</td>
<td>+</td>
</tr>
<tr>
<td>E-3</td>
<td>isolated</td>
<td>fertile soil</td>
<td>+</td>
</tr>
<tr>
<td>C-1</td>
<td>isolated</td>
<td>clay soil</td>
<td>+</td>
</tr>
<tr>
<td>C-2</td>
<td>isolated</td>
<td>clay soil</td>
<td>+</td>
</tr>
<tr>
<td>MF-1</td>
<td>isolated</td>
<td>mouse feces</td>
<td>+</td>
</tr>
</tbody>
</table>

*National Canners Association.
**American Type Culture Collection, identified as *B. stearothermophilus*.
***U. S. Food and Drug Administration, tentatively identified as *B. thermoacidurans*.
****American Type Culture Collection, identified as *B. coagulans*.

* Asterisk symbols correspond to the following:
2. **American Type Culture Collection, identified as *B. stearothermophilus*.
3. ***U. S. Food and Drug Administration, tentatively identified as *B. thermoacidurans*.
4. ****American Type Culture Collection, identified as *B. coagulans*.

and temperature requirements of cultures studied.

Maintenance of cultures. Stock cultures were kept in the refrigerator on agar slants of the following composition: tryptose, 1 per cent; yeast extract, 0.2 per cent; NaCl, 0.5 per cent; agar, 2.0 per cent; final pH 7.2. It was found necessary to transfer stock cultures frequently in order to obtain growth when subcultured in broth for preparation of test cell suspensions. In order to maintain some strains, it was found necessary also to alternate broth and agar subcultures. This alternation was accomplished by the use of the medium above without

A duplicate set of cultures was covered with sterile light mineral oil, and kept in the refrigerator. These oil-preserved cultures were viable after 18 months.

Materials and general methods

Detection of growth responses. In determining suitability of media, and testing constituents of the media, for growth of the organisms, advantage was taken of the rapidity of growth, and the rapid rate of fermentation. A Fisher electrophotometer, AC model, using the 425 B filter supplied with the instrument, was used to detect turbidity as a measure of growth. Orientation experiments showed that most of the organisms rapidly dissimilated glucose with the consequent accumulation of abundant acid in the medium. Accordingly, the final pH was estimated colorimetrically.

Incubation. For incubation at 35 C and 55 C, double-walled air incubators, without forced draft, were used. Thermometers, immersed in water, in several places in the incubators, showed that the differences were in the range of plus or minus 1 C, which was not considered critical.
For incubation at 20°C, a refrigerated incubator was employed, equipped with forced draft circulation and an adequate heater. For incubation at 45 and 65°C, a closed water bath, approximately 11 x 14 x 21 inches was used, heated with alooped le-lag immersion heater, 40 inches long, controlled by a bimetallic thermo regulator, using a mercury switch. The bimetallic portion of the regulator was completely immersed, 4 inches from any portion of the heating element. Temperature fluctuations, within the bath, and at different times, were at a minimum, ±0.25°C, probably because of the small size.

Glassware. Pyrex glassware (except a few serological pipettes), glass-distilled water, aluminum caps, and 16 x 125 mm test tubes were used throughout. Glassware was chemically cleaned, using Orvis and Na₃PO₄, followed by soaking in aqua regia. After thorough rinsing, the glassware was baked at 120°C to 180°C for a few hours, and then sterilized by autoclaving or baking.

Selection of medium for screening of vitamins. In order to select a medium, it was necessary at the outset to obtain an estimate of the amount of nutrient material required for growth of the organisms. They were studied at 55°C only for this purpose. Nutrient broth and trypticase soy broth (BBL) were prepared in dilutions of 1:1, 1:2, 1:3 and 1:4. It was found that the cultures tested grew fairly well in nutrient broth diluted 1:1 with distilled water, but only sparsely when diluted 1:4; whereas they grew promptly and well in trypticase soy broth diluted 1:4. This corresponds to about 0.5 per cent nitrogenous material, with reasonable concentration of accessory substances supplied by the soy bean extract. The organisms were found to grow readily in .5 per cent casein hydrolysate medium, when supplied 0.1 per cent yeast extract.
Because of original low cystine content, and losses of cystine and tryptophane upon acid hydrolysis of casein, it was necessary to fortify the medium for continued use with these amino acids. Following the usual practice, glucose was added. Although Gordon (1947) and Gordon and Smith (1949) expressed the opinion that glucose is specifically inhibitory to the "obligate" thermophiles, especially at 65°C, these organisms were found not to grow in the absence of glucose in the casein hydrolyzate medium. The acid sensitivity of the thermophiles is generally accepted, and proved in one instance by Hansen (1933); therefore, it was decided to buffer the medium strongly. The addition of 0.5 per cent K$_2$HPO$_4$ was found satisfactory. The addition of trace elements is also the common practice in the use of casein hydrolyzate media, and traces of the following compounds were incorporated in the early work, until the inadvertent omission revealed that better growth was obtained without them: H$_3$BO$_3$, KI, MgSO$_4$, FeSO$_4$, MnSO$_4$, CuSO$_4$, ZnSO$_4$. (For quantities used, see note with table 2.) No attempt was made to determine the need or optimal concentration of inorganic salts. Table 1 shows the effect of glucose, phosphate, and the trace elements on the growth of 10 stenothermophiles in the casein hydrolyzate medium above, supplemented with the required vitamins.

Sterilization of ingredients of basal medium. A 10 per cent solution of K$_2$HPO$_4$ was sterilized by autoclaving. Solutions of nitrogenous materials and 20 per cent glucose were sterilized by filtration through porcelain funnels (Selas O2); concentrated vitamin solutions and other chemicals added as substitutions for vitamins, were filtered through sintered glass funnels (Corning UF). All filters were cleaned with aqua regia.
Table 2

Effect of addition of glucose, phosphate, and trace salts* on growth of 10 stenothermophiles**, at 55 C and 65 C, in casein hydrolyzate and in "natural" medium.

<table>
<thead>
<tr>
<th></th>
<th>Growth response at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55 C</td>
</tr>
<tr>
<td>Natural medium</td>
<td></td>
</tr>
<tr>
<td>no glucose</td>
<td>30***</td>
</tr>
<tr>
<td>0.1 % K$_2$HPO$_4$</td>
<td></td>
</tr>
<tr>
<td>0.5 % glucose</td>
<td></td>
</tr>
<tr>
<td>0.1 % K$_2$HPO$_4$</td>
<td></td>
</tr>
<tr>
<td>0.5 % glucose</td>
<td></td>
</tr>
<tr>
<td>0.5 % K$_2$HPO$_4$</td>
<td></td>
</tr>
<tr>
<td>Casein hydrolyzate medium</td>
<td></td>
</tr>
<tr>
<td>no glucose</td>
<td></td>
</tr>
<tr>
<td>0.1 % K$_2$HPO$_4$</td>
<td></td>
</tr>
<tr>
<td>with trace elements*</td>
<td></td>
</tr>
<tr>
<td>0.5 % glucose</td>
<td></td>
</tr>
<tr>
<td>0.5 % K$_2$HPO$_4$</td>
<td></td>
</tr>
<tr>
<td>with trace elements</td>
<td></td>
</tr>
<tr>
<td>0.5 % glucose</td>
<td></td>
</tr>
<tr>
<td>0.5 % K$_2$HPO$_4$</td>
<td></td>
</tr>
<tr>
<td>without trace elements</td>
<td></td>
</tr>
</tbody>
</table>

*A salt mixture was made by dissolving the following compounds in 500 ml water, without the aid of heat: H$_3$BO$_3$, 25 mg; KI, 2.5 mg; MgSO$_4$·7H$_2$O, 10 g; FeSO$_4$·7H$_2$O, 0.5 g; MnSO$_4$·4H$_2$O, 0.5 g; CuSO$_4$·5H$_2$O, 2.5 mg; ZnSO$_4$, 2.5 mg. The mixture was filtered (porcelain) and refrigerated to prevent decomposition. One-half ml was added to each 100 ml of completed casein hydrolyzate medium.

**Cultures: 10, 26, 1356, 1492, 1503, 1518, 1792, 2156, 4298, and NRS 91.

***Figures represent average turbidities of 3 serial 24-hour transfers, of all 10 organisms. Turbidity measured with the Fisher electro-photometer, AC model, using the 425 B filter. Figures obtained by subtracting the light transmittance from 100.

Note: The natural medium was trypticase soy broth diluted 1:4; the casein hydrolyzate medium contained biotin, niacin and thiamine.
Preparation of basal medium. Small amounts of the casein hydrolysate medium were prepared by dissolving (with boiling) the following substances in 95 ml water: l-cystine, 1 mg; dl-tryptophane, 10 mg; NaCl, 100 mg; vitamin-free casein hydrolysate 1, 0.5 g. After filtration, the medium was dispensed into 100 ml pyrex bottles or suitable flasks, and 5 ml of a sterile 10 per cent solution of K$_2$HPO$_4$, and 2.5 ml of a sterile 20 per cent solution of glucose were added. After addition of vitamins, or other chemicals under test, the medium was pipetted into sterile test tubes. The final pH of the medium was 7.2 to 7.4. Large amounts of the medium were more conveniently prepared by making a tenfold concentration of the casein hydrolysate, NaCl, cystine and tryptophane, which after filtration was added aseptically in the proper amount to previously measured and autoclaved water.

Unless otherwise specified, the basal medium used throughout the work was prepared as described above, and had the following composition: casein hydrolysate, 0.5 per cent; NaCl, 0.1 per cent; cystine, 0.001 per cent; glucose, 0.5 per cent; K$_2$HPO$_4$, 0.5 per cent; tryptophane, 0.01 per cent.

Different batches of the medium, prepared from the same lot of casein hydrolysate, and prepared from different lots of casein hydrolysate, using different inocula, produced non-identical growth responses. Similar observation was made by Woolley and Hutchings (1940).

Preparation of inoculum. Cultures were grown 20 to 24 hours at 55 C in centrifuge tubes containing 5 ml of medium of the following composition: trypticase, 1 per cent; yeast extract, 0.12 per cent; NaCl, 1 Three lots from National Dairy Research Labs., Inc., Oakdale, Long Island, and lot 383461 of Difco Casamino Acids, were tried and found satisfactory.
0.5 per cent; glucose 0.5 per cent; K₂HPO₄, 0.5 per cent, final pH about 7.4 (Sterile glucose and phosphate solutions were added after autoclave sterilization of the rest of the medium.) The centrifuge tubes were covered with aluminum caps during incubation, and before harvesting the cells by centrifugation, the tubes were closed with sterile rubber diaphragm stoppers, of the type used in serum bottles. This obviated the occurrence of fragments of gauze or cotton in the medium, materially lessened the possibilities for contamination, and enormously speeded up the subsequent operations. The sedimented cells were washed twice with 10 ml of 0.9 per cent NaCl, and finally resuspended in 5 to 9 ml of saline for use. An attempt was made to standardize the cell suspensions only roughly, and no measurements were made on this account. Such cell suspensions contained relatively old cells, and practically no spores. One drop from the tip of 1 ml serological pipet contained from 350 to 10,000 viable cells, as determined by plate count at 55°C in medium of the same composition as that used to yield the crop, with the addition of 2 per cent agar. Orientation experiments showed that the speedier dropwise initial inoculation was in no way inferior to the more laborious loopwise method and that repeated subculture was unnecessary before harvest of cells for test. Toennies and Gallant (1948) reported the same findings in their quantitative studies on bacteriometry.

Conduct of tests. The tubes of completed media, containing different amounts of vitamins, or other tests substances, were preheated to the temperatures of incubation, and inoculated rapidly with a drop of cell suspension. Four serial 24-hour transfers were made with a 4 mm
loop. Growth response was observed by turbidity measurement, and by colorimetric estimation of the final pH attained. All tests were made by cultivating the organisms under test at two temperatures (e.g., 35 °C and 55 °C; 45 °C and 55 °C; 55 °C and 65 °C), because of the possible taxonomic significance of the ability to grow well at stated temperatures, and in the anticipation of finding differences in requirements at different temperatures.

Unless otherwise specified, the natural medium (used as a comparison with the casein hydrolyzate medium) had the following composition: tryptose, 1.0 per cent; yeast extract, 0.12 per cent; NaCl, 0.5 per cent; glucose, 0.5 per cent; K₂HPO₄, 0.5 per cent; final pH 7.4.

Screening of vitamins. The following vitamins, in the ranges of concentration indicated, were added to the basal medium, singly, and in many combinations: choline, calcium-D-pantothenate, riboflavin, pyridoxin, niacin and thiamine, 0.1 to 10.0 μg per ml; pteroylglutamic acid and biotin (free acid), 0.1 to 1.0 μg per ml; L-inositol and p-aminobenzoic acid, 1.0 to 10 μg per ml. Only biotin, niacin and thiamine were found to be essential and stimulatory.

Substitutions for vitamins. It was found that many of the thermophiles required biotin and niacin. Biotin can be replaced in the nutrition of some bacteria by desthiobiotin, oxybiotin, oleic acid, pimelic acid, aspartic acid, and tween-80. Niacin can be replaced for some bacteria by the amide, various derivatives of pyridine, and coenzymes I and II. In this work, oleic acid, pimelic acid, tween-80 and desthiobiogen were tested for biotin activity; nicotinamide and diphosphopyridine nucleotide were tested for niacin activity.

1 Folvite, obtained from Dr. Benjamin Carey, Lederle Labs., Inc., Pearl River, N.Y.
2 Lot Co 4902, Schwarz Labs., New York.
Morphological observations. Stained smears of all cultures, in all media, were frequently made to observe changes in morphology and spore yield engendered by changes in composition of the medium and in temperature of incubation. Smears were often stained by both the Gram method and with Giemsa solution, and occasionally by spore stains. Spores, when present, were easily seen without special staining methods.

Tests for high temperature amylase. All cultures were tested for the production of extracellular or soluble amylase, especially which might be active at elevated temperatures. A representative stenothermophile, *B. stearothermophilus* NRS 91, was grown at 65 °C in a natural medium, a potato decoction, and in the optimal casein hydrolysate medium and the cell-free medium tested for evidence of a high temperature amylase.

Growth curves of a stenothermophile. A representative steno-
thermophile, organism 10, was planted in the optimal casein hydrolysate medium and in trypsinase yeast extract glucose phosphate medium, and incubated at 20 °C, 35 °C, 45 °C, 55 °C and 65 °C. Growth curves, as determined by plate counts, were plotted, to observe if a stenothermophile grew well but slowly at low temperatures, as did a eurithermophile in the studies of Hansen (1933).
III

RESULTS

A. Vitamin requirements

1. Essential vitamins for stenothermophiles.

All of the stenothermophilic cultures studied required vitamins for good continued growth in the casein hydrolysate medium employed. Table 3 shows that the organisms may be arranged into 3 groups, depending upon their need for niacin, biotin, and thiamine. One group of 5 cultures required all three vitamins, another group of 5 required biotin and niacin, and a third group of 2 required only biotin.

In order to discover the optimal amounts of these three vitamins, the organisms were cultured serially, at the two temperatures, in the basal medium containing different concentrations of the vitamins. The responses of the organisms, according to groups, are presented in tables 4, 5 and 6. Because of the remarkable similarity found in response of individual cultures, a tabulation of averages for each group is included. Comparison of turbidities at 55 C and 65 C, indicates that at 65 C, the stenothermophiles require a higher concentration of vitamins than at 55 C.

Organisms 4103 was the only organism which exhibited a difference in vitamin requirement, depending upon temperature of cultivation. This organisms did not at all times require biotin at 55 C, although it did at 65 C. This property was not stable. Occasionally the organism grew better (higher turbidity measurement), but this was not correlated with
Table 3

Vitamin requirements of 12 stenothermophiles in casein hydrolyzate medium, 55 C and 65 C.

<table>
<thead>
<tr>
<th>Group</th>
<th>Culture numbers</th>
<th>biotin</th>
<th>niacin</th>
<th>biotin</th>
<th>niacin</th>
<th>thiamine</th>
<th>niacin</th>
<th>biotin</th>
<th>niacin</th>
<th>thiamine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>1356</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>1518</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>NRS 91</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>1492</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>1792</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2156</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>4298</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>1805</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>4103</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

* Concentrations: thiamine, niacin, 1 ug per ml; biotin 0.04 ug per ml.

Note: Organism 4103, of group 3, occasionally did not require biotin at 55 C, but uniformly did at 65 C. See text.
the demand for biotin, although this change in amount of growth was an equally variable property. The culture was repeatedly "purified" by streaking on very dry agar plates, which were picked as early as colonies appeared, usually in 12-18 hours; a new culture was taken from the original slant received; the phase of the culture did not apparently vary. Yet, consistency could not be obtained in biotin requirement. Especially cleaned glassware, filters, caps, and bottles were used, but these precautions likewise failed to produce duplicatable results.

Examination of the tables indicates that for best continued growth in the casein hydrolysate medium, the concentrations of vitamins were: biotin, 0.04 μg per ml; niacin and thiamine, each 1 μg per ml. It is seen also that groups 2 and 3 organisms, which do not require all three vitamins, are stimulated by their presence.

Responses of the organisms to increments of vitamins were not linear. When supplied suboptimum amounts, however, the organisms did not attain the usual low pH, although growth was substantial, as measured by turbidity. All organisms except 4103 and 1805, in the optimal medium described, produced a final pH of about 4.5, that is, they were methyl red positive.

None of the casein hydrolysate media employed supported more than about 60 per cent as much growth as a more concentrated natural medium, although about 100 per cent of the growth in a diluted natural medium (see table 2). The incorporation of 10 times the optimal concentrations of vitamins did not improve growth under the conditions described.

The addition of 0.05 per cent Biopar E to the casein hydrolysate medium produced practically identical turbidity as the natural medium.

\[A \text{ liver extract, supplied for use by Dr. L. L. Lachet, Armour and Co., Chicago}\]
Table 4.
Growth response of Group 1 stenothermophiles to varying amounts of biotin, niacin and thiamine, in casein hydrolysate medium, at 55°C and 65°C.

<table>
<thead>
<tr>
<th>Vitamin, concentration, μg per ml</th>
<th>Natural Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>biotin 0.0000004, 0.00004, 0.04</td>
<td>0.04, 0.04, 0.04</td>
</tr>
<tr>
<td>niacin 1.0, 1.0, 1.0</td>
<td>1.0, 1.0, 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>°C</th>
<th>Organisms</th>
<th>thiamine 1.0, 1.0, 1.0</th>
<th>4.0, 4.0, 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>10 turbidity 0.00</td>
<td>26</td>
<td>6.6, 5.0, 4.8, 4.6</td>
</tr>
<tr>
<td></td>
<td>final pH</td>
<td>7.4</td>
<td>7.2, 6.8, 6.4</td>
</tr>
<tr>
<td></td>
<td>turbidity</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>final pH</td>
<td>4.0</td>
<td>7.2, 6.8, 6.4</td>
</tr>
<tr>
<td></td>
<td>turbidity</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>final pH</td>
<td>7.4</td>
<td>7.0, 6.8, 6.4</td>
</tr>
<tr>
<td></td>
<td>turbidity</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>final pH</td>
<td>7.4</td>
<td>7.0, 6.8, 6.4</td>
</tr>
<tr>
<td></td>
<td>turbidity</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>final pH</td>
<td>7.4</td>
<td>7.0, 6.8, 6.4</td>
</tr>
</tbody>
</table>

65	10 turbidity 0.00	26	6.6, 5.0, 4.8, 4.6
	final pH	7.4	7.2, 6.8, 6.4
	turbidity	2	0
	final pH	4.0	7.2, 6.8, 6.4
	turbidity	2	0
	final pH	7.4	7.0, 6.8, 6.4
	turbidity	2	0
	final pH	7.4	7.0, 6.8, 6.4
	turbidity	2	0
	final pH	7.4	7.0, 6.8, 6.4

<table>
<thead>
<tr>
<th>AVERAGES</th>
<th>final pH</th>
<th>7.4</th>
<th>7.2, 6.8, 6.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>turbidity 0.00</td>
<td>26</td>
<td>6.6, 5.0, 4.8, 4.6</td>
</tr>
<tr>
<td>65</td>
<td>turbidity 0.00</td>
<td>26</td>
<td>6.6, 5.0, 4.8, 4.6</td>
</tr>
</tbody>
</table>

*Average of replicate turbidities of serial 24-hour transfers. Figures obtained by subtracting light transmittance from 100.

**Approximate final pH estimated colorimetrically.

Natural medium was trypticase yeast extract glucose phosphate broth.
Table 5
Growth response of Group 2 stenothermophiles to varying amounts of biotin, niacin and thiamine, in casein hydrolysate medium, at 55°C and 65°C.

<table>
<thead>
<tr>
<th>°C</th>
<th>Organisms</th>
<th>Vitamins, concentration, µg per ml</th>
<th>65°C Natural Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0.0000004</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>turbidity*</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>final pH</td>
<td>7.4</td>
<td>5.2</td>
</tr>
<tr>
<td>1492</td>
<td>turbidity</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>final pH</td>
<td>7.4</td>
<td>5.0</td>
</tr>
<tr>
<td>4298</td>
<td>turbidity</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>final pH</td>
<td>7.4</td>
<td>5.4</td>
</tr>
<tr>
<td>2156</td>
<td>turbidity</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>final pH</td>
<td>7.4</td>
<td>5.0</td>
</tr>
<tr>
<td>4298</td>
<td>turbidity</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>final pH</td>
<td>7.4</td>
<td>5.0</td>
</tr>
<tr>
<td>55</td>
<td>AVERAGES</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>AVERAGES</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Average of replicate turbidities of serial 24-hour transfers. Figures obtained by subtracting light transmittance from 100.

**Approximate final pH estimated colorimetrically.

Natural medium was trypsinase yeast extract glucose phosphate broth.
In order to determine if the pH is more than 0.3, the mean pH of the extract at each temperature was calculated.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Mean pH</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.67</td>
<td>0.12</td>
</tr>
<tr>
<td>30</td>
<td>0.75</td>
<td>0.15</td>
</tr>
<tr>
<td>35</td>
<td>0.82</td>
<td>0.18</td>
</tr>
</tbody>
</table>

The results show a significant increase in pH with increasing temperature.

Note:
- The pH values were calculated from the mean pH of the extract at each temperature.
- The standard deviation indicates the variability of the pH values.

In order to determine if the mean pH of the extract is greater than the control, a t-test was performed.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Mean pH</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.67</td>
<td>0.12</td>
</tr>
<tr>
<td>30</td>
<td>0.75</td>
<td>0.15</td>
</tr>
<tr>
<td>35</td>
<td>0.82</td>
<td>0.18</td>
</tr>
</tbody>
</table>

The t-test results showed a statistically significant difference in pH between the control and the treated samples at each temperature.

The table above shows the mean pH and standard deviation of the pH measurements at each temperature. The t-test results indicate a significant increase in pH with increasing temperature.
Essential vitamins for eurithermophiles.

Of the 15 cultures of eurithermophiles studied, 8 were found to grow on continued subculture, in the casein hydrolysate medium containing no vitamins, at 35 C, 45 C, and 55 C. No further study was made of these cultures. The other 7 cultures were all found to require biotin, niacin and thiamine for good continued growth at the three temperatures above. A few experiments indicated that growth was less prompt in the casein hydrolysate media than in the natural medium at all temperatures, and accordingly, the transfers and readings of turbidity were made at intervals of 48 hours. Some of the cultures appeared to grow slightly more abundantly, but apparently no more rapidly, in 1 per cent casein hydrolysate. This concentration was used occasionally. In other respects, all of the media used in studies of the eurithermophiles were the same as for the stenothermophiles.

Orientation studies showed that in the media employed, these organisms were as active as the stenothermophiles, in the dissimilation of glucose, and that in 48 hours, grew somewhat more abundantly. Therefore, examination of final pH was limited to testing with methyl red.

Table 7 shows the growth response of the 7 eurithermophiles, in casein hydrolysate medium, upon the addition of varying amounts of biotin, niacin and thiamine. Examination of this table shows that the organisms produced somewhat more turbidity, and were considerably more fastidious as to concentration of vitamins, than the stenothermophiles. This is especially marked when grown at 55 C. It is seen also, that the optimum concentrations of the vitamins concerned, are
Table 7

Growth response of 7 euithermophiles, to varying amounts of biotin, in a rein hydrolyze medium, 7 45°C and 55°C.

<table>
<thead>
<tr>
<th>Biotin</th>
<th>0</th>
<th>0.000001</th>
<th>0.0001</th>
<th>0.01</th>
<th>0.1</th>
<th>1.0</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiamine</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
<td>0.01</td>
<td>1.0</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Niacin</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
<td>0.01</td>
<td>1.0</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

°C Organisms

<table>
<thead>
<tr>
<th>Organisms</th>
<th>45°C</th>
<th>55°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBB 32</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>115</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>1264</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>1608</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>1734</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>2160</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>NRS 37</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>115</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>1264</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>1608</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>1734</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>2160</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>NRS 37</td>
<td>55</td>
<td>65</td>
</tr>
</tbody>
</table>

* T is the average of replicate turbidities of 5 serial 48-hour transfers.
** MR: methyl red test. * means pH of about 4.5 or below.
Natural medium was trypticase yeast extract glucose phosphate broth.
the same as for the stenothermophiles. Again, 10 times these concentrations did not improve growth, although 0.05 per cent Biopar E made the casein hydrolysate medium entirely comparable to the natural medium, as determined by production of the same turbidity.

* Bacillus coagulans* NRS 27 was tested by the same means, in media containing varying amounts of biotin, niacin and thiamine, at 35 and 55 C. The results indicate that this organism, which may be typical of the group had about the same requirements at 35 C as at 45 and 55 C. Table 8 presents the data of this experiment.

B. Vitamin replacements

- Niacin replacement by niacinamide and diphosphopyridine nucleotide.

Bacteria for which niacin is a growth factor can usually utilize niacinamide as well. Johnson (1945), however, found that *Leuconostoc mesenteroides* 9135 did not use the amide in conventional concentrations, but demanded the free acid. Conversely, Koser, et al. (1941) found that for some members of genus *Pasteurella*, niacin would not satisfy the requirement for the amide. The concept that niacin is converted to the amide, and is then synthesized into diphosphopyridine nucleotide (DPN) suggests that organisms which require niacin should probably grow well or better when supplied coenzyme I (DPN). Koser and Kasai (1943) found the contrary case with 2 strains of *Leuconostoc mesenteroides*. They found that very large amounts of the coenzyme supported slow and slight growth at 24 C and 30 C, but failed to support any growth at 37 C.

The 10 cultures of stenothermophiles which had been found to
Table 3

Growth of *B. coagulans* NR3 27, at 35 C and 55 C, in casein hydrolyzate medium* with combinations of niacin, thiamine and biotin.

<table>
<thead>
<tr>
<th>Vitamin concentration, µg/ml</th>
<th>Growth response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37 C</td>
</tr>
<tr>
<td>Niacin</td>
<td>Thiamine</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*Average of replicate serial 48-hour transfers. Figures represent turbidity as measured with Fisher Electrophotometer, 100 minus reading of light transmittance, using 425 B filter.

**Concentration of casein hydrolyzate, 1 per cent.
require niacin were tested in the casein hydrolyzate medium, at 55 C and 65 C, for their ability to use niacinamide and DPN as replacements for niacin. All cultures respond as readily to the amide as to the free acid. None of the organisms responded well to the presence of DPN in usual concentrations. Tenfold increase in concentration of DPN supported from 20 to 100 per cent as much growth as did niacin, at 55 C, for all cultures, but at 65 C, even this amount of DPN failed completely to satisfy the niacin demand for 3 cultures. For the other 7 cultures, elevated concentration of DPN supported from 80 to 100 per cent of growth as did niacin. Table 9 shows the response of the 10 cultures to varying amounts of niacinamide and DPN. Negative tubes were reinoculated, and a fresh tube of the same medium was inoculated from a tube showing good growth, in order to eliminate the possibility of technical errors.

Because of the low order of activity of the DPN preparation, it seemed advisable to test it for activity for another niacin-demanding organism. Micrococcus pyogenes var. aureus (carried as Staphylococcus aureus 209, in the University of Maryland stock culture collection) was chosen because this organism has been found to require niacin or DPN (Knight, 1937a, 1937b, and Laney, 1938), and was found to grow well on serial subculture in the optimal casein hydrolyzate medium employed. Table 10 shows the ability of the DPN preparation to satisfy the niacin demand of the micrococcus.

At the time of preparation and use of the DPN solution, no knowledge of its purity was available, but these preparations usually are a little more than 50 per cent pure, and it was with this in mind
Table 9

Response of 10 stenothermophiles which require niacin, when supplied niacinamide and DPN, in casein hydrolysate medium, at 55 °C and 65 °C.

<table>
<thead>
<tr>
<th>Organism</th>
<th>°C</th>
<th>Niacin</th>
<th>Niacinamide</th>
<th>Diphosphopyridine nucleotide**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 µg</td>
<td>1 µg</td>
<td>0.1 µg</td>
<td>20 µg</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>50*</td>
<td>51</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>42</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>1356</td>
<td>55</td>
<td>44</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>42</td>
<td>42</td>
<td>38</td>
</tr>
<tr>
<td>1503</td>
<td>55</td>
<td>50</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>43</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>1518</td>
<td>55</td>
<td>51</td>
<td>51</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>43</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>NR8 91</td>
<td>55</td>
<td>50</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>36</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>26</td>
<td>55</td>
<td>50</td>
<td>51</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>40</td>
<td>41</td>
<td>36</td>
</tr>
<tr>
<td>1492</td>
<td>55</td>
<td>48</td>
<td>47</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>33</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td>1792</td>
<td>55</td>
<td>30</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>2156</td>
<td>55</td>
<td>51</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>40</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>4298</td>
<td>55</td>
<td>46</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>37</td>
<td>36</td>
<td>35</td>
</tr>
</tbody>
</table>

*Average of turbidities of 3 serial 24-hour transfers.

**Prepared by dissolving the coenzyme in distilled water, and filtering through sintered glass (Corning UF). Amounts indicated are uncorrected for activity, which was found to be about 50 per cent.
Table 10

Response of Micrococcus xylophaga var. aureus to nisin
DPN preparation, at 35 C, in casein hydrolysate
medium containing biotin, 0.04 μg per ml,
and thiamine, 1.0 μg per ml.

Vitamin or coenzyme, contents per ml

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>DPN</th>
<th>Turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 μg</td>
<td>0 μg</td>
<td>70*</td>
</tr>
<tr>
<td>0</td>
<td>0 μg</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>20 μg</td>
<td>79</td>
</tr>
<tr>
<td>0</td>
<td>2 μg</td>
<td>65</td>
</tr>
<tr>
<td>0</td>
<td>0.2 μg</td>
<td>10</td>
</tr>
</tbody>
</table>

*Turbidity of third serial 24-hour transfer. Figures represent light transmittance subtracted from 100.
that the concentrations were prepared. The stated purity was later found to be 64 per cent. Examination of table 10 reveals that 2 μg per ml of DPN preparation (uncorrected for DPN content) gives about the same turbidity with the micrococcus as did 1 μg per ml of niacin. This indicates that the DPN preparation had approximately 50 per cent activity. Possible losses in filtration, errors in weighing and dilution may account for the disparity.

The eurithermophiles were found completely able to use niacinamide in place of niacin, as were the stenothermophiles. The eurithermophiles were found generally more able to use the DPN as supplied than the stenothermophiles. Table 11 indicates the responses of the niacin-demanding eurithermophiles to varying amounts of niacinamide and the DPN preparation. Tubes of medium prepared at the same time as the medium used for testing the stenothermophiles and the micrococcus were used. It is seen that 2 μg per ml of the DPN preparation (equivalent to approximately 1 μg DPN, as estimated in the test with the micrococcus) produced practically the same turbidity as did 1 μg per ml of niacin.

2. Biotin replacement by desthiobiotin, oleic acid, pimelic acid, and Tween-80.

The identification of biotin as a growth factor for bacteria has introduced the important problem of mechanism of its utilization. One approach to this has been to present to the organisms requiring biotin, certain homologs, derivatives, or compounds which were found by elimination or chance to have biotin activity in biotin-free media, or were found to stimulate synthesis of the vitamin by microorganisms. It was
Table 11

Response of eurithermophiles to niacinamide and DPN as replacements for niacin, in casein hydrolyzate medium, at 45 C and 55 C.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Temp</th>
<th>Niacin</th>
<th>Concentration of compound, µg per ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1215</td>
<td>45</td>
<td>58*</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>52</td>
<td>45</td>
</tr>
<tr>
<td>1264</td>
<td>45</td>
<td>58</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>1460</td>
<td>45</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>1508</td>
<td>45</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>1734</td>
<td>45</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>60</td>
<td>38</td>
</tr>
<tr>
<td>4160</td>
<td>45</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>NRS 27</td>
<td>45</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

* Figures for niacin and niacinamide represent the turbidity of the cultures on the third serial transfer; those for the DPN, represent turbidities on the second serial transfer.

**All cultures except this one were methyl-red positive.
found, for instance, that desthiobiotin could replace biotin in cultivation of yeasts, but failed for some members of genus *Lactobacillus* (Dittmer, *et al.*, 1944 and Lilly and Leonian, 1944). It has been shown that desthiobiotin is probably an intermediate in the synthesis of biotin by a strain of *Penicillium chrysogenum* (Tatum, 1945), although desthiobiotin acts as an antibiotic compound in the growth of *Lactobacillus casei* (Dittmer, *et al.*, 1944, and Tatum, 1945).

Among the other compounds that have been shown to be able to replace biotin in the growth of microorganisms, pimelic acid and oleic acid were available for use. duVigneaud, *et al.* (1942) showed that the pimelic acid requirement of a strain of *Corynebacterium diphtheriae* could be satisfied by biotin; Hutchings and Boggiano (1947) and William, *et al.* (1947) showed that oleic acid could replace biotin in the nutrition of certain lactic acid bacilli. Tween-80, presumably because of its oleic acid content, was reported to possess biotin activity (Williams, *et al.*, 1947).

As a preliminary test, three stenothermophiles were grown in the optimal casein hydrolyzate medium, changed by the substitution of varying amounts of oleic acid, pimelic acid, Tween-80, and desthiobiotin. Also, the medium containing biotin as well as the challenge substances was used in order to see if antibiotic activity was present, or if the compounds tested were toxic in the concentrations used.

Table 12 shows that at 55°C and 65°C, 1 µg per ml of oleic acid or pimelic acid and 2 µg per ml of Tween-80 exhibited neither antibiotic effect, or biotin activity; that desthiobiotin exerts no antibiotic effect, but is instead a suitable substitute for biotin, at a
Table 12

Oleic acid, pimelic acid, Tween-80 and desthiobiotin as replacements for biotin, in casein hydrolysate medium at 55°C and 65°C.

Organisms

<table>
<thead>
<tr>
<th>Contents of medium, µg/ml</th>
<th>Organism</th>
<th>1536</th>
<th>1503</th>
<th>NRS 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotin</td>
<td>other</td>
<td>55°C</td>
<td>65°C</td>
<td>55°C</td>
</tr>
<tr>
<td>0.04 none</td>
<td></td>
<td>45*</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td>0.04 oleic acid, 1.0</td>
<td></td>
<td>46</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td>0 oleic acid, 1.0</td>
<td></td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>0 oleic acid, 10.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.04 pimelic acid, 1.0</td>
<td></td>
<td>44</td>
<td>43</td>
<td>51</td>
</tr>
<tr>
<td>0 pimelic acid, 1.0</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0 pimelic acid, 10.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.04 Tween-80, 2.0</td>
<td></td>
<td>44</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>0 Tween-80, 2.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.04 desthiobiotin, 2.0</td>
<td></td>
<td>47</td>
<td>46</td>
<td>50</td>
</tr>
<tr>
<td>0 desthiobiotin, 2.0</td>
<td></td>
<td>48</td>
<td>46</td>
<td>51</td>
</tr>
</tbody>
</table>

*Figures represent the average of the turbidities of 4 serial transfers, and are obtained by subtracting the percent light transmittance from 100.
concentration of 2 µg per ml. Since the concentration of desthiobiotin used was so much higher than the usual concentration of biotin employed, all of the 12 stenothermophiles were tested in lower amounts, 1 to 0.04 µg per ml. The results of these tests appear in table 13. Reference to this table reveals that desthiobiotin at a concentration of 0.04 µg per ml, is suitable as a biotin replacement at 55 C and 65 C for 9 cultures; that it is suitable at 55 C but not at 65 C for 2 cultures; and that it is unsuitable at either temperature for 2 cultures.

Since the 3 stenothermophiles initially studied showed no response to the presence of oleic acid, pimelic acid, or Tween-80, these substances were not tried with the eurithermophiles. Table 14 shows the ability of desthiobiotin, at a concentration of 0.04 µg per ml, to replace biotin for all 7 eurithermophiles, at 45 C and 55 C, as evidenced by turbidity measurement and attainment of low pH. Maximum response was with 1.0 µg per ml desthiobiotin, although 0.04 µg per ml satisfied the requirements sufficiently to produce the usual turbidity and low pH.

Attempts to grow stenothermophiles in chemically defined media

A principal aim of this work was to devise a completely synthetic medium which would support good continued growth, which might facilitate studies of such features as spore formation and germination, proteolysis, amylolysis, and need for inorganic ions. No such medium was found.

Since the thermophiles here studied were doubtless soil organisms,
Table 13

Response of 12 stenothermophiles to varying amounts of desthiobiotin in casein hydrolyzate medium, at 55°C and 65°C.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Vitamins, concentration in μg per ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Control)</td>
</tr>
<tr>
<td></td>
<td>Biotin</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>55°C 65°C</td>
</tr>
<tr>
<td>Group 1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>50* 42</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>1356</td>
</tr>
<tr>
<td></td>
<td>14 42</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>1503</td>
</tr>
<tr>
<td></td>
<td>50 43</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>1518</td>
</tr>
<tr>
<td></td>
<td>51 43</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>NRS 91</td>
</tr>
<tr>
<td></td>
<td>50 36</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td>Group 2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>50 40</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>1492</td>
</tr>
<tr>
<td></td>
<td>48 33</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>1792</td>
</tr>
<tr>
<td></td>
<td>30 30</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>2156</td>
</tr>
<tr>
<td></td>
<td>51 40</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>4298</td>
</tr>
<tr>
<td></td>
<td>46 37</td>
</tr>
<tr>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td>Group 3</td>
<td>1805</td>
</tr>
<tr>
<td></td>
<td>33 32</td>
</tr>
<tr>
<td></td>
<td>4103</td>
</tr>
<tr>
<td></td>
<td>41 40</td>
</tr>
</tbody>
</table>

*Average turbidity of 3 serial 24-hour transfers.
**Results of "methyl red test". * means pH about 4.5 or below. - means pH above 4.5
***These organisms are never methyl-red-positive in the casein hydrolyzate media.
Table 14

Response of 7 eurithermophiles to desthiobiotin as a replacement for biotin, in casein hydrolysate medium, at 45 °C and 55 °C.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Temp</th>
<th>Biotin</th>
<th>Concentration of compound, μg per ml</th>
<th>Desthiobiotin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.01</td>
<td>1.0</td>
<td>0.04</td>
</tr>
<tr>
<td>1215</td>
<td>45</td>
<td>58#</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>52</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>1264</td>
<td>45</td>
<td>68</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>1460</td>
<td>45</td>
<td>55</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>50</td>
<td>63</td>
<td>44</td>
</tr>
<tr>
<td>1508</td>
<td>45</td>
<td>47</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>42</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>1734</td>
<td>45</td>
<td>70</td>
<td>67</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>4160</td>
<td>45</td>
<td>65</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>60</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>NRS 27</td>
<td>45</td>
<td>70</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>60</td>
<td>62</td>
<td>48</td>
</tr>
</tbody>
</table>

#Figures represent the turbidity of the third serial transfer.
All cultures methyl-red positive.
organisms, and members of genus *Bacillus*, it was anticipated that they would be readily cultivatable in some of the simple media used for other members of the genus. Duplication of these media, and inoculation with washed cells, showed that the usual inorganic salts with ammonium compounds and glucose, with biotin, niacin, and thiamine, failed entirely to support growth. In some instances, enormously heavy inoculation from a young agar slant culture resulted in some growth which did not continue, however, on second subculture.

The suitability of casein hydrolyzate suggested the use of the constituent amino acids, in the approximate proportions found in casein. Even when such a mixture was prepared, in two-fold and four-fold concentration, the media failed to support continued, or even very good, growth. The addition of 0.01 per cent yeast extract did not render the defined media satisfactory. This observation suggested that a marked deficiency existed. Supplementation of such complete amino acid mixtures as described by Brewer, et al (1946) with glutamine, nucleic acid, asparagine, urea, ammonium salts, purines and pyrimidines, did not improve the growth of the organisms. In addition to the use of the media above, attempts were made with a large variety of mixtures of amino acids, inorganic nitrogen compounds, and organic compounds. The amino acids in the mixtures were selected because of essentiality for the rat (Mitchell, 1946), or because of structural formula, or merely arbitrarily. All such mixtures failed to support growth even upon massive inoculation. The addition of 0.01 per cent casein hydrolyzate did not greatly improve the medium.
In contrast to the unproductiveness of many materials added to the amino acid media, the addition of 0.1 per cent Biopar E supported fair growth. But since this material is a liver derivative, and contains doubtless more indefinable substances than casein hydrolysate, this finding was not further pursued.

The amino acid mixtures employed contained no alpha-hydroxy-glutamic acid, which, according to Mitchell (1946) is the second most abundant amino acid residue in casein. Inclusion of this amino acid in amino acid or in inorganic salt mixtures with the required growth factors, might result in growth of the organisms.

Growth curves of organism 10, a stenothermophile.

Morrison and Tanner (1922, 1924) and Hansen (1933) suggested that generally thermophiles grow at temperatures far below the supposed minimum. These observations are at variance with those of Gaughan (1946) and Insenscki and Solnseva (1945), who noted that even upon prolonged incubation, proliferation was not detectable. Apparently the disparity in findings resolves itself into differences in strains or species.

The growth curves of a eurithermophile, organism 1460, were reported by Hansen (1933) to show that the highest total viable crop was obtained at 20 C, although the growth rate was enormously higher at 55 C. Since the present study included organisms which failed after 3 weeks at 35 C to show visible growth, a representative strain was chosen for study of growth curves. This also presented an opportunity to ascertain if the optimal casein hydrolysate medium
was as satisfactory for growth (as determined by rate of growth in the medium) as an excellent natural medium (the trypticase yeast extract glucose phosphate broth previously described.) The media were prepared in 100 ml pyrex bottles with the usual precautions of adding glucose and phosphate after appropriate sterilization of the rest of the media, and were incubated 2 days for sterility, at 30 C. The inoculum was 0.2 ml of a 20-hour culture at 55 C of organism 10 in casein hydrolysate medium. The bottles were stationary, and without aeration beyond that given when they were periodically shaken to obtain an aliquot for plate count. Plate counts were made in trypticase yeast extract glucose phosphate medium, solidified with 2.0 per cent agar. Plates were counted after 24 to 36 hours incubation. Counts were made periodically from cultures, in both media, incubated at 20 C, 35 C, 45 C, 55 C and 65 C. Table 15 shows the plate counts at different times, in each medium at each temperature. The logarithms of the numbers were plotted against time, as is shown in figures 1, 2, 3, and 4, so that points on a straight line, in the rapidly multiplying phase, may be used to calculate the generation times in the different media at the different temperatures.

The curves are not smooth, recalling the statement of Mudge (1930) that thermophilic bacteria multiply in a cyclic manner, the cycles composed of individuals of different heat resistance. It is seen from the graphs (figures 1 to 4) and table 15 that the organisms failed to multiply within 220 hours, at either 35 C or 20 C.
Figure 1. Growth curves of organism 10 at 20°C and 35°C, in casein hydrolysate and in trypticase yeast extract media.

Figure 2. Growth curves of organism 10 at 45°C, in casein hydrolysate and in trypticase yeast extract media.
Figure 3. Growth curves of organism 10 at 55 C, in casein hydrolyzate and in trypticase yeast extract media.

Figure 4. Growth curves of organism 10 at 65 C, in casein hydrolyzate and in trypticase yeast extract media.
Table 15

Plate counts of organism 10, a stenothermophile, in optimal casein hydrolysate medium and in trypticase yeast extract medium, at 20 C, 35 C and 45 C.

<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>Casein hydrolysate</th>
<th>Trypticase yeast extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>22,500</td>
<td>22,000</td>
</tr>
<tr>
<td>24</td>
<td>11,000</td>
<td>16,500</td>
</tr>
<tr>
<td>120</td>
<td>20,000</td>
<td>26,000</td>
</tr>
<tr>
<td>220</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>35 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>21,500</td>
<td>20,500</td>
</tr>
<tr>
<td>24</td>
<td>11,000</td>
<td>16,500</td>
</tr>
<tr>
<td>48</td>
<td>13,500</td>
<td>29,000</td>
</tr>
<tr>
<td>120</td>
<td>7,000</td>
<td>26,000</td>
</tr>
<tr>
<td>220</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>45 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1,500</td>
<td>6,000</td>
</tr>
<tr>
<td>1</td>
<td>3,300*</td>
<td>62,000</td>
</tr>
<tr>
<td>4</td>
<td>34,000</td>
<td>76,500</td>
</tr>
<tr>
<td>6</td>
<td>320,400*</td>
<td>61,000*</td>
</tr>
<tr>
<td>8</td>
<td>12,900</td>
<td>500,000</td>
</tr>
<tr>
<td>13</td>
<td>75,500</td>
<td>11,100,000*</td>
</tr>
<tr>
<td>25</td>
<td>122,600</td>
<td>43,000,000</td>
</tr>
<tr>
<td>30</td>
<td>3,750,000</td>
<td>92,500,000</td>
</tr>
<tr>
<td>33</td>
<td>410,000</td>
<td>93,100,000</td>
</tr>
<tr>
<td>36</td>
<td>26,250,000</td>
<td>41,000,000</td>
</tr>
<tr>
<td>52</td>
<td>25,500</td>
<td>685,000</td>
</tr>
<tr>
<td>56</td>
<td>15,000</td>
<td>3,000</td>
</tr>
<tr>
<td>75</td>
<td>125,000</td>
<td>11,500</td>
</tr>
<tr>
<td>103</td>
<td>210,000</td>
<td>1,240</td>
</tr>
<tr>
<td>132</td>
<td>70,000</td>
<td>1,100</td>
</tr>
</tbody>
</table>

Plate counts from which generation times were calculated.
Table 15, continued

Plate counts of organism 10, a stenothermophile, in optimal casein hydrolyzate medium and in tryp ticase yeast extract medium, at 55 C and 65 C.

<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>Casein hydrolyzate</th>
<th>Trypticase yeast extract medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>17,000</td>
<td>12,000</td>
</tr>
<tr>
<td>1</td>
<td>45,500</td>
<td>6,000*</td>
</tr>
<tr>
<td>3</td>
<td>70,000*</td>
<td>195,000*</td>
</tr>
<tr>
<td>5</td>
<td>270,000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,370,000*</td>
<td>1,100,000</td>
</tr>
<tr>
<td>10</td>
<td>19,000,000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>64,000,000</td>
<td>300,000,000</td>
</tr>
<tr>
<td>14</td>
<td>210,000,000</td>
<td>124,000,000</td>
</tr>
<tr>
<td>22</td>
<td>325,000</td>
<td>22,500</td>
</tr>
<tr>
<td>24</td>
<td>6,500,000</td>
<td>2,000</td>
</tr>
<tr>
<td>30</td>
<td>230,000</td>
<td>5,100</td>
</tr>
<tr>
<td>48</td>
<td>1,200</td>
<td>850</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>Casein hydrolyzate</th>
<th>Trypticase yeast extract medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>17,000</td>
<td>20,000</td>
</tr>
<tr>
<td>1</td>
<td>45,500</td>
<td>18,000*</td>
</tr>
<tr>
<td>3</td>
<td>19,500*</td>
<td>8,450,000</td>
</tr>
<tr>
<td>4</td>
<td>100,000</td>
<td>22,000,000*</td>
</tr>
<tr>
<td>5</td>
<td>805,000*</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,400</td>
<td>20,800,000</td>
</tr>
<tr>
<td>12</td>
<td>20,000</td>
<td>200,000,000</td>
</tr>
<tr>
<td>14</td>
<td>19,000</td>
<td>124,000,000</td>
</tr>
<tr>
<td>22</td>
<td>2,500,000</td>
<td>20,000</td>
</tr>
<tr>
<td>24</td>
<td>2,000,000</td>
<td>11,000</td>
</tr>
<tr>
<td>30</td>
<td>3,800</td>
<td>100</td>
</tr>
<tr>
<td>48</td>
<td>1,200</td>
<td>29</td>
</tr>
</tbody>
</table>

*Plate counts from which generation times were calculated.
Table 16 gives the generation times calculated from the formula

\[t \log 2 = \frac{s}{\log b - \log B} \]

in which \(t \) is the time interval, \(b \) is the plate count at end of interval, and \(B \) is plate count at start of interval.

Comparison of generation times and viable crop yields of the natural and the casein hydrolysate media reveals that the natural medium was productive of both more generations in a time interval, and more total generations (to produce a higher viable count), although in this feature, the casein hydrolyzate was not markedly deficient.

The shortest generation time for this organism, 17.5 minutes at 65°C, in the natural medium, was found to be somewhat longer than that which Hansen found for his eurithermophile (16 minutes at 55°C in natural medium), and very much longer than reported by Mudge (5 to 8 minutes at 62.5°C in milk).

Morphological Observations

While the present classification of the thermophiles is primarily based on the criterion of cell dimensions, particularly width (Breed, et al., 1948), it is generally agreed that these organisms exhibit unusually wide variations in this property. Gordon and Smith (1949) found morphology to be entirely unreliable as a taxonomic character.

Throughout the course of the present study, stained films were prepared in order to see if temperature of incubation affected the shape of the cells, and to see if changes in composition of media
Table 16

Generation times of organism 10, at 45 °C, 55 °C and 65 °C, in casein hydrolysate and in trypticase yeast extract media.

<table>
<thead>
<tr>
<th>Medium</th>
<th>Temperature °C</th>
<th>Interval (Hours)</th>
<th>log b</th>
<th>log B</th>
<th>Generation time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein hydrolysate</td>
<td>45</td>
<td>1 to 6</td>
<td>5.5051</td>
<td>3.9191</td>
<td>56.6</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>4 to 7</td>
<td>6.1367</td>
<td>4.8451</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>3 to 5</td>
<td>5.9031</td>
<td>4.2788</td>
<td>22.2</td>
</tr>
<tr>
<td>Trypticase yeast extract</td>
<td>45</td>
<td>6 to 13</td>
<td>7.0414</td>
<td>4.7853</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>1 to 4</td>
<td>5.2900</td>
<td>3.7782</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>1 to 4</td>
<td>7.3424</td>
<td>4.2553</td>
<td>17.5</td>
</tr>
</tbody>
</table>
brought about any alterations. The general results were that cells grown in the casein hydrolysate media were indistinguishable from those grown in the natural medium, and that at the lower temperatures, a tendency to uniformity was found. Spore formation was somewhat better at the lower temperatures, also. In the media containing suboptimum amounts of vitamins, which supported only a fraction of the growth, and fermentation of which the organisms are capable, the cells appeared in all respects the same as in the optimal casein hydrolysate and the natural media.

Slides were more frequently stained by one of the polychrome blood stains, Giemsa or Wright, because more cells were revealed. Possibly those which appeared very poorly stained by the method of Gram were slightly more stainable with the polychrome stain. Frequent appearance of both vacuoles and granules in both young and old cells, grown at all temperatures possible, makes the Gram stain a less satisfactory one for examining the smears of the thermo-philes.

Figure 5 is a photomicrograph of *Bacillus coagulans* NR3 27, grown 24 hours in optimal casein hydrolysate medium, at 35 C.

Figure 6 is a reproduction of the appearance of the same organism in the same medium, but cultivated 24 hours at 55 C. Both slides stained by polychrome blood stain. The relative uniformity in dimension of cell is evident in the former, and the great variation in size and shape is evident in the latter.
observations revealed that the ceareal hydropytate medium was superior to the quantitative estimation unreasonably, but the quantities of

The percentage of spores in the culture was so small as to

other cultures

Greater variations were often seen with this and

At 90 to 80°C. Greater variations were often seen with this and

At 50°C. This was probably

At 25°C, the culture medium, except for the very low

At 25°C, the culture medium was most irregular.

Less than 0.5% to 0.5% to 74% of growth was seen. Growth was most irregular.

C.7°C by 4.0 to 5.0°C, while the cells grown at 35°C normally were 0.5 to

Microscopy, using stained cells grown at 35°C under a

Bacteriological Microscope, when measured with an ocular

or the cell

Sometimes swollen, and the spores are present in almost any portion

Sometimes swollen, and the spores are present in almost any portion

Medium. Unusually numerous spores are seen. The spores

Culture 10°C, grown at 55°C for 72 hours in optimal ceareal hydropytate

Medium. Unusually numerous spores are seen. The spores

Medium. Unusually numerous spores are seen. The spores

Figure 9 is a photograph of a single stained at the

The早餐 appears. Both sides stained by polychrome blood stain.

The breakfast appears. Both sides stained by polychrome blood stain.

The breakfast appears. Both sides stained by polychrome blood stain.

Figure 7 shows the Relative uniformity in cell dimension of

Figure 7 shows the Relative uniformity in cell dimension of
Figure 5. *B. coagulans*, NRS 27, grown at 35 C, 24 hours, in casein hydrolysate medium. Cells stained by Giemsa. 1800 X.

Figure 6. *B. coagulans* NRS 27, grown at 55 C, 24 hours, in casein hydrolysate medium. Cells stained by Giemsa. 1800 X.
Figure 7. *B. steareothermophilus* NRS 91, grown at 55 C, 24 hours, in casein hydrolysate medium. Cells stained by Giemsa. 1800 X.

Figure 8. *B. steareothermophilus* NRS 91, grown at 65 C, 24 hours, in casein hydrolysate medium. Cells stained by Giemsa. 1800 X.
Figure 9. Organism 10, grown at 55°C, 72 hours, in casein hydrolysate medium. Stained by malachite green-safranin method. 1800 X.
and that at the higher temperatures, fewer spores were produced. In rare instances did the spore count rise above 5 per cent.

Assay of a cell-free preparation from B. stearo-thermophilus NRS 91 for amylolytic activity

Imsenecki, et al (1942) and Imsenecki and Solnjeva (1944) reported that the production of amylase from thermophilic bacteria is commercially practicable. The enzyme which Imsenecki, et al (1942) described possessed a temperature optimum of 70°C to 100°C. The production of such an enzyme would be of inestimable commercial value in the United States. No such enzyme is available, and frequently none is found upon repeated trials (Larson, 1947).

Since the thermophiles are mostly quite active in starch hydrolysis, one was chosen in an attempt to demonstrate amylolytic activity above the usual temperatures. As is pointed out by Tauber (1949) and Imsenecki, et al (1942), amylase is produced in the absence of starch, if abundant proteinaceous material is available, although the Russian workers stated that a more powerful enzyme is produced when the organisms are grown in the presence of starch.

Bacillus stearothermophilus NRS 91 was chosen because it grew so readily and was active in starch hydrolysis, and was an identified culture. It was subcultured 20 times at 65°C in a medium composed of 2 per cent tryptase, 0.5 per cent yeast extract, 0.5 per cent K$_2$HPO$_4$, and 0.01 per cent soluble starch (Baker's), before being inoculated into the three test media below. (1) Tryptase
soy broth containing 0.01 per cent starch; (2) 1 per cent casein hydrolysate medium containing only 0.1 per cent glucose, and 0.2 per cent starch; and (3) the potato decoction described by the Russian workers. This was prepared by autoclaving 100 g of very finely diced clean whole potatoes and 10 g of CaCO₃ in 1 liter of water for 2 hours. The liquid was decanted into a sterile container, and inoculated with a fresh culture when cooled to 65°C.

All media were dispensed into half-gallon mason jars, which withstood autoclaving well, covered with deep petri dishes. Control jars remained sterile. The casein hydrolysate medium on the second day received new vitamins, in order to replenish those which might have been either used up or inactivated. At the end of 18 hours, no starch was detectable (iodine) in any of the three media; at the end of 36 hours, growth was abundant in all media. At the end of 48 hours, cells were removed by decantation and centrifugation.

The supernatant fluids received a little toluene for preservation, and were immediately tested for amylase activity. Then, the supernatant fluids were sterilized by filtration through porcelain (Selas 02), and stored in sterile flasks in the refrigerator.

Amylolytic activity was again tested, at 37°C, 40°C, 55°C and 65°C. A control was made by using a dilution of saliva (1:100). The very crude test described by Hawk et al. (1947) was employed in order to obtain an indication of the magnitude of activity present. This crude method defines a "unit" of amylase as the amount required to bring 5 ml of 1 per cent soluble starch to the achromic point in
10 minutes, under conditions of test.

Table 15 presents findings in testing amylolytic activity of the toluene-preserved and the cell-free (filtered) preparations, at the 4 temperatures described, at pH 6.6 and pH 6.8. These data show that the demonstrable enzyme never exceeded 4 units per ml; that it was least abundant in the casein hydrolyzate medium; that a considerable amount was lost either by storage in the refrigerator or by filtration or both; that it was active only at the conventional temperatures.

Since the amylolytic property of the preparations was so slight, it seemed useless to attempt to purify or to concentrate it, or to use a more elaborate and accurate titrimetric method, such as that of Sandstedt, et al (1939). None of the other stenothermophilic cultures showed any more accumulation of enzyme than NRS 91, or promise for continued work.
Table 17

Amylolytic activity* of 3 crude preparations from *E. stearothermophilus*, at
37°C, 40°C, 55°C and 65°C at pH 6.6 and pH 6.8

<table>
<thead>
<tr>
<th>Medium</th>
<th>Treatment</th>
<th>pH</th>
<th>37°C</th>
<th>40°C</th>
<th>55°C</th>
<th>65°C</th>
<th>Crude Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>0.5</td>
<td>0.25</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Casein hydrol.</td>
<td>centrifuged</td>
<td>6.6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>only</td>
<td>6.6</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>filtered</td>
<td>6.6</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(sterile)</td>
<td>6.6</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trypticase soy broth</td>
<td>centrifuged</td>
<td>6.6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>only</td>
<td>6.6</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>filtered</td>
<td>6.6</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(sterile)</td>
<td>6.6</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Potato decoction</td>
<td>centrifuged</td>
<td>6.6</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>only</td>
<td>6.6</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>filtered</td>
<td>6.6</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(sterile)</td>
<td>6.6</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>saliva</td>
<td>diluted</td>
<td>6.6</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-100</td>
<td>6.8</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

*As detected by iodine test (achromic point), at end of 10 minutes, in NaCl and phosphate buffers.
IV

DISCUSSION AND SUMMARY

Vitamin requirements. It was anticipated that growth of the thermophiles at 65 C would take place readily only if they were supplied unusually large amounts of vitamins, and that they would exhibit different demands at different temperatures. It was found that these organisms required vitamins in amounts exceeding those of mesophilic bacteria, and somewhat less than many yeasts, but no temperature-correlated differences in vitamin requirements were found. The optimum amounts found were: biotin, 0.04 \mu g per ml; thiamine and niacin, 1.0 \mu g each per ml, in the supplemented casein hydrolysate medium employed. Suboptimum amounts of the required vitamins (as little as one-hundredth of the optimum) supported from 25 to 80 per cent of total growth, as detected by turbidity measurement, but did not permit the organisms to attain the low final pH attained in the optimal medium. This is especially noted at the higher temperatures of cultivation, in both the stenothermophiles and the eurithermophiles. Possible thermal destruction of the accessory factors is more important in relatively low concentrations.

Vitamin replacements. The finding that all of the thermophiles studied were able to use niacinamide as readily as the free acid is the usual finding with niacin-demanding bacteria. The
finding that for the stenothermophiles DPN even in massive amounts is apparently not satisfactory as a displacement for niacin is unusual, although not new. A fresh or more potent, or even differently prepared, DPN preparation might in the future prove to be entirely suitable for these organisms. The indicated inability of some organisms to use the coenzyme, requires, as suggested also by Koser and Kasai (1948), that consideration be given to the possibility that there are other routes by which niacin is useful in the metabolism of the cell. There exists the possibility that the DPN molecule, as supplied, is of such a size and in such an undissociated state that it is unable to enter the cell; there exists also the possibility that niacin is used for some process other than synthesis into coenzymes. Koser and Kasai, however, in their cultures of Leuconostoc, found evidence for DPN itself, or some product with DPN activity. In view of the fact that the eurithermophiles were able to utilize DPN as supplied (at 55 C), it is possible that at 65 C a considerable amount of thermal alteration occurs to the DPN itself, although coenzymes are generally regarded as being at least fairly thermostable.

The optimal concentration of biotin was found to be relatively high, 0.04 μg per ml, and for all of the eurithermophiles at 45 C and 55 C, the same amount of desthiobiotin was found entirely suitable as a displacement for biotin. Desthiobiotin, in the same concentration as was found optimal for biotin, was suitable for the replacement of biotin at 55 C and 65 C for 9 of the 12 stenothermophiles, suitable at 55 C but not at 65 C for
2 cultures, and unsuitable at either temperature for 2.

Chemically defined media. It was anticipated that these soil saprophytes would be readily cultivable in simple definable media. It is regrettable that none was found or devised that would support good continued growth, for in such a medium, the fate of niacin and biotin, progress of spore formation and germination, demand for inorganic ions, and kindred problems would have been studied with more success than with the casein hydrolyzate medium. Doubtless a suitable completely defined medium will be found.

Growth curves. Accepting the growth curves of organism 1460, reported by Hansen (1933) as typical of the eurithermophiles, and the growth curves here reported of organism 10 as typical of the stenothermophiles, it may be concluded that some thermophilic bacteria are incapable of multiplication at usual, or lower temperatures. No stenothermophiles were isolated from any of the soil or feces samples tested, and it may be that the stenothermophiles are relatively infrequently found. Ordinarily, no differentiation is made beyond observation of growth at 55 C, and the present classification gives no aid in identifying organisms isolated. The study of growth curves in the optimal casein hydrolyzate medium, as challenged by the natural medium used, afforded an opportunity to compare the productivity of the simpler medium. It was found that the natural medium was superior in that it supported more generations in a time interval, and more total generations (gave a higher viable count). The differences were not so great as to
indicate that the casein hydrolysate medium was markedly deficient. The shortest generation time found for the stenothermophile was 17.5 minutes at 65 °C, in the natural medium. This is somewhat longer than that found by Hansen (16 minutes at 55 °C in a natural medium), and a great deal longer than that found by Mudge (5 to 8 minutes at 62.5 °C in milk).

Morphological variations. The studies of the effect of temperature of cultivation and composition of medium on size and shape of the organisms indicate that the casein hydrolysate and the natural media used produce cells which are indistinguishable, that spore formation is about the same in both media, and that spore formation is depressed at the higher temperatures. It was also observed that at the higher temperatures of incubation (i.e., 55 °C for the eurithermophiles, and 65 °C for the stenothermophiles), the cells vary greatly in size and shape, whereas at the lower temperatures, the cells are relatively uniform. These findings support the opinion of Gordon and Smith (1949) that measurement is an unreliable criterion for identification of the thermophiles. They propose instead, differentiation on basis of temperatures of growth.

Amylase. Employing the medium advocated by the Russian workers for the production of an amylase which is active at elevated temperatures, as well as an excellent natural medium (trypsinase soy broth, WPL), and the casein hydrolysate medium, it was found that none of the organisms in any medium produced detectable
amount of enzyme, secreted into the medium or accumulated upon autolysis, which was active at a temperature above 40°C. Undoubtedly, the workers who were able to extract so potent and useful an enzyme used a kind of thermophile of which there was no representative in this study.
LITERATURE CITED

Berry, R. W. 1933 Some new heat resistant acid tolerant organisms causing spoilage in tomato juice. J. Bact., 25, 72-73.

Casman, E. F. 1933 The limitations of bacterial growth at higher temperatures. Thesis, Yale University, New Haven.

Fierer, W. A. 1927 Studies on some obligate thermophilic bacteria from soil. Soil Science, 23, 47-56.

Gordon, R. E. 1947 Personal communication.

Larson, N. L. 1947 Personal communication.

ACKNOWLEDGEMENT

The author wishes to express his gratitude to Dr. J. E. Faber, Jr., Head of the Department of Bacteriology, for making graduate study possible through the granting of a Graduate Teaching Assistancehip, and his deep appreciation to Dr. M. J. Pelczar, Jr., and Dr. R. M. Doetsch, for suggesting the problem, guiding the progress of the work, giving their time in counsel and encouragement, without which the work would never have been completed, and for their introducing him to the fascinating subject of bacterial nutrition.
V I T A

Name: Robert Gawse Cleverdon

Permanent address: 3601 Allison Street, Brentwood, Maryland

Degree to be conferred: Doctor of Philosophy, 1950

Date of birth: 15 July 1917

Place of birth: Stillwater, Oklahoma

Secondary education: El Reno High School, El Reno, Oklahoma Thomas High School, Thomas, Oklahoma

Collegiate Institutions attended:

<table>
<thead>
<tr>
<th>Institution</th>
<th>Date</th>
<th>Degree Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southwestern State Teachers College, Weatherford, Oklahoma</td>
<td>September 1933 - none</td>
<td>January 1934</td>
</tr>
<tr>
<td>Oklahoma Agricultural and Mechanical College, Stillwater</td>
<td>September 1934 - B.S. 1937</td>
<td>June 1937</td>
</tr>
<tr>
<td>Oklahoma Agricultural and Mechanical College, Stillwater</td>
<td>July 1937 - M.S. 1939</td>
<td>July 1939</td>
</tr>
<tr>
<td>University of Maryland, College Park, Maryland</td>
<td>September 1947 - Ph. D. 1950</td>
<td>June 1949</td>
</tr>
</tbody>
</table>

Publications:

Cleverdon, R. C., Pellezar, M. J., Jr., and Doetsch, F. N. 1949 Vitamin requirements of Bacillus coagulans NRSl 27. J. Bact., 58, 113-114.

V I T A

Positions held:

Instructor, (French) Department of Foreign Languages, Oklahoma Agricultural and Mechanical College, Stillwater, 1937 (Summer).

Graduate teaching assistant, Department of Bacteriology, Oklahoma Agricultural and Mechanical College, Stillwater. 1937-1939.

Instructor, Department of Bacteriology, Oklahoma Agricultural and Mechanical College, Stillwater. 1939 (Summer).

High School teacher, Idabel, Oklahoma, 1939-1940.

Bacteriologist, Oklahoma State Department of Health, Oklahoma City, Oklahoma. 1940-1941.

Seafood Inspector, U. S. Food and Drug Administration, New Orleans, Louisiana. 1941-1942.

Active duty, U. S. Naval Reserve (Hospital Corps). 1942-1945

Graduate Teaching Assistant, Department of Bacteriology, University of Maryland, College Park. 1947 to 1949.