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While green roof (GR) systems have gained popularity as storm water 

management tools, more emphasis has been applied to studying performance aspects, 

including stormwater retention. Of particular importance is the substrate layer in 

which the vegetation grows, which contributes the majority of stormwater retention 

capabilities. This research investigated many aspects of GR substrate performance, 

including component durability and component effects on hydraulic conductivity, 



  

matric potential, and plant growth. Several commercial substrate blends were tested 

for durability against successive freeze/thaw cycles with before and after-treatment 

granulometric distribution analyses. All substrate blends showed significant (p<0.05) 

particle degradation after 30 freeze-thaw cycles, compared to German (FLL) 

guidelines. The hydraulic conductivity and matric potential of three experimental GR 

substrates with increasing volumetric proportions (10%, 20%, 40%) of organic matter 

(OM), were determined using the HYPROP© method, which extends the traditional 

measurement range for soils. However, the high porosity of GR substrates resulted in 

tensiometer water column cavitation near -30kPa.  Further studies with the same 

experimental substrates and OM ratios included both growth chamber studies to 

rigorously quantify the effects on plant growth and evapotranspiration and outdoor 

platform experiments to determine effects of OM content on stormwater retention.  

Growth chamber studies with Sedum kamptschaticum showed that increasing 

substrate OM increased plant root and shoot biomass. Consecutive periods of water 

stress showed no differences in evapotranspiration between planted substrate OM 

treatments levels, but greater water loss was noted from the planted treatments 

compared to unplanted controls (p<0.05). Substrate volumetric water content (VWC) 

during the stress periods reached 5% VWC for all planted treatments and all dry-

down periods, highlighting differences in plant-available water between these and the 

laboratory results. While outdoor platform studies showed no effects of OM content 

on stormwater retention, increasing organic content increased plant canopy coverage 

(p<0.05). It is likely that differences in retention will be more defined over time as the 

system matures. Stormwater retention data represented the second growing season for 



  

the experimental platforms; given the effects of organic matter on plant growth, 

analysis of three- or even five-year retention will likely better predict the effects of 

organic matter on stormwater performance. 
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Chapter 1: Literature Review 

1.1 Urbanization and its effects on stormwater 

The land area for the contiguous United States is approximately 769 million 

hectares (Wuerthner, 2002). Of that, 26 million hectares are classified as urban developed 

land, and while this comprises only 3% of the total available land of the lower 48 states, 

more than 75% of the U.S. population resides within urban / suburban regions (Wuerthner, 

2002). This differs somewhat from a report by the USDA’s Economic Research Service, 

which reported in 2006 that only 24 million hectares were attributed to urban developed 

land (Lubowski et al., 2006). Wuerthner reports another 56 million hectares is categorized 

as developed and rural residential land, commonly referred to as urban sprawl. This 

fraction comprises rural and semi-rural subdivisions, as well as rural farm houses and 

structures (2002); however, the USDA reports that 38 million hectares of land were 

estimated to be rural residential areas with 228 million acres categorized as 

‘miscellaneous’ (Lubowski et al., 2006). The USDA also reported that since 1945 the 

major uses of land in the U.S. show a trend towards growth in special-use and urban areas 

with a decline in grazing lands. Between 1997 and 2002 total cropland area reached a new 

57-year low, continuing a downward trend since 1978 (Lubowski, et al., 2006). Despite 

variation in the specific numbers, the general trend of increased urbanization in the United 

States is clear. 

Urban development increases the total acreage of impervious surfaces, which are 

surfaces impenetrable to rainfall and prevent filtration and percolation of water. The 

District of Columbia Water and Sewer Authority defines an impervious surface as ‘a man-
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made surface that cannot be easily penetrated by water, such as rooftops, driveways, 

patios, tennis courts, parking lots, and other paved areas’ (DCWSA, 2011). Forested and 

grassland areas usually allow 70% to 90% of a rainfall event to infiltrate, while impervious 

surfaces result in storm water runoff (Ferguson, 1998) with the amounts varying from 80% 

in suburban housing areas to 10% in large lots with single homes. The amount of runoff in 

dense urban areas may approach 95% (Davis and McCuen, 2005). With increasing 

population, land use changes are often significant, resulting in major changes to runoff 

characteristics of a watershed (Anderson 1970).  

 Significant overall reduction of stream and wetland health, begins at only 10% 

impervious coverage (Arnold and Gibbons, 1996), as measured by criteria such as 

pollutant loads, habitat quality, and aquatic species abundance and diversity. Three 

numeric thresholds establish stream health based on percent impervious coverage within 

the watershed: 

        Table 1.1. Percent impervious coverage impacts stream health.  

   

Impervious Coverage Stream Health 

<10% Protected 

10 to 30% Impacted 

≥30% Degraded 

     Source: Davis and McCuen, 2005. 

 As stormwater runoff flows over impervious surfaces, pollutants are picked up 

from roadways, sidewalks, and roof tops. These materials eventually end up in streams and 

wetlands, resulting in damage to the natural ecosystems. Roadways alone play host to 
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countless pollutants, and more are built each year.  Over 200K hectares are being paved or 

repaved in the United States each year (Ferguson, 1996).  

Approximately 70% of the water pollution in the U.S. comes from ‘nonpoint’ 

sources: the excess pollutants that runoff carries from eroding soil, parking lots, roads, and 

intensely maintained lawns; however, storm water runoff  can become point source 

pollution as well. The EPA defines point source pollution as ‘any single identifiable source 

of pollution from which pollutants are discharged, such as a pipe, ditch, ship, or factory 

smokestack (Hill, 1997).  

 Combined sewer systems (CSO’s) are designed to collect rainwater runoff, 

domestic sewage, and industrial wastewater in one pipe. These systems usually transport 

all of their wastewater into a sewage treatment plant, where it is treated and then 

discharged into a nearby body of water, usually a lake or stream. But during periods of 

heavy rainfall, the water volume in a combined sewer system often exceeds the capacity of 

the system, resulting in the overflow and discharge of untreated wastewater directly into 

nearby streams, rivers, and other bodies of water (US EPA, 2011). Approximately 772 

cities in the United States have combined sewer systems resulting in CSO’s, which are 

classified as point source pollution (US EPA, 2011).  

 The District of Columbia (DC) surrounds the Anacostia and Potomac Rivers, which 

feed into the Chesapeake Bay. As shown below, approximately 42% of DC is serviced by a 

combined sewer system.  
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Fig. 1.1. Map of the CSS and MS4 Areas in Washington, D.C. 

 

Source: Casey Trees Green Built Out Model. 

 

CSO discharges are common in DC. Eighty-five percent of all rain events are less than 2.5 

cm and on average, rain events of 1.25 cm result in CSO’s in some parts of DC (Casey 

Trees, 2007). This is largely due to impervious surface coverage of 42% of the land area. 

Of that, 15% is attributed to roof tops, 13% to roads, 5% each to parking lots and 

sidewalks with the remaining 6% attributed to driveways and alleys (Casey Trees, 2007). 

The bay is unique in many respects. The bay itself is 313 kilometers long and 

ranges from 6 to 48 kilometers wide, with a total watershed area of 165,000 kilometers. 
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But the Chesapeake is relatively shallow, averaging only 6.4 meters (Horton, 2003). 

Across its watershed, the bay has less than one-tenth volume of water of most other coastal 

bays, limiting the ability to absorb and dilute whatever pollutants wash into it (Horton, 

2003). This ratio equates to over 2700 square kilometers of land for every cubic kilometer 

of water received by the bay (Costanza and Daly, 1987). Efforts to restore the bay have 

been hampered due to such large land areas which contribute runoff and pollutants to a 

relatively small volume of water. 

It is estimated that stormwater runoff contributes 10% of the N, 31% of the P and 

19% of the sediment pollution (CBF, 2012). Stormwater runoff is arguably the leading 

cause of degradation to the bay watershed’s small tributary streams. A survey conducted in 

Maryland in the mid-1990’s concluded that approximately 90% of the state’s 14,000 

stream kilometers were in fair to poor health (Horton, 2003). Other studies indicate that 

hardening, or developing impervious surfaces, in as little as 10-15% of a stream’s 

watershed significantly affects water quality (Horton, 2003), which supports data from 

Davis and McCuen (Table 1). 

While a number of industries can be held liable for the deterioration of the bay - 

including agriculture, energy, and tourism – it is generally agreed upon that restoring the 

bay will only result from a collaboration between these and other groups. With that in 

mind, managing stormwater loads into the Chesapeake Bay watershed will make a 

significant impact on the health of the bay.  

One way to manage stormwater is with green infrastructure, which the EPA defines 

as an approach to stormwater management that is cost-effective, sustainable, and 
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environmentally friendly (US EPA, 2011). Green infrastructure works to harvest, infiltrate, 

reuse, and evapotranspire stormwater to incorporate it back into the water cycle. Green 

infrastructure also offers economic and social benefits including increased land values, 

reduced energy consumption, and pedestrian and bicycle access (US EPA, 2011). Before 

the fruition of green infrastructure, most storm water management options centered around 

retention ponds and concrete swales to send untreated storm water hastily into nearby 

bodies of water. Because of the limitations of on-site detention, infiltration of urban runoff 

to control its volume is a primary goal of green infrastructure. Without infiltration, 

municipalities in wetter regions of the country will experience drops in local groundwater 

levels, declining stream base flows (Wang et al., 2003), with diminished or stopped flows 

from springs feeding wetlands and lakes (Leopold, 1968; Ferguson, 1994). Because 

scientists now realize that traditional methods of retention and detention contribute to the 

degradation of rivers, lakes, and bays, green infrastructure is utilized at ever-increasing 

rates by local municipalities across the U.S. For example, in 1993 the city of Portland, 

Oregon offered a $53 per household subsidy in selected neighborhoods for those willing to 

redirect roof runoff into their lawns and gardens. As of 2005, forty-seven thousand 

households are participating in Portland’s Downspout Disconnect Program, removing 

about 4.2 million cubic meters (4.2 billion liters) of stormwater per year from the Portland 

combined sewer system (PBES, 2006). Similarly, the city of Chicago created a Green Roof 

Grant Program and Green Roof Improvement Fund, which in 2007 received $500,000 

from the city council as a Green Roof Improvement Fund. The Department of Planning 

and Development was then authorized to award grants of up to $100,000 to green roof 
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projects within the Central Loop District (US EPA GI Case Studies, 2010) as a way of 

subsidizing green roof installations in the city. Green roofs are one example of green 

infrastructure that can be included into low impact designs to achieve environmental 

sustainability. 

1.2 Green Roofs and Their Advantages 

Green roofs are roofs that are vegetated. Green roofs are generally categorized as 

intensive or extensive, depending on the total depth of the system although the delineation 

between the two varies (Table 1.2).  

 

Table 1.2. Example soil thickness of intensive and extensive green roofs as defined 

by different authors.  

Intensive (cm) Extensive (cm) Reference 

15-20 5-15 Kosareo and Ries (2007) 

>50 N/A Kohler et al. (2002) 

15-35 3-14 Mentens et al. (2006) 

>10 <10 Wong et al. (2007) 

>30 N/A Bengtsson et al. (2005) 

>10 2-10 Graham and Kim (2005) 

      Source: Berndtsson, 2010 

 

In general, extensive green roofs are roofs bearing vegetation growing in a thin layer of 

substrate while intensive green roofs utilize a much deeper substrate layer, increasing the 

capacity of the system to incorporate a more diverse plant palate; typically intensive roofs 

require more intensive post-installation maintenance. For the purposes of this dissertation, 
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the following literature will refer exclusively to extensive green roofs.  Green roofs are 

typically constructed with at least four layers on top of the standard waterproofing 

membrane: a drainage layer, filter fabric to prevent substrate loss, substrate, and plant 

material layers. In some green roof systems may include a root barrier fabric to prevent 

root penetration of the waterproofing membrane or a water retention fabric between the 

substrate and filter fabric.  

1.2.1 Stormwater Mitigation 

Green roofs offer many advantages, one being stormwater retention. Stormwater 

runoff is a serious problem in many cities, and most especially in densely urban areas. 

Green roofs can make major contributions to alleviating this problem, by reducing peak 

flow from runoff events by retaining a portion of the rain fall to cycle it back to the 

atmosphere via plant-based evapotranspiration. Kolb (2004) reported 45 – 70% of all 

rainfall can be recycled using green roofs, depending on substrate selection. VanWoert et 

al. (2005b) reported that green roofs retained 96% of the rainfall from rain events < 2mm, 

82% of the rainfall from 2-6mm rain events, and 52% of the rainfall from >6mm rain 

events. Overall, 60% of the total rainfall was retained during the 430-day study. Teemusk 

and Mander (2007) reported 85% and 94% retention from two separate light rain events, 

respectively. Green roofs retain rainfall even at slopes as steep as 25%. Getter et al. (2007) 

showed that green roof platforms at 25% slope retained 75% rainfall with those set at 2% 

slope retaining 85%. Retention was higher with lighter rain events, consistent with results 

from VanWoert et al. (2005b) and Teemusk and Mander (2007). 
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 In addition to reducing stormwater runoff quantity, green roofs may improve the 

quality of stormwater runoff, although there is less consensus on this from peer-reviewed 

literature. Although green roofs retain rain water and reduce negative effects of urban 

runoff by decreasing runoff volume and increasing lag to peak flow, they could have the 

potential to contribute to nutrient loading due to the organic portion of the substrate as well 

as from nutrient applications, which are typically recommended on a yearly basis (FLL, 

2008). Studies attributing nutrient loading to green roofs have demonstrated different 

results.  Green roofs increased phosphorous (P) in green roof runoff according to Bliss et 

al. (2009); but in other studies Berndtsson et al. (2006 and 2009), and Hathaway et al. 

(2008) green roofs had the lowest mean mass value for phosphate loading when compared 

to an asphalt roof in Michigan (Carpenter and Kaluvokolanu, 2011). There were no 

differences in runoff P compared to rainfall P in another study (Monterusso et al., 2004). 

Kohler et al. (2002) reported green roofs retained 67% of P, and retention increased from 

26% in year one to 80% four years after installation.  

 Results for nitrogen (N) were also varied: Monterusso et al. (2004) reported 

increased nitrate-N for sedum green roofs and decreased substrate depths compared to 

native plantings and increased substrate depths. Similarly, Hathaway et al. (2008) reported 

increased concentrations and total N loading were higher for green roofs compared to 

rainfall. Carpenter and Kaluvakolanu (2011) reported no differences for nitrate-N from 

green roof effluent compared to rain fall and that a green roof was an N sink when 

compared to an asphalt roof. Bliss et al. (2009) found no difference in levels of N in green 

roof discharge compared to rainfall. Gregoire and Clausen (2011), Berndtsson et al (2009) 
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and Kohler et al. (2002) all reported green roofs stored nitrate- N, but Gregoire and 

Clausen (2011) found green roofs to be a source of ammonium-N. Kohler et al. (2002) 

reported increased N storage with increasing roof maturity. Looking past contradictions 

within the literature, other point sources of pollution (CSO’s, for instance) pose a greater 

threat to the health of the bay than potential green roof nutrient loading. 

 Regarding green roof runoff quality, a phenomenon to consider is the first flush 

effect – because particulates and organic compounds accumulate on and within green roof 

systems, the first flush of runoff after a rain event often contains more total nutrients, or a 

higher concentration of nutrients, depending on runoff volume. There was no first flush 

effect identified by Bliss et al. (2009); however, only first flush events were studied by 

Berndtsson et al. (2009). Similarly, runoff volumes affect nutrient concentration in the 

effluent. Moderate runoff events resulted in concentrations of total N and P greater than 

that of a bituminous roof while heavy rain events concentrations were lower but total 

loading was higher (Teemusk and Mander, 2007). Concentrations were also higher during 

snowmelt, which the authors attributed to decreased runoff volume. In short, the effects of 

green roofs on discharge water quality are not straightforward or well documented.  

 With regards to the overall goal of reduced stormwater runoff volume, a low 

density of green roofs will have little impact; however, a study (Casey Trees and 

LimnoTech. 2007) demonstrated the effects of greening large portions of roofs in 

Washington, D.C.  The Green Build Out Model compared intensive and moderate greening 

scenarios within the district with a goal of reducing (CSO) discharges into the Anacostia 

River. Combined sewer overflow discharges are the result of excess stormwater flooding 
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the sewer system during heavy rain events and cause untreated sewage to flood into the 

Anacostia and nearby feeder streams. The intensive greening scenario assumed green roof 

installation wherever it was physically possible; the moderate greening scenario considered 

green roofs where it was practical and reasonable to do so (Casey Trees, 2007). In the 

model, green roof area was assumed to be equal to the building footprint minus 25% of the 

rooftop area needed for HVAC, access, and maintenance. With 75% coverage and the 

assumption of no structural or historic preservation issues, the most green roof coverage 

possible in D.C. according to the model is approximately 18 million square meters. Based 

on the model, installing 5.5 million square meters of green roofs in DC would reduce 

combined sewer overflow discharges by 1.6 billion liters (19%) each year. Installing only 

3.3 million square meters of green roofs would result in a reduction of 359 million liters 

(4.2%) annually (Casey Trees, 2007). 

1.2.2 Green roofs and noise and air pollution 

 Green roofs offer further benefits, including a reduction in noise and air pollution. 

Van Renterghem and Botteldooren (2009) reported a numerical evaluation of reductions in 

noise pollution by green roofs. The authors reported less-sloped green roofs achieve the 

best reduction in noise pollution. In 2011, Van Renterghem and Botteldooren reported a 

reduction in noise pollution of over 10 decibels in a study of 5 roofs pre- and post-green 

roof installation. Because these measurements were taken under dry conditions, the authors 

assert even higher reductions in soundwave transference under wet conditions. 

 Currie and Bass (2005) estimated that 109 ha of green roofs in Toronto could 

remove a total of 7.87 metric tons of air pollutants annually using the Urban Forest Effects 
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(UFORE) Model. The same model was used by Deutsch et al. (2005) in a study of 

Washington, DC which showed that 58 metric tons of air pollutants could be removed if all 

the roofs in the city were greened. Johnson and Newton (1996) estimate 2000 m2 of uncut 

grass on a green roof could remove up to 4000 kg of particulate matter. Extrapolated out 

using 0.01 g particulate matter produced by automobiles for every mile driven, one square 

meter of green roof could offset the annual particulate matter emissions of one car (City of 

Los Angeles, 2006). In Singapore, Tan and Sia (2005) reported sulphur dioxide and nitrous 

acid were reduced 37% and 21%, respectively directly above a green roof.  

1.2.3 Increased Membrane Lifespan 

The benefits of green roofs are not limited to the natural environment. The installation of 

green roofs can increase the lifespan of the standard waterproofing membrane, which is 

installed on traditional and green roof systems. Approximately 50 German tar paper green 

roofs (TPG) built between 1880 and 1914 survived both World Wars and continue to 

thrive (Kohler, 2010). Although the construction materials and methods have evolved over 

time, the functionality is equivalent. Kohler reported that either primitive 19th century 

materials or complex modern materials provide long-lasting roof options. The TPG roofs 

demonstrated professionally-installed waterproofing membrane can last in excess of 100 

years when combined with a green roof system (Kohler, 2010). The waterproofing 

membrane of a traditional roof system breaks down rapidly due to UV radiation, and has a 

life span of approximately 20 years (Carter and Keeler, 2008). 
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1.3 Green Roof Substrates 

Substrate refers to the material in which plants are grown, and is synonymous with 

‘media’, ‘medium’, ‘vegetation support course’ and in some literature ‘soil’. Green roof 

substrates are often a mixture of organic and inorganic materials, often combined to 

achieve properties pertinent to plant survival as well as the designed roof function. The 

substrate is arguably the most important element in a green roof system because the 

majority of the water holding capacity of the system is dependent upon the substrate 

physical properties. Substrates must be consistent and reproducible while providing 

adequate air space, water holding capacity, and support for the plants (Handreck and 

Black, 2002) while maintaining a bulk density appropriate for the load bearing capacity of 

the roof structure. For this reason, many substrate formulations are composed primarily of 

lightweight heat-expanded mineral materials such as clay, shale, or slate.  This inorganic 

portion is comprised of particles of varying sizes and composition. These particle sizes and 

mineral compositions largely determine the nature and behavior of the substrate: the 

porosity, the relationship with fluids and solutes, as well as its compressibility, strength, 

and chemical properties such as cation exchange capacity.  

 Currently there is no universally accepted standardization for classifying particle 

sizes. For example, the classification set by the United States Department of Agriculture 

differs from the International Soil Science Society (ISSS) classification, as well as that of 

the American Society for Testing Materials (ASTM) and the Massachusetts Institute of 

Technology (MIT). Soil engineers typically follow different standards than soil scientists, 

and inconsistencies can be confusing (Hillel, 2004).  
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Measuring and classifying the complete distribution of particle sizes in a sample of 

a particular substrate yields the particle size distribution. Particle size distribution is 

arguably the most important substrate physical property because it determines the physical 

amount of water a substrate can hold through adhesive and cohesive forces (Handreck and 

Black, 2002). It also largely determined the porosity of the substrates.  The void space 

created by substrate particles resting against each other is referred to as pore space. The 

pores range in size based on the particle size distribution of the substrate. These pores hold 

oxygen and water necessary for plant growth and development. A substrate composed 

primarily of large particles will have large pores; water will flow rapidly through the 

substrate profile and the majority of the pore space will be occupied by air (Handreck and 

Black, 2002). Granular drainage layers are composed primarily of large particles to 

expedite the flow of water away out of the system. Conversely, a substrate composed 

primarily of small particles will have small pores; water will flow slowly through the 

profile. Some pore spaces will hold water (generally smaller or micro pores) while others 

will hold air (generally larger or macro pores). The proportion of air to water within the 

substrate profile is integral to plant survival and for this reason guidelines for particle size 

distribution are available for the green roof industry. Green roof substrates should be 

comprised of a mix of large and small particles to provide adequate air space and water 

holding capacity.  

 The Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau (FLL, 2008) 

is a German landscape industry manual containing guidelines for the planning, execution, 

and upkeep of green roofs. These German guidelines have been adopted nearly world-wide 
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and are used as the industry standard when developing new substrate formulations. The 

FLL has set standards for the recommended particle size distribution, percent air and 

water, and other substrate physical properties. Substrate particle size distribution for 

extensive green roof substrates should fall between two distribution curves, shown in Fig. 

1.2 (FLL, 2008). 

Although water holding capacity is largely determined by substrate particle size 

distribution, the FLL also set standards for the maximum water holding capacity. For 

extensive substrates with a separate drainage layer, the FLL recommends water holding 

capacity to be ≥ 35% by volume of the substrate. For single layer extensive green roofs, 

water holding capacity is recommended to be ≥ 20% by volume. The maximum water 

holding capacity should not exceed 65% by volume in any green roof substrate to avoid 

water logging (FLL, 2008). 

Fig. 1.2 Particle size distribution range for extensive and single-layer extensive green 

roof substrates. 
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1.3.1 Substrate Organic Matter 

 The FLL also sets standards for substrate composition, although these have 

changed over the years. In 2002, the FLL’s specifications for total organic content for 

extensive systems were based on density. For substrates with density ≤0.8 (units not given 

but assumed to be g/L), total organic matter should be ≤8% by mass. For substrates with 

bulk densities >0.8, total organic matter should be ≤6% by mass (FLL English Version, 

2002). For extensive green roofs, the recommendation is ≤65 g/L organic matter, although 

it is noted a greater proportion of organic matter may be required based on plant selection 

(FLL English Version, 2008). The change from percent organic matter to a mass: volume 

ratio leaves room for inquiry. While substrate recommendations may be given based on 

weight and density due to the load bearing requirements of roofs, horticultural substrate 

formulations are measured and specified based on volumetric ratios. This discord creates 

confusion within the green roof industry, which is evolving into required collaborations 

between engineering and horticultural professionals alike. Furthermore, FLL 

recommendations are based on green roof systems in Germany. Special attention should be 

paid to varying climates and weather patterns. The recommendations which create the best 

green roof systems in Germany may not create the best performing green roof systems 

elsewhere, for example in the Mid-Atlantic United States.  

 Substrate composition varies in research studies. A study by Teemusk and Mander 

(2007) utilized 66% lightweight aggregate, 30% humus, and 4% clay as an extensive 

substrate. Berndtsson et al. (2009) studied an extensive green roof composed of crushed 
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lava, natural calcareous soil, clay, and shredded peat with a total organic content of 5%. 

Substrate composition was not detailed in a report by VanWoert et al. (2005a); although a 

later study by Getter et al. (2007) utilizing the same experimental platforms reported 

organic contents at installation (the time of the VanWoert study) and at maturity (the time 

of the Getter study) as 2.33% and 4.25% respectively, based on a loss on ignition test. 

Gregoire and Clausen (2011) reported 75% expanded shale, 15% composted biosolids, and 

10% perlite (GreenGrid® Northeast Extensive Media). A study of a green roof at the 

University of Auckland reported three different substrate formulations, all based on 

volumetric ratios, in which the authors reported no differences in stormwater retention 

based on substrate composition or depth (Voyde et al., 2010). Emilsson (2008) compared 

two generic media composed primarily of crushed roof tiles against a third media, 

Roofsoil, and found vegetative cover up to 80% after one year. The report exemplified the 

potential for alternative green roof construction materials and methods for the Swedish 

green roof industry.  

 Although organic matter provides nutrients and additional water holding capacity 

in soil systems (Hillel, 2004), too much organic matter can result in hydrophobicity or 

water repellency which are caused when inorganic soil particles become coated with 

hydrophobic organic matter (Quyum, 2000). Although organic material is the direct cause 

of soil hydrophobicity, the amount of organic carbon and degree of hydrophobicity are not 

correlated (De Bano, et al. 1976). Because hydrophobic soils repel moisture, water 

generally runs off for an extended period of time, until the organic coating can be broken. 

The initial infiltration rates of hydrophobic soils are very slow or non-existent due to very 
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high initial liquid-solid contact angle (De Bano, 1981; Wallis et al., 1991). Because a green 

roof’s capacity to hold stormwater and delay runoff depends solely on the substrate, 

hydrophobicity is a soil property that should be avoided.  

Recognition of different climates, weather conditions, and material availability may 

have led to different countries and municipalities creating independent green roof 

guidelines. Despite these efforts, only some region-based – or country specific – 

recommendations are available (Voyde et al., 2010; Fassman et al., 2013) and multiple 

substrate formulations continue to be recommended. The Introductory Manual for Green 

Roofs published by the Canada Public Works departments suggests a growing medium of 

1/3 sand, 1/3 pumice, and 1/3 Humus Builder (a product comprised of composted wood 

and composted fertilizer), although wood sources are not specified, nor are whether the 

ratios are based on weight or volume. Particle size distribution is not addressed at all in the 

Canadian manual (Canada Public Works, 2002). The 2010 Sydney City Council Green 

Roof Resource Manual recommends humus, citing the FLL’s 6-8% organic matter 

guidelines in one paragraph, but then cites research that suggests 75-80% inorganic with 

15-20% organic matter (Sydney City Council, 2010). The Seattle specifications require 4% 

organic matter by mass for single-course systems, 6% for extensive systems, and 8% for 

intensive systems, utilizing the loss on ignition test (City of Seattle, 2010). Clearly there 

are no scientifically tested ratios of substrate components in extensive green roofs. 

Additionally, it is likely that one recommendation will not be the most efficient or effective 

substrate mixture in every climate.  For the Mid-Atlantic region no performance-based 
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work has been reported on the use, amounts, or types of organic matter for extensive green 

roof formulations. 

1.3.2 Inorganic Substrate Materials 

 The FLL recommendations are also not specific with regard to the primary 

substrate component, the inorganic portion. Lightweight aggregates are used often in North 

America; usually heat-expanded mineral materials which offer decreased bulk density, 

which is important in roof load considerations. One environmental disadvantage to heat-

expanded mineral materials is the extreme heat energy requirements which results in large 

carbon footprint. Generally, expanded clays must be heated to extreme temperatures. A 

report by Elliott (2007) investigated the carbon footprint of expanded mineral materials 

commonly used in green roof substrates. One cubic yard of expanded material expends 1.7 

million BTU’s (Elliott, 2007). This number includes the production process from the point 

of mining to the point of shipping the final product. One BTU is the energy that raises one 

pound of liquid water by one degree, or also the energy released by one match. One point 

seven million BTU’s can also be generated by 36.5 kg propane. Burning 1kg propane 

releases 3kg CO2. Therefore, burning 36.5 kg propane (which generates 1.7 million BTU’s, 

or the amount of heat energy utilized in creating 1 yd3 expanded aggregate) creates 110 kg 

CO2. In 2012 the Expanded Shale, Clay, and Slate Institute independently reported the 

embodied energy required to manufacture expanded mineral lightweight aggregates 

verifying Elliott’s estimations (ESCSI, 2012). The ESCSI report was based on a survey of 

13 plants across North America.   
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The carbon cost associated with an expanded slate substrate is equivalent to 0.44 kg 

C/kg substrate manufactured. Getter et al. (2009) reported a 6 cm deep substrate with a 

density of 1600 kg/cubic meter has 5.7 kg C/ m2. The entire green roof system has a carbon 

cost of 6.6 kg C/ m2, meaning 86% of the carbon cost of a green roof is attributed to the 

substrate. In 2013 Washington, DC had a reported 232,000 m2 green roof (2.5 million ft2) 

(Peck, 2013). Assuming a 6 cm substrate depth with Getter and Rowe’s density 

assumptions, the district’s green roofs have a carbon equivalency of consuming over 

560,000 liters of gasoline, or burning 635,000 kg of coal. It will take over 33,000 tree 

seedlings 10 years to sequester the carbon created from the manufacturing of the district’s 

green roof substrates (Carbon Equivalency Calculator, EPA.gov). For this reason, 

alternatives have been investigated as a replacement or supplement to heat-expanded 

materials in order to decrease the embodied energy of green roofs, including scoria and 

crushed brick.  

Scoria is a porous basaltic to andesitic lava rock. The porosity of scoria is due to 

the escape of volcanic gases during eruption (USGS, 2011). Scoria is heavier than pumice 

so it does not float, and it is very durable. In volcanic regions of the U.S., scoria is often 

quarried and used as a base material for roads (USGS, 2011).  While scoria has not been 

reported as a green roof substrate component, it is known to sustain long-term plant growth 

and increase species diversity in mine reclamation projects (Prodgers, 2009). A ten-year 

study of a southeast Montana coal mine compared plant performance in topsoil, scoria, and 

spoil applied over exposed sodic soil after mining operations were completed. The study 

found that topsoil had more plant cover than spoil and scoria treatments; however, a 
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drought in 2006 resulted in more plant cover in scoria than in topsoil (Prodgers, 2009). 

Scoria was the premier plant species diversity substrate; initially seeded with 12 species, 

23 species were present after 10 years. Some of the recruited native species were rarely 

ever seen in revegetation efforts (Prodgers, 2009). Treatment analysis found scoria to have 

particle sizes equivalent to a sandy loam. 

Crushed brick is the U.K. green roof industry standard substrate base (Molineux et 

al., 2009). The U.K. green roof industry is built on two different systems: Sedum spp. mats 

providing an instant green effect, and substrate-only system composed of waste materials 

(broken bricks or demolition waste) to mimic natural brownfield sites. These ‘brown’ roofs 

are usually constructed to increase biodiversity and create bird or invertebrate habitat 

(Molineux et al., 2009). The same study reported seedlings grown in crushed brick 

amended with bark compost (the control treatment) yielded suitable plant height and 

biomass, suggesting crushed brick could be utilized a substrate component for traditional 

green roof systems planted with seedlings in North America. Crushed brick in the U.K. is 

reported to be sourced back to one factory (Molineux et al, 2009); the demand for crushed 

brick is relatively high leading to a high cost for the end user. Because the material is 

sourced from a single factory, the carbon footprint associated with shipping are extremely 

high (Molineux et al., 2009). In the United States, however, waste brick may be available 

in certain regions and should be investigated as a potential green roof substrate component. 

 The carbon footprint associated with substrate materials is important, as is the 

substrate density, which is the parameter used to determine whether or not a roof structure 

can bear the weight of a green roof. Lightweight materials decrease the total density, which 
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is helpful in retrofitting buildings without the load capacity. If the ability of a roof structure 

to sustain a green roof is dependent on the weight of the green roof system, then a lighter-

weight substrate is more desirable. A substrate component that lowers the density of the 

substrate without changing the physical properties is crumb rubber. Crumb rubber (CR) is 

a granulized rubber product derived from waste tires. Granule size is typically one-quarter 

inch (six millimeters). Crumb rubber has been investigated to amend substrates in 

horticultural production (Newman et al., 1997), turf grass, and playground installations 

(Groenevelt and Grunthal, 1998). Solano (2010) investigated crumb rubber amendments 

for green roof substrates. Zinc (Zn) was found to leach from crumb rubber in quantities 

that could negatively affect plant growth; however, when paired with a high cation-

exchange-capacity substrate, crumb rubber could be utilized up to 30% by volume without 

Zn toxicity to plants. Further testing is necessary to determine the possibility of long-term 

Zn leaching even with high cation exchange capacity substrates. Crumb rubber may be a 

useful substrate component; however, its use should be further proven through long-term 

substrate performance analyses. 

1.4 Green Roof Plants 

 As previously discussed, not all plants are appropriate for green roof systems. The 

decreased substrate thickness immediately provides a challenge for plants in terms of water 

availability, not to mention growing plants under high environmental stress (high 

temperature, light and wind) conditions on roofs. Periods of drought or excessive rainfall 

also hinder plant health. Generally, the most successful green roof plants are low-growing, 

shallow-rooted perennial plants that are tolerant to various stressors, e.g. heat, cold, sun, 
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wind, drought, salt, insect, and disease (Snodgrass and Snodgrass, 2006). Adjusting 

substrate depth can have a positive impact on plant survival and growth. Durhman et al. 

(2007) reported increased substrate depth results in faster plant coverage. Similarly, 

VanWoert et al. (2005) reported increased Sedum spp. biomass accumulation in 6 cm 

substrate compared to 2 cm substrate depth (with and without moisture mat) when watered 

at least every 14 days.  

A current trend in the green roof industry is the incorporation of native species into 

green roof plant palates (Lundholm et al., 2009; MacIvor and Lundholm; 2011; 

Monterusso et al., 2005). Monterusso et al. (2005) reported only four of eighteen species 

native to the region were suitable for unirrigated extensive green roofs; conversely all nine 

Sedum species evaluated were determined to be suitable unirrigated extensive green roofs.  

DeLong (2014) reported the Maryland native plant Tradescantia ohioensis demonstrated a 

comparable ability to store stormwater and increase biomass when compared to traditional 

Sedum species in a study in the Mid-Atlantic region. 

 Given the harsh conditions to which green roofs are exposed, it is the interaction of 

substrate properties, plant species, and environmental conditions that determine the overall 

success of a green roof system. “Success” can be perceived multiple ways – the presence 

of green vegetation, a measurable decrease in storm water runoff from the rooftop, or a 

property manager that is pleased with the aesthetic value of the roof, to name a few. The 

factors that dictate the delineation of failure and success are likely driven by the design 

intent of the green roof; however, regardless of the measure applied to the system, the 
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relationship between plant, substrate, and environment will ultimately determine the 

success of the green roof. 

1.5 Statement of Research Objectives 

 The purpose of this research was three-fold. The first research objective was to 

explore the durability of standard heat-expanded substrate materials to freeze-thaw stress. 

The Mid-Atlantic region can experience numerous freeze-thaw cycles each winter and 

currently no work has been reported regarding substrate durability. The second research 

objective was to explore the effects of green roof substrate composition on water retention 

and matric potential, especially the effects of increased volumetric proportions of substrate 

organic matter on plant available water. Finally, the third objective was to quantify the 

effects of green roof substrate composition on plant growth, evapotranspiration, and 

stormwater retention. This objective was explored in a controlled-environment growth 

chamber study and in a platform-scale field study.  
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Chapter 2: Evaluating ready-to-plant commercial green roof substrates for 

durability to freeze/thaw cycles 

2.1 Introduction 

 Green roofs are gaining popularity as storm water management tools (Kohler et al., 

2002; Villarreal and Bengtsson, 2005; Berndtsson et al., 2006; Getter et al., 2007; Voyde 

et al., 2010) and are increasingly being incorporated into regulatory policies [Washington, 

D.C. (District Department of Environment, 2013); the state of Maryland (Maryland 

Department of Environment, 2009), and Auckland, New Zealand (Fassman-Beck and 

Simcock, 2013)]. Although green roofs can vary in aesthetic and design, systems designed 

for storm water retention are often thin (defined below), extensive green roofs. Green roofs 

are generally classified based on substrate depth, although the specific depths 

differentiating extensive and intensive systems are undefined: Kohler et al. (2002) 

designated intensive substrate depth as greater than 50 cm, while Mentens et al. (2006) site 

3-14 cm substrate depth as extensive and 15-35 cm substrate depth as intensive. Wong et 

al. (2007) are more conservative, reporting intensive substrate depth to be any depth 

greater than 10 cm. Nonetheless, it is agreed that extensive systems are typically lower-

maintenance designs - usually a layer of mineral-based substrate planted with drought- and 

heat-tolerant succulent species.  

 The standards for green roof system design and installation can vary by 

municipality and geographic location (Canada Public Works Guidelines, Oberlander et al., 

2002; Seattle, Washington, Seattle Stormwater Code, 2009; Sydney City Council Green 

Roof Resource Manual, 2010); however, these generally borrow heavily from the 
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Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau (FLL, 2008). The FLL 

contains the German landscape industry’s guidelines for the design, installation, and 

maintenance of green roof systems and addresses a range of system parameters from the 

drainage layer to vegetation type. While the FLL is comprehensive, it is by no means 

complete. 

 One guideline set by the FLL is substrate particle size distribution (PSD), which 

describes the percentage (by weight) of particles falling within various particle diameters. 

This is arguably the single most important substrate physical metric, as it determines the 

mixture of particle sizes, which in turn defines substrate porosity, and which also greatly 

affects substrate characteristics such as water retention, water holding capacity, and air-

filled porosity. Large particles tend to dictate high porosity (higher proportion of large 

sizes) while small particles dictate lower substrate porosity and higher water-holding 

capacity (Handreck and Black, 2007). It is the ratio of large to small pores which 

ultimately characterizes the water holding capacity (WHC) and air-filled porosity (AFP) of 

the substrate. Water is primarily held by small or micropores, termed ‘capillarity’ while 

free drainage and air-filled porosity is facilitated by large pores (Drzal et al., 1999). A 

green roof substrate should have an appropriate ratio of large to small particles to allow 

adequate water holding capacity to support plant growth and effective storm water 

retention while also permitting sufficient air movement for gas exchange in the root zone, 

as roots require a constant supply of oxygen (Raviv et al., 2002). 

 The FLL guidelines for PSD are indicative of the importance of maintaining this 

balance and are thorough; FLL  recommendations are very specific based on the green roof 
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design (i.e. single- or dual-course extensive and intensive designs each have different PSD 

recommendations). The FLL guidelines also include a recommendation for frost resistance 

(10.2.3, 2008 FLL): 

 “The frost resistance of the mineral structural materials must be ensured by the 

 manufacturer. The frost resistance requirements of aggregates …… are based on 

 materials and components subjected  to high levels of static and/or dynamic 

 stress…..” 

The inclusion of frost resistance suggests the intent to maintain substrate PSD and the 

physical properties that are dependent on PSD. Degradation of particles would affect the 

PSD, which would eventually change water holding capacity, air-filled porosity, and other 

hydraulic properties over time. Continual particle degradation could result in substrates 

which hold excessive amounts of water, resulting in decreased stormwater retention 

capacity (via increased dry down time) and inhibition of root function and plant growth. 

Although its inclusion within the FLL is significant, no methodology for determining frost 

resistance and no allowable limits for changes in PSD are suggested.  

 Expanded minerals (typically clay, shale, or slate) are the most common mineral 

component of ready-to-plant green roof substrate blends manufactured in North America. 

Commonly referred to as lightweight aggregates, these materials are produced by heating 

the minerals in a rotary kiln at temperatures that range between 1050 and 1200°C to induce 

an expansion within the mineral layers as gases are liberated (Harmon, 2000). Lightweight 

aggregates have internal porosity, so water can be absorbed within the particles after 

expansion. It is this internal water-holding capacity that provides the greatest potential for 
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particle degradation: intra-particle water expands as it freezes, creating outward stress on 

the interior walls of the particle. It is conceivable that lightweight aggregate particles could 

fracture due to freeze-thaw weathering, especially in climates experiencing significant 

temperature fluctuations throughout the winter months. Unfortunately, no literature is 

currently available addressing green roof substrate durability in North America. 

Furthermore, no methodologies are available for testing green roof substrate durability. 

Because manufacturers are responsible for guaranteeing frost resistance, the methods used 

are not reported and comparisons between various manufacturers are not reliable. This 

work addresses three basic hypotheses for green roof substrates commonly used in the 

Mid-Atlantic region of the United States. 

1. HO: Ready-to-plant commercial substrate blends meet FLL-based guidelines for 

particle diameter ranges when obtained direct from the manufacturer. 

 

HA: Ready-to-plant commercial substrates blends do not meet FLL-based 

guidelines for particle diameter ranges when obtained direct from the manufacturer. 

 

 

2. HO: Ready-to-plant commercial substrate blends maintain particle size distribution 

after being subjected to 30 freeze-thaw cycles. 

 

HA: Ready-to-plant commercial substrate blends do not maintain particle size 

distribution after being subjected to 30 freeze-thaw cycles. 

 

3. HO: Substrates of established green roofs (3-7 years post-installation) in the Mid-

Atlantic region, representing commonly used ready-to-plant blends, fall within 

FLL-based guidelines for particle diameter ranges. 

 

HA: Substrates of established green roofs (3-7 years post-installation) in the Mid-

Atlantic region, representing commonly used ready-to-plant blends, do not fall 

within FLL-based guidelines for particle diameter ranges. 
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2.2 Materials and Methods 

 Three commercial green roof substrates were obtained directly from the 

manufacturers. The PSD from ‘as received’ and ‘after 30 freeze-thaw cycles’ were then 

determined for each blend. Particle size distribution ranges for both treatments were 

compared to FLL-recommended guidelines; independent student t-tests were used to 

compare ‘as received’ to ‘after 30 freeze thaw cycles’ for each particle range in each blend, 

to determine whether or not any significant (p<0.05) degradation had occurred within any 

particle diameter range, as a result of freeze-thaw weathering.  

2.2.1 Commercial Substrate Blends 

 Three ready-to-plant commercial green roof substrate blends were acquired 

between September 2011 and April 2012. One blend was shipped as a 2 cubic foot sample 

for lab analysis direct from the manufacturer. A second blend was shipped as a 3 cubic 

yard bulk order direct from a local blender of the manufacturer’s choice. The bulk order 

arrived in two 1.5 cubic yard super sacks, and 11 L of each super sack were taken and 

mixed thoroughly to create a 22 L representative sample for lab analysis. The third blend 

was received as a 1.5 cubic yard bulk order direct from a local blender of the 

manufacturer’s choice. Twenty-two liters of the third blend were taken and mixed 

thoroughly for lab analysis. All three blends were stored in 22 L air tight containers in 

walk-in cold storage at 6°C for the duration of the study, to slow any microbial-based 

degradation of the substrate organic components.  

 Thirty 100 mL replicate samples were taken from each blend. Fifteen replicates of 

each blend were immediately oven-dried at 105°C in a Thelco Laboratory Oven (Precision 
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Instruments, Winchester, VA) for 48 hours prior to sieving. Replicates were sieved with 

ASTM sieves #8, 16, 30, 45, 60, 100, and 200 (E.H. Sargent & Co., Chicago, IL) for 20 

minutes per sample using a Meinzer 11 shaker (CSC Scientific Company, Inc., Fairfax, 

VA). The percent weight of particles retained by each sieve size was averaged across the 

15 replicates to obtain the average gravimetric percent of particles falling within each 

particle diameter range. The collective distribution of particles retained by each diameter 

range constituted the PSD for each blend.  

 The remaining replicates were placed in aluminum tins with 30 mL deionized 

water, and placed in a Thermo Scientific (Waltham, MA) laboratory freezer at -28° Celsius 

overnight. Samples were moved to room temperature the following morning for 8 hours, 

completing one freeze-thaw cycle. A total of 30 cycles were performed; after the tenth and 

twentieth cycles respectively, an additional10 mL deionized water was re-added to each 

sample to account for evaporative losses. It has been reported that Baltimore, Maryland 

experiences an average of 88 freeze-thaw cycles per year (NIST, 2012) although 

unpublished data shows substrate layers in experimental green roof plots at the University 

of Maryland experienced anywhere from 8 to 22 freeze-thaw cycles for the 2012-2013 

winter. We believe 30 cycles are representative of the minimum number of freeze-thaw 

cycles experienced by established roofs in the region (at least 3 years post-installation). I 

chose 30 freeze-thaw cycles because it represents the approximate number of freeze-thaw 

cycles that a Mid-Atlantic green roof system would experience during establishment (at 

least three years). Also, I assumed 30 freeze-thaw cycles would be enough to identify any 
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significant particle degradation without unnecessarily extended the time for the study (each 

cycle took one day).  

 At the end of the thirtieth cycle, replicates were oven-dried at 105°C for 48 hours 

prior to sieving as previously described. The resultant PSD for ‘as received’ and ‘after 

freeze-thaw’ was plotted for each blend against the FLL-recommended granulometric 

distribution for extensive green roof substrates. Gravimetric percentages of each particle 

diameter range for each treatment were compared using independent student t-tests 

(α=0.05) to determine significance (α=0.05) of losses or gains at each particle diameter 

range (SAS version 9.3, SAS Institute INC, Cary, NC).   

2.2.2 Established Green Roof Sampling 

 Substrates from five established (3-7 years post installation) extensive green roofs 

in the Mid-Atlantic region were sampled between April and June 2012 to determine 

existing substrate PSD for established green roofs. Four roofs represented the three 

commercial substrate blends investigated in Section 2.1; the fifth roof was planted with a 

blend that was created and mixed to specification by the roof contractor who was awarded 

the installation. One sample per thousand square feet of roof area was taken from each roof 

and homogenized to reduce variability associated with roof microclimates. Plant roots were 

hand-picked from the homogenized samples using tweezers. Five replicates were taken 

from each homogenized sample and oven-dried and sieved as described in section 2.1. The 

PSD for each established roof was plotted and compared to FLL-recommended 

granulometric distribution curves for extensive green roofs, as previously described.   
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2.3 Results and Discussion 

2.3.1 Commercial Substrate Blends 

 Every blend demonstrated significant particle loss (gravimetric percent) in at least 

one particle diameter range and a significant gain in the smallest particle diameter range 

(Table 2.1) indicative of particle degradation. In addition, none of the commercial blends 

analyzed in this study met FLL recommendations for particle diameter ranges when 

obtained direct from the manufacturer (Figures 2.1, 2.2, and 2.3). 
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Table 2.1. Gravimetric percentages of substrate particles falling within designated particle ranges of three ready-to-plant commercial 

green roof substrate blends as received from the manufacturer and after 30 freeze-thaw cycles. Asterisks indicate significance 

(*p<0.05, **p<0.01, ***p<0.001).   

 

  

ASTM Mesh size Blend 1 Blend 2 Blend 3 

Sieve 

No. (mm) As Received After Freeze-Thaw As Received After Freeze-Thaw As Received After Freeze-Thaw 

8 >2.4 47.68 ±2.61 43.84 ±1.04 *** 73.87 ±1.01 68.22 ±1.58 ** 38.82 ±1.52 36.93 ±2.17   

16 1.2-2.4 20.96 ±0.98 20.89 ±0.41 

 

9.44 ±0.54 10.18 ±0.80 *** 16.14 ±1.03 18.03 ±1.57 * 

30 0.6-1.2 12.09 ±0.70 13.84 ±0.25 *** 7.84 ±0.35 10.09 ±0.64 ** 15.96 ±0.39 17.45 ±1.98 ** 

45 0.4-0.6 7.09 ±0.37 6.64 ±0.16 *** 3.44 ±0.12 3.70 ±0.25 

 

8.71 ±1.20 5.75 ±0.41 ** 

60 0.3-0.4 3.20 ±0.21 2.75 ±0.18 *** 1.36 ±0.58 1.87 ±0.09 ** 4.55 ±0.69 3.22 ±0.19 ** 

100 0.2-0.3 4.14 ±0.27 4.00 ±0.29 

 

1.26 ±0.06 2.14 ±0.08 *** 4.77 ±0.81 6.29 ±0.21 ** 

200 0.1-0.2 3.08 ±0.21 4.86 ±0.38 *** 1.17 ±0.89 1.44 ±0.08 

 

5.97 ±1.33 7.72 ±0.45 *** 

pan <0.1 1.76 ±0.45 3.20 ±0.57 *** 1.62 ±0.88 2.36 ±0.10 *** 4.39 ±0.33 6.54 ±0.26 *** 
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Figure 2.1. Particle size distribution of a ready-to-plant commercial 

extensive green roof substrate (Blend A) manufactured in North 

America, plotted against FLL guidelines. Red lines indicate “as 

received” particle size distribution while blue lines indicate “after 30 

freeze-thaw cycle” particle size distribution. Means and SE (n=5) 

for each particle diameter range are presented. 

Figure 2.2. Particle size distribution of a ready-to-plant commercial 

extensive green roof substrate (Blend B) manufactured in North 

America, plotted against FLL guidelines. Red lines indicate “as 

received” particle size distribution while blue lines indicate “after 

30 freeze-thaw cycle” particle size distribution. Means and SE 

(n=5) for each particle diameter range are presented. 
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Figure 2.3. Particle size distribution of a ready-to-plant commercial extensive green roof 

substrate (Blend C) manufactured in North America, plotted against FLL guidelines. Red 

lines indicate “as received” particle size distribution while blue lines indicate “after 30 

freeze-thaw cycle” particle size distribution. Means and SE (n=5) for each particle 

diameter range are presented. 

 

 

Every blend analyzed for freeze-thaw weathering was composed primarily of heat-

expanded minerals (slate, shale, or clay). We hypothesize water entered the expanded 

mineral particles as expected, but upon freezing expanded beyond the limits of the 

particle’s inner porosity, resulting in fracturing and eventual particle degradation.  
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2.3.2 Established Green Roof Sampling  

 None of the roofs sampled met FLL guidelines for extensive green roof substrate 

granulometric distribution (FLL, 2008) (Table 2.2). When plotted against the FLL particle 

diameter curve limits, each substrate demonstrated a decline in the recommended particle 

size distribution (Figures 2.4, 2.5, 2.6, 2.7, and 2.8) representative of too many small 

particles, or not enough large particles.  The substrate particle size distribution of the Roof 

A sample fell completely outside of the recommended guidelines. While all of the roofs 

fell partially outside of the FLL PSD recommended range, we believe Roof D may have 

met those guidelines if we had added a larger sieve (i.e. ASTM Sieve #4) to the analysis to 

further separate large particles.  
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Table 2.2. Gravimetric percentages of substrate particles falling within designated particle ranges of substrates sampled 

from five green roofs ranging from 3 to 7 years post-installation in the Mid-Atlantic region. Means (n=5) are presented for 

each particle diameter range. 

 ASTM Mesh size           

Sieve 

No. (mm) Roof A Roof B Roof C Roof D Roof E 

8 >2.4 21.80 ±1.04 35.88 ±2.49 55.16 ±1.34 76.76 ±2.26 52.04 ±2.24 

16 1.2-2.4 29.95 ±0.87 15.98 ±1.43 17.56 ±1.19 10.51 ±1.43 11.51 ±0.99 

30 0.6-1.2 16.49 ±0.43 24.95 ±1.15 11.69 ±0.51 6.39 ±0.52 13.44 ±1.11 

45 0.4-0.6 9.09 ±0.28 11.96 ±0.84 4.55 ±0.28 2.28 ±0.11 9.00 ±0.38 

60 0.3-0.4 4.72 ±0.18 4.17 ±1.10 2.44 ±0.17 0.79 ±0.11 3.45 ±0.14 

100 0.2-0.3 5.68 ±0.13 4.88 ±0.12 3.22 ±0.25 1.45 ±0.17 4.30 ±0.94 

200 0.1-0.2 6.29 ±0.38 2.29 ±0.12 2.96 ±0.24 1.05 ±0.12 2.40 ±0.49 

pan <0.1 5.97 ±0.43 2.39 ±0.15 2.41 ±0.16 0.78 ±0.06 1.35 ±0.01 
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Figure 2.4. Particle size distribution from a three year old Mid-

Atlantic green plotted against FLL-recommended granulometric 

distribution for extensive green roofs. Means and SE (n=5) for 

each particle diameter range are presented. 

Figure 2.5. Particle size distribution from a four year old Mid-

Atlantic green plotted against FLL-recommended granulometric 

distribution for extensive green roofs. Means and SE (n=5) for each 

particle diameter range are presented. 
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Figure 2.6. Particle size distribution from a three year old Mid-

Atlantic green plotted against FLL-recommended granulometric 

distribution for extensive green roofs. Means and SE (n=5) for 

each particle diameter range are presented. 

Figure 2.7. Particle size distribution from a seven year old Mid-

Atlantic green plotted against FLL-recommended granulometric 

distribution for extensive green roofs. Means and SE (n=5) for 

each particle diameter range are presented. 
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Figure 2.8. Particle size distribution from a five year old Mid-Atlantic green plotted 

against FLL-recommended granulometric distribution for extensive green roofs. Means 

and SE (n=5) for each particle diameter range are presented. 

 

 

2.4 Discussion 

 The freeze-thaw analysis of three major commercial substrate blends that are widely used 

in the Mid-Atlantic region demonstrated significant (p<0.05) particle degradation after only 30 

freeze-thaw cycles. In addition, substrate samples taken from established extensive green roofs 

did not meet FLL granulometric guidelines 3-7 years post-installation. Because I was unable to 

obtain substrate samples at the time of installation from any of the established roofs I cannot be 

certain that these blends met FLL guidelines prior to installation. Nevertheless, a significant 

(p<0.05) particle degradation was observed in the laboratory analyses in these same commercial 

blends with just 30 freeze-thaw cycles. In addition to significant loss of particle structure, I 
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observed that manufactured commercial blends did not conform to FLL guidelines in the first 

place. These results offer three important reflections on current substrate standards within the 

green roof industry. 

 This study highlights the need for performance-based standards for green roof systems 

and their components. While current guidelines make recommendations for green roof system 

components, these apparently are not enforced prior to or at the time of installation. More 

importantly, while the FLL does have a recommendation for frost resistance (10.2.3, FLL 2008), 

there is no recommended allowable particle loss. Furthermore, the frost resistance 

recommendation places the responsibility of verification entirely on the manufacturer, with no 

suggestions for methodology. Various manufacturers are likely using different techniques to 

verify frost resistance, if at all. A standardized methodology would create cohesiveness within 

the substrate industry and allow for more reliable comparisons between commercial green roof 

substrate blends.  

None of the commercial blends met FLL guidelines for granulometric distribution upon 

receipt from the manufacturer, even prior to freeze-thaw weathering (Figures 2.1, 2.2, and 2.3). It 

is also evident these materials are not maintaining their physical characteristics in climates that 

experience numerous freeze-thaw cycles each year. With the advancement of green roof research 

and our increased understanding of the science behind these systems, standards and guidelines 

based on dynamic performance rather than static component characteristics at the time of 

installation would only further benefit the industries and academic communities associated with 

them.  Furthermore, since green roofs have been accepted as storm water management tools at a 

regulatory level, performance-based standards would better inform storm water retention policies 



 

 57 

 

and credits. These data call into question the relevancy of component-based rather than 

performance-based guidelines and standards.  

 These results also highlight the need for regionalization of standards. Green roofs in 

Auckland, New Zealand are not likely to experience freeze/thaw cycles because their 

temperatures rarely fall below freezing (NIWA – New Zealand, 2013). Similarly, green roofs in 

Toronto should be expected to freeze but they are likely to stay frozen as a result of daily 

maximums remaining below freezing (Canadian Climate Data, 2013), lessening the impacts of 

freeze-thaw weathering on substrate particles. The FLL has been adopted worldwide; even 

guidelines written at the municipal level have heavily borrowed their recommendations from the 

FLL. A more common-sense best practice could be to investigate green roof system performance 

regionally to account for the idiosyncrasies created by varying climatic conditions in regional 

standards. Furthermore, the FLL guidelines for PSD may not be optimal with respect to storm 

water retention potentials. Until the effects of PSD on substrate hydraulic characteristics, plant 

growth, and resultant evapotranspiration are quantified, we cannot know the ideal ranges for 

particle diameters within a substrate.  

 These results also demonstrate the need for regionalization of green roof system 

components. Given the seasonal differences of green roof stormwater retention performance 

(Schroll et al. 2011) and regional variations in climate, one can assume green roof stormwater 

retention would vary regionally; such variation would likely apply to the system components as 

well. Expanded mineral-based substrate blends may not be appropriate for regions experiencing 

repeated freeze-thaw cycling – designers of green roof systems should be mindful of climate and 

explore alternatives to these materials in regions experiencing freeze-thaw. Similarly, we believe 

our results create an opportunity for manufacturers to respond with alternatives to expanded-
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mineral components for these regions. A one-size-fits-all approach to system components and 

design may not provide optimal or even expected results.  

2.4 Conclusions 

 I have identified a need for further research regarding substrate durability to freeze-thaw 

weathering. Studies exploring the rates of particle degradation as well as which particle 

diameters and mineral compositions are most susceptible to fracturing are needed. Additionally, 

further work is needed to quantify the effects of PSD on substrate hydraulic conductivity and 

related storm water retention performance. This study only quantified total gains or losses of 

particle sizes after 30 freeze-thaw cycles, but a dynamic approach could provide a better 

understanding of the mechanisms and ramifications of substrate PSD and potential particle 

weathering on storm water retention potential.   
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Chapter 3: Using the HYPROP© procedure to determine the matric potential and 

hydraulic conductivity of extensive green roof substrates 

3.1 Introduction 

 Substrates, or the material in which the vegetation is grown, are one of the most 

important components of a green roof system, as they provide the physical and chemical 

properties necessary for plant growth. Since the purpose of the substrate is to provide adequate 

water, nutrient, and gas exchange for plant growth, substrate physical properties have a direct 

effect on plant growth, rates of evapotranspiration, and the resultant potential for storm water 

mitigation. As municipalities increasingly recognize green roofs as a primary stormwater 

management tool, improving the understanding of substrate water relations will lead to better 

quantification of system performance, and more accurate allotments of stormwater credits. 

3.1.1 Substrate Water Holding Capacity and Stormwater Regulations 

Current guidelines and regulations generally rely heavily on a combination of substrate 

depth and water holding capacity (WHC) as a means of determining potential storm water 

retention capacity in Maryland (Maryland Department of Environment ESD Manual, 2011); 

Washington, DC (District Department of Environment SWM Guide, 2013); Auckland, New 

Zealand (Fassman-Beck and Simcock, 2013). Typically, WHC is determined by calculating the 

amount of water held by a porous media after gravitational drainage, also termed field capacity 

(FC) in field-based agronomic systems, container capacity (CC) in container-based horticultural 

systems. It is considered part of the total porosity, with air-filled porosity being the other part of 

total porosity. The air-filled porosity is the pore space that drains freely – i.e., the total pore 

volume holding air following gravitational drainage (Handreck and Black, 2002). While field- or 

container-capacity do provide a starting point for determining potential retention, lab-obtained 
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values may differ from actual in-field values, because samples are often saturated prior to 

gravitational drainage in the lab compared to a rain event percolating through the substrate 

immediately. Here, I offer a more specific designation of FCsat to represent saturated field 

capacity – the WHC of a substrate after at least 24 hours’ saturation and FCunsat, representing 

unsaturated field capacity – the WHC of a substrate after water has been applied in volumes to 

result in gravitational drainage but without extended periods of saturation.  

3.1.2 Matric Potential, Hydraulic Conductivity, and Plant Available Water  

Water tends to move from a state of higher energy to a state of lower energy. To determine how 

water may move in porous materials, the energy status of the water in the substrate is compared 

to that of pure water at a standard pressure and temperature (STP), assumed to be unaffected by 

soil and at some reference elevation. The difference in energy between the water in this reference 

state and the substrate water is defined as soil water potential (Brady and Weil, 2000). Matric 

potential is one component of total soil water potential and is a measure of the attraction of water 

to solid surfaces, measured in some unit of pressure (typically bar, kPa, or MPa) and may be 

expressed as a positive or negative value. Matric potential is the proportion of total water 

potential that is most affected by substrate physical properties.   

 Matric potential becomes more negative or more positive, depending on the units used, as 

a substrate dries down. As the substrate dries, plant water needs may exceed substrate volumetric 

water content. The point at which matric potential is so great that plant roots can no longer 

extract water out of the soil matrix, and plants permanently wilt, is termed permanent wilting 

point (PWP) and is assumed to occur when soil water potential reaches -1500 kPa. Because FC is 

assumed to be equal to -10 kPa (mid-point of a column of 20 cm height), plant available water 

(PAW) for horticultural substrates is assumed to be the volume of water retained in soils between 
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0 kPa and -10 kPa (Handreck and Black, 2007) (Fig. 3.1). Using PAW to determine storm water 

mitigation potential of green roof systems could provide a better estimation of retention potential 

because it considers substrate properties as well as plant functionality; however in order to do 

this, PAW must be defined for green roof substrates.  

Fig. 3.1. Graph of volumetric water content versus matric potential with designations for plant-

based terms. From Handreck and Black (2002), Fig. 9.16, page 76. 

 

 

 

Historically, measuring the matric potential of a porous media was time or labor intensive or not 

sensitive enough at optimum water contents (Table 3.1), and most methods were developed 
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specifically for soils. Quantifying matric potential in horticultural or soilless substrates has 

proven even more difficult – many of these materials are more porous than soils or are composed 

primarily of organic matter (Arguedas-Rodriguez, 2009). Water is typically held less tightly and 

requires lower pressures to extract, resulting in narrower matric potential curves.  DeBoodt and 

Verdonck (1972) characterized the water characteristics of several soilless horticultural 

substrates and described plant-specific parameters relating volumetric water content to matric 

potential: easily available water (EAW), 0 to -5 kPa and water buffering capacity (WBC), -5 to   

-10 kPa. Handreck and Black (2002) expanded on these parameters by defining readily available 

water (RAW), which is the sum of EAW and WBC (0 to -10 kPa), synonymous with PAW. 

Hydraulic conductivity, typically represented by the symbol K, describes the ease with 

which water moves through a porous material. Pore spaces within a substrate are created by 

particles of varying sizes and shapes; this variability in pore geometry makes accurate 

quantification of water movement through porous materials difficult. Henry Darcy first described 

hydraulic conductivity, which is represented by Darcy’s Law, describing water movement in a 

saturated medium: 

                               q = - KΔH/L                                                           [Eq.3.1] 

where: 

q is the volume of water flowing through a unit cross sectional unit area per unit time 

H is the hydraulic head drop 

L is the length of the column 

 

Hydraulic conductivity is directly affected by soil or substrate structure and porosity, and 

primarily by the sizes of the pores (i.e., particle diameter). Quantifying hydraulic conductivity 

for these materials is integral to understanding the plant-water-substrate relationship that drives 

evapotranspirational stormwater mitigation (Palla et al., 2008).  
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Table 3.1.  Various methods of determining soil matric potential. After: Brady and Weil, 2000, page 141.  
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Green roof substrates are composed primarily of mineral materials; in this way they are 

more similar to soils. However, the particle size distribution is such that that, given their 

porosity, they are more similar to horticultural or soilless substrates (Arguedas-Rodriguez, 2009). 

Quantifying the matric potential of green roof substrates to define PAW could better inform 

estimates of retention capability, offer increased understanding of the plant-substrate-water 

relationship, and provide guidance regarding optimal substrate composition. 

3.1.3 Methods for Determining Matric Potential of Soils and Soilless Substrates 

Recent advances in technology offer a potential method for determining matric potential 

of soils beyond -400 kPa using tensiometers (Schindler et al., 2010; Schindler et al., 2010b). This 

limit is far beyond the traditional tensiometer limit of -70 to -90 kPa (Schindler et al., 2010b; 

Brady and Weil, 2000). The former limitations of tensiometers (Table 3.1) were the result of 

water column cavitation, which is particularly a problem in porous soilless substrates (Arguedas-

Rodriguez, 2009; Schindler et al., 2010b). Most often, tension table columns cavitated at 

pressures less than 40kPa for a range of soilless substrates, irrespective of column height 

(Arguedas-Rodriguez, 2009). 

The HYPROP© system was developed by UMS, INC (Munich, Germany) based on the 

evaporative method theory (Peters and Durner, 2008) and further described by Schindler et al. 

(2010, 2010b). The HYPROP© is intended for use with soils; the recommended methodologies 

(Decagon Devices, Inc, Pullman, WA; Schindler et al., 2010, 2010b) were adjusted to account 

for increased particle size and porosity of green roof substrates. 

This study therefore addressed the following hypotheses: 

1. HO: The matric potential of extensive green roof substrates will not be affected by 

increasing the proportion (10%, 20%, and 40%) of organic matter in a soilless substrate 

blend. 
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HA: Matric potential of extensive green roof substrates will increase (i.e., the curve will 

shift to the right, to increasing pressures) by increasing (10%, 20%, and 40%) the 

proportion of organic matter, since organic matter increases the water holding capacity of 

a soiless substrate. 

 

2. HO: The field capacity (i.e., maximum water holding capacity) of extensive green roof 

substrates will not be affected by increasing (10%, 20%, and 40%) the proportion of 

organic matter in a soilless substrate blend. 

 

HA: The field capacity (i.e., maximum water holding capacity) of extensive green roof 

substrates will increase by increasing (10%, 20%, and 40%) the proportion of organic 

matter, since organic matter increases the water holding capacity of a soiless substrate. 

 

3. HO: The hydraulic conductivity of extensive green roof substrates will not be affected by 

increasing the volumetric proportions (10%, 20%, and 40%) of organic matter in a 

soilless substrate blend. 

 

HA: The hydraulic conductivity of extensive green roof substrates will decrease by 

increasing the volumetric proportions (10%, 20%, and 40%) of organic matter since 

organic matter increases the water holding capacity of a substrate; thus, water will move 

less quickly through the substrate matrix. 

 

3.2 Materials and Methods 

The HYPROP© system and methodology was developed for use with soils, as opposed to 

engineered aggregate media, so the methodology proposed by Schindler et al. (2010, 2010b) and 

outlined by UMS, INC (Munich, Germany) and Decagon Devices (Pullman, WA) was modified 

to overcome challenges created by the coarseness and increased porosity of green roof substrates, 

as clearly demonstrated by Arguedas-Rodrigueas (2009). Because of the proportion of large 

particles (>2mm diameter) (Appendix A), substrate cores could not be taken using the proposed 

method of hammering the core directly into soil and using a knife or blade to scoop the 

‘undisturbed’ core out of the earth (HYPROP© manual, Decagon Devices). Instead, cores were 

hand-packed utilizing an adjusted methodology based on the North Carolina State Porometer 

Method (Fonteno and Harden, 2003). Each 250 mL sampling ring was placed onto the perforated  
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Fig. 3.2. Photograph illustrating an amended 

packing procedure for HYPROP© cores for use 

with coarse substrates.  

Fig. 3.3. Photograph illustrating an amended 

packing procedure for HYPROP© cores for use 

with coarse substrates. 

  

 

base and filter fabric (both supplied by UMS, Munich, Germany), and 100 mL media poured into 

the ring. (Figs. 3.2 and 3.3).  The entire assembly was then tapped five times firmly on the table 

using equal pressure for each tap. Another 100 mL media were poured into the ring and tapped 

five times as before. A final 100 mL media were poured into the ring, overfilling it. After five 

taps a metal straight edge was used to carefully remove any remaining media which extended 

above the top of the ring (Figs. 3.4 and 3.5). 
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Fig. 3.4. Photograph illustrating an amended packing procedure for 

HYPROP© cores for use with coarse substrates.  

Fig. 3.5. Photograph illustrating an amended packing procedure for 

HYPROP© cores for use with coarse substrates. 
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 In this way, replicate cores were packed at the same moisture content to the same bulk density 

within treatments. After packing, cores were placed in a water bath for 48 hours to achieve 

complete saturation (FCsat). After saturation, cores were allowed to drain for 10 minutes and then 

installed onto HYPROP© sensor bases (Fig. 3.6) per standard methodology (Schindler et al., 

2010; Schindler et al., 2010b).  

 

Fig. 3.6.Diagram of the HYPROP© system illustrating tensiometer placement within sample 

cores. From Schindler (2010). 

 

 

 After draining, two holes were drilled into the top of the sample using a bore tool 

included in the HYPROP© kit; one hole is drilled 3.75 cm into the sample (for the top 

tensiometer), the other is drilled 1.25 cm into the sample (for the bottom tensiometer). The hole 

depths are determined by the tool, to ensure contact between the ceramic cap of the tensiometers 

and the substrate; it is the continuous water column from the sample water through the ceramic 
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cap and tensiometer to the pressure transducer which allows for an accurate pressure reading. 

After holes were drilled, the HYPROP© sensor base was inverted and inserted into the substrate 

core, taking care not to disturb the sample, and placing the correct tensiometer into the correct 

hole. The entire assembly – sensor base, packed core, filter fabric, and perforated base – were 

then turned right side up and the perforated base and filter fabric were carefully removed so as 

not to disturb the packed sample. The sensor base has two clamps that secure the sampling ring – 

these were clamped and the sensor base was then plugged into the computer using via USB, 

included in the HYPROP© kit. Each HYPROP© unit was assigned a separate balance [Kern EG 

2200, KERN Incorporated, Balingen, Germany; Mettler Toldedo PB3001-S, Mettler-Toledo 

INC, Columbus, Ohio; Mettler Toledo XS4002S, Mettler-Toledo INC, Columbus, OH] and 

connected to the TensioView software program (UMS INC., Munich, Germany).  

 Matric potential is measured by the HYPROP© by measuring the suction force of the 

tensiometer column through the porous ceramic cap which is in contact with the substrate sample 

water. The TensioView program records tensiometer readings from the sensor base and a 

simultaneous weight measurement from the balance every ten minutes. Measurement continues 

as long as the water column from the pressure transducer to the substrate water remains intact. 

As macropores lose water, this continuous column of water is dependent upon water in 

micropores and water films at the edges of substrate particles.  

The standard methodology allows for a single dry-down period - the cores are allowed to 

dry via evaporation until the tensiometer water columns cavitate, at which time the units are 

disassembled and cores are oven-dried to quantify soil dry weight. However, since increased 

organic content in porous media can result in water repellency (DeBano, 1981), I modified the 

methodology in an attempt to quantify between-dry down differences in matric potential and 
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hydraulic conductivity due to differences in water adsorption during re-wetting. Cores were re-

saturated by applying deionized water evenly across the top of the cores in 10 mL increments 

using a pipette over one-half hour prior to water column cavitation. The software displays real-

time measurements, so cores were re-hydrated once the tensiometer readings showed inflection, 

prior to column cavitation (Fig. 3.7) 

Fig. 3.7. Screen capture taken from the TensioView software program used in conjunction with 

the HYPROP© to show the tension measurements during three consecutive dry-down runs from a 

single sensor base. Tension increases as the sample dries. The light blue line represents the top 

tensiometer readings, the dark blue line represents the bottom tensiometer readings, and the 

dashed vertical line shows column cavitation.  

 

 

 Each replicate core was re-saturated twice using this procedure, for a total of three dry-down 

periods per core per treatment, for a total of nine replicate soil moisture curves per treatment. A 

60:40 crushed recycled brick:scoria mineral component was blended with mushroom compost 
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(Frey Brothers, Lancaster, Pennsylvania) at 10%, 20%, or 40% volumetric proportions 

(designated as 10%OM, 20%OM, or 40%OM), which constituted the three treatments in this 

study. Retention data were analyzed using the HYPROP-FIT© software (UMS INC., Munich, 

Germany) and fit using the van Genuchten bimodal/ Mualem model (Durner, 1994; Mualem, 

1976): 

 

                                                                Eq. 3.2 

where  

Se is the effective water content (cm3/cm3); 

h is the suction head (cm); 

wi is a unitless parameter based on weight where all w parameters sum to 1; 

α is related to air-entry suction pressure; 

n is a measure of the pore-size distribution, n>1; and 

mi = 1- 1/ni 

 

This model is the result of Durner’s modification to van Genuchten’s (1980) adjustment to the 

Richard’s Equation, which describes water movement in saturated porous media. van 

Genuchten’s adjustment considered unsaturated conditions while Durner considered constraints 

presented by unequal pore space distribution. The results of the nine replicate dry downs (three 

HYPROP© instruments, three dry downs per treatment) were averaged together because there 

was no between-rep or between-dry down effect (Fig 3.8).  

 

 

 

 

Fig. 3.8. Matric potential of an extensive green roof substrate with 20% organic matter, as 
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determined by the HYPROP© method. Three HYPROP© instruments were used to measure 

matric potential in three consecutive dry-down periods, for a total of nine retention curves (all 

plotted here). Between-replicate effects were non-significant, so results were averaged together 

for all treatments. 

 

 

 The hydraulic conductivity data output from the HYPROP-fit© software was incorrect. 

This was determined by double-checking the output values with the raw data output. Because the 

HYPROP© was designed for soil analyses, hydraulic conductivity measurements may not be 

reliable for higher porosity media (Leo Rivera, Decagon Devices, Inc. pers. comm.). The 

measurement range of hydraulic conductivity may also be limited by the HYPROP© because 

measurements are not recorded until a certain difference in the prior measurement has been 

reached (determined by the software), s measurements only ranged from about 1.8 to 2.5 pF 

(Carlo Bibbiana, University of Pisa, Italy, pers. comm.)  Correct values were obtained via hand 
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calculation of the raw data (weight, VWCreal, time, and tension). These data had to be spliced 

together to create full hydraulic conductivity curves; an example of one of these curves is 

presented in Fig. 3.9.  

 

Fig. 3.9. Hydraulic conductivity K(pf) as determined by the HYPROP© method, for an 

experimental green roof substrate with 10% organic matter.  

 

 Hydraulic conductivity data were analyzed using the HYPROP-fit© software (UMS INC., 

Munich, Germany) and fit using the Mualem model (Mualem, 1976). Matric potential and 

hydraulic conductivity data were analyzed using logarithmic regression via the PROC 

LOGISTIC command (SAS 9.3, SAS Institute, INC., Cary, NC) to account for the log scale of 

the pF variable.  



 

 74 

 

3.3 Results and Discussion 

3.3.1 Field Capacity  

The starting VWC for 10%OM was 41%, significantly lower than the 46% for 20%OM 

and 40%OM (Fig. 3.9). Substrate maximum VWC ranging from 41-46% may be considered 

high, considering maximum VWC for a commercial green roof substrate blend was reported as 

34% (Starry, 2013) using direct moisture measurements for platform-scale experimental green 

roof field research.   

 

Fig. 3.10. Matric potential of three green roof substrates with increasing volumetric proportions 

(10%, 20% and 40%) of organic matter, obtained by using the HYPROP© system. Means (n = 9) 

are shown for all treatments. 

 

 

Although Voyde (2011) also reported a range of 40.8 to 49.6% for maximum WHC, this was 

based on the recommended FLL method, which like the HYPROP© method requires a saturation 
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period of at least 24 hours. In Voyde’s study the actual substrate VWC was not directly 

quantified; rather, the data was estimated using a water-balance approach subtracting discharge 

from rainfall using the lab-based WHC metric. In contrast, my results, although based on a truly 

saturated sample, present real or actual VWC (VWCreal) values, quantified from direct 

gravimetric measurements of the sample throughout the drying process. Nonetheless, the 

maximum VWC for an extensive green roof in the Mid-Atlantic region will likely not exceed 

30% except in very large, intense rain events where rainfall equals discharge (Mr. Charlie Miller, 

P.E. [RoofMeadow], pers. comm.).  

For this reason, I have chosen to differentiate between FCsat and FCunat. Since the 

substrate cores were saturated 48 hours and allowed to drain gravitationally before initiation of 

the experiment, these values refer exclusively to FCsat, while field-observed values would 

represent FCunsat, given that green roof substrates are engineered to be drain rapidly and are 

unlikely to be saturated for extended periods, except under extreme (flooded) conditions; this is 

therefore most likely an artifact of the laboratory protocols currently used. Applying a 

delineation between FCsat and FCunsat to regulatory estimations of green roof storm water 

mitigation potential based on lab-derived maximum WHC (FCsat) would be a more informed 

method of approximating potential retention because green roofs rarely, if ever, reach true 

saturation.  

3.3.2 Green Roof Substrate Matric Potential 

The matric potential of three experimental green roof substrates was characterized for pressures 

up to approximately 2.5 pF (approximately -30 kPa), at which point the tensiometer water 

columns cavitated, ending the experiment. Although -30 kPa is far below the -1500 kPa (4.2 pF) 

assumed value of PWP, it exceeds the -10 kPa maximum attained by Arguedas-Rodriguez (2009) 



 

 76 

 

when characterizing the matric potential of pine bark, a soilless substrate with similar maximum 

VWC (48%) and porosity, utilizing a tension table method with a 5-cm column. Furthermore, it 

far exceeds the -10 kPa designation for plant unavailable water reported by DeBoodt and 

Verdonck (1972) and confirmed by Handreck and Black (2002) for horticultural soilless 

substrates. In this way, the HYPROP© does somewhat extend the measurement range of matric 

potential for porous soilless substrates; however, water column cavitation occurred at 

approximately 18% VWC, far above PWP (Arguedas-Rodriguez, 2009). Based on data presented 

in Chapter 3, plants were evapotranspiring water from these same experimental substrate blends 

below 5% VWC.  Despite reaching tensions beyond -30 kPa, unavailable water in green roof 

substrates, it seems that this PWP still cannot be well-defined using the HYPROP© method. 

There were no differences (p>0.05) in matric potential between any treatment in the tension 

range (0.25-2.5 pF) measured. As it is assumed that substrate organic content will mostly affect 

the increasingly unavailable water in the substrate at higher (more negative) matric potential than 

2.5 pF, I cannot confidently predict the effects of organic content on matric potential with 

regards to plant-water relations from these results. From this perspective, it is probably more 

reliable to estimate plant water use from the VWC substrate data, as will be illustrated in 

Chapters 4 and 5.  

The cavitation of the tensiometer water column at tensions around 2.5 pF (± 30 kPa) is 

assumed to be a result of the overall porosity of the substrates. Given the proportion of large (>2 

mm diameter) particles in the three experimental blends (Appendix B), I assume that macropore 

drainage may have contributed to a premature cavitation of the water column. Also of 

importance is tensiometer placement within the cores (Fig. 3.5). Because the HYPROP© 

apparatus uses on the evaporative theory (Peters and Durner, 2008), tensiometers take 
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measurements continuously as cores dry via evaporation from the top of the sample. Because the 

samples dry from the top to the bottom, a significant amount of water could remain below the 

tensiometer caps after cavitation – due to material porosity and macropore water loss – which 

would go unmeasured by the tensiometers, although it would be correctly quantified into 

VWCreal based on balance measurements. These two principles may indicate that despite the 

increased measurement range, the HYPROP© system may not be appropriate for measuring 

matric potential in very porous green roof substrates.  

3.3.3 Green Roof Substrates and Hydraulic Conductivity 

There were no statistical (α=0.05) differences in hydraulic conductivity between any treatments, 

which suggests that increasing the organic content of a green roof substrate does not affect multi-

dimensional water flow through the media (Fig. 3.10). These results are counterintuitive, given 

that organic matter can hold up to nine times its weight in water (Hillel, 2004) and therefore 

increasing a substrate’s organic content should increase water holding capacity, thereby 

decreasing hydraulic conductivity.  
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Fig. 3.11. Hydraulic conductivity for three experimental green roof substrates with increasing 

(10%, 20%, and 40%) volumetric proportions of organic matter as determined by the HYPROP© 

method. Means (n=9) are presented for each treatment.  

 

 

 3.3.4 Model Parameters 

 

Green roof substrates rarely saturate, as these data have demonstrated, and the particle size 

distribution (Appendix B) demonstrates a wide range of pore space. Model parameters for the 

three experimental substrate blends using the van Genuchten bimodal/ Mualem model (Durner, 

1994; Mualem, 1974) are presented in Table 3.2.  
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Table 3.2. Presentation of van Genuchten bimodal (Durner, 1994) parameters for water retention and hydraulic conductivity of three 

experimental green roof substrate blends with increasing volumetric proportions of organic matter (10%, 20%, or 40%).   
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3.4 Conclusions 

 This experiment clearly defines a need for better-defined protocols for the 

analysis of porous green roof substrate physical properties, especially with regards to WHC and 

FC. The current use of lab-determined WHC and FC values most likely overestimate potential 

green roof storm water retention due to saturation-based methodologies. I have therefore 

delineated FCsat from FCunsat as a means to separate saturation-based field capacity and substrate 

VWC after gravitational drainage exclusive of saturation, which is likely more representative of 

actual green roof retention potential.  

The HYPROP© system could provide a slightly better quantification of matric potential 

of green roof substrates, beyond the traditional range offered by tension table analysis of porous 

soilless substrates; however, the HYPROP©  method still could not characterize matric potential 

(and therefore, VWC) for green roof substrates beyond tensions which are assumed to designate 

plant unavailable water (>-50kPa to -500 kPa). Retention and hydraulic conductivity data were 

fit using the van Genuchten bimodal (Durner, 1994) model, which considers porous media with a 

range of particle sizes in unsaturated conditions. 

This lab analysis of extensive green roof substrates shows few differences in hydraulic 

properties with increasing (10%, 20%, and 40%) volumetric proportions of organic matter, a 

surprising result given that organic matter provides water holding capacity, especially in soilless 

systems. Data presented in Chapters 4 and 5 indicate that lab-based analyses of green roof 

system components may not accurately predict or represent component behavior in the field.  

 While the HYPROP© offers an improved methodology for determining green roof 

substrate matric potential, challenges presented by system design and substrate characteristics 

prevent the characteristic of the entire moisture curve. Additional work to continue to expand the 
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measurement range of matric potential in green roof substrates would only further inform 

scientists, designers, and regulatory entities with regards to green roof storm water retention 

performance. Unfortunately, the quantification of component performance doesn’t really speak 

to or predict entire system performance, nor do lab-based analyses adequately predict field-based 

measurements. Since regulatory agencies determine system specification requirements based on 

predicted or estimated stormwater retention, a more valuable use of research resources would be 

to develop more accurate predictions of stormwater retention performance based on system 

design. 
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Chapter 4: Growth and rates of evapotranspiration of container-grown Sedum 

kamptschaticum grown in four different green roof substrates in a growth chamber. 

 

4.1 Introduction 

 As researchers continue to investigate green roof components and system performance 

(VanWoert et al., 2005; Rowe et al., 2006; Molineaux et al., 2009; Berndtsson et al., 2006; 

Mentens et al., 2006; Teemusk and Mander, 2007), the total green roof area in North America 

continues to increase (Erlichman and Peck, 2013). As the layer which supports the biological 

functioning of any green roof system, green roof substrates (GRS) hold water for plant growth, 

allow air movement for root gas exchange, offer stability and structure for root anchoring, and 

provide nutrients for plant uptake. While GRS do retain a proportion of storm water through 

substrate water holding capacity (buffering immediate storm water runoff), plants provide the 

additional ecosystem service of storm water removal through transpirational water cycling. In 

this way, water held in the GRS is taken up through the plant roots and cycled directly back into 

the atmosphere as water vapor, decreasing the water content of the GRS to allow for further 

capture of the next rain event. While water does leave the substrate through evaporative losses, 

Starry (2013) demonstrated that with the exception of large (>62.5 mm) rain events, planted 

experimental green roof platforms in the Mid-Atlantic region were 30% more efficient at moving 

storm water than unplanted experimental green roof platforms. Starry (2013) illustrated that this 

efficiency was directly tied to storm intensity, i.e. the amount of rainfall falling during a specific 

time period. This contradicted VanWoert et al.’s (2005) conclusion that brown or unplanted 

experimental roof platforms were just as effective at evaporating storm water as planted 

experimental platforms. This illustrates that the effects of GRS composition on plant growth and 
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evapotranspiration should be investigated to better inform storm water retention predictions and 

green roof system design. 

4.1.1 Green Roof Substrates 

 In general, any soilless substrate should be consistent in composition, free of 

pathogens and weed seed, and provide adequate water, air, and nutrients for plant survival and 

growth (Handreck and Black, 2007). In addition to these properties, GRS must also have an 

appropriate bulk density to resist wind uplift without surpassing roof structural live load limits 

for the roof; they are also engineered to rapidly drain to avoid ponding on any area of the roof. In 

the early nineteenth century, green roofs in Berlin did not use engineered media; rather, 

construction rubble was spread over tar paper roofs and the living systems developed over time 

(Kohler and Poll, 2010).  Modern green roof substrate composition is largely based on 

recommendations in the Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau (FLL), 

the German landscape industry’s guidelines for the design, planting, and maintenance of green 

roof systems. The FLL makes recommendations for particle size distribution and organic content 

as well as specific physical properties such as water holding capacity, bulk density, and total 

porosity (FLL, 2008).  

 Beyond the basic FLL recommendations, GRS composition varies internationally and 

regionally, usually due to material availability. North American GRS are largely composed of 

lightweight aggregates – usually slate, shale, or clay that have been kiln-fired to create expanded 

mineral particles (Beattie and Berghage, 2004). Particles of varying diameter are mixed together 

to achieve appropriate particle size distribution and physical properties such as water holding 

capacity, total porosity, and bulk density (Handreck and Black, 2007). Interestingly, while the 

North American green roof industry largely uses manufactured aggregate for GRS, research from 
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other countries indicates efforts to utilize lower-carbon recycled or natural materials for the 

inorganic component of GRS. For example, New Zealand green roof substrates are largely 

composed of naturally-occurring zeolite and volcanic rock (Fassman and Simcock, 2008). A 

study based in Northern Italy used a blend of locally available naturally-occurring mineral 

materials as the extensive green roof substrate (Nardini et al., 2012). Molineaux et al. (2009) 

reported that in the U.K., broken brick is the most commonly-used mineral portion of extensive 

green roof substrates. In Sweden, extensive green roof substrates were traditionally natural soil 

amended with naturally-occurring lava or scoria, and Emilsson (2008) reported the results of a 

study utilizing broken roof tiles as a component of extensive green roof substrates as an 

alternative to mined minerals.  

 The organic content of GRS varies depending on the design intent of the system; 

however, most ready-to-plant blends roughly follow FLL guidelines of ≤65g/L (FLL, 2008). The 

recommendation is based on the verification method of ashing or loss on ignition; however, 

horticultural substrates are generally mixed volumetrically. The guideline is a weight per volume 

metric – a value that could vary widely depending on the bulk density of the blend. Appendix C 

data indicates that given the difference in densities of the mineral and organic portions of GRS, a 

substrate could have up to 40% organic matter (volumetrically) and still fall within the FLL 

guidelines. Since organic matter provides cation exchange and water holding capacity, varying 

the organic content of a GRS could have significant impacts on plant growth and 

evapotranspiration. The effects of increasing the volumetric proportion of organic matter in GRS 

on plant growth and evapotranspiration therefore need to be further investigated to gain a better 

understanding of how substrate composition may affect green roof plants and stormwater 

mitigation potential. 
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4.1.2 Green Roof Plants 

 Green roofs present a unique environment for plants – a thin substrate layer requires a 

fibrous, non-aggressive root system so as to avoid compromising the integrity of the waterproof 

membrane of the roof; the reduced rooting zone also limits the volume of water that can be 

stored after rain events. Green roof plants must tolerate extreme diurnal temperature ranges, diect 

sun exposure, and high wind exposure can increase stomatal water loss; all these factors combine 

to provide a drought-prone system even in climatic areas with relatively consistent rainfall. 

Although green roofs are most often found in urban areas, the environmental challenges they 

present to plants are in many ways comparable to deserts or rocky outcroppings, and the plants 

that are most often used in extensive green roof systems are succulent species which have 

evolved physiological responses to extreme heat and drought conditions.  

One such mechanism is a variation on the traditional C3 photosynthetic pathway termed 

the Crassulacean Acid Metabolism (CAM). CAM allows for a water use efficiency, or the weight 

of plant material per volume of water used, six-fold greater than C3 plants (Nobel, 1996) because 

carbon uptake occurs nocturnally. CAM plants can keep their stomata closed during the day to 

prevent water loss – Carbon (CO2) is sequestered at night when stomata are open, and is 

converted to malic acid until sunrise. Even though stomata are closed during the data (primarily 

for water conservation), photosynthesis can continue during the day (albeit at a reduced rate) by 

converting the malic acid back into CO2 for use in photosynthesis (Taiz and Zeiger, 2010). 

Various degrees of CAM expression exist – ‘CAM cycling’ refers to the internal re-fixation of 

carbon stored as malic acid while ‘CAM’ indicates nocturnal carbon fixation via the enzyme 

PEPcase with the potential for periods of stomatal opening at the beginning and end of the day. 

‘CAM idling’ refers to stomatal closure for the entire 24-hour day, in which no new carbon is 
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harvested but malic acid is still created nocturnally via the recapture of respiratory CO2 (Borland 

et al, 2011).  

Starry (2013) identified CAM metabolism in two popular green roof species, Sedum 

album and Sedum kamtschaticum, which supported Butler et al.’s (2011) designation of Sedum 

album and Sedum rupestre as facultative CAM species. Regardless of the photosynthetic 

pathway, the effects of GRS on plant growth and evapotranspiration of green roof plants has not 

been explored. In this study, the effects of substrate organic content on green roof plant growth 

and evapotranspiration were evaluated by growing Sedum kamptschaticum in four different 

substrates in a growth chamber for sixteen weeks.  

The hypotheses that were formulated were: 

1. HO: Plant root and shoot biomass will not be affected by substrate composition. 

 

HA: Plant root and shoot biomass will be affected by substrate composition, with 40% 

organic matter substrate producing greater root and shoot biomass than 10% and 20% 

substrates because of the additional cation exchange and water holding capacity provided 

by the organic matter. 

 

2. HO: Green roof substrate organic content will not affect evapotranspirational water loss 

from pots planted with Sedum kamptschaticum.  

 

HA: Green roof substrate organic content will affect evapotranspirational water loss from 

pots planted with Sedum kamptschaticum, since shoot growth is expected to increase with 

increasing proportions of organic matter, which should lead to greater leaf area and 

canopy volume and thus greater evapotranspiration. 

 

4.2 Materials and Methods 

 In June 2012 a 60:40 crushed recycled brick:scoria mineral component was blended with 

mushroom compost (Frey Brothers, Lancaster, Pennsylvania) in a drum mixer to create three 

different substrates on a volumetric (m3/m3) basis: 90 mineral:10 organic, 80 mineral: 20 

organic, or 60 mineral:40 organic. The total volume of each blend was adequate for platform-
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scale lab analyses plus 22 L to be stored in cold storage in airtight containers. In addition to the 

experimental blends, 1.5 cubic yards of a ready-to-plant extensive green roof substrate 

(Rooflite™ manufactured by Skyland, USA (Landenburg, PA) were stored in supersacks at the 

Research Greenhouse Complex (College Park, Maryland), and 22L of the Rooflite™ media were 

also placed in an airtight container in cold storage.  

On 6 June 2013 a pot-scale growth chamber study was installed using the three 

experimental blends plus Rooflite™ as a control, utilizing the media which had been in cold 

storage. Oyama pot-in-pots were used; these containers are designed for African Violet 

production (AV Planters, San Lorenzo, CA), as previously described in Solano (2010) and 

Solano et al. (2012). In addition to the four planted treatments, three single-pot replicates of each 

substrate were left unplanted and watered with all other replicates for the duration of the study. 

Fifteen single-pot replicates of each substrate were planted with one Sedum kamtschaticum plug 

from a 72-plug flat that had been rooted for approximately one year (Emory Knoll Farms, Street, 

MD).  Before planting, the propagation media was washed from the plug roots. The Oyama 

container volume was 500 mL; the top container rested inside a separate container, allowing the 

measurement of leachate following irrigation events.  Pots were watered with 100 mL 

(equivalent to 1.27 cm rainfall based on container surface area) every third day, and leachate was 

immediately emptied from the bottom container to remove excess water reserves for plants. 

All pots were placed in a growth chamber at 29°C day, 16°C night, with a 12-hour 

photoperiod at 1200 µmol/m2/s (light intensity) in a completely randomized design. Three single-

pot replicates from planted treatments were harvested on three separate occasions (15 July, 5 

September, and 14 October). Root length, root fresh and dry weight, shoot fresh and dry weight, 

and leaf area were recorded at each harvest. Leachate volumes were recorded for all replicates 
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after the irrigation event most closely preceding a harvest. After the final harvest, six single pot 

replicates from each planted treatment plus three single pot unplanted replicates remained in the 

growth chamber and pot weights were recorded twice daily. Resultant weight loss was attributed 

to evapotranspiration (planted replicates) and evaporation (unplanted replicates). After 10 days, 

all replicates were re-watered with 20 mL water every 12 minutes until each replicate had 

received 100 mL of water to mimic a 1.27 cm rain event occurring over one hour. Leachate 

volumes were recorded for each replicate as before, and weights were recorded twice daily for 

the next 7 days. Replicates were not re-watered for five additional days – totaling 12 days 

without water – however, they were watered as before, mimicking a one-hour, half-inch rain 

event and leachate volumes from each replicate were recorded. Water loss was again recorded 

for the next 10 days. After the third dry-down period all plants were destructively harvested as 

previously described. 

Data were analyzed using the MIXED procedure in SAS 9.3 and the LSMEANS 

statement; Scheffe’s adjustment was used for multiple means comparisons for all data with 

α=0.05.  

 

4.3 Results and Discussion 

4.3.1 Destructive Harvests 

 Sedum kamptschaticum leaf area was greater for plants grown in the industry standard 

(Rooflite ™) blend for the first harvest but was not different from the 40% OM treatment for the 

second and third harvests (Fig. 4.1).  Plants grown in 20% OM substrate had less leaf area than 

those grown in 40% OM and greater leaf area than those grown in 10% OM, which was expected 

given the benefits of increased water availability with increasing proportions of organic matter. 
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Fig. 4.1. Leaf area of Sedum kamptschaticum in three green roof substrates with increasing volumetric 

proportions (10%, 20%, and 40%) of organic matter plus an industry standard control (Rooflite™) 

substrate. Means (n=3) are shown for each treatment per harvest date. Letters indicate significance at 

α=0.05 using Scheffe’s adjustment for multiple means comparison. 

 

Although the Rooflite™ has similar organic content gravimetrically (Appendix C), the 

volumetric proportion of OM is unknown. Nonetheless, the increased leaf area for plants grown 

in the industry standard blend for the first harvest may be due to increased water availability as a 

function of particle size distribution (Appendix B, Table B.2.). Although Rooflite™ has fewer 

small-diameter particles compared to the experimental blends, (<0.355 mm), it has a greater 

proportion of medium-diameter particles (0.355-2.36 mm, which increases the water holding 

capacity of the substrate. The increased growth during the first six weeks of the study may 

demonstrate that water availability plays a greater role than increased nutrient availability.  
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 The trend was similar for aboveground biomass fresh weight as the Rooflite™ industry 

standard substrate outperformed the three experimental blends, but only for the first harvest. By 

the second harvest the 40% OM blend was no different than the Rooflite™ with 20% OM and 

10% OM producing less fresh biomass each, respectively (Fig. 4.2).   

 

Fig. 4.2 Aboveground biomass fresh weight of Sedum kamptschaticum plants grown in three green roof 

substrates with increasing volumetric proportions (10%, 20%, and 40%) of organic matter compared to an 

industry standard control (Rooflite™) substrate. Means (n=3) are shown for each treatment per harvest 

date. Letters indicate significance at α=0.05 using Scheffe’s adjustment for multiple means comparison. 

 

Aboveground biomass dry weight indicated that although leaf area and fresh weight may 

be more sensitive to water availability than nutrient availability during early establishment (in 

this case approximately 6 weeks) (Fig. 4.3), dry mass accumulation is more sensitive to nutrient 

availability, given the differences in particle size distribution between the Rooflite™ and 
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experimental blends (Appendix B, Table B.2.).  Dry mass for plants grown in the industry 

standard was similar to that of plants grown in the 40% OM blend for harvest one, but the 40% 

OM blend  outperformed all other treatments for subsequent harvests.  

 

Fig. 4.3. Aboveground biomass dry weight of Sedum kamptschaticum plants grown in three green roof 

substrates with increasing volumetric proportions (10%, 20%, and 40%) of organic matter plus an 

industry standard control (Rooflite™) substrate. Means (n=3) are shown for each treatment per harvest 

date. Letters indicate significance at α=0.05 using Scheffe’s adjustment for multiple means comparison. 

 

Differences in below-ground biomass fresh weight were only detected at the second 

harvest, when the 20% OM blend produced less biomass than the other three treatments (Fig. 

4.4). There were no differences in belowground biomass dry weight for any of the harvests (Fig. 

4.5). 
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Fig. 4.4. Below-ground biomass fresh weight of Sedum kamptschaticum 

plants grown in three green roof substrates with increasing volumetric 

proportions (10%, 20%, and 40%) of organic matter plus an industry 

standard control (Rooflite™) substrate. Means (n=3) are shown for each 

treatment per harvest date. Letters indicate significance at α=0.05 using 

Scheffe’s adjustment for multiple means comparison. 

Fig. 4.5. Below-ground biomass dry weight of Sedum kamptschaticum 

plants grown in three green roof substrates with increasing volumetric 

proportions (10%, 20%, and 40%) of organic matter plus an industry 

standard control (Rooflite™) substrate. Means (n=3) are shown for each 

treatment per harvest date. Letters indicate significance at α=0.05 using 

Scheffe’s adjustment for multiple means comparison..  
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 Root succulence was calculated by dividing the total root length (mm) by the 

belowground biomass fresh weight (g) to account for variability in root structure. There were no 

differences in root succulence for harvest one; however, plants grown in the 10% OM blend 

demonstrated less root succulence than all other treatments for remaining harvests (Figure 4.6).  

Total in-pot nutrient availability per treatment is presented in Appendix E. Given the limited pot 

volume, N availability ranged from 0.19 to 0.76 g per pot, indicating that differences in 

establishment may be more sensitive to water availability than nutrient availability.  

 
Figure 4.6. Root succulence of Sedum kamptschaticum plants grown in three green roof substrates with 

increasing volumetric proportions (10%, 20%, and 40%) of organic matter plus an industry standard 

control (Rooflite™) substrate. Root succulence determined by dividing total root length (mm) by root 

fresh weight (g). Means (n=3) are shown for each treatment per harvest date. Letters indicate significance 

at α=0.05 using Scheffe’s adjustment for multiple means comparison. 
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4.3.2 Plant Dry Downs 

 Planted replicates lost more water than unplanted replicates over the course of the three 

cumulative dry-down periods (Fig. 4.7), supporting Starry’s (2013) findings that planted green 

roofs do mitigate more stormwater than unplanted green roofs.  

 
Fig. 4.7. Total cumulative water lost by Sedum kamptschaticum planted in three different green roof 

substrates with increasing volumetric proportions (10%, 20%, and 40%) of organic matter plus an 

industry standard control (Rooflite™) and unplanted pots with the same substrate. This represents the 

sum of averaged water loss after three separate 100-mL irrigation events, for a total of three dry-down 

periods. Means (n=6 and n = 3 for each planted and unplanted treatment, respectively) are shown for each 

treatment. P values indicate significance (α=0.05). 

 

After accounting for whole plant dry biomass (Fig. 4.8), plants growing in 20% and 10% 

OM lost more water over the course of the three dry-down periods than those plants growing in 

40% OM and the industry standard blend (Figs. 4.9 and 4.10).   Note that it is not assumed that 

substrates with greater proportions of organic matter produce less efficient plants; rather, they 



 

 95 

 

produce plants with significantly greater biomass (Figs. 4.3, 4.5, and 4.8) which reduces the 

water loss of these larger plants when it is expressed on a per gram  biomass basis.  Hence, when 

the data are normalized in this way between treatments, it looks like the smaller plants use more 

water, which is not true since we are not showing total water loss per plant. 

 
Figure 4.8. Dry mass of Sedum kamptschaticum grown in three different green roof substrates with 

increasing volumetric proportions (10%, 20%, and 40%) of organic matter plus an industry standard 

substrate (Rooflite™). Means (n = 3) are shown for each treatment for each harvest date.  
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Fig. 4.9. Cumulative water loss per gram dry weight of plant biomass by container-grown Sedum 

kamptschaticum grown in three different green roof substrates with increasing volumetric proportions 

(10%, 20%, and 40%) of organic matter plus an industry standard substrate (Rooflite™) for the first of 

three dry downs. Means (n = 6) are shown for each treatment at each measurement interval. 
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Fig. 4.10. Cumulative water loss per gram dry weight of plant biomass by container-grown Sedum 

kamptschaticum grown in three different green roof substrates with increasing volumetric proportions 

(10%, 20%, and 40%) of organic matter plus an industry standard substrate (Rooflite™) for the second 

(top) and third (bottom) of three dry downs. Means (n = 6) are shown for each treatment at each 

measurement interval. 
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Interestingly, all replicates lost water more quickly at the beginning of the first dry-down 

as opposed to the second and third dry-down periods (Fig. 4.10).  There are two possible 

explanations for this. Firstly, the 100 mL irrigation event which began the first dry down was 

applied all at once to each replicate pot while the second and third irrigation events were spread 

out to mimic a one-hour, 1.27 cm rain event. Secondly, the decreased rate of water loss for the 

second and third dry downs may indicate that plants had cycled into CAM. Until the beginning 

of the first dry down, plants were watered every third day with 100 mL of water and were 

watered in an identical fashion to begin the first dry down. They had therefore not been stressed 

and likely had not cycled into CAM before the beginning of the first dry down; however, by the 

beginning of the second dry down they had been 10 days without water and may have had their 

stomata closed during all or part of the day by the beginning of the second dry down. By the 

beginning of the third dry down, the plants had been over 20 days without water except for the 

100 mL applied for the second dry down.  

Because water loss is collectively attributed to evapotranspiration and transpiration, 

average per-treatment water loss at each time interval for unplanted treatments was subtracted 

from average per-treatment water loss for planted treatments (Figs. 4.11, 4.12,  and 4.13) for 

each dry-down period.  With the exception of the standard Rooflite™ media during the first dry 

down, evapotranspirational water loss from planted treatments surpassed evaporative water loss 

from unplanted treatments within the first 48 hours of the dry down.
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Fig. 4.11. Cumulative water loss of unplanted pots with green roof 

substrates with increasing volumetric proportions (10%, 20%, and 40%) 

of organic matter subtracted from cumulative water loss of pots planted 

with Sedum kamptschaticum growing in the same experimental substrate 

blends for the first of three dry down periods. Means (n=3 for unplanted 

and n = 6 for planted treatments) are displayed.  

Fig. 4.12. Cumulative water loss of unplanted pots with green roof 

substrates with increasing volumetric proportions (10%, 20%, and 40%) of 

organic matter subtracted from cumulative water loss of pots planted with 

Sedum kamptschaticum growing in the same experimental substrate blends 

for the second of three dry down periods. Means (n=3 for unplanted and n = 

6 for planted treatments) are displayed. 
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Fig. 4.13. Cumulative water loss of unplanted pots with green roof substrates with increasing volumetric 

proportions (10%, 20%, and 40%) of organic matter subtracted from cumulative water loss of pots 

planted with Sedum kamptschaticum growing in the same experimental substrate blends for the third of 

three dry down periods. Means (n=3 for unplanted and n = 6 for planted treatments) are displayed. 

 

For the first dry down, the unplanted Rooflite™ treatment lost more water than the 

planted Rooflite™ treatment, which may indicate that plants in the Rooflite™ media had 

transitioned into CAM metabolism, with stomates closed during the day. If this was the case, 

then daytime water loss would be due to evaporation only, and planted pots would be expected to 

lose less water than unplanted pots due to the buffering effect of the plant canopy over the 

exposed media. These results indicate that when plants are actively evapotranspiring water, they 

are more effective at cycling stormwater back into the atmosphere than evaporation, confirming 

Starry’s (2013) conclusion that Sedum plants are more effective at recharging green roof storage 

in C3 metabolism compared to CAM metabolism.  
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The substrate volumetric water content (VWC) was calculated for each replicate by 

accounting for the final plant fresh weight, substrate dry weight, and pot weight for each 

replicate over the course of the dry down (Figs. 4.14, 4.16, 4.18). Substrate VWC ranged from 

22-25% to 3.5-5% over the course of the first dry down (Fig. 4.14). The second dry down VWC 

ranged from 18-22% to 4-5% (Fig. 4.16) while the third dry down VWC ranged from 20-23% to 

2.5-4% (Fig. 4.18). The starting VWC was assumed to be container capacity (CC) for each 

substrate treatment, because each replicate produced leachate following each initial irrigation 

event. The final VWC at the end of each dry down indicates the plants were able pull nearly all 

of the water out of the substrate.  

 Cumulative water loss for each dry down was normalized by total plant leaf area (Figs. 

4.15, 4.17, and 4.19). Similarly to the per gram dry weight water loss, normalized results indicate 

smaller plants may be more efficient; however, this is likely a result of the large difference in 

plant size between treatments.  Interestingly, the rate of water loss leveled after about 60 hours 

for all three dry downs, which may indicate plants had transitioned to CAM to conserve water. 

Comparing the timing with the in-pot VWC graphs shows this transition (points of inflection) to 

occur around 8% VWC. Nevertheless, despite the extremely low water substrate VWC, the 

plants continued to transpire beyond this, albeit more slowly, further suggesting CAM activity – 

with stomata closed during the day, daytime water loss would be limited to evaporation and 

nocturnal water loss would be minimal during stomatal opening.  In-pot VWC fell below 5% for 

all three dry downs, implying that S. kamptschaticum roots may have been accessing water 

previously assumed to be unavailable for plant uptake.
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Fig. 4.14. In-pot volumetric water content for 500 mL containers 

planted with Sedum kamptschaticum in three different green roof 

substrates with increasing volumetric proportions (10%, 20%, and 40%) 

of organic matter plus an industry standard control (Rooflite™) 

following the first of three 100 mL irrigation events. Means (n=6) are 

shown for each treatment at each measurement interval.  

Figure 4.15. Water loss from containers planted with Sedum 

kamptschaticum in three different green roof substrates with increasing 

volumetric proportions (10%, 20%, and 40%) of organic matter plus an 

industry control (Rooflite™) normalized by total replicate leaf area in the 

first of three dry downs. Means (n= 6) are shown for each treatment at each 

measurement interval. 
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Fig. 4.16. In-pot volumetric water content for 500 mL containers planted 

with Sedum kamptschaticum in three different green roof substrates with 

increasing volumetric proportions (10%, 20%, and 40%) of organic matter 

plus an industry standard control (Rooflite™) following the second of three 

100 mL irrigation events. Means (n=6) are shown for each treatment at each 

measurement interval. 

Fig. 4.17. Water loss from containers planted with Sedum 

kamptschaticum in three different green roof substrates with increasing 

volumetric proportions (10%, 20%, and 40%) of organic matter plus an 

industry control (Rooflite™) normalized by total replicate leaf area in the 

second of three dry downs. Means (n= 6) are shown for each treatment at 

each measurement interval. 
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Fig. 4.18. In-pot volumetric water content for 500 mL containers 

planted with Sedum kamptschaticum in three different green roof 

substrates with increasing volumetric proportions (10%, 20%, and 40%) 

of organic matter plus an industry standard control (Rooflite™) 

following the second of three 100 mL irrigation events. Means (n=6) 

are shown for each treatment at each measurement interval. 

Fig. 4.19. Water loss from containers planted with Sedum 

kamptschaticum in three different green roof substrates with increasing 

volumetric proportions (10%, 20%, and 40%) of organic matter plus an 

industry control (Rooflite™) normalized by total replicate leaf area in 

the second of three dry downs. Means (n= 6) are shown for each 

treatment at each measurement interval. 
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4.4 Conclusions 

 As expected, increasing the volumetric proportions of organic matter in GRS results in 

plants with greater biomass and leaf area, likely due to increased water availability with 

increasing organic matter. Substrate composition did not affect the total volume of water 

removed from the containers over time; rather, the presence of larger plants resulted in greater 

transpirational water use (Fig. 4.7).  Normalizing water loss by plant biomass dry weight and leaf 

area indicated a greater efficiency for smaller plants but it is assumed this is a misleading result 

based on the effect of smaller denominators for smaller plants. S. kamptschaticum plants grown 

in 10% organic matter had less biomass and leaf area than plants grown in 20% or 40% organic 

matter – dividing the cumulative water lost by a smaller denominator (dry biomass or leaf area, 

respectively) would have resulted in a larger normalized value than dividing by a larger 

denominator, i.e. for plants grown in 40% organic matter. 

 Perhaps the most interesting results of this experiment are the in-pot VWC reached 

during the course of the three dry downs, especially when compared to cumulative water loss, 

which typically asymptoted at approximately 8% VWC for all three dry-down periods (and 

substrates). Permanent wilting point is assumed to be -15 kPa matric potential (Keihl et al., 

1992), which for horticultural substrates is around 40% VWC (Rodriguez 2009). These results 

indicate that Sedum kamptschaticum can access water previously assumed to be unavailable to 

plants. Clarifying the true VWC range at which green roof plants can successfully move water 

will allow for better estimation of stormwater mitigation potential of green roof systems and 

should be investigated more thoroughly.  

 Planted treatments lost more water than unplanted treatments cumulatively, and ET-T 

[evapotranspirational – evaporational] water loss during each dry down further demonstrates that 
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plants are more effective at moving water into the atmosphere than evaporation. Applying these 

data to the roof- or even watershed-scale further confirms Starry’s (2013) conclusions that 

planted rooftops are more effective stormwater mitigation tools than brown or unplanted 

rooftops. Furthermore, this study only spanned six months’ time – the extrapolated stormwater 

retention potential over 30 years (assumed average lifespan of a green roof) of planted versus 

unplanted roofs is significant.   

 These results indicate growth differences from increasing the volumetric proportions of 

organic matter in an extensive green roof substrate may be due to differences in water 

availability than nutrient availability. The limited pot volumes (500 mL) resulted in a range of 

0.19-0.76 g total N per pot with increasing proportions of mushroom content, indicating Sedum 

kamptschaticum plugs may have been more sensitive to the increased water holding capacity of 

organic matter than to the increased nutrient content. While this study served to quantify 

differences in Sedum kamptschaticum growth in experimental green roof substrates with 

increasing volumetric proportions of organic matter during establishment, the platform-scale 

field study presented in Chapter 5 provided data beyond the initial establishment period.  
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Chapter 5:  A platform-scale study of the effects of green roof substrate organic 

content on the rate of substrate dry down following rain events, storm water 

retention, and growth of Sedum kamptschaticum. 

 

5.1 Introduction 

 Although green roofs are becoming increasingly popular as storm water management 

tools, our understanding of the effects of green roof system design on storm water mitigation is 

still relatively poor, despite a growing body of literature. VanWoert et al. (2005) reported on the 

effects of roof surface, slope, and media depth on storm water retention, concluding from the 

platform-scale study that for all combined rain events, a 2% slope with 4 cm of substrate retained 

more storm water compared to 6.5% slope and 2 cm or 6 cm substrate. In a second, the authors 

concluded vegetated roof tops retain more storm water than gravel ballast or unplanted green 

roof media (VanWoert et al., 2005). The effects of substrate depth (12 cm and 20 cm, 

respectively) and vegetation type (herbaceous or woody shrubs) on temperature and storm water 

mitigation were reported by Nardini et al. (2011), where the authors found significant effects of 

substrate depth but no differences attributable to vegetation type. All vegetated modules retained 

more storm water than non-planted controls. Starry (2013) investigated the role of specific 

Sedum species on green roof storm water mitigation, reporting Sedum kamptschaticum and S. 

sexangulare to have the highest rates of evapotranspiration and storm water mitigation compared 

to S. album.  

 Looking beyond substrate depth and plant selection, the effects of substrate composition, 

specifically organic content, on storm water mitigation potential is not well understood. Voyde et 

al. (2010) investigated the effects of substrate composition and depth on storm water 
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performance of green roofs in New Zealand and concluded that neither variable had a significant 

effect. Although the study did compare different compositions – the blends utilized zeolite, 

pumice, or expanded clay, respectively - each blend was a volumetric proportion of 80% mineral 

component and 20% composted bark fines. Molineaux et al. (2009) reported the effects of 

organic content and mineral composition on plant growth. The organic content portion of the 

study compared 15% (v:v) against 25% (v:v) and was independent of the study comparing 

mineral composition and particle size distribution. As expected, increasing the volumetric 

proportion of organic matter in a green roof substrate yielded larger plants; however, this was a 

trial study which took place in a greenhouse under well watered conditions. The effects of 

organic content on storm water mitigation were not investigated nor were the effects of organic 

content on rates of evapotranspiration reported.   

 Gaining a greater understanding of the effects of substrate organic content on storm water 

mitigation potential would better inform regulatory agencies, whose guidelines currently focus 

largely on substrate depth and water holding capacity (WHC) [Maryland (Maryland Department 

of Environment ESD Manual, 2011); Washington, DC (District Department of Environment 

SWM Guide, 2013); Auckland, New Zealand (Fassman-Beck and Simcock, 2013)]. Some 

organic matter (specifically, humic and fulvic acids) can hold up to nine times its dry weight in 

water (Hillel, 2004); increasing the volumetric proportions of organic matter in a green roof 

substrate may therefore have a significant effect on storm water retention potential. Most 

regulatory agencies base their substrate composition guidelines on the German Landscape 

Society’s Manual for Green Roof Design, Installation, and Maintenance (FLL, 2008), which 

suggests ≤6.5g/L organic matter for an extensive green roof substrate. Given the differences in 

particle density between organic matter and the mineral component of a green roof substrate, 
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volumetric organic content could range from 10-40% (APPENDIX C) and still fall within those 

guidelines. The study described herein served to answer the following research questions: 

1. HO: Green roof substrate organic content will not affect Sedum kamptschaticum growth 

and establishment in a platform-scale field study, as determined by canopy coverage, root 

fresh and dry biomass, and shoot fresh and dry biomass.  

 

HA: Green roof substrate organic content will affect Sedum kamptschaticum growth and 

establishment in a platform-scale field study, as determined by canopy coverage, root 

fresh and dry biomass, and shoot fresh and dry biomass, because organic matter provides 

water holding capacity and cation exchange capacity and these will increase with 

increasing volumetric proportions of substrate organic content.  

 

2. HO: Green roof substrate organic content will not affect the substrate volumetric water 

content and rate of dry down following rain events in a platform-scale field study.  

 

HA: Green roof substrate organic content will affect the substrate volumetric water 

content and rate of dry down following rain events in a platform-scale field study, 

because a pot-scale growth chamber experiment indicates substrate VWC during dry 

downs is the same for green roof substrates with 10%, 20%, and 40% organic matter.  

 

3. HO: Increasing the volumetric proportion of green roof substrate organic matter does not 

affect the percent volume of rainfall retained, when considering either total volume per 

rain event or intensity (volume per time). 

 

HA: Increasing the volumetric proportion of green roof substrate organic matter will 

decrease the percent volume of rainfall retained, when considering either total volume per 

rain event or intensity (volume per time), because it is expected that root density in 10% 

organic matter substrates will be higher than 20% or 40% organic matter substrates 

because the plant roots will be searching for water and plant roots are the means by which 

plants uptake water and cycle it back into the atmosphere. 

 

5.2 Materials and Methods 

5.2.1 Platform Construction 

 Sixteen experimental green roof platforms [interior dimensions 113.5 cm X 113.5 cm] 

were constructed in May and June 2012 at the Research Greenhouse Complex at the University 

of Maryland in College Park, Maryland. The profile of each platform from bottom to top was as 

follows: 12 mm plywood decking, EPDM waterproofing membrane, drainage layer, filter fabric, 
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experimental substrate blends, and plants (Fig. 5.1). The waterproofing membrane, plastic cup-

type drainage layer, and filter fabric were obtained from Conservation Technology (Baltimore, 

MD). Platforms were constructed and maintained according to FLL standards (FLL, 2008). 

Platforms were with a 2% north-facing slope.  

 

      Fig. 5.1. Photograph of construction of the experimental green roof platforms at the  

                     Research Greenhouse Complex at the University of Maryland, College Park 

                     in May 2012. 

 

 

 

Three different substrates were blended for the platform study. The inorganic portion was 

a 60:40 crushed recycled brick: scoria blend, which was blended with either 10%, 20%, or 40% 

(m3/m3) mushroom compost (Frey Brothers, Lancaster, PA). Particle size distributions of the 

mineral components and experimental blends are located in Appendix B, Table B.2. Four 

replicate platforms were installed with a 10 cm depth of each substrate blend (n=4). An 

additional four platforms were filled with 10 cm of the 10% organic matter blend and left 
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unplanted to serve as a control (n=4). The four treatments were arranged in a randomized 

complete block design taking into account a potential climate gradient between the greenhouse 

range (to the NE) and an adjacent asphalt parking lot (to the SW).  

The planted treatments were each planted on 4 July 2012 with 25 Sedum kamptschaticum 

plugs (Emory Knoll Farms, Street, MD) propagated in 72 plug trays. The roots of all plugs were 

washed completely of all propagation media prior to planting to avoid introducing additional 

non-plant organic matter into the substrate profile (Fig. 5.2). 

 

          Fig. 5.2. Photograph illustrating the removal of all propagation media from plug roots 

                             prior to planting.     

                 

 

 

 All sixteen platforms were hand-watered twice weekly to the point of drainage for two 

weeks following installation, after which time the study was solely dependent upon precipitation. 
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Per German guidelines (FLL, 2008), 15-10-15 Osmocote ® control release fertilizer was applied 

each spring at the recommended rate (5g N/m2). 

 

 5.2.2 Environmental, Volumetric Water Content, and Runoff Data 
 

 Each platform was instrumented with four Echo-5TM moisture/temperature 

sensors (Decagon Devices, Inc. Pullman, WA) in October 2012 to measure substrate volumetric 

water content (VWC) and temperature data (Fig.5.3). Sensors were oriented horizontally, 

inserted into the substrate pointing towards the top of the slope to account for preferential water 

movement down the platform. Sensors were connected to Decagon nR-5 radio dataloggers, and 

set to average per-minute readings every five minutes.  

 

         Fig. 5.3. Diagram illustrating sensor placement for the sixteen experimental platforms. 

 

 

Data were then transmitted to a base station and computer in the University of Maryland 

Greenhouse Range, and downloaded into DataTrac software (Decagon Devices, Inc., Pullman, 

WA). Sensors were calibrated to each of the three experimental blends for all VWC analyses.  

Direction of drainage 
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In July 2013 each platform was instrumented with a double tipping bucket rain gauge 

(TB-4, Hydrological Services, New South Wales, Australia) (Fig. 5.4) to quantify platform 

runoff. 

 

       Fig. 5.4. Photograph illustrating a TB-4 rain gauge installed on one of the sixteen  

                           experimental platforms.  

 

 

 

Runoff data were collected to a 1-minute resolution using a Campbell CR10X data logger 

(Campbell Scientific Inc. Logan, Utah) using a logger program that included a calibration to 

account for water loss during high intensity runoff events (Starry, 2013).  

A weather station was installed adjacent to the platform study (Fig. 5.5). Rainfall (ECRN-

100 tipping rain gauge), air temperature and humidity (ECT sensor), wind speed and direction 

(Davis cup anemometer), solar radiation (PYR, total radiation pyranometer), photosynthetic flux 

density (PPF, QSO-S PAR sensor), and leaf wetness (LWS-L) were all continuously collected 

using Decagon Devices (Pullman, Washington) instruments (Fig. 5.6). Environmental data were 
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continuously collected using a Decagon Devices EM50R radio logger at 1-min resolution. 

(Figure 5.6). 

I chose to designate a period of six hours without precipitation a separate rain event 

(Shamseldin, 2010; Voyde et al., 2010). Five rain events were selected from May 2013 and 

October 2013 and substrate volumetric water content (VWC) was plotted for the subsequent dry-

down periods for each treatment (n=16).  

 

        Fig. 5.5. Photograph showing the orientation of the weather station in relation to the 

                            experimental green roof platforms at the University of Maryland Research 

                            Greenhouse Complex.  
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             Fig. 5.6. Photograph of weather station detail. 

 

 

5.2.3 Non-destructive Harvests 

 Platforms were sampled during October 2012, March 2013, July 2013, October 2013, and 

March 2014 for leaf area (Li-3100 Leaf Area Meter, Lincoln, Nebraska), shoot fresh and dry 

weight, root length, and root fresh and dry weight. Prior to sampling, photos were taken for 

canopy coverage analysis. Images were taken approximately 1.5 m above each platform using a 

Nikon D5100 and an iPad-based shutter control app (Figure 5.7).   Root length was quantified by 

hand-picking all visible roots out of each sample and measuring by hand (Figure 5.8). To 

determine canopy coverage, the number of pixels of plant canopy were divided by the total 
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number of pixels of interior platform area using Adobe Photoshop CS6 (San Jose, California) 

following the procedure outlined by Kim et al. (2012) (Fig. 5.9). At each sampling date, three 

samples were randomly selected for each platform using a random number generator. Two 

random numbers indicated the location of each sample in a grid-based sampling pattern (Fig. 

5.10). 

          Fig. 5.7. Photograph illustrating overhead picture-taking for canopy coverage  

                             analysis. October 2013. 
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          Fig. 5.8. Photograph illustrating part of the method of measuring root length. 
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         Fig. 5.9. An example of plant canopy coverage analysis using digital photography.  

                       The number of green pixels on the right would be divided by the total pixels on  

                        the left.  
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      Fig. 5.10. Photograph of grid-based random sampling. 

 

After a square was randomly selected, all plant biomass within the square and all of the substrate 

down to the filter fabric was sampled and processed for leaf area, shoot fresh and dry weight, 

root fresh and dry weight, root length, and substrate depth. After roots were hand-picked from 

cores all substrate material was collected, oven-dried at 110 C and ashed at 530 C for four hours 

using a muffle furnace to quantify the total mass of organic content (results in Appendix C).  

 

 5.2.4 Statistical Analyses 

 Harvest and storm water retention data were analyzed using repeated measures 

analysis in the MIXED procedure (SAS 9.3 SAS Institute, Inc., Cary, NC) There was no 

significant (α=0.05) effects by harvest date (repeated measure effect), so data were 
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independently analyzed for each harvest date. Multiple means comparisons were performed 

using Scheffe’s test where significant treatment differences were identified.  

5.3 Results and Discussion 

5.3.1 Non-destructive Harvests 

 Aboveground biomass was quantified for three of the five harvest dates – October 2012, 

July 2013, and October 2013, since Sedum kamptschaticum are deciduous and were dormant for 

both March harvests. Aboveground fresh and dry weights are reported in Figs. 5.11 and 5.12. 

The random nature of the sampling introduces a large amount of variability into the data, and 

may actually cause misleading results. The fresh and dry weight results for the July 2013 

harvests are as expected, with plants grown in 40% organic matter producing more aboveground 

biomass than those grown in 10% or 20% organic matter, respectively. However, the October 

2013 dry weights (Fig. 5.12) indicate greater biomass for plants grown in 10% organic matter. 

Thus the random nature of the sampling may introduce a large amount of variability into these 

data.  Plant canopy coverage data using pixel analysis of digital photos offers a more accurate 

description of aboveground plant growth (Fig. 5.13), with increasing percentages of canopy 

cover as substrate organic content increases. 
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Fig. 5.11. Aboveground biomass fresh weight for Sedum 

kamptschaticum grown in a platform-scale green roof field study. 

Means (n = 4) are shown for each treatment, letters designate 

significance at α = 0.05, no letters indicate p>0.05. 

Fig. 5.12. Aboveground biomass dry weight for Sedum 

kamptschaticum grown in a platform-scale green roof field study. 

Means (n = 4) are shown for each treatment, letters designate 

significance at α = 0.05. 
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Fig. 5.13. Platform canopy coverage for Sedum kamptschaticum 

grown in a platform-scale green roof field study. Means (n = 4) are 

shown for each treatment, letters designate significance at α = 0.05. 

Fig. 5.14. Leaf area for Sedum kamptschaticum grown in a 

platform-scale green roof field study. Means (n = 4) are 

shown for each treatment.  
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 Plant canopy coverage data provides an excellent representation of two-dimensional 

shoot growth. Leaf area (Fig. 5.14) better describes three-dimensional shoot growth because all 

aboveground biomass within the sample area was quantified, particularly as leaves were often 

stacked vertically in the canopy. Thus total canopy leaf area was extrapolated by multiplying 

platform canopy coverage and leaf area data, presented in Fig. 5.15. These extrapolated data 

indicate a significant effect of substrate organic content on aboveground biomass. 

 

Fig. 5.15. Total canopy leaf area of Sedum kamptschaticum grown in a platform-scale green roof 

field study. Results were extrapolated from the product of platform canopy cover and sample leaf 

area. Means (n = 4) are shown for each treatment. 

 

 

 Shoot succulence was determined by dividing aboveground fresh weight by above-

ground dry weight (Fig. 5.16). Interestingly, differences were only detected for the October 2013 
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harvest date, when plants grown in 20% and 40% organic matter had a higher degree of 

succulence.  

   

Fig. 5.16. Shoot succulence for Sedum kamptschaticum grown in a platform-scale green roof 

field study. Results were extrapolated from by dividing aboveground biomass fresh weight by 

aboveground biomass dry weight. Means (n = 4) are shown for each treatment, letters designate 

significance at α = 0.05, no letters indicate p>0.05. 

 

 Belowground biomass data were gathered for all five harvest dates. Again, random 

sampling may have introduced large amounts of variability into the data set; however, comparing 

the July 2013 fresh weight (Fig. 5.17) to July 2013 dry weight (Fig.5.18) indicates a large 

amount of water storage in the root system for all treatments. Root succulence was determined 

by dividing belowground biomass fresh weight by belowground biomass dry weight, presented 

in Figure 5.19.  

Fig. 5.17. Belowground biomass fresh weight for Sedum kamptschaticum grown in a platform-
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scale green roof field study. Means (n = 4) are shown for each treatment, letters designate 

significance at α = 0.05, no letters indicate p>0.05. 
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Fig. 5.18. Belowground biomass fresh weight for Sedum kamptschaticum grown in a platform-

scale green roof field study. Means (n = 4) are shown for each treatment, letters designate 

significance at α = 0.05, no letters indicate p>0.05. 
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Fig.5.19. Root succulence of Sedum kamptschaticum grown in a platform-scale green roof field 

study. Means (n = 4) are shown for each treatment, letters designate significance at α = 0.05, no 

letters indicate p>0.05. 

 

 

Total root length per sample demonstrated increased root growth with increasing proportions of 

substrate organic matter (Figure 5.20), but root density (fresh weight divided by sample volume) 

indicated no difference between plants grown in 10% and 20% organic matter, except for July 

2013 (Figure 5.21). Root density was also highest for July 2013, attributed to the increased fresh 

weight.  

Only the July 2013 harvest showed a significant effect of substrate organic content on 

root succulence. Interestingly, root succulence – or the amount of water stored in the roots – was 

far greater in July 2013 than for the other harvest dates. Even though 2013 was a fairly rainy year 
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– both in the total rainfall and number of events – it is not assumed that root succulence would be 

affected by substrate VWC or precipitation. Additionally, substrate VWC reached its peak in Fall 

2013 (Figure 5.22), indicating that Sedum kamptschaticum may store more water in the root 

system during the summer months.  

  

Fig. 5.20. Root length of Sedum kamptschaticum grown in a platform-scale green roof field 

study. Means (n = 4) are shown for each treatment, letters designate significance at α = 0.05, 

no letters indicate p>0.05. 
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Fig. 5.21. Root density of Sedum kamptschaticum grown in a platform-scale green roof field 

study, determined by dividing belowground biomass fresh weight by total sample volume. Means 

(n = 4) are shown for each treatment, letters designate significance at α = 0.05, no letters indicate 

p>0.05. 

 

5.3.2 Volumetric Water Content 

 The daily substrate VWC (n=16) was plotted for 2013 based on sensor readings at 5:00 

AM as a means to normalize the data on a daily basis while avoiding potential climatic 

variability. These data are presented with daily rainfall totals in Figs. 5.22 and 5.23.  Substrate 

volumetric water content for each treatment was plotted for five dry-down periods immediately 

following rain events (Figs. 5.24, 5.25, 5.26, 5.27, and 5.28). The longest dry period of 2013 was 

15 days, and many rain events were small (less than 0.5 mm), so in some cases multiple dry 

periods were combined with intermittent rain for graphing purposes.
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Fig. 5.22. Daily substrate volumetric water content (n=16) at 5:00 AM for experimental green roof platforms for 2013. 
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            Fig. 5.23. Daily precipitation totals for 2013. 
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Fig. 5.24. Substrate volumetric water content of platform-scale experimental green roofs with 

increasing proportions of organic content following a 10.8 mm rain event which occurred over 

4.5 hours on May 11. Means (n = 16) are shown for each treatment. 
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Fig. 5.25. Substrate volumetric water content of platform-scale 

experimental green roofs with increasing proportions of organic 

content following an 11.2 mm rain event which occurred on 

August 1 occurring over 9 hours, and a 3.6 mm rain event on 

August 3 occurring for 1.5 hours. Means (n = 16) are shown for 

each treatment. 

Fig.5.26. Substrate volumetric water content of platform-scale 

experimental green roofs with increasing proportions of organic 

content following an 18.4 mm rain event which occurred on August 

13 which occurred over 24 hours, and a 2.2 mm rain event on 

August 16 which occurred over 7.25 hours. Means (n = 16) are 

shown for each treatment. 
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Fig. 5.27. Substrate volumetric water content of platform-scale 

experimental green roofs with increasing proportions of organic 

content following a 15.0 mm rain event which occurred over 

12.25 hours on August 28, followed by 3 mm event lasting 7 

hours on September 2, and a 20 mm event lasting 5 hours on 

September 12. Means (n = 16) are shown for each treatment. 

 

Fig. 5.28. Substrate volumetric water content of platform-scale 

experimental green roofs with increasing proportions of organic 

content following a 28.2 mm rain event which occurred over 7 

hours on September 21. Means (n = 16) are shown for each 

treatment. 
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Interestingly, substrate VWC (starting immediately following the rain event, assumed to 

be FCunsat) ranged from 18-22% for most dry downs; however, for the fourth dry down (Fig. 

5.26), multiple dry periods were combined and the maximum substrate VWC reached almost 

30% for the third rain event. This could be evidence of hydrophobicity or water repellency – 

substrate VWC reached 30% when a rain event started after only 3 dry days – the substrate VWC 

was above 8% at the start of the third rain event, which may have allowed for easier re-wetting. 

Hydrophobicity is primarily caused by the fulvic and humic acids in organic matter, although the 

amount of organic matter is not correlated to the degree of hydrophobicity (DeBano, 1981). The 

data may indicate that when substrate VWC falls below 8%, the ability to re-wet is hampered 

and therefore subsequent maximum VWC is closer to the 18-22% range. This field data further 

supports my delineation between FCsat and FCunsat as discussed in Chapter 4.  

 Substrate VWC in the 20% organic matter treatment was lower than all other treatments 

and reached a much lower VWC for the final dry down (Fig. 5.28). It is worth noting that this 

15-day dry period was the longest dry period of the entire calendar year and occurred 

immediately prior to Hurricane Sandy. Substrate VWC during the four days of Hurricane Sandy 

is presented in Fig.5.29.  Interestingly, substrate VWC during Hurricane Sandy was highest for 

the unplanted control, and the maximum VWC was around 30%. Planted treatments had similar 

VWC for the duration of the event, which ranged from 18-20%. Substrate VWC was expected to 

reach FCsat values, or at least rise consistently above 30% during this extended rain event. One 

explanation could be the higher porosity of the media – green roof substrates are engineered to 

be rapidly draining to avoid ponding during intense rain events – in this case, ponding certainly 

never occurred. However, Figure 5.25 demonstrates substrate VWC did at times reach 30%. 

Another explanation for the lower maximum VWC during Hurricane Sandy could be 
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hydrophobicity due to the 15-day dry period immediately preceding the precipitation event. 

Another interesting result is that planted treatments had consistently lower substrate VWC during 

Hurricane Sandy than the non-planted control. While the relationship between root density and 

substrate total VWC is not well understood, it is worth noting that VWC was more stable for 

planted versus non-planted treatments.  

Fig. 5.29. Substrate volumetric water content of platform-scale experimental green roofs with 

increasing proportions of organic content during Hurricane Sandy, a 108.4 mm rain event which 

occurred over 4 days from October 9 to October 13. Means (n = 16) are shown for each 

treatment. 

 

 

5.3.3 Stormwater Retention 

 Platform runoff was quantified for 21 rain events from July 2013 to November 2013, as 

summarized in Table 5.1. There were many small (<12.5 mm) events, contributing to 100% 

retention for many events. For several medium events (12.5-62.5 mm), the event duration was so 

long that retention was near 100%.  
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Table 5.1. Table of rain events for which runoff from experimental green roof platforms planted with increasing proportions of organic matter 

(10%, 20%, and 40%) was captured. Means (n=4) of retention percent are given. Rain events are delineated by size (small <12.5mm, medium 

12.5-62.5mm, large >62.5mm).  
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 Retention was plotted by storm size (depth) and intensity (depth per minute), and is 

presented in Fig. 5.30 and Fig. 5.31. There was no significant relationship between organic 

content storm water retention by storm size or intensity.  

 

Fig. 5.30. Retention by storm size for experimental green roof platforms planted with substrates 

with increasing volumetric (10%, 20%, and 40%) proportions of organic matter. Events ranged 

from July 12 to October 9, 2013. 
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Fig. 5.31. Percent retention by intensity (total event volume divided by event duration) for 

experimental green roof platforms planted with substrates with increasing volumetric (10%, 

20%, and 40%) proportions of organic matter. Events ranged from July 12 to October 9, 2013. 

 

 

 Due to the high proportion of events with 90% retention or better (14 of 21), runoff for 

four events were plotted for each treatment (n=4), for five events retaining less than 90% of a 

rain event (Figs. 5.32, 5.33, 5.34, and 5.35). Runoff from an August 13 event, in which 18.4 mm 

fell over the course of 24 hours, shows a higher peak runoff for unplanted treatments (Fig. 5.32).  

Runoff from a September 12 event peaked more rapidly than other events, which was expected 

due to the event intensity - 20 mm fell in only 5 hours (Figure 5.33) – although it is interesting 

that after approximately 2 hours, runoff had all but stopped, with only a single tip (0.04 L per tip) 

approximately every ten minutes. 
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Figure 5.32. Runoff from experimental green roof platforms planted with substrates with increasing volumetric (10%, 20%, and 

40%) organic matter during a rain event occurring on August 13, 2013, in which 18.4 mm fell over 24 hours. Means (n = 4) are 

shown for each treatment. 
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Figure 5.33. Runoff from experimental green roof platforms planted with substrates with increasing volumetric (10%, 20%, and 

40%) organic matter during a rain event occurring on September 12, 2013, in which 20 mm fell over 5 hours. Means (n = 4) are 

shown for each treatment. 
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A September 21 event – 28.2 mm in only 7 hours – shows runoff occurring more rapidly for 

unplanted platforms, as well as a higher peak volume for unplanted platforms compared to 

planted treatments, although no treatment differences for planted platforms was detected (Fig. 

5.34). Runoff from this event was more characteristic to Starry’s (2013) results, which indicated 

planted platforms retain more stormwater than unplanted platforms. Finally, runoff during 

Hurricane Sandy, the largest event of 2013, is presented in Fig.5.35. Rain totals for the four day 

event reached 108.4 mm. As expected, planted and unplanted platforms performed similarly, as 

did all planted treatments. Again, these results confirm Starry’s conclusions that green roof 

stormwater retention performance is largely dictated by storm characteristics – namely volume 

and intensity.  Hurricane Sandy was an outlier event in terms of total precipitation volume. 

Nonetheless, the experimental green roof platforms did retain some storm water from the event – 

performance ranged from 30-40% depending on treatment (Table 5.1), although no significant 

differences for any treatment during any event were detected.   With the exception of the 

standard Rooflite™ media during the first dry down, evapotranspirational water loss from 

planted treatments surpassed evaporative water loss from unplanted treatments within the first 48 

hours of the dry down. 
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Figure 5.34. Runoff from experimental green roof platforms planted with substrates with increasing volumetric (10%, 20%, and 

40%) organic matter during rain event occurring on September 21, 2013, in which 28.2 mm fell over 7 hours. Means (n = 4) are 

shown for each treatment. 
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Figure 5.35. Runoff from experimental green roof platforms planted with substrates with increasing volumetric (10%, 20%, and 

40%) organic matter during Hurricane Sandy, which lasted from October 9 to October 13, 2013, in which 108.4 mm fell.  n = 4 for 

each treatment. 
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One limitation of field work is smaller sample size (in this case, n=4), so while this may 

have played a role, the results may also highlight an industry-wide issue: what defines a 

“successful” green roof? For many, a successful green roof is one which has green vegetation 

growing on it – the idea that “if it’s green, it’s good”. But platforms planted with 10% organic 

matter performed equally as well as platforms planted with 40% organic matter, even with less 

plant coverage, giving credence to the idea regional performance-based (i.e. retention, not visible 

plant growth performance) metrics for green roofs should be developed.  Please note that this is 

not a recommendation for adding 10% organic matter for green roof substrates – the growth 

chamber and destructive harvest data in Chapter 4 suggest more vigorous roots and shoots for 

plants grown in 20% organic matter. But with no retention differences between 20% and 40% 

despite differences in canopy cover, the motivation to choose 40% over 20% is at this point 

largely client-focused – reaching 100% coverage in a shorter amount of time to fulfill the 

expectation that “if it’s green, it’s good”, although performance may be the same.  

5.4 Conclusions 

 Random non-destructive sampling introduced large amounts of variability into the data, 

so it was difficult to draw informed inferences from the effects of substrate organic content on 

plant growth from the fresh and dry weight of S. kamptschaticum. The platform canopy coverage 

data, obtained through pixel analysis of digital photographs, was cleaner and allowed for 

extrapolation of data which confirms the expected result – increased substrate organic content 

leads to increased plant growth, which supports Chapter 4 destructive harvest findings. Dry mass 

data from one harvest date indicated greater shoot dry biomass for 10% organic matter, although 

pixel analysis showed otherwise. This is a direct result of the randomized sampling, because in 

no case was shoot biomass for 10% organic matter greater than that of plants grown in 20% or 
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40% organic matter. Random sampling will likely be a more effective methodology once all 

replicates reach at least 80% coverage, at which time differences in plant biomass will likely be 

identified through harvests as well as pixel analysis.  

 The effects of organic content on substrate VWC is still somewhat unclear. Because 

substrate VWC is largely affected by storm characteristics and antecedent moisture conditions, 

there is no clear conclusion; however, I assert that when substrate VWC falls below 8%, 

substrates will not hold as much water in subsequent rain events – the field capacity will be that 

of FCunsat compared to lab-estimated FCsat values, as discussed in Chapter 4.  

 Furthermore, the effects of organic content on storm water retention are difficult to 

discern due to the numerous rain events in 2013. Runoff data indicates platform discharge 

occurred more quickly for unplanted platforms compared to planted platforms for at least two 

events (Figs. 5.32 and 5.34), but there were no statistically significant differences in retention 

values for any treatment. Retention was above 90% for all but 5 of 21 measured storms, 

attributed to storm characteristics – most measured events were either small in volume, long in 

duration, or a combination of both. Also of importance is that runoff was not measured until one 

year post-installation – perhaps differences in retention would have been present during the first 

season’s growth. Conversely, differences in retention performance due to substrate organic 

content may not be detectable until after several seasons.  It is likely that data 3-5 years post-

installation would provide a clearer picture of the effects of substrate organic content on 

stormwater retention.  

In conclusion, the effects of organic content on storm water retention is a complex issue 

that should continue to be studied, and likely will not be understood without multiple seasons of 

data in order to account for climatic variability from year to year.  
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Chapter 6:  Conclusions 

 As green roofs gain popularity as stormwater management tools, regulatory agencies are 

defining metrics and setting parameters for green roof performance around the world.  Since 

these systems are dynamic, it is integral to better define the effects of components, specifically 

substrate, on plant growth, hydraulic properties, and stormwater retention.  

 The freeze-thaw analysis in Chapter 2 demonstrated firstly a need for greater 

accountability within the green roof industry, because none of the three commercial extensive 

green roof substrates met FLL particle size distribution guidelines as received direct from the 

manufacturer. Furthermore, all three blends showed significant (p<0.05) particle degradation 

when subjected to 30 freeze-thaw cycles, which speaks to the need for performance-based 

metrics. The freeze-thaw analysis also demonstrates that green roof system design, regulations, 

and performance metrics are likely to be most effective when developed on a regional basis. Not 

all regions experience the extreme temperature fluctuations and freeze-thaw cycles of the Mid-

Atlantic; however, substrate analysis of established (3-7 years post-installation) green roofs in 

the region indicate that green roof substrates are not maintaining their physical properties, which 

may partially explain the number of green roof failures in the region.  

 Lab analysis of the matric potential and hydraulic conductivity of extensive green roof 

substrates in Chapter 3 failed to detect in significant differences based on substrate organic 

content, although the precision of the technique was excellent; however, the HYPROP© method 

may not be appropriate for extensive green roof substrates or other highly porous media. The 

system was developed for use with soils; the high porosity of the extensive green roof substrates 

led to tensiometer water column caviation at around -30 kPa. Similar values may have been 

attained using the tension table method; nonetheless, cavitation occurred outside of the range of 
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plant unavailable water (-50 to beyond -500 kPa), which are the tensions at which organic matter 

is most likely to affect matric potential and hydraulic conductivity.  

 The results from Chapter 2 and Chapter 3 call into question the relevancy of component-

based guidelines, such as those from the FLL and even ASTM.  If stormwater retention is the 

driving force behind green roof design and installation, do particle size distribution and matric 

potential matter? These parameters may affect and likely do affect stormwater retention; 

however, current guidelines are based on lab analyses of components, a disjointed approach that 

apparently does not account for actual performance from the empirical data shown in Chapters 4 

and 5, with regards to plant water extraction and the effects of rainfall intensity on efficiency.  

We need to delve beyond the basic assumptions that maximum water holding capacity will be 

achieved during each rain event. I assert that a more appropriate and accurate way of 

standardizing green roof design and estimating green roof performance is to shift the focus from 

lab-based component analysis to system-based stormwater performance analysis. Without actual 

performance data we cannot know how much stormwater a system will actually retain, and since 

current technologies allow for data collection there is no excuse not to expand the body of actual 

roof performance-based literature.  

 Growth chamber (Chapter 4) and platform-scale (Chapter 5) plant growth analyses using 

substrate moisture sensors may offer better predictions of plant water use in extensive green roof 

substrates with increasing (10%, 20%, and 40%) volumetric proportions of organic matter. 

Sedum kamptschatcicum grown in 40% organic matter were larger in both studies. The increased 

biomass with increasing volumetric proportions of organic matter for the platform-scale study in 

Chapter 5 may be due to increased nutrient content – as apparent in Appendix E, which indicates 

that, depending on treatment, these experimental platforms contained a range of 55-222 g N per 
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platform. While every platform was fertilized each spring according to FLL guidelines, increased 

plant coverage in 40% organic matter may be attributed to nutrient availability, which is different 

from the pot-scale study in Chapter 4, when differences were more likely due to differences in 

water availability because od the limited rooting volume. For the pot-scale study, nutrient 

availability ranged from 0.19 to 0.76 g N per pot. These results demonstrate that water may be 

the more important resource during establishment (i.e. the first six months), but longer-term plant 

growth is more perhaps equally sensitive to nutrient availability.   

Interestingly, substrate VWC reached below 5% during three consecutive dry down 

periods in the growth chamber study. Similar VWC was reported during post-rain event dry 

down periods for the platform analyses in Chapter 5. These data indicate plant roots are 

accessing substrate water previously assumed to be unavailable – Chapter 3 results demonstrate 

that defining plant unavailable water for green roof substrates is challenging due to limitations of 

current analytical laboratory tehcniques. Regardless of these issues, Chapters 4 and 5 illustrate 

clearly that plant roots are extracting water from substrates beyond substrate moisture contents 

that have been previously demonstrated.  

 While plant roots did evapotranspire a large proportion of the water held by the substrate, 

there were no treatment differences in stormwater retention.  This could be an artifact of storm 

characteristics – most of the measured events were either small in size, short in duration, or a 

combination thereof. Another likely explanation is that the effects of substrate organic content on 

stormwater retention may not detectable until the systems are more mature – i.e., beyond three 

years post-installation. Retention data was based on the second growing season for the 

experimental platforms, so while plant growth differences were identifiable, these may not yet 

have a measurable impact on retention. The growth differences between treatments will only be 
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compounded with each growing season – larger plants in 40% organic matter will build a thicker 

thatch layer, which will add even more organic matter back into the system through microbial 

degradation – I expect analysis of year 5 data will better elucidate the effects of substrate organic 

content on stormwater retention.  

 In addition to identifying the need for more rigorous performance-based guidelines and 

regulations regarding stormwater retention green roofs, my work demonstrates the ability of 

Sedum kamptschaticum to access substrate water previously assumed to be unavailable. While 

the volume of plant available water was not defined, these findings helps move forward the 

literature and should help inform policies with regards to green roof stormwater retention 

estimates. This work also clearly defines the need for delineation between lab-based maximum 

water holding capacity (i.e., FCsat) and the more realistic field-based maximum water holding 

capacity (i.e., FCunsat). Together these results offer more understanding to expected green roof 

retention and lay the foundation for more actual roof performance monitoring.  
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Appendix A. 

A carbon cost analysis of local (Frederick, Maryland) crushed brick was completed to 

provide a basis of comparison for expanded mineral substrates. The brick are obtained direct 

from a brick manufacturer in Frederick, Maryland and are considered “seconds” – either due to 

imperfections in color or integrity of the structure (cracks, chips, etc.). These seconds are culled 

from the production line prior to shipment and historically are stored in bulk by the manufacturer 

indefinitely (Michael Furbish, Furbish, pers. comm.). The carbon cost analysis for crushed brick 

as a green roof substrate starts at the point the brick is obtained as seconds from the manufacturer 

for the purpose of crushing and blending into media. A portable crusher is used on-site at the 

brick factory, and the crushed material is then transported to the blending facility.  

For the sake of simplicity, the carbon comparison does not account for transportation 

costs because expanded minerals also must be transported from the manufacturer to the blending 

facility. Therefore, the only carbon cost associated with the crushed brick is the actual crushing. 

The crusher used was a diesel-powered Eagle 1200 CC crusher, and yields about 225 tons/hour 

for particle sizes less than 1” (2.25 cm). For these particle sizes, one ton is roughly one cubic 

yard (based on bulk density of 1177 g/L). The crusher consumed 9.7 gal diesel fuel per hour. 

Burning one gallon of diesel fuel yields 22.38 lbs CO2, coming to 201.42 lbs CO2 per hour from 

the consumption of diesel fuel. Assuming a continuous 225 tons produced per hour, the total 

carbon cost comes to 1.12 lbs CO2 per ton, equal to 0.5 kg CO2 per ton (cubic yard). This is far 

below Elliot’s (2007) and the Expanded Shale, Slate, and Clay Institute’s (2011) reported 110 kg 

CO2 per cubic yard expanded mineral. 
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Appendix B 

 

Particle size distributions of mineral components (Figure A.1) and substrate blends used 

(Figure A.2) in Chapters 3, 4, and 5. n = 5 for each treatment; samples were oven-dried at 110 C 

for 48 hours prior to sieving using a Meinzer 11 shaker for 20 minutes and ASTM sieves 8, 16, 

30, 45, 60, 100, and 200. Data are presented as percent weight of each diameter range per total 

sample weight. 

 

 
Figure B.1. Particle size distribution of recycled brick and scoria which made up the mineral 

component of the experimental extensive green roof substrate blends. n = 5 for both treatments and 

differences determined by independent student’s t test at each particle diameter with α = 0.05. 

Significance indicated by **, p<0.01.  
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Figure B.2. Particle size distribution of three experimental extensive green roof blends composed of 60:40 recycled brick:scoria and increasing 

volumetric proportions of organic matter plus Rooflite ™, an industry standard ready-to-plant blend. n = 5 for all treatments and differences were 

determined using Scheffe’s adjustment for multiple means comparisons at α = 0.05.  
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Appendix C. 
 

Fig. C.1 Substrate organic content based on loss on ignition analysis. All roots were removed by 

hand from samples of planted treatments. The unplanted treatment was mixed with 10% organic 

matter initially. Loss on ignition was achieved by burning samples in a muffle furnace at 530 C 

for four hours, following the methodology outlined by Heiri et al. (2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 155 

 

Appendix D 

 

Volumetric water content (mL3/mL3) of three experimental green roof substrates with 

increasing (10%, 20%, and 40%) volumetric proportions of organic matter was measured 

continuously by the HYPROP© method (Schindler et al., 2010) with Decagon Devices ECHO-

5TM moisture sensors inserted into the cores (Fig. C.1). Substrate VWC values are actual 

weight-based values measured by loss of weight during evaporation. Substrate matric potential 

(VWC plotted against pF) is presented in subset A while substrate VWC is plotted against 

millivolts (moisture sensor output) in subset B. Maximum VWX captured by the sensors is a 

little less than the maximum HYPROP© VWC because the HYPROP© begins taking 

measurements immediately after the instrument is assembled; evaporative water loss had begun 

before and during sensor insertion. Core depth and sensor length are both 5 cm, so great care was 

taken not to disturb or damage the tensiometers or pressure transducers (Fig. C.2), so there was a 

time delay between the start of HYPROP© measurements and the start of sensor measurements. 

Moisture sensors captured substrate VWC beyond the measurement range for the HYPROP©, 

which stops at the point of tensiometer water column cavitation.
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Fig. D.1. Particle size distribution of recycled brick and scoria which made up the mineral component of the experimental extensive green roof 

substrate blends. n = 5 for both treatments and differences determined by independent student’s t test at each particle diameter with α = 0.05. 

Significance indicated by **, p<0.01.  
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Fig. D.2. Photograph illustrating the HYPROP© measurement system being used in conjunction with 

Decagon Devices Echo-5TM moisture sensors, which are connected to an EM-50 data logger. The 

HYPROP© collected measurements at 10 minute intervals; the logger recorded by-minute averages 

every 5 minutes.  
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Appendix E. 

Mushroom compost is a common horticultural substrate amendment and its nutritional 

content has been widely reported. Fidanza et al. (2010) reported the N-P-K values of mushroom 

compost from 30 mushroom compost facilities across Southern Pennsylvania. The authors 

reported total N to be 6.4 lbs/yd3, total phosphorus (as P2O5) as 1.67 lbs/yd3, and total potassium 

(as K2O) to be 5.89 lbs/yd3. Table X.1 presents extrapolated values for the growth chamber study 

in Chapter 4 (g per pot per treatment) and for the platform-scale field study in Chapter 5 (g per 

platform per treatment).  

 

 

Fig E.1. Extrapolated nutrient availability (N,P,K) per gram for the pot-scale growth chamber 

study presented in Chapter 4 and the platform-scale field study presented in Chapter 5.  
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Glossary 

 

FCsat: Field capacity as determined after saturating samples for a minimum of 24 hours and after 

gravitational drainage. 

 

FCunsat: Field capacity as determined without any extended saturation, after gravitational 

drainage. 

 

pF: The base 10 logarithm of soil or substrate water potential in cm. 
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