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1. Introduction

For decades, baseball has been heralded as “America's favorite pastime.” Watching the two
teams taking turns pushing their skills to the limit over the nine innings has entertained generation
after generation. Naturally, the game's popularity leads to very stiff competition on an international
level; players throughout history have tried to increase  their equipment's performance in any way

possible (i.e. the saliva-covered "spitball," used until 1920@1D). The balls themselves have gradually
become more standardized over time - there is a single, official ball used in all MLB game. Contrast
this with the rules  regarding bats,  which list specifications,  but leave some choices to the player
regarding exact bat length and width.

The bat's “sweet-spot” is the location on the bat where, when hit by the ball, the least vibra-
tions are felt by the hitter. With less vibrations, the hitter has a significant increase in the amount of
control he or she has over the ball. Bats are frequently advertised with the size of the sweet-spot, but
often this is hard to verify because of its complexity to test and calculate, and also due to the gray
area of what exactly the sweet spot is.
 Major League Baseball, like any sports league, worries about some players getting an unfair
advantage, whether it be through steroids, knowledge of the other teams strategy, or equipment. The
equipment issues often start with the bat, with players trying to modify their bat to get an extra kick
on the ball. By “corking,” or drilling a hole down the center of the bat and replacing the wood with
cork, players hope the lighter material will allow them to swing the bat faster and send the ball much
further.

Along with  corking, aluminum bats  have  been  banned  by the  MLB. Aluminum bats  are
banned because not only do they pose a danger when thrown by the batter,  but they also can create
whats known as the “trampoline effect.”  When a ball strikes a normal wooden bat, the bat creates
transverse waves and vibrates as it hits the ball. However, an aluminum bat is hollow on the inside so
the ball can bend the bat in slightly (causing hoop waves), and then when the aluminum pops out,
similar to a trampoline, the added force will send the ball much farther. The goals of this research
project are to model where the baseball bat sweet spot is, and whether corking or aluminum create a
larger sweet spot, or an unfair advantage for the hitter.
 The “sweet spot,” although often defined to be the spot where the bat can impart maximum
power to the ball, can also be defined as the spot that provides maximum comfort to the batter. This
comfort is related to the amount of force and vibrations the batter feels when the ball-bat collision
occurs. It is not necessarily true that these spots overlap, however many batters believe that the sweet
spot for comfort is the point for optimal power output.

Our  analysis  consists  of  an  evaluation  of  the  spot  where  the  max  exit-velocity can  be
achieved, where the batter will experience max comfort, and finally whether or not these two spots
coincide or remain separated in the bat. Also, the analysis consists of whether or not different types
of bats, specifically corked or aluminum, have an effect on these spots.
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2. Model and Results

� 2.1 - Analyzing a Wooden Bat

Assumptions:

•  The bat acts as if it is pivoting about the batter's wrists.
•  The pivot point is considered to the foot of the bat.
•  Based on research we assume the Coefficient of Restitution to be .546 and the typical ball speed to
be 3880 cm/s (90 mph/hr).
•  The bat only revolves around the pivot axis.
•  The bat contacts the ball squarely and at a single point.
•  The entire collision takes place on a plane. The bat does not rotate along any other axis than that of
the pivot.
•  The ball-bat contact time is infinitesimally small.
•  The bat can be accurately modeled using a free-free beam vibrational analysis equation.
•  Bat and ball have an impact angle of 90 degrees.
•  The bat being used is a white ash wood Louisville Slugger #C271.
    

2.10 - Finding the Impact-Point for Maximum Exit-Velocity

In order to find the spot that causes maximum ball exit-velocity, the first step is to consider a
simple torque-based analysis. The  motion of the bat  swinging can be modeled as that of a  beam
twisting on a pivot. The pivot point is considered to be the knob of the bat. This is due to the fact that
it is close to the point that the batter  holds and pivots the bat from. According to the concept of
torque, as the bat is swung it has an angular acceleration. The motion of the bat can be described by
angular acceleration over time that results in a final angular velocity at the instant before impact with
a baseball.  This angular velocity is uniform for all points on the bat, but the corresponding linear
velocities increases linearly with respect to the distance from the pivot point.

vbat = Ωx

vball - corrected = vball + Ωx

Ω = angular velocity

vball = velocity of ball at impact

x = distance from pivot at base of bat

vball - corrected = relative incoming ball speed

At the same time that the bat is being swung, the baseball is being thrown by the pitcher. At

the moment of the ball-bat collision, the ball  has speed v0.  Typical speeds of v0  are  from 80-90

mph@8D. To model the combined effect of the speed of the bat and the speed of the incoming baseball

at the point of collision, we consider the idea from Galilean relativity that the properties of mechani-
cal systems remain unchanged under change of reference frames. Using this, instead of considering
the baseball to be incoming at a speed vo and the bat to be at a speed Ω x, we consider the ball to be
traveling at v0 + Ω x and consider the bat to be at rest, since only the relative velocity matters.
              A useful concept in considering how the ball rebounds upon impact with the bat is the
coefficient of restitution (COR). The COR is a unitless, empirically-derived parameter that describes
the collision behavior of two specific  objects.  Specifically, in a collision between the two objects
where one is considered to be an immovable wall and the other an object about to collide with the
wall, the COR is the ratio of the post-collision velocity of the object to its own impact velocity:

Team 8279.nb  3

Printed by Mathematica for Students



At the same time that the bat is being swung, the baseball is being thrown by the pitcher. At

the moment of the ball-bat collision, the ball  has speed v0.  Typical speeds of v0  are  from 80-90

mph@8D. To model the combined effect of the speed of the bat and the speed of the incoming baseball

at the point of collision, we consider the idea from Galilean relativity that the properties of mechani-
cal systems remain unchanged under change of reference frames. Using this, instead of considering
the baseball to be incoming at a speed vo and the bat to be at a speed Ω x, we consider the ball to be
traveling at v0 + Ω x and consider the bat to be at rest, since only the relative velocity matters.
              A useful concept in considering how the ball rebounds upon impact with the bat is the
coefficient of restitution (COR). The COR is a unitless, empirically-derived parameter that describes
the collision behavior of two specific  objects.  Specifically, in a collision between the two objects
where one is considered to be an immovable wall and the other an object about to collide with the
wall, the COR is the ratio of the post-collision velocity of the object to its own impact velocity:

COR =
v f

v0

Given that the baseball  is considered to have an initial velocity of v0 + Ω x  the final  exit
velocity will be:

COR Hv0 + Ω xL
The typical value for the COR between an MLB baseball and a Louisville Slugger #C271 is

0.546 ± .032@2D. To maximize the velocity given by this simple torque-based model we consider that
the  only  variable  is  x,  the  distance  along  the  bat,  and  when  x  is  maximized  the  quantity
COR Iv0 + Ω x M is also maximized. Thus, from the simple model, we see that the best place to hit the

ball to maximize its exit velocity and thus distance is with the end of the bat.

2.11 - Modeling as a Free-Free Beam

To explain the empirical finding that the maximum exit-velocity “sweet spot” is not in fact at
the end of the bat, we now consider the additional effect of bat bending mode vibrations that may
explain this.  Bending modes are harmonics of a certain type that baseball bats and beams in general
can undergo in which the material of the bat itself bends, forming standing waves.  The nodes of
these harmonics are points where the bat does not bend, and antinodes are where maximum bending
occurs.  From our research we discovered that the ball-bat collision can be modeled by treating the
bat as having the vibrational behavior of a uniform beam with ends that are not clamped, also known

as a free-free beam@3D.

The free-free beam is a physical idealization of a uniformly distributed solid body rod that is
capable of vibrating with independent normal modes or harmonics. Treating the bat as a free free
beam, the ball striking the bat could be a cause of excitation of these harmonics. The energy trans-
ferred  as a result  of these excitations could be different  along the length of the bat.  This  energy
transferred into vibration could detract from the energy of the ball post-collision.

               Each harmonic takes the form of a standing wave composed of nodes (where no oscillation
occurs), antinodes (where complete oscilation occurs), and a spectrum of oscillation in between.  For
our model, if  the ball  strikes a  location on the bat  where  a  harmonic's node is located then that
harmonic is not excited and the energy is conserved in the baseball. If it strikes any other position,
then the extent to which that harmonic is excited is specified by the distance from the harmonic's
antinodes--the closer to an antinode the ball strikes, the more energy is imparted to the bat and the
less remains with the ball. In our model, we quantify this energy loss from each bending mode by
associating a negative contribution to the ball's exit velocity with each harmonic. 

              Each harmonic consists of evenly spaced, alternating nodes and antinodes where each of the
ends is always an antinode. These harmonics are vibrations in the wood of the bat itself, representing
bending  and  deformation in  response  to  the  baseball.  However  the  first  two harmonics  are  not
included due to the fact that they in fact are simple translational and rotational displacement (See

Images 1 and 2), not vibration, thus we did not include them in our analysis@4D.
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Images 1 and 2: These describe the lack of fundamental frequencies 1 and 2.
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Images 1 and 2: These describe the lack of fundamental frequencies 1 and 2.

For all higher harmonics we can model a coefficient of vibrational stimulation (CVS) to which
the energy imparted into the harmonic is proportional to the number of the harmonic, n:

CVS = cos I Π xHn -1L
L

M
This coefficient ranges from [0,1] and achieves a minimum where vibrational stimulation is

minimized  (nodes),  and  is  maximized  where  vibrational  stimulation  is  maximized  (antinodes).
Figure 1 shows a graphical visualization of the pattern of stimulation of the different harmonics given
that the ball strikes at different locations on the bat.
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Fig. 1: A series of plots representing the relative excitation of the nth harmonic of the bat's bending mode. 

The first plot represents the third harmonic (n = 3), and each successive plot is the subsequent harmonic. 

In addition,  the  amount of  energy transferred  into the  harmonics from the  impact  should
depend on the elasticity of the collision. For example, a completely elastic collision would not lose
any energy to vibrations. Because the elasticity of the collision is captured by the COR, the factor (1 -
COR)  is  introduced.  The  equation also takes into account  the  incoming ball's  energy in order  to
account  for  the  energy lost  in  the  form of  the  combined collision velocity given by expression
v0 + Ω x.  This  is  because  it  is   reasonable  to suspect  that  the  amount of  energy lost should be
proportional to the amount of energy put into the system.

Because there are an infinite number of harmonics it is reasonable to suspect that the contribu-
tion of each subsequent harmonic would be less than the previous one's or else an infinite energy
contribution would occur which is clearly unrealistic. To create a dropoff in the energy lost due to
each subsequent harmonic we introduce a factor of ã-n. This approximately ensures that the energy
contributions from the harmonics do not exceed the input energy of the collision. Finally, a constant k
is introduced to scale the harmonics, as we expect that the actual value for the amount of energy lost
due to the bending modes is proportional to the input factors we have introduced, but may or may not
be equal to them. The energy loss due to the bending modes is constant, so the value of k is set to 3 in
order  to  provide a  concrete  illustration of  the  effect  of  vibrational  energy loss.  In  practice,  this
constant's value would be empirically determined:
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vlost = k * Hv0 + Ω xL * Ún=3
¥ Iã-n H1 - CORwoodL I cos I x Π Hn-1L

L
M MM

L = length of the bat

n = number of harmonic

k = scaling constant

The  loss of energy of each  harmonic given in this form manifests itself  as  a  decrease  in
velocity of the ball post collision. Using this velocity loss we find the sum of the first 48 significant
harmonics' contributions to approximate those of the infinite set of possible harmonics, and subtract
this total loss from the expected ball return velocity given by the simple torque-based analysis above.
Results of this model are shown in Figure 3.

20 40 60 80
Distance from base of bat HcmL

2000

2500

3000

3500

4000

Exit velocity of ball Hcm�sL
Predicted Exit Velocity With and Without Bending Modes

Fig. 2: This is a graph of the ball's return velocity both with and without bending modes.

The blue, linear function  is the torque-based model, while the jagged, purple function  takes into account  energy lost

through vibration modes.
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Looking at Fig. 2, it is clear that the point of maximum velocity of the ball taking into account
vibrations is not at the end of the bat as expected but actually occurs towards the middle of the barrel,
at approximately 62.25 cm from the knob of the bat, whereas the total length of the bat is 83 cm. This
seems to shows that the sweet spot where the batter can acheive maximum exit-velocity is not at the
end of the bat. The best area on the bat with which to hit the ball lies within the range 

2.12 - Maximizing Comfort Levels

              Now that we have found the sweet-spot with regard to exit-velocity, we will consider the
spot at which impact is least jarring on the batter's hands. The batter experiences the sensation of the
sweet spot when he feels virtually no sting transferred to his wrists/arms from the ball-bat collision.
This lack of vibrational feedback can be attributed to the baseball striking the bat in a location where
excitation  of  vibrational  harmonics  is  minimized.  Recent  studies  from MIT  have  indiciated  that

human hands  respond primarily to vibrations to frequencies  below 500 Hz@5D,  indicating that  the
primary harmonics  of  interest  are  those  whose  frequencies  fall  below this  limit.  The  canonical
expression for the frequency of a free-free beam vibration is given by the following equation:

I H2 n + 1L Π

2 L
M2

I1.22*108M 1

12
J.75 Π Ù0LR2 HxL âxN^4

Ρwood * Π Ù0LR2 HxL âx

2 Π

3 4 5 6 7 8 9 10
229.279 379.013 566.18 790.78 1052.81 1352.28 1689.18 2063.52

Table 1: Frequenceies, in Hz, of the vibrational bending modes of a free-free beam.

Table 1 is a listing of all harmonics between 3 and 10.The third and fourth harmonics are the
only ones below the threshold of 500 Hz as given by the MIT research group, thus they are the ones
of the most significance--higher harmonics can be ignored.  Because the third and fourth harmonics
are the most significant bending modes one can expect a sweet spot range to be between the nodes of
these two harmonics, around which vibrations are minimized. To find the center of this range, we
minimize the total negative velocity contributions from the excitation of the third and fourth harmon-
ics. In Figure 3 we show the sum of these two contributions plotted as a function of x, the distance
along the length of the bat. The values of x of interest are on the right side of the graph in Figure 3,
since the ball is hit only by the barrel of the bat, and not close to where the hands are placed. Thus
the sweet spot in terms of comfort lies between 58cm and 70cm, where the vibrations are minimized.
By consider the local minimum in the region of interest (the barrel of the bat), an approximate range
of the sweet spot can be identified by marking the boundaries where the jarring effect exceeds half of
the difference between the most comfortable point and the point of greatest jarring, local to the barrel.
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Fig.  3:  The  bat  is  jarred  least  when  the  ball  hits  closest  to  the  nodes  of  the  third  and  fourth  beding  modes.  

The sum of these two functions is shown in blue, as a function of distance along the bat.

An additional factor that may contribute to the minimization of jarring of the batter's hands at
the time of impact is the center of percussion (COP). The  COP is defined as the point of impact
along the bat where rotational and translational contributions to movement of the pivot point of the

bat  cancel  each  other,  resulting in no net  motion of the pivot point@6D.  The  COP  is  given by the

following equation:

B =
I

COM HMbatL

B = distance of the COP to the center of mass

I = moment of inertia around the pivot

Mbat = mass of the bat

COM = distance from pivot to the center of mass

To find the center of percussion, we first modeled the shape of the baseball bat, using image
analysis the Louisville Slugger #C271, a popular bat. We modeled the radius of the bat as a function
of the distance along the length of the bat as a piecewise function. This function was generated from

an image found on the website of the Louisville Slugger Co. of the #C271 bat@7D. The bat appears to
have four basic sections: the knob, the handle, the barrel, and the end's cap. The bat is represented by
a piecewise function to represent  the raidus at a given point x  along the bat's length. The various
functions  used  in  this  piecewise  model were  generated  by drawing function  regressions  through
coordinates on the surface  of the bat;  these  coordinates were determined by examining the pixel
locations of an image of the model #C271 bat and converting their pixel-distances from the midline
of the bat into centimeters. The following is a representation of the radius function:
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of the bat into centimeters. The following is a representation of the radius function:

RHdL =

I.2 + 4.16667 d - 1.7299 d2 M 0 £ d < Lknob

J.2 + 0.987937 +
0.812648

-0.94927+d
N Lknob £ d < Lhandle

K.2 +
13*cf * 7*cf *IãI2 * cfId- 308*cfMM

13*cf + 7*cf * IãI2* cfId-308*cfMM-1MM + 7*cf O Lhandle £ d < Lbarrel

H.2 + -0.8126479434242228 Hd - 571*cf L ^2 + 20*cf L Lbarrel £ d £ Lcap

Lcap = Lbat = the length of the entire bat

cf = the conversation factor between pixels and cm

The radius of the knob was modeled as a quadratic function; the handle was modeled as an
exponentially decreasing function; the barrel was modeled as a logistic function; the cap was mod-
eled as a quadratic function, similar to the knob. These representations are graphed below, and they
are visually very similar to the image of the bat.

20 40 60 80
Distance from Base HcmL

Radius of Bat HcmL

Fig. 4: A side-by-side comparison of the function  of the bat's  radius and an image of the bat itself (with purple lines

indicating the four sections into which the bat was divided).

Given the radius profile of the bat, we can calculate both its moment of inertia and center of
mass. The moment of inertia is given by the following:

IWoodBat = Ρwood Ù0
LÙ-R HxL

R HxL Ù
- R2 HxL-y^2

R2 HxL-y^2 Ix2 + y2M â z â y â x

ICylinder

Ρ
= Ù0

LÙ-R HxL
R HxL Ù

- R2 HxL-y^2

R2 HxL-y^2 Ix2 + y2M â z â y â x

The center of mass (COM) is given by:

COM =
Ù0

L
Ρ x Π R2HxL âx

Ù0

L
Ρ Π R2HxL âx

10   Team 8279.nb

Printed by Mathematica for Students



COM =
Ù0

L
Ρ x Π R2HxL âx

Ù0

L
Ρ Π R2HxL âx

The  COP was found to be 63.9cm from the COM, roughly 36 cm past the end of the bat.
Because our model predicts that the COP is not along the length of the bat, it likely does not con-
tribute to the sweet spot for comfort. For this reason we suspect that the maximum comfort zone is
dictated almost completely by the vibrational dynamics of the third and fourth harmonic bending
modes.

2.13 - Two Sweet Spots?

Many MLB batters are convinced that the sweet spot where they feel very little stinging from
the ball-bat collision is also the sweet spot from which the ball can achieve its greatest exit velocity.
Our results show that the optimal spots on the bat for maximum exit-velocity and comfort are not
perfectly overlapping but are  very close.  The  ranges are,  respectively, (60cm, 75cm) and (58cm,
70cm). There is an overlap of 15cm, which defines the overall sweet-spot. Together they define an
optimal batting range where both comfort and transmitted power are roughly maximized.

� 2.2 - "Corking" the Wooden Model 

Assumptions:

•   The batter is always using maximal force to swing so that the torque remains unchanged as the bat
mass changes.
•   The time spent swinging prior to impact as well as angular acceleration throughout the swing are
unchanged.

2.20 - Finding the Corked Bat's Sweet-Spot for Exit-Velocity

In order  to investigate how corking affects  the max exit-velocity sweet  spot and the max
comfort sweet spot, we consider how the process deviates from our model of a normal bat. Our first
consideration for evaluating the max exit-velocity of a ball is the effect of the corking on the mass of
the bat. The process of corking involves the removal of a cylinder of wood 15.4 cm long and with a

diameter of 3 cm from the barrel of the bat, and then replacing it with cork@8D. Because cork is less
dense than the white ash wood in the bat, the corking results in a net decrease in mass and inertia
enabling faster swinging. Many batters believe that corking the bat will give them quicker reaction
time, thereby enabling them to hit more precisely on the sweet-spot. However, this faster swing speed
does not guarantee  that  more momentum will be  transferred  to the ball  post-impact. In fact  it  is
possible that swinging faster  with a corked bat will actually decrease  the momentum transfer.  To
model the momentum shift due to corking, we consider first  the mass of the bat without corking
against that with corking. The mass of the corked bat is given by:

MWoodBat - MWoodRemoved + MCorkInserted = MCorkedBat

Using the different densities of 0.67 g/cm^3 for white ash wood and 0.25 g/cm^3 for solid
cork, the mass of the new bat comes out to be 0.88kg which is approximately 0.5 kg less. This is in
agreement with the commonly reported decrease in bat weight due to corking of about 1.5 oz@8D. 

In order to model the swinging bat, we expect the batter to exert the same amount of torque,
swing for the same amount of time, and apply a constant torque throughout the swing independent of
bat weight. The torque Τ is constant from the begining of the swing until the time of impact ItimpactM
and the angular velocity at the moment of impact is given by:
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ICorkedBat = IWoodBat -
ICylinder

Ρ
HΡwood - ΡcorkL

MCorkedBat = MWoodBat - HΡwood - ΡcorkL IΠ R2HxL hM

Although the momentum gets imparted to the ball upon impact with the bat, the momentum of
the bat at the point of impact changes directly as the distance along the bat. For this reason, we do not
consider  the  momentum Mbat v = Mbat Ω x  directly  but  instead  consider  the  quantity M × Ω,  from

which all possible momenta at different points on the bat can be calculated.

In order to determine the effect of corking on the differences in this expression of interest we
must determine the following relationship, derived from the expressions for omega and momentum:

MN

IN
=
? MC

IC

The left hand side (LHS) of the relationship turns out to be equal to 2.78e-4 m-2 and the RHS

is equal to 2.87e-4 m-2, having a difference of 8e-6. These ratios are extremely close in value to each
other, suggesting that corking does not actually make a significant change in the momentum of the
bat at the moment of impact with the ball and so does not change the speed of the ball post-collision.
Thus our model does not support the idea that corking enhances the sweet spot effect for maximum
exit-velocity.

2.21 - Minimizing Jarring in a Corked Bat

To model the effect of corking on the sweet spot for maximum comfort, we again consider the
COP as being a possible location where ball impact does not transmit force to the pivot point.  To
find the COP, we re-apply the COP equation, with different values for the moment of inertia and
total mass as given above, as well as the COM below:

COM =
Ù0

L
Ρ HxL x Π R2 HxL âx

Ù0
L

Ρ HxL Π R2 HxL âx

The distance between the COM and COP is given by:

B =
I

COM HMbatL
This distance, when added to the COM distance, places the COP 34.4 centimeters beyond the

end of the barrel, similar to its location on the uncorked bat.  In fact, the difference between where
the COP  is located between the two kinds of bats is 1.8cm, which is an incredibly small margin,
indicating that the COP doesn't change much at all between the two different kinds of bats. Thus, it
would seem that corking does not affect the COP as a contributing factor to the creation of a sweet
spot where the batter's comfort is maximized. Therefore, the analysis of the third and fourth harmonic
bending modes done for the normal wooden bat are assumed to be the defining factor of the maxi-
mum comfort range.
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bending modes done for the normal wooden bat are assumed to be the defining factor of the maxi-
mum comfort range.

� 2.3 - Analyzing Aluminum Bats

Assumptions:

•  The batter is always using maximal force to swing so that the torque remains unchanged as the bat
mass changes.
•  The time spent swinging prior to impact as well as angular acceleration throughout the swing are
unchanged.

2.30 - Analyzing the Aluminum Bat's Sweet-Spot for Exit-Velocity

Bats made of different  materials differ  in their physical properties and thus have different
sweet spot behavior.  Specifically, metal bats made of aluminum have very different properties from
the legal wooden bats typically made of white ash used in Major League Baseball.  Major properties
different in the two materials affecting the exit-velocity that the ball travels include changes in the
material  density,  coefficient  of  restitution,  and  bat  thickness,  the  last  of  which  is  significantly
different since the wooden bats are solid pieces of wood whereas metal bats are generally hollow.
These features may also significantly shift the COP, which may be evidence for a new mechanism
for creating a sweet spot maximizing batting comfort.

The sweet spot for maximum exit-velocity can be found by reapplying the techniques from
the analysis of a normal wooden bat, but with the additional analysis of the so-called hoop vibrational
modes.  The hoop modes are a class of vibrations arising only in hollow bats, such as metal bats, in
which oscillations are purely radial, with antinodes being points of extreme compression and expan-

sion and nodes being points with no radial dilation@9D.  In our model, the hoop modes are taken into
account in the form of a well-known phenomenon called the "trampoline effect", which qualitatively
can be understood as the redirection of energy stored in the bat from collision with the baseball back
into the ball.  A normal wooden bat in our model absorbs energy from the incoming ball and stores it
in the form of bending mode harmonics oscillating in the bat and into the batter's arm.  In the metallic
bat, energy from the bending modes is modeled as being transferred into hoop modes, which then put
energy back into the ball.  In addition, only the fundamental hoop mode is considered, as the rest of
the modes do not make any major contribution to redirection of energy.

To begin, our model first takes into account the torque of the batter's swing in exactly the
same manner  as  done in Section 2.10,  given by v0 - Ω x.   This  part  of the  model describes  the
maximum velocity that the ball would receive at any point along the length of the bat assuming no
vibrations in the bat occur.  The bending and hoop modes are then accounted for by using the same
analysis as in Section 2.11 for bending modes with the difference that we introduce using a sinusoidal
factor that attenuates the negative vibrational contributions along the bat barrel:

LHxL = : cos 2 Π

2 I L f - LiM Hx - LiL Li £ x £ L f

1 x < Lc, L f < x

vball = Hv0 + Ω x L - I k * Hv0 + Ω xL * Ún=3
¥ Iã-nH1 - CORwoodL I cosI x Π Hn-1L

L
M MM * LHxL

Li = beginning of the barrel

L f = end of the barrel

  For all points on the bat between the knob and the beginning of the barrel, the fundamental
hoop mode plays a negligible role and does not introduce any modification to the theory of a normal
wooden bat.  Along the length of the barrel however, the fundamental plays a critical role, and can be
modeled as having an antinode at the center of the barrel and two nodes at the ends of the barrel,
where the significance of the radial oscillations drops off.  The sinusoidal factor introduced in the
equation along the barrel roughly models the energy from bending mode harmonics put back into the
ball from the fundamental hoop mode, with all bending modes' energies going back into the ball at
the antinode (cos HxL = 0) and the normal energy loss for a wooden bat at the nodes (cos HxL = 1). 
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Fig. 5: The blue curve represents the predicted exit-velocities using a normal, wooden bat, while the purple curve shows

the exit velocities for an aluminum bat.

This difference is attributed to the fundamental hoop node redirecting energy from the bending nodes back into the ball.

2.31 - Maximizing Comfort with the Aluminum Bat

In considering the maximum comfort to the batter,  a  plot analogous to Figure 3 is shown
below that  illustrates  the  combined  velocity loss  of  the  third  and  fourth  harmonics  after  being
attenuated  with the  fundamental  hoop mode.  The  region where  the  barrel  of  the  bat  is  located
undergoes a dramatic decrease in velocity loss, indicating that stinging to the hands is also minimized
at this point.  From this analysis it is clear that the addition of the fundamental hoop mode to the
bending modes already existing in a wooden bat greatly reduces the stinging sensation from a normal
bat and increases both the range of values along the bat barrel where stinging is minimal, as well as
the smallest possible amount of stinging.
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Fig. 6: Plot of the negative velocity contribution due to bending and hoop modes (green curve). The dip at 63cm is lower

than the corresponding minimum for the wooden bat (blue curve), indicating the enhanced sweet-spot effect in metal. 
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The  location on the  bat  at  which stinging is  minimized may also correspond to the  new
location of the COP.  For this reason, the COP is recalculated:

IMetalBat = Ρalum Ù0
LÙ-R HxL

R HxL Ù
- R2 HxL-y^2

R2 HxL-y^2 Ix2 + y2M â z â y â x - Ρalum Ù0
LÙ-HRHxL - ∆L

RHxL - ∆ Ù
- HRHxL -∆L-y^2

HRHxL-∆L-y^2 Ix2 + y2M â z

MMetalBat = Ρalum Ù0
LÙ-R HxL

R HxL Ù
- R2 HxL-y^2

R2 HxL-y^2
â z â y â x - Ù0

LÙ-HRHxL - ∆L
RHxL - ∆ Ù

- HRHxL -∆L-y^2

HRHxL-∆L-y^2
â z â y â x

COMMetalBat = ΡalumJÙ0
L

Π R2HxL x â x - Ù0
L

Π HRHxL - ∆L2 â x N

COPMetalBat =
IMetalBat

MMetalBat * COMMetalBat

∆ = thickness of the aluminum shell H.2 cmL

Using the new physical information for the aluminum bat, the COP location came out to be
roughly 28cm from the end of the bat. This is closer than the COP for either the wooden bat or the
corked bat, but is still within a range of 5cm from those. This indicates that the COP is not very
significant; the sweet-spot is determined by the combined effects  of the bending and hoop mode
vibrations as described above.
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4. Analysis

� 4.1 - Louisville Slugger #C271 White Ash Bat

The  first  type of  bat  for  which our  model approximates the  locations of  the  sweet  spots
(maximum exit velocity, minimum sting delivered to the batter) is the Slugger #C271.

The location along the length of the bat for which our model predicted maximum exit velocity
was between 59.5cm and 75cm from the pivot of the handle. This value comes from considering the
contribution to velocity from a  simple torque-based treatment  of  the  bat's  swing, resulting in  an
angular velocity at the moment before impact, as well as from taking into account negative contribu-
tions to the velocity of the ball from bending modes absorbing energy from the ball impact.  With
only  the  simplistic  torque-based  component,  the  predicted  exit  velocity  increases  linearly  with
position on the bat and maximum velocity at the end of the bat.  However, this is empirically known
not to be the case, and the contributions from the bending modes introduce deviations from the linear
model.  The general trend of the exit velocity as predicted from both components of the model is still
that exit velocity increases with position along the bat, as a batter would intuitively expect, but also
has a peak before the end of the bat, in accordance with the empirical result of maximum power
transfer at the sweet spot near the middle of the barrel.  Thus, it would appear that energy channeled
into stimulation of vibratory harmonics is at least a majorly contributing factor to the "sweet spot"
effect for maximal power output.

Our analysis of the wooden bat also shows that the optimal range along the bat's length for
minimal jarring in the hand is from 58cm to 70cm, centered  at  64cm.  These  values come from
consideration of the location of the nodes of the bending modes along the length of the bat where,
according to our model in which impact at a node does not excite the associated harmonics, it is
expected that vibration stimulation is minimized.  In addition, the biological fact that human hands
are largely insensitive to vibrations with frequencies  greater than 500 Hz or so sets a limit on the
number  of  harmonics whose nodes would define  a  region where  the  sensation of  jarring  due  to
impact would be minimized.  The range around the minimum negative velocity contribution from the
most important bending modes spans a length of 12cm, which is a fairly large region, indicating that
a hit anywhere near the middle of the bat will cause much less jarring than would be expected outside
the range, such as at the end of the bat.  For this reason, it would seem that the "sweet spot" effect
reported from batters in which the jarring to the hand is minimized near the middle of the barrel is
consistent with our model.

Our model also shows that the COP doesn't affect the batter's comfort.  Our calculations of
the COP place it 32cm past the end of the bat, where it cannot be struck.  For this reason the COP is
not a possible location for the sweet spot, and the location of the nodes of the bending modes con-
tribute the most to where the sweet spot is located.
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� 4.2 - Corked Bat

The second type of bat our model considers is the same Louisville Slugger White Ash bat but
with a 15.4cm long cylinder (with a radius of 1.5cm) of wood removed from the inside of the barrel
of the bat. This hole is filled with a cylinder of cork with the same dimensions as the cavity.

In considering the maximum exit velocity, our model shows that the corking does not signifi-
cantly change the position of the sweet spot for greatest power output.  The difference in M/I for the

normal bat and the corked bat is 8.35e-6 m-2, whereas the actual values for M

I
are 2.87e-4 m-2  and

2.78e-4 m-2, roughly 40 times their difference.   Our model also assumes that there are negligible
differences  in  bending  mode  dynamics  between  the  corked  and  normal  bats,  so  that  negative  
contributions to the ball's exit velocity follow roughly the same pattern as they do in the normal solid
wood bat.  Because the difference in M/I, and thus the momenta of the bats, is so small, and because
the vibrational dynamics are modeled as being very close to those of the normal bat, we have strong
evidence for their being no major shift in the pattern of the sweet spot of the bat at which maximum
power output is achieved. 

Given that vibrational dynamics have not changed under the operation of corking, the bending
modes' nodes have not changed position, and the only other factor  that  could possibly affect  the
location of the sweet spot for minimization of sting to the batter is the location of the COP.  Because
the location of the COP is 30cm past the end of the bat, the influence of the COP has become no
more significant than it was in the case of the normal wood bat.  Thus, the location on the bat where
the batter's comfort is maximized is in nearly the same range in the middle of the barrel as it was for
the normal wood bat. 

Given that the corked bat shows behavior extremely similar to that of the normal wood bat in
where the locations for maximum power output and comfort are located, it is clear that corking the
bat  actually  does  not  make any significant  change  in  the  bat's  behavior,  and  certainly  does  not
enhance the "sweet spot" effect in either of the two definitions for the sweet spot.  While the bat may
be lighter and thus easier to swing, the increase in velocity gained from the decrease in mass is not
great enough to justify corking the bat.  While corking may provide other advantage, such as giving
the batter extra time to position a swing or more easily control the bat, the sweet spot is not influ-
enced.

Because our model indicates that corking does not change the properties of the sweet spot
effect, it does not by itself explain why corking is illegal in MLB.  However, because corking allows
an increase in bat swing speed, it allows the batter to have more time in judging how to hit the ball
and control it.  The official statement outlawing corking and other types of bat alterations as given by
MLB regulations is: "The uses of attempts to use a bat that in the umpire's judgment has been altered
or tampered with in such a way to improve the distance factor or cause an unusual reaction on the
baseball." @10D Although corking doesn't seem to affect the sweet spot as such, the other advantages it
gives to the batter would allow the batter to more easily aim at the ball, thus improving the "distance
factor" that marks the alteration as illegal.
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� 4.3 - Aluminum Bat 

The  final  type of  bat  analyzed  was  a  standard  aluminum bat;  this  was  done  in  order  to
determine how making a bat out of a material other than wood might influence the sweet spot effect.

In terms of the location on the bat where the most power is output, the aluminum bat shows a
similar pattern to the wood bat in that the peak of power output is in the same range of locations
along the bat in both models.  However, the models differ in that the peak exit velocity of the ball
achieved by the metal bat and the exit velocities caused at locations on the bat surrounding this peak
point are much higher than they are in the corresponding region on the wooden bat.  In addition, the
range of locations on the bat where the exit velocities are near the peak velocity is wider than it was
for the normal bat, spanning a length of 17cm as opposed to 12cm.  For these reasons, the metal bat
seems to greatly enhance the sweet spot effect, both in that its values for the exit velocity of the ball
exceed those of the corresponding wood bat near the sweet spot and the range of the sweet spot is
also larger.

The  sweet  spot  effect  of  maximum comfort  for  the  batter  is  similarly enhanced,  as  the
velocity loss due to vibrations is even less near the sweet spot range for the metal bat and the range
for the sweet spot along the length of the bat is increased in the same way as it was for the sweet spot
maximizing exit velocity.  Using the metal bat thus even further reduces any jarring the batter feels
and increases the chance that the batter hits without feeling too much sting.

The sweet spot for maximum comfort to the batter, as with the previous bats, is not affected
by the location of the COP.  Recalculation of the COP for the aluminum bat yields a location for the
COP about 30 cm past  the end of the bat,  following the pattern  of previous bats.   Because  this
location is well past the barrel of the bat where the ball will hit, it is clear that the COP does not play
a role in the positioning of the sweet spot and that the nodes of the vibrations in conjunction with the
fundamental hoop mode determine the sweet spot range.

Our model does indicate  at  least  one reason for why the use of aluminum bats would be
illegal in MLB.  The hollow aluminum bat, due primarily to the prominence of the trampoline effect
in hollow materials, has an enhanced sweet spot effect  for achieving both maximum power output
and comfort to the batter as compared to the wood bat.  Thus, using an aluminum bat would be illegal
to MLB regulations which state that an alteration that "improve[s] the distance factor" is against the
rules.  In addition, because the aluminum bat is so much more powerful than the normal wood bats, it
poses a safety issue as baseballs batted with such bats can travel at alarmingly high speeds and hurt

people in the vicinity of the hitter, such as the pitcher@11D.  Thus, it follows that the aluminum bat

would be illegal, as it is both dangerous for use and gives an unfair advantage to the batter.
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� 4.4 - Conclusion

The goal of this model was to explain the sweet spot effects of maximum exit velocity and
batter comfort in a wooden baseball bat, as well as in corked and aluminum bats. Research suggested
that a baseball bat had two potential sweet spots, one that would provide the maximum exit velocity
of the ball, and one that would provide maximum control. By augmenting a simple torque analysis
with a consideration of vibrational bending modes (and hoop modes in the case of the hollow alu-
minum bat) it was discovered that baseball bats have a "sweet spot range," or a general area that
produces increased comfort and velocity throughout a ball-bat collision. It was shown that corking a
bat, while allowing the batter to swing faster, does not result in an increased momentum of the bat.
However when aluminum bats were considered, the vibrational hoop modes created a "trampoline
effect," which caused the ball to be sprung outward with increased velocity after the ball-bat collision
as compared to the normal wooden bat.

There are many simplifications in our model that could be improved upon in the future by
adding complexity where approximations have been made and providing more careful analysis where
rough models are  used. One major simplification of the model is that in our consideration of the
bending modes of the bat, we assumed that the baseball bat could be accurately modeled by a beam
with uniformly distributed mass and rectangular prismatic shape.  To improve upon this simplifica-
tion, future models should account for the non-uniformity of the baseball bat, especially the differ-
ence in distribution of the mass between the barrel and the handle, which could influence the posi-
tions of the harmonics' nodes and antinodes. 

Another simplification we made in the model is the assumption that the collision of the ball
and bat is simple with negligible friction, a perfect 90ë impact angle between the ball and bat, and no
spin of the bat due to the batter's wrists' motion or on the ball from the way the pitcher threw it.  The
angle of impact would affect  the transfer  of momentum from the bat into the ball and could be a
significant factor.  In addition, the rotational energy of the ball and bat could subtract from or add to
the ultimate translational energy of the ball post-collision, and this contribution should be accounted
for. 

A final major simplification of our model that could be improved upon is the treatment of
hoop modes in the aluminum bat.  Our treatment of the hoop modes is based on the idea that the
fundamental mode redirects energy from bending mode vibration back into the ball's exit velocity.
While this principle may be a valid basis for our model, one of the implications of our model is that a
ball  striking at  the antinode of the fundamental hoop mode actually loses no energy at  all  to the
bending modes of the bat.  While this does capture the essence of our model's hoop mode analysis
principle in that the hoop mode redirects energy, we have no direct evidence that all of the bending
modes' energy is redirected--it is possible that in reality there is a fraction of energy that is always
trapped in the bending modes.  Thus, future models must provide a more careful analysis of the hoop
modes that either justifies the result that all of the bending modes' energy can go back into the ball or
else provides reasoning for the converse. 
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