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ABSTRACT

Title of Thesis:           IMPLICATIONS OF DIVERGENT CORTISOL STRESS 
RESPONSIVENESS IN MALE STRIPED BASS (MORONE 
SAXATILIS)

Daniel A. Castranova, Master of Science, 2003

Thesis Directed by Dr. L. Curry Woods, III
Department of Animal and Avian Sciences

The aim of this study was to identify whether differences exist in reproductive and 

growth performance of male striped bass selected for high cortisol stress responsiveness 

(HCR) and low cortisol stress responsiveness (LCR), when exposed to standardized 

stress challenges before and during the spawning season.  HCR (n=10) and LCR (n=10) 

were identified out of a population of 67 three-year-old striped bass males.  Although 

no significant differences in weight, length, or coefficient of condition were found 

between HCR and LCR, HCR had a significantly greater specific growth rate when 

compared to LCR.  Circulating levels of testosterone and 11-ketotestosterone were 

significantly higher in HCR than in LCR before and during the spawning season.  HCR 
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also had more fish spermiating across all sample dates compared to LCR.  These results 

suggest that striped bass selected for high cortisol stress responsiveness have better 

reproductive and growth performance than fish selected for lower cortisol stress 

responsiveness.  
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INTRODUCTION

As world fisheries harvests begin to reach their maximum sustainable yield of 

90 to 100 million metric tons, the demand for fisheries products continues to increase, 

not because of an increase in per capita demand, but rather due to an increasing 

population  (FAO, 2002).  In order to meet the increasing demand for fisheries 

products, aquaculture production has continued to grow at an average rate of more 

than 9% per year since 1970 (FAO, 2002).  Aquaculture is now responsible for more 

than 20% of worldwide fisheries production (Jennings et al., 2001), but continued 

research is needed to optimize conditions for growth of the industry and to genetically 

select organisms for increased productivity.  Unlike more traditional forms of 

agriculture, in which a few animals are responsible for the majority of production, 

aquaculture includes a diverse group of nearly 200 species (FAO, 2002).

In developed nations, culture is focused on carnivorous finfish species that 

comprise more than seventy percent of aquaculture production (FAO, 2002).  In the 

United States, one of the fastest growing sectors of the aquaculture industry is the 

production of the striped bass (Morone saxatilis) and its hybrids (Harrell, 1997).  

Currently, Morone culture emphasizes the rearing of the sunshine bass (white bass, 

Morone chrysops ♀ X striped bass Morone saxatilis ♂) (Hodson et al., 1999).  

Harrell and Webster (1997) listed the traits that producers thought were most 

influential on production, in order from highest to lowest priority (regardless of 

whether the traits had a genetic component), and at the top of the list was stress 
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tolerance.  The focus of my research was to examine the influence that selecting for 

high or low cortisol responsiveness to stress has on growth and reproductive 

performance in domesticated male striped bass broodstock.  Although cortisol stress 

responsiveness has been shown to be a heritable trait in some fish species like the 

Atlantic salmon (Salmo salar)  (Fevolden et al., 1991), rainbow trout (Oncorhynchus 

mykiss) (Fevolden et al., 1991, Pottinger et al., 1994), and the common carp (Cyprinus 

carpio) (Tanck et al., 2001), it’s heritability has not yet been evaluated in striped bass.             

Understanding the repercussions of selecting broodfish for cortisol 

responsiveness could aid in determining whether further studies should be conducted 

to determine if cortisol responsiveness is heritable in striped bass and if it should be 

used as a selection marker.  Such selection could not only aid in the domestication of 

striped bass, but may also enhance the hybrid striped bass industry by identifying 

superior striped bass males to be crossed with female white bass.  Recent advances in 

cryopreservation techniques of striped bass sperm makes the feasibility of preserving 

genetic material from selected individuals feasible (He and Woods, 2003a,b).

Recent studies in our laboratory have demonstrated that a significant 

heterogeneity exists in the cortisol response to stress in male striped bass (Wang et al., 

2003).  The consequences of selecting striped bass for high and low cortisol stress 

responsiveness are unknown.  The aim of this study was to examine differences 

between male striped bass broodstock selected for high and low cortisol stress 

responsiveness with an emphasis on growth and reproductive function.  

The results of studies examining differences in growth parameters between 

fish selected for high and low cortisol stress responsiveness are ambiguous.  Since 
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chronically elevated levels of cortisol are detrimental to vertebrate animals, it would 

be logical to assume that a fish selected for low cortisol responsiveness would be 

better suited to live in a stressful culture environment as compared to a fish selected 

for high cortisol stress responsiveness, but work done in this area does not support this 

hypothesis.  Pottinger and Carrick (1999a) showed that female rainbow trout selected 

for high cortisol responsiveness had significantly greater weights, lengths, and 

coefficient of condition when exposed to an acute stressor on a monthly basis when 

compared to female rainbow trout selected for low cortisol responsiveness.  However, 

mortality rates were greater in lines of rainbow trout selected for high cortisol stress 

responsiveness when compared to those selected for low responsiveness when the fish 

were exposed to a combined confinement and salt stress (Fevolden et al., 2003).   

Weil et al., (2001) found that rainbow trout selected for low, three-hour-post-stress 

cortisol levels were significantly heavier than fish selected for high three-hour, post-

stress cortisol levels, suggesting that the rate at which plasma cortisol levels decrease 

after a stress is more important than peak cortisol response levels.  

The metabolic effects associated with the stress response are more pronounced 

in lines of rainbow trout selected for low cortisol stress responsiveness when 

compared to lines selected for high cortisol responsiveness (Trenzado et al., 2003).  

When exposed to a combined tank transfer, and confinement stress, low cortisol 

responding lines of rainbow trout had significantly greater plasma glucose and plasma 

lactate levels and significantly lower levels of liver glycogen when compared to high 

cortisol responding lines of rainbow trout (Trenzado et al., 2003).  These results 

suggest that cortisol may not be the mediator of the metabolic divergence seen 



4

between high and low cortisol responding rainbow trout strains (Trenzado et al., 

2003).

Exposure to acute or chronic stressors adversely affects reproductive 

performance  (Schreck et al., 2001). The impact of stress on reproduction can vary 

greatly between species (Barton, 2002).  Stress has been shown to cause a decrease in 

circulating plasma androgen levels in mature male brown trout (Salmo truta) 

(Pickering et al., 1987), in New Zealand snapper (Pagrus auratus) (Cleary et al., 

2000), and in black bream (Acanthopagrus butcheri) (Haddy and Pankhurst, 1999).  

Stress has also been associated with decreased egg size and early ovulation in rainbow 

trout (Contreras-Sanchez et al., 1998).  

Cortisol is the primary glucocorticoid released in teleost fish in response to 

stress, and is believed to be responsible for many of the negative reproductive 

consequences associated with the stress response (Pankhurst and Van der Kraak, 

1997).  Using cortisol pellet implantation to raise plasma cortisol levels to elevated 

but physiologically reasonable levels in sexually mature male brown tout, Carragher 

et al., (1989) noted a decrease in plasma testosterone levels, smaller gonads, and 

decreased pituitary gonadotropin, though plasma levels of gonadotropin and 11-

ketotestesterone were not significantly different when compared to sham implanted 

male brown trout.  In sexually mature female brown trout, cortisol pellet implantation 

caused a decrease in plasma levels of vitellogenin, 17β-estradiol, and a decrease in the 

amount of gonadotropin in the pituitary, though plasma levels of gonadotropin were 

not different when compared to sham implanted fish (Carragher et al., 1989).    

Studies using cortisol infused feeds have shown that cortisol has a significant 
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inhibitory effect on the circulating levels of 11-ketotestosterone and a significant 

reduction in the gonadosomatic index in pubertal male common carp when compared 

to control fish (Consten et al., 2002).  

Whether selection for cortisol stress responsiveness will affect reproductive 

function in cultured fish is still unclear.  Pottinger and Carrick (2000) examined 

reproductive performance parameters in rainbow trout selected for high and low 

cortisol stress responsiveness by measuring sperm counts in males, and plasma 17-β

estradiol, gonadosomatic index, total number of eggs, egg weight / body weight, and 

egg volume in females, as well as mortality rates of eggs from high cortisol 

responding broodstock compared to eggs from low responding broodstock.  No 

significant differences were found for any of the reproductive performance parameters 

examined between high cortisol responding rainbow trout and low responding 

rainbow trout, except for egg mortality rates (Pottinger and Carrick, 2000).  Eggs 

produced from high cortisol responding rainbow trout had significantly higher 

mortality rates than eggs produced from low cortisol responding rainbow trout at 70 

days post fertilization, but because egg mortality rates did not exceed 12% Pottinger 

and Carrick (2000) concluded that selecting rainbow trout for cortisol stress 

responsiveness does not affect reproductive function under non-stressful conditions.  

Whether selecting for cortisol stress responsiveness would have an impact on 

reproductive function if the fish were stressed during the spawning season is not clear 

from this research (Pottinger and Carrick, 2000).  

The goal of my research was to assess the effect of selecting striped bass 

males for high and low cortisol stress responsiveness. The specific objectives were to:
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1. Determine a baseline cortisol response within the population without the 

fish being exposed to the standardized net challenge (once at the beginning 

of cortisol responsiveness testing and once at the end).

2. Identify fish that had consistently high cortisol stress responsiveness, or 

consistently low stress responsiveness when exposed to a standardized 

stressor.

3. Compare plasma cortisol, testosterone and 11-ketotestosterone levels 

between groups of fish selected for high cortisol stress responsiveness, or 

low stress responsiveness during gonadal maturation.

4.  Compare plasma cortisol, testosterone and 11-ketotestosterone levels and 

sperm quality between groups of fish selected for high cortisol stress 

responsiveness, or low stress responsiveness during a simulated spawning 

season. 
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LITERATURE REVIEW

The stress response 

The stress response has been categorized into primary, secondary, tertiary, and 

quaternary responses (Wedemeyer, 1996).  The physiological changes that occur as a 

direct result of the stressor are considered primary stress responses.  When fish 

perceive a stressor, the hypothalamus stimulates the chromaffin cells located in the 

walls of the cardinal vein, in the head kidney region, to release catecholamines 

(epinephrine and norepinephrine) (Reid et al., 1998).  These hormones increase heart 

rate and increase blood glucose levels through glycogenolysis, gluconeogenesis, and 

through the inhibition glycolysis (Hazon and Balmet, 1998).  Catecholamines are also 

responsible for an increase in the oxygen transport capacity of the blood (Wendelaar 

Bonga, 1997).  

In fish, catecholamines also increase gill permeability and ion exchange rates 

(Hazon and Balmet, 1998).  In addition to the release of catecholamines, the 

hypothalamic-pituitary-interrenal-axis (HPI) is stimulated (Schreck et al., 2001).  The 

hypothalamus releases corticotropin-releasing hormone (CRH).  CRH then binds to 

receptor cells in the anterior pituitary, causing the release of adrenocorticotropic 

hormone (ACTH), which in turn stimulates the release of corticosteroids from the 

interrenal cells located in the head kidney.  The primary corticosteroid in fish is 

cortisol, which plays important roles in the mobilization of energy stores, and 
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osmoregulation (Hazon and Balmet, 1998).  Cortisol is believed to have a negative 

feedback effect on the secretion of both CRH and ACTH (Sumpter, 1997).

In addition to the release of catecholamines and cortisol, other factors are 

released into the blood in response to stress including, prolactin, somatolactin, growth 

hormone, and urotensin-1, all of which have been described as playing a role in 

osmoregulation in fish (Wendelaar Bonga, 1997).  It is unclear whether these 

hormones play a role in the stress response or if fluctuating levels of these hormones 

are linked to physiological responses to osmoregulatory dysfunction, and not a direct 

result of the stress response (Wendelaar Bonga, 1997).

  Physiological changes that occur as an indirect result of the perception of 

stress are considered secondary stress responses.   An increase in plasma glucose is 

believed to be caused both by increased levels of corticosteroids and catecholamines 

(McDonald et al., 1997) and is considered a secondary stress response (Mazeud et al., 

1977).  Epinephrine also increases gill permeability, which leads to a loss of plasma 

ions and hemodilution when fish are in a freshwater environment, and 

hemoconcentration when fish are in a salt-water environment (McDonald et al. 1997).  

The change in plasma ion concentration is also considered a secondary stress response 

(Mazeud et al. 1977).  

The stress response can be divided further to include the tertiary responses or 

whole body effects, including decreases in growth rate and reproductive function, and 

further still into quaternary effects, or those that affect the entire population and affect 

larval recruitment and ecosystem dynamics (Wedemeyer, 1996).
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Because the rise in plasma cortisol takes several minutes, it is possible to 

anesthetize two or three fish at the same time and measure their response to an 

induced stressor, and not their response to being netted and anesthetized (Wedemeyer 

et al., 1990).  Cortisol is stable when the plasma is kept in the freezer, which also 

makes its measurement practical (Wedemeyer et al., 1990).  

Although an increase in catecholamines is directly related to the stress 

response, and methods are available to measure catecholamine concentrations in 

blood plasma, the simple act of netting the fish can cause the release of 

catecholamines, which makes it extremely difficult to measure baseline levels.  

Catecholamines are also released in very small amounts, which fluctuate rapidly, so 

even slight stresses can cause large variation.  Normal frozen storage of plasma will 

not prevent catecholamine degradation making the measurements inaccurate and 

causing a major problem if many fish are to be sampled at the same time (Wedemeyer 

et al., 1990).  

Reproduction in teleosts

Striped bass are an anandromous fish species, meaning that they live in a salt 

or brackish water environment, and they migrate into freshwater rivers to spawn.  

Spawning rituals can appear violent to the onlooker and have been dubbed “rock 

Fights”, as several males chase one female as she prepares to ovulate (Cooper, 1983).  

Striped bass are also iteroparous fish (Sullivan et al., 1997), meaning they will spawn 

for several consecutive years after they become sexually mature (Bond, 1996).  In the 

wild, striped bass females reach maturity between three and seven years of age, while 
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male striped bass are believed to mature by age three (Sullivan et al., 1997).  In 

captivity, female striped bass reach sexual maturity faster than wild fish, reaching 

maturity between the ages of three and four (Sullivan et al., 1997).  Individual female 

striped bass often have to go through one full gametogenic cycle before a large 

quantity of viable gametes will be produced (Sullivan et al., 1997).  Captive striped 

bass males can become mature at age one, two, or three. depending on environmental 

and genetic factors (Hassin et al., 2000).

Reproduction in striped bass as well as other teleosts is regulated by the 

hypothalamus-pituitary-gonadal axis.  Several forms of gonadotropin-releasing 

hormones (GnRH) have been discovered in striped bass and other species, including 

salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II), and sea bream GnRH 

(sbGnRH) (Chow et al., 1998).  Presently a total of 12 GnRHs have been discovered 

across vertebrate taxa, but their functions remain unclear, though different forms of 

GnRH in the same species may have separate functions (Carolsfeld et al., 2000).  

GnRH stimulates the release of two forms of gonadotropin from the pituitary (GTH-I 

and GTH-II) (Van Der Kraak et al., 1998) depending upon the maturational stage of 

the fish.  In some species, primarily the cyprinids, there are compounds that actively 

inhibit GTH II release, including dopamine (Pankhurst and Van Der Kraak, 1997).  

Querat (1995) investigated the structural, evolutionary, and functional similarities of 

GTH-II to luteinizing hormone (LH) and GTH-I to follicle stimulating hormone 

(FSH), and concluded that their similarities may merit the change in nomenclature of 

GTH-II to LH, and GTH-I to FSH.  Currently, both descriptions of these hormones 

are in use by scientists, but for the sake of clarity, GTH-I and GTH-II will be used to 



11

describe the gonadotropins in fish for the rest of this paper.  In addition to GnRH, it is 

believed that other substances can elicit the secretion of GTH-I and GTH-II, including 

other hormones and growth factors (Van Der Kraak et al., 1998).  GTH-I circulates in 

high levels during growth and development of the gonad, while GTH-II is secreted 

closer to the spawning period and initiates final maturation of gametes leading up to 

ovulation in females and spermiation in males (Van Der Kraak et al., 1998).  

In females, gonadotropins (primarily GTH I) stimulate the synthesis and 

release of 17β-estradiol (E2), which stimulates the liver to synthesize and release 

vitellogenin, an egg yolk precursor that supplies an energy source for developing 

embryos, and is absorbed into the oocytes (Pankhurst and Van Der Kraak, 1997).  The 

progestogens 17,20β,21-trihydroxy-4-pregnen-3-one (17,20β,21-P) and 17,20β-

dihydroxy-4-pregnen-3-one (17,20β-P) are involved in final oocyte maturation in 

female striped bass, through direct action on the oocyte membrane (Mylonas and 

Zohar, 2001).

In male fish, reproductive development involves the formation of spermatozoa 

in the testis, which is called spermatogenesis.  Spermatogenesis can be broken down 

into spermatocytogenesis, or the series of mitotic divisions of the spermatogonia to 

form primary spermatocytes.  Primary spermatocytes then undergo meiosis to produce 

secondary spermatocytes.  Secondary spermatocytes then undergo another meiotic 

division forming spermatids.  Spermatids then go through a process called 

spermiogenesis, which results in flagellated spermatozoa (Schulz and Miura, 2002).  

The process in which the testis become hydrated, and is associated with the ability to 

express milt, is known as spermiation (Sullivan et al., 1997).
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       In mammals, the functional roles of LH (GTH-II in fish) and FSH (GTH-I in fish) 

have been described as stimulating leydig cells to produce androgens, and stimulating 

sertoli cells to activate germ cell development, respectively.  However, in fish the 

functions of GTH-I and GTH-II overlap; both have been shown to stimulate androgen 

production (Schulz and Miura 2002).  In male striped bass, implants of gonadotropin-

releasing hormone analogue (GnRHa) initiate an increase in GTH-II levels, and a 

subsequent increase in milt production (Mylonas et al., 1998).  Progestogens are 

believed to play an important role in inducing fish to spermiate, but in wild striped 

bass captured on their spawning grounds, high levels of GTH-II corresponded to 

increased milt volumes, while progestogen levels remained low (Mylonas et al., 

1997).  The role of GTH-I in male striped bass has not been elucidated, but it is 

believed to stimulate spermatogenesis (Mylonas et al., 1997).  

11-ketotestosterone (11-KT) is an important fish specific androgen having a 

stimulatory effect on spermatogenesis (Schulz and Miura, 2002) and reproductive 

behavior (Pall et al., 2002).  Testosterone (T) is also linked to reproductive behavior 

in some species and is the precursor of 11-KT (Schulz and Miura, 2002).  A balance 

between 11-KT and T is important for spermatogenesis to occur in fish because there 

is evidence that 11-KT stimulates spermatogenesis, while T has an inhibitory effect on 

the release of gonadotropins from the pituitary (Schulz and Miura, 2002), though this 

relationship has not been demonstrated in striped bass.  In striped bass a pre-spawning 

peak is seen in these androgens which is believed to be associated with the growth of 

the testes (Sullivan et al., 1997).  T and 11-KT have been used as indicators of sexual 

maturation in striped bass males (Woods and Sullivan, 1993).  
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Environmental cues are essential for reproductive development to occur in 

male and female striped bass.  The most important environmental factors are 

temperature and photoperiod (Sullivan et al., 1997).  Changes in photoperiod affect 

circulating levels of GTH-II and GnRH through the increase or decrease in melatonin 

secretions from the pineal gland (Van Der Kraak et al. 1997).  In striped bass exposed 

to mid Atlantic photothermal conditions, gonadal development begins in the fall and 

is believed to be in response to shortening day lengths (Sullivan et al., 1997).  Peaks 

of gonadal steroids occur when day lengths are shortest in the winter months (Sullivan 

et al., 1997).  Increases in water temperature in the spring are believed to induce final 

oocyte maturation in female striped bass (Sullivan et al., 1997).  In rainbow trout, a 

similar relationship between environmental cues and sexual maturation exists.  When 

groups of female rainbow trout were exposed to identical photoperiods, but varying 

water temperatures, sexual maturation followed similar patterns in both groups of fish, 

causing the author to conclude that the driving force behind reproductive development 

in female rainbow trout is photoperiod, while temperature plays a role in modulating 

reproductive development (Davies and Bromage, 2002).  Understanding 

environmental controls on reproductive development is important for aquaculture, so 

that environmental conditions can be controlled and fry can be produced year round 

from fish that spawn seasonally (Davies and Bromage, 2002, Tate and Helfrich, 

1998).   
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Stress and reproduction

One of the tertiary effects of stress is its negative impact on reproduction.  

CRH is believed to be responsible for the negative effects of stress on reproduction, 

but Wendelaar Bonga (1997) clarifies that the neuroendicrine mechanism for this 

relationship has yet to be described in fish.  Using CRH-deficient knockout mice,

Jeong et al., (1999) challenged the theory that CRH was the main hormone 

responsible for reproductive dysfunction caused by the stress response.  The mice 

lacking the CRH gene still had suppressed reproductive function when exposed to a 

confinement stress.  In fish, it is clear that CRH plays an integral role in the 

hypothalamic-pituitary-interrenal axis, but it is not known if this is the only way in 

which CRH plays a role in inhibiting reproductive function in fish (Wendelaar Bonga, 

1997).  In fish, the only mechanism through which CRH and ACTH have a negative 

effect on reproductive function is through their stimulatory effect on cortisol release 

(Sumpter, 1997).  

Determining exactly how stress inhibits reproductive function in fish has 

proven to be a difficult task.  Carragher and Sumpter (1990) showed that cortisol 

depressed ovarian secretions of T and E2 in vitro in rainbow trout.  These results could 

not be repeated by Pankhurst et al., (1995).  In vitro studies on goldfish (Carassius 

auratus), common carp, and New Zealand snapper found that cortisol treatments of 

the ovary did not inhibit the release of T or E2, and in some cases levels of T and E2

were increased by cortisol treatments, indicating that cortisol does not inhibit 

steroidogenisis at the level of the ovary (Pankhurst et al., 1995).  However, rainbow 

trout injected with cortisol had a significant decrease in T and E2 levels, but levels of 
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gonadotropins were unchanged (Pankhurst and Van Der Kraak, 2000).  The original 

hypothesis proposed by Pankhurst et al., (1995) after the first in vitro experiment, was 

that the inhibition of steroidoegenesis in response to cortisol happens somewhere 

above the level of the ovary.  After the in vivo study showed that cortisol treatment 

decreased T and E2 levels, but GtH levels remained unchanged, they hypothesized 

that cortisol somehow interfered with GtH signal transduction (Pankhurst and Van 

Der Kraak, 2000).  It is apparent that cortisol mediates a decrease in E2, T, and 11-KT 

levels, but the exact mechanism remains unclear.

Teitsma et al., (1998) investigated the close association between rainbow trout 

E2 receptor (rtER) and rainbow trout glucocorticoid receptor (rtGR) to try to explain 

possible mechanisms for the inhibitory effect of cortisol on reproductive function. 

They found that rtGR are present in both GTH-II cells and dopamine-producing cells, 

showing a possible pathway for cortisol to inhibit GtH release.  Dexamethasone 

(DEX), a super active synthetic analogue of cortisol, was shown to bind to rtER in 

hepatic cells, inhibiting the release of vitelogenin and showing another possible 

mechanism for cortisol’s inhibitory effect on reproduction (Teitsma et al., 1998).  

In male common carp, the secretion of GTH-II seems to be unaffected by 

cortisol, though T levels decreased in cortisol treated animals, and gonadosomatic 

indexes were higher in animals that did not receive the treatment (Consten et al., 

2001).

When discussing the effects of stress on reproductive function in fish, it is 

important to consider the diversity of its effects that have been identified between 

species and their influence on reproduction (Schreck et al., 2001).  



16

The heritability of the stress response

The ability to selectively breed terrestrial animals for stress responsiveness has 

been demonstrated in the Japanese quail (Coturnix coturnix) (Carsia et al., 1988), the 

turkey (Meleagris gallopavo) (Brown and Nestor 1973), and domestic fowl (Gallus 

domesticus) (Carsia and Weber, 1986).  Because of the many negative physiologic 

effects associated with the stress response in fish and the high propensity towards 

stress in the aquaculture environment, the desire to selectively breed fish for 

attenuated stress responsiveness has inspired some interesting studies.  First it was 

determined that some individual rainbow trout have consistently high cortisol stress 

responses and other individuals have consistently low cortisol stress responses to a 

standardized stress (Pottinger et al., 1992).  It has also been shown that HCR 

broodstock produce HCR progeny, and LCR broodstock produce LCR progeny in 

Atlantic salmon (Fevolden et al., 1991), rainbow trout (Fevolden et al., 1991 and 

Pottinger et al., 1994) and in common carp (Tanck et al., 2001).  In the species in 

which it has been studied, the heritability of the stress response has been moderate to 

high.  

Heritability can be defined as the percentage of a phenotype that is due to 

genotype expression (Damron, 2003).  Heritability is expressed as a number from 0 to 

1, with a value of zero meaning that genetics do not play a role in the expression of a 

given phenotype, and a value of 1 meaning that expression of that phenotype is 

completely reliant on genetic factors.  When calculating the heritability of the stress 

response in fish, the variance within a given progeny group is compared to the 
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variance across progeny groups, if the within progeny group variance is relatively 

low, then a large genetic component exists, and if the within progeny group variance 

is relatively high then there is less of a genetic component present (Tanck et al., 

2001).  In common carp, the heritability of increased plasma cortisol in response to a 

standardized acute stress was 0.60 (Tanck et al., 2001).  In rainbow trout the 

heritability of the cortisol stress response was 0.41 in an experiment conducted by 

Pottinger and Carrick (1999b), and 0.50 in an experiment conducted by Fevolden et 

al., (2002).  Pottinger and Carrick (1999b) also calculated separate heritabilities for 

male and female parents and found the heritability from male parents was 0.27, and 

from female parents was 0.41.

Although the cortisol stress response has a high heritability in the few species in 

which it has been calculated, the value in selecting fish for high or low cortisol stress 

responsiveness is less clear.   There is no published information on the heritability of 

the cortisol stress response or any other trait in striped bass, but calculating 

heritabilities will be essential for effective striped bass selective breeding programs 

(Harrell, 1997).  
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MATERIALS AND METHODS

Experimental fish

Second generation captive male striped bass from the 1999 year class were 

moved from the Crane Aquaculture Facility located on the Gunpowder River east of 

Baltimore MD to a recirculating system on campus at the University of Maryland in 

February of 2002.  Fish were held in an 8600-l fiberglass tank that was part of a larger 

recirculating system.  High quality filtered water at a salinity of five parts per 

thousand (ppt) was circulated through the system.  Dissolved oxygen was injected 

through an oxygen cone into the system as needed to maintain dissolved oxygen 

levels of 6 mg/l or greater.  Ozone injection and foam fractionation was used to 

eliminate dissolved organic matter.  The system pH was monitored on a daily basis 

and was held between 7.5 and 8.2 by adding sodium bicarbonate as needed.  

Nitrogenous waste concentrations were controlled through the use of biological 

filtration and continual gradual water changes (total ammonia nitrogen < 0.5 mg/l, 

total nitrite nitrogen < 0.3 mg/l, total nitrate nitrogen < 100 mg/l.  Calcium 

concentrations were kept between 150 and 200 mg/l).     

Experimental fish were fed a specially formulated striped bass broodfish diet 

(Ziegler Bros., Gardners, PA) ad libitum twice daily.  Feed was withheld two days 

before to all samplings.  Experimental fish were kept on a blocked photoperiod that 

consisted of 14h light and 10h of darkness from their arrival into the new facility until 

November of 2002, when the photoperiod was switched to 10h of light and 14h of 

darkness.  The photoperiod was then returned to 14h light and 10h dark in February 
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2003.  Fish were kept on a thermal regime that simulated the water temperature 

conditions of the mid-Atlantic region.  On July 17, 2002 all fish (n = 67) in the 

experimental tank were weighed and measured (total length), and their PIT (passive 

integrated transponder, Avid®) tag numbers were recorded.  

Determining high and low cortisol stress responsiveness

To determine which striped bass had a consistently higher relative cortisol 

stress response and which striped bass had a consistently lower relative cortisol stress 

response, the fish were exposed to standardized net challenges.  A fish concentrator (a 

two part screen that closes to concentrate fish) was placed into the tank containing the 

population of 67 experimental fish.  The fish were then sequentially exposed to a two-

minute out of water net challenge.  Fish were captured two at a time, and each held in 

a separate net.  Fish were then placed into a 1600-l holding tank (four fish per tank) 

until one hour had elapsed.  Fish were then anesthetized in a 300-l water bath 

containing MS-222 (tricaine methanesulfonate, Finquel®, Argent Laboratories, 

Redmond, WA) at a concentration of 150 ppm and buffered with sodium bicarbonate 

to a pH of 7.8.  Fish were then bled (1.5 ml) from their caudal vasculature using 3 ml 

heparinized syringes fitted with 21-gauge needles.  Blood samples were kept on ice 

until transfer into individual 1.5ml microfuge tubes and centrifuged in a refrigerated 

centrifuge (Labofuge 400 R, Hraeus Instruments 10,000 X g).  Plasma was distributed 

into 250µl microfuge tubes and stored at –20º C.

Because plasma cortisol levels were only measured at one time point post 

stress (one hour), and the term response usually indicates a change, the argument can 
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be made that post stress cortisol levels were measured, which is not the same as 

measuring a response.  Because it is assumed that circulating levels of cortisol are 

lower prior to stress compared to post stress then the increase at one hour can be 

thought of as a change.  The two foremost authorities on selecting for stress 

responsiveness, Pottinger and Fevolden, both measure post stress cortisol levels at one 

point post stress and consider fish high or low stress responding based on such 

measurements.  The “responsiveness” nomenclature will be used throughout this 

paper. 

Sampling continued once every four weeks for four samples starting on 

August 7, 2002.  A two-minute net challenge was used because previous research in 

our laboratory showed that male striped bass broodstock may have adapted to a one 

minute, out of water net challenge (Wang et al., 2003). At one hour post stress, mean 

plasma cortisol levels for each fish were determined across all four sample dates.  

Means were ranked.  The fish with the ten highest mean cortisol values were 

designated high cortisol responders (HCR), and the fish with the ten lowest mean 

cortisol values were designated low cortisol responders (LCR).  Fish were weighed 

and measured on all sample dates.  Coefficient of condition (K= 100,000 W/L3) 

(Williams, 2000) and specific growth rate for weight and length (SGRW = [(ln W2 –

ln W1)/(t2 – t1)]100 and SGRL =[(ln L2 – ln L1)/(t2 – t1)]100 where W1,W2,L1, and L2

are the weights and lengths at the beginning and end of a sample period and t1 – t2 is 

the length of time in days between samples) was measured and compared between 

responder groups.  
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Baseline determinations

Attempts to quantify “baseline” plasma levels of cortisol and glucose were 

made before and after the first four sample dates (July 17, and November 20).  The 

fish concentrator was placed into the tank.  Fish were removed from the tank without 

the two-minute standardized net challenge, and immediately anesthetized and bled as 

described above.    

Plasma cortisol and androgen concentrations before to spawning

Stress sampling of the entire population (n =67), as described for the stress 

response determination sampling, continued at four week intervals from November 

2002 through March 2002.  In addition to measuring plasma levels of cortisol and 

glucose, T and 11-KT were also measured.  Starting in December 2002, in addition to 

taking blood samples from all experimental fish on sample dates, the fish’s abdomens 

were gently squeezed to see if spermiation was occurring.     

Stress induction and sampling during the spawning season

On March 24, 2003 the 20 fish designated as HCR and LCR were moved from 

the 8600 l tank and randomly assigned to one of five 1600 l tanks at a stocking density 

of four fish per tank.  Fish were stressed and sampled three times per week for five 

weeks starting on March 31, 2003.  Every Monday all fish were anesthetized (MS 

222), and blood samples were taken from the caudal vasculature using heparinized 

syringes and processed as described above.  Every Wednesday all fish were 
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anesthetized (MS 222), and sperm samples (≈0.5ml) were collected into 1.5 ml 

microfuge tubes by gently, but firmly, pressing on the sides of the fish’s abdomen. 

Every Friday fish were anesthetized (MS 222), bled from the caudal vasculature, and 

weighed and measured.  In addition to measuring plasma levels of cortisol, T, 11-KT, 

and glucose, hematocrits were also run on all blood samples taken during the 

spawning season.  Hematocrit was determined by filling and sealing 3 heparinized 

microhematocrit tubes (Clay Adams, New York) with whole blood, per fish sample.  

The tubes were centrifuged for 5 minutes in a hematocrit centrifuge (Autocrit Ultra3, 

Becton Dickinson, Sparks, MD).  Hematocrit was determined using a standard 

hematocrit reader.  Before the fish were anesthetized on each sample day, they were 

held out of water in a net for thirty seconds.  The standardized net challenge employed 

three times per week ensured that all fish were sufficiently stressed during the 

spawning season sampling.

Sperm quality analysis 

Sperm samples were stored on ice until samples from all four fish in one tank 

had been collected.  Those four samples were then analyzed before moving on to the 

next tank.  A toothpick was used to remove a sperm sample and place it on a Mackler 

counting chamber containing 10 µl of deionized ultrafiltered water (Fisher scientific) 

to initiate activation.  Activation is the transformation that spermatozoa undergo when 

they change from a state of inactivity to a state of vigorous activity associated with the 

pursuit of an egg to fertilize.  Sperm samples were analyzed using a phase contrast 

microscope (Zeiss model D-7082, 400X) linked to a video camera, which was 
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connected to a television with a videocassette recorder.  Duration of activation was 

measured as the time from placing the sample on the counting chamber until forward 

progression of sperm cells stopped.  Percent motile was measured as the number of

cells in a field at the end of motility minus the number of cells that were in that field 

and not moving at the beginning of activation, divided by the total number of cells in 

the field.  Each sperm sample was activated and measured three times.  All activations 

were recorded for later review. 

Spermatocrit was measured by injecting sperm samples into capillary tubes 

using a pipette.  The tubes were centrifuged at 13000 rpm (1,000 X g) for ten minutes 

and then read using a hematocrit reader.  Spermatocrits were run in triplicate for each 

sample.  On the first sperm sample date, spermatocrits were centrifuged for five, ten, 

twenty, and thirty minutes and no significant decreases were found after ten minutes, 

so a ten minute centrifuge time was used for the rest of the study.  A significant 

correlation was found between spermatocrit (spun for ten minutes) and sperm density 

in Atlantic cod (Gadus morhua)  (Rakitin et al. 1999).

Stress sample time course on HCR and LCR

After the spawning season HCR and LCR were placed into an 8000 l tank 

until October 13, 2003.  At 8:00 am on the 13th, all HCR and LCR fish were exposed 

to a two-minute net challenge and immediately anesthetized and bled from their 

caudal vasculature.  Fish were handled in groups of three and placed into a 1600 l 

holding tank after the first sample was collected.  Fish were then sequentially bled at 

1, 3, 6, 12, 24, and 48 hours post stress.  Approximately 0.5 ml of blood was extracted 
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at each sampling time.  Each sample was centrifuged, and plasma concentrations of 

cortisol and glucose were measured.  Hematocrits were also run on all blood samples 

as described above.    

Blood plasma assay procedures       

After blood samples were collected (≈1.5ml during response identification 

sampling, and ≈1ml during spawning season sampling), they were kept on ice until 

centrifuged in a refrigerated centrifuge (Labofuge 400 R, Hraeus Instruments 10,000 

X g).  Plasma was distributed into 250µl microfuge tubes and stored at –20º C.  Just 

before assay, plasma samples were thawed on ice and centrifuged for three minutes at 

13000 rpm.  Plasma cortisol was measured using an ELISA test kit (DRG 

Diagnostics, Mountainside, NJ) (between assay CV= 12.3%) validated for striped bass 

by Wang et al. (2003).  Plasma testosterone was measured using an ELISA test kit 

(DRG Diagnostics, Mountainside, NJ) between assay CV = 4.56%.  11-

ketotestosterone was measured using an ELISA test kit (Cayman Chemical, Ann 

Arbor, MI).  Serial dilutions of a male striped bass plasma pool and serial dilutions of 

ether extracts from the same pool were not different from each other for each assay, 

and both diluted parallel to their respective (T, 11-KT and cortisol) standard curve.  

Plasma glucose levels were measured using the microplate procedure and the 

hexokinase/glucose-6-phosphate dehydrogenase enzyme kit (Sigma Diagnostics, St. 

Louis, MO) in blank 96 well plates, and read with a 96 well plate reader.
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Statistical analysis

Repeated measures ANOVA analyses were used to assess differences between 

high and low cortisol responders.  Homogeneity of variances was checked, and if 

variances were homogeneous, the following covariance structures were tested: 

unstructured, compound symmetry, first order autoregressive spatial power, and 

toeplitz.  If variances were heterogeneous, the following variance structures were 

tested: unstructured, heterogeneous compound symmetry, heterogeneous first order 

autoregressive, spatial power, and heterogeneous toeplitz.  The covariance structure 

with the best goodness of fit statistics was used for the final means comparisons and 

tests of significance.  Differences were considered significant at p ≤ 0.05.  Results are 

presented as means ± SEM unless otherwise noted.  Spermiation count data was 

analyzed using a mixed model macro specially designed for binomial data.  The 

binomial data was transformed to the logit scale and analyzed using a repeated 

measures ANOVA.  Means and standard error of the means were then retransformed 

to the percent scale for data presentation and easy interpretation.  All data was 

analyzed using SAS v8 Mixed model analysis (SAS Institute; Cary NC).  
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RESULTS

Determining high and low stress responsiveness

Selected HCR had significantly higher mean plasma cortisol levels on all four 

stress sample dates when compared to LCR (p<0.05) (Fig.1).  HCR also had 

significantly higher mean plasma cortisol levels on these dates when compared to the 

mean plasma cortisol levels of the population (fish not selected for high or low 

cortisol stress response, n=47) (Fig. 1).  LCR had significantly lower mean plasma 

cortisol levels when compared to the population (p<0.05) on all sample dates except 

the first date, August 7th  (p=0.079).

The mean plasma glucose levels of HCR (177±10.2 mg/dl) were not 

significantly different from those of LCR (151±10.2 mg/dl) when averaged across 

these four sample dates (p = 0.07), but the p-value does suggest a possible trend.  

Mean plasma glucose levels of HCR were significantly higher (p < 0.05) than the 

mean plasma glucose levels of LCR and the population mean on the first sample date 

(Fig. 2).  Mean plasma glucose levels of LCR were significantly lower (p > 0.05) than 

the mean of the population on the first sample date.  No differences between LCR, 

HCR and the population were significant for any of the stress responsiveness 

determination samplings.       
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Figure 1.   Mean plasma cortisol levels one hour after a two-minute net challenge for 

striped bass males selected for high cortisol responsiveness (HCR) (n=10), low 

cortisol responsiveness (LCR) (n=10) and the remaining unselected fish (population 

n=47).  HCR mean plasma cortisol levels were significantly (p<0.05) greater than 

those of LCRs on all four sample dates. Vertical brackets represent the SEM.
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Figure 2.   Mean plasma glucose levels one hour after a two-minute net challenge for 

striped bass males selected for high cortisol responsiveness (HCR) (n=10), low 

cortisol responsiveness (LCR) (n=10) and the remaining unselected fish (population 

n=47).  HCR and LCR mean plasma glucose levels were significantly different on the 

first stress sample date (p<0.05), but the overall effect of cortisol responsiveness on 

plasma glucose levels was not significant (p=0.07).  Vertical brackets represent the 

SEM.
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Baseline determinations

The mean cortisol levels of HCR (210±22.2 ng/ml) were significantly greater 

than those of LCR (131±22.2 ng/ml) when averaged across both sample dates (July 

and November 2002) (p = 0.013).  The difference between the mean plasma cortisol 

levels of HCR and LCR were not significant on the July sample date (p = 0.09), but 

the difference between LCR and the rest of the population was significant (p = 0.01) 

(Fig. 3).  On the November sample date the difference between HCR and LCR was 

significant (p = 0.02), but the differences between the population and HCR and the 

population and LCR were not significant (p>0.05) (Fig. 3).    

Mean plasma glucose levels of HCR (107 ± 5.8) were not significantly 

different from those of LCR (110 ± 5.8) when averaged across both non-stress 

challenge sample dates (p = 0.77).  The effect of sample date on plasma glucose levels 

was significant (p < 0.0001) (Fig. 4).  

Differences in growth 

Differences in growth parameters between HCR, and LCR were analyzed from 

sample dates starting in August 2002 and continuing through November 2002.  

Growth estimates from December 2002 through April 2003 were not analyzed due to 

the confounding effects of testes hydration on body weight.  No significant 

differences (p > 0.05) in mean weight, length, or coefficient of condition were found 

between HCR and LCR from the August through November sample dates (table 1).  

However, the difference in mean specific growth rate, calculated for weight, between 

HCR (0.25 ± 0.022) 
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Figure 3.  Mean plasma cortisol levels prior to and after monthly stress sampling.  

Fish were not exposed to a net challenge prior to sampling.  Figure shows striped bass 

males selected for high cortisol responsiveness (HCR) (n=10), low cortisol 

responsiveness (LCR) (n=10) and the remaining unselected fish (population n=47).  

The overall difference between HCR and LCR mean plasma cortisol levels was 

significant (p = 0.014).  Vertical brackets represent the SEM. 
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Figure 4.  Mean plasma glucose levels prior to and after monthly stress sampling.  

Fish were not exposed to a net challenge prior to sampling.  Figure shows striped bass 

males selected for high cortisol responsiveness (HCR) (n=10), low cortisol 

responsiveness (LCR) (n=10) and the remaining unselected fish (population n=47).  

The overall effect of cortisol responsiveness on mean plasma glucose levels was not 

significant (p = 0.90).  The effect of sample date on plasma glucose levels was 

significant (p < 0.0001).  Vertical brackets represent the SEM.
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and LCR (0.17 ± 0.022) was significantly different on two sample intervals, and also 

significant when averaged across the five sample intervals (p < 0.007) (Fig.5).  

Specific growth rates calculated for length were not significantly different between 

HCR (0.056 ± 0.008) and LCR (0.038 ± 0.007) when averaged across all sample 

intervals, but the p-value is suggestive of a possible trend (p = 0.10) (Fig. 6).  

Plasma hormone levels before spawning season

 Mean plasma T levels of HCR were significantly higher than LCR on all 

sample dates (p < 0.05) (Fig. 6).  In addition to being significantly lower than HCR, 

mean plasma T levels of LCR were also significantly lower than population means.

Mean plasma 11-KT levels of HCR were significantly greater than LCR on all sample 

dates as well (p < 0.05) (Fig. 7).  Mean plasma 11-KT levels of LCR were 

significantly lower than HCR and population means (p < 0.05).  Mean plasma T and 

11-KT levels of HCR were not significantly different from those of the population, 

but a possible trend was seen in the overall differences (T p = 0.12, 11-KT p = 0.08).  

Mean plasma cortisol and glucose levels of LCR, HCR, and the rest of the population 

were not significantly different (p > 0.05) during this period (Fig. 8 & 9).  

Population fluctuations in plasma cortisol and androgen levels

Mean plasma cortisol levels for the entire population of striped bass males 

(n=67) were highest following the first stress sample (Fig. 10).  Plasma cortisol levels 

then dropped significantly from the first through the third stress samples (p < 0.05).  A 

significant increase in plasma cortisol levels was then seen from the third to fourth, 
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Figure 5.    Mean specific growth rates (weight) for striped bass males selected for 

high cortisol responsiveness (HCR) (n=10), low cortisol responsiveness (LCR) (n=10) 

and the remaining unselected fish (population n=47) for samples taken from July to 

November, 2002.  HCR had significantly greater specific growth rates than those of 

LCR on two sample intervals (*), and the differences between HCR and LCR were 

significant when averaged across all sample intervals.  Vertical brackets represent the 

SEM.
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Figure 6.    Mean specific growth rates (length) for striped bass males selected for 

high cortisol responsiveness (HCR) (n=10), low cortisol responsiveness (LCR) (n=10) 

and the remaining unselected fish (population n=47) for samples taken from July to 

November, 2002.  HCR were not significantly different from LCR on any of the 

sample intervals, but when averaged across sample dates, the difference between HCR 

and LCR was suggestive of a possible trend (p=0.10).  Vertical brackets represent the 

SEM.
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Figure 7.    Mean plasma testosterone levels one hour after a two-minute net 

challenge for striped bass males selected for high cortisol responsiveness (HCR) 

(n=10), low cortisol responsiveness (LCR) (n=10) and the remaining unselected fish 

(population, n=47) for samples taken four months prior to the spawning season.  HCR 

levels were significantly greater than those of LCR on all sample dates.   Vertical 

brackets represent the SEM.
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Figure 8.    Mean plasma 11-ketotestosterone levels one hour after a two-minute net 

challenge for striped bass males selected for high cortisol responsiveness (HCR) 

(n=10), low cortisol responsiveness (LCR) (n=10) and the remaining unselected fish 

(population, n=47) for samples taken four months prior to the spawning season.  HCR 

levels were significantly greater than those of LCR on all sample dates.   Vertical 

brackets represent the SEM.



38

0

50

100

150

200

250

300

350

Mar 12Feb 12Jan 15Dec 18

 Population
 High Cortisol Responders
 Low Cortisol Responders

Pl
as

m
a 

co
rt

is
ol

 (
ng

/m
l)

Sample Date

Figure 9.    Mean plasma cortisol levels one hour after a two-minute net challenge for 

striped bass males selected for high cortisol responsiveness (HCR) (n=10), low 

cortisol responsiveness (LCR) (n=10) and the remaining unselected fish (population, 

n=47) for samples taken four months prior to the spawning season.  No significant 

differences between responder groups were detected on any of the sample dates.  

Vertical brackets represent the SEM.
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Figure 10.    Mean plasma glucose levels one hour after a two-minute net challenge 

for striped bass males selected for high cortisol responsiveness (HCR) (n=10), low 

cortisol responsiveness (LCR) (n=10) and the remaining unselected fish (population, 

n=47) for samples taken four months prior to the spawning season.  No significant 

differences between responder groups were detected on any of the sample dates.  

Vertical brackets represent the SEM.
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Figure 11.  Mean plasma cortisol levels for the entire population (n=67) of striped 

bass males on all stress sample dates prior to the spawning season, plotted along with 

corresponding water temperatures.  Identical letters signify no significant difference at 

p < 0.05.  Vertical brackets represent the SEM. 
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and fourth to fifth stress samples.  Mean plasma cortisol levels were not significantly 

different between stress samples five, six and seven.  A significant decrease in the 

mean plasma cortisol level was seen from stress sample six compared to stress sample 

seven.  

Mean plasma T and 11-KT values for the entire population of striped bass 

males (n = 67) followed the same trend of significance between sample dates (Fig. 

11).  Mean plasma androgen levels increased significantly between the first four 

sample dates that they were measured on.  Mean plasma androgen values were not 

significantly different on the last three sample dates (Fig. 11).  

Plasma hormone, and glucose levels of HCR and LCR during the spawning season

Mean plasma cortisol levels of HCR (122 ± 13.4 ng/ml) (n=10) were not 

significantly different (p>0.05) from those of LCR (97 +10.4 ng/ml) (n=10) when 

measured immediately following the thirty-second net challenge during the spawning 

season and averaged across all sample dates (p = 0.16) (Fig. 12).  Although mean 

plasma glucose levels were significantly higher in HCR than in LCR on two sample 

dates (Fig. 13), the mean glucose levels of HCR (90 ± 2.6 mg/dl) averaged across all 

sample dates was not significantly different from LCR (85 ± 2.6 mg/dl) (p = 0.76).  

Mean plasma T and 11-KT levels were significantly greater (p<0.05) in HCR (T = 2.7 

± 0.46ng/ml, 11-KT = 2.2 ± 0.28 ng/ml) than in LCR (T =1.0 ± 1.7ng/ml, 11-KT = 

0.75 ± 0.28 ng/ml) when averaged across all samples (Figs. 12 & 13).  Mean plasma T 

and 11-KT levels were also significantly greater (p < 0.05) in HCR compared to LCR 

on all sample dates except the last sample date, May 5, 2002 (Figs. 14 & 15).  The 
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Figure 12.  Mean plasma testosterone and 11-ketotestosterone levels on sample dates 

from October 2002 through March 2003 for the entire population (n=67) of striped 

bass males, plotted with corresponding water temperatures.  Identical letters represent 

no significant difference at p < 0.05 comparing the same androgen on different dates.  

Red letters correspond to testosterone, and blue letters correspond to 11-

ketotestosterone.   Vertical brackets represent the SEM.
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Figure 13.    Mean plasma cortisol levels of samples taken immediately following a 

thirty second net challenge for striped bass males selected for high cortisol 

responsiveness (HCR) (n=10) and low cortisol responsiveness (LCR) (n=10). Samples 

were taken during the spawning season.  HCR plasma levels of cortisol were not 

significantly different from those of LCRs (p>0.05).  Vertical brackets represent the 

SEM.
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Figure 14.    Mean plasma glucose levels of samples taken immediately following a 

thirty second net challenge for striped bass males selected for high cortisol 

responsiveness (HCR) (n=10) and low cortisol responsiveness (LCR) (n=10). Samples 

were taken during the spawning season.  Although HCRs had significantly greater 

glucose levels on two sample dates (*), the overall difference across sample dates was 

not significantly different. Vertical brackets represent the SEM.
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Figure 15.    Mean plasma testosterone (T) levels of samples taken immediately 

following a thirty second net challenge from striped bass males selected for high 

cortisol responsiveness (HCR) (n=10) low cortisol responsiveness (LCR) (n=10). 

Samples were taken during the spawning season.  HCR plasma levels of T were 

significantly greater than those of HCR on all sample dates except May 5, 2003.  

Averaged across all sample dates, HCR mean levels of T were greater than those of 

LCR (p<0.05). Vertical brackets represent the SEM.
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Figure 16.    Mean plasma 11-ketotestosterone (11-KT) and levels of samples taken 

immediately following a thirty second net challenge from striped bass males selected 

for high cortisol responsiveness (HCR) (n = 10) low cortisol responsiveness (LCR) 

(n=10).  Samples were taken during the spawning season.  HCR plasma levels of 11-

KT were significantly greater than those of HCR on all sample dates except May 5. 

2003.  Averaged across all sample dates, HCR mean 11-KT levels were greater than 

those of LCR (p<0.05). Vertical brackets represent the SEM.
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difference in mean hematocrits of HCR and LCR during the spawning season was not 

significant (p = 0.93) (Fig 16).  The effect of sample day on hematocrit was 

significant (p < 0.0001).  A trend of decreasing hematocrits through the spawning 

season sampling was seen.  

HCR and LCR sperm quality analysis     

No significant differences were detected (p > 0.05) between HCR and LCR for 

mean percent motile, mean duration, or spermatocrit (Table 2).  HCR fish did begin to 

spermiate earlier, and continued to spermiate longer than LCR fish (Fig. 17).  The 

overall differences in spermiation between HCR and LCR were found to be 

significant (p < 0.0001).

HCR and LCR time course

Mean plasma cortisol levels of HCR were significantly different from the 

mean plasma cortisol levels of LCR at 0, 3, 6, 12, and 24 hours post stress (p < 0.05) 

(Fig. 18 A).  The difference between mean plasma cortisol levels of HCR and LCR 

was not significant at 48 hours post stress.  The effect of sample time on mean plasma 

cortisol levels was significant (p = 0.0005).  The interaction of sample time and 

cortisol responsiveness was not significant (p = 0.44).   The effect of cortisol 

responsiveness on plasma glucose levels was significant (p = 0.015).  The effect of 

sample time on plasma glucose levels was also significant (p < 0.0001).  The 

interaction between sample time and cortisol stress responsiveness was significant (p 

= 0.001)  (Fig 18 B). 
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Figure 17.  Mean hematocrits of samples taken immediately following a thirty second 

net challenge from striped bass males selected for high cortisol responsiveness (HCR) 

(n=10) and low cortisol responsiveness (LCR) (n=10).  Samples were taken during the 

spawning season.  HCR and LCR mean hematocrits were not significantly different 

during the spawning season (p = 0.93).  The effect of sample day on mean hematocrits 

was significant (p < 0.0001).  Vertical brackets represent the SEM.



49

Table 2.  Mean ± SEM percent motile, duration of motility, and spermatocrit for high 

(HCR) and low cortisol responding (LCR) populations for each sample week during 

the spawning season.  No significant differences between HCR and LCR were found 

for any parameter on any sample date, but the sample date effect was significant for 

all parameters.  

  Percent Motile            Duration of Motility (s)          Spermatocrit (%)

Sample Date      HCR          LCR             HCR           LCR                 HCR          LCR

April 2             75±3.9     73±3.9          20.4±0.9       20.3±0.9           90±1.7       91±1.7 

April 9             75±4.5     72±4.5          19.1±0.9       19.6±0.9           90±1.4       87±1.4

April 16           67±3.2     65±3.5          17.6±0.9       19.0±0.7            93±1.1      94±1.3

April 23           61±3.7     66±4.7          16.6±0.4       17.2±0.6            93±0.8      95±1.4

April 30           50±5.6     65±7.9          16.0±1.1       18.1±1.6            96±0.8      97±1.1
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Figure 18.   Mean percent of striped bass males selected for high cortisol 

responsiveness (HCR) (n=10) and low cortisol responsiveness (LCR) (n=10) 

spermiating, shown with vertical bars representing the SEM.  Samples were taken 

monthly before the spawning season and weekly during the spawning season.  Shown 

with regression lines fitting the data HCR (logit) y = -0.303 - 0.0275day + 

0.00180day2-0.0000183*day3   LCR (logit) y  = -3.40 - .0275day + 0.00180day2-

0.0000183day3.  The difference between HCR and LCR number spermiating across 

all sample dates was significant (p < 0.0001). 



51

0 10 20 30 40 50
-20

0

20

40

60

80

100

120

140

160

180

200

220

ns

 High Cortisol Responders
 Low Cortisol Responders

C
or

tis
ol

 (
ng

/m
l)

Time post stress (Hours)

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

*

*
*

*
 High Cortisol Responders
 Low Cortisol Responders

Pl
as

m
a 

G
lu

co
se

 (
m

g/
dl

)

Time post stress (Hours)

Figure 19.  Mean plasma cortisol (A) and glucose (B) levels of samples taken at 

varying times after a two-minute net challenge for striped bass males selected for high 

cortisol responsiveness (HCR) (n=8) and low cortisol responsiveness (LCR) (n=9).  

HCR plasma levels of cortisol were significantly different from those of LCR (p < 

0.0001).  The effect of responsiveness on plasma glucose levels was also significant 

(p = 0.015).  Mean plasma glucose levels of HCR were significantly different from 

those of LCR at some intervals (*) (p < 0.05).   Vertical brackets represent the SEM.
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The effect of selecting for high and low cortisol responsiveness did not have a 

significant effect on mean hematocrit values during the 48 hour time course study 

(Fig. 19).  The differences in mean hematocrits were not significant at any interval

post stress that was measured, but at 12 hours post stress the p-value was suggestive 

of a difference (p = 0.059).  The effect of sample time on mean hematocrit values was 

significant (p < 0.0001).    
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Figure 20.  Mean hematocrit values of samples taken at varying times after a two-

minute net challenge for striped bass males selected for high cortisol responsiveness 

(HCR) (n=8) and low cortisol responsiveness (LCR) (n=9).  Means of HCR and LCR 

were not significant at any of the sample times, but the p-value at 12 hours post stress 

was suggestive of a difference (p = 0.059).  Across all sample times HCR hematocrits 

were not significantly different from LCR.  The effect of sample time on hematocrit 

values was significant (p < 0.0001).  Vertical brackets represent the SEM.
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DISCUSSION

This study demonstrates that male striped bass broodstock selected for high 

cortisol stress responsiveness show increased androgen production and length of 

spermiation when compared to low responding fish when stressed during the 

spawning season.  This information, coupled with the overall higher specific growth 

rates in HCR compared to LCR, shows that if the stress response is proven to be a 

heritable trait in striped bass, selecting for higher cortisol responding male striped 

bass may impart desirable characteristics to their progeny.  It is still unclear whether 

selecting for stress responsiveness will co-select for some as yet undiscovered 

undesirable trait (Pottinger & Carrick, 2000).   

Through the first four stress sample dates mean cortisol values of HCR and 

LCR were significantly different, which is not surprising since these were the samples 

used to determine which fish would be categorized as HCR and LCR.  Mean plasma 

glucose levels for HCR and LCR during this time period were not significantly 

different when compared across all sample dates, which is similar to what was found 

by Wang et al., (2003).  On the first stress sample date (August), HCR fish had 

significantly greater mean plasma cortisol levels compared to LCR fish.  It is unclear 

if the hyperglycemia seen in HCR was due to a catecholaminergic response, or if it 

was related to the elevated cortisol levels.  If the difference was due to an elevation in 

cortisol, the difference would be expected across sample dates, since cortisol was 

significantly higher across all four sample dates.  However, the glucose response may 
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be related to the magnitude of the cortisol response, because the largest difference 

between HCR and LCR cortisol levels was seen on the first stress sample date.  

ACTH has been shown to have a direct effect on catecholamine release in some fish 

species (Reid et al., 1998), so drastic differences in ACTH levels may have caused a 

differing catecholamine response, hence the differing glucose response.  This 

explanation would contradict what has been found in rainbow trout.  Pottinger and 

Carrick (2001) found that HCR rainbow trout had a significantly higher cortisol 

response to a weight-dependent dose of ACTH than LCR rainbow trout when DEX 

was used to block the secretion of ACTH by the fish, indicating that the divergence 

between HCR and LCR lies, at least partly, in the interrenal tissue.  It is unknown if 

the divergence between HCR and LCR male striped bass are also due to a divergence 

in the sensitivity of the interrenal tissue to ACTH.       

In an attempt to clarify if resting levels of cortisol were different between 

HCR and LCR, sample fish were anesthetized and bled without the standardized stress 

challenge on two sample dates, one in July 2002 and one in November 2002.  Cortisol 

levels appeared to be elevated when compared to resting levels that have been 

measured by Noga et al. (1994), of less than 10 ng/ml, or by Davis and Parker (1990) 

of between 5.5 and 69.1 ng/ml at temperatures ranging from 5ºC and 25ºC.  

Husbandry conditions can vary greatly from one laboratory to another and must be 

taken into account when trying to compare values across labs.  The striped bass males 

in this study were kept at 5 ppt salinity.  Rainbow trout, adapted to freshwater, 

showed significant increases in plasma cortisol levels in response to an increase in 

salinity to 5 ppt salinity, which was believed to be associated with the change in 
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osmoregulatory demands (Orozco et al., 2002).  In gilthead seabream (Sparus aurata), 

cortisol is associated with osmoregulatory function in both hyperosmotic and 

hyposmotic environments (Mancera et al., 2002).  In vitro experiments on tilapia 

(Oreochromis mossambicus) have shown that cortisol plays an important role in the 

release of prolactin and growth hormone, both of which play important roles in 

osmoregulation (Uchida et al., 2004).  Relatively high circulating levels of cortisol 

seen in these striped bass males may be associated with osmoregulatory regulation at 

5 ppt salinity.  Further research is needed to determine if relatively high baseline 

cortisol levels are associated with salinity levels in striped bass.

Another possible reason for the relatively high baseline values is due to the 

stress that the fish experienced from the placement of the fish concentrator into the 

tank.  It is interesting to note, however, that HCR mean cortisol values were not 

different from that of LCR on the July 2002 sample date, though they were different 

on the November 2002 sample date.  It should be noted that the HCR mean plasma 

cortisol levels were not different from the means of the unselected fish on either of 

those sample dates.  If the plasma cortisol values attained on these two sample dates 

are representative of baseline cortisol values, then it appears that HCR and unselected 

fish have identical circulating cortisol levels, and LCR fish have significantly lower 

circulating levels of cortisol.  If the plasma cortisol values from these two dates 

represent a cortisol response to a mild stressor (insertion of the fish concentrator), 

then HCR fish have a similar plasma cortisol response to a mild stressor as the 

unselected fish.  LCR fish on the other hand, have a significantly lower cortisol stress 

response when compared to HCR and unselected fish. 
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Greater specific growth rates (weight) in HCR compared to LCR followed a 

similar pattern to work that has been done in salmonids.  Rainbow trout selected for 

high cortisol responsiveness have been shown to have significantly greater weights, 

lengths (Pottinger and Carrick, 1999a), and coefficient of condition (Pottinger and 

Carrick, 1999, Pottinger et al., 1994) when compared to fish selected for low cortisol 

responsiveness.  A higher mean specific growth rate (weight) in HCR compared to 

LCR differed from what has been found in striped bass in a previous study.  Wang et 

al., (2003) found that HCR had significantly lower coefficient of condition compared 

to LCR, and no difference was found in specific growth rate (weight).  That 

experiment used a one-minute net challenge, as apposed to the two-minute net 

challenge that was used in this study, so it is plausible, though unlikely, that different 

fish were selected because the stressor was not identical.  The two-minute net 

challenge was used to avoid the sample-to-sample decrease in plasma cortisol in 

response to the acute stressor that was seen in the study by Wang et al., (2003)

The physiological cause for increased growth in HCR fish is unknown.  

Because high cortisol levels are associated with a change in osmotic function and the 

fish were in an environment that was hypertonic to their tissue, it is possible that the 

increased cortisol levels caused hemodilution, and a subsequent increase in tissue 

water content.  This difference in tissue water content could be the cause of the 

difference seen in mean specific growth rate calculated using weight between HCR 

and LCR.  In an attempt to substantiate or discount this explanation, specific growth 

rates were also calculated using length.  The specific growth rate of HCR was not 

found to be significant compared to LCR when length was used, though the p-value 
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was suggestive of a difference.  This data does not clarify whether the specific growth 

rates calculated using weights were significantly different because of tissue growth, or 

edema.  It is unknown if increased water retention in HCR is an adaptive or 

maladaptive response to stress, if that is what is occurring.  It should be noted that 

some fish had decreases in length from one sample date to another caused by tail 

erosion.  In future experiments, fork length or caudal length may be better growth 

measures because they would not be affected by tail erosion.  

Weil et al., (2001) suggests that the rate at which cortisol is cleared from the 

system may be more important than peak cortisol levels in rainbow trout.  Previous 

research on striped bass males selected for high and low cortisol stress responsiveness 

showed that HCR did not have faster post-stress reductions in plasma cortisol when 

compared to LCR striped bass males (Wang et al., 2003), so it is unlikely that this is 

the mechanism causing differences in growth rates in this species.

Plasma androgen levels were higher, and spermiation started earlier and lasted 

longer in HCR compared to LCR.  Low plasma levels of GTH-II are believed to play 

a role in decreased milt volumes (Mylonas and Zohar 2001).  Implantation of GnRHa 

elicited an increase in plasma 11-KT levels in captive striped bass males (Mylonas 

and Zohar, 2001).  The differences in plasma androgen levels and duration of 

spermiation seen between HCR and LCR may be due to differences in the levels of 

GnRH or GTH-II being released, but we do not have any data to support this.  In fish, 

there is no data on the stress related regulation of GnRH (Pottinger, 1999).  No 

significant difference in cortisol levels was found leading up to the spawning season 

(December 2002 through March 2003) one hour post stress, or immediately after 
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stress during the spawning season.  Due to this lack of difference in cortisol levels, it 

is highly unlikely that the differences in androgen production and spermiation were a 

direct effect of cortisol.  A more plausible explanation is that selecting for cortisol 

responsiveness inadvertently co-selects for differences in reproductive endocrine 

functions, though this is hard to prove without further study.  

No differences were detected in any of the sperm quality measures used.     

Duration and percent motility of sperm were not found to be significantly different 

between HCR and LCR.  In addition to providing a qualitative measure of the ability 

of the fish’s gonad to produce high quality gametes, it has been shown that percent 

motile is correlated with fertilization in the common carp (Linhart et al., 2000).  

Without doing fertilization trials on HCR and LCR broodstock, assumptions cannot 

be made about fertilization rates, progeny survival rates, or the heritability of the 

stress response.

Post-stress cortisol levels for the entire population were high on the first stress 

sample date and declined to their lowest point on the October 2nd 2002 sampling.  

Cortisol values then rose slightly and appeared to plateau.  When cortisol values are 

looked at in conjunction with temperature, it looks like there may be a temperature 

effect on cortisol values, which has been documented for yearling striped bass not 

undergoing reproductive development (Davis and Parker, 1990).  Adaptation could 

also be a possibility, because similar declines in plasma cortisol levels have been seen 

in striped bass exposed to a monthly acute stress with temperature being held constant 

(Wang et al., 2003).  Gonadal development and subsequent increases in plasma 

androgens may have played a role in the attenuation of the stress response.  In 
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rainbow and brown trout, implants containing T and 11-KT caused a significant 

attenuation of the stress response in male fish when compared to fish with sham 

implants (Pottinger et al., 1996).  Any combination of these factors, including 

temperature, probably played a role in the fluctuations in the cortisol response seen in 

the whole population.  

In an attempt to determine if differences in recovery from an acute stressor and 

accompanying decreases in plasma cortisol could explain some of the differences 

between HCR and LCR, as has been suggested by Weil et al. (2001), a time course 

experiment was conducted.  The rate at which plasma cortisol levels declined was not 

different between HCR and LCR.  HCR had significantly greater mean plasma 

cortisol values at 0, 1, 3, 6, 12, and 24 hours post stress.  Unexpectedly, the peak 

response time was not at one hour, but instead, was at the 0 hour.  It is unclear if this 

initial peak response was caused by the two-minute net challenge, or if it was caused 

by the placement of the fish concentrator into the tank before sampling.  The glucose 

responses of HCR were significantly less than those of LCR at 1, 6, and 12 hours post 

stress.  These increased glucose values seen in LCR are most likely due to a 

catecholaminergic response due to the low levels of cortisol seen in LCR throughout 

the time course.  LCR striped bass showing significantly elevated plasma cortisol 

levels when compared to HCR striped bass is similar to what has been seen in HCR 

and LCR rainbow trout (Trenzado et al., 2003).  In response to a tank transfer and 

confinement stress, LCR rainbow trout lines had significantly lower plasma cortisol 

and liver glycogen levels and significantly higher plasma glucose and lactate levels, 

when compared to HCR rainbow trout lines, indicating a counterintuitive metabolic 
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divergence between HCR rainbow trout and LCR rainbow trout (Trenzado et al., 

2003).  Significantly greater plasma glucose levels of LCR compared to HCR striped 

bass males is suggestive of a similar metabolic divergence, but further research is 

needed to substantiate this claim. 

It is unknown if fish with higher cortisol stress responses are actually more 

stressed than individuals with low cortisol stress responses (Barton, 2002), but this 

study shows that selecting for cortisol responsiveness does have an impact on other 

measurable factors.  Increased growth and better reproductive function between HCR 

compared to LCR may represent an increase in adaptive ability by HCR fish.  The 

action of glucocorticoids on physiological functions is complex and varied.  Some 

scientists hypothesize that not all of these actions are deleterious, but that 

glucocorticoids aid in the down regulation of other stress responses, preventing harm 

to the system (Sapolski et al., 2000).  For example, stress causes rapid activation of 

the immune response, which is then down regulated by glucocorticoids which can 

have beneficial anti-inflammatory effect, but can also increase the risk of subsequent 

infection (Sapolski et al., 2000).  In rainbow trout, cortisol injections caused an 

inhibition of the increase in circulating leukocytes that was seen in fish receiving 

saline injections (Narnaware and Baker, 1996).  Glucocorticoids have been shown to 

have an inhibitory effect on many different phases of the immune response, but the 

mechanisms through which glucocorticoids inhibit immune function is not clear 

(Maule and VanderKooi, 1999).

In most species in which the relationship has been investigated, 

glucocorticoids have been shown to have a negative impact on reproductive function 
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through in vitro and in vivo studies (Sapolski et al., 2000).  In the European eel 

(Anguilla anguilla), however, cortisol was shown to stimulate a ten-fold increase in 

GTH-II from pituitary tissue in vitro (Huang et al., 1999).  Cortisol injections also 

caused a significant increase in pituitary GTH-II content when compared to saline 

injections in vivo in the European eel (Huang et al., 1999).  It is possible that the high 

pre-spawning levels of cortisol seen in HCR striped bass may have been partially 

responsible for the increase in androgen production if cortisol causes a similar 

increase in pituitary levels of GTH-II as seen in European eels.  Although both striped 

bass and European eels are classified as teleosts, European eels are considered a more 

primitive species compared to the striped bass (Bond, 1996), making any assumptions 

of similarity in endocrine function pure speculation.  

Another plausible explanation for the increase in androgen production, 

increased number of fish spermiating, and greater mean specific growth rate of male 

striped bass selected for high cortisol responsiveness compared to those selected for 

low responsiveness are existing factors that accompany the selection for cortisol 

responsiveness.  This hypothesis is reinforced by the lack of difference in mean 

plasma cortisol concentration in the time leading up to, and during, the spawning 

season when the divergence in other factors was found.

 Because of the many negative implications associated with the stress 

response, the assumption is made that if animals could be bred to have an attenuated 

stress response, they would perform better under stressful conditions when compared 

to animals with a normal stress response (Pottinger and Pickering, 1997).  The 

difficulty becomes deciding how the stress response is measured.  A myriad of 
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physiological changes occur as a result of stress.  In this experiment plasma levels of 

cortisol were used to measure the stress response in male striped bass, but selecting 

fish for low cortisol responsiveness seemed to have the opposite effect of what is 

described above by Pottinger and Pickering (1997).  It is unclear whether selecting 

striped bass for cortisol stress responsiveness could increase productivity.  This study 

suggests that fish that have higher cortisol stress responsiveness may be found to be 

more desirable than fish with low cortisol responsiveness.
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CONCLUDING REMARKS

Increased androgen production, specific growth rate, and number spermiating 

seen in male striped bass HCR compared to LCR are quite interesting results, but 

without further research, it may become anecdotal.  Further investigations into the 

heritability of the stress response in striped bass are needed, as well as studies on 

fertilization rates using sperm from HCR compared to LCR.  The existence of 

negative cofactors associated with selecting fish for high cortisol responsiveness need 

to be explored.  Determining exactly where the divergence between HCR and LCR 

lies may help explain some of the results found in this study. 

A crucial piece of information left unknown by this study is if similar results 

would be found if female striped bass were selected for their responsiveness to stress.  

Determining if circulating levels of E2 and vitellogenin were different between female 

HCR and LCR would help determine if selecting for cortisol responsiveness co-

selected for similar divergences as seen in males.  Crosses could then be made 

between HCR males and HCR females, and LCR males and LCR females, and 

heritability could be determined.  The viability of using cortisol stress responsiveness 

as a selective marker could be determined through progeny studies.  Such work could 

aid in the domestication of striped bass.

Another possible avenue for this research is to select white bass females for 

stress responsiveness and determine if such selection results in improved reproductive 

or growth performance.  Crossing HCR striped bass males with HCR white bass 
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females, and crossing LCR striped bass males with LCR white bass females, and 

following the progeny, could help determine if selecting for stress responsiveness 

could produce a superior performing sunshine bass hybrid.  Since the majority of 

commercial Morone culture is of the sunshine bass hybrid, such results could be 

beneficial to the aquaculture industry.
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