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Chapter 1: Introduction

1.1Research Motivation

In traffic management and planning, accurate route travel ttmaaion is essential
from several aspects. First, travel time estimates amn afsed in travel time
prediction algorithms. Short term or long term travel time banpredicted by
analyzing the historical travel time data set. Second, ttamelestimates are required
for determining offline performance measures for various polppli@ations. For
example, travel time variability is an emerging performamsasure increasingly
used by decision makers and transportation planners in many pregassaent
decisions. Also, travel time estimates play an important rokkdwvanced Traveler
Information and Transportation Management Systems. There aeedifinethods in
traffic information systems such as variable message sidtfs,d8vices, and Internet
webs (MapQuest, Google Map...) which use the travel time estimates.e8alf the
accuracy of the estimated travel time is of a significamthv This accuracy is highly

dependent on the historic data used in prediction algorithms.

There are several methods in collecting travel time data.nitedbe staffs at the
Center for Advanced Transportation Technology at the University oyl&tad have
invented a new traffic data collection sensor that is based onBlietooth

technology. This device has a high level of accuracy and low cas¢mbdyment



compared to current common methods such as probe vehicle and automiate ve

identification.

To predict route travel times, it is ideal to have historic dataall the links in the
network. However, in practice it is very difficult to install sersson all of the links
in a network for two reasons. First, sensor acquisition and installeticostly and
subject to budget constraints. Investing more and providing more seosergan
obtain more travel time information. As a result travel time lba predicted more
accurately on the links. Second, not all links provide useful datadhaimprove the
quality of travel time data. For example, there are some \utksh always operate at
or near free flow speed. That means travel times on those linksotdghange
significantly over time. So, even if sensors are installed on thioks® not much
additional information will be gained by those sensors. As a résidtimportant to
carefully select the links that are the most valuable linkscddiecting travel time

data from a network-wide perspective.

1.2. Research Objectives

The objectives in this study are:

v' Describing the problem of Bluetooth sensor location for collectiaget
times, aspects and issues
v" Providing a comprehensive literature review on the sensor locatioreprobl

and different methods of travel time data collection



v" Proposing two mathematical formulations that comprehensivelyideste
problem from different aspects. One considers a single objectivéidinnc
while satisfying the quality and reliability constraints. Tdteer is a multi-
objective approach that optimizes several parameters for any gvel of
resources.

v' Applying the formulations on various real world traffic networks and
conducting sensitivity analysis over different parameters in the formuogdati

v' Comparing the two formulations and their results

1.3. Thesis Contribution

A new collection of issues is considered in solving the Sensor ibocBroblem
(SLP) in this study. All the issues which have been used in previnugies
separately are considered together in addition to a newly introdeced The new
concept that is introduced is maximizing the coefficient of vianaCOV) of travel
time on the links. The segments with low travel time variagi@not interesting for
collecting travel time. Adding this term to the model will avoltbasing the links

which do not provide useful data.

Also, the largest network that has been solved exactly using prdeiooslations is
of the size of 91 OD pairs by Sherali [2], which is much smaltian the networks
that are solved in this study using the proposed formulationsiofset?2).
Formulation 2 (section 3.2.2) solved the Sioux-Falls network with 725 OB pad
formulation 1 (section 3.2.1) solved Anaheim network with 1584 OD pairs. Howe

formulation 1 can solve much larger problems exactly.



1.4. Thesis Organization

In chapter two, different data collection methods are reviewed andssied. Also a
comprehensive summary of the available literature on the setstioh problem is
presented. Chapter two is concluded with an introduction to the new techmdlog

Bluetooth sensors and their application in travel time collection.

In chapter three, the characteristics and specifications @irtidem are described in
detail. Afterwards, the contributions of the proposed formulations acesgied and
compared to the previous studies. At the end, the mathematicallédions of the
problem are presented and discussed.

Results of the numerical case studies and sensitivity analgsidiscussed in chapter
four. Chapter five covers the side by side comparison of the twaifations of the
problem. Finally, chapter six provides the conclusions and suggestioristioe

studies.



Chapter 2: Background and Literature Review

2.1. Background

As cities get larger and more populated, traffic and transportation isscesie more
important and require more resources. Knowing the travel time mk &d path in
advance will help travelers decide on a better path for theiratrgp also reduces
congestion in the network. Travel time prediction has a wide rahgpplications in
Advanced Traveler Information Systems (ATIS). ATIS providestthgelers with
travel time estimations on the road segments through differerttodsetsuch as
Dynamic Message Signs (DMS), Highway Advisory Radio (HAR)yehicle route
guidance systems (like GPS), and internet websites (such ateGuayg Map Quest,

etc. ).

As a result, accurate prediction of travel time is imporsamte a major portion of
trips can be scheduled based on this information. The accuracy of tiraee
prediction depends on several parameters. One important elementistdnie travel
time data. The historic travel time data is used in differegtthods of travel time

prediction to predict short term or long term travel times.

Several methods can be used for travel time collection. Eatttochbas advantages
and disadvantages. In this study a new technology, Bluetooth sensayasidered

for collecting travel time data which is explained in more details inose2t2.



Obtaining travel time information on more road segments canaiseréhe accuracy
of the travel time prediction. However, providing travel time datavanyesegment
of each link in a large-scale network is not possible mainlytadreidget constraints.
So besides the technology being used for collecting data, it istempdo find the
best combination of links for collecting travel time in order to mtelavel time with

high reliability.

Choosing the most rewarding links for data collection is a well krneblem called
Sensor Location Problem (SLP). In this chapter, a humber of commdroasein
collecting travel time data including the Bluetooth sensors aredinted in section

2.2. Finally, a review of the previous studies on Sensor Location Problem is presented

in section 2.3.

2.2. Data Collection Methods

Travel time data can be collected using different methods [H]. [The most

common methods are:

1. Test Vehicle Technique (Floating Car) :

This common technique consists of hiring someone to drive a vehicle along a pre-
selected route and measure the elapsed time and distance traversedsiblie po

to equip the vehicles to automate measurement and recording.

The major advantage of electronic test vehicle technique includes:

e Simple and easy method with no need for complicated devices



Some of the disadvantages of electronic DMIs include:

e High probability of human error in recording the data

e Floating car technique is still somewhat labor-intensive and isllysua
limited to a few measurements per day per staff member

e Travel time is only as accurate as the driver's judgment affiar
conditions

e Floating car technique on arterial streets may not meakareldlay of

cross street traffic turning onto the study route

2. Electronic distance-measuring instruments ( DMIS) :

The integration of an electronic DMI with the floating car techniguerides an
easier and safer way to collect detailed travel time indtion (compared to
traditional floating car method). In the DMI technology, the sersattached to
the probe vehicle’s transmission. The DMI receives consecutivespiutsa the
vehicle transmission while the vehicle is moving. A DMI typicaiBn provide
instantaneous speeds up to every 0.5 second intervals. This detailédinmave
information can be downloaded to a portable computer in an easy-tatese

format.

The major advantages of electronic DMIs include:

e Improvement in cost-effectiveness and safety of data collectiontbge

test vehicle method



e Easier data processing than test vehicle technique due to agtomati
recording of travel times to portable computer

e Detailed travel time and delay information that can be used for
identification of bottlenecks and areas of extensive delay

e Providing acceleration and deceleration details that can beuablal
source of input data for fuel consumption and mobile source emissions

analysis.

Some of the disadvantages of electronic DMIs include:

e Floating car technique is still somewhat labor-intensive and isllysua
limited to a few measurements per day per staff member

e Travel time is only as accurate as the driver's judgment affiar
conditions

e Floating car technique on arterial streets may not meakaredlay of

cross street traffic turning onto the study route

3. License plate matching:

License plate matching was used as early as the 1950s fdrtina@estudies but
it was mainly used for tracking or identifying vehicles irgm-destination travel
surveys. Early license plate matching methods relied on obsdoverste the
license plates of passing vehicles at certain locations and record riésponiding

times on paper or into a tape recorder. License plates were manually matehed |



in the office, and travel times were computed. Recent advancelgital

technology have substantially improved the accuracy of this technique.

The major advantages of license plate matching include:

Providing large sample sizes during data collection period

Providing representative estimate of travel times through random sampling

Providing travel times amall time intervals, giving speed profile for the

study section throughout the peak period

Resulting in lower costs per travel time run than the floating car method

Providing useful data for OD studies

Some of the disadvantages of the license plate matching technique are:

Data quality concerns from incorrectly reading or mismatchiognge

plates

Only overall travel times (no stopped delay) are collected

Less practical for high speed traffic or long roadway eestiwith low

percentage of through-traffic

High initial cost for equipment purchase

Potential public disapproval because of privacy concerns

4. Cellular phone tracking :

Some cities have a dedicated number of cellular phone users to tiegort

position at designated checkpoints, allowing a traffic operatientecto estimate



travel times on the basis of several cellular phone reportsil&etihones in use

can also be tracked using geolocation techniques.

Based on the limited test information, cellular phone trackirggtha following

advantages:

e Minimal cost involved with providing the vehicles with the instrument
because of the current popularity of cellular phones
e Cellular network and control center are also able to handle inciheht

emergency calls

Some of the disadvantages include:

e Large investment in control center for tracking phone calls

Cellular phones must be in use to track, thereby limiting sasipés and

coverage

Potential public disapproval because of privacy concerns

Cooperation of cellular carriers is required

5. Video imaging :

Several video-based systems are developed to measure dvavall times;
however, these systems are somewhat less developed than euheiques.
Video systems capture vehicle images and attempt to masgesvirom different
camera locations. This method needs a lot of processing timellaassvpersonnel

and equipments for detecting vehicles in videos.

10



Some advantages of this method are:

e Inexpensive instruments (even a normal camcorder can be used)

Some of the disadvantages of the video imaging method are:

e Needs a lot of time for matching the vehicles in the videos

e High probability of human error in matching the data

. Automatic vehicle identification(AVI):

An AVI system consists of an in-vehicle transponder (whichbeathe toll tags),

a roadside reading unit, and a central computer system. When a vehicle containing
a transponder (tag) passes a roadside reader unit, the inforneetidhe
transponder is transferred to the reader unit. The data is pedcasd the travel

time and other traffic data are calculated by matching the tags.

From the recent studies and projects, the use of AVI technologydasuring

travel time has the following advantages:

e Real-time travel time information collected and distributed tiaffic
information system

e Eliminates human error associated with floating car

e Low operating cost once adequate tags are distributed

e Permits fast-track installation with little disruption to traffic

e Used in toll collection and fleet management

11



AVI technology has the following disadvantages:

e High initial equipment costs ($25,000 to $36,000 per reader unit)

e Motorists must acquire and display the tag

e Travel time information availability is limited to fixed routesnd
checkpoints

e Privacy concern is an issue

7. Automatic vehicle location(AVL):

Automatic vehicle location (AVL) is another technology with sal@applications in
transportation and traffic management. AVL perniits location of a vehicle to be
known automatically, made possible through transmitters that ariedcan the
vehicle. The transmitters allow the vehicle's location to be meted at frequent
intervals, if not continuously. If a map database is used to rdpoxtehicle location,
travel times can be calculated for designated roadway sec#Mis systems are
becoming more common on transit fleets, police and emergency eshehd
commercial vehicles. There are several different techredadiat can be categorized
as AVL. Signpost-based systems utilize antennas at fixedguosaiong a route, and
are commonly used for tracking bus schedules along a fixed Gubend-based
radio navigation systems use a radio frequency and several rgcéoviers to
transmit position information. Global positioning systems (GPS)zeatibrbiting
satellites for continuous location determination. Differential GBSPS) systems

use local towers in addition to satellites to increase the accuracy of GPS.

12



Based on the recent studies, At¥dchnology has the following advantages:

e Real-time travel information at frequent intervals
e Eliminates human error
e Not limited to fixed routes or checkpoints

e Used in other transportation applications like fleet management

AVL technology has the following disadvantages:

e High initial costs for sophisticated equipment ($1,000 to $4,500 per
vehicle)
e Some errors in exact location of vehicles

e Small sample size

8. Bluetooth Sensors:

A new device for collecting travel time data is invented bystiaés at the Center for
Advanced Transportation Technology (CATT) at the University ofyMad [16].
This device uses the Bluetooth technology to detect vehicles. The&lugrotocol
uses an electronic identifier, or tag, in each device callecedidvAccess Control
address, or MAC address for short. The MAC address serves akcirorgc
nickname for each electronic device in data communications. In thisodjea
vehicle containing a detectable Bluetooth device (such as a cell phone witbhoBtyet
GPS, notebook, hands free, etc) is detected at two Bluetooth sengmrsst@ihe
MAC address which is unique for each Bluetooth device and thedfirdetection is

logged when the device is detected at a Bluetooth sensor. Usitugtfesl times for

13



each MAC ID in two distinct Bluetooth sensor stations, traweeé tfor that specific
MAC ID in that road segment is calculated. Since these MBE£dre unique, it is
even possible to track a vehicle in a route and find its origin anohalgsh. So it is

also possible to find the path travel times over the network. (Figure 2.1)

Bluetooth

Bluetooth :3. Signal
Detectors =~ /ﬂ 4
Ae = 8:04:26 AM
2 miles -
”
’

Travel Time = 2:32 Minutes

Speed = 47.4 MPH
Time = 8:06:58 AM
e,

Figure 2.1. How Bluetooth sensors work

Two Bluetooth sensors are required to find the travel time @maa segment. One
sensor should be installed at the beginning of the segment and thesluthéd be
installed at the end of the segment. However, if there are segments which have
a common node (such as intersections, on ramps or off ramps), oheoBiusensor
can be installed at that node to cover both segments. Comparingéhef tietection
of a MAC address in the sensors can determine the direction déthketed vehicle.
This property enables coverage of traffic in two directions afadway by deploying

only two sensors at the beginning and at the end of that roadway segment.

Some advantages of the Bluetooth sensors are:

e High accuracy of data because of tracking each vehicle separately

14



e Portability of Bluetooth sensors

e Low equipment cost

e Real-time travel information at frequent intervals

e Reduction in human error

e Providing the speed profile as a result of constant monitoring

¢ No need to distribute tags among vehicles

Some disadvantages of this method are:

e Small sample size on the roads with low traffic volumes

e Limitations on some roads with specific geometry charadesisuch as

HOV lanes

e Probability of detection of vehicles decreases if the Bluetoathoss do

not face each other completely or have different heights from the road.

2.3. Literature Review on Sensor Location Problem (SLP)

In travel time prediction, obtaining travel time information on enovad segments
can increase the accuracy of the travel time prediction. Howpveviding travel
time data on every link of a large-scale network is not passidinly due to the
budget constraints. Moreover, not all the links provide useful data dhaiiprove
the quality of travel time data. For example, there are samke Wwhich always
operate at or near free flow speed. That means travel timdsosa links do not
change significantly over time. So, even if sensors are besgtglled on those links,

not much additional information will be gained by those sensors. vesut, it is

15



important to carefully select the links that are the most b#ulnks for collecting
travel time data from a network-wide perspective. To find mthest valuable
collection of segments is a known problem which is called SensatibadProblem

(SLP).

SLP can be described from two different approaches. One appi®dc find the
minimum number of sensors and their optimal locations in a networkdier oo
satisfy a certain standard of network performance. The othevagprs to optimally
locate a certain number of given sensors in a network in order tionimexa defined
benefit function. The main question in modeling this problem is how fionedthe
network performance measures in the first method and the beamattion in the

second method.

To address this problem, Sherali et al. [2] proposed a mixed—inb@genization
model to determine optimal placement of automatic vehicle ideation (AVI)

readers for travel time estimation in order to maximize mefie function. The
objective function is a quadratic function derived from the multpln of traffic
flow of each link and the coefficient of variation (COV) of trafflow on that link.
That objective function maximizes the traffic flow being detdcin the network.
Sherali’'s proposed model is a nonlinear mixed integer programcamdnly be

solved approximately for large-scale networks. The model is as follows:

Parameters:

16



G (N, A): The illustration of a transportation network with nodesnf N and links

from A

b, = f,COV,

V() €A

b, : Benefit factor for covering arg, j) € A

f; - Traffic flow on arc(i, j) e A

COV, : Coefficient of variation of traffic flow on arg, j) € A

C,: Cost of installing a reader at location |

B: Maximum budgetary limitation

R: Maximum number of available readers

Decision Variable:

(2.3.1

Yi

1, if areadeislocateditnodg| . N
= =
0, Otherwise ]

Objective function:

max > > by, (2.3.2)

(i.))eA

Subject to:

17



2 Y <R (2.3.3)

jeN

2.Cy;<B (2.3.4)

jeN

ye{o1 (2.3.5)

The objective function (2.3.2) seeks to maximize ttotal coverage benefit.
Constraint (2.3.3) asserts the number of readexd sisould not exceed the available
maximum number R. Constraint (2.3.4) imposes a étady restriction on the total
acquisition plus installation cost. Constraint (2)3represents the logical binary
restrictions on the decision variables. The biggestvork that Sherali solved exactly
was a network with 91 OD pairs. However, there stdsa gap between the IP and

LP solutions.

With regard to the AVI reader location problem &stimating roadway travel times,
Teodorovic et al. [3] proposed a composite objecfinction that is comprised of a
weighted average of the total number of AVI tagdiegs and the number of OD
pairs that are at least partially covered by theselings. They developed a genetic
algorithm to heuristically maximize this functidn.constructing this formulation it is
assumed that the OD table is known a priori antlvbhicles follow a static shortest
path over the network between each OD pair. Howewer reader locations might
measure travel times over any arbitrary subseteeoghortest paths between the OD

pairs, and the model does not distinguish betwden benefits accruing from
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obtaining information regarding travel times ovee@ortion of an OD shortest path

from another.

A multi-objective model for AVI readers was propdse 2004 by Chen, Choontinan,
and Pravinvongvuth [4]. In this model they introddcthree objectives. First was
minimizing the number of readers. Second was maxingithe number of OD pairs
covered. And third was maximizing the number ofividiial readings over the entire

network. The model is as following.

Parameters:

N: Set of nodes in the network and |N]| is the sfabe set N

A: Set of links in the network and |A| is size ef &

W: Set of OD pairs and |W]| is size of set W

R, : Set of Paths between OD pair w

L: Number of AVI readers available

0, A path-link indicator denoting 1 if link a is grath r between OD pair w, and 0

otherwise

Decision variables:

X, : An integer decision variable indicating the numbeAVI readers to be installed

onlinka {0, 1,.., p}
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Y. A binary decision variable indicating whether Qfair w is covered (or

intercepted) or not

z': An integer decision variable indicating the numioé readings along path r

between O-D pair w {0, 1,..., |Apx1}

Objective function:

max(- f,(x), f,(X), f5(X)) (2.3.6)
Subject to:

z" < max{o,gégx —1} VreR,,weW (2.3.7)
Yo, <2 ,VreR,weW (2.3.8)
x,€{0,1,..,p},VacA (2.3.9)
y, €{0,.1,vywe W (2.3.10)
2" e{0,1,..|Ax p-1,vreR,we W (2.3.11)

Equation (2.3.6) is the multi-objective functiontbe AVI reader location problem,
which is to configure the AVI readers into a trafiensor network that is capable of
capturing as much flow as possible while coveringaximum number of OD pairs

with a minimum number of AVI readers. Equation (2)3nsures that if a used path
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is covered there must be a minimum of two readknsgathe path; otherwise, it is

considered as not covered. Furthermore; for OD paito be covered, equation
(2.3.8) requiresz” (all used paths r serving this OD pair w) to bsippee. Equations

(2.3.9) to (2.3.11) constrain the solutions to thkeee binary integers or integers. The
largest network solved with this model using the&@e algorithm was a 34 OD pair
network. They solved the problem three times faheabjective function’s element
individually for Irvine network (36 nodes and 646kis). They compared the non-

dominated solution for each objective element togieaind the trade off among them.

Bartin et al. [5] showed that the optimal sens@acpment for travel time estimation
can be determined by minimizing a weighted summatib speed variations of all
roadway segments, each of which is associated avilensor. A nearest neighbor
algorithm was then used to solve the problem. Tepgsed clustering approach not
only finds the segments for the sensor deploymantlso determines the number of
segments to monitor. The algorithm was used toesalwnetwork with 9 OD zones
and three interchanges. However, it was not gueeanto provide a globally optimal

solution in polynomial time.

Yang and Miller-Hooks [6] proposed a model to selée information critical arcs
such that the greatest benefits can be derived. prblelem explored was that of
selecting a fixed number of arcs, representingosetuof the network arcs, referred to
as information critical arcs (ICAs), which will bastrumented to collect real-time
information, such as travel times, from a transgeh network. A modified

maximum-covering formulation is presented along hwid heuristic solution
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procedure. Variation of travel time and the amaointolume on each arc were the
issues in determining the arc’s benefit. The preddseuristic was used in solving the
Texas highway network consisting of 183 nodes atftldcs. Though the result was

good but the method still could not solve the peabkexactly.

Gentili and Mirchandani [7] addressed the probldnooating active sensors on the
arcs of a traffic network where the sensors cawigeodata on paths. They showed
that each sensor located on an arc results in afdetear equations in path flow

variables that may be used for finding path floWwisen, they solved the problem of
the selection of the minimum number of arcs that latear equations that result in a
full rank coefficient matrix. They presented a fatation of the problem and

analyzed three different scenarios depending ohthmeber of conventional counting
sensors already located on the network. The gepesadlem was shown to be NP-
hard. Through the proofs of the polynomially solealtases, some new graph
theoretic models and theorems were obtained, wihi¢cheir own right added to the

graph theoretic knowledge base, besides providisight to develop an approximate

algorithm for the general case.

Hu et al [8] propose a basis link method to additbgs network sensor location
problem under steady state traffic conditions. Teelye the maximum OD covering
for this problem. In this method the minimum numbéfinks was selected to cover

all OD pairs while no other reliability issues wamsidered.

Fei and Mahmassani [9] proposed models that us&K#hman filtering method to

explore time-dependent maximal information gainesg all the links in the network.
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The research proposed two types of sensor locatmels to solve an O-D coverage
problem and a maximal information gain driven pesbl The focus was on solving
the sensor location problem as an OD coverage gmohinder a dynamic traffic
assignment. They produced a quality estimated ODriméhat integrates link
observation data that minimize the variance of @ flow estimator. They
constructed an unbiased generalized least squaséma®or, using a linear
relationship and link flow proportions obtained rfrca dynamic traffic assignment
procedure. The models were developed to identifly $ensor locations that produce
maximal information gains and maximal OD pair relidy. A sequential algorithm
was developed to solve the proposed models. Tlyedametwork solved with the
proposed heuristic was the Irvine network, Califaymwith 238 sensors that covered

3,660 OD pairs, including 326 nodes and 626 links.

Yang He and Mirchandani [19] proposed two modelae @naximized the route
length monitored when a certain number of readadstb be located on the network.
The other maximized the ability of predicting tritisme by maximizing the variance

reduction in travel time prediction for each link.

All previous research that attempt to solve SLPaisember of issues for reliability
of travel time data and most of them use heurigbcssolving the problem. So the

proposed models mostly have not been solved exactly

In chapter 3, the differences between the suggdstedulations and the previous

works are discussed.
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Chapter 3: Problem Specifications and Mathematical
Formulation

3.1. Problem Specifications

3.1.1. Sensors’ Specifications

A new traffic detection device based on Bluetoahbhhology has been recently
developed [16]. Studies suggest the high accuradyraliability of data from the
Bluetooth sensors [18]. Previous studies suggestséimple size plays an important
role in accuracy and reliability of the data. Itreported that the average rate of
detectable Bluetooth devices in vehicles in a nbtnadfic stream is in the range of
3-5% of the total link traffic volume. The sampleesneeded for a reliable travel time

prediction can be calculated using equation 3.1[10]:

z,,,CV.2
n=— 3.1
£ (3.1

Where:
n : Sample size

o/2 : Standard normal variate based on desired demdie level in the travel time

estimate

c.v. : Travel time coefficient of variation = Staard deviation / Mean of travel time
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E : Permitted relative error (%)

For example, considering = 0.05 (95% confidence), the average sample size f
Anaheim network (one of the case study networksgisulated using equation (3.1).
The sample size for collecting data is 5% of th@alteolume on the links in the
network. Since studies have shown that 3% to 5%etiicles can be detected as
having Bluetooth devices in the traffic streamsitoncluded that Anaheim network
provides the minimum sample size for collectingvédtatime data with 95% of
confidence using Bluetooth sensor. (Volume datéherlinks is provided by [13] and

[14])

A vehicle will be detected by a sensor if the poweértransmitting and receiving
antenna and the device in the vehicle satisfy this Fransition equation. In its
simplest form, the Friis transmission equationhsven in equation 3.2[12]. Given
two antennas, the ratio of power received by tleiveing antennap;, to power input

to the transmitting antenni,, is given by

P A

L =GG, ()2 3.2
p =GC () (32)
where:

Gt andG; : The antenna’s gain of the transmitting and rengi respectively

A : The wavelength

R : Distance between transmitting and receivingama
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The antenna gains must be in decibels. Also theeleagth and distance units should
be the same. There are a number of assumptionseirsimple form of the Friis

transmission equation:

1. The antennas are correctly aligned and polarized.

2. The bandwidth is narrow enough that a single vétwethe wavelength can be
assumed.

3. P ( P) is understood to be the available power at theive antenna terminals (the
power delivered to the transmit antenna). Thetess introduced by both the cable
running to the antenna and the connectors. Furtbrernthe power at the output
(input) of the antenna will only be fully deliveradto the transmission line (free
space) if the antenna and transmission line arpigate matched.

4. The antennas are in unobstructed free space, withuttipath.

If all the ideal conditions are provided, by usihg Bluetooth sensors’ information
(Gt andG,= 3 dbi,A= 0.12 m,P, = 17 mw), the covering distance is calculated as
R~300 ft~ 91 m. FWHA standard suggests the values for @ffidriane width as:
Highway= 3.6 m, Arterial=3.3 m, local=2.7 m. If éatraffic lane is assumed to be
about 3.2 m and sensors are installed in the med#hithe roads, then each sensor
can cover the traffic of both directions on a ra@th the detection probability of

100% in ideal situations.
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3.1.2. The formulation’s Specifications

There are different issues that affect the religbibf travel time data such as
percentage of covered volume in the network andC@¥ of travel time on the links.
Covered links should provide a certain level ofiatality issues in the network.
Besides, there are some other elements in optigithie@ SLP such as the number of
sensors and the number of covered OD pairs whiobldibe considered in solving
the problem. Overall, the terms that should be idened in solving a SLP problem

are:

1. Covering a high percentage of the total voluméertetwork

2. Covering links with high variation in their traveine (segments with low travel
time variation are not interesting for collectimguel time)

3. Covering the links with low relative error in trdwame prediction. This means
that in similar conditions, it is favorable to cowbe links that their travel time
can be predicted with smaller relative error.

4. Covering as many origin-destination ( OD ) pairgpassible even if the OD pair
is covered partially

5. Considering cost constraints

6. Using a minimum number of sensors

Coefficient of variation of travel time on a link the variation of travel time on the
link during the peak hour in a day. So if the C@\small it means that the travel time
does not change during the peak hour. This meansdkel time is already known

and there is no need to collect a new set of dtadaever, travel time prediction error
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is the difference between the link travel time tigapredicted for any given time
window using historic data, and the real travektidata on that link during that time
window. For example the prediction of travel tinoe 5:00 PM on Tuesday using the
data of the same time and day of the previous weisf the error is large it means
that the traffic on that link does not follow a gigable behavior. Therefore,
collecting data on the link will not be useful iratel time prediction algorithms.
Consequently the COV of travel time and travel tipnediction error are not exactly

the same and should be considered as two difféxetdrs in the objective function.

In all previous studies of optimal sensor locatione or some of the above issues is
considered. Some of them considered the issuebjastige function and solved the
problem as a multi-objective problem, while sombets$ try to solve the problem

considering one issue as the objective and theo#seconstraints.

In this study all the issues are considered togefiveo formulations are proposed for
the problem. In formulation 1, the problem is fotatad as a multi-objective problem
subject to cost constraint. In the formulation & thbjective function is to minimize
the number of sensors, while all other five issars considered as constraints. The
two formulations are introduced in the section 312 two proposed formulations are

compared theoretically and numerically in chapter 5

3.2. Problem Formulations

Every traffic network consists of several nodes lmkk. In this research, a node is

inserted wherever the traffic flow changes sigaifity. For example intersections or
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on-ramps and off-ramps create a node. Every segofientoad between two nodes is

defined as a link.

An OD pair consists of an origin and a destinatiode, and one or more transition
nodes. To go from the origin to the destinatiore should pass the transition nodes.
The links between each two transition nodes in Bnp@ir is called an OD pair link.
The collection of links in an OD pair is called ©® pair links. An OD pair is called
partially covered if and only if at least one oé tinks in the OD pair links is covered

by detectors.

In the following sections the mathematical formigias of the problem are

introduced.

3.2.1. Formulation 1

Parameters:

L : Total number of links in the network

N : Total number of nodes in the network

R : Total number of OD pairs in the network

C : Total budget

a . Minimum COV of travel time on the links

v : Minimum percentage of covered volume in the roekw
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6 : Minimum percentage of covered OD pairs in thievoek

I'(i) : The collection of nodes which have a link to tiegle (i);i € {12,...,N}

V, : Traffic volume on the link from node (i) to nodg i € {12,...,N}; j e T'(i)

(gj : Coefficient of variation (COV) of travel time dhe link i-j; i € {1,2,...,N};
TT-jj
jel(i)

t -t

B :‘ forallie{12,...,N};jeTI()

ij

B, : Relative error of travel time prediction on link

t. : Predicted travel time on the link i-j

t. : Real travel time on the link i-j

(@]

.. Installation Cost of a sensor on node (i;{12,...,N}

ij

r 1, if link (ij) isin theOD pair(r) links| NV -
0, Otherwise ie{l2,..,N};jel(i)ire{l2.. R

Decision variables:
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1, if link (ij) is covered

K = (sensorsare installed on both nodes(i) and()) ;i € {12,...,N}; j e I'(i)
0, Otherwise
if isinstalled de(i
i: Li asen§0r|3|ns alled on node(i) e 12N}
0, Otherwise
- 1 if atleastonelink in OD pair (r) links is covered fe{l2..R)
0, Otherwise
Objective function:
N N R
Z 2 KV, le ; Ki (mj ) in Z KBy DY,
max i=1 JeF(l n i=1 jer(i) T =1 |=1’\i€1'(|) 4 o=l (33)
N R
Sy >3() 39 )
i=1 jel(i) =1 jel(i) TT—ij i=1 jer(i)
Subject to:
N
D c.x<C (3.4)
i=1
Y, <Z D KR ire{12,..,R (3.5)
i=1 jer'(i)
N
RY, >> »K;P';re{12..R (3.6)
i=1 jel'(i)
X + X . . :
TZ K;iie{l2,..,N};jeT() (3.7)
Ki 2 X +X;,-1;ie{12,...,N}; j e (i) (3.8)
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x ={01} ;i € {12,....N} (3.9)

K; ={01} ;i e {L2,...,N}; j e T(i) (3.10)

Y ={01};r e {12,...R} (3.11)

Equation (3.3) is the objective function which imalti-objective function. Chen, and
Choontinan [4] solved SLP problem with a fewer nembf objective elements. They
solved the problem several times. Each time thegidered only one of the elements
of the objective and then compared the result éoheobjective together. But here all
the objectives are optimized together. The maimtpioi solving the proposed multi-
objective function is the comparison of differefjextives with different units and
scales to each other. In this regard, all the temabjective function are normalized
between 0 and 1. For example for the volume eléneach link’s volume is divided
by the total volume in the network. The resulthis percentage of the total volume in
the network that belongs to each link. This term isnit-less value between 0 and 1
which is called the link’s contribution to the vale objective. So the same process is
done for other elements in the objective functids. a result all the terms in the
objective function are unit-less with the same esedhich ensures they are addable. If
the objective elements do not have the same weightkeir contribution to the
objective function, then they can be multiplieddwyser-defined weight. The weight
values affect the solution. The weight vector candetermined by studying the
Pareto set of the weight vectors. In this methdiedint sets of weights are generated

through different methods (for example random gatin@m). This approach gives an
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idea of the shape of the Pareto surface and previte user with more information
about the trade-off among the various objectived, [R21], [22]. Then considering
the trade-offs between the objectives, the decisiaker can decide on the value of
the weight vector. However, in this study all tHeneents of the objective function
are considered with the same weights. Examiningpgroveights for different
components of the objective function is left fotuite research. In the objective
function, the first element is the volume objectiltemaximizes the covered volume
in the network. The second element is the COV efemanks with larger COV of
travel time contributes more to COV element in dhgective function. So they have
priority to the other links for being selected. Ttherd element is the number of
sensors element. It minimizes the total numbereagers in the network. The fourth
element is the error element. It minimizes the agerof relative error of travel time
prediction on the selected links. To compute re¢atravel time prediction errof),
travel time on the links during the desired peakrhe assumed to be known. This
data can be provided through historic data oritra$signment methods. Having the
historic real travel time data and using a trawelet prediction methodp can be

calculated as follows:

t;j -t

forallie{12,...,N};jeI()

i

ij

where:

B; - Relative error of travel time prediction on liRk
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tIJ : Predicted travel time on the link i-]
t; : Real travel time on the link i-j

Finally, the last element is the OD covering eletndinis element maximizes the
coverage of OD pairs in the network. It should bentioned that an optimal solution
for this aggregated objective function might not the optimal solution to the

problem if each element was optimized individually.

Equation (3.4) is the budget constraint. This c@mst requires the total installation

costs to be less than or equal to the availablgétu@.

Equations (3.5) and (3.6) are the linking constgibetween the link and OD

N
variables. OD variable is defined¥as=min{1,> > K;P'}. In other words,Y, is

i=1 jel'(i)
equal to one if and only if there is at least ank bf the OD pair ( r) links which is
selected for installing sensors, and is zero if amg if none of the OD pair (r) links

is chosen.

Equations (3.7) and (3.8) are the linking constrdietween the node and link

variables. K; =max{0,x +x; -1} ; The link (ij) is selectedK; =1) if and only if
both nodesx, x; are picked up X, =1,x; =1). And it is zero if and only if none of the

nodes or only one of them is chosen.

Equations (3.9), (3.10), and (3.11) define the lyinvariables of the problem.
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3.2.2. Formulation 2

Objective function:
N

min> " x
i=1

Subject to:

(%jm,- > K, jie{l2...,N};jer()

N N
DK 27D DV sie{12,.,N} 5 j e T()
i=1 jel(i) i=1 jel(i)
> YK, < B0 ZZK
i=1 jel(i) i=1 jel(i)
R
DY, 26R
1

Y, <Z D KR ire{12...,R

i=1 jer'(i)

RY, >Z D KPR ire{12,..,R

i=1 jel'(i)

X +X;
2

> K, ie{12,..,N};jeT()
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(3.17)
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Kij ZXi-i-Xj -1; 1e{12,...,N},;jel(i) (320)

ZN:Ci-Xi <C (3.21)

x ={01} ;i e {12,...,N} (3.22)
K, ={01} ;i € {12....N} ; j € T (i) (3.23)

Y ={01} ;r € {(12....R} (3.24)

Equation (3.12) is the objective function whichnmsnimizing the total number of

sensors being installed in the network.

Equation (3.13) eliminates links with COV less tharlLinks with small variance in
their travel time are not interesting for collegtidata. Since the travel time on these
links does not change dramatically, the availab&tohc data can provide a good
estimate of travel time on these links. Also, threamvalue of travel times may cover
a wide range across different links. As a restltisibetter to use coefficient of
variation of travel time instead of variance sil@®V is the variance divided by the

travel time mean.

Equation (3.14) is the minimum volume coverage traim#. This equation ensures
covering of a minimum percentagg 6f the total traffic volume in the network. This
constraint requires covering the more importarkdithat usually carry higher traffic

volumes.

36



Equation (3.15) is the error constraint. This emumaensures the selected links to
have an acceptable error in travel time predictidns constraint picks the links with
relative travel time prediction error less thanegual to the average relative travel

time prediction in the network.

Equation (3.16), which is the minimum OD coverimmgstraint, ensures that at leést

percent of the total OD pairs in the network iser@d (completely or partially).

All other equations are discussed in 3.2.1.
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Chapter 4: Numerical Analysis

4.1 Data Preparation

In this chapter, the proposed formulations arewatald on real world networks. The

selected networks cover a considerable range onuh#er of nodes, links and OD

pairs. The information of the networks used in thse studies is presented in table

4.1. The maps of the networks are presented irrefggd.1, 4.2, and 4.3 [14]. The

number of nodes, links and OD pairs are given aedriean COV of travel time and

the mean travel time prediction relative error eaéculated as is described in the

following.

Mean of Median of

NI Mean of | Median of Travel Travel

Network Number | Number of OD COV of COV of Time Time
of Nodes | of Links Pairs Travel Travel Prediction Prediction

Time Time Relative Relative

Error Error
Sioux-Falls 24 76 725 0.28 0.11 0.15 0.32

STEIEEIEN | 523 552 0.16 0.07 0.33 0.11

Center

Anaheim 416 914 1584 0.25 1.24 2.04 0.26

Table4.1. Networks information for numerical stsdiet]
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Figure4.1l.a. Map of Sioux-Falls network

Figure4.1.b. Map of Friedrichshain Center network
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Figure4.1.c. Map of Anaheim network

Some assumptions are needed to solve the numermalems. The COV of travel
time and traffic volume on each link, and the ODr pmks are the main inputs.
Volume and mean speed on each link, the lengtheotibks, and the OD pair links
information are adopted from Olarte’s Masters th¢$B]. Using the average speed
and the link length, mean travel time on each in&alculated. A randomly generated
standard deviation of travel time is assigned tohdak. Then the coefficient of
variation of travel time for each link is calculdtby dividing the standard deviation

of travel time by the link’s average travel time.

Since the complete travel time information for eickh was not available, a random

value based on the mean travel time of each lirdsssgned to each link as its travel
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time prediction. Using the predicted travel timel ahe average travel time on each

link, the travel time prediction relative errordalculated using equation 4.1.

(4.1)

Where

ps: Travel time prediction relative error on the li(®

t_ : Predicted travel time on the link (s)

t. : Real travel time on the link (s)

Three other parameters should be known as inpdbforulation 2. Those parameters
are: a (minimum COV of travel time on the linksy, (minimum percentage of
covered volume in the network), aBdminimum percentage of covered OD pairs in
the network). The objective value highly dependsh@se parameters’ value. To have
an approximate range for the parameters, the proidesolved with formulation 1
first. Since formulation 1 does not depend on thibsee parameters, the output for

formulation 1 can be used as an approximate ramgé@é input for formulation 2.

In other problems, when formulation 1 is not ava#athe parameters’ values depend

on the experience of the user and the charactaristithe network.

The machine used in solving the problem is a dgs&tonputer with a 3.0 GHz CPU

and 2.00 GB of RAM. The optimization software ie (bBPLEX 10 [17].
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4.2. Formulation 1 Numerical Analysis

4.2.1. Base Case Study

The only input parameter required for formulatiors The available budget C. Total
budget is defined as the number of nodes in thearktmultiplied by the average
cost of installing a sensor on a node in the ndkwlorthe base case of formulation 1

the available budget is considered as 30% of ta bodget (table 4.2).

Table4.2.Base case result for formulation 1

Network
Budget
Solution Time (sec)
Objective Value
Covered Nodes(%)
Covered Links(%)
Covered OD Pairs(%)
Covered Volume(%)
Cost (Used Budget)
Mean of Travel Time Prediction
Relative Error on Covered Links
Median of Travel Time Prediction
Relative Error on Covered Links
Mean of COV of Travel Time on
the Covered Links
Median of COV of Travel Time on
the Covered Links

Sioux-Falls 213 | 15.28| 0.599 41.6f 28.95 62.0p7 36{63 213 0,27316Q0 0.166| 0.114

Friedrichshain

Center 1990| 9.33 | 1.374| 33.04| 27.53| 94.57| 43.56| 1988 | 0.121| 0.111| 0.645| 0.069

Anaheim 3824| 183.34 1.25¢ 33.17 20.13 9735 37.6 3824 0j2BP56| 4.294 1.233

The base case result of formulation 1 for SiouxtsFahd Friedrichshain Center
networks are shown in figure 4.2. The coordinateb@nodes in Anaheim network

were not available. So the results for Anaheim @éomat be shown on the map.
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Figure4.2.b. Formulation 1 base case resultFaedrichshain Center network
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The result shows that even with a budget less tiamotal budget, a high percentage
of OD pairs can be covered in the networks. Thibasause most of the links are
common between the OD pair links. Also the trauelet prediction relative error is
reduced compared to the average error in the netwboreover, the mean of COV
of travel time on the covered links is higher tithe mean COV of travel time in the
network. This implies that the important links whilsave higher COV in their travel
time has been picked up to be covered. Furthernfiame figure 4.2 it is apparent
that the chosen nodes are distributed all oven#teork which ensures that a high
percentage of OD pairs are covered. Also figure gh@ws that the formulation

chooses the links with common nodes to decreaseutmbder of sensors.

The only limiting parameter in formulation 1 is thadget. So changing the budget
affects the objective value. Consequently, the igeiyg analysis is done for the

budget. The result of sensitivity analysis is desad in section 4.2.2.

4.2.2. Sensitivity Analysis for the Budget

Sensitivity analysis is the study of how the vaoiat(uncertainty) in the output of a
mathematical model can be apportioned, qualitatieel quantitatively, to different
sources of variation in the input of a model. Tihydimiting input for formulation 1

is the budget. So the variation of the output igdl&d under the variation of the

budget.

In the base case study the budget is set to 3G#edbtal budget for all the networks.
In the sensitivity analysis all the input remaie ttame while the budget varies for

different percentages of the total budget. Theuarice of changing budget on the
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objective function and other parameters are digzligs this section. The numerical

result for the sensitivity analysis can be foundthiole 4.3.
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Table 4.3.a. Sensitivity analysis of formulatiofod Sioux-Falls network

Ololo|r~h~|hIn] 5
o N~
Minimum of COV of Travel [~ |&18|8/8/8/8|8/8
Time on the Covered Links |5 |3 |o |3 |c|2|o (2|0
. Blm| O w| djlo|lo|lw|d
Mean of COV of Travel Time @IS I58(319]8
on the Covered Links 3| ° m o m o >_m o W
[92) S N N M
Mean of Travel Time o © o o K o 8 < =)
Prediction Relative Error on IR N N
Covered Links w13 °1RI°I8°8
Lo [aN] o <t ©
[o0] N~ o ™
Cost (Used Budget) B lolRlaF|aol8|o
5 (o] (qV] — <
ol @ 3B 5IRIYS
Covered Volume (%) e © Ty) ol
- |~ N~ [{e] o)) [o0] o
= Q =i P L0
dBS| 822355
. ™
Covered OD Pairs (%) mm. B o_/o %
o Te) N~ o <
HIPIMEINERIRE RN
4 N~ n (o]
. ~ | [ee] [ce] ™
Covered Links (%) ol M| T |Cls|®
— (90} Vo) N~
M~ N~ () N~ D~
OI~|Clo|R || m|©@
O|ld|d|o|N|lo|OO|™M| d
Covered Nodes (%) Al | YoM m| @
N o M~ [o0]
GapBetweenLPandIP |©| || J[°|o|°1o|°
Solution (%)
Gap Between LP and IP ©l5l%1al®lal®lal®
Solution
™ o) O N~ <
Sl (| N|F|IN|o|N|®
. . Lo Lo —
Objective Value OIS IR E 321385
o o o —
21382 9|e(g|zl9
: . |0 1o |O| x|
Solution Time (sec) IR IR
NI I IR E:
Budget NMoe|N|S|lo| ST |o|o
Percentage of Total Costfor | (R IXXIXIXIXI X
9 RIRIRBERRERERE
wcaomﬂ AN N IF|D|O|~<|[D| S
Total Volume 877774
Mean of COV of Travel Time 0.154
Mean of Travel Time 0.282
Prediction Relative Error ’
Lo
Number of OD Pairs N
Number of Links o
Number of Nodes J
Network Sioux-Falls

46



Table 4.3.b. Sensitivity analysis of formulatiofod Friedrichshain Center network
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Table 4.3.c. Sensitivity analysis of formulatiofod Anaheim network
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Changes in percentages of covered OD pairs ingtveank while the budget varies is

shown in figure 4.3.

Sioux-Falls Coverage
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Figure 4.3.a. Percentage of newtork coverage vebpsulget for Sioux-Falls network
— Formulation 1

Friedrichshain Center Coverage
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Figure 4.3.b. Percentage of network coverage vebsuiget for Friedrichshain
Center network — Formulation 1
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Anaheim Coverage
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Figure 4.3.c. Percentage of covered OD pairs, limades, and volume versus
budget for Anaheim network - Formulation 1

Figure 4.3 reveals some of the characteristick@hetworks. In Sioux-Falls network
the number of common links between OD pair linksnsall. The optimal solution
selects more links when the budget increases ierotal increase the objective
elements of OD pairs and volume. On the other ltaachumber of common links
between OD pair links in the Anaheim and Friedighs Center networks is large.
So even with a small amount of budget a high peacgnof OD pairs can be covered.
Increasing the number of links increases the cavemume in the network which

results in a higher objective function value.

For covering each link both end nodes must be ealvdf two links have a common
node the number of sensors for covering the linksrehses by the number of

common nodes. Since the rate of increase in the wwodering graph is less than
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twice the links covering graph, it can be conclutleat the program picks up the links

with common nodes. This reduces the cost and isesethe objective value.

The mean of COV of travel time and mean of trairaktprediction relative error on

the covered links versus budget are shown in fegdré and 4.5 respectively.
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Figure 4.4.a. Mean of COV of travel time on theered links versus budget for
Sioux-Falls network — Formuation 1
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Figure 4.4.b. Mean of COV of travel time on theered links versus budget for
Friedrichshain Center network — Formulation 1
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Anaheim COV of Travel Time
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Figure 4.4.c. Mean of COV of travel time on theered links versus budget for
Anaheim network — Formulation 1

The optimal solution is interested in selecting timks with higher COV in their
travel time. While the budget increases the optisadlition has already selected the
links with the higher COV, so by choosing othek$inhe mean of COV decreases
and gets closer to the mean of the COV in the ndtviBut since not all the links are
chosen, as it is shown in the figure 4.4 the mea@@V on the covered links is
always higher than the mean COV of travel timehim metwork. So by increasing the

budget the contribution of COV element to the ofyecfunction decreases.

52



Sioux-Falls Mean Travel Time Prediction Error
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Figure 4.5.a. Mean of the travel time predictiotata/e error on the covered links
versus budget for Sioux-Falls network — Formulatlon
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Figure 4.5.b. Mean of the travel time predictiotatare error on the covered links
versus budget for Friedrichshain Center networkosrRulation 1

53



Anaheim Mean Travel Time Prediction Error
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Figure 4.5.c. Mean of the travel time predictiohatere error on the covered links
versus budget for Anaheim network — Formulation 1

Increase of the budget increases the covered namigdinks. Since the program
chooses the links with smaller error in the begignas the number of links increases
the average of the error on the links gets clos¢hé mean of error in the network.
So the increase of the budget decreases the aatribof the error element to the

objective function.

CQOV of travel time, error and the number of sensams the parameters whose
contribution to the objective function decreaseenmvithe budget increases. On the
other hand the volume and the OD pair coveringfageelements whose contribution
to the objective function increases when the budgeeases. So the optimal solution
for the problem is where the increasing and theedsing functions meet while the

budget changes.

Figure 4.6 shows the changes in objective functene while the budget varies. By

increasing the budget the program chooses as madgsnas possible until the

54



contribution of the volume and OD pair elementshe objective function do not
justify the decrease in the contribution of COMrafvel time, error and the number of
sensors elements. It means after a certain pegeeofahe total budget, increasing of

the budget does not increase the objective value.
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Figure 4.6. Objective function value versus thedaid- Formulation 1
Figure 4.7 shows how the cost (used budget) chamndpe the available budget
increases. As it is shown in the figure 4.7 afteedain percentage of the total budget
is used, even if the available budget increasesdbedoes not change since using the
budget does not increase the objective value. Phrsentage of the total budget
represents the budget which results in the maxirbpactive value. Consequently

allocating a higher amount of budget is a wasteiods.
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Sioux-Falls, Cost(Used Budget)
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Figure 4.7.a. Cost versus budget for Sioux-Fallswoek — Formulation 1

Friedrichshain Center, Cost(Used Budget)
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Figure 4.7.b. Cost versus budget for Friedrichsh@emter network — Formulation 1
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Figure 4.7.c. Cost versus budget for Anaheim ndtwdformulationl

Since the budget is the only limiting constraint tbe formulation 1, increasing

budget is the same as relaxing the constraint. eftwer the solution time decreases

when the budget increases (Figure 4.8).
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Figure 4.8.a. Solution time versus budget for Sibaks network — Formulation 1
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Friedrichshain Center Solution Time
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Figure 4.8.b. Solution time versus budget for Frigushain Center network —
Formulation 1
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Figure 4.8.Solution time versus budget for Anahegtwork — Formulation 1
Sioux-Falls network is a small network with 24 nedas the budget decreases it gets
very close to the cost of installing one sensornfamy of the nodes which have high
cost are eliminated because of the cost costr@lohsequently solution time is

lowwhen the budget is very small.
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4.3. Formulation 2 Numerical Analysis

4.3.1. Base Case Study

Three parameters af (minimum COV of travel time on the linksy, (minimum
percentage of covered volume in the network), an¢minimum percentage of
covered OD pairs in the network) should be knowmpat for formulation 2. To get
an approximate range for the parameters, the oofphe formluation 1 is used. The
critical budget for formulation 1 is used as thesdaase budget for formulation 2.
Critical budget is the budget at which the netwodverage and objective value
increase rate starts decreasing while the budgeticieasing. So it is the budget
which results in a good coverage of the networklevitiis economical. The graphs
(figures 4.3 and 4.6) show that 30% of the totaldmi for Sioux-Falls network and
40% of the total budget for the Anaheim and thediichshain Center networks are

the critical budget for each network. Since afiese values the rate of the increase in

the objective function starts reducing.

The input for the base case of the formulation ”2efach network is shown in table

4.3.

Table4.4.Input

parameters for formulation 2

Network o v o Percentage of Total Budget
Sioux-Falls 01 | 02| 0.6 30%
Friedrichshain Center | 0.05 | 0.2 | 0.4 40%
Anaheim 0.003| 0.5| 0.98 40%

The numerical results for the base case studyeofdtmulation 2 on the networks are

shown in table 4.4.
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Table4.5. Base case result for formulation 2

Network
Budget
Solution Time (sec)
Objective Value
Gap Between LP and IP Solution
Covered Nodes (%)
Covered Links (%)
Covered OD Pairs (%)
Covered Volume (%)
Cost (Used Budget)
Mean of Travel Time Prediction
Relative Error on Covered Links
Median of Travel Time Prediction
Relative Error on Covered Links
Mean of COV of Travel Time on
The Covered Links
Median of COV of Travel Time on
The Covered Links

Sioux-Falls | 284 | 4.94 8| 0| 3338 1842 4455 22015 267 0p10 60,30.199| 0.114
F”egg’{‘e’;ha‘" 1990| 041 | 35| 0 | 15.63| 6.69 | 71.56| 20.15| 1064 0.153| 0.111| 0.660 | 0.069

Anaheim 5098 | 93028.52 160 § 38.46 22.98 98/23 50.95 4972500. 0.256| 2.93§ 1.23

The base case result of formulation 2 for SiouxsFahd Friedrichshain Center

networks are shown in figure 4.9.

il

Figure4.9.a. Formulation 2 base case result$ooux-Falls network
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Figure4.9.b. Formulation 2 base case resultFaedrichshain Center network

Figure 4.9 shows the result for base case stuftyrwiulation 2. It is apparent that the
formulation 2 chooses the links with common nodtesrder to reduce the number of
sensors. The nodes are chosen so that not akg¢hens of the network are covered.
That is because the problem does not consider iogvall the regions but the most
important links. This is not a limitation of the ow. To cover at least some links
from all the regions of the network a new constraian simply be added. The
complete numerical results for the base case stuahié all the sensitivity analysis for
the formulation 2 are included in the table 4.6.c8ithe parameters afy, andd are
not exactly the same as formulation 1, the basescas formulation 2 are not
comparable to formulation 1. But the exact casescamputed and compared with

each other in chapter 5.
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Table 4.6.a. Sensitivity analysis of formulatiofo2Friedrichshain Center network
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Table 4.6.b. Sensitivity analysis of formulatiofo2Sioux-Falls network
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As the networks get larger the solution time forrnfalation 2 increases
exponentially. The Anaheim network could not besedlexactly with formulation 2.
Although the network is solved with a 5% gap betwéee linear optimal solution
and the best integer solution, the solution timevésy high. Restricting each
parameter increases the solution time. So the tsetysianalysis could not be
conducted for the Anaheim network for exact solutiBut the sensitivity analysis for
Sioux-Falls and Friedrichshain Center networksdiseussed in sections 4.3.2, 4.3.3,

and 4.3.4.

4.3.2. Sensitivity Analysis foro,

In formulation 2, the links that have a COV of watime less than are not allowed
to be selected. As increases some of the links with small COV of élaime which
have common nodes with the other links cannot besein So to maintain the
minimum levels of volume and OD pair covering otlieks are chosen (figure 4.11).
To cover the new links new sensors should be iestaAs a result the number of
sensorswhich is the objective function, increases. Theiatn of the objective

function versust is shown in figure 4.10.
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Objective Value Sensitivity to a
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Figure 4.10.a. Objective function value versu®r Sioux-Falls network —
Formulation 2
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Figure 4.10.b. Objective function value versu®r Friedrichshain Center network —
Formulation 2

Studying the variation of the percentage of cove@d pairs, nodes, links and

volume whilea changes, shows the weakness of the formulatiig@é 4.11).
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Sioux-Falls Network
Coverage Sensitivity to a
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Figure 4.11.a. Percentage of network coverage \sidor Sioux-Falls network —
Formulation 2

Friedrichshain Center Network
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Figure 4.11.b. Percentage of network coverageugtdor Friedrichshain Center
network — Formulation 2

In Sioux-Falls (figure 4.11.a), the solution whishoptimal fora=0.09 is feasible for

a=0.07 as well. Since the number of nodes and ¢neeptage of covered volume are
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the same in both solutions, the optimal solutionafe0.09 is better than the optimal
solution fora=0.07 in covering OD pairs. So the weakness ofdhaulation 2 is that

although the problem is solved for the optimal 8oly but the solution is not unique.
So there may be some other optimal solutions whate a better covering result for
other issues in the problem. In other words, tmmiédation just optimizes the number
of sensors not the other parameters. So the optsokition just satisfies the
minimum of the constraints and does not optimizenth As a result the other

parameters as is shown in the graphs do not fal@nedictable behaviour.

4.3.3. Sensitivity Analysis fory

Wheny increases, it implies that a larger percentageobfme in the network should
be covered. To cover more volume in the networkptiogram can either cover more
links or cover links with higher volume. If any krwith a higher volume is found
which can be substituted by the other links withiagteasing the number of sensors,
it will be chosen (figure 4.13.a). Otherwise themtner of links increases (figure
4.13.b). The changes in the objective function &mel percentages of network

covering can be seen in figure 4.12 and 4.13 réispée
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Sioux-Falls Network
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Figure 4.12.a. Objective function value vergudsr Sioux-Falls network —
Formulation 2

Friedrichshain Center
Objective Value Sensitivity to y

60

5 ya
40 /

30 /
/

Objective Value(Number of Sensors)

20 ——
10 -
0
0 0.05 0.1 0.15 0.2 0.25 0.3
v

Figure 4.12.b. Objective function versufor Friedrichshain Center network —
Formulation 2
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Sioux-Falls Network
Coverage Sensitivity to y
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Figure 4.13.a. Percentage of network coverage \&er$or Sioux-Falls network —
Formulation 2
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Figure 4.13.b. Percentage of network coverageugersor Friedrichshain Center
network — Formulation 2
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4.3.4. Sensitivity Analysis foré

By increasingd the minimum required percentage of covered ODspaicreases.
While covering the minimum percentage of volumdeast a number of OD pairs are
covered regardless of the value of théfigure 4.14). For example 70% of the OD
pairs in Friedrichshain Center network and 30%haf ©OD pairs in the Sioux-Falls
network are covered regardless of the value obtht¢owever, after those values, the
larger thes is the more links should be selected to covergelapercentage of OD

pairs.

Sioux-Falls Network
Objective Value Sensitivity to 6
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Figure 4.14.a. Objective function value vergudsr Sioux-Falls network —
Formulation 2
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Friedrichshain Center
Objective Value Sensitivity to 6
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Figure 4.14.b. Objective function value vergusr Friedrichshain Center network —
Formulation 2

As the number of OD pairs which should be coverethe network increases, the
program tries to disperse the covered links inrtbvork to cover more OD pairs

with the least possible number of links. So th&dimvith common nodes decreases.
As a result the percentage of nodes increases thanethe percentage of links since
for covering each link two nodes should be covefdis can be seen in figure 4.15 in
which the rate of the increase in the number ofrtbdes is more than the rate of

increase in the number of links.
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Coverage Sensitivity to 6
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Figure 4.15.a. Percentage of network coverageusigor Sioux-Falls network —
Formulation 2
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Chapter 5: Comparison of the formulations

5.1. Theoretical Comparison

There are two different methods in solving sensoation problem. One is to restrict
the maximum number of available sensors and tryn&ximize a defined benefit
function. The other is to minimize the number ois®s while providing a certain
level of reliability for the data. Both proposedrfalations in this study belong to the
second group. However, there are some differentakeir objective function and

constraints.

Formulation 1 minimizes the number of sensors batsio optimizes the level of the
reliability. In other words it is a multi-objectivieroblem. The issues considered in

this formulation are:

1. Maximizing covered volume in the network

2. Maximizing covered OD pairs in the network

3. Maximizing average of COV of travel time on the eoed links

4. Minimizing the average travel time prediction redaterror on the covered
links

5. Minimizing the number of sensors

6. Having an upper bound for the cost
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There are some differences between this formulatme the multi-objective
formulation of Chen and Choontinan. First, the Cliemulation has only three
parameters in the objective function. Second, Ckelves the multi-objective
problem several times. Each time one of the isgit® objective and the others are
in the constraints. But formulation 1 considers #ilé objectives together and
optimizes all of them together. All the objectideraents are converted into the same
scale of [0, 1] and they are all unit-less. So tlean be compared together.
Formulation 1 does not need any initial parametanput such asu( vy, ). The only
constraint in formulation 1 is the budget. Thisnfoifation is also capable of giving

weights to the objective elements.

Formulation 2 also tries to minimize the numbesensors while trying to provide a
certain level of reliability. Some of the reliabylissues have been used separately in
previous works. In formulation 2 all the reliabjliissues and other issues which are

important in SLP are considered together. Thesessare:

1. Covering at least percent of the total volume in the network

2. Covering at leasi percent of the total OD pairs in the network

3. Covered links should have a COV of travel time ggethan or equal te

4. The average travel time prediction relative errortloe covered links should
be less than the average for all the links in &igvark

5. There is an upper bound for the cost

6. Using the minimum number of sensors
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In the formulation 2 all the objectives are used@sstraints. A constant determines
the standard level of satisfaction for each condtr&o the result mainly depends on
the constant’s value. But in formulation 1 the opgation does not depend on
standard constant&ormulation 1 is a straightforward method for sodyithe
problem. It optimizes all the reliability issuesshiie the number of sensors. Solving
the problem when no information about the charattes of the network is available
is easier with this formulation. However, formutati2 is useful when providing a

minimum level of reliability and least cost in thetwork is of interest.

5.2. Numerical Comparison

To compare two formulations all the parameters khba equal. Then the result can
be compared. So the problem is solved for the ftatimn 1 first. The critical budget
is determined for the formulation 1 through thessi@rity analysis. From the output
of the formulation 1 for the critical budget,y, ands for formulation 2 is calculated.
The output values from formulation 1 and the injputformulation 2 are presented in

table 5.1.

Table5.1.Formulation 1 output and formulation 2uhfor comparison

2 >~
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B o S -
O O
Sioux-Falls 213 62.07| 36.63 0
Friedrichshain Center 1990 | 94.75 | 43.56 0
Anaheim 5098 | 98.17| 50.94 0.0032B
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The problem is solved for both formulations witle imput of table 5.1. The results

are presented in table 5.2 and figures 5.1 to 5.5.
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A7

Figure 5.1.a: Formulation 1 comparison case resaitSioux-Falls network

ill

Figure 5.1.b: Formulation 2 comparison case resoitSioux-Falls network

77




As figure 5.1 and table 5.2 show, the result fothbiormulations are the same in
Sioux-Falls network, however, the solution time formulation 1 is a little higher

than the formulation 2, but they are both stillwéast (figure 5.2).
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Figure5.2. Comparison of formulation 1 and 2 fooi-Falls network
In Friedrichshain Center network (figures 5.3 amd) 5although the same parameters
are used the results are different. Formulatiooltes the problem much faster than

the formulation 2. Formulation 1 uses the budgetgtmize all the elements at the
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same time. However, the optimal solution may nothHeeoptimal solution for each
objective’s elements individually. On the other thdormulation 2 only optimizes the
number of sensors in order to satisfy the minimeguirements for COV of travel
time, error, and other issues as constraints. $imes not use the total budget. In
formulation 2, although the minimum number of seass obtained, other elements
are not the optimum. For example, the mean of téeet time prediction error in
formulation 1 is less than the formulation 2 and thean of COV of travel time is
much higher in formulation 1. Instead the costamfulation 2 is less than the cost in
formulation 1. Although the number of sensors innfolation 2 is less than
formulation 1 the percentage of OD pairs covered and the coweriedne are almost
the same in both formulations. As it is shown gufie 5.3, formulation 1 distributes
the sensors all over the network and so covers mistenct OD pairs from all over
the network, while formulation 2 does not cover &nik and OD pairs in the upper

part of the network.
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Figure 5.3.a: Formulation 1 comparison case resoitFriedrichshain Center
network

Figure 5.3.b: Formulation 2 comparison case resaoitFriedrichshain Center
network

80



Friedrichshain Center Formulations 1 & 2
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Figure5.4. Comparison of formulation 1 and 2 fordelrichshain Center network
When comparing the results for the both formulation Anaheim network, the

satisfactory result of the formulation 1 is apparéRigure 5.5)
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Anaheim Formulations1 & 2 Comparison
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Figure5.5. Comparison of formulation 1 and 2 foraleim network
The solution time for formulation 2 is much greatban the solution time for
formulation 1. As the limiting effect of constrasnbecomes apparent and the network

gets larger the solution time in formulation 2 g@ses exponentially.

Although the number of sensors in formulation 2&s than the number of sensors in

formulation 1, the cost is almost the same. Othements such as percentage of
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covered OD pairs and the percentage of coveredmmlare the same either.
Moreover, formulation 1 gives a better result in\C@f travel time on the links and
the travel time prediction relative error. Overdétiimulation 1 works much better in

larger networks.

Although formulation 1 shows a better global optimalution each formulation has

an advanatage over the other one. Formulation 8sgitie minimum number of

sensors and so minimum cost for covering the nétw®he solution is a local

optimum and there may be some other solutions thithsame objective value but
different values for the other issues such as eaveolume. On the other hand,
formulation 1 is a straight forward formulation fttre problem. It optimizes all the
elements together. However, the solutiuon may edhk optimum for each element
individually. Formulation 1 is much faster for largnetworks. As the network grows
and the number of OD pairs increases the solutror for formulation 2 increases
exponentially. So solving the problem with formidat2 exactly for large networks

is almost impossible.
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Chapter 6: Conclusions and Suggestions for Fu&haaty

6.1. Conclusion

Two different formulations are introduced in thisidy to solve the sensor location
problem for Bluetooth sensors. Three real worldvoeks with different sizes are
solved using both formulations. The results of b&@hmulations are compared

together.

A new collection of issues is considered in solving SLP. All of the issues which
have been considered in previous studies separarelyconsidered together in
addition to a newly introduced term. A new conagghtroduced as maximizing the
COV of travel time on the links. The segments vatw travel time variation are not
interesting for collecting travel time informatioRor example, there are some links
which always operate at or near free flow speedt Tieans travel times on those
links do not change significantly over time. Soemevw sensors are being installed on
those links, not much additional information wik lgained by those sensors. So by
adding this term to the model the links which dé pvide useful data will not be

chosen.

Formulation 1 is a very straight forward solutianthe SLP problem since the only

parameter which should be known is the budget. e&Sfiocmulation 1 solves the
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problem to optimize all the elements at the samme tithe overall results are better
than the formulation 2. However, the optimal santimay not result in optimal

values for all objectives considered in the model.

On the other hand, formulation 2 is a more traddaloway of solving the SLP.
However, it considers a larger number of constsaihin the previous studies. This
formulation provides a good solution for the problevhile the least cost is of
interest. However, solving the problem with forntida 2 needs some parameters as
input. So the more experience and knowledge oh#terork one has the better result

will be obtained.

There may be some links with small COV of traveldiin the optimal solution of the
formulation 1. But the mean of the parameter il sigher than the mean in

formulation 2.

As the number of OD pairs in the networks increaties complexity of the problem
increases and so does the solution time. Thisaseren formulation 2 is exponential.
This makes formulation 1 a better solution for é&argetworks with large numbers of

OD pairs.

The largest network that is reported in literatirdde solved exactly is a network of
the size of 91 OD pairs (Sherali 2006), which iscmamaller than the networks that
are solved in this study. Formulation 2 solved $aux-Falls network with 725 OD
pairs and formulation 1 solved Anaheim network with84 OD pairs. However,

formulation 1 can solve much larger problems eyactl
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6.2. Further Study

Both proposed formulations are used to solve th® &br the real world large
networks; however, as the number of the OD paigesses the solution time
increases exponentially for formulation 2. So figla heuristic approach for solving
formulation 2 will allow more comparison betweergh two formulations in larger
networks. And since the problem has been alreatiyedcexactly for small and
medium size networks there is a bound for the baosi So the accuracy of the
heuristics can be evaluated using the bounds. @d¢seloping other formulations and

solution strategies for solving the SLP is anothether study research area.

The proposed models can be compared to previodsestby applying them to the

same real world networks to find out the best méaie$olving SLP problems.

Various jurisdictions continuously collect travehe data. As the popularity of using
Bluetooth sensors becomes more widespread, applgggnodels proposed in this
thesis to determine the optimal number and locatibthe sensors for real-world
deployment is an intriguing area of research. Camgahe results will clarify the

benefits of using the SLP models.

More studies can be conducted on the probabilibction of detecting vehicles by
the sensors. In this study the condition is suppdseoe ideal for the sensors, while
the height and angle of Bluetooth sensors and atbBployment issues may create

less than ideal conditions during data collectiéramining the height and angle of
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Bluetooth sensors during deployment and compateg rate of detections under

various deployment conditions is yet another irgiéng area of research.

Further research can be conducted on finding teetlmee window during the day for

travel time data collection studies.

Finding the path travel time is of interest in gpartation. The SLP problem can be
solved to find the optimal number and location bé tsensors in a network for

collecting path travel time data.

Solving SLP problem while simulating the resultsd astudying the effects of the
sensor locations on the traffic management systéfimally, obtaining real time
travel time data provides the capability of realditraffic management and incident
detection to reduce congestion. Developing new austland algorithms for real time
travel time prediction and incident detection coués to be a challenging area for

further research.
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Appendix

Glossary

Node A node in a network is defined as a point inadrthat the traffic flow changes

significantly
Link : Every segment of a road between two nodes iseldfas a link.

OD Pair: An OD pair consists of an origin and a destimainmde, and one or more

transition nodes.

OD Pair link: The links between each two transition nodes i®8&npair is called an

OD pair link.
OD Pair links: The collection of links in an OD pair is calldgetOD pair links.

Partial covering: An OD pair is called partially covered if and pmfl at least one of

the links in the OD pair links is covered by detest
COV: Coefficient of variation

o : Minimum CQV of travel time on the links

v : Minimum percentage of covered volume in the roekw

6 : Minimum percentage of covered OD pairs in thievoek
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Total budget Total budget in a network is the number of nodeshe network

multiplied by the average cost of installing a gre a node in the network.

Critical budget: Critical budget is the budget at which the netwooverage and
objective value increase rate starts decreasintg\itine budget is increasing. So it is

the budget which results in a good coverage oh#te/ork while it is economical.

Sensitivity analysis The study of how the variation (uncertainty) e toutput of a
mathematical model can be apportioned, qualitatieel quantitatively, to different

sources of variation in the input of a model.

Travel time prediction relative error:

Where

B. . Travel time prediction relative error on the lif®

t_ : Predicted travel time on the link (s)

t. : Real travel time on the link (s)
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