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The importance of accurate prediction of travel time in transportation engineering is 

irrefutable. Travel time is highly used in traffic management and planning. The 

accuracy of travel time prediction relies on the accuracy of the travel time data. 

Various methods are being used in collecting travel time data. Recently, a new 

method in collecting travel time data is introduced that is called Bluetooth 

technology. In this method, a number of Bluetooth sensors are deployed over the 

traffic network that can detect the Bluetooth devices in the vehicles to determine the 

vehicles’ travel time based on matching identification and time of identification of the 

same Bluetooth device at two consecutive sensors.  

The goal of this study is to find the optimal number and location of the Bluetooth 

sensors in a network in order to collect travel time data with a high reliability. Two 

formulations are proposed for modeling this problem. The formulations consider a 

new collection of reliability issues. Furthermore, the proposed formulations are able 



 

to solve the problem on large networks exactly. Moreover, various case studies of real 

world networks are conducted for both formulations and the results are compared. 
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Chapter 1: Introduction 

 

1.1Research Motivation 

In traffic management and planning, accurate route travel time estimation is essential 

from several aspects. First, travel time estimates are often used in travel time 

prediction algorithms. Short term or long term travel time can be predicted by 

analyzing the historical travel time data set. Second, travel time estimates are required 

for determining offline performance measures for various policy applications. For 

example, travel time variability is an emerging performance measure increasingly 

used by decision makers and transportation planners in many project assessment 

decisions. Also, travel time estimates play an important role in Advanced Traveler 

Information and Transportation Management Systems. There are different methods in 

traffic information systems such as variable message signs, GPS devices, and Internet 

webs (MapQuest, Google Map…) which use the travel time estimates. As a result, the 

accuracy of the estimated travel time is of a significant worth. This accuracy is highly 

dependent on the historic data used in prediction algorithms.  

There are several methods in collecting travel time data. Recently the staffs at the 

Center for Advanced Transportation Technology at the University of Maryland have 

invented a new traffic data collection sensor that is based on the Bluetooth 

technology. This device has a high level of accuracy and low cost of deployment 
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compared to current common methods such as probe vehicle and automatic vehicle 

identification. 

To predict route travel times, it is ideal to have historic data for all the links in the 

network. However, in practice it is very difficult to install sensors on all of the links 

in a network for two reasons. First, sensor acquisition and installation is costly and 

subject to budget constraints. Investing more and providing more sensors, one can 

obtain more travel time information. As a result travel time can be predicted more 

accurately on the links. Second, not all links provide useful data that can improve the 

quality of travel time data. For example, there are some links which always operate at 

or near free flow speed. That means travel times on those links do not change 

significantly over time. So, even if sensors are installed on those links, not much 

additional information will be gained by those sensors. As a result, it is important to 

carefully select the links that are the most valuable links for collecting travel time 

data from a network-wide perspective.  

1.2. Research Objectives 

The objectives in this study are: 

� Describing the problem of Bluetooth sensor location for collecting travel 

times, aspects and issues 

� Providing a comprehensive literature review on the sensor location problem 

and different methods of travel time data collection 
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� Proposing two mathematical formulations that comprehensively describe the 

problem from different aspects. One considers a single objective function 

while satisfying the quality and reliability constraints. The other is a multi-

objective approach that optimizes several parameters for any given level of 

resources. 

� Applying the formulations on various real world traffic networks and 

conducting sensitivity analysis over different parameters in the formulations 

� Comparing the two formulations and their results  

1.3. Thesis Contribution 

A new collection of issues is considered in solving the Sensor Location Problem 

(SLP) in this study. All the issues which have been used in previous studies 

separately are considered together in addition to a newly introduced term. The new 

concept that is introduced is maximizing the coefficient of variation (COV) of travel 

time on the links. The segments with low travel time variation are not interesting for 

collecting travel time. Adding this term to the model will avoid choosing the links 

which do not provide useful data. 

Also, the largest network that has been solved exactly using previous formulations is 

of the size of 91 OD pairs by Sherali [2], which is much smaller than the networks 

that are solved in this study using the proposed formulations (section 3.2). 

Formulation 2 (section 3.2.2) solved the Sioux-Falls network with 725 OD pairs and 

formulation 1 (section 3.2.1) solved Anaheim network with 1584 OD pairs. However, 

formulation 1 can solve much larger problems exactly. 
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1.4. Thesis Organization 

In chapter two, different data collection methods are reviewed and discussed.  Also a 

comprehensive summary of the available literature on the sensor location problem is 

presented. Chapter two is concluded with an introduction to the new technology of 

Bluetooth sensors and their application in travel time collection. 

In chapter three, the characteristics and specifications of the problem are described in 

detail. Afterwards, the contributions of the proposed formulations are discussed and 

compared to the previous studies. At the end, the mathematical formulations of the 

problem are presented and discussed. 

Results of the numerical case studies and sensitivity analysis are discussed in chapter 

four. Chapter five covers the side by side comparison of the two formulations of the 

problem. Finally, chapter six provides the conclusions and suggestions for future 

studies. 
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Chapter 2: Background and Literature Review 
 

 

2.1. Background 

As cities get larger and more populated, traffic and transportation issues become more 

important and require more resources. Knowing the travel time on a link or path in 

advance will help travelers decide on a better path for their trip and also reduces 

congestion in the network. Travel time prediction has a wide range of applications in 

Advanced Traveler Information Systems (ATIS). ATIS provides the travelers with 

travel time estimations on the road segments through different methods such as 

Dynamic Message Signs (DMS), Highway Advisory Radio (HAR), in-vehicle route 

guidance systems (like GPS), and internet websites (such as Google map, Map Quest, 

etc. ). 

As a result, accurate prediction of travel time is important since a major portion of 

trips can be scheduled based on this information. The accuracy of travel time 

prediction depends on several parameters. One important element is the historic travel 

time data. The historic travel time data is used in different methods of travel time 

prediction to predict short term or long term travel times. 

Several methods can be used for travel time collection. Each method has advantages 

and disadvantages. In this study a new technology, Bluetooth sensors, is considered 

for collecting travel time data which is explained in more details in section 2.2. 
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Obtaining travel time information on more road segments can increase the accuracy 

of the travel time prediction. However, providing travel time data on every segment 

of each link in a large-scale network is not possible mainly due to budget constraints. 

So besides the technology being used for collecting data, it is important to find the 

best combination of links for collecting travel time in order to predict travel time with 

high reliability.  

Choosing the most rewarding links for data collection is a well known problem called 

Sensor Location Problem (SLP). In this chapter, a number of common methods in 

collecting travel time data including the Bluetooth sensors are introduced in section 

2.2. Finally, a review of the previous studies on Sensor Location Problem is presented 

in section 2.3. 

2.2. Data Collection Methods 

Travel time data can be collected using different methods [1], [15]. The most 

common methods are: 

1. Test Vehicle Technique (Floating Car) : 

This common technique consists of hiring someone to drive a vehicle along a pre-

selected route and measure the elapsed time and distance traversed. It is possible 

to equip the vehicles to automate measurement and recording. 

The major advantage of electronic test vehicle technique includes: 

• Simple and easy method with no need for complicated devices 
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Some of the disadvantages of electronic DMIs include: 

• High probability of human error in recording the data 

• Floating car technique is still somewhat labor-intensive and is usually 

limited to a few measurements per day per staff member 

• Travel time is only as accurate as the driver’s judgment of traffic 

conditions 

• Floating car technique on arterial streets may not measure the delay of 

cross street traffic turning onto the study route 

2. Electronic distance-measuring instruments ( DMIs) :  

The integration of an electronic DMI with the floating car technique provides an 

easier and safer way to collect detailed travel time information (compared to 

traditional floating car method). In the DMI technology, the sensor is attached to 

the probe vehicle’s transmission. The DMI receives consecutive pulses from the 

vehicle transmission while the vehicle is moving. A DMI typically can provide 

instantaneous speeds up to every 0.5 second intervals. This detailed travel time 

information can be downloaded to a portable computer in an easy-to-use data 

format. 

The major advantages of electronic DMIs include: 

• Improvement in cost-effectiveness and safety of data collection over the 

test vehicle method 
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• Easier data processing than test vehicle technique due to automatic 

recording of travel times to portable computer  

• Detailed travel time and delay information that can be used for 

identification of bottlenecks and areas of extensive delay 

• Providing acceleration and deceleration details that can be a valuable 

source of input data for fuel consumption and mobile source emissions 

analysis. 

Some of the disadvantages of electronic DMIs include: 

• Floating car technique is still somewhat labor-intensive and is usually 

limited to a few measurements per day per staff member 

• Travel time is only as accurate as the driver’s judgment of traffic 

conditions 

• Floating car technique on arterial streets may not measure the delay of 

cross street traffic turning onto the study route 

3. License plate matching: 

License plate matching was used as early as the 1950s for travel time studies but 

it was mainly used for tracking or identifying vehicles in origin-destination travel 

surveys. Early license plate matching methods relied on observers to note the 

license plates of passing vehicles at certain locations and record the corresponding 

times on paper or into a tape recorder. License plates were manually matched later 
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in the office, and travel times were computed. Recent advances in digital 

technology have substantially improved the accuracy of this technique. 

The major advantages of license plate matching include: 

• Providing large sample sizes during data collection period 

• Providing representative estimate of travel times through random sampling 

• Providing travel times at small time intervals, giving a speed profile for the 

study section throughout the peak period 

• Resulting in lower costs per travel time run than the floating car method 

• Providing useful data for OD studies 

Some of the disadvantages of the license plate matching technique are: 

• Data quality concerns from incorrectly reading or mismatching license 

plates 

• Only overall travel times (no stopped delay) are collected 

• Less practical for high speed traffic or long roadway sections with low 

percentage of through-traffic 

• High initial cost for equipment purchase 

• Potential public disapproval because of privacy concerns 

4. Cellular phone tracking : 

Some cities have a dedicated number of cellular phone users to report their 

position at designated checkpoints, allowing a traffic operations center to estimate 
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travel times on the basis of several cellular phone reports. Cellular phones in use 

can also be tracked using geolocation techniques. 

Based on the limited test information, cellular phone tracking has the following 

advantages: 

• Minimal cost involved with providing the vehicles with the instrument 

because of the current popularity of cellular phones 

• Cellular network and control center are also able to handle incident and 

emergency calls 

Some of the disadvantages include: 

• Large investment in control center for tracking phone calls 

• Cellular phones must be in use to track, thereby limiting sample sizes and 

coverage 

• Potential public disapproval because of privacy concerns 

• Cooperation of cellular carriers is required 

5. Video imaging : 

Several video-based systems are developed to measure overall travel times; 

however, these systems are somewhat less developed than other techniques. 

Video systems capture vehicle images and attempt to match images from different 

camera locations. This method needs a lot of processing time as well as personnel 

and equipments for detecting vehicles in videos. 
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Some advantages of this method are: 

• Inexpensive instruments (even a normal camcorder can be used) 

Some of the disadvantages of the video imaging method are: 

• Needs a lot of time for matching the vehicles in the videos 

• High probability of human error in matching the data 

6. Automatic vehicle identification(AVI):  

An AVI system consists of an in-vehicle transponder (which can be the toll tags), 

a roadside reading unit, and a central computer system. When a vehicle containing 

a transponder (tag) passes a roadside reader unit, the information on the 

transponder is transferred to the reader unit. The data is processed and the travel 

time and other traffic data are calculated by matching the tags. 

From the recent studies and projects, the use of AVI technology for measuring 

travel time has the following advantages: 

• Real-time travel time information collected and distributed by traffic 

information system 

• Eliminates human error associated with floating car 

• Low operating cost once adequate tags are distributed 

• Permits fast-track installation with little disruption to traffic 

• Used in toll collection and fleet management 
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AVI technology has the following disadvantages: 

• High initial equipment costs ($25,000 to $36,000 per reader unit) 

• Motorists must acquire and display the tag 

• Travel time information availability is limited to fixed routes and 

checkpoints 

• Privacy concern is an issue  

7. Automatic vehicle location(AVL): 

Automatic vehicle location (AVL) is another technology with several applications in 

transportation and traffic management. AVL permits the location of a vehicle to be 

known automatically, made possible through transmitters that are carried in the 

vehicle. The transmitters allow the vehicle's location to be determined at frequent 

intervals, if not continuously. If a map database is used to report the vehicle location, 

travel times can be calculated for designated roadway sections. AVL systems are 

becoming more common on transit fleets, police and emergency vehicles, and 

commercial vehicles. There are several different technologies that can be categorized 

as AVL. Signpost-based systems utilize antennas at fixed positions along a route, and 

are commonly used for tracking bus schedules along a fixed route. Ground-based 

radio navigation systems use a radio frequency and several receiving towers to 

transmit position information. Global positioning systems (GPS) utilize orbiting 

satellites for continuous location determination. Differential GPS (DGPS) systems 

use local towers in addition to satellites to increase the accuracy of GPS. 
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Based on the recent studies, AVL technology has the following advantages: 

• Real-time travel information at frequent intervals 

• Eliminates human error 

• Not limited to fixed routes or checkpoints 

• Used in other transportation applications like fleet management 

AVL technology has the following disadvantages: 

• High initial costs for sophisticated equipment ($1,000 to $4,500 per 

vehicle) 

• Some errors in exact location of vehicles 

• Small sample size 

8. Bluetooth Sensors: 

A new device for collecting travel time data is invented by the staffs at the Center for 

Advanced Transportation Technology (CATT) at the University of Maryland [16].  

This device uses the Bluetooth technology to detect vehicles. The Bluetooth protocol 

uses an electronic identifier, or tag, in each device called a Media Access Control 

address, or MAC address for short. The MAC address serves as an electronic 

nickname for each electronic device in data communications. In this method, a 

vehicle containing a detectable Bluetooth device (such as a cell phone with Bluetooth, 

GPS, notebook, hands free, etc) is detected at two Bluetooth sensor stations. The 

MAC address which is unique for each Bluetooth device and the time of detection is 

logged when the device is detected at a Bluetooth sensor. Using the logged times for 
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each MAC ID in two distinct Bluetooth sensor stations, travel time for that specific 

MAC ID in that road segment is calculated. Since these MAC IDs are unique, it is 

even possible to track a vehicle in a route and find its origin and destination. So it is 

also possible to find the path travel times over the network. (Figure 2.1) 

 

Figure 2.1. How Bluetooth sensors work 

Two Bluetooth sensors are required to find the travel time on a road segment. One 

sensor should be installed at the beginning of the segment and the other should be 

installed at the end of the segment. However, if there are some segments which have 

a common node (such as intersections, on ramps or off ramps), one Bluetooth sensor 

can be installed at that node to cover both segments.  Comparing the time of detection 

of a MAC address in the sensors can determine the direction of the detected vehicle. 

This property enables coverage of traffic in two directions of a roadway by deploying 

only two sensors at the beginning and at the end of that roadway segment. 

Some advantages of the Bluetooth sensors are: 

• High accuracy of data because of tracking each vehicle separately 
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• Portability of Bluetooth sensors  

• Low equipment cost  

• Real-time travel information at frequent intervals 

• Reduction in human error 

• Providing the speed profile as a result of constant monitoring 

• No need to distribute tags among vehicles 

Some disadvantages of this method are: 

• Small sample size on the roads with low traffic volumes 

• Limitations on some roads with specific geometry characteristics such as 

HOV lanes 

• Probability of detection of vehicles decreases if the Bluetooth sensors do 

not face each other completely or have different heights from the road. 

2.3. Literature Review on Sensor Location Problem (SLP) 

In travel time prediction, obtaining travel time information on more road segments 

can increase the accuracy of the travel time prediction. However, providing travel 

time data on every link of a large-scale network is not possible mainly due to the 

budget constraints. Moreover, not all the links provide useful data that can improve 

the quality of travel time data. For example, there are some links which always 

operate at or near free flow speed. That means travel times on those links do not 

change significantly over time. So, even if sensors are being installed on those links, 

not much additional information will be gained by those sensors. As a result, it is 
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important to carefully select the links that are the most valuable links for collecting 

travel time data from a network-wide perspective. To find the most valuable 

collection of segments is a known problem which is called Sensor Location Problem 

(SLP).  

SLP can be described from two different approaches. One approach is to find the 

minimum number of sensors and their optimal locations in a network in order to 

satisfy a certain standard of network performance. The other approach is to optimally 

locate a certain number of given sensors in a network in order to maximize a defined 

benefit function. The main question in modeling this problem is how to define the 

network performance measures in the first method and the benefit function in the 

second method. 

To address this problem, Sherali et al. [2] proposed a mixed–integer optimization 

model to determine optimal placement of automatic vehicle identification (AVI) 

readers for travel time estimation in order to maximize a benefit function. The 

objective function is a quadratic function derived from the multiplication of traffic 

flow of each link and the coefficient of variation (COV) of traffic flow on that link. 

That objective function maximizes the traffic flow being detected in the network. 

Sherali’s proposed model is a nonlinear mixed integer program and can only be 

solved approximately for large-scale networks. The model is as follows: 

Parameters:  
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G (N, A): The illustration of a transportation network with nodes from N and links 

from A

 
Aj)(i, , ∈∀= ijijij COVfb  

ijb : Benefit factor for covering arc Aji ∈),(  

ijf : Traffic flow on arc Aji ∈),(  

ijCOV : Coefficient of variation of traffic flow on arc Aji ∈),(  

jC : Cost of installing a reader at location j 

B: Maximum budgetary limitation 

R: Maximum number of available readers 

Decision Variable: 

(2.3.1)                                           ;
Otherwise ,0

j nodeat  located isreader  a if ,1
Njy j ∈









=

 Objective function:  

(2.3.2)                                                                                  max
),(
∑∑

∈Aji
jiij yyb

 

Subject to: 
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(2.3.3)                                                                                               ∑
∈

≤
Nj

j Ry

 

(2.3.4)                                                                                           ∑
∈

≤
Nj

jj ByC

 

{ } (2.3.5)                                                                                                  1,0∈y

 
The objective function (2.3.2) seeks to maximize the total coverage benefit. 

Constraint (2.3.3) asserts the number of readers used should not exceed the available 

maximum number R. Constraint (2.3.4) imposes a budgetary restriction on the total 

acquisition plus installation cost. Constraint (2.3.5) represents the logical binary 

restrictions on the decision variables. The biggest network that Sherali solved exactly 

was a network with 91 OD pairs. However, there was still a gap between the IP and 

LP solutions.  

With regard to the AVI reader location problem for estimating roadway travel times, 

Teodorovic et al. [3] proposed a composite objective function that is comprised of a 

weighted average of the total number of AVI tag readings and the number of OD 

pairs that are at least partially covered by these readings. They developed a genetic 

algorithm to heuristically maximize this function. In constructing this formulation it is 

assumed that the OD table is known a priori and that vehicles follow a static shortest 

path over the network between each OD pair. However, the reader locations might 

measure travel times over any arbitrary subsets of the shortest paths between the OD 

pairs, and the model does not distinguish between the benefits accruing from 
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obtaining information regarding travel times over one portion of an OD shortest path 

from another. 

A multi-objective model for AVI readers was proposed in 2004 by Chen, Choontinan, 

and Pravinvongvuth [4]. In this model they introduced three objectives. First was 

minimizing the number of readers. Second was maximizing the number of OD pairs 

covered. And third was maximizing the number of individual readings over the entire 

network. The model is as following. 

Parameters: 

N: Set of nodes in the network and |N| is the size of the set N 

A: Set of links in the network and |A| is size of set A 

W: Set of OD pairs and |W| is size of set W 

wR : Set of Paths between OD pair w 

L: Number of AVI readers available 

w
raδ : A path-link indicator denoting 1 if link a is on path r between OD pair w, and 0 

otherwise 

Decision variables: 

ax : An integer decision variable indicating the number of AVI readers to be installed 

on link a {0, 1,…, ρ} 
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wy : A binary decision variable indicating whether OD pair w is covered (or 

intercepted) or not 

w
rz : An integer decision variable indicating the number of readings along path r 

between O-D pair w {0, 1,…, |A|×ρ-1}

 
Objective function: 

(2.3.6)                                                                       (x)) (x), (x),max( 321 fff−  

Subject to: 

(2.3.7)                                W          w,Rr , 10,max w

A

1a
ra

w
r ∈∈∀









−≤ ∑
=

a
wxz δ

 

(2.3.8)                                                              W          wR,r , zw
rw ∈∈∀≤y

 
{ } (2.3.9)                                                                A         a , 0,1,...,a ∈∀∈ ρx

 
{ } (2.3.10)                                                                    W         w , 0,1w ∈∀∈y

 
{ } (2.3.11)                                      W          wR,r , 10,1,..., ∈∈∀−×∈ ρAzw

r

 
Equation (2.3.6) is the multi-objective function of the AVI reader location problem, 

which is to configure the AVI readers into a traffic sensor network that is capable of 

capturing as much flow as possible while covering a maximum number of OD pairs 

with a minimum number of AVI readers. Equation (2.3.7) ensures that if a used path 
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is covered there must be a minimum of two readers along the path; otherwise, it is 

considered as not covered. Furthermore; for OD pair w to be covered, equation 

(2.3.8) requires w
rz  (all used paths r serving this OD pair w) to be positive. Equations 

(2.3.9) to (2.3.11) constrain the solutions to be either binary integers or integers. The 

largest network solved with this model using the Genetic algorithm was a 34 OD pair 

network. They solved the problem three times for each objective function’s element 

individually for Irvine network (36 nodes and 626 links). They compared the non-

dominated solution for each objective element together and the trade off among them. 

Bartin et al. [5] showed that the optimal sensor placement for travel time estimation 

can be determined by minimizing a weighted summation of speed variations of all 

roadway segments, each of which is associated with a sensor. A nearest neighbor 

algorithm was then used to solve the problem. The proposed clustering approach not 

only finds the segments for the sensor deployment but also determines the number of 

segments to monitor. The algorithm was used to solve a network with 9 OD zones 

and three interchanges. However, it was not guaranteed to provide a globally optimal 

solution in polynomial time. 

Yang and Miller-Hooks [6] proposed a model to select the information critical arcs 

such that the greatest benefits can be derived. The problem explored was that of 

selecting a fixed number of arcs, representing a subset of the network arcs, referred to 

as information critical arcs (ICAs), which will be instrumented to collect real-time 

information, such as travel times, from a transportation network. A modified 

maximum-covering formulation is presented along with a heuristic solution 
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procedure. Variation of travel time and the amount of volume on each arc were the 

issues in determining the arc’s benefit. The proposed heuristic was used in solving the 

Texas highway network consisting of 183 nodes and 549 arcs. Though the result was 

good but the method still could not solve the problem exactly. 

Gentili and Mirchandani [7] addressed the problem of locating active sensors on the 

arcs of a traffic network where the sensors can provide data on paths. They showed 

that each sensor located on an arc results in a set of linear equations in path flow 

variables that may be used for finding path flows. Then, they solved the problem of 

the selection of the minimum number of arcs that add linear equations that result in a 

full rank coefficient matrix. They presented a formulation of the problem and 

analyzed three different scenarios depending of the number of conventional counting 

sensors already located on the network. The general problem was shown to be NP-

hard. Through the proofs of the polynomially solvable cases, some new graph 

theoretic models and theorems were obtained, which in their own right added to the 

graph theoretic knowledge base, besides providing insight to develop an approximate 

algorithm for the general case.  

Hu et al [8] propose a basis link method to address the network sensor location 

problem under steady state traffic conditions. They solve the maximum OD covering 

for this problem. In this method the minimum number of links was selected to cover 

all OD pairs while no other reliability issues was considered. 

Fei and Mahmassani [9] proposed models that use the Kalman filtering method to 

explore time-dependent maximal information gains across all the links in the network. 
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The research proposed two types of sensor location models to solve an O-D coverage 

problem and a maximal information gain driven problem. The focus was on solving 

the sensor location problem as an OD coverage problem under a dynamic traffic 

assignment. They produced a quality estimated OD matrix that integrates link 

observation data that minimize the variance of the O-D flow estimator. They 

constructed an unbiased generalized least squares estimator, using a linear 

relationship and link flow proportions obtained from a dynamic traffic assignment 

procedure. The models were developed to identify link sensor locations that produce 

maximal information gains and maximal OD pair reliability. A sequential algorithm 

was developed to solve the proposed models. The largest network solved with the 

proposed heuristic was the Irvine network, California, with 238 sensors that covered 

3,660 OD pairs, including 326 nodes and 626 links. 

Yang He and Mirchandani [19] proposed two models. One maximized the route 

length monitored when a certain number of readers had to be located on the network. 

The other maximized the ability of predicting travel time by maximizing the variance 

reduction in travel time prediction for each link. 

All previous research that attempt to solve SLP use a number of issues for reliability 

of travel time data and most of them use heuristics for solving the problem. So the 

proposed models mostly have not been solved exactly. 

In chapter 3, the differences between the suggested formulations and the previous 

works are discussed.   
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Chapter 3: Problem Specifications and Mathematical 
Formulation 

 

3.1. Problem Specifications 

3.1.1. Sensors’ Specifications 

A new traffic detection device based on Bluetooth technology has been recently 

developed [16]. Studies suggest the high accuracy and reliability of data from the 

Bluetooth sensors [18]. Previous studies suggest that sample size plays an important 

role in accuracy and reliability of the data. It is reported that the average rate of 

detectable Bluetooth devices in vehicles in a normal traffic stream is in the range of 

3-5% of the total link traffic volume. The sample size needed for a reliable travel time 

prediction can be calculated using equation 3.1[10] [11]: 

E

vcz
n

2
2 ..α=                                                                                           (3.1) 

Where:  

n : Sample size 

α/2 : Standard normal variate based on desired confidence level in the travel time 

estimate 

c.v. : Travel time coefficient of variation = Standard deviation / Mean of travel time 
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E : Permitted relative error (%) 

For example, considering α = 0.05 (95% confidence), the average sample size for 

Anaheim network (one of the case study networks) is calculated using equation (3.1). 

The sample size for collecting data is 5% of the total volume on the links in the 

network. Since studies have shown that 3% to 5% of vehicles can be detected as 

having Bluetooth devices in the traffic stream, it is concluded that Anaheim network 

provides the minimum sample size for collecting travel time data with 95% of 

confidence using Bluetooth sensor. (Volume data on the links is provided by [13] and 

[14]) 

A vehicle will be detected by a sensor if the power of transmitting and receiving 

antenna and the device in the vehicle satisfy the Friis Transition equation. In its 

simplest form, the Friis transmission equation is shown in equation 3.2[12]. Given 

two antennas, the ratio of power received by the receiving antenna, Pr, to power input 

to the transmitting antenna, Pt, is given by 

2)
4

(
R

GG
P

P
rt

t

r

π
λ

=                                                                                         (3.2)               

where: 

 Gt and Gr : The antenna’s gain of the transmitting and receiving, respectively 

 λ : The wavelength 

R : Distance between transmitting and receiving antenna 
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The antenna gains must be in decibels. Also the wavelength and distance units should 

be the same. There are a number of assumptions in the simple form of the Friis 

transmission equation: 

1. The antennas are correctly aligned and polarized. 

2. The bandwidth is narrow enough that a single value for the wavelength can be 

assumed. 

3. Pr ( Pt) is understood to be the available power at the receive antenna terminals (the 

power delivered to the transmit antenna). There is loss introduced by both the cable 

running to the antenna and the connectors. Furthermore, the power at the output 

(input) of the antenna will only be fully delivered into the transmission line (free 

space) if the antenna and transmission line are conjugate matched. 

4. The antennas are in unobstructed free space, with no multipath. 

If all the ideal conditions are provided, by using the Bluetooth sensors’ information 

(Gt and Gr= 3 dbi, λ= 0.12 m, Pr = 17 mw), the covering distance is calculated as 

R≈300 ft ≈ 91 m. FWHA standard suggests the values for the traffic lane width as: 

Highway= 3.6 m, Arterial=3.3 m, local=2.7 m. If each traffic lane is assumed to be 

about 3.2 m and sensors are installed in the medians of the roads, then each sensor 

can cover the traffic of both directions on a road with the detection probability of 

100% in ideal situations. 
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3.1.2. The formulation’s Specifications 

There are different issues that affect the reliability of travel time data such as 

percentage of covered volume in the network and the COV of travel time on the links. 

Covered links should provide a certain level of reliability issues in the network. 

Besides, there are some other elements in optimizing the SLP such as the number of 

sensors and the number of covered OD pairs which should be considered in solving 

the problem. Overall, the terms that should be considered in solving a SLP problem 

are: 

1. Covering a high percentage of the total volume in the network 

2. Covering links with high variation in their travel time (segments with low travel 

time variation are not interesting for collecting travel time) 

3. Covering the links with low relative error in travel time prediction. This means 

that in similar conditions, it is favorable to cover the links that their travel time 

can be predicted with smaller relative error. 

4. Covering as many origin-destination ( OD ) pairs as possible even if the OD pair 

is covered partially  

5. Considering cost constraints 

6. Using a minimum number of sensors 

Coefficient of variation of travel time on a link is the variation of travel time on the 

link during the peak hour in a day. So if the COV is small it means that the travel time 

does not change during the peak hour. This means the travel time is already known 

and there is no need to collect a new set of data. However, travel time prediction error 
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is the difference between the link travel time that is predicted for any given time 

window using historic data, and the real travel time data on that link during that time 

window. For example the prediction of travel time for 5:00 PM on Tuesday using the 

data of the same time and day of the previous weeks. So if the error is large it means 

that the traffic on that link does not follow a predictable behavior. Therefore, 

collecting data on the link will not be useful in travel time prediction algorithms. 

Consequently the COV of travel time and travel time prediction error are not exactly 

the same and should be considered as two different factors in the objective function.  

In all previous studies of optimal sensor location, one or some of the above issues is 

considered. Some of them considered the issues as objective function and solved the 

problem as a multi-objective problem, while some others try to solve the problem 

considering one issue as the objective and the others as constraints.  

In this study all the issues are considered together. Two formulations are proposed for 

the problem. In formulation 1, the problem is formulated as a multi-objective problem 

subject to cost constraint. In the formulation 2 the objective function is to minimize 

the number of sensors, while all other five issues are considered as constraints. The 

two formulations are introduced in the section 3.2. The two proposed formulations are 

compared theoretically and numerically in chapter 5. 

3.2. Problem Formulations 

Every traffic network consists of several nodes and links. In this research, a node is 

inserted wherever the traffic flow changes significantly. For example intersections or 
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on-ramps and off-ramps create a node. Every segment of a road between two nodes is 

defined as a link. 

An OD pair consists of an origin and a destination node, and one or more transition 

nodes. To go from the origin to the destination, one should pass the transition nodes. 

The links between each two transition nodes in an OD pair is called an OD pair link. 

The collection of links in an OD pair is called the OD pair links. An OD pair is called 

partially covered if and only if at least one of the links in the OD pair links is covered 

by detectors. 

In the following sections the mathematical formulations of the problem are 

introduced. 

3.2.1. Formulation 1 

Parameters: 

L : Total number of links in the network 

N : Total number of nodes in the network 

R : Total number of OD pairs in the network 

C : Total budget 

α : Minimum COV of travel time on the links 

γ : Minimum percentage of covered volume in the network 
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δ : Minimum percentage of covered OD pairs in the network 

)(iΓ : The collection of nodes which have a link to the node (i); },...,2,1{ Ni ∈  

ijV : Traffic volume on the link from node (i) to node (j); },...,2,1{ Ni ∈ ; )(ij Γ∈  

ijTTm −








σ
: Coefficient of variation (COV) of travel time on the link i-j; },...,2,1{ Ni ∈ ;

)(ij Γ∈  

ij

ijij
ij t

tt −
=

*

β  for all },...,2,1{ Ni ∈ ; )(ij Γ∈  

ijβ : Relative error of travel time prediction on link i-j 

*
ijt  : Predicted travel time on the link i-j 

ijt  : Real travel time on the link i-j 

ic : Installation Cost of a sensor on node (i); },...,2,1{ Ni ∈  









=
Otherwise ,0

links (r)pair  OD in the is (ij)link  if  ,1r
ijP ; },...,2,1{ Ni ∈ ; )(ij Γ∈ ; },...,2,1{ Rr ∈  

Decision variables: 
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2
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}1,0{=ix ; },...,2,1{ Ni ∈                                                                                       (3.9) 

}1,0{=ijK ; },...,2,1{ Ni ∈ ; )(ij Γ∈                                                                      (3.10) 

}1,0{=rY ; },...,2,1{ Rr ∈                                                                                      (3.11) 

Equation (3.3) is the objective function which is a multi-objective function. Chen, and 

Choontinan [4] solved SLP problem with a fewer number of objective elements. They 

solved the problem several times. Each time they considered only one of the elements 

of the objective and then compared the result for each objective together. But here all 

the objectives are optimized together. The main point in solving the proposed multi-

objective function is the comparison of different objectives with different units and 

scales to each other. In this regard, all the terms in objective function are normalized 

between 0 and 1.  For example for the volume element, each link’s volume is divided 

by the total volume in the network. The result is the percentage of the total volume in 

the network that belongs to each link. This term is a unit-less value between 0 and 1 

which is called the link’s contribution to the volume objective. So the same process is 

done for other elements in the objective function. As a result all the terms in the 

objective function are unit-less with the same scale which ensures they are addable. If 

the objective elements do not have the same weights in their contribution to the 

objective function, then they can be multiplied by a user-defined weight. The weight 

values affect the solution. The weight vector can be determined by studying the 

Pareto set of the weight vectors. In this method different sets of weights are generated 

through different methods (for example random generation). This approach gives an 
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idea of the shape of the Pareto surface and provides the user with more information 

about the trade-off among the various objectives [20], [21], [22]. Then considering 

the trade-offs between the objectives, the decision maker can decide on the value of 

the weight vector. However, in this study all the elements of the objective function 

are considered with the same weights. Examining proper weights for different 

components of the objective function is left for future research. In the objective 

function, the first element is the volume objective. It maximizes the covered volume 

in the network. The second element is the COV element. Links with larger COV of 

travel time contributes more to COV element in the objective function. So they have 

priority to the other links for being selected. The third element is the number of 

sensors element. It minimizes the total number of sensors in the network. The fourth 

element is the error element. It minimizes the average of relative error of travel time 

prediction on the selected links. To compute relative travel time prediction error (β), 

travel time on the links during the desired peak hour is assumed to be known. This 

data can be provided through historic data or traffic assignment methods. Having the 

historic real travel time data and using a travel time prediction method, β can be 

calculated as follows:  

ij

ijij
ij t

tt −
=

*

β  for all },...,2,1{ Ni ∈ ; )(ij Γ∈  

where: 

ijβ : Relative error of travel time prediction on link i-j 
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*
ijt  : Predicted travel time on the link i-j 

ijt  : Real travel time on the link i-j 

Finally, the last element is the OD covering element. This element maximizes the 

coverage of OD pairs in the network. It should be mentioned that an optimal solution 

for this aggregated objective function might not be the optimal solution to the 

problem if each element was optimized individually. 

Equation (3.4) is the budget constraint. This constraint requires the total installation 

costs to be less than or equal to the available budget C. 

Equations (3.5) and (3.6) are the linking constraints between the link and OD 

variables. OD variable is defined as },1min{
1 )(
∑ ∑
= Γ∈

=
N

i ij

r
ijijr PKY . In other words, rY is 

equal to one if and only if there is at least one link of the OD pair ( r ) links which is 

selected for installing sensors, and is zero if and only if none of the OD pair ( r ) links 

is chosen.  

Equations (3.7) and (3.8) are the linking constraint between the node and link 

variables. }1,0max{ −+= jiij xxK  ; The link (ij) is selected ( 1=ijK ) if and only if 

both nodes ji xx , are picked up ( 1,1 == ji xx ). And it is zero if and only if none of the 

nodes or only one of them is chosen. 

Equations (3.9), (3.10), and (3.11) define the binary variables of the problem. 
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3.2.2. Formulation 2 

Objective function: 

∑
=

N

i
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1−+≥ jiij xxK ; },...,2,1{ Ni ∈ ; )(ij Γ∈                                                               (3.20) 

Cxc
N

i
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.                                                                                                           (3.21)   

}1,0{=ix ; },...,2,1{ Ni ∈                                                                                         (3.22) 

}1,0{=ijK ; },...,2,1{ Ni ∈ ; )(ij Γ∈                                                                        (3.23) 

}1,0{=rY ; },...,2,1{ Rr ∈                                                                                        (3.24)    

Equation (3.12) is the objective function which is minimizing the total number of 

sensors being installed in the network. 

Equation (3.13) eliminates links with COV less than α. Links with small variance in 

their travel time are not interesting for collecting data. Since the travel time on these 

links does not change dramatically, the available historic data can provide a good 

estimate of travel time on these links. Also, the mean value of travel times may cover 

a wide range across different links. As a result, it is better to use coefficient of 

variation of travel time instead of variance since COV is the variance divided by the 

travel time mean.  

Equation (3.14) is the minimum volume coverage constraint. This equation ensures 

covering of a minimum percentage (γ) of the total traffic volume in the network. This 

constraint requires covering the more important links that usually carry higher traffic 

volumes. 
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Equation (3.15) is the error constraint. This equation ensures the selected links to 

have an acceptable error in travel time prediction. This constraint picks the links with 

relative travel time prediction error less than or equal to the average relative travel 

time prediction in the network. 

Equation (3.16), which is the minimum OD covering constraint, ensures that at least δ 

percent of the total OD pairs in the network is covered (completely or partially). 

All other equations are discussed in 3.2.1. 
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Chapter 4: Numerical Analysis 

 

4.1 Data Preparation 

In this chapter, the proposed formulations are evaluated on real world networks. The 

selected networks cover a considerable range on the number of nodes, links and OD 

pairs. The information of the networks used in the case studies is presented in table 

4.1. The maps of the networks are presented in figures 4.1, 4.2, and 4.3 [14]. The 

number of nodes, links and OD pairs are given and the mean COV of travel time and 

the mean travel time prediction relative error are calculated as is described in the 

following. 

# Network 
Number 
of Nodes 

Number 
of Links 

Number 
of OD 
Pairs 

Mean of 
COV of 
Travel 
Time 

Median of 
COV of 
Travel 
Time 

Mean of 
Travel 
Time 

Prediction 
Relative 
Error 

Median of 
Travel 
Time 

Prediction 
Relative 
Error 

1 Sioux-Falls 24 76 725 0.28 0.11 0.15 0.32 

2 Friedrichshain 
Center 

224 523 552 0.16 0.07 0.33 0.11 

3 Anaheim 416 914 1584 0.25 1.24 2.04 0.26 

Table4.1. Networks information for numerical studies [14] 
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Figure4.1.a. Map of Sioux-Falls network 

Figure4.1.b. Map of Friedrichshain Center network 
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Figure4.1.c. Map of Anaheim network 

Some assumptions are needed to solve the numerical problems. The COV of travel 

time and traffic volume on each link, and the OD pair links are the main inputs. 

Volume and mean speed on each link, the length of the links, and the OD pair links 

information are adopted from Olarte’s Masters thesis [13]. Using the average speed 

and the link length, mean travel time on each link is calculated. A randomly generated 

standard deviation of travel time is assigned to each link. Then the coefficient of 

variation of travel time for each link is calculated by dividing the standard deviation 

of travel time by the link’s average travel time.  

Since the complete travel time information for each link was not available, a random 

value based on the mean travel time of each link is assigned to each link as its travel 
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time prediction. Using the predicted travel time and the average travel time on each 

link, the travel time prediction relative error is calculated using equation 4.1. 

s

ss
s t

tt −
=

*

β                                                                                           (4.1) 

Where 

sβ : Travel time prediction relative error on the link (s) 

*
st  : Predicted travel time on the link (s) 

st  : Real travel time on the link (s) 

Three other parameters should be known as input for formulation 2. Those parameters 

are:  α (minimum COV of travel time on the links), γ (minimum percentage of 

covered volume in the network), and δ (minimum percentage of covered OD pairs in 

the network). The objective value highly depends on these parameters’ value. To have 

an approximate range for the parameters, the problem is solved with formulation 1 

first. Since formulation 1 does not depend on these three parameters, the output for 

formulation 1 can be used as an approximate range for the input for formulation 2.  

In other problems, when formulation 1 is not available, the parameters’ values depend 

on the experience of the user and the characteristics of the network. 

The machine used in solving the problem is a desktop computer with a 3.0 GHz CPU 

and 2.00 GB of RAM. The optimization software is the CPLEX 10 [17]. 
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4.2. Formulation 1 Numerical Analysis 

4.2.1. Base Case Study 

The only input parameter required for formulation 1 is the available budget C. Total 

budget is defined as the number of nodes in the network multiplied by the average 

cost of installing a sensor on a node in the network. In the base case of formulation 1 

the available budget is considered as 30% of the total budget (table 4.2). 

Table4.2.Base case result for formulation 1 
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Sioux-Falls 213 15.28 0.599 41.67 28.95 62.07 36.63 213 0.275 0.316 0.166 0.114 

Friedrichshain 
Center 

1990 9.33 1.374 33.04 27.53 94.57 43.56 1988 0.121 0.111 0.645 0.069 

Anaheim 3824 183.34 1.256 33.17 20.13 97.35 37.6 3824 0.231 0.256 4.294 1.238 

The base case result of formulation 1 for Sioux-Falls and Friedrichshain Center 

networks are shown in figure 4.2. The coordinates of the nodes in Anaheim network 

were not available. So the results for Anaheim could not be shown on the map. 
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Figure4.2.a. Formulation 1 base case result for Sioux-Falls network 

 

Figure4.2.b. Formulation 1 base case result for Friedrichshain Center network 
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The result shows that even with a budget less than the total budget, a high percentage 

of OD pairs can be covered in the networks. This is because most of the links are 

common between the OD pair links. Also the travel time prediction relative error is 

reduced compared to the average error in the network. Moreover, the mean of COV 

of travel time on the covered links is higher than the mean COV of travel time in the 

network. This implies that the important links which have higher COV in their travel 

time has been picked up to be covered. Furthermore, from figure 4.2 it is apparent 

that the chosen nodes are distributed all over the network which ensures that a high 

percentage of OD pairs are covered. Also figure 4.2 shows that the formulation 

chooses the links with common nodes to decrease the number of sensors. 

The only limiting parameter in formulation 1 is the budget. So changing the budget 

affects the objective value. Consequently, the sensitivity analysis is done for the 

budget. The result of sensitivity analysis is discussed in section 4.2.2. 

4.2.2. Sensitivity Analysis for the Budget 

Sensitivity analysis is the study of how the variation (uncertainty) in the output of a 

mathematical model can be apportioned, qualitatively or quantitatively, to different 

sources of variation in the input of a model. The only limiting input for formulation 1 

is the budget. So the variation of the output is studied under the variation of the 

budget. 

In the base case study the budget is set to 30% of the total budget for all the networks. 

In the sensitivity analysis all the input remain the same while the budget varies for 

different percentages of the total budget. The influence of changing budget on the 
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objective function and other parameters are discussed in this section. The numerical 

result for the sensitivity analysis can be found in table 4.3. 
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Table 4.3.a. Sensitivity analysis of formulation 1 for Sioux-Falls network 
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20% 142 13.58 0.454 0 0 29.17 13.16 48.83 18.78 138 0.276 0.233 0.0229 

30% 213 15.28 0.599 0 0 41.67 28.95 62.07 36.63 213 0.275 0.166 0.0057 
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90% 640 0.16 1.034 0 0 91.67 86.84 97.52 91.40 618 0.273 0.161 0.0057 
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Table 4.3.b. Sensitivity analysis of formulation 1 for Friedrichshain Center network 
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90% 5971 0.33 1.493 0 0 53.13 48.37 98.73 73.15 3520 0.130 0.486 0.0000 
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Table 4.3.c. Sensitivity analysis of formulation 1 for Anaheim network 
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Changes in percentages of covered OD pairs in the network while the budget varies is 

shown in figure 4.3. 

 

Figure 4.3.a. Percentage of newtork coverage versus budget for Sioux-Falls network 
– Formulation 1 

 

Figure 4.3.b. Percentage of network coverage versus budget for Friedrichshain 
Center network – Formulation 1  
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Figure 4.3.c. Percentage of covered OD pairs, links, nodes, and volume versus 
budget for Anaheim network - Formulation 1 
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twice the links covering graph, it can be concluded that the program picks up the links 

with common nodes. This reduces the cost and increases the objective value. 

The mean of COV of travel time and mean of travel time prediction relative error on 

the covered links versus budget are shown in figures 4.4 and 4.5 respectively. 

 

Figure 4.4.a. Mean of COV of travel time on the covered links versus budget for 
Sioux-Falls network – Formuation 1 

 

 

Figure 4.4.b. Mean of COV of travel time on the covered links versus budget for 
Friedrichshain Center network – Formulation 1 
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Figure 4.4.c. Mean of COV of travel time on the covered links versus budget for 
Anaheim network – Formulation 1 
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Figure 4.5.a. Mean of the travel time prediction relative error on the covered links 
versus budget for Sioux-Falls network – Formulation 1  

 

Figure 4.5.b. Mean of the travel time prediction relative error on the covered links 
versus budget for Friedrichshain Center network – Formulation 1 

0%

5%

10%

15%

20%

25%

30%

35%

0% 20% 40% 60% 80% 100%

P
e

rc
e

n
ta

g
e

 o
f 

E
rr

o
r

Percentage of Total Budget

Sioux-Falls Mean Travel Time Prediction Error 

Mean Prediction Error on Covered Links Mean Prediction Error on All The Links

0%

5%

10%

15%

20%

0% 20% 40% 60% 80% 100%

P
e

rc
e

n
ta

g
e

 o
f 

E
rr

o
r

Percentage of Total Budget

Friedrichshain Center Mean Travel Time 

Prediction Error

Mean Prediction Error on Covered Links Mean Prediction Error on All the links



 54 
 

 

Figure 4.5.c. Mean of the travel time prediction relative error on the covered links 
versus budget for Anaheim network – Formulation 1 

Increase of the budget increases the covered nodes and links. Since the program 
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contribution of the volume and OD pair elements to the objective function do not 

justify the decrease in the contribution of COV of travel time, error and the number of 

sensors elements. It means after a certain percentage of the total budget, increasing of 

the budget does not increase the objective value. 

 

Figure 4.6. Objective function value versus the budget – Formulation 1 
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allocating a higher amount of budget is a waste of funds. 
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Figure 4.7.a. Cost versus budget for Sioux-Falls network – Formulation 1 

 

 

Figure 4.7.b. Cost versus budget for Friedrichshain Center network – Formulation 1 
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Figure 4.7.c. Cost versus budget for Anaheim network – Formulation1 

Since the budget is the only limiting constraint for the formulation 1, increasing 

budget is the same as relaxing the constraint. Therefore the solution time decreases 

when the budget increases (Figure 4.8). 

 

Figure 4.8.a. Solution time versus budget for Sioux-Falls network – Formulation 1 
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Figure 4.8.b. Solution time versus budget for Friedrichshain Center network – 
Formulation 1 

 

Figure 4.8.Solution time versus budget for Anaheim network – Formulation 1 
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4.3. Formulation 2 Numerical Analysis 

4.3.1. Base Case Study 

Three parameters of α (minimum COV of travel time on the links), γ (minimum 

percentage of covered volume in the network), and δ (minimum percentage of 

covered OD pairs in the network) should be known as input for formulation 2. To get 

an approximate range for the parameters, the output of the formluation 1 is used. The 

critical budget for formulation 1 is used as the base case budget for formulation 2. 

Critical budget is the budget at which the network coverage and objective value 

increase rate starts decreasing while the budget is increasing. So it is the budget 

which results in a good coverage of the network while it is economical. The graphs 

(figures 4.3 and 4.6) show that 30% of the total budget for Sioux-Falls network and 

40% of the total budget for the Anaheim and the Friedrichshain Center  networks are 

the critical budget for each network. Since after these values the rate of the increase in 

the objective function starts reducing.  

The input for the base case of the formulation 2 for each network is shown in table 

4.3. 

Table4.4.Input parameters for formulation 2 
Network α γ δ Percentage of Total Budget 

Sioux-Falls 0.1 0.2 0.6 30% 

Friedrichshain Center 0.05 0.2 0.4 40% 

Anaheim 0.003 0.5 0.98 40% 

The numerical results for the base case study of the formulation 2 on the networks are 

shown in table 4.4. 
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Table4.5. Base case result for formulation 2 
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Sioux-Falls 284 4.94 8 0 33.33 18.42 44.55 22.15 267 0.210 0.316 0.199 0.114 

Friedrichshain 
Center 

1990 0.41 35 0 15.63 6.69 71.56 20.15 1064 0.153 0.111 0.660 0.069 

Anaheim 5098 93028.52 160 8 38.46 22.98 98.23 50.95 4975 0.250 0.256 2.938 1.238 

The base case result of formulation 2 for Sioux-Falls and Friedrichshain Center 

networks are shown in figure 4.9. 

 

Figure4.9.a. Formulation 2 base case result for Sioux-Falls network 
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Figure4.9.b. Formulation 2 base case result for Friedrichshain Center network 

Figure 4.9 shows the result for base case study of formulation 2. It is apparent that the 

formulation 2 chooses the links with common nodes in order to reduce the number of 

sensors. The nodes are chosen so that not all the regions of the network are covered. 

That is because the problem does not consider covering all the regions but the most 

important links. This is not a limitation of the model.  To cover at least some links 

from all the regions of the network a new constraint can simply be added. The 

complete numerical results for the base case studies and all the sensitivity analysis for 

the formulation 2 are included in the table 4.6. Since the parameters of α, γ, and δ are 

not exactly the same as formulation 1, the base cases in formulation 2 are not 

comparable to formulation 1. But the exact cases are computed and compared with 

each other in chapter 5. 
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Table 4.6.a. Sensitivity analysis of formulation 2 for Friedrichshain Center network 
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0 46.05 21 0 0 9.38 7.27 63.41 21.1 609 0.145 0.204 0.000 

0.05 0.61 29 0 0 12.95 6.5 70.47 20 841 0.155 0.608 0.060 

0.1 0.41 35 0 0 15.63 6.69 71.56 20.15 1064 0.153 0.660 0.101 

0.12 1.98 64 0 0 28.57 9.94 79.71 20.03 1885 0.154 0.674 0.123 

δ 

0 0.84 35 0 0 15.63 6.69 71.56 20.15 1064 0.153 0.660 0.101 

0.1 0.84 35 0 0 15.63 6.69 71.56 20.15 1064 0.153 0.660 0.101 

0.2 3.28 35 0 0 15.63 6.69 71.56 20.15 1064 0.153 0.660 0.101 

0.3 0.44 35 0 0 15.63 6.69 71.56 20.15 1064 0.153 0.660 0.101 

0.4 0.64 35 0 0 15.63 6.69 71.56 20.15 1064 0.153 0.660 0.101 

0.5 0.42 35 0 0 15.63 6.69 71.56 20.15 1064 0.153 0.660 0.101 

0.6 0.41 35 0 0 15.63 6.69 71.56 20.15 1064 0.153 0.660 0.101 

0.7 3.06 35 0 0 15.63 6.69 70.29 20.06 1058 0.155 0.656 0.101 

0.8 3.05 37 0 0 16.52 6.69 80.07 20.21 1060 0.153 0.661 0.100 

0.9 2.08 63 0 0 28.13 10.33 90.04 20.01 1853 0.155 0.688 0.100 

γ 

0 7.16 11 0 0 4.91 1.72 61.23 5.91 361 0.143 0.685 0.101 

0.1 7.17 14 0 0 6.25 2.87 60.51 10.89 423 0.148 0.749 0.101 

0.2 0.41 35 0 0 15.63 6.69 71.56 20.15 1064 0.153 0.660 0.101 
0.25 2.98 57 0 0 25.45 10.52 80.07 25.04 1670 0.155 0.550 0.100 
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Table 4.6.b. Sensitivity analysis of formulation 2 for Sioux-Falls network 
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0.03 8.73 7 0 0 29.17 15.79 44 20.85 251 0.261 0.162 0.037 

0.05 4.94 8 0 0 33.33 18.42 44.55 22.15 267 0.210 0.199 0.078 

0.07 4.88 8 0 0 33.33 17.11 41.93 20.55 279 0.232 0.202 0.077 

0.09 2.72 8 0 0 33.33 15.79 46.07 20.12 190 0.277 0.211 0.091 

δ 

0 0.28 7 0 0 29.17 18.42 36.14 22.7 224 0.221 0.207 0.077 

0.1 0.39 7 0 0 29.17 18.42 36.14 22.7 224 0.221 0.207 0.077 

0.2 0.28 7 0 0 29.17 18.42 36.14 22.7 224 0.221 0.207 0.077 

0.3 0.41 7 0 0 29.17 18.42 36.14 22.7 224 0.221 0.207 0.077 

0.4 4.94 8 0 0 33.33 18.42 44.55 22.15 267 0.210 0.199 0.078 

0.5 5.34 8 0 0 33.33 15.79 51.72 20.66 224 0.227 0.253 0.079 

0.6 8.88 9 0 0 37.5 18.42 60.69 23.43 227 0.260 0.252 0.079 

γ 

0 7.61 5 0 0 20.83 7.89 40 11.22 155 0.275 0.323 0.140 

0.05 7.58 5 0 0 20.83 10.53 40.14 11.71 153 0.275 0.186 0.078 

0.1 7.25 5 0 0 20.83 10.53 40.14 11.71 153 0.275 0.186 0.078 

0.15 6.42 6 0 0 25 13.16 44 15.33 198 0.270 0.226 0.078 

0.2 4.94 8 0 0 33.33 18.42 44.55 22.15 267 0.210 0.199 0.078 

0.25 2.16 9 0 0 37.5 23.68 41.66 26.48 271 0.241 0.194 0.077 

0.3 0.45 10 0 0 41.67 23.68 57.52 30 269 0.250 0.225 0.077 
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As the networks get larger the solution time for formulation 2 increases 

exponentially. The Anaheim network could not be solved exactly with formulation 2. 

Although the network is solved with a 5% gap between the linear optimal solution 

and the best integer solution, the solution time is very high. Restricting each 

parameter increases the solution time. So the sensitivity analysis could not be 

conducted for the Anaheim network for exact solution. But the sensitivity analysis for 

Sioux-Falls and Friedrichshain Center networks are discussed in sections 4.3.2, 4.3.3, 

and 4.3.4. 

4.3.2. Sensitivity Analysis for α 

In formulation 2, the links that have a COV of travel time less than α are not allowed 

to be selected. As α increases some of the links with small COV of travel time which 

have common nodes with the other links cannot be chosen. So to maintain the 

minimum levels of volume and OD pair covering other links are chosen (figure 4.11). 

To cover the new links new sensors should be installed. As a result the number of 

sensors, which is the objective function, increases. The variation of the objective 

function versus α is shown in figure 4.10. 
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Figure 4.10.a. Objective function value versus α for Sioux-Falls network – 
Formulation 2 

 

 

Figure 4.10.b. Objective function value versus α for Friedrichshain Center network – 
Formulation 2 
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Figure 4.11.a. Percentage of network coverage versus α for Sioux-Falls network – 
Formulation 2 

 

Figure 4.11.b. Percentage of  network coverage versus α for Friedrichshain Center 
network – Formulation 2 
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the same in both solutions, the optimal solution for α=0.09 is better than the optimal 

solution for α=0.07 in covering OD pairs. So the weakness of the formulation 2 is that 

although the problem is solved for the optimal solution, but the solution is not unique. 

So there may be some other optimal solutions which have a better covering result for 

other issues in the problem. In other words, the formulation just optimizes the number 

of sensors not the other parameters. So the optimal solution just satisfies the 

minimum of the constraints and does not optimize them. As a result the other 

parameters as is shown in the graphs do not follow a predictable behaviour. 

4.3.3. Sensitivity Analysis for γ 

When γ increases, it implies that a larger percentage of volume in the network should 

be covered. To cover more volume in the network the program can either cover more 

links or cover links with higher volume. If any link with a higher volume is found 

which can be substituted by the other links without increasing the number of sensors, 

it will be chosen (figure 4.13.a). Otherwise the number of links increases (figure 

4.13.b). The changes in the objective function and the percentages of network 

covering can be seen in figure 4.12 and 4.13 respectively. 
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Figure 4.12.a. Objective function value versus γ for Sioux-Falls network – 
Formulation 2 

 

Figure 4.12.b. Objective function versus γ for Friedrichshain Center network – 
Formulation 2 
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Figure 4.13.a. Percentage of network coverage versus γ for Sioux-Falls network – 
Formulation 2 

 

 

Figure 4.13.b. Percentage of  network coverage versus γ for Friedrichshain Center 
network – Formulation 2 
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4.3.4. Sensitivity Analysis for δ 

By increasing δ the minimum required percentage of covered OD pairs increases. 

While covering the minimum percentage of volume, at least a number of OD pairs are 

covered regardless of the value of the δ (figure 4.14). For example 70% of the OD 

pairs in Friedrichshain Center network and 30% of the OD pairs in the Sioux-Falls 

network are covered regardless of the value of the δ. However, after those values, the 

larger the δ is the more links should be selected to cover a larger percentage of OD 

pairs. 

 

Figure 4.14.a. Objective function value versus δ for Sioux-Falls network – 
Formulation 2 
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Figure 4.14.b. Objective function value versus δ for Friedrichshain Center network – 
Formulation 2 
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Figure 4.15.a. Percentage of  network coverage versus δ for Sioux-Falls network – 
Formulation 2 

 

 

Figure 4.15.b. Percentage of  network coverage versus δ for Friedrichshain Center 
network – Formulation 2 
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Chapter 5:  Comparison of the formulations 
 

 

5.1. Theoretical Comparison 

There are two different methods in solving sensor location problem. One is to restrict 

the maximum number of available sensors and try to maximize a defined benefit 

function. The other is to minimize the number of sensors while providing a certain 

level of reliability for the data. Both proposed formulations in this study belong to the 

second group. However, there are some differences in their objective function and 

constraints.  

Formulation 1 minimizes the number of sensors but it also optimizes the level of the 

reliability. In other words it is a multi-objective problem. The issues considered in 

this formulation are: 

1. Maximizing covered volume in the network  

2. Maximizing covered OD pairs in the network  

3. Maximizing average of COV of travel time on the covered links  

4. Minimizing the average travel time prediction relative error on the covered 

links  

5. Minimizing the number of sensors  

6. Having an upper bound for the cost 
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There are some differences between this formulation and the multi-objective 

formulation of Chen and Choontinan. First, the Chen formulation has only three 

parameters in the objective function. Second, Chen solves the multi-objective 

problem several times. Each time one of the issues is the objective and the others are 

in the constraints. But formulation 1 considers all the objectives together and 

optimizes all of them together. All the objective elements are converted into the same 

scale of [0, 1] and they are all unit-less. So they can be compared together. 

Formulation 1 does not need any initial parameter as input such as (α, γ, δ). The only 

constraint in formulation 1 is the budget. This formulation is also capable of giving 

weights to the objective elements. 

Formulation 2 also tries to minimize the number of sensors while trying to provide a 

certain level of reliability. Some of the reliability issues have been used separately in 

previous works. In formulation 2 all the reliability issues and other issues which are 

important in SLP are considered together. These issues are:  

1. Covering at least γ percent of the total volume in the network  

2. Covering at least δ percent of the total OD pairs in the network  

3. Covered links should have a COV of travel time greater than or equal to α  

4. The average travel time prediction relative error on the covered links should 

be less than the average for all the links in the network 

5. There is an upper bound for the cost 

6. Using the minimum number of sensors 



 75 
 

In the formulation 2 all the objectives are used as constraints. A constant determines 

the standard level of satisfaction for each constraint. So the result mainly depends on 

the constant’s value. But in formulation 1 the optimization does not depend on 

standard constants. Formulation 1 is a straightforward method for solving the 

problem. It optimizes all the reliability issues beside the number of sensors. Solving 

the problem when no information about the characteristics of the network is available 

is easier with this formulation. However, formulation 2 is useful when providing a 

minimum level of reliability and least cost in the network is of interest. 

5.2. Numerical Comparison 

To compare two formulations all the parameters should be equal. Then the result can 

be compared. So the problem is solved for the formulation 1 first. The critical budget 

is determined for the formulation 1 through the sensitivity analysis. From the output 

of the formulation 1 for the critical budget, α, γ, and δ for formulation 2 is calculated. 

The output values from formulation 1 and the input for formulation 2 are presented in 

table 5.1. 

Table5.1.Formulation 1 output and formulation 2 input for comparison 
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The problem is solved for both formulations with the input of table 5.1. The results 

are presented in table 5.2 and figures 5.1 to 5.5. 

Table5.2.Formulation 1 and 2 comparison 
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Figure 5.1.a: Formulation 1 comparison case result for Sioux-Falls network 

 

Figure 5.1.b: Formulation 2 comparison case result for Sioux-Falls network 
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As figure 5.1 and table 5.2 show, the result for both formulations are the same in 

Sioux-Falls network, however, the solution time for formulation 1 is a little higher 

than the formulation 2, but they are both still very fast (figure 5.2). 

 

Figure5.2. Comparison of formulation 1 and 2 for Sioux-Falls network 

In Friedrichshain Center network (figures 5.3 and 5.4), although the same parameters 
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same time. However, the optimal solution may not be the optimal solution for each 

objective’s elements individually. On the other hand formulation 2 only optimizes the 

number of sensors in order to satisfy the minimum requirements for COV of travel 

time, error, and other issues as constraints. So it does not use the total budget. In 

formulation 2, although the minimum number of sensors is obtained, other elements 

are not the optimum. For example, the mean of the travel time prediction error in 

formulation 1 is less than the formulation 2 and the mean of COV of travel time is 

much higher in formulation 1. Instead the cost in formulation 2 is less than the cost in 

formulation 1. Although the number of sensors in formulation 2 is less than 

formulation 1, the percentage of OD pairs covered and the covered volume are almost 

the same in both formulations. As it is shown in figure 5.3, formulation 1 distributes 

the sensors all over the network and so covers more distinct OD pairs from all over 

the network, while formulation 2 does not cover any link and OD pairs in the upper 

part of the network. 
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Figure 5.3.a: Formulation 1 comparison case result for Friedrichshain Center 
network 

 

Figure 5.3.b: Formulation 2 comparison case result for Friedrichshain Center 
network 
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Figure5.4. Comparison of formulation 1 and 2 for Friedrichshain Center network 

When comparing the results for the both formulations in Anaheim network, the 

satisfactory result of the formulation 1 is apparent. (Figure 5.5) 
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Figure5.5. Comparison of formulation 1 and 2 for Anaheim network 

The solution time for formulation 2 is much greater than the solution time for 

formulation 1. As the limiting effect of constraints becomes apparent and the network 

gets larger the solution time in formulation 2 increases exponentially.  

Although the number of sensors in formulation 2 is less than the number of sensors in 

formulation 1, the cost is almost the same. Other elements such as percentage of 
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covered OD pairs and the percentage of covered volume are the same either. 

Moreover, formulation 1 gives a better result in COV of travel time on the links and 

the travel time prediction relative error. Overall, formulation 1 works much better in 

larger networks. 

Although formulation 1 shows a better global optimal solution, each formulation has 

an advanatage over the other one. Formulation 2 gives the minimum number of 

sensors and so minimum cost for covering the network. The solution is a local 

optimum and there may be some other solutions with the same objective value but 

different values for the other issues such as covered volume. On the other hand, 

formulation 1 is a straight forward formulation for the problem. It optimizes all the 

elements together. However, the solutiuon may not be the optimum for each element 

individually. Formulation 1 is much faster for larger networks. As the network grows 

and the number of OD pairs increases the solution time for formulation 2 increases 

exponentially. So solving the problem with formulation 2 exactly for large networks 

is almost impossible. 
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Chapter 6: Conclusions and Suggestions for Further Study 

 

 

6.1. Conclusion 

Two different formulations are introduced in this study to solve the sensor location 

problem for Bluetooth sensors. Three real world networks with different sizes are 

solved using both formulations. The results of both formulations are compared 

together. 

A new collection of issues is considered in solving the SLP. All of the issues which 

have been considered in previous studies separately are considered together in 

addition to a newly introduced term. A new concept is introduced as maximizing the 

COV of travel time on the links. The segments with low travel time variation are not 

interesting for collecting travel time information. For example, there are some links 

which always operate at or near free flow speed. That means travel times on those 

links do not change significantly over time. So, even if sensors are being installed on 

those links, not much additional information will be gained by those sensors. So by 

adding this term to the model the links which do not provide useful data will not be 

chosen. 

Formulation 1 is a very straight forward solution to the SLP problem since the only 

parameter which should be known is the budget. Since formulation 1 solves the 
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problem to optimize all the elements at the same time, the overall results are better 

than the formulation 2. However, the optimal solution may not result in optimal 

values for all objectives considered in the model. 

On the other hand, formulation 2 is a more traditional way of solving the SLP. 

However, it considers a larger number of constraints than the previous studies. This 

formulation provides a good solution for the problem while the least cost is of 

interest. However, solving the problem with formulation 2 needs some parameters as 

input. So the more experience and knowledge of the network one has the better result 

will be obtained. 

There may be some links with small COV of travel time in the optimal solution of the 

formulation 1. But the mean of the parameter is still higher than the mean in 

formulation 2. 

As the number of OD pairs in the networks increases, the complexity of the problem 

increases and so does the solution time. This increase in formulation 2 is exponential. 

This makes formulation 1 a better solution for large networks with large numbers of 

OD pairs.  

The largest network that is reported in literature to be solved exactly is a network of 

the size of 91 OD pairs (Sherali 2006), which is much smaller than the networks that 

are solved in this study. Formulation 2 solved the Sioux-Falls network with 725 OD 

pairs and formulation 1 solved Anaheim network with 1584 OD pairs. However, 

formulation 1 can solve much larger problems exactly. 
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6.2. Further Study 

Both proposed formulations are used to solve the SLP for the real world large 

networks; however, as the number of the OD pairs increases the solution time 

increases exponentially for formulation 2. So finding a heuristic approach for solving 

formulation 2 will allow more comparison between these two formulations in larger 

networks. And since the problem has been already solved exactly for small and 

medium size networks there is a bound for the heuristics. So the accuracy of the 

heuristics can be evaluated using the bounds. Also developing other formulations and 

solution strategies for solving the SLP is another further study research area. 

The proposed models can be compared to previous studies by applying them to the 

same real world networks to find out the best model for solving SLP problems. 

Various jurisdictions continuously collect travel time data. As the popularity of using 

Bluetooth sensors becomes more widespread, applying the models proposed in this 

thesis to determine the optimal number and location of the sensors for real-world 

deployment is an intriguing area of research. Comparing the results will clarify the 

benefits of using the SLP models. 

More studies can be conducted on the probability function of detecting vehicles by 

the sensors. In this study the condition is supposed to be ideal for the sensors, while 

the height and angle of Bluetooth sensors and other deployment issues may create 

less than ideal conditions during data collection. Examining the height and angle of 
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Bluetooth sensors during deployment and comparing the rate of detections under 

various deployment conditions is yet another interesting area of research. 

Further research can be conducted on finding the best time window during the day for 

travel time data collection studies. 

Finding the path travel time is of interest in transportation. The SLP problem can be 

solved to find the optimal number and location of the sensors in a network for 

collecting path travel time data. 

Solving SLP problem while simulating the results and studying the effects of the 

sensor locations on the traffic management systems. Finally, obtaining real time 

travel time data provides the capability of real time traffic management and incident 

detection to reduce congestion. Developing new methods and algorithms for real time 

travel time prediction and incident detection continues to be a challenging area for 

further research. 
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Appendix  
 

Glossary 

Node: A node in a network is defined as a point in a road that the traffic flow changes 

significantly 

Link : Every segment of a road between two nodes is defined as a link. 

OD Pair: An OD pair consists of an origin and a destination node, and one or more 

transition nodes. 

OD Pair link : The links between each two transition nodes in an OD pair is called an 

OD pair link. 

OD Pair links: The collection of links in an OD pair is called the OD pair links. 

Partial covering: An OD pair is called partially covered if and only if at least one of 

the links in the OD pair links is covered by detectors. 

COV: Coefficient of variation 

α : Minimum COV of travel time on the links 

γ : Minimum percentage of covered volume in the network 

δ : Minimum percentage of covered OD pairs in the network 
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Total budget: Total budget in a network is the number of nodes in the network 

multiplied by the average cost of installing a sensor on a node in the network. 

Critical budget: Critical budget is the budget at which the network coverage and 

objective value increase rate starts decreasing while the budget is increasing. So it is 

the budget which results in a good coverage of the network while it is economical. 

Sensitivity analysis: The study of how the variation (uncertainty) in the output of a 

mathematical model can be apportioned, qualitatively or quantitatively, to different 

sources of variation in the input of a model. 

Travel time prediction relative error : β  

s

ss
s t

tt −
=

*

β                                                                                         

Where 

sβ : Travel time prediction relative error on the link (s) 

*
st  : Predicted travel time on the link (s) 

st  : Real travel time on the link (s) 
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