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Shapes are a concise way to describe temporal variable behaviors. Some com-

monly used shapes are spikes, sinks, rises, and drops. A spike describes a set of

variable values that rapidly increase, then immediately rapidly decrease. The vari-

able may be the value of a stock or a person’s blood sugar levels. Shapes abstractly

describe a variable’s behavior. Details such as the height of a spike or its rate in-

crease, are lost in the abstraction. These hidden details make it difficult to define

shapes and compare one instance to another. For example, what attributes can

be used to define a spike’s behavior? And what attributes of a spike determine

its “spikiness”? The ability to define and compare shapes is important because it

allows shapes to be identified and ranked, according to an attribute of interest. A

lot of work has been done in the area of shape identification through pattern match-

ing and other data mining techniques, but ideas combining the identification and

comparison of shapes have received less attention.

This dissertation fills the gap by presenting a set of shapes and their attributes,

by which they can be identified, compared, and ranked. Neither the set of shapes,



nor their attributes presented in this dissertation are exhaustive, but it provides

an example of how a shape’s attributes can be used for identification and compar-

ison. Spikes, sinks, rises, drops, lines, plateaus, valleys, and gaps are the shapes

presented in this dissertation. Several attributes for each shape are identified and

defined. These attributes will be the basis for constructing definitions that identify

a particular behavior of a shape and allow it to be ranked.

The second contribution of this work is an information visualization tool,

TimeSearcher: Shape Search Edition (SSE), which allows users to explore data

sets using the identification and ranking ideas, presented in this dissertation. Case

studies were performed to evaluate the benefit of shape identification and ranking

in different data sets. Four case studies were performed with a single user, exploring

network traffic data and X-ray diffraction data.
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Chapter 1

Introduction

Shapes are a succinct way of describing the behavior of a temporal variable.

For instance, a spike describes a sharp increase followed by a sharp decrease. A

shape describes a behavior abstractly. Therefore, the rate at which a spike increases

or the height of the peak, as well as other details about the variable’s behavior is

lost. The absence of these details makes it difficult to compare one shape to another.

For example, given a spike, how can it be described or compared to another spike?

A lot of work has been done identifying a particular shape in a specific data set,

but little work has been done to examine individual shapes and generalize their use.

This thesis focuses on the shapes that are created when a single variable is plotted

over time. Some of the shapes that may be created are spikes, sinks, lines, rises,

and drops.

Shapes such as spikes, drops and increasing lines are used by professionals in

many different fields to describe the behavior of temporal variables. Doctors look

for a spike in blood pressure as a sign of a panic attack or a much worse condition.

Stock market analysts use shapes to describe changes in stock prices. For instance,

a drop in prices may indicate a bad day for the market. On the other hand, stocks

steadily increasing may indicate a time of prosperity. Published research results offer

concrete evidence of the usefulness of shape identification. For example, spikes were

1



used by Balog et al. to understand the mood of bloggers in relation to world events[3]

and by Dettki and Erisson to analyze the seasonal migration patterns of moose[9].

These shapes are obvious in a visual representation to the informed observer, but

they are often hard to describe precisely and compare to other shapes of the same

type. When comparing drops in stock prices or spikes in electrocardiograms it is

hard to compare the individual shapes. The ability to identify and rank shapes

of interest in a visualization of temporal data sets can be helpful in analysis and

knowledge discovery.

This thesis describes a set of commonly used shapes, listed below.

• Spike – a significant increase in value followed by a significant decrease in value

in a set of sequential points

• Sink – a significant decrease in value followed by a significant increase in value

in a set of sequential points

• Line – a set of sequential points with the same general behavior

• Rise – a sustained increase in value in a set of sequential points

• Drop – a sustained decrease in value in a set of sequential points

• Plateau – a temporary increase in value in a set of sequential points

• Valley – a temporary decrease in value in a set of sequential points

• Gap – a specific type of valley where the values temporarily decrease to zero

2



Shape Attributes

Spikes and Sinks

absolute height

relative height

angular height

number of points

Lines

slope

length

volatility

average value

Rises and Drops

magnitude of change

length

average value

Plateaus, Valleys, and Gaps

magnitude of change

length

average value

Table 1.1: This tables contains the set of shapes and their attributes, which are described

in this thesis. The attributes associated with spikes and sinks are the absolute, relative,

and angular height, as well as the number of points in the shape. Absolute height is the

value of the peak point, the point at which the increasing edge meets the decreasing edge.

Angular height is the value of the angle created at the peak point. Relative height is the

value of the peak point relative to the other values in a time series. The number of points

is a count of the points in the spike or sink. Slope, length, volatility, and average value are

the attributes associated with line shapes. Slope is the rate of change and the length is

the number of values in the shape. Volatility is a measure of the variability of the values

in the line. Average value is an average of the values in the line. Rises, drops, plateaus,

valleys, and gaps have similar attributes. Each of these shapes consist of periods, a set

of values that have measurable attributes. For example, a rise consists of a period of

increasing values preceded and followed by stable periods. The magnitude of change is

a measurement of how much values changed between two periods (i.e. two consecutive

stable periods). The length attribute can be the length of a period or the entire shape.

The average value is an average calculated over a period.
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Each shape will be assessed by a set of measurable attributes described in

Table 1.1. For example, a line shape’s primary attributes are its endpoints and

slope. An attribute, such as the “spikiness” of a spike, may be manifested as one or

more measurements of the shape’s attributes. Each measurement or set of measure-

ments represents a different behavior. The attributes are used to define a shape’s

behavior and compare and rank the shapes. A shape definition consists of one or

more constrained attributes. For instance, a line with the slope constrained to be

positive defines an increasing line. A shape can have many definitions that identify

different behaviors of interest. A ranking metric is one or more attributes by which

a shape is compared to other shapes of the same definition and ranked. A ranking

metric results from one or more calculations performed over values associated with

a particular variable. The shapes that will be discussed are not an exhaustive set of

shapes, nor are the attributes. This thesis presents the idea of identifying behaviors

of interest through shape identification, then ranking the shapes according to a set

of attributes.

The shapes and attributes that will be discussed are simple, as are the mea-

surements of the attributes. This work is not a replacement for pattern mining

techniques used to identify a unique behavior in a data set. However, the work

presents a way of thinking about an identified behavior of interest and how it is

defined and can be compared to other behaviors.

This work focuses on the analysis of temporal data sets, which are a collection

of items with value readings over a period of time. The value readings are taken at

time points, which are equally spaced and consistent across all items in the data set.
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An item and its complete set of values is a time series. For example, a collection

of patients’ EKG data is a temporal data set. If a reading was taken every thirty

milliseconds, at each thirty millisecond interval a time point exists. The set of value

readings from a single patient is a time series. The shapes are depicted in a time

series and all analysis will be performed on the time series data.

A subset of the shapes and their multiple definitions were incorporated into

TimeSearcher Shape Search Edition (SSE), an information visualization tool. SSE is

built upon TimeSearcher 1[19], and allows for the exploration of temporal data sets

by identifying shapes of interest and ranking them according to a ranking metric.

SSE visualizes shapes and provides a numerical ranking metric, which allows the

shapes to be compared. SSE can identify shapes like increasing, decreasing, and

volatile lines, as well as spikes, sinks, rises, and drops. SSE has several definitions

for each of the shapes to identify different types of behaviors.
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Chapter 2

Literature Review

There is a substantial amount of research in the area of shape identification.

The majority of the research falls into the area of pattern identification or pattern

discovery. The sequence of values that make up a pattern define a shape, so for the

purposes of this thesis shapes and patterns are the same. The primary difference

between a pattern and a shape is a pattern normally suggests repetition, while

a shape does not. However, most research in pattern identification identifies some

sequence of values, a shape, and attempts to find similar shapes. Shape identification

provides a foundation for the ideas presented in this thesis. Some of the research,

such as Agrawal et al.’s shape definition language (SDL)[1] and Hochheiser, et al.’s

timeboxes[18], focuses on allowing users to define shapes of interest and then identify

them in a data set. Research in the area of pattern discovery has focused less on

the definition of the pattern and more on the value of the identified pattern. Many

of the papers on pattern discovery start to answer the question “How significant

or interesting is the identified pattern?” Much of the work in this area takes an

automated approach, examining sets of values in a data set and determining their

value based on some function. The idea that patterns can be evaluated to estimate

their value to the user is one of the ideas presented in this thesis. The following

section will provide an overview of the current ideas about pattern identification
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and pattern evaluation and explain how this thesis uses and extends them.

2.1 Shape Definition

Some of the research in pattern identification has supplied users with an expres-

sive efficient method of defining patterns, while others have focused on optimizing

the definition to translate into an efficient data query. An expressive and efficient

method of defining a pattern provides an equal balance between the complexity of

the definition and the granularity of the pattern it can identify. An efficient data

query is a query that can “quickly” identify value sequences that match a definition

within a large data set. This thesis primarily focuses on providing an expressive

language for identifying and comparing shapes, but the calculation of the attributes

were kept simple to minimize the cost of identifying a defined shape. Agrawal et

al.’s and Hochheiser et al.’s present two distinct methods of defining shapes. Both

are expressive, but for different reasons. Agrawal et al.’s SDL provides a language

consisting of an alphabet and a set of operators to define a shape; Hochheiser et

al.’s research has focused on visual widgets to define shapes.

SDL provides a simple alphabet, Table 2.1, to describe point to point transi-

tions in time series data. For example, the symbol “Up” may be used to define a

significant increase in a stock price from one time point to the next. The definition

for a symbol in the alphabet is

(alphabet (symbol lb ub iv fv))
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Symbol Description lb ub iv fv

up slightly increasing transition .05 .19 anyvalue anyvalue

Up highly increasing transition .20 1.0 anyvalue anyvalue

down slightly decreasing transition -.19 -.05 anyvalue anyvalue

Down highly decreasing transition -1.0 -.20 anyvalue anyvalue

appears transition from a zero value to a non-zero value 0 1.0 zero nonzero

disappears transition from a non-zero to a zero value -1.0 0 nonzero zero

stable the final value nearly equal to the initial value -.04 .04 anyvalue anyvalue

zero both the initial and final values are zero 0 0 zero zero

Table 2.1: This table contains a set of sample symbols, taken from Querying shapes of

histories, defined using Agrawal et al. Shape Definition Languague (SDL). The symbols

cover scaled variations between -1 and 1. This alphabet along with SDL’s operators can

describe simplified two dimensional shapes.

“Symbol” is the text label for the alphabet being defined. lb and ub are the upper

and lower bounds for the variation allowed and iv and fv are the constraints placed

on the initial and final values, respectively. The constraints can take the value of

anyvalue, nonzero, or zero. In addition to the ability to define symbols in the

alphabet, SDL provides a set of operators to describe the relationships between

symbols. For example using the alphabet in Table 2.1 and the operators provided

by SDL a spike could be defined as:

(shape spike(upcnt dncnt)

(concat (exact upcnt (any up Up))

(exact dncnt (any down Down)))

This is a parametrized definition of a spike shape, upcnt and dncnt are the inputs.
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The statement, (exact upcnt(any up Up)), says that exactly upcnt values must be

defined as “up” or “Up” and the same is true for (exact dncnt( any down Down)).

The concat operator indicates that the increasing points meeting the definition

of the symbols “up” or “Up” must be followed by decreasing points meeting the

definition of “down” or “Down”. SDL’s ability to define symbols combined with

the provided operators gives users a lot of control over the expressiveness of the

language. An alphabet could be defined to identify almost any shape. The “blurry

matching,” bounded value ranges, instead of exact values, gives users the ability

to identify a set of similar shapes. The expressiveness and “blurry matching” are

desirable traits for any shape identification techniques. This method of defining

shape places a large burden on the users to define a set of symbols that meet their

needs.

TimeSearcher 1, an information visualization tool for exploring time series

data, provides different techniques for defining shapes. The TimeSearcher tool uses

timeboxes, Figure 2.1, and several other types of queries to allow users to visually

define shapes. Timeboxes facilitate shape definition by allowing users to visually

specify a range of values for the x and y coordinates of the data points within

a shape. In addition to the timeboxes TimeSearcher 1 includes an angular query

widget, Figure 2.1. The angular query widget allows users to define a range of slopes

that are of interest. The timeboxes are a fairly course grain approach to defining

shapes. However, the angular queries provide a much more granular approach. The

ability to visually define and quickly identify the shape within a data set is valuable

9



Figure 2.1: TimeSearcher 1 uses angular queries and timeboxes to graphically define

shapes. The light red angular query widget, in the first image, can define shapes based on

their slope. The vertical bar and the connected angled bar define a range of slope values.

The white circles can be dragged to alter the value ranges. The time series that meet the

defined shape are dynamically shown on the graph. The second image shows the timebox

widget. The timebox widget defines shapes based on the a range of x and y values defined

by the boundaries of the light red box.

in the knowledge discovery portion of data exploration, but the ability of the angular

query to define shapes based on a measurable attribute is of more value to this thesis.

The angular query is designed to only define slopes of interest, so it is limited in the

complexity of the shapes it is able to identify, but it provides a foundation to build

on. This thesis identifies several attributes like slope, which can be used to define

shapes.

QueryLines[23] combines the point-to-point expressiveness of SDL and the

dynamic visual query language of TimeSearcher 1. QueryLines is an information

visualization tool that incorporates visual shape definition and user defined rankings

to identify shapes of interest in temporal and ordered data sets. QueryLines defines

three parameters, which are used to identify and rank shapes. These parameters
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are strength, penalty, and variability. Soft constraints and prefences make up the

strength parameter. The soft constraints bound the x and y values with a set of line

segments. The constraint is considered soft because a time series only has to meet

one of the line segment constraints. The functionality provided by soft constraints

are very similar to QuerySketch by Wattenberg[30]. Preferences are used to rank

shapes. A preference consists of a set of contigous line segments that define a

shape; identified shapes are ranked according to their similarity to the preference

shape. The concept of evaluating identified shapes is important to this thesis and is

discussed in Section 2.2. A penalty defines how to compare time points to a single

line query. The penalties are minimum, maximum, goal, and trend, which identify

points that are less than, greater than, exactly, and have the same slope as the

query line. The final parameter variability is the user-defined dimensions in which

a constraint can move. The variability parameters are fixed, y-flexible, x-flexible,

and both-flexible.

SDL, TimeSearcher 1, and QueryLines enable users to define shapes of interest

and locate their occurrences within a data set. SDL is an expressive solution that

can be tailored to the needs of its users, but it could be hard to be used effectively by

common users. On the other hand, TimeSearcher 1, is less expressive, but provides

the users with the ability to define shapes in terms they understand (can see visually

see). Keogh et al. extended timeboxes to create variable time timeboxes (VTT) to

increase their expressiveness[19]. VTT allows a user to define a shape and then

locate it over a range of values. Other research offers expressive ways of defining

shapes over categorical data, such as temporal logic[21] and regular expressions[15],
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but the techniques do not easily transfer to temporal data sets. QueryLines has the

expressiveness of SDL in a visual query tool, but it is unable to express higher level

behaviors like anomalous spikes.

2.2 Shape Evaluation

In SDL and TimeSearcher 1, the significance of a shape is based strictly on

whether the shape conforms to the definition or not. Although, the values used by

the angular query widget could be used to define the significance of the identified

shape, it is not an inherent capability of the tool. Since all shapes have the same

significance they cannot be compared to one another. However, there is an area

of research that is focused on evaluating the significance of a shape. A lot of this

work falls into the area of pattern discovery[17, 16]. The ability to evaluate the

significance of a shape implies that the identified shapes are comparable by some

measurable attribute. For example, Dubinko et al.’s research in visualizing the

evolution of social network tags defines “interestingness” as the likelihood of a tag

occurring during a particular period of time[11]. “Interestingness,” the frequency of

a tags occurrence during a particular period of time provides a measurable attribute

by which tags can be compared. Similarly, clustering techniques are used to identify

patterns of interest. In this technique, similar patterns are grouped together into

a cluster[14, 8]. Patterns identified using this technique can be compared based

on the size of the cluster. The larger the cluster the more interesting the the pat-

tern. Yang et al.’s STAMP algorithm uses statistics to measure the importance of
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identified patterns[31]. Each of these techniques provides a metric by which an iden-

tified pattern can be compared to another pattern. Unfortunately, these techniques

are primarily associated with pattern discovery techniques and offer the user little

control over what patterns are identified.

Garofalakis et al. recognized the “lack of user controlled focus in the pat-

tern mining process” and introduced a set of algorithms called Sequential Pattern

Mining with Regular Expression Constraints (SPIRIT)[15]. This research combines

the ability to identify significance by using some measurable attributes, frequency,

and regular expressions an expressive definition language. The regular expressions

provide users with the ability to constrain the results returned by the pattern min-

ing algorithm to just the patterns of interest to the users. The goals of this thesis

are to provide capabilities similar to the SPIRIT algorithms, shape identification

and ranking techniques using a user defined shape definition. Going beyond the

SPIRIT algorithms this thesis presents techniques that allows users to define what

is“interesting.” The majority of the research in the area of pattern discovery defines

interesting as the frequency of the occurrence of a particular pattern. There are

many novel techniques for identifying similar patterns, but few offer users the abil-

ity to direct the ranking of the results. The idea of ranking data according to user

specified features is not new, Seo and Shneiderman’s created the rank-by-feature

framework to assist users in selecting a feature that may interest them[24].
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2.3 Summary

The research that has been done in the area of pattern definition and eval-

uation provides a foundation for the work presented in this thesis to build upon.

SDL provides an expressive definition language that is able to accurately describe

shapes given an appropriate alphabet. However, SDL’s granular approach to defin-

ing an alphabet makes it difficult to express complex behaviors such as a data set

with anomalous spikes. It also places a burden on the users to define the symbols.

TimeSearcher 1 and 2 incorporate novel graphical query tools into an information

visualization tool that allows users to explore time series data. It provides higher

level tools with simple interfaces to do pattern definition, but it was designed to be

a graphical exploration tool, and it is not as expressive as a language based solu-

tion. The research in shape evaluation has been focused on pattern discovery. The

shapes are evaluated on what the perceived value will be to the user. Most of these

techniques are not user guided and have inflexible evaluation functions. The shape

definition ideas presented in this thesis balance expressiveness and complexity. The

shapes identified can be ranked according to a user defined attribute.
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Chapter 3

Shape Definitions

There are an infinite number of shapes; many of them are too complex to

describe succinctly or create mathematical definitions to describe them. However,

there are a set of simple shapes that are commonly used to describe a particular

behavior. In the following sections several shapes will be described, as well as their

attributes. These attributes will be used to provide examples of shape definitions and

ranking metrics. Additionally, examples explaining how the shapes, their definitions

and ranking metric may be used to answer different types of queries will be given.

Line, spike, sink, rise, drop, plateau, valley and gap shapes will be discussed.

3.1 Line Shapes

The simplest shape, a line, is defined as one or more line segments created by

a set of contiguous time points. In a 2D Cartesian plane, a geometric line can be

defined using the equation, y = mx + b, where m is the slope, b is the y-intercept,

and x is an independent variable. A line segment is a portion of a line defined

by its endpoints. Line shapes are interesting because they can be used to describe

any other shape, but they are most useful in describing consistent behaviors such as

generally increasing, decreasing, stable, or volatile periods. For instance, a stock that

consistently rises over a period of time can be described by an increasing line shape.
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Figure 3.1: Graphs A through D show examples of line shapes. A shows a 2-point

increasing line and B a multi-point constantly decreasing line. C is an example of a multi-

point decreasing line that could be identified by a linear regression calculated using the

values that compose it. The last graph, D, is an example of a volatile line, where volatility

is a measure of the standard deviation of the values in the line.

A dieting person’s weight can be described as a decreasing line shape. Depending

on how its attributes are constrained, a line shape can be used to generalize the

behavior of a set of time points or identify a specific behavior that is characterized

by a limited range of value changes between time points. For example, a linear

regression identifies a relationship between a set of variables that generalizes their

behavior, but calculating the slope of each individual line segment can identify a

specific behavior.

The attributes associated with line shapes are the length, slope, and volatility.

The length attribute is the number of time points in the shape. The slope attribute

is a measure of the rate at which the line shape is changing. The slope definition

varies depending on whether the goal is to identify a particular behavior in the time

series or to generalize the behavior of a set of time points. To identify a specific

behavior, slope can be defined as the change in value between two time points.
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This definition is identical to the definition of slope for a geometric line. Using

this definition of slope any constraint applied to the slope must be consistent across

every line segment in the line shape. For example, if one line segment is increasing,

all line segments in the line shape must be increasing. On the other hand, if the

goal is to generalize the behavior of a set of time points, the slope definition should

consider all of the points together. For example, the slope of a line shape may be

defined as:

• the amount of change between two time points that may or may not be con-

tiguous

• the sum of the change of between all contiguous time points in the line shape

• the geometric slope of a linear regression computed over the time points in the

shape.

These are examples of ways of calculating slopes. Figure 3.1C shows a line

that could be identified using a linear regression, the set of values in the line have

a decreasing trend. Each of these definitions describes a different behavior that

may be of interest. Using different definitions for slope will result in different slope

calculations for line shapes, therefore identifying different behaviors.

Volatility can refer to the relative rate at which a stock increases and decreases.

A similar definition will be used to describe the volatility attribute of a line shape.

The standard deviation of the values within a line shape can be used as a measure

of a line’s volatility. Figure 3.1D is an example of a volatile line. Other calculations
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may be more appropriate for measuring the volatility of line shape depending on

the behavior of interest.

The slope, length, and volatility are attributes by which line shapes can be de-

fined and ranked. Constraining the slope of a line shape to be a positive or negative

value creates two definitions of line shapes, increasing and decreasing, respectively.

According to the slope definition, an increasing line shape will characterize different

behaviors. Constraining each individual line segment in a line shape to be negative

creates a monotonically decreasing line, like the line shape in Figure 3.1B. Using

the monotonically increasing line shape and ranking them according to their length,

the question “Which stock has the longest period of constant growth?” could be

answered. Understanding line shapes and a small set of attributes can be useful in

answering such queries. In addition to constraining the slope of the line, the num-

ber of time points can also be constrained. The two point and multiple point lines

are examples of definitions that are created by constraining the length attribute.

Figure 3.1A is an example of a 2-point line shape; Figures 3.1B, 3.1C and 3.1D are

examples of multiple point line shapes.

3.2 Spike and Sink Shapes

Spikes and sinks describe a temporal behavior in which a variable has a sig-

nificant change over a period of time in one direction and then a significant change

in the opposite direction. The point at which this change in direction occurs is the

peak point. A spike, specifically, is a significant increase followed by a significant
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Figure 3.2: These graphs are examples of spike and sink shapes. The red dots are the

peak points. Graph A, B, and C are graphs that may be ranked high based on its relative

or angular height. The relative height is a measure of the difference between the peak

point and average value of the remainder of the points. The angular height is the measure

of the angle created by the two edges that meet at the peak point. An edge may consist of

one or more points. Graph D is a spike that could be identified using a linear regression

calculated over the points in the edges to the right and left of the peak point.

decrease. A sink is just the opposite, a decrease followed by an increase. These

general definitions describe the behavior of spike and sink shapes. They are used in

a diverse set of fields. For example, a stock market analyst may say a stock price

spikes when a stock is rapidly bought for a period of time and then rapidly sold for

a period of time. Similarly, a doctor would say when blood pressure spikes there is a

rapid rise then fall in pressure. In order for an analyst or doctor to find a particular

behavior, more detail must be added by identifying values of interest for a set of the

attributes of spike and sink shapes.

The attributes associated with spike and sink shapes are the significance of

the increase or decrease and their duration. The significance can be manifested

in one or more attributes. The significance of the change can be measured by
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the absolute, relative, or angular height of the peak point. Absolute height is the

absolute value of the peak point. Angular height is defined by the angle created at

the peak point. Relative height is defined as the height of the peak point relative to

all the other points in the time series. This definition will identify spikes and sinks

whose behavior is significantly different then the rest of the the points in the time

series. The relative height attribute characterizes that difference. For example, the

equation, |(max −mean)|/σ could be used to define the relative height of a spike

or sink.

The relative height attribute of a spike or sink shape is affected by the behavior

of all the time points in the time series. The absolute and angular height definitions

have the ability to identify spikes and sinks in a volatile time series. Volatile time

series are characterized by large changes in opposite directions between a set of

consecutive time points. The relative height definition identifies spike and sink

behaviors that differ from the behavior of the rest of the points in the time series.

The duration attribute is given by the sum of time points contained in both edges

plus the peak point. Constraining these attributes can identify a specific spike or

sink shape within a time series.

The absolute, angular, and relative height attributes, as well as the duration

and edge slope attributes can be constrained to define different spike and sink shape

behaviors, and they can be used as a ranking metric to compare and rank the

shapes. The duration attribute can be constrained to identify sink and spike shapes

that occur over a specific period of time. For instance, a three point and multiple

point definition could be defined. The three point shape contains exactly three time
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points, a peak point and a single point on each side. Three points is the smallest

number of points that a spike or sink shape can contain. The multiple point shape

contains more than three time points.

The peak height can be constrained to create a definition that will identify

shapes which are greater or less than a particular height. The slope of the leading

or trailing period of change can also be used to define behaviors of interest for

spike and sink shapes. By using these attributes to create shape definitions and

rank shapes, particular behaviors of interest can be identified in temporal data

sets. For example, a doctor may want to identify patients who suffer from intense

panic attacks that last longer than ten minutes, where intensity is a measure of

a patient’s heart rate. This behavior can be identified by using a ten point spike

ranked according to its angular peak height. Correlations can also be made using

shape identification. Using the same example, a doctor may want to know how the

length of a panic attack is related to the intensity of the attack. This requires using

the general definition of spikes and ranking them according to their angular height.

Then just identify correlations between the spikes that are highly ranked and their

duration.

3.3 Rise and Drop Shapes

Rise and drop shapes are used to describe a sustained change in the average

value. These shapes can be divided into three distinct periods: a period of change

that is preceded and followed by periods of stability, Figure 3.3C. The stable periods
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Figure 3.3: The graphs above are examples of rise and drop shape. Graph A is a rise. B

and C are drops. Graph C shows the three periods of drop and rise shapes: the leading

stable period, the change period, and the trailing stable period.

are drawn in blue and the period of change in red. A rise shape has a change period

that increases in value, while a drop shape decreases in value, as seen in Figures

3.3A and 3.3B respectively. Each period must consist of one or more time points;

there is a single transition point between each period; and the time points in the

shape must be contiguous. Drop and rise shapes contain a minimum of five points.

The periods of stability separate these shapes from spikes, sinks and lines.

Stable time points have very low volatility, which could be measured by the

standard deviation of the points or some other definition. In drops and rises if a

set of time points is not stable, it is changing. A rise and drop shape describes a

person’s heart rate at the start and conclusion of an aerobic workout, respectively.

At the start of a workout a healthy person’s heart rate will transition from a resting

rate of approximately 65 beats per minute (bpm) to 140 bpm. During the period

prior to and after the transition the active and resting heart rate will be stable until

the conclusion of the workout. This is the type of behavior a rise or drop shape
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could identify.

The length of the periods, change significance, and average value of stable

periods are some of the attributes associated with rise and drop shapes. The length

of a period is defined by the number of time points contained within that period.

The change significance, like the previous shapes, can be defined by the slope of that

period, and the slope can be defined in several different ways based on the behavior

of interest. The average value of the stable period is the mean of the points in the

period.

Period length is the most intuitive attribute to constrain when creating shape

definitions for rise and drop shapes. A definition that limits the length of the

change period to just two points is useful in identifying rapid change. Using the

workout example, constraining the length of the trailing stable period to be greater

than 15 would identify workouts of longer than 15 time points. Consider a data

set containing serveral connections per minute. By constraining the length of the

change period to two and ranking the time series according to the average value of

the trailing stable period, an information technology (IT) specialists would be able

to start to identify anomalous behavior of traffic within their network.

3.4 Plateaus, Valleys and Gaps

Plateaus, valleys, and gaps are used to describe temporary changes in variable.

They differ from spikes and sinks because the temporary value is sustained for

a measurable period of time. These shapes consist of leading, intermediate, and
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Figure 3.4: Graphs A, B and C show a plateau, valley and gap shape, respectively. Graph

D shows the periods associated with plateau, valley and gap shapes.

trailing stable periods, as well as departing and returning change periods as shown

in Figure 3.4D. A plateau has an intermediate stable period, whose average value

is greater than the leading and trailing stable periods (Figure 3.4A), while a valley

has an intermediate period, whose average value is less than the average value of

the other two stable periods (Figure 3.4B). A gap is a specific type of valley where

the intermediate period’s values are zero (Figure 3.4C). Using the workout example,

a plateau describes a person’s heart rate during his or her entire workout. Prior to

the beginning and after the end of the workout, the heart rate is stable at a resting

rate of 65 bpm. At the start of the workout, the heart rate leaves the resting rate

and rises to approximately 140 bpm. This heart rate is maintained throughout the

workout. At the conclusion of the workout, the heart rate returns to the resting

heart rate and remains there. Plateaus, valleys, and gaps are very similar to drops

and rises with one important difference. Drops and rises do not define the behavior

that occurs after the trailing stable period. Therefore, several ranking metrics, such

as the length of the intermediate stable period (the trailing stable period in the drop

and rise shape) have a different meaning in plateaus, valleys and gaps than in drop
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and rise shapes.

The ranking metrics are similar to the ranking metrics for drops and rises, but

they are calculated over the additional portions of the plateaus, valleys, and gaps.

Although the calculations are same, the meanings are different. For example, using

the workout example, the difference between the mean of leading and trailing stable

periods in plateau shapes may signify a strengthening of the heart. On the other

hand, the difference between the leading and trailing periods in a rise shape signifies

a more strenuous workout.

Definitions that constrain the length of the stable periods are useful when

examining plateau, valley and gap shapes. By limiting the length of a particular

period, shapes with a specific duration can be identified. Definitions that measure

the difference between the leading and trailing stable periods can also be useful. For

instance, the blood cell counts of a chemotherapy patient will depict a valley when

graphed over time. Some chemotherapy drugs can cause cells to stop dividing,

causing a drop in the cell count. Therefore, a patient’s blood cell count should

ideally have the same average value before and after chemotherapy. By ranking

valleys according to the difference between the leading and trailing stable periods,

a health professional may be able to start to question whether the treatment had

an adverse effect on a patient’s cell count or not.
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3.5 Summary

Lines, spikes, sinks, rises, drops, plateaus, valleys, and gaps are shapes that

can be used to describes the behavior of the values of a variable over a period of time.

The attributes associated with each of these shapes characterize specific portions of

the shape. The attributes can be used in combination to describe an exact behavior.

For example, a stock that has risen consistently, from year to year, for a period of

seven is defined by it slope and its length. These simple shapes and attributes offer

a good balance between expressiveness and complexity.
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Chapter 4

Interface Design

TimeSearcher Shape Searcher Edition (SSE), an extension of TimeSearcher 1,

is a visualization tool that identifies and ranks shapes in temporal data sets. It uses

the graphic routines provided by TimeSearcher 1, which are created using Piccolo

[4]. It also maintains a similar window layout. Figure 4.1 shows the TimeSearcher

SSE graphical user interface (GUI). In TimeSearcher the window in the upper left

corner is used to create visual queries. This window is not used in TimeSearcher

SSE and it can be hidden by clicking the on the arrow on the bar below the window.

TimeSearcher SSE consists of four primary windows. The shapes window on

the left side contains time series graphs displaying each of the identified shapes.

The tabbed window on the upper right side shows a details view, the time points

and associated data values, of a time series in the details tab and the current shape

definition in the definitions tab. The rankings window is on the right side in the

center. This window displays the ranking metric for an individual shape and the

label for the time series in which it is located. The shapes, details and rankings

windows are tightly connected. Scrolling in the shapes window causes the rankings

window to scroll, so that the first item in the rankings window is the same as the

first graph in the shapes window. Selecting an item in the ranking window will

cause the details for that time series to be shown in the details window and graph
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containing the shape to be the first one shown in the shapes window. Similarly,

mousing over a graph in the shapes window will cause the details of the graph to be

shown. The window on the lower right hand side contains range sliders which filter

the identified shapes based on its endpoints and the value of the ranking metric.

The graphs in the shapes window are a visual representation of a time series.

These graphs make it easy to identify the shapes created by plotting the values in a

time series. The graph’s y-axis is labeled with the range of values that the variable

takes on throughout the entire data set. The x-axis is labelled with the time points.

The axes are drawn in black, while the time series is plotted in gray. Each time

point is represented by a small gray dot and each consecutive dot is connected by a

gray line. Each shape is shown in its own graph; if a time series has more than one

unique occurrence of a shape, then the graph of the time series will appear more

than once. Each shape is labeled in the graph with red lines instead of gray; points

of interest in the shape are marked by large red dots. A significant point may be

the peak point in a spike or sink shape or the change period in a rise or drop shape.

The upper panel, Figure 4.2, shows the seven buttons labeled with the shapes

that TimeSearcher SSE can identify and rank. Rolling over the buttons will cause

a popup to be shown indicating the name of the shape. Each shape has several

definitions that can be chosen from the definitions drop down box to the right of

the shape buttons. Some of the shape definitions require user input, such as the

number of time points in the shape. This allows more fine grain specification of the

exact behavior of a particular shape. This field will only be enabled if the definitions

require user input. The search button initiates the search for the selected shape of
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interest with the user defined information, if applicable. Only a subset of the shapes

and definitions that were explained in this thesis were implemented in TimeSearcher

SSE. These shapes are spikes, sinks, lines, rises, and drops.

4.1 Spikes and Sinks

Spike and sink shape buttons, the first and second buttons in Figure 4.2, iden-

tify several definitions of spike and sink shapes. These shapes are ranked according

to their relative and angular heights. By clicking on the spike or sink button the

definitions below will populate the drop down box to the right.

3 Point Angular 3 Point Relative

5 Point Angular 5 Point Relative

7 Point Angular 7 Point Relative

Multi-Point Angular Multi-Point Relative

The ranking attribute is denoted as “Angular” or “Relative”. The multi-point defi-

nitions require user input. The user is required to indicate how many points should

appear in the spike or sink shape.

4.2 Lines

Increasing and decreasing line shape buttons, the third and fourth buttons in

Figure 4.2, enable the identification of line shapes. The increasing line button con-

strains the slope of the line to be positive, and the decreasing line button constrains
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it to be negative. Clicking the buttons populates the definitions drop down box with

the four definitions listed below.

2 Point Slope

Multi-Point Slope

Longest Monotonic Slope

Monotonic Slope w/ Length > x

The two point line shape is ranked according to the geometric slope of the line

segment, while the multiple point line shape is ranked according to the geometric

slope of the linear regression calculated over the points in the shape. The multiple

point line shape definition requires a user to specify the number of points in the line,

including the endpoints. The final two definitions are line shapes with monotonically

increasing or decreasing slope. The longest monotonic slope is ranked according to

its length. The longest monotonic slope definition has no constraint on the number

of points in the line. However the monotonic slope with length greater than x

constrains the minimum length to x. This definition requires the user to input a

minimum length for the identified line shapes. The shapes are identified by red lines

and small red dots on the graph.

The volatility button, the last button in Figure 4.2, identifies line shapes with

a high volatility. These shapes are ranked according to their standard deviation and

the sum of the variation. By clicking the volatility button the definitions drop down

box will be populated with ranking attributes. Because the entire line is considered

the shape, the dynamic filter that constrains the start and end points does not work,
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and each time series only appears once.

4.3 Rises and Drops

The rise and drop shape buttons, the fifth and sixth buttons in Figure 4.2,

enable the identification of those shapes. The rise button constrains the period of

change to be positive, and the drop button constrains it to be negative. Clicking

on the drop or rise buttons will populate the definitions drop down box with the

following definitions.

Slope

Length

Slope with Stable Length > x

The slope definition ranks the shapes according to the slope of the period of change.

The length definition ranks them according to the total length of the shape. The

“slope with stable length > x” definition constrains the length of the stable period

to be greater than x, where x is defined by the user. The beginning and end of the

change periods of drop and rise shapes are marked by large red dots.
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Figure 4.1: This is a screenshot of TimeSearcher Shape Searcher Edition (SSE). The

upper panel shows the seven buttons labeled with the shapes that TimeSearcher SSE can

identify and rank. Each shape has several definitions that can be selected from the drop

down box to the right of the shape buttons. Some of the shape definitions require user

defined input, such as the number of time points in the shape. The left side contains

the shapes window, which displays the currently identified shapes for the loaded data

set. The window in the upper right contains the details and definitions tab. The details

tab displays the time points and values of a particular time series. The definition tab

displays an explanation of the selected shape definition. The window in the left center is

the rankings window. Once a shape and definition have been chosen from the upper panel

the ranking metric value and label for each shape will be shown in this window. The lower

right corner contains the dynamic query bars. These bars allow the shapes to be filtered

based on the ranking metric and the endpoints associated with a shape.
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Figure 4.2: The TimeSearcher SSE button panel, shown above, enables spike, spike,

increasing, decreasing, rise, drop, and volatility shape searches, respectively. Clicking on

any of buttons will populate the definitions drop down box, to the right of the buttons,

with a set of definitions for the selected shape. The input field is used to take user input

for certain definitions, and the search button populates the shapes window and rankings

windows with the identified shapes.
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Chapter 5

Implementation

TimeSearcher Shape Search Edition (SSE) was implemented as an extension

of TimeSearcher 1(TimeSearcher) by Harry Hochheiser. It is implemented in Java

1.6. The user interface is the same as TimeSearcher, and the original code base

for TimeSearcher was left unchanged, so that the TimeSearcher functionality would

still work. TimeSearcher’s timeboxes, graphs, and data envelopes are implemented

in Piccolo[4], a zooming toolkit. TimeSearcher SSE does not use the timeboxes, nor

the query and data envelopes. SSE is the result of approximately six months of

work and is currently in a beta development stage. The following sections will walk

through an overview of the changes made to TimeSearcher to create SSE, SSE’s

implementation, and the lessons learned from the development of the tool.

5.1 Overview

TimeSearcher required several changes to support shape identification and

ranking. This section offers an overview of the purpose of each of the packages and

the changes that were made to to create SSE.

• edu.umd.cs.temporalquery – This package contains the TQCore, TQMain,

CmdTable and TQMenuBar classes. The TQCore class provides the core func-

tionality for TimeSearcher and SSE. The TQCore class in combination with

34



the TQMenuBar and CmdTable provides an interface to the SSE functional-

ity. TQCore contains the functionality that enables the shape search buttons

triggered by the “Shape Search Buttons” item in the view menu. TQMain

starts the application and no modifications were made to its functionality.

• edu.umd.cs.temporalquery.data – This package contains the DataSet class,

the primary data model for the TimeSearcher and SSE. The DataSet object

is composed of Entity objects, which contain all the information relating to

an individual time series, such as the values and statistical information as-

sociated with the time series. SSE uses the Entity class to store all of the

shapes associated with a particular time series. Shapes that require no user

input are identified when the DataSet object is created and are stored in the

appropriate Entity object. SSE also added a mean and standard deviation

calculation to the Entity class, because their values are used by several of the

shape definitions. This package also contain four utility classes to help deal

with the different types of data that TimeSearcher and SSE must handle.

• edu.umd.cs.temporalquery.event – This package contains a single class

that handles information relating to query modification. This class was not

altered, because the query infrastructure is not used by SSE.

• edu.umd.cs.temporalquery.graph – In TimeSearcher this package is re-

sponsible for displaying the items that match the current query; in SSE it is

responsible for displaying the shapes that match the current definition. This

required a fundamental change in the GraphSet class. In TimeSearcher an En-
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tity represents a single graph, but in SSE the Entity contains multiple shape

graphs. The GraphSet class was altered to plot multiple shape graphs in-

stead of a single time series. This class relies on other classes to do the actual

drawing of the graphs; those classes were also changed.

• edu.umd.cs.temporalquery.images – This package contains all the images

used by TimeSearcher and SSE, such as those used for the buttons, logo, and

splash screen.

• edu.umd.cs.temporalquery.piccolo – This package contains all the exten-

sions to the Piccolo classes that are used to provide graphic support for the

query space and rankings window. The DataAxis class is responsible for the

actual drawing of the graph containing the shapes. The drawing routines were

changed to understand how to draw a TShape instead of an Entity. The classes

supporting the query space functionality in TimeSearcher were left unaltered.

• edu.umd.cs.temporalquery.pwindow – This package contains classes that

support the Piccolo functionality within the query window. This functionality

is not used by SSE, so no modifications were made.

• edu.umd.cs.temporalquery.query – This package contains several classes

for maintaining a set of active queries. This functionality is not used by SSE,

so no modifications were made.

• edu.umd.cs.temporalquery.rangeslider – The IntRangeSlider and Floa-

tRangeSlider classes support querying of the shapes based on the ranking
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metric and the beginning and ending time points of the shape. These classes

were written in such a way that no modifications were needed.

• edu.umd.cs.temporalquery.shapes – This package contains all of Time-

Searcher SSE’s core functionality. The TShape object is used to represent

individual shapes. The TShapeQuery class serves as the primary interface by

which shapes are accessed. The IncDec, SpikeSink, RiseDrop and VolatileStable

classes contain the shape definitions. This package will be explained in detail

later in the paper.

• edu.umd.cs.temporalquery.util – This package contains a variety of utility

classes that support threading, logging, file selection filters, pop-up menus, and

widgets specific to TimeSearcher. No modifications were required for any of

these classes.

Figure 5.1: This shows the original TimeSearch 1 interface and the TimeSearcher SSE

interface.

• edu.umd.cs.temporalquery.windows – This package contains the classes

used to build the TimeSearcher (GUI). Many of the classes were modified to
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support SSE functionality. Figure 5.1 shows the differences between Time-

Searcher 1 and TimeSearcher SSE interfaces. Modifications were made to the

TQDetails to create a tabbed pane that could display details about the time

series and a detailed explanation of the currently selected shape definition. In

TimeSearcher the TQItemList class was used to display the static labels for

each of the time series, but in SSE, the TQItemList displays both the calcu-

lated ranking metric for a shape and the label for the time series in which that

shape appears.

5.2 Data Representation

The data TimeSearcher SSE uses to identify and rank shapes is stored in a

DataSet object. The DataSet object contains all of the time series data. Each time

series and all information relating to an individual time series is stored within an

Entity object, which contains the time series values, identified shapes that require

no user input, maximum and minimum values, standard deviation, and mean. The

data is read in the form of an input file. The input file format is described below.

The input file for TimeSearcher SSE is a plain text of the following format:

1. Title: a descriptive title for the data file

2. Static attributes: static information for each data item, such as a label asso-

ciated with a time series. The static attributes are given in the form, “Name,

Type.” The “Name” is the name of the attribute, and the “Type” is the data
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type of the attribute. The supported data types are string, float, and int.

3. Number of time points: the number of values in each time series

4. Number of items: the number of time series in the data set

5. Time point labels: the text labels that are associated with each time point.

6. Individual items: a comma separated list of the time series’ values preceded

by the static attribute. Each item is separated by a new line character.

Figure 5.2: Excerpt of a TimeSearcher input file

Once the data has been read, preprocessed and stored, a user can begin to

explore data through the GUI. The GUI allows the user to select a shape and a

definition of interest. The next section describes the classes that create the graphical

user interface.

5.3 Graphical User Interface

The GUI consists of six classes: TQDetails, TQItemList, TQFilter, TQCon-

trol, Display, and TQSplitDataPane. TQDetails, TQItemList, TQFilter, TQCon-
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Figure 5.3: This figure is the TimeSearcher SSE interface with labels applied to show the

Java files that are responsible for creating each window.

trol, and TQSplitDataPane are located in the edu.umd.cs.temporalquery.windows

package, while Display is a part of the edu.umd.cs.temporalquery.pwindows pack-

age. Figure 5.3 shows which Java file creates each of the labeled windows. The

TQControl class contains the TQDetails, TQItemList and TQFilter classes. The

TQSplitDataPane class contains the Display class. Below are descriptions of each

of these classes, how they work, and how they interface with the rest of the code.

• TQControl – The TQControl contains the TQDetails, TQItemList, and TQ-

Filter classes. It uses the JSplitPane class to allow either the details and

definitions tabbed pane or the ranking window to be expanded to fill the en-
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tire panel.

• TQControl – The TQDetails class is a tabbed pane. One tab contains the

details view, while the other tab contains an explanation of the current se-

lected shape definition. The MouseListener interface is used to synchronize

the details tab, TQItemList, and Display. On a mouse over event from the

Display object the details of the graph the mouse is over are displayed. On a

mouse click event from the TQItemList the details about the item clicked are

displayed.

• TQItemList – The TQItemList object creates the rankings window in which

the ranking metric and the static attributes of the shapes are displayed. The

AdjustmentListener interface is used to synchronized the rankings window

and the shapes window. When scrolling takes place in the shapes window, an

adjustment event occurs. The TQItemList receives this event, and scrolls to

the proper item in the list based on the visible shapes in the shapes window.

• TQFilter – The TQFilter object creates the filter window that allows shapes

to be filtered based on their start and end points and the ranking metric. The

filter window contains two dual slider bars to facilitate the filtering. The code

is based on code by Ben Bederson and Jon Meyer.

• TQSplitDataPane – This class contains the Query and Display classes.

TimeSearcher SSE does not use the window created by the Query class. The

Query window can be hidden because the TQSplitDataPane extends the JS-
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plitPane class. The AdjustmentListener interface is used to synchronize the

shapes window with the rankings window. When the TQSplitDataPane re-

ceives an adjustment event from the TQItemList object, the scroll pane con-

taining the Display object synchronizes the graphs displayed with the items

in the rankings window.

• Display – The Display class creates the shapes window. The Display object

displays the graphs in the GraphSet object. The GraphSet object contains

the graphs that match the current shape definition. These graphs are drawn

by the DataAxis class, which uses the Piccolo library to create the individual

shape graphs.

5.4 Shape Identification

The primary package of TimeSearcher SSE is edu.umd.cs.temporalquery.shapes.

This package contains, the IncDec, SpikeSink, RiseDrop and VolatileStable classes.

These classes contain the definitions for each of the shapes in TimeSearcher SSE.

The TShape class contains the fundamental shape representation for TimeSearcher

SSE. TSQuery is the primary interface for accessing the shapes. The ShapeUtil class

contains utility functions used by the rest of the package. Shapes with the same

attributes are located in the same file, such as spikes and sinks and increasing and

decreasing lines. Below, each of the classes will be described. The definitions will

be in bold and the ranking metrics in italics.
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5.4.1 SpikeSink Class

The SpikeSink class contains three definitions for both spike and sink shapes.

A spike shape is defined as an increasing edge followed by a decreasing edge that meet

at a single point, while a sink shape is a decreasing edge followed by an increasing

edge. An edge is a set of time points. The definitions define a three, five, and seven

point spike and sink and each of these shapes can be ranked according to its relative

and angular height. Each of the shapes and its ranking metrics are described below:

• 3-Point Spike/ Sink – a spike or sink shape containing exactly three time

points with a single time point on both sides of the peak point.

• 5-Point Spike/ Sink – a spike or sink shape containing exactly five time

points with two time points on both sides of the peak point.

• 7-Point Spike/ Sink – a spike or sink shape containing exactly seven time

points with three time points on both sides of the peak point.

• Angular Height – the measure of the angle created at the point where the

edges meet. Figure 5.4A shows the component’s angular height calculation.

Using the trigonometric function cos(α+β) = cos(α)∗cos(β)−sin(α)∗sin(β)

the angle created by the edges of the spike is equal to cos(α + β) = (dy1 ∗

dy2− 1)/
√

(1 + dy12) ∗ (1 + dy22) where dy1 = |y1− y2| and dy2 = |y2− y3|.

A linear regression calculated over the points to the right and left of the peak

point defines the increasing and decreasing edges for the 5 and 7-point spikes.
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Figure 5.4: The diagrams above show how the angular and relative height attributes

are calculated. The first image shows the components of the angular height equation,

cos(α + β) = (dy1 ∗ dy2− 1)/
√

(1 + dy12) ∗ (1 + dy22). The angular height a measure of

the angle created where the two edge of spikes and sinks meet. The second image shows

the components of the relative height equation, |max −mean|/σ. The relative height is

the height of a spike or sink relative to the rest of the shape.

• Relative Height – the height of the peak point from the mean of the time

series measured in standard deviations. The relative height is given by the

equation |max−mean|/σ. Figure 5.4B shows the values of the relative height

calculation.

All of the definitions and ranking metrics are static, and require no input from

the user. Each shape is computed when the data is loaded. Values such as the mean

and standard deviation are only calculated once and stored within the internal rep-

resentation of a time series, an Entity object. The function that identifies the spikes

and sinks takes a parameter that defines how many points will be in a spike or sink.

These shapes are identified simultaneously. The class attempts to identify shapes

as efficiently as possible, by only passing through the data once. Figures 5.5 – 5.7
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show examples of spikes and sinks identified by TimeSearcher SSE’s SpikeSink class.

Figure 5.5: An example of a three point sink ranked according to its angular height. This

sink identifies a missing value in this stock market data.

Figure 5.6: An example of a 31 point spike in X-ray diffraction data ranked according to

its angular height.

Figure 5.7: An example of a five point spike in a stock price that is highly ranked according

to its angular height.

5.4.2 IncDec Class

The IncDec class contains four definitions for both increasing and decreasing

line shapes. The first three shape definitions are two point, multiple point, and

monotonic slope line shapes. The fourth definition is a monotonic slope line shape

with a constraint placed on the minimum length. The two point and multiple point

definitions are ranked according to their slope, while the monotonic slope definition
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is ranked according to its length and slope. The definitions for each shape and

ranking metrics are listed below:

• 2-Point Line – a line shape that contains only two time points. An increasing

line has a positive slope, while a decreasing line’s slope is negative.

• Multiple Point Line – a line shape that contains multiple time points. An

increasing line has a positive geometric slope, while a decreasing line’s slope

is negative. There are several ways to measure the slope which are discussed

below.

• Monotonic Slope Line – a line shape where each line segment’s geometric

slope has the same sign, positive or negative.

• Slope – the geometric slope is given by the equation, (y2−y1)/(x2−x1). The

slope of a two point line shape or a line segment can be calculated using the

geometric slope equation. A multiple point line’s slope is a measure of the

geometric slope of the linear regression calculated over the points in the line

shape. The slope of a monotonic slope line is calculated in the same fashion.

• Length – the number of time points contained in the line shape.

This class contains functions to identify multiple point lines and lines with

monotonic slopes. Both functions require the user to identify multiple point lines of

a particular length and monotonic slope line greater than a particular length. This

allows the user to specify a minimum length for the monotonic slope lines, elimi-

nating the two point lines, which are always monotonic. Figures 5.8 – 5.9 shows
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examples of increasing and decreasing lines identified by the IncDec class.

Figure 5.8: An example of a fifteen point increasing line ranked according to slope. This

line shows the term “web” increasing over a fifteen year period.

Figure 5.9: An example of a monotonically increasing line in stock market data ranked

highly due to its slope.

5.4.3 RiseDrop Class

The RiseDrop class contains three definitions for both rise and drop shapes.

These definitions are ranked according to their slope and the length of their sta-

ble periods. The definitions defined in the RiseDrop class are general definitions

described in Chapter 3, and the same definition except the length attribute of the

stable periods is constrained to be a minimum length. Listed below are the defini-

tions:

• Rise or Drop – a sustained change in values. These shapes consist of three

distinct time periods: a stable period, followed by a period of change, con-

cluding with another stable period.
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• Drop or Rise with Multiple Point Stable Period – a rise or drop shape

that contains multiple points in each of its stable periods.

• Slope – the geometric slope of the period of change. The slope of the period

of change and a line shape are calculated the same way.

• Length of the Stable Periods – the lowest number of time points between the

two stable periods.

A point is stable if it lies within one standard deviation of the mean of the

other points within the stable period. If a point is not stable, then it is changing.

Figures 5.10 – 5.11 are examples of rise and drop shapes.

Figure 5.10: An example of a rise shape in stock market data. The shape is highly ranked

according to the length of its stable periods.

Figure 5.11: An example of a drop shape in stock market data. This drop was identified

using the “stable period greater than x” definition which is ranked according to the slope

of the change period.

48



5.4.4 VolatileStable Class

The VolatileStable class contains just a single definition and ranking. The

definition ranks the time series according to its standard deviation. The time series

with the greatest standard deviation is the most volatile, while the time series with

the smallest standard deviation is the most stable. Figures 5.12 – 5.13 are examples

of volatile lines identified by the VolatileStable class.

Figure 5.12: An example of a volatile line shape ranked highly according to its standard

deviation.

Figure 5.13: An example of a volatile line shape ranked highly according to its standard

deviation.
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Chapter 6

TimeSearcher SSE Case Study

TimeSearcher SSE was given to a single user to explore data sets within his

expertise where shape identification and ranking would be useful. The user partici-

pated in 4 one hour user sessions. In each of the sessions, he looked at a single data

set commenting on discoveries he made and problems with the interface. In this

case study, he examined a network traffic data set and three x-ray diffraction data

sets.

6.1 Network Traffic Data Set

The user is currently a Computer Science Researcher focusing on computer

network defense. He has spent 2 years developing information visualization tools

for anomaly detection in network traffic data. He believed that shape detection

would be beneficial in detecting anomalies in network traffic data. He was unsure

whether it would be more beneficial then current techniques, but he was willing to

use TimeSearcher SSE to explore some data sets and see if any undetected anomalies

were found.

In the first session he was interested in looking at network traffic data. He

was interested in using SSE’s ability to identify and rank shapes to find anomalous

behavior in network traffic. It was his belief that spikes and rises could be associ-
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ated with particular network events like botnet denial of service (DoS) attacks and

sustained traffic increases, respectively.

The IP traffic data set consisted of a year of connection data for a specific

set of IP addresses. The data were organized to show the number of connections

by each IP address over twenty four hour periods. This data set was loaded into

TimeSearcher SSE. The data set was very sparse; a particular IP often only visited

once or twice per day. TimeSearcher SSE enabled the user to find several spikes,

but none of the them were of any interest to the analyst. After using the tool for

an hour and not getting the results he expected, he expressed the idea that the tool

was better suited for X-ray diffraction data and/or spectroscopic data, which he had

dealt with in a position earlier in his career.

6.2 X-Ray Diffraction

The user was a former research physicist specializing in non-destructive testing

for explosives detection in aviation security. The user had 5 years experience in

computed tomography and X-ray diffraction, both angular and energy dispersive. X-

ray diffraction was used for materials identification and materials research; spectrum

matching was accomplished using intensity peak heights and location. Typically

JADE, software for powder diffraction data analysis, is used to match peak heights

with angular positions. In angular dispersive X-ray diffraction (ADXRD) peaks

are very sharp as opposed to energy dispersive X-ray diffraction (EDXRD), where

peaks are much broader. In EDXRD it is much harder to correctly identify materials,
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but the technique is much faster for data acquisition. It is his opinion that shape

detection could be used to improve material identification via X-ray diffraction and

in other areas of spectroscopic techniques.

6.2.1 Session 2

In the second session, the user explored a second data set that consisted of

several X-ray diffraction samples. X-ray diffraction is used to observe properties

of materials, such as their chemical composition or a specific physical property by

shining an x-ray beam on a material across a range of angles and measuring the

scattered intensity of the x-ray as a function of the incident and scattered angle,

polarization, and wavelength. The intensity readings produced by this process can

be used as a fingerprint for a material. The fingerprint consists of intensity readings

at various angles. For example, the element copper (Cu) may produce high intensity

readings at angles 19.65, 23.0, and 33.5. Similarly, materials containing copper such

as covellite (CuS) would produce high intensity readings at similar angles. Current

techniques attempt to match the angular position and peak height of a known

material with an unknown material. For example, Figure 6.1 contains the graphs

of three materials containing iron (Fe). Each graph shows the angular positions

30 – 35. Each material has a peak between positions 33 – 34.5. A hypothesis can

be formed that these peaks were created by the presence of Fe in the material.

The goal of this case session of the case study was to load the X-ray diffraction

data into TimeSearcher SSE and see if a common material could be identified. The
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identification of a common material would be similar to the process of identifying a

component in an unknown material.

The data were obtained from an online database[22], because the user had no

access to an apparatus performing the X-ray diffraction process. Three materials

having at least one element in common were chosen. The materials were Arsenopy-

rite (FeAsS), Berthierite (FeSb2S4), and Awaruite (Ni3Fe), which all contain Fe.

Each sample contained approximately 8500 intensity readings over a large range of

angles . Each of the samples was obtained from a different source, and the X-ray

diffraction data was taken by a different machine. This was representative of an

actual scenario, but caused several problems.

TimeSearcher SSE was not designed to handle such a large number of time

points in a single time series, so each sample was divided into 85 separate samples

with 100 time points in each sample. Each file contained a set of angular positions.

The raw data values were used to maintain the integrity of the data. The data values

could have been averaged to reduce the size of data set. Splitting the sample caused

a problem that limited TimeSearcher SSE’s effectiveness. The effectiveness of its

dynamic sliders was reduced because the angular positions were spread over several

files. Therefore, the user was unable to query the shapes based on their angular

position. This was complicated by the fact that the samples were acquired from

different machines. The machines that perform the X-ray diffraction process are

very sensitive and have to be calibrated to perform optimally. Different machines

may produce spikes at different positions based on their calibration. Splitting the

data into multiple time series eliminated TimeSearcher SSE’s ability to identify some
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spikes, because the spikes were spread over multiple time series. Figure 6.2 is an

example of a spike that spans two time series. It also limited the user’s ability to

match the angular position with the spike.

In spite of the problems, the user was still able to identify some spikes with

matching intensities and angular positions. By experimenting with spikes containing

varying number of points, the user was able to see that Arsenopyrite and Berthierite

both had spikes at angular position 33 and 34, respectively. A ten point spike

definition was used and the results were ranked according to their angular height.

The Arsenopyrite and Berthierite spikes were ranked consecutively with normalized

values of 97.00 and 97.34, respectively, as shown in Figure 6.3. The third material,

Awarite, did not have a spike ranked at the 33rd or 34th angular positions. But using

an eight point spike definition ranked according to the angular height, Awarite and

Arsenopyrite appear in the ranking window close together. The angular height of

Awarite’s spike at position 33 has a normalized value of 98.3, and the Arsenopyrite

has a value of 96.3, as shown in Figures 6.4. Although a definition and ranking

metric that ranked the spikes in similar position for all three materials together was

not found, a correlation could be drawn from the results. However, the user was not

satisfied with these results, and based on his experience the user suggested a more

controlled data set, which was used in the third session.
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6.2.2 Session 3

In the third session, a data set was created based on the criteria given by

the user; all samples should come from the same machine and silicon should be a

common element in all of the materials. The same machine criteria is based on

the possibility that variations in spike position and intensity may be caused by

differences in machine calibrations. The second criteria stating all samples should

contain silicon is due to silicon’s well known properties. In fact, silicon is commonly

used as a calibration element because it produces a set of well defined peaks at

known locations. The only material data available meeting these criteria was for

Cristobalite (SO2), Forsterite (Mg2SiO4), and Opal (SiO2nH2O), Figure 6.5. First,

the data set was explored with no guidance and no discoveries were made. After

identifying the positions of interest, 21-22, from the graphs of the raw data, the times

containing the angular positions of 21 through 22 were examined. The Cristobalite

spiked in the 21 – 22 position range, but the spike spanned two time series, Figure

6.2. Forsterite and Opal also spike within that range, but the spikes were not similar

by any metric supported by TimeSearcher SSE.

6.2.3 Session 4

ADXRD is a very precise technique, but has drawbacks in sample preparation

and time. Therefore, the user suggested loading infrared (IR) diffraction data into

TimeSearcher SSE because he felt it would represent a more accurate portrayal of

the type of data typical of EDXRD. Spikes in the IR data are broader and the
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data were less noisy. In past work, research has shown that a properly calibrated

ADXRD data generally produced very sharp peaks, and depending on the angular

step, could produce high noise if not properly calibrated and then normalized. Based

on the fact that ADXRD data are noisy, the user believed that the IR data more

accurately depicted data in fields of study where he thought shape detection would

be beneficial. IR diffraction data was collected for Anhydrite (CaSO4) and Baryte

(BaSO4) , Figure 6.6. Spikes at similar wavelength with similar intensities were

identified in each material, as shown in Figure 6.7. The spikes had normalized

values of 99.97 in both the Anhydrite and Baryte samples.

Two additional features were implemented during the case study to help the

user more easily navigate the data sets, and the user suggested an improvement to

the overall usability of the tool. The first problem the user encountered was that

the shape definitions supported by TimeSearcher SSE did not fit the data set. Each

of the data sets were very large, and each sample consisted of 8500 data points.

Spikes sometimes consist of 20 or more points. However, the large spike definition

supported by the tool was only seven points. To make the spike identification with

the tool more flexible multiple point parametrized spike definitions were added to

the interface. The second problem was that many of the shapes that were identified

were only slight variations of the small set of points. For example, two seven point

spikes in the same time series that differ by one point would be identified and have a

similar ranking. This would create clutter and obscure the interesting shapes. This

problem was corrected by choosing the shape with ranking value and removing all

overlapping shapes.
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The user also offered two suggestions that he believed would make the tool

more useful. First, he thought the interface was too rigid and did not allow hime

to use shape identification and ranking features the way he would like. A design

for a new interface is discussed in Chapter 9. He also suggested that resolution

of the data be considered when calculating shapes. This is an interesting point;

the resolution is currently hidden with shape definitions, but it might simplify the

definition if the resolution of the shapes was exposed as an attribute. Ideas about

adjusting the resolution of data sets are explored in Berry et al. BinX, information

visualization tool[5]. Incorporating ideas about resolution and shape identification

will be left for future work.
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Figure 6.1: These graphs show raw powder X-ray diffraction data for Arsenopyrite (Fe-

AsS), Berthierite (FeSb2S4), and Awaruite (Ni3Fe). Each graph shows the intensity values

for angular positions 30 – 35, while their upper left corners show the intensity readings

for angular positions 5 – 85. Each of the samples contains Fe. The spikes around angu-

lar positions 33 and 34 might be caused by Fe. TimeSearcher SSE was used to attempt

to identify this spike and others while exploring the data that was used to create these

graphs.
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Figure 6.2: The X-ray diffraction data for a single sample was too large to read directly

into TimeSearcher SSE, so the data were split into multiple time series causing some spikes

to be split. The red square indicate the points at which the spike was split. The split

spike could not be identified by TimeSearcher SSE.
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Figure 6.3: The user in the case study was able to identify spikes in Beritherite and

Arsenopyrite at similar angular positions with TimeSearcher SSE. The top two graphs

show the matched spikes. The element name and range of angular positions are in the

upper left corner. TimeSearcher SSE was loaded with raw powder X-ray diffraction data

for Beritherite, Awarite, and Arsenopyrite, materials all containing Fe. A ten point spike

ranked according to its angular height was used, to identify these spikes. The angular

height value is squared in red in the ranking window. This discovery indicates that spikes

at this position may be caused by the presence of Fe in the materials.
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Figure 6.4: The user in the case study was able to identify spikes in Awarite and Ar-

senopyrite at similar angular positions with TimeSearcher SSE. The first and third graphs

show the similar spikes. The material name and range of angular positions are located

in the upper left corner of the graph. TimeSearcher SSE was loaded with raw powder

X-ray diffraction data for Beritherite, Awarite, and Arsenopyrite, material all containing

Fe. An eight point spike ranked according to its angular height was used to identify these

spikes. The angular height value is squared in red in the ranking window. This discovery

indicates that spikes at this position may be caused by the presence of Fe in the materials.
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Figure 6.5: These are the graphs for the materials containing silicon,Cristobalite (SO2),

Forsterite (Mg2SiO4), and Opal (SiO2nH2O). The graphs display the angular positions 20

– 25. Each sample shares a common spike in the 22 – 23 angular position range. The

upper left corner shows all the intensity readings for angular positions 5 – 85. The red

square indicates where the enlarged graph came from.
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Figure 6.6: The graphs show the infrared (IR) spectroscopy data for two materials,

Anhydrite (CaSO4) and Baryte (BaSO4, which contain sulfur, S. The data has two really

clean spikes, and the data set does not contain much noise.
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Figure 6.7: TimeSearcher SSE was loaded with infrared spectroscopy data for Anhydrite

(CaSO4) and Baryte (BaSO4). A user was attempting to identify spikes with similar

intensity at the same wavelength. The user was able to do this with a sixteen point spike

ranked according to its angular height. The values of the ranking metrics are shown in

the ranking window inside the red square.
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Chapter 7

Other Examples of Shape Search

7.1 Overview

In addition to the case study described in Chapter 6 their are several other

examples of shape search being used to perform analysis on several data sets. Before

TimeSearcher SSE, many of the ideas about shape identification and ranking were

explored through a class project called FeatureLens[10]. FeatureLens is a web based

information visualization tool with the ability to do shape search as well many other

things. FeatureLens was used by several people to explore word usage in the book,

The Making of Americans, and the State of the Union Addresses George W. Bush

gave during his presidency. TimeSearcher SSE was also used by the developers of

the tool to explore the history of the Human and Computer Interaction (HCI) field

through a database of the key words and abstracts of published papers over the past

40 years. Below are examples of the discoveries made using search in FeatureLens

and TimeSearcher SSE.

7.2 FeatureLens

FeatureLens, shown in Figure 7.1, was originally designed for literary analysis.

Tanya Clement, a doctoral student in the University of Maryland English Depart-
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Figure 7.1: FeatureLens. The left panel contains a set of controls used to search for a

shape within the collection. When a button is selected, the ranked shapes appear in a

list below the button panel. The center panel shows the distribution of frequency of a

particular word or n-gram across the collection. The right panel shows one occurrence of

a word or n-gram in the context where it appears in the text.

ment, was the primary user of FeatureLens. She was also very influential in the

design of FeatureLens. Her work deals with the study of The Making of Americans

by Gertrude Stein, which consists of 517,207 words - 5,329 of them unique. In com-

parison, Herman Melville’s Moby Dick consists of only 220,254 word - 14,512 of them

unique. Stein’s extensive use of repetitions renders The Making of Americans one

of the most difficult books to read and interpret. Literary scholars are developing

interpretive hypotheses about the purpose of this text’s repetitions. Using Feature-

Lens for this analysis provides invaluable insights to the benefits and limitations of
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FeatureLens and shape identification and ranking. The tool allowed the user to find

new ideas, appearing in a random manner across the book, which were meaning-

ful to someone who is acquainted with the book. One of the findings that shape

identification allowed is depicted in Figure 7.1. It showed that the chapters associ-

ated with domestic terms were also the ones where the only female child appeared,

whereas these terms did not appear in the chapters associated with the other two

male children. The tool also allowed the discovery of the usage of the concepts of

failure and success in the book, which appeared not to be associated with business

but with marriage. This is shown by the n-grams, “succeeding in living,” “failing in

living,” “very rich American,” and “married”, all having spikes in Chapter 5 that

are highly ranked.

Figure 7.2: Examples of decreasing slope from The Making of Americans. The decreasing

trend suggests that as the book progress the topic of family decreases.

Figure 7.2 shows several n-grams whose time series contain decreasing lines

from The Making of Americans. The n-grams are “husband,” “wife,” “father,”

“mother,” and “children.” All these terms refer to family, so the conclusion was

made that the family diminishes as a topic as the book progresses. These terms
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were found by ranking decreasing line shapes by their slope.

In addition to performing analysis on the Making of Americans book Feature-

Lens was used to analyze the State of the Union addresses that were given during

George W. Bush’s presidency. A study was conducted with eight participants, who

had an advanced degree or were pursuing an advanced degree. As they used the

tool they were asked to comment aloud. The study consisted of a fact finding ses-

sion where the users were asked to answer specific questions using the FeatureLens

tool and a free exploration session. The fact finding session was focused on making

sure the users were able to use the tool and understood the different portions of

the screen. The interesting results came when the users were able to freely explore

the data set. They were able to find several trends using the shape search feature

of FeatureLens. Figure 7.3 shows a steady usage of the words, budget, citizens,

america, and world. Figure 7.4 show a spike in the usage of freedom, good, war,

and terror in 2002. This is likely due to the start of the war on terrorism following

9/11.

Although FeatureLens is not as robust as TimeSearcher SSE, a user was able to

use the tool’s shape identification and ranking ability to make analytical discoveries

in a temporal data set of interest. The ranking feature was used to identify n-grams

that had similar shapes; upon further inspection, the n-grams were found to be

related.
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Figure 7.3: This figure shows the word who usage remained constant throughout all of

the State of the Union addresses given by George W. Bush. The frequency of the usage of

the words, “budget”, “citizens”, “america”, and “world” remained constant throughout

George W. Bush’s presidency.

Figure 7.4: This figure shows a correlated spike in the usage of the words, “good”,

“freedom”, “war”, and “terror” following the terrorist attacks that occur September 11,

2001.

7.3 TimeSearcher SSE

As TimeSearcher SSE was being developed different data sets were loaded into

the tool to test its functionality. As the data sets were explored some interesting

discoveries were made. One of the data sets contained the frequency of occurrences of

“interesting” words in the abstracts of published papers in the Human and Computer
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Interaction (HCI) field over the last 40 years. This data was obtained by crawling

the HCI bibliography website, http://hcibib.org. An interesting discovery was made

while exploring this data set. In 2003 there was a significant relative spike in the

use of the word “universal” as shown in Figure 7.5. It was weird that a topic would

occur frequently and then practically disappear. Upon further inspection it was

determine that most of the abstracts were from the journal Universal Access in the

Information Society which published over 300 papers that year, more than 250 more

than any other year. Figure 7.6 shows the increasing trend of abstracts containing

the word “web.”

Figure 7.5: This figure shows a TimeSearcher SSE plot of the number of abstracts that

contain the word “universal.” The spike was caused by collecting data from the Human

and Computer Interaction International conference is that was only collected that year.

TimeSearcher SSE is well suited for finding anomalies in data.

Figure 7.6: This figure shows an increase in HCI papers relating to the web.
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Chapter 7

Future Work

Extending TimeSearcher 1 to create TimeSearcher SSE allowed for quick pro-

totyping of a tool capable of exploring different types of definitions of shapes and

ranking them according to a metric of interest. But the tool was not meant for shape

identification and ranking, so the ability to dynamically define and rank shapes is

not present. Figure 7.1 shows a mock up of an interface very similar to TimeSearcher

1, but it is better suited for shape defining, ranking, and helping users to explore

shapes and their definitions, more intuitively. The proposed interface will be able

to adhere more closely to the information visualization mantra of “overview first,

zoom and filter, then details-on-demand[25].”

The interface contains four primary windows, as shown in Figure 7.1. The

ranking window on the right side of the screen and the shapes window on the

lower left side are identical to the windows in TimeSearcher SSE. The definition

and ranking metrics windows are new, allowing users to dynamically define shapes

of interest and choose the metrics by which the shapes are ranked. The shape

definition window is located in the top left hand corner, and the ranking metric

selection window is located in the top center. The ranking metric window allows the

user to select how the shape will be ranked. The upper portion of this window will

display a simple text definition for the ranking metric. The attribute or attributes
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Figure 7.1: A mock up of a new interface for dynamically creating shape definition.

that are measured by the ranking metric are highlighted in blue on the shape in the

shape definition window.

The shape definition window is the primary window in the interface. It allows

the user to dynamically define a particular shape of interest. This is important

because users may not know exactly what behavior they are interested in or may not

understand the attributes associated with a particular shape. The shape definition

window allows a user to explore the shape’s attributes by directly manipulating the

shape and dynamically creating definitions. The definitions are created by dragging

the open circles to define ranges of values that a particular attribute can take on.

Figure 7.2 shows three examples of the shape definition window, in addition to the

window shown in Figure 7.1.
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Figure 7.2: These are three examples of how a shape’s definition can be dynamically

created. Figure A is a spike shape. The red box indicates the values that the height and

slope attributes can take. The black dots indicate that the shape is a 13 point spike. The

blue rectangle in the center of the spike indicates that the spike will be ranked according

to its height. Figure B is a multiple point increasing line with a range of values for the

slope and length attributes, as indicated by the red triangle and dots. The blue rectangle

across the bottom indicates this shape will be ranked according to its length. Finally,

Figure C shows a rise shape. The number of points in the stable periods is shown by the

black dots. The red transparent rectangles constrain the values of the stable and change

periods, and the blue rhombus identifies the slope as the ranking metric.

The shape definition window in Figure 7.1 shows a spike shape. The transpar-

ent quarter circle indicates that the identified shapes are ranked according to the

angular height. The red transparent spike shape defines a range of values that several

attributes can take. The slope, length, and angular height are all constrained. Some

attributes may change independently of the others, while other attributes directly

affect each other. For example, dragging the left bottom edge between open circles

along the slope (as shown by arrow A in Figure 7.3) will increase length, without
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Figure 7.3: This is an example of how a spike shape can be manipulated to dynamically

create shape definitions.

changing the range of slope values. On the other hand, dragging the open circle on

the left side of the bottom left edge to the right (as shown by arrow B in Figure

7.3) will change the ranges for the length and slope attributes. By dragging the

open circles and the edges between the circles, shape definitions can be dynamically

created and shapes within the data set explored.

Figure 7.2 has three shape definitions. Figure 7.2A shows a six point spike with

no defined value ranges for the slope and angle. The shapes are ranked according

to the height. The transparent blue box in the center gives no indication of how

the height will be measured, only that it will be measured. The ranking metric

selection window shows how the height will be measured. The same is true for the

slope. The user will specify a slope definition through a preferences menu. Figure

7.2B shows an increasing line of variable length and slope that is ranked according

to the length. Figure 7.2C is a rise shape with stable periods containing five time

points and a change period of two points. The range of values for each attribute

is specified by the red transparent box. The rise shape in Figure 7.2C is ranked
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according to its slope.
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Chapter 9

Conclusion

In this thesis, a set of common shapes were examined and their attributes

defined. Each shape defines a behavior; the attributes define an aspect of that

behavior. The attributes provide an expressive way of defining a shape. By ranking

the shapes according to an attribute of interest, users can tailor the results of the

shape identification process to the shapes that interest them. Lines, spikes, sinks,

rises, drops, plateaus, valleys, and gaps where discussed.

Research has examined useful ways of defining and identifying shapes, as well

as evaluating the usefulness. SDL provides an expressive language for describing

shapes; TimeSearcher 1 and 2 perform shape definition and identification via graph-

ical widgets. They are both powerful in their own right, but they do not help users

to understand how the identified shapes relate to the original definition, nor how

they compare to each other. Pattern discovery provides a starting point to under-

standing how a shape can be evaluated and compared to other shapes. This thesis

presented ideas that combine shape definition and evaluation, by examining the

attributes that characterize a shape.

Lines are simple shapes that consist of a set of line segments. Lines are used to

describe a consistent behavior. The attributes associated with line shapes are slope

and length. Slope is the measurement of the general direction values are going. For
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example, increasing values would be indicated by a positive slope and decreasing

values by a negative slope. The length of a line shape is a measurement of the

duration of the behavior

A spike or sink suggests a significant, but temporary change in value. Three

height attributes for spikes and sinks were identified. Angular height identifies

how much the values changed in each direction, while relative height measures how

different the behavior is from the rest of the points in the time series. In addition

to the height attributes, the slope of edges that make up spike or sink shapes are

attributes that measure the rate of change. The absolute height is the value of the

peak point. The number of points identifies the duration of the spikes.

Rises and drops identify a sustained change in value. These shapes consist

of three periods: a leading stable period, a period of change, and a trailing stable

period. The stable periods can be characterized by the attributes of average value,

while the period of change is described by its slope. Both of the periods share a

common attribute of length, which is a measurement of the duration of the shape.

Plateaus, valleys, and gaps consist of five distinct periods, three stable periods,

and two periods of change. The leading stable period is followed by departing period

of change. The intermediate stable period separates these shapes from spikes and

sinks. The intermediate stable period is followed by the returning period of change

and the trailing stable period. The attributes that were identified for drops and rises

are the same for plateaus, valleys, and gaps, except they have a different meaning. In

addition to those attributes, differences in the average value of the leading and/or

trailing period and the intermediate period may be used to identify a shape of
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interest.

Examples of these shape definitions were incorporated into TimeSearcher to

create TimeSearcher SSE. Several attributes were chosen to rank the shapes identi-

fied by TimeSearcher SSE. A case study was used to understand the usefulness of

TimeSearcher SSE and its method of shape identification and ranking, as well as its

limitations. A researcher used the tool to identify spikes of the same intensities and

angular position in X-ray diffraction data. The tool successfully performed the task

in one of the data sets, but it was limited by inflexibility in the other tasks.

The user case study pointed out some limitations of the TimeSearcher SSE

interface that prevent exploration of the true power of this method of shape iden-

tification and ranking. To overcome these limitations, this thesis put forth a new

unique interface to allow users to dynamically create shape definitions and rank the

identified shapes according to an attribute of their choice.
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