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The emergence of Fused Deposition Modeling as a small volume manufacturing 

process and a lack of explicit rules for improving the efficiency of this process bring 

necessity to the development of build guidelines.  This work develops a proposed set 

of build guidelines for use in Fused Deposition Modeling (FDM).  The guidelines are 

verified by the literature and experience, and validated by statistical analysis of 

quantitative FDM build data and qualitative review of example cases from student 

projects.  The experimental data are obtained using the fabrication protocol for a 

Dimension SST Fused Deposition Modeling machine. Using simulation software 

known as Catalyst™, build time and material volume characteristics of many 

components of varying size and complexity were calculated.  Eventually, this area of 

research should result in a robust set of rules that can fundamentally reduce the costs 



  

associated with FDM and can assist its ascent as a feasible full-scale manufacturing 

process. 
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Nomenclature 

• Build Time- The amount of time (in minutes) it takes for the FDM machine to 

build a given component. 

• Component- A part whose design was used in this research. 

• Guideline- A proposed rule that is intended to improve a component for 

manufacture if applied by the designer. 

• Example Case- A design project from the junior-level (ENME 371) or senior-

level (ENME 472) design courses that was examined in this research. 

• Fused Deposition Modeling (FDM)- A layered manufacturing process that 

extrudes a thin thermoplastic filament to build a three-dimensional component 

layer-by-layer. 

• File- A computer file in *.STL format that is used by Catalyst™ to generate 

toolpaths for the Fused Deposition Modeling machine to follow to create a 

specific part or part assembly.  Can be generated from most CAD packages. 

• Machine- Used colloquially in this document to refer to the Fused Deposition 

Modeling machine itself. 

• Material Volume- The amount of ABS and support material combined (in 

cubic inches) used by the FDM machine to manufacture a given component. 

• Repository- The database compiled for this research that includes part files 

(in both CAD and .STL formats).  Contains 65 components. 
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• Simulated Build- The simulation of the manufacture of a given component 

by FDM.  This build is generated using Catalyst™ and gives the user various 

statistics related to the manufacture, such as build time and material volume. 
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Chapter 1: Introduction 

1.1 Overview 

Fused Deposition Modeling (FDM) is a manufacturing process that is becoming 

rapidly adapted for use in a wide variety of applications.  Since its commercialization 

in 1990 by Stratasys, Inc., FDM has been a popular process for rapid prototyping due 

to its relatively low associate costs.  In 2008, Stratasys manufactured 44% of all 

layered manufacturing systems installed worldwide, making it the market leader (1).  

Other popular rapid prototyping technologies include Stereolithography, Selective 

Laser Sintering, and Electron Beam Melting.  As improvements in both material 

properties and part accuracy are made, FDM is becoming a viable method for small 

batch manufacturing and FDM eliminates the need for permanent (or investment) 

tooling costs for production.  NASA has even placed an FDM machine in the 

International Space Station for use of making spare parts (2). 

One such company employing FDM in this manner is Stratasys’ own RedEye.  

This facility operates over 100 Fused Deposition Modeling machines (or Fused 

Deposition Modelers) for the sole purpose of Direct Digital Manufacturing (DDM).  

DDM is a new, Internet-enabled manufacturing paradigm that allows users to convert 

digital files to finished parts using a layered manufacturing process with no tooling.  

Because of the digital nature of the build files, a designer can send it electronically to 

a fabrication facility anywhere in the world instantly for manufacture.  This flexibility 

and agility can be extremely desirable to the designer. 
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Improvements in material quality and cost allow FDM to replace standard 

manufacturing processes for small lot productions, highly complex parts, or 

components that require varying levels of customization (3).  RedEye is now at the 

forefront of developing the newest materials and technologies in DDM, becoming the 

first company to employ the use of ULTEM plastic in DDM (4).  ULTEM 

(Polyetherimide) is a plastic material with considerably strong mechanical properties 

(tensile strength of 475 kpsi) that can operate at temperatures up to 200 degrees 

Celsius.  In this research, all studies were conducted with ABS plastic as the build 

material. 

Stratasys has recently introduced the uPrint™ to make FDM technology more 

affordable for small organizations and in educational settings.  This machine operates 

on the same FDM principles as other Stratasys machines, but can be available for 

purchase at under $15,000, due to its smaller build capacity.  This increases the 

market size for FDM technology and will provide Stratasys with new categories of 

users and customers. 

In its earliest use, prototyping, FDM was advantageous over other 

manufacturing technologies because of its short build time, ease of use, and low cost.  

In addition to this, the nature of rapid prototyping leads to only one or several parts 

built in each batch or each design iteration.  This is fundamentally different from a 

standard manufacturing process, like injection molding, where many identical 

components are built for mass distribution or sale.  As FDM replaces mature 

manufacturing technologies in an increasing number of applications, cost and build 

time become critical factors in process selection. 
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1.2 Need for Guidelines for FDM 

A shift to a new manufacturing process is followed by a lag in time during 

which design engineers and manufacturing engineers discover how to process and 

design components to take full advantage of the new capabilities.  Mature 

manufacturing processes that have been established for long periods of time have 

well-defined, standard design for manufacturing (DFM) guidelines.  However, no 

such list of standard DFM rules has been generated for FDM.  This interesting gap for 

DFM guidelines is due to several factors.  First, this technology is relatively new, 

having been commercial for less than twenty years.  Compared to a more established 

process like screw injection molding (developed in 1946), FDM has been in existence 

for a far shorter period of time.  Perhaps equally illuminating is the fact that FDM 

was not initially developed as a standard manufacturing process.  Because of its use 

as a prototyping method, there was not a need to “improve” a design for more 

efficient production with respect to reducing build time and cost.  Prototyping is 

typically driven by convenience and flexibility, not by cost.  The need for reducing 

cost and build time is becoming more established as more designers begin to consider 

FDM as a manufacturing method for some plastic components.  As compatibility with 

other engineering materials is achieved with layered-manufacturing processes, their 

use as full-scale manufacturing methods becomes increasingly viable. 

Another factor contributing to the current lack of design guidelines for FDM is 

its design flexibility.  DFM guidelines for various processes stem from manufacturing 

infeasibility issues in the original engineering designs.  Unlike competing 
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manufacturing methods, FDM does not have process limitations that prevent making 

features such as overhangs or undercuts.  Because there are few physical limitations 

to the FDM process and a large amount of design flexibility is available to the 

designer, the need for DFM rules is not driven by the need to ensure manufacturing 

feasibility.  As such, it is necessary to intentionally develop any guidelines based on 

universal improvement metrics such as build time and cost. 

Many studies have been conducted with respect to general improvement of 

rapid prototyping technologies.  There are four major performance criteria used to 

evaluate FDM processes.  They are strength, accuracy, build time, and build cost, 

where build cost is determined primarily by material required for the build and time 

to build the part in question.  Improving the methods by which to select a rapid 

prototyping process is one area of existing research (5).  Another area of current 

research seeks to improve physical qualities of products manufactured using rapid 

prototyping.  Additional research has examined how to alter the design of large 

components (those exceeding the machine’s capacity) for rapid prototyping feasibility 

(6).  These characteristics include surface texture and geometric tolerance (7, 8).  

Further examination of these existing studies will be discussed in Chapter 2. 

Most research in FDM has focused on the issues of the fabrication process 

itself.  Only a few studies have looked to generate a set of design guidelines 

specifically applicable to FDM.  The shortcomings of these studies will also be 

examined in Chapter 2.  Research aimed to create design guidelines has generally 

focused on creating guidelines that improve the performance or tolerance of the 

finished product (9).  In contrast, the goal of this thesis research is to examine DFM 
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guidelines for FDM from the perspective of reducing cost and materials.  This work 

will also demonstrate the ability to measure guideline effectiveness in a quantitative 

and statistical manner.  In these areas specifically, this research is unique. 

The emergence of FDM as a small volume manufacturing process (1000 units 

or less) and a lack of explicit rules for improving the efficiency of this process bring 

necessity to the development of design guidelines.  To develop such a set of 

guidelines, candidate rules needed to be generated.  Each candidate guideline can then 

be tested to determine its impact on important performance metrics such as build time 

and cost.  By analyzing this data and comparing it with baseline performance, one can 

determine which guidelines may be suitable for adoption. 

It should be noted that software packages have been developed for improving 

layered manufacturing process settings.  These packages are not sold with FDM 

machines directly and tend to be costly.  It is still useful to establish potential 

guidelines because doing so could prevent the designer from purchasing this third-

party software.  Empirical development and analysis of guidelines is also valuable so 

that the process of establishing guidelines can be understood and used by practitioners 

as FDM processes improve without reliance on build improvement software.  This is 

further discussed in Chapter 4. 

 

1.3 Research Questions 

This study will answer three specific research questions.  In an overall attempt 

to improve the design of components for manufacture by Fused Deposition Modeling, 

the following three critical research questions were identified: 
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1. What are the most critical metrics associated with Fused Deposition 

Modeling that directly dictate the feasibility of its use as a small-volume 

manufacturing process? 

 

2. What guidelines or rules can be applied to all varieties of components to 

improve the defined metrics in a statistically significant manner? 

 

3. Of the guidelines that significantly improve the defined metrics, which 

guidelines can be implemented without changing the functionality of the 

component? 

 

The thesis is structured to ensure that these issues are addressed directly. 

 

1.4 Organization of Thesis 

This thesis begins with a discussion of existing literature with respect to Fused 

Deposition Modeling.  Chapter 2 includes discussion on the development of the 

technology, research aiming to improve the technology, and the development of 

design guidelines for various layered manufacturing technologies.  Additionally, 

Chapter 2 also discusses an overview of Design for Manufacturing (DFM) guidelines 

generated for any manufacturing process.  A background of existing research on 
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generating DFM guidelines for FDM and other layered manufacturing processes is 

included in this chapter. 

The methodology of the entire study is described in depth in Chapter 3.  This 

includes a discussion on the generation of the component repository, development of 

the proposed guidelines, and a presentation of the methods used conducting both the 

quantitative simulations and the qualitative case examinations.  Chapter 4 discusses 

the development of the candidate guidelines. 

From Chapter 5 and forward, an in-depth description of the quantitative portion 

of the research is presented.  Chapter 5 includes a discussion on how the candidate 

guidelines were applied to each of the items in the repository, how simulations were 

conducted, what data were collected, and how a statistical analysis was completed.  

This section also includes an initial correlation study.  Chapter 6 presents a discussion 

on the qualitative example cases.  This includes an explanation of how information on 

various design projects was collected and how this information was analyzed.  

Chapter 7 summarizes the results of both the quantitative and qualitative aspects of 

the research.  Chapter 8 is a conclusion that outlines the overall results of the research 

endeavor.  This chapter also includes a presentation of areas of future work. 
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Chapter 2: FDM Process Description and Background 
 

It is important to describe the fundamental operation of Fused Deposition 

Modeling (FDM) technology in order to discuss the application of guidelines to 

FDM. This includes both the physical operations of the equipment and the simulation 

software that prepares builds and provides the user with relevant build data.  Section 

2.1 discusses the background and operation of FDM along with an overview of the 

purpose of the companion Catalyst™ software and the useful information it produces.  

Full FDM process details from part design to manufacture are given at the end of this 

section 

Section 2.2 gives an overview of DFM guidelines in general, discussing how 

they are developed for any manufacturing process and their usefulness to designers.  

Section 2.3 provides an overview of existing research related to the development of 

DFM guidelines for FDM and other emerging manufacturing technologies.  This 

section also describes the gap in the literature and where this study contributes to the 

field. 

 

2.1 Description of FDM Process and Simulation 

2.1.1 Fused Deposition Modeling 

 
Fused Deposition Modeling was commercialized by Stratasys Inc. in 1990.  The 

process is a layered manufacturing technology that builds components using a 

thermoplastic material.  Specifically, a thermoplastic filament is drawn into an 
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extrusion head that heats the material just past its glass transition temperature.  The 

material is extruded onto the work surface in which an initial two-dimensional cross-

section is created by movement of the filament relative to the horizontal platform.  

Due to the material’s temperature (set to a level just above glass transition) it 

solidifies instantly upon contact with the work piece.  As the first two-dimensional 

cross-section is completed, the work piece (mounted on a platform that translates in 

the z-direction) shifts down a distance equal to the thickness of the first layer.  The 

material laying process repeats as the second layer is deposited.  The stacking of these 

layers eventually results in a solid, three-dimensional object (10).  The machine 

diagram of an FDM machine can be seen in Figure 1.  Figure 2 holds an image of the 

Stratasys Dimension FDM machine from the Product Innovation and Realization 

Laboratory Suite (PIRLS).  The connection between PIRLS and this research is 

described in Chapter 3. 

 

 

Figure 1.  FDM Process Diagram (11) 
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Figure 2.  Interior of Stratasys Dimension (Note build platform in 

foreground and extrusion head at top right) 

 

The ability to create overhanging or hollow features using FDM is based on the 

process of using a second support material.  Because the material is extruded from the 

nozzle in a semi-solid state, it must be placed directly upon a preceding layer.  For 

overhangs or hollow features, these underlying layers are built with a secondary, 

water-soluble material that will be removed during post-processing.  These support 

structures are removed after the build is complete using either a chemical bath (using 

sodium hydroxide and water in an ultrasonic bath, to facilitate the support removal 

process) or through physical removal by hand, resulting in the desired final structure.  

If supports are removed by hand, some material may not always be removable, as is 

the case with certain hollow features.  Figure 3 demonstrates the concept of support 

structures.  Figure 4 shows an actual component built in a Stratasys Dimension 

machine with support structures intact. 

Extrusion 
Head 

Build 
Platform 



 

 11 
 

 

 

Figure 3.  Support Structures (modified from 11) 

 

 

Figure 4.  Support Structures on Actual Component 

 

2.1.2 Catalyst™ Software 

Catalyst™ is the standard software that is packaged with Stratasys FDM 

machines.  Developed by Stratasys, this software has several functions.  Primarily, 

this software takes the .STL file of a part or parts (generated from most CAD 

Support 
Material 

Build 
Platform 
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packages) and converts it to a .CMB file.  In this conversion, the software takes the 

three-dimensional structure from the .STL file and slices it into two-dimensional 

cross-sections.  These cross sections are offset from each other in the z-direction by a 

distance equal to that of the thickness of each layer deposited by the machine.  A 

visualization of this process can be seen in Figures 5 and 6. 

 

 

Figure 5.  .STL File Represented in Catalyst™ 

 

 

Figure 6.  .CMB File Showing Cross-sectional Slices (note support material on 

bottom) 
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After this transition from three-dimensional model to a series of two-

dimensional cross-sections, Catalyst™ generates the toolpaths which the extrusion 

head will follow to build the component.  Catalyst™ is able to determine where 

support material is needed to support hollow features or overhangs.  This is done 

without any input from the user.  The user has considerable input into the build 

settings, such as part orientation and layer thickness.  Altering these settings will 

result in a different toolpath that is sent to the FDM machine. 

Catalyst™ not only creates the .CMB file to be sent to the machine, but can also 

provide the user with build data.  This includes, but is not limited to, estimated build 

time and material usage estimates (both model and support).  By accessing the build 

file, the user can obtain these data.  The information that these data provide will be 

critical in quantitatively denoting improvement (or lack thereof) during the testing of 

the candidate guidelines. 

 

2.1.3 FDM Process Description 

 To fully understand the FDM process, an example of a component’s 

transformation from part design to manufacture is given.  In this case, Part #28 from 

the repository created for this research is selected.  To begin, this component was 

designed in a CAD package.  Figure 7 shows this component modeled in SolidWorks. 
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Figure 7.  Part #28 from Repository Modeled in SolidWorks 

 

From this point, the .STL file is sent to Catalyst™, where the software slices 

the file and generates toolpaths.  Figure 8 shows this component after its Catalyst™ 

simulation, along with a top-view of a particular cross-section 

 

  

Figure 8.  Part #28 from Repository Simulated in Catalyst™ 

 

 With the simulation now complete, Part #28 is then sent to the Stratasys 

machine for building.  After approximately 10 hours in the machine (8.83 cubic 

ABS 
material.  
Note 45 
degree 
orientation, 
offset by 
90 degrees 
each layer 

No 
material 
present 
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inches of material), Part #28 is removed from the machine and placed in the chemical 

bath.  After dissolving the support material, the final Part #28 is complete. 

 

2.2 Background of DFM Guidelines 

 To put this research into proper context, it is important to describe the 

background of Design for Manufacturing (DFM) guidelines and why they are critical 

in improving the design of a component.  DFM focuses on altering the design of a 

component to improve its manufacturability with respect to a particular process.  

Therefore, different manufacturing processes generally have different DFM 

guidelines.  This topic received considerable attention in the 1980s as the integration 

of concurrent engineering strategies occurred within many companies (12).  DFM 

guidelines focus on both ensuring that a component can be manufactured using a 

particular process and reducing the costs and time associated with that process.   

Traditionally, DFM guidelines are empirically derived over many years of experience 

with the manufacturing process (12).  For further detail on DFM, there are many texts 

that focus on this topic (for example, 13, 14). 

 A standard set of DFM guidelines generally has applicability to most 

manufacturing processes.  Some of the guidelines generally considered to be 

universal include (12): 

• Minimize total number of parts 

• Standardize components 

• Use common parts across product lines 

• Standardize design features 
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• Aim to keep designs functional and simple 

• Design parts to be multifunctional 

• Design parts for ease of fabrication 

• Avoid excessively tight tolerances 

• Minimize secondary and finishing operations 

• Utilize the special characteristics of a process 

  

In addition to these standard guidelines, each specific manufacturing process 

tends to have a specific set of DFM guidelines.  Because of the vast number of 

manufacturing processes available, it would not be feasible to list all such sets.  

Injection molding can be used to illustrate DFM guidelines.  Entire texts are devoted 

to DFM for injection molding (for example, 15).  However, for the purposes of 

brevity the following example provides one set of DFM guidelines for injection 

molding (16): 

• Decrease maximum wall thickness 

• Create uniform wall thickness 

• Round corners 

• Inner radii should be greater than or equal to wall thickness 

• Apply draft angles to all walls parallel to parting direction 

• Add ribs for structural support perpendicular to axis of bending 

• Isolate bosses from corners and ensure thickness of no greater than 60% of 

main wall thickness 

• Minimize undercuts 
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• Minimize number of side-action directions 

• Orient threads perpendicular to parting direction 

 

One can see that many of these injection molding rules are concerned with the 

moldability of the component.  For example, the inclusion of draft angles ensures that 

the component can be ejected from the mold appropriately after cooling.  Draft angles 

would not be required if this component was machined on a milling machine. 

These guidelines help demonstrate the need for specific guidelines relevant to 

FDM.  Returning to Part #28 in the repository discussed in section 2.1.3, it is 

interesting to note how the design might have to be changed to apply DFM guidelines 

for injection molding.  In Figure 9 below, one can see that the four holes on the walls 

of the component would require side cores.  As such, one would have to redesign the 

component to eliminate these features since the tooling costs associated with the side 

cores will be higher. 

 

 

Figure 9.  Part #28 from Repository  

Holes 
requiring 
side cores 
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However, if this component was manufactured using FDM, these holes would 

not be an issue because there is no mold necessary for the FDM process.  Therefore, 

the same component (Part #28) made with the same material (ABS, for example) 

would have a completely different set of design guidelines for two different 

manufacturing processes.  As more designers choose to utilize FDM as a 

manufacturing process, the need for design guidelines specifically-applicable to FDM 

becomes increasingly apparent. 

 

2.3 Existing Research on Guidelines for FDM and other Layered Manufacturing 

Processes. 

With the need for FDM-specific design guidelines already established, it is 

necessary to examine research that has been done to develop such guidelines.  One 

area of existing research takes a fundamentally opposite approach from that discussed 

up to this point.  Rather than improve a component’s design for a particular 

manufacturing process, Peres and Martin devised a method to select the best rapid 

prototyping process based upon a given component and its desired qualities (5). 

Specifically, this work used a Quality Function Deployment (QFD) method to 

relate the main requirements desired of the manufacturing process to the processes 

themselves.  Some of the requirements included ability to create new concepts, 

simplification of communication between user and machine, integration of 

component into environment, anticipation of fabrication problems, ease of testing 

components, forming parts as patterns, and directly manufacturing molds.  The 
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technologies considered in this QFD analysis included FDM along with seven other 

rapid prototyping processes.  This study found that FDM rated the highest for its 

ability to create components for testing purposes.  Although the method created in the 

study operates in a fundamentally opposite fashion to this work, it still gives a good 

example of existing research that aims to effectively mesh a component with a 

manufacturing method. 

A majority of the other exiting studies on improving FDM focus on altering 

the design of the components themselves.  One example is the study conducted by 

Medellin (6).  The focus of that work was to improve the manufacturability of a 

component with a volume that exceeded the build capacity of the rapid prototyping 

machine with which it was intended to be manufactured.  By dividing a component 

by an array of orthogonal planes, issues arise with the strength and accuracy of those 

components.  Therefore, this study examined and noted many common problems and 

potential solutions to these problems.  Though it did not develop a universal set of 

design guidelines, this study gives a relevant example of research that aims to create 

guidelines to improve the manufacturability using a layered manufacturing process. 

A study similar to Medellin’s was conducted by Dimitrov, Schreve, Taylor, 

and Vincent (17).  Again, the aim of the research was to develop guidelines for 

improving the manufacture of components built in machines whose capacity was too 

small to build the desired part in one piece.  However, Dmitrov et al. focused 

specifically on 3D printing, a rapid prototyping process different from FDM that was 

developed by Z Corporation (18).  Their research primarily dealt with altering the 

designs to ensure strengthening of critical components and ensuring necessary 
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support structures were present.  Again, this is a relevant example of an attempt to 

create guidelines related to a process similar to FDM 

Jee and Sachs conducted a study that aimed to improve the quality of 

components build using a layered manufacturing process.  Specifically, this work 

focused on the creation of surface macro-textures (7).  These are defined as a set of 

geometric, three-dimensional features integrated onto the surface of a component.  

Some examples of surface macro-textures include fins to increase heat transfer or 

treads of a tire.  Jee and Sachs developed an automated method that examined the 

manufacturability of a given set of surface macro-textures.  However, the design rules 

generated in their study were only based on the process limitations of the 

manufacturing process itself.  For example, one design rule was to ensure that the 

component’s overall size was less than that of the machine’s capacity.  Still, this 

research gives another relevant example of previous work that aimed to define 

guidelines for application to layered manufacturing processes, including FDM.  

Sambu, Chen, and Rosen developed a method called “geometric tailoring” 

that created guidelines to apply to a prototyping process in order to manufacture a 

component with specific characteristics (8).  The issue that their work addressed was 

using rapid prototyping processes to make molds.  When molds are manufactured 

using rapid prototyping processes, the mold material differences (with respect to 

standard molds) tend to create differences in the final injection molded components.  

Therefore, the goal of the work was to create DFM rules that helped ensure similitude 

between components injected into standard molds and molds made using a rapid 

tooling process.  By employing optimization techniques, the researchers were able to 
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mitigate many of these issues.  The result was yet again an example of creating DFM 

guidelines for layered manufacturing in a specific scenario. 

In a study conducted by Thrimurthulu, Pandey, and Reddy, part orientation in 

FDM was examined (19).  Their study employed the use of genetic algorithm 

optimization techniques to determine optimum part orientations with respect to 

minimizing build time and minimizing surface roughness.  These authors created a 

tool to customize orientation for each individual part.  However, this study did not 

generate any design guidelines and the optimization technique needs to be 

implemented on a case by case basis for each component to determine its unique 

orientation recommendation. 

Cristofolini and Filipi are one of few researchers who have developed an 

explicit set of design guidelines for FDM (8, 20).  In their work, they attempted to 

create a set of design guidelines that could be universally applied to components to 

improve manufacture using FDM.  However, their initial set of guidelines consisted 

of only five rules.  The proposed rules were tested only to ensure the build accuracy 

of the parts using a coordinate measuring machine (CMM).  These dimensions were 

then compared to the exact dimensions of the CAD file provided to the machine.  

This is useful to the research presented in this study in that accuracy of built 

components does not need to be confirmed after application of such guidelines.  

While there are many limitations to this study with respect to ignoring factors such as 

material cost, this still provided useful insight on some candidate guidelines already 

posed in the literature.  As will be discussed in Chapter 4, the Cristofolini and Filipi 

research was used to generate several of the candidate guidelines for this study. 
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In addition to the research described up to this point, there are various other 

emerging areas of study related to FDM.  One example is a study by Han, Jafari, and 

Seyed focused on speeding up the deposition process (21).  While the goal of their 

research is similar to one goal proposed in this study, it differs greatly.  Han et al. 

focus on altering the FDM process to reduce idle time and increase the speed of the 

moving mechanisms within the machine itself rather than applying design guidelines 

to alter the components.  Pandey, Reddy, and Dhande examined how to create an 

adaptive slicing technique within the toolpath generation software for FDM (22).  

This would allow for the increase of part quality and accuracy because the machine 

would be able to build the component in various planes depending on which surface 

was most critical at a given point on the component. 

Another interesting study was conducted by Hopkinson and Dickens (23).  

Their work focused on determining the validity of FDM as a production process 

based on cost factors.  These factors included material cost and labor cost (as a 

function of build time).  While not directly related to the development of DFM 

guidelines for FDM, their worked helps confirm that FDM can be a contributing 

production process in certain manufacturing scenarios and provides support for the 

selection of build time and material volume as critical process metrics. 

One additional study which aimed to apply DFM guidelines to FDM was 

conducted by Hague, Mansour, and Saleh (24).  This work aimed to determine which 

DFM guidelines for injection molding still held true for FDM.  However, they 

focused solely on eliminating the injection molding guidelines that were rooted on the 

molded nature of the manufacturing process.  In doing so, there was no confirmation 
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of the validity of the remaining guidelines.  Additionally, no quantitative analysis was 

conducted to validate these guidelines. 

 

2.4 Gap in Literature 

This examination of the existing literature identifies several gaps where this 

research can make significant contributions.  First and foremost, there is limited 

research on specifically developing design guidelines for application to FDM.  As 

FDM becomes an increasingly more attractive production option in various scenarios, 

the development of a set of guidelines will become incredibly useful.  While some 

research has been completed in this area, much of it focuses on improving the FDM 

process itself, rather than helping a designer improve his or her part to be most 

effectively produced using the FDM process in its current form 

 Additionally, the limited work that has focused on creating a set of guidelines 

has been both narrow in focus and lacks verification.  As described previously in this 

section, many guidelines that have been suggested relate to a specific FDM issue or 

challenge, such as required surface quality or insufficient build capacity.  The 

verification of proposed guidelines has been minimal, with very few quantitative 

studies completed.  In addition to reviewing this literature, a paper to appear in 

ASME IDETC 2009 by the author of this thesis discusses the beginning of this 

research (25). 

 The goal of this thesis is to begin the development a universal set of 

guidelines that can be applied to all components using FDM, rather than only those 

components with a specific use or purpose.  Additionally, this work aims to validate 
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the effectiveness of the proposed guidelines.  This will be done through both 

quantitative methods (simulation) and qualitative methods (study of example cases).  

Beyond laying down the groundwork in developing a set of guidelines, this work 

aims to outline necessary areas of further research.  If these goals are achieved 

through this work, a significant gap in the research on FDM as a production process 

will have been filled. 
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Chapter 3: Methodology 

 

One of the objectives of this work is to provide a rigorous process for qualifying 

a design guideline in the absence of years of manufacturing experience.  This chapter 

outlines a mixed methods study to test FDM guidelines.  Quantitative data will be 

collected on the effectiveness of each proposed FDM guideline by using the build 

simulation features of the Catalyst™ Software.  Single-factor ANOVA will be used to 

make inferences about the data.  Qualitative data will be gathered in a small 

exploratory study of the effectiveness of applying each candidate guideline to the 

components designed by junior and senior students in mechanical engineering design 

courses. 

Developing the proposed FDM guidelines required a multi-step process.  The 

methodology first describes the repository of components that will serve as the 

sample on which the guidelines will be individually tested.  This repository is 

outlined in Section 3.1.  Section 3.2 discusses the proposed set of initial guidelines 

(prior to their testing and statistical confirmation) and their origins.  An overview of 

how the component designs and their FDM build settings were altered to apply each 

guideline is also provided.  Section 3.3 discusses each the build of each component 

was simulated and how data were compiled.  Additionally, the methods by which the 

data were analyzed are discussed.  Section 3.4 outlines the qualitative portion of the 

research.  This includes the information sheet that was developed to describe the 

student design tasks along with how these example cases were analyzed. 
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The data to be collected in the quantitative aspect of this study are the targeted 

performance metrics associated with the FDM process.  Specifically, build time and 

material volume were selected as the critical characteristics due to their direct impact 

on the costs associated with FDM.  Catalyst™ provides simulated values for these 

two metrics.  The gathering of this simulated data from Catalyst™ along with an 

analysis of this data is outlined in Section 3.3. 

It is important to note that there are two other common performance metrics 

related to layered manufacturing process in addition to build time and material 

volume.  These are part strength and part accuracy.  These were not measured in this 

study because they were considered constraints when minimizing cost and time.  

Because the goal of this study is to identify guidelines that will increase the feasibility 

of FDM as a niche manufacturing process, improving characteristics other than build 

time and material volume has less value.  It is important, however, for the designer to 

ensure that all performance metrics sufficiently meet any manufacturing requirements 

prior to selecting FDM as the process of choice.   

For the qualitative portion of the research, the data that were collected described 

the application of the candidate guidelines on a series of example cases.  These 

example cases were reviewed to establish which candidate guidelines could be 

implemented without changing the functionality of the component.  Results were 

examined to determine if any general conclusions could be made regarding infeasible 

guidelines. 

Throughout this research, much information was used related to the author’s 

experience as the Product Innovation and Realization Laboratory Suite (PIRLS) Lab 
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Manager.  As manager of this lab from January 2007 to May 2009, the author has 

extensive experience in working with FDM and student design projects.  Overall, the 

author has built over 150 components, ranging from under 1 cubic inch to over 100 

cubic inches.  These components have been as simplistic as a basic cube to as 

complex as a robotic arm interface.  These components required a combined build 

time of over 1000 hours, including builds for research groups, private companies, and 

artists. 

Because of the author’s considerable experience and the large variety of 

components available through PIRLS, this laboratory’s data are an extensive 

resource.  The components examined in this study were originally built through 

PIRLS (see Section 3.1) and the author’s experience was used as a source for several 

of the guidelines described in Chapter 4. 

 

3.1 Design Repository 

In order to test the statistical validity of any candidate guidelines for FDM, a set 

of sample components has to be defined.  The laboratory in which the authors 

conduct research, the Product Innovation and Realization Laboratory Suite (PIRLS), 

is dedicated primarily for education of undergraduates in the Department of 

Mechanical Engineering at the University of Maryland1.  PIRLS equipment includes a 

Stratasys Dimension SST machine along with Catalyst™ software (Version 4.0).  

Additionally, due to the nature of junior- and senior-level team projects each 

semester, a large database of components designed by the students is available.  

                                                 
1
 http://www.pirls.umd.edu 
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These files were compiled over two years (2007-2008) by the PIRLS Lab Manager.  

They varied in size from less than 1 cubic inch to over 55 cubic inches. 

There are several advantages to using these component files as a database for an 

examination of the effectiveness of the candidate guidelines.  First, the sheer quantity 

of files (94, prior to elimination of duplicates) will allow for statistical validity in any 

results.  Additionally, the varying nature of the student projects produces a large 

variety of components, with respect to size and complexity.  Lastly, because these 

files were created independently of this study, there is no concern of bias (beyond any 

limitations related to student projects). 

The part repository for the guideline testing was finalized by eliminating 

repetitive component files and any component that would be too large for the 

equipment’s capacity.  In total, the final test set was composed of 65 components.  

Figure 10 displays a collection of various components from the repository. 

 

 

Figure 10.  Sample Files from Repository 
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 Figure 10 shows Parts (clockwise, from top left) 65, 58, 54, and 28.  Note that 

these images have been scaled so that they appear to be approximately the same size.  

It is interesting to note the varying levels of part complexity.  The characteristics for 

these components can be seen in Table 1. 

 

Table 1.  Sample Component Build Characteristics 

Part Number Build Time (minutes) Material Volume (cubic inches) 

28 736 8.83 

54 414 4.78 

58 1163 22.63 

65 33 0.26 

 

3.2 Guidelines 

3.2.1 Developing Candidate Guidelines 

An initial pool of candidate guidelines needed to be developed in order to test 

the validity of applying guidelines to FDM.  Generally speaking, guidelines tend to be 

developed over long periods of time through heuristic methods.  An increased level of 

comfort and experience with an established manufacturing technology leads to the 

development of “best practices” over time.  Fused Deposition Modeling has only 

been commercially available since 1990.  Therefore, its lack of maturity relative to 

more established manufacturing methods makes guidelines difficult to determine in 

this manner.   

Two sources were used to compile an initial list of candidate guidelines.  The 

first source was existing research literature.  By examining recent work in the field, 
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some proposed guidelines for FDM have already been identified.  Since they have not 

been quantitatively tested to the extent of this study, they are well suited to be 

included as “candidate” guidelines here.  As outlined in Chapter 4, several of these 

guidelines previously introduced in the literature were included in the initial set of 

candidate guidelines. 

The experience of the author was relied upon to produce the remainder of the 

candidate guidelines.  The author has considerable experience in manufacturing a 

variety of components using FDM because of the large amount of components 

manufactured through the PIRLS lab.  As such, the author has identified heuristics 

that have had success.  These guidelines were included in the initial iteration of the 

set of proposed guidelines. 

With these two sources identified, an initial set of candidate guidelines was 

compiled.  Through the methodology described in this section, a set of eight 

candidate guidelines were used in the quantitative study.  Chapter 4 describes the list 

and its sources in detail. 

 

3.2.2 Application of Candidate Guidelines 

It is necessary to write a clear statement describing each candidate guideline in 

order to effectively apply them to the components in the test repository.  In other 

words, the method by which to alter the design or build setup to achieve each 

guideline must be clearly stated.  The methods by which to apply each guideline fell 

into two different categories.  The application of some guidelines was achieved 

through physically altering the .STL file before processing it using the Catalyst™ 
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software.  This was noted as a “design change”.  Other guidelines were applied by 

altering the build settings directly in the Catalyst™ software.  This was described as a 

“build change”.  These guidelines are discussed in further detail in Chapter 4. 

Once the difference between a design rule or change and a build rule or change 

had been identified, standard practices for applying each rule needed to be outlined.  

This was completed for each candidate guideline in the initial set.  The result was an 

explicit method for the application of each guideline to ensure that it was employed in 

a uniform manner for each component.  Chapter 4 provides a detailed description of 

the methods by which each guideline is applied. 

It should be noted that the guidelines examined in this study are currently build 

guidelines only, as no simulations (other than eliminating holes) required alterations 

to the design of the components themselves.  As such, the statistical results of this 

research are only valid towards the application of these guidelines via changes to the 

build settings.  However, as noted, many guidelines can be applied by either altering 

the design or changing the build settings of the FDM machine.  Therefore, one would 

have reason to expect similar statistical validly in applying these guidelines through 

design changes. 

 

3.3 Quantitative Analysis 

 Simulations in Catalyst™ were conducted to collect data on build time and 

material volume for each component in the study.  Subsequently, the candidate 

guidelines were applied individually to each component in the repository and re-

simulated, resulting in 8 new sets of performance data.  Each of these data sets was 



 

 32 
 

then compared in a statistical manner to the baseline data.  The results led to 

conclusions related to the effectiveness of each candidate guideline. 

 In this study, build time and material volume are the dependent variables.  

Their values are directly dependent on the geometric characteristics of the 

component.  Because there are far too many individual geometric characteristics to 

list as independent variables, for the purpose of this study the independent variables 

are collectively referred to as the component geometry.  An additional set of 

independent variables stems from the settings in Catalyst™ used to generate the 

toolpaths of the machine.  By varying the component geometry (through design 

alteration) and the Catalyst™ settings, differing values of the dependent variables 

(build time and material volume) were generated.  The last group of independent 

variables is the set of guidelines. 

 

3.3.1 Simulation Method 

Simulation of the FDM builds was conducted in the following manner.  First, 

the builds of all components in the repository were simulated with no adjustments to 

determine the baseline characteristics of each component.  The metrics that were 

tabulated were build time and material volume spent, both provided from the 

Catalyst™ simulation output.  Then, each guideline was tested as a separate 

experiment.  For each guideline, all components in the repository were altered to 

similarly apply the guideline.  For those guidelines that were applied through altering 

the design, SolidWorks was used to modify the .STL file.  This CAD package was 

chosen because of its ease of use in altering .STL files.   
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Several tests were conducted to determine simulation error in order to assure 

that the simulated build time was accurate with respect to the actual build time of a 

component.  Physical components were built in the machine and actual build times 

were recorded.  These build times were then compared to their simulated values.  

With parts of build times up to ten hours, the error in estimating the time was 

approximately one minute.   As such, the simulated build time generated by the 

Catalyst™ software was deemed to be sufficiently accurate for this study. 

Data on build time and material volume were again collected for each altered 

component.  This was repeated for each of the candidate guidelines until nine sets of 

data were compiled.  One data set was the baseline (or control value) for each 

component.  Eight more data sets were generated, one for each of the eight 

guidelines.  Table 2 below shows Part 28 with its nine simulated data sets.  Each 

column gives the performance data after the application of a particular guideline.  The 

first row lists the build time and the second row lists the material volume.  For 

example, the application of G1 to Part 28 resulted in a 5% reduction in build time and 

a 2% reduction in material volume.  

 

Table 2.  Data Sets for Part 28  

 
Base 

line G1 G2 G3 G4 G5 G6 G7 G8 

Build 

Time 

(minutes) 736 
700 
 -5% 

596 
-19% 

596 
-19% 

596 
-19% 

643 
-13% 

596 
-19% 

526 
-29% 

730 
-

.5% 

Material 

Volume 

(cubic 

inches) 

8.83 
8.68 
-2% 

8.18 
-7% 

8.18 
-7% 

8.18 
-7% 

7.66 
-13% 

8.18 
-7% 

9.8 
+11% 

8.82 
0% 
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3.3.2 Data Analysis Methods 

 Statistical analyses were applied to the data to determine the significant 

improvements generated by a particular guideline using the nine sets of data 

generated in the manner described in Section 3.3.1.  Those guidelines that proved to 

generate a significant reduction in build time and material volume spent would then 

be further tested qualitatively through case studies. 

 In order to determine the existence of significant improvements, two 

statistical studies were conducted.  The first was the use of Single-Factor ANOVA.  

In this method, the data for each component’s build time and material volume 

baseline values were compared to the respective values after a single guideline was 

applied.  To normalize these results over all types of components, a percent change 

between the baseline data and altered simulation data was noted for each component.  

This was then repeated seven additional times for each guideline applied individually.   

To determine if the application of an individual guideline provided a 

statistically significant improvement in reducing either build time or material volume, 

single-factor ANOVA analyses were conducted between the baseline and the data set 

corresponding to each guideline.  The results of these analyses provided the user with 

insight on whether a significant improvement was measured.  These applications and 

results are further discussed in more detail in Chapter 5. 

The second quantitative method employed in this research was a correlation 

study between the guidelines.  Each candidate guideline is treated as an independent 

variable in the first analysis.  This is not always going to be the case with all 
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components, so further study was required.  Each set of data was compared to all 

other data sets generated by independently applying the candidate rule to calculate the 

Pearson correlation index.  These indices would determine the presence of linear 

relationships between individual guidelines.  These data would provide insight into 

whether or not applying two different guidelines at the same time provided similar 

results.   Chapter 5 discusses this examination in further detail. 

The third and final quantitative study examined relationships between the 

presence of design features and guideline effectiveness.  This study was conducted 

with the use of two-factor ANOVA.  In this case, the presence and magnitude of 

particular features was noted for each component in the repository.  An initial study 

was conducted to see if the presence of curved features or overhangs had a significant 

impact on the level of improvement a particular guideline provided.  Further details 

on this study along with initial results can be found in Chapter 5. 

 

3.4 Exploratory Qualitative Analysis 

3.4.1 Development of Prototype Information Sheet 

Once the effectiveness of implementing each guideline was determined through 

the quantitative analyses provided by Catalyst™, it was important to determine the 

overall feasibility of implementing these guidelines for an actual design scenario.  

This is necessary because one guideline may be shown to have very positive effects 

on reducing build time and material volume, but might be infeasible for a designer to 

implement without sacrificing key component functionalities.  For example, Part 28 



 

 36 
 

as shown previously could not have holes eliminated without eliminating its 

functionality as a chimney to disperse heat. 

Parts built for actual student projects were examined in an exploratory study 

into the feasibility of implementing the guidelines.  Students in ENME371 (Product 

Engineering and Manufacturing) and ENME472 (Integrated Product and Process 

Development) at the University of Maryland, College Park were asked to fill out a 

“Prototyping Information Sheet” when preparing a part to be built using the FDM.  

These data were collected from September 2008 until December 2008.  Student 

projects were selected because of the level of familiarity the author had with the 

design projects themselves.  Therefore, the author could easily make judgments as to 

what alterations might be acceptable while maintaining functionality. 

This information sheet required the student teams to describe the functionality 

of the device, its size, and loading scenarios that it would encounter in operation.  

Additionally, students were required to provide free-body diagrams and a screenshot 

of the CAD file of their component.  In total, 11 information sheets were collected 

and each was examined through the method described in Section 3.6.  These 11 were 

selected from the original pool of 13 prototypes built in Fall 2008.  Two repetitive 

components eliminated.  These 13 student teams chose to prototype using the FDM 

machine out of a total of 24 teams.  Table 3 shows a sample Prototyping Sheet used in 

the research. 
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Table 3. Sample Prototyping Sheet  
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Once the data from the example cases were collected, each information sheet 

was examined with respect to the eight guidelines to determine the functional 

feasibility of implementing each guideline.  Using information provided in the 

information sheet and holding necessary discussion with the students, qualitative 

judgments on the feasibility of implementing each guideline were made.  The method 

by which these judgments were made is discussed in Section 3.6. 

 

3.4.2 Analysis of Sample Data 

It was necessary to examine the level of feasibility of applying each candidate 

guideline to each component.  If it was judged by the author that the application of a 

guideline would have minimal or no effect on the ability of the component to perform 

its desired function, then the guideline was deemed feasible in that case.  However, if 

the implementation of a guideline on a given component resulted in a loss of 

functionality or an inability to interact with any related component or subsystem, then 

it that guideline was deemed infeasible to implement on that component.  This 

approach was deemed reasonable due to the author’s familiarity with the design 

projects of the students requesting the builds and the exploratory nature of this study. 

Once data were collected related to the application of each guideline to each 

component independently, data were compiled to calculate the percentage of the 

components that allowed for the feasible application of a given guideline.  

Specifically, this was calculated as: 
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(Number of possible applications) / 11 * 100% 

 

In addition to this percentage of applicability success for each guideline, 

comments were made regarding factors that prohibited the feasible application of a 

guideline to particular components.  The tabulation of this information allows for 

further elimination of inappropriate guidelines from the proposed list.  This is due to 

the fact that some appear to be nearly universally infeasible to implement, despite 

their capability to reduce build time and material volume.  The specific results of this 

component of the research are discussed in Section 5. 

 The final aspect of the qualitative study was to run a quantitative analysis on 

performance metrics after simultaneously applying all final guidelines to each of 

these example cases.  Data on build time and material volume were collected in each 

case.  This set of data was then compared to the baseline using a paired t-test.  The 

results of this study would be used to determine if the simultaneous application of all 

proposed guidelines to a component would result in statistically significant reductions 

in the critical metrics.  
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Chapter 4: Proposed Guidelines 

4.1 Development of Initial Guidelines 

  The list of proposed guidelines was developed through compiling guidelines 

proposed in existing literature and supplementing them based upon the authors’ 

extensive experience in using the FDM equipment (discussed in Section 3.2).  Table 4 

displays the candidate list of eight guidelines along with their source. 

It is important to separate these guidelines into two separate categories.  Some 

are denoted as “build rules”.  These are guidelines that are applied through the 

alteration of build settings of the FDM machine itself.  Examples of these settings 

include build orientation within the machine, material layer thickness, and part 

rotation around the z-axis.  The second set of guidelines are denoted as “design 

rules”.  Their application is achieved through altering the design of the component 

itself, much like standard DFM rules.  It is also important to note that the application 

of some guidelines can be conducted by either altering the build settings or changing 

the design of the component.  The method(s) by which the guideline is applied is also 

noted in Table 4. 
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Table 4.  Proposed Guidelines 

Guideline Source Application Code 

Minimize Height along z-
axis 

Filippi and 
Cristofolini (8) 

Design change or 
build change G1 

Minimize Form Ratio 
Filippi and 
Cristofolini (8) 

Design change or 
build change G2 

Minimize Number of 
Overhangs Authors experience 

Design change or 
build change G3 

Build Holes Facing 
Upward Authors experience Build Change G4 

Minimize Number of Holes Authors experience Design change G5 

Build Object with Largest 
Surface on Bottom Authors experience Build Change G6 

Maximize Layer Thickness 
Filippi and 
Cristofolini (8) Build Change G7 

Rotate build 45 degrees 
around z-axis Authors experience Build Change G8 

 

 It should be noted that G1-4 are build alterations that are commonly found in 

third-party software packages developed for layered manufacturing processes.  One 

example, Materialise’s Magics RP, includes many of these features and makes 

decision automatically in an attempt to reduce metrics such as build time and material 

volume.  However, these packages are not sold with FDM machines directly and tend 

to be relatively expensive (Magics RP retails for approximately $7,000).  As such, it 

is still be very useful to the designer to establish how these guidelines should be 

applied, along with proving their validity.  Doing so could prevent the designer from 

purchasing third-party software, again reducing the costs associated with 

manufacturing using FDM.   Empirical development and analysis of guidelines is also 

valuable so that the process of establishing guidelines can be understood and used by 
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practitioners as FDM processes improve without reliance on build improvement 

software. 

Upon the finalization of this proposed set of guidelines, it was critical to outline 

the methodology by which to apply these guidelines through a standardized and 

clearly defined process. 

 

4.2 Application of Guidelines 

 As outlined in Section 3.2.2, specific methods by which each guideline would 

be implemented were developed.  This was to ensure standard and uniform 

application of a particular guideline on any type of component.  Rigidly defining how 

each guideline should be implemented resulted in a valid assessment of the overall 

effectiveness of each guideline.  The list below describes each guideline and its 

application method. 

 

G1: Minimize Height:  This was achieved by altering the orientation of the 

component within Catalyst™ to minimize the height in the z-direction.  The logic 

behind this guideline is that minimizing the number of layers of the build will reduce 

the build time. This can be applied in any case where minimizing the height doesn’t 

cause the maximum x or y dimension to exceed the allowable 8”.  This is illustrated 

in Figure 11. 
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Figure 11.  Minimizing Height (G1) with Part 47 

 

 

G2: Minimize Form Ratio:  This was achieved by altering the orientation of the 

component within Catalyst™ to minimize the form ratio of the part.  The form ratio is 

defined as follows: 

 

(Height along z-axis) / (length along x- or y-axis, whichever smaller)= Form Ratio 

 

The logic behind this guideline is that minimizing the form ratio will also reduce the 

number of layers, likely resulting in a reduction in build time.  Much like G1, this can 

be applied in any case where minimizing the height doesn’t cause the maximum x or 

y dimension to exceed the allowable 8”.  The application of this guideline is 

illustrated in Figure 12. 
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Figure 12.  Minimizing Form Ratio with Part 47(G2) 

 

G3: Minimize Number of Overhangs:  This was achieved by altering the orientation 

of the component within Catalyst™ to minimize the overall number of overhanging 

features of the part.  The logic behind this guideline is that minimizing the number of 

overhangs will reduce the amount of support material required.  This can be 

accomplished by either altering the design using a CAD package or by orienting the 

component within Catalyst™.  For the purposes of this study, the component was 

oriented within Catalyst™ to minimize the presence of these features, because 

simulation in Catalyst™ will not distinguish between the two methods of integrating 

G3.  The application of this guideline is illustrated in Figure13. 
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Figure 13.  Minimizing Overhangs (G3) with Part 62 

 

G4: Build Holes Facing Upward:  This was achieved by altering the orientation of 

the component within Catalyst™ to ensure that the maximum number of holes was 

present on the top surface facing upward.  The logic behind this guideline is that 

building holes facing upward will reduce the amount of support material needed.  

This can be applied in any case where holes are present in the component.  The 

application of this guideline is illustrated in Figure 14. 

 

 

Figure 14.  Build Holes Facing Upward (G4) with Part 46 
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G5: Minimize Number of Holes:  This was achieved by altering the .STL file in 

SolidWorks and eliminating all holes within each component.  The logic behind this 

guideline is that minimizing the number of holes will reduce the amount of support 

material needed.  Another option would be for the designer to create the holes by 

drilling them during post-processing.  Similar to G4, this guideline can be applied in 

any case where holes are present in the component.  The application of this guideline 

is illustrated in Figure 15. 

 

 

Figure 15.  Build Holes Facing Upward (G5) with Part 29 

 

 

G6: Build Objects with Largest Surface on Bottom (X-Y plane):  This was 

achieved by altering the orientation of the component within Catalyst™ to place the 

largest surface on the x-y plane, in this case, directly on the build platform.  The logic 

behind this guideline is that this will reduce the amount of support material needed.  
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This can be applied in any case where placing the largest surface on the x-y plane 

does not cause the component to exceed the 8” by 8” x-y boundary.  The application 

of this guideline is illustrated in Figure 16. 

 

 

Figure 16.  Build Objects with Largest Surface on Bottom (G6) with Part 45 

 

 

G7: Maximize Layer Thickness:  This was achieved by altering the build settings 

within Catalyst™ to maximize the layer thickness.  The standard setting is 0.010”, but 

the application of this rule changed the thickness to 0.013”.  The logic behind this 

guideline is that maximizing the layer thickness will reduce the number of layers of 

the part, therefore reducing build time.  It can be applied to all components.  The 

application of this guideline is illustrated in Figure 17. 

 



 

 48 
 

 

Figure 17.  Maximize Layer Thickness (note 28 layers on left and 22 layers on 

right) (G7) With Part 17 

 

 

G8: Rotate Build 45 degrees around z-axis:  This was achieved by altering the 

orientation of the component within Catalyst™ to rotate the component 45 degrees 

around the z-axis.  Through initial experimentation by the author, this was seen to 

have a significant impact on reducing the build time.  It should be noted that applying 

this guideline could have a significant effect on the mechanical performance of a 

component if it were purposely designed to exploit the material deposition pattern.  In 

many cases, the designer is unaware of the intricacies of the build process.  For 

purposes of this study, it was assumed that part strength would be considered a 

constraint by the designer.  This guideline can be applied in any case where rotating 

the component does not cause it to exceed the 8” by 8” x-y boundary.  The 

application of this guideline is illustrated in Figure 18. 
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Figure 18.  Rotate Build 45 degrees (G8) with Part 14 

 

 To explain the reasoning behind the addition of G8 as a candidate guideline, 

the toolpath creation within Catalyst™ should be further explained.  Figure 19 shows 

the orientation of the toolpaths of a square part by default in Catalyst.  One notices 

that by default, Catalyst orients the toolpaths +/- 45 degrees with respect to the x-axis, 

shown by angle θ in the left side image of Figure 19.  By rotating the component 45 

degrees around the z-axis, indicated by γ  in the right side image of Figure 19, these 

=/- 45 degree angles become 0/90 degree angles with respect to the side of the part. 

 

 

Figure 19.  Toolpath Orientation 
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Figure 20 shows actual Catalyst toolpaths for a rectangular component.  The 

toolpaths appear as dotted lines in Figure 20.  Because the re-orientation of the 

toolpath angle (γ) from+/- 45 degrees (a) to 0/90 degrees (b), one can see that each 

pass has a longer length.  Therefore, the nozzle has further time to speed up to its 

maximum velocity before being required to slow down to turn and make the next 

pass.  It was hypothesized that this process would reduce the build time for a given 

component.  Therefore, G8 was added to the candidate list of guidelines. 

 

 

Figure 20.  Increased Toolpath Length through Application of G8  
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Chapter 5: Quantitative Analysis through Simulations 

5.1 Single-factor 

The results for each guideline data set were compared to the baseline data to 

determine the effectiveness of each guideline.  Each data set was comprised of the 

build time and material volume for the components subjected to the application of a 

single guideline.  In order to normalize the data to facilitate comparison with the 

baseline, the build time and material volume spent were converted into percent 

change rather than actual values.  Therefore, the data set for the baseline was the null 

set for both material volume spent and build time (i.e. 0% change).  Each data set was 

converted to percent change with respect to the baseline values. 

To determine any statistically significant impact that the application of each 

guideline might have, 16 single factor ANOVA tests (95% confidence level) were 

conducted.  The null hypothesis in each case was that the application of the guideline 

had no impact on the build time and material volume for a given component.  Each of 

the 16 tests compares one of the eight guideline data sets to the baseline data set with 

respect to a performance metric (either material volume or build time).  Table 5 

shows a sample ANOVA table from the study.   The critical components of this table 

are the F- and P-values, along with the mean and standard deviation values.  In this 

test, C1 is the baseline data and C2 is the data with the guideline applied 
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Table 5.  Sample ANOVA Analysis 

Guideline 1:  Minimize Height 

Results for: Build Time 

One-way ANOVA: C1 versus C2  
 
Source  DF     SS     MS      F      P 

C2       1  16709  16709  39.71  0.000 

Error   78  32820    421 

Total   79  49530 

 

S = 20.51   R-Sq = 33.74%   R-Sq(adj) = 32.89% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  -----+---------+---------+---------+---- 

1      40  28.90  29.01                          (----*----) 

2      40   0.00   0.00  (----*----) 

                         -----+---------+---------+---------+---- 

                              0        12        24        36 

 

Pooled StDev = 20.51 

 

 

 

 

 

Results for: Material Volume 
  

One-way ANOVA: C1 versus C2  
 
Source   DF     SS   MS     F      P 

C2        1    691  691  4.34  0.039 

Error   128  20368  159 

Total   129  21059 

 

S = 12.61   R-Sq = 3.28%   R-Sq(adj) = 2.52% 

 

 

                        Individual 95% CIs For Mean Based on Pooled StDev 

Level   N  Mean  StDev     +---------+---------+---------+--------- 

1      65  4.61  17.84                    (---------*----------) 

2      65  0.00   0.00     (---------*---------) 

                           +---------+---------+---------+--------- 

                        -3.0       0.0       3.0       6.0 

 

Pooled StDev = 12.61 

 

 

Table 6 displays the average percent reduction for the eight candidate guidelines 

for both build time and material volume spent.  Column 3 lists the mean percent 
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decrease in build time under the application of a particular guideline.  Column 4 

shows the standard deviation of this percent change.  Column 5 gives the percent 

decrease in material volume under the application of a particular guideline.  Column 6 

shows the standard deviation of this percent change.  

 

Table 6.  Mean Percentage Improvement of Performance Metrics for Each 

Applied Guideline (negative values imply adverse effect) 

  
Build Time 

(minutes) 

Material Volume 

(cubic inches) 

Guideline N Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

G1 40 17.79 26.71 4.61 17.84 

G2 48 17.83 26.83 4.70 17.79 

G3 36 16.93 25.97 8.61 13.79 

G4 33 14.38 24.83 7.18 12.08 

G5 37 12.57 17.82 0.86 12.11 

G6 34 35.64 35.84 22.22 30.46 

G7 65 32.36 4.16 -4.53 6.29 

G8 61 5.63 4.89 1.55 2.85 

 

 Note that only G7 (maximize layer thickness) has 65 data points.  The seven 

other guidelines had less than 65 samples.  This is because some components needed 

no design or build change to apply a guideline.  As such, the percent change in both 

metrics would be 0% for that component if it were re-simulated and included.  

Therefore, these components were ignored when this occurred. 

Table 7 summarizes the results of the 16 statistical analyses.  This table shows 

whether or not the improvement is seen for a given performance metric.  

Additionally, the f-value of this study is given.  The extremely low p-values are not 

surprising given the vast difference in means seen in Table 6.  For all cases where the 
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null hypothesis was rejected (i.e. p < 0.05), reduction of the performance metrics 

occurred.  The lone exception was the significant finding of G7 with respect to 

material volume, where the null hypothesis was rejected because there was a 

statistically significant increase in this metric.  This is discussed further, along with 

other findings, in Chapter 7.  

 

Table 7.  Overview of Results from ANOVA Analyses 

Guideline 

Build Time 

(minutes) 

Material Volume 

(cubic inches) 

G1 
P-value= 0.0 

F-value= 39.71 
P-value= 0.04 
F-value= 4.34 

G2 
P-value=0.0 

F-value= 33.95 
P-value=0.035 
F-value= 4.54 

G3 
P-value=0.0 

F-value= 41.83 
P-value=0.0 

F-value= 25.31 

G4 
P-value=0.0 

F-value= 32.04 
P-value=0.0 

F-value= 22.95 

G5 
P-value=0.0 

F-value= 19.71 
P-value=0.468 
F-value= 0.53 

G6 
P-value=0.0 

F-value= 30.46 
P-value=0.0 

F-value= 26.28 

G7 
P-value=0.0 

F-value= 3935.83 
P-value=0.0 

F-value= 33.69 

G8 
P-value=0.0 

F-value= 81.06 
P-value=0.0 

F-value= 17.88 
 

 

5.2 Correlations between Guidelines 

 With the quantitative benefits of each guideline individually established, 

determining the correlations between each guideline was important.  In other words, 

if two guidelines were found to be highly positively correlated, then it would be 

expected that the implementation of one leads to the similar results as the 
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implementation of the other and one rule might dominate the impact of the other.  

Conversely, if two guidelines were found to be highly negatively correlated, then the 

implementation of one would lead to the opposite results of implementing the other. 

 To determine correlations between guidelines, Pearson correlation indices 

were calculated in Minitab.  A correlation index of 1 means that the two guidelines 

have an exact positive linear relationship, whereas a correlation of -1 shows an exact 

negative linear relationship.  A correlation index near zero shows that there is no 

linear relationship present between the two guidelines.  Two correlation studies were 

conducted, one for correlations with respect to build time, and one for correlations 

with respect to material volume.  Table 8 shows the results of the correlation study for 

build time.  These results show the correlations values with their p-values below.  

Again the significance level was 95%.  To read this table, correlation values can be 

seen between a given guideline column and the corresponding guideline row.  

Statistically significant results are in bold. 
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Table 8.  Correlation Study for Build Time 

      G1      G2      G3      G4     G5      G6     G7 

G2    0.999 

      0.000 

 

G3    0.957   0.953 

      0.000   0.000 

 

G4    0.961   0.955   0.996 

      0.000   0.000   0.000 

 

G5    0.751   0.746   0.788   0.785 

      0.002   0.002   0.001   0.001 

 

G6    0.202   0.196   0.173   0.156   0.138 

      0.489   0.503   0.555   0.594   0.639 

 

G7   -0.208  -0.212  -0.264  -0.302  -0.113   0.489 

      0.475   0.467   0.361   0.294   0.699   0.076 

 

G8    0.527   0.547   0.429   0.405   0.063   0.537   0.316 

      0.053   0.053   0.126   0.151   0.830   0.057   0.271 

 

Several interesting conclusions can be drawn from this table.  First, one notes 

that with respect to build time, there are highly positive linear correlations for all 

combinations of G1, G2, G3, and G4.  G5 also correlates significantly to G1, G2, and 

G3.  No other significant conclusions can be drawn.  This would imply that 

minimizing the height, minimizing the form ratio, minimizing overhangs, and 

building holes facing upward tend to require similar alterations.  Because these can all 

be achieved through altering the build settings of the FDM machine, it is quite 

possible that the application of each of these guidelines independently would result in 

the same build orientation.  Minimizing the number of holes also has a significant 

correlation, though not as linear. 



 

 57 
 

 Table 9 below shows the results of the correlation study for material volume.  

These results show the correlation values with their p-values below.  It reads identical 

to Table 8.  Statistically significant results are in bold. 

 

Table 9.  Correlation Study for Material Volume 

       G1      G2     G3      G4     G5      G6      G7 

G2    0.995 

      0.000 

 

G3    0.826   0.810 

      0.000   0.000 

 

G4    0.827   0.812   0.992 

      0.000   0.000   0.000 

 

G5    0.208   0.234   0.188   0.205 

      0.476   0.421   0.520   0.483 

 

G6    0.827   0.813   0.993   0.999   0.191 

      0.000   0.000   0.000   0.000   0.514 

 

G7   -0.151  -0.191  -0.226  -0.166   0.017  -0.172 

      0.607   0.513   0.436   0.571   0.953   0.557 

 

G8    0.010   0.013   0.021  -0.058  -0.416  -0.030  -0.255 

      0.972   0.965   0.943   0.845   0.139   0.918   0.379 
 

 

Several interesting conclusions can be drawn from this table.  First, one notes 

that with respect to build time, there are highly positive linear correlations for all 

combinations of G1, G2, G3, and G6.  No other significant conclusions can be drawn.  

This would imply that minimizing the height, minimizing the form ratio, minimizing 

overhangs, building holes facing upward, and building the object with the largest 

surface on the x-y plane tend to require similar alterations.  Because these can all be 

achieved through altering the build settings of the FDM machine, it is quite possible 
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that the application of each of these guidelines independently would result in the 

same build orientation. 

Overall, these results would seem to imply that G7 (maximize layer thickness) 

and G8 (rotate part 45 degrees around z-axis) have very little relation to the other six 

guidelines.  When examining alterations made to the design to apply these two 

guidelines, it is apparent that they are not applied in a manner similar to the other 

highly-correlated guidelines.  The results of this study are interesting and appear to 

show that the application of G1, G2, G3, and G4 probably occur simultaneously by 

implementing the same alterations.  The build time and material volume savings are 

not additive. 

   

5.3 Initial Design Feature Impact Study 

One additional area of study is related to the how the presence of individual 

design features might affect the benefits provided by applying a particular guideline.  

One such preliminary study has been examined.  This analysis attempted to infer any 

significance in the presence of curved features or overhangs on the 45 degree rotation 

guideline (G8).   

 The prevalence of curved features and overhangs in the default orientation 

was noted for each component in repository to conduct a two-factor ANOVA.  Two 

levels of prevalence were possible for each factor.  A value of 0 denotes that the 

factor is not at all present in the part or has very little presence.  A value of 1 denotes 

that the factor is widespread in the component. These values were intended to be 

subjective and were assigned to the components by the author.  For example, a part 



 

 59 
 

with very few overhangs in comparison to the total material volume used, or without 

any overhang at all, will receive a 0 for the overhang factor. The following parts are 

examples of showing different levels of factors. 

 

  

Figure 21. Part #9 from the repository with an overhang factor of 1 and a curve 

factor of 0 (Left) and Part #63 from the repository with an overhang factor of 0 

and a curve factor of 1 (Right) 

 

 A two-factor ANOVA analysis was conducted, and the results can be seen in 

Table 10. 
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Table 10.  2-Factor ANOVA Analysis on the Effect of Curved Features and 

Overhangs on G8 

 

 

From Table 4, one can conclude that there is no significant evidence of a curve-

overhang interaction effect or an overhang effect because of a p-value greater than the 

acceptable alpha value (0.05).  However, the p-value for the curve factor of 0 is less 

than the alpha level of 0.05.  Therefore, there is evidence that the presence of curved 

features has an effect on the reduction of build time for a given component.  This is 

supported by a brief analysis of the raw data.  Without curved features, the average 

reduction of build time is 9.2%, whereas only a 3 % reduction is seen in parts with 

curved features. Thus, one can conclude that the presence of more curved features in 

a part will result in less reduction in build time by making a 45° rotation.  Similar 
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studies to this one need to be conducted for a variety of features as related to all 

guidelines.  The ability to determine important factors contributing to the 

performance of these guidelines will be critical in evaluating the feasibility of each 

potential guideline.  Further discussion on these areas of future work is found in 

Chapter 8. 
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Chapter 6:  Qualitative Analysis through Case Studies 

 The quantitative study results of Chapter 5 determine the effectiveness of the 

candidate guidelines in reducing build time and material volume.  These metrics 

represent critical characteristics in the use of FDM, but they are not the sole 

determining characteristics.  Equally important is that these candidate guidelines must 

not impair the functionality of the component to which they are being applied.  In 

order to make this determination, an exploratory qualitative analysis was needed.  The 

purpose of conducting the qualitative study through example cases was to determine 

if any of the guidelines were infeasible to implement independent of their simulated 

performance as judged by Catalyst™.  This is an initial exploration for the sole 

purpose of determining if there exist fundamental conflicts between the application of 

a particular guideline and the functionality of the component to which it is applied. 

Each information sheet that was submitted as outlined in Section 3.4 was 

analyzed to determine if the implementation of each guideline would maintain the 

component’s functionality and performance as intended by the designer.  For 

example, the application of a particular guideline might be proven through a 

simulation study to have a very beneficial impact on build time and/or volume.  

However, one might find it impossible to implement that guideline in a real design 

scenario without significantly impacting the component’s intended function. 

 The applicability of implementing each guideline independently on the 

described component was determined.  For each sample component, several factors 

went into determining this applicability.  These included build space (i.e. would 

applying a guideline not allow the component to fit into the 8” by 8” by 12” build 
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space), loss of a critical function, elimination of a feature interacting with another 

component, and other various factors that were deemed by the author to diminish or 

eliminate the functionality or performance of the component in question. 

 For each prototyping information sheet, each guideline was marked as either 

“yes” or “no” with respect to the ability to feasibly implement that guideline on the 

described component.  For cases in which it was determined to be infeasible, 

reasoning for its infeasibility was noted on the information sheet.  A summary of the 

results from this qualitative examination can be seen in Table 11.  Each column 

represents a component described on an information sheet.  Each row lists whether or 

not a guideline could be feasibly applied to a given component. 
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Table 11.  Feasibility of Implementing Each Guideline for 11 Case Studies 

Information Sheet 

Guideline 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

Minimize 
Height along 
z-axis yes yes yes yes yes yes 

Minimize 
Form Ratio yes yes yes yes yes yes 

Minimize 
Number of 
Overhangs yes yes yes yes yes yes 

Build Holes 
Facing 
Upward yes yes yes yes yes yes 

Minimize 
Number of 
Holes no no no no no no 

Build Object 
with Largest 
Surface on 
Bottom yes yes yes yes yes yes 

Maximize 
Layer 
Thickness yes yes yes yes yes yes 

Rotate build 45 
degrees around 
z-axis yes yes yes yes yes yes 
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Information Sheet 

Guideline 

7 

 

8 

 

9 

 

10 

 

11 

 

Minimize 
Height along 
z-axis yes yes yes yes yes 

Minimize 
Form Ratio yes yes yes yes yes 

Minimize 
Number of 
Overhangs yes yes yes yes yes 

Build Holes 
Facing 
Upward yes yes yes yes yes 

Minimize 
Number of 
Holes no no no no no 

Build Object 
with Largest 
Surface on 
Bottom yes yes yes yes yes 

Maximize 
Layer 
Thickness yes yes yes yes yes 

Rotate build 
45 degrees 
around z-axis yes no yes yes yes 

 

 

By examining this data, one can determine the percentage of cases in which a 

particular guideline was feasible.  Table 12 shows the percentage of successful 

applications for each guideline. 
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Table 12.  Percentage of Successful Applications for Each Guideline 

Guideline Percentage Success 

Minimize Height along z-axis 100.0 

Minimize Form Ratio 100.0 

Minimize Number of Overhangs 100.0 

Build Holes Facing Upward 100.0 

Minimize Number of Holes 0.0 

Build Object with Largest Surface on Bottom 100.0 

Maximize Layer Thickness 100.0 

Rotate build 45 degrees around z-axis 90.9 

 

These results imply several interesting conclusions.  First, it is important to note 

that Guidelines 1, 2, 3, 4, 6, and 7 were feasible to apply on all eleven of the example 

cases.  On the other extreme, Guideline 5 (eliminate holes) was infeasible on all 11 

example cases.  Guideline 8 had mixed feasibility.  As hoped, this exploratory 

analysis was able to identify a definitive conflict between maintaining functionality 

and implementing a particular guideline.  In this case, eliminating holes appears to be 

infeasible as a guideline, due to its universal degradation of component functionality.  

Chapter 7 will discuss potential reasons for why these results may have occurred in 

further detail. 

The 11 example cases were next examined to determine the overall performance 

of applying the final set of proposed guidelines.  The build of each example case was 

first simulated in Catalyst™ to determine baseline values for both build time and 

material volume.  Then, all proposed guidelines (excluding G5 and G7 as previously 

explained) were simultaneously applied to each example case.  This resulted in two 

sets of data for each case (one baseline, and one with guidelines applied).  Two paired 
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t-tests were then employed to determine if there existed significant reduction in either 

material volume or build time. 

First, the baseline build times were compared to the set of data resulting from 

applying the guidelines simultaneously.  The results of the paired t-test from Minitab 

can be seen below in Table 13.  In this table, C1 is the baseline build time of the 11 

example cases.  C2 is the build time associated with the 11 components after all 

guidelines were simultaneously applied. 

 

Table 13.  Paired t-test Results from Minitab for Build Time 

 
Paired T-Test and CI: C1, C2  
 
Paired T for C1 - C2 

 

             N   Mean  StDev  SE Mean 

C1          11  161.8  174.2     52.5 

C2          11  109.2  113.9     34.3 

Difference  11   52.6   79.7     24.0 

 

 

95% CI for mean difference: (-0.9, 106.2) 

T-Test of mean difference = 0 (vs not = 0): T-Value = 2.19  P-Value = 0.053 

  
The results of this show that the mean build time after guideline application 

(109.2 minutes) is much lower than the mean build time of the baseline (161.8 

minutes).  This is a 32.5% reduction.  Additionally, the p-value of this test was equal 

to 0.053.  Therefore, one can be more than 94% sure that these data show a 

statistically-significant reduction in build time after applying the guidelines.  Because 

the sample size is very small (N=11), one would expect this to cross the 95% 

confidence level threshold with a few more samples if the results are typical. 
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An additional t-test was conducted to determine the level of significance in 

reducing the material volume of the example cases.  Again, all six final proposed 

guidelines were applied simultaneously to the 11 example cases and material volume 

data was collected.  Using the paired t-test, this data set was compared to the baseline 

simulations.  The results of this test can be seen in Table 14 below.  In this table, C1 

is the baseline material volume of the 11 example cases.  C2 is the material volume 

associated with the 11 components after all guidelines were simultaneously applied. 

 

Table 14.  Paired t-test Results from Minitab for Material Volume 

Paired T-Test and CI: C4, C5  
 
Paired T for C4 - C5 

 

             N   Mean  StDev  SE Mean 

C4          11  1.852  2.254    0.680 

C5          11  1.597  1.979    0.597 

Difference  11  0.255  0.469    0.141 

 

 

95% CI for mean difference: (-0.060, 0.569) 

T-Test of mean difference = 0 (vs not = 0): T-Value = 1.80  P-Value = 0.102 

 

 

The results of this show that the mean value for material volume after 

guideline application (1.597 cubic inches) is lower than the mean build time of the 

baseline (1.852 cubic inches).  This is a 14% reduction.  Additionally, the p-value of 

this test was equal to 0.102.  Therefore, 90 out of every 100 experiments in which 

these guidelines are applied will result in a statistically-significant reduction in 

material volume.  Again, because the sample size was only 11, it is expected that 

several more samples would allow the p-value to cross below the 0.05 threshold. 
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From this assessment of example cases in an exploratory qualitative manner, 

one can draw several conclusions.  First, the list of qualifying guidelines after the 

quantitative analysis in Chapter 5 was examined with respect to actual design 

scenarios.  The results of this study showed that an additional candidate guideline 

needed to be excluded from the final proposed list (that which does not include G5 or 

G7).  The remaining candidate guidelines were then simultaneously applied to the set 

of example cases.  The results of this study show that a reduction in build time and 

material volume were present at a fairly high confidence level.  It would be useful to 

conduct a similar study with more samples to gather more information.  Further 

discussion on these results can be seen in Chapter 7. 
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Chapter 7:  Discussion of Results 

7.1 Quantitative Data 

The results of these statistical analyses are very interesting.  First, one can see 

that minimizing height (G1), minimizing form ratio (G2), minimizing overhangs 

(G3), building holes facing upward (G4), building with the largest surface on bottom 

(G6), and rotating 45 degrees (G8) show statistically significant improvement both in 

reducing build time and material volume spent.  As such, these can be added to the 

first iteration of the proposed guidelines for FDM. 

Perhaps more interesting are the results stemming from minimizing the number 

of holes and maximizing the layer thickness.  Chapter 5 showed that minimizing the 

number of holes provided a statistically significant improvement in reducing the build 

time.  However, it did not provide any measurable improvement in reducing the 

material volume spent.  This result is counter-intuitive for a novice FDM user.   Yet, 

this is an expected result because FDM often places support material to fill in an 

empty region (such as a hole).  Despite a lack of significant improvement, this would 

still appear to be a candidate for the first iteration of guidelines due to the lack of 

adverse impact.  While it appears to qualify based on the quantitative results, it does 

not yet consider the impact of the qualitative study. 

The effectiveness of G7, maximizing the layer thickness, is another interesting 

case.  Much like minimizing the number of holes, maximizing the layer thickness 

resulted in a statistically significant reduction in build time. This is intuitive because 

few layers results in fewer nozzle passes.  For example, the part shown in Figure 12 

was built in six fewer layers. However, it also showed a statistically significant 
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increase in material volume spent.  The logic behind this is based on the fact that the 

minimum feature width that the machine is able to produce under these new settings 

is 0.013” rather than 0.01”.  Therefore, for very small features, the machine is forced 

to lay down more material than the designer specified.  Over the course of building an 

entire component, these minimal increases in material result in a component that is 

comprised of significantly more material.  This was the only potential guideline of the 

eight tested that had an adverse impact on either metric, let alone a statistically 

significant change.  Because of the presence of a significant negative effect, it would 

be difficult to include this guideline in the first iteration of the guidelines for FDM.  

However, it could be considered a conditional guideline which is only applied when 

lead time is the critical and dominant factor in dictating the use of FDM to 

manufacture a given component. 

Correlations between the guidelines were also determined in Chapter 5.  These 

showed that G7 (maximize layer thickness) and G8 (rotate part 45 degrees around z-

axis) have very little relation to the other six guidelines.  Additionally, the results 

appear to show that the application of G1, G2, G3, and G4 probably require the 

implementation of the same alterations. 

After conducting the statistical analyses, the first iteration of guidelines for 

FDM is defined.  This list is composed of all guidelines that had at least one 

statistically significant improvement of a performance metric and had no statistically 

significant adverse effects on either performance metric.  After this initial study, only 

one candidate guideline was eliminated.  Table 15 shows the surviving guideline list 

below: 
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Table 15.  Candidate List of Guidelines after Quantitative Study Only   

Guideline 

1. Minimize Height 

2. Minimize Form Ratio 

3. Minimize Number of Overhangs 

4. Build Holes Facing Upward 

5.  Eliminate Holes 

6. Build Object with Largest Surface on Bottom 

7. Rotate build 45 degrees 

 

7.2 Qualitative Data 

 Much like the quantitative study employing simulations, the results of the 

qualitative analysis using example cases were very interesting.  First, one notices that 

Guidelines 1, 2, 3, 4, 6, and 7 all had 100% applicability success rates.  Examining 

these guidelines individually puts these results into context. 

Guideline 1 is minimizing the build height in the z-direction.  It seems logical 

that this would be feasible in all cases in which no dimension (x, y, or z) exceeded 8”.  

In other words, the only cases in which Guideline 1 could not be implemented would 

be when minimizing the z height resulted in either the x or y dimensions being larger 

than 8” (thus exceeding the x and/or y capacity of the machine). 

 Guideline 2 is minimizing the form ratio.  Again, this is a build guideline that 

only alters the component’s orientation within the machine.  The only case in which 

minimizing the form ratio would be infeasible would be when doing so causes an x or 

y dimension to be exceeded.   
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Guideline 3 asks the user to minimize the number of overhangs by altering the 

orientation of the component.  The only cases in which this can’t be applied are if 

there are no overhangs, or where there are an equal number of overhangs no matter 

what the build orientation of the component.   

Guideline 4 asks the designer to build holes facing upward.  This was 

applicable in all cases because doing so did not violate the geometry exceeding the 8” 

by 8” by 12” capacity. 

 Guideline 6 requires building the component with its largest surface on the x-y 

plane at z = 0”.  Like the other guidelines that were seen to have 100% applicability 

in this limited study, it is applicable on any component unless that bottom surface has 

an x or y dimension exceeding 8”.  In the case of these examples, no component 

exceeded this 8” by 8” limit.   

Guideline 7, where layer thickness was maximized, was the final guideline 

with 100% applicability.  As this is purely a build setting that does not alter the 

orientation of the component, it is applicable to any part.  From the quantitative 

analysis, it was considered a conditional guideline to only be applied when lead time 

is paramount.  However, it was still examined in the qualitative analysis to determine 

it’s applicability in these conditional scenarios. 

 Examining the two guidelines that had less success provides more interesting 

insight.  Guideline 5, eliminate holes, was applicable on zero of the 11 example cases.  

Because it requires the user to eliminate all holes, functional feasibility was a very 

large concern.  In all 11 example cases, the holes present in the component were 

integral to the functionality of the device.  In other words, eliminating the holes in 
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these components would result in a part that might not perform its function as 

intended by the designer. This study did not consider the possibility that these holes 

could be drilled during post-processing to allow for full functionality.  Further studies 

would have to be conducted to determine the feasibility, time, and accuracy issues 

with creating the holes in this manner.  It is interesting to note that this was the only 

guideline that had significant feasibility issues. 

 Guideline 8, rotate part 45 degrees around z-axis, was the only remaining 

guideline that lacked 100% applicability in the 11 example cases.  In the one case of 

infeasibility, it occurred because doing so caused the component to exceed 8” in the 

x-direction.  Consequently, the rule could not be applied.  However, there do not 

appear to be any fundamental conflicts between applying this guideline and 

maintaining component functionality. 

 From this qualitative study, it can be seen that six of the seven candidate 

guidelines (not considering the conditional G7) proved to be feasible with respect to 

implementation for the 11 example cases.  However, Guideline 5 (eliminate holes) 

proved to be infeasible in every case.  As such, it seems reasonable to eliminate this 

guideline from the candidate list.  Although it was shown to reduce the build time of 

components in a statistically significant manner, this initial qualitative study shows 

that it most likely has feasibility issues with respect to implementation. 

 This final set of six guidelines was then applied simultaneously to each of the 

11 example cases.  The two sets of data relating to build time and material volume 

were then compared to the baseline using paired t-tests.  These analyses showed 

promising data that can lead one to conclude that applying the final proposed set of 
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guidelines simultaneously will reduce the build time and material volume of a given 

component. 

 

7.3 Final Candidate List 

From the results of both the quantitative and qualitative aspects of this research, 

it is imperative to re-examine the initial candidate list and see which guidelines have 

been shown to be beneficial and feasible, and which guidelines should be eliminated 

from the candidate list.  The results of the quantitative analysis showed that 

minimizing height, minimizing form ratio, minimizing overhangs, building holes 

facing upward, building with the largest surface on bottom, and rotating 45 degrees 

all showed statistical improvement in both categories.  Additionally, none of these 

guidelines had implementation problems in the 11 example cases. 

The quantitative simulation study also found that minimizing the number of 

holes only had an impact on reducing the build time of the component.  Additionally, 

the implementation of this guideline in the 11 example cases proved to be completely 

infeasible.  Therefore, it would seem logical to eliminate this guideline from the final 

candidate list. 

The guideline yet to be discussed is that of maximizing the layer thickness.  

The quantitative study showed its application to have a significant improvement on 

build time.  However, it also determined that it had a statistically negative impact on 

material volume.  In the qualitative portion of the research, there were no feasibility 

issues with its implementation.  However, it was noted that parts requiring a fine 

surface quality or containing very small features would have issues in maximizing the 
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layer thickness.  As such, it would only seem logical to implement this guideline 

when build time is critical and no small features are present.  Additionally, surface 

quality must also not be a critical factor.  Due to the fact that there are limited cases in 

which this guideline would be both beneficial and feasible, it was not included in the 

final candidate list.  With all eight original candidates examined, the final candidate 

list can be seen in Table 16. 

 

Table 16.  Final List of Proposed Guidelines 

Proposed Guideline 

1. Minimize Height 

2. Minimize Form Ratio 

3. Minimize Number of Overhangs 

4. Build Holes Facing Upward 

5. Build Object with Largest Surface on Bottom 

6. Rotate build 45 degrees 
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Chapter 8:  Conclusions and Future Work 

 

As FDM becomes a more attractive production option in various scenarios, 

the development of a set of guidelines will become increasingly useful.  While some 

existing research has been completed in this area, much of it focuses on improving 

the FDM process itself, rather than helping a designer improve his or her part to be 

most effectively produced using the FDM process in its current form 

An initial set of proposed guidelines for FDM has been based upon the analysis 

of the data collected from the simulations and from a qualitative examination of 

example cases.  The initial candidate list has been narrowed down two six guidelines 

by determining the quantitative impact that these guidelines had on performance 

metrics along with their qualitative feasibility.  Research suggests that the 

implementation of these guidelines should result in a reduction in build time and 

material volume spent on most components manufactured using FDM.  However, the 

two candidate guidelines withheld from the proposed list (maximize layer thickness 

and eliminate holes) may warrant further in-depth examination.  The application of 

the six final proposed guidelines should be possible in almost all scenarios. 

 

8.1 Contributions 

The contributions of this work can be established by re-examining the research 

questions posed in Chapter 1. 
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What are the most critical metrics associated with Fused Deposition Modeling 

that directly dictate the feasibility of its use as a small-volume manufacturing 

process? 

Through the literature review in Chapter 2, it was determined that FDM is 

becoming a feasible technology for use in the manufacture of plastic components in 

small volumes.  The driving factor is that unlike a process like injection molding, 

there are no tooling costs associated with FDM.  Because decreasing the costs of 

FDM should correlate with an increase in its use as a manufacturing process, metrics 

directly related to cost were identified.  Material volume and build time are critical 

factors that were identified in this study for assessing the effectiveness of the 

guidelines.  In addition, because these values could be simulated within Catalyst™, 

changes in these values could be determined through simulation. 

 

What guidelines or rules can be applied to all varieties of components to improve 

the defined metrics in a statistically significant manner? 

Chapter 4 introduced a candidate set of guidelines that was developed by both 

the author’s extensive experience with FDM and through guidelines proposed in 

existing literature.  Once this candidate list was created, each guideline was 

systematically applied to a large and varied set of components.  By simulating a 

baseline set of build data and eight sets of data (one pertaining to each guideline) in 

Catalyst™, information on build time and material volume was gathered. 
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From this point, ANOVA analyses were conducted to determine if there were 

significant changes in either build time or material volume used.  Those candidate 

guidelines which provided a statistically significant improvement in one or both 

categories (while showing no statistically significant negative impact in either) 

comprise an initial list that responds to this second research question.  Additionally, 

correlations between the applications of each guideline were determined. 

 

Of the guidelines that significantly improve the defined metrics, which guidelines 

can be implemented without changing the functionality of the component? 

With seven guidelines showing universal improvement with respect to the two 

established metrics, an exploratory qualitative analysis was undertaken to determine 

whether or not these guidelines could be applied to components without altering their 

functionality.  By gathering example cases of actual design projects, the candidate 

guidelines could be examined in actual design scenarios.  Qualitative judgments were 

made by the author (based on familiarity with the design projects themselves) as to 

whether or not a particular candidate guideline could be applied without sacrificing 

functionality.  The result was the determination that G5, minimizing holes, could not 

be implemented in any of the example cases without losing some level of 

functionality.  As such, it was eliminated from the final list.   

The result of all aspects of this research is a set of six proposed guidelines that 

displayed quantitative improvement in critical FDM performance metrics while 

maintaining component functionality.  The application of the final entire set of 

proposed guidelines simultaneously to the example cases showed promising data that 
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material volume and build time can be significantly reduced by implementing the set 

of proposed guidelines 

From the results of this work, it is suggested that these proposed guidelines be 

implemented in practice.  By introducing build managers of FDM systems to these 

proposed guidelines, their success can be tested in-situ.  Because they have been 

shown initially to offer significant improvement without sacrificing performance, 

implementation should be universally beneficial.  Additionally, introducing these 

guidelines to designers or students in design classes will help integrate the proposed 

guidelines into practice.  With these potential guidelines identified in a systematic 

manner with established benefit, the probability of successful implementation is 

reasonable. 

 

8.2 Future Work 

Future work lies in several areas.  First and foremost, further guidelines need to 

be identified.  One would not expect the proposed guidelines from this study to be an 

all-encompassing list.  As new candidate guidelines are identified, they can be 

validated by the methodology developed in this study 

Another area of future work should further examine the interactions that may be 

present between guidelines.  As discussed in Section 4.2, conducting further 

correlation studies is an crucial area in which further research needs top be conducted.  

The brief study conducted in Section 4.2 shows that the presence of curved features 

has a significant impact on the amount of build time reduced by applying Guideline 8.  

There are many other interactions between certain design features and the 
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effectiveness of applying a particular guideline that need to be identified.  The 

determination of these correlations and interactions can play a significant role in the 

refinement of the list of guidelines, or in the conditions under which certain 

combinations should be avoided. 

Another possible concern is that two different guidelines are fundamentally 

incompatible to the point at which it would be impossible to simultaneously apply 

both to one design.  If this is determined to be an issue between particular sets of 

guidelines, one will have to further examine which conflicting guideline is most 

beneficial.  Further iterations of the set of guidelines should list any potential conflicts 

along with an order of preference between conflicting guidelines. 

With many further areas of research defined, the refining of the set of guidelines 

for FDM is a non-trivial task.  Eventually, this area of research should result in a 

robust set of rules that can fundamentally reduce the costs associated with FDM and 

can assist its ascent as a feasible full-scale manufacturing process. 
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Appendix 1: ANOVA Results 
 

Guideline 1:  Minimize Height 

 

Results for: Build Time 

One-way ANOVA: C1 versus C2  
 
Source  DF     SS     MS      F      P 

C2       1  16709  16709  39.71  0.000 

Error   78  32820    421 

Total   79  49530 

 

S = 20.51   R-Sq = 33.74%   R-Sq(adj) = 32.89% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  -----+---------+---------+---------+---- 

1      40  28.90  29.01                          (----*----) 

2      40   0.00   0.00  (----*----) 

                         -----+---------+---------+---------+---- 

                              0        12        24        36 

 

Pooled StDev = 20.51 

 

 

 

 

 

Results for: Material Volume 
  

One-way ANOVA: C1 versus C2  
 
Source   DF     SS   MS     F      P 

C2        1    691  691  4.34  0.039 

Error   128  20368  159 

Total   129  21059 

 

S = 12.61   R-Sq = 3.28%   R-Sq(adj) = 2.52% 

 

 

                        Individual 95% CIs For Mean Based on Pooled StDev 

Level   N  Mean  StDev     +---------+---------+---------+--------- 

1      40  4.61  17.84                    (---------*----------) 

2      40  0.00   0.00     (---------*---------) 

                           +---------+---------+---------+--------- 

                        -3.0       0.0       3.0       6.0 

 

Pooled StDev = 12.61 
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Guideline 2:  Minimize Form Ratio 

 

Results for: Build Time 

One-way ANOVA: C1 versus C2  
 
Source  DF     SS     MS      F      P 

C2       1  13997  13997  33.95  0.000 

Error   94  38751    412 

Total   95  52749 

 

S = 20.30   R-Sq = 26.54%   R-Sq(adj) = 25.75% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ------+---------+---------+---------+--- 

1      48  24.15  28.71                          (-----*-----) 

2      48   0.00   0.00  (-----*-----) 

                         ------+---------+---------+---------+--- 

                               0        10        20        30 

 

Pooled StDev = 20.30 

 

  

 

 

 

Results for: Material Volume 
  

One-way ANOVA: C1 versus C2  
 
Source   DF     SS   MS     F      P 

C2        1    718  718  4.54  0.035 

Error   128  20251  158 

Total   129  20969 

 

S = 12.58   R-Sq = 3.42%   R-Sq(adj) = 2.67% 

 

 

                        Individual 95% CIs For Mean Based on Pooled StDev 

Level   N  Mean  StDev     +---------+---------+---------+--------- 

1      48  4.70  17.79                    (----------*---------) 

2      48  0.00   0.00     (---------*---------) 

                           +---------+---------+---------+--------- 

                        -3.0       0.0       3.0       6.0 
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Guideline 3:  Minimize Number of Overhangs 

 

Results for: Build Time 

One-way ANOVA: C1 versus C2  
 
Source  DF     SS     MS      F      P 

C2       1  16816  16816  41.83  0.000 

Error   70  28144    402 

Total   71  44960 

 

S = 20.05   R-Sq = 37.40%   R-Sq(adj) = 36.51% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ------+---------+---------+---------+--- 

1      36  30.57  28.36                            (----*-----) 

2      36   0.00   0.00  (-----*-----) 

                         ------+---------+---------+---------+--- 

                               0        12        24        36 

 

Pooled StDev = 20.05 

 

 

 

 

 

Results for: Material Volume 
 

One-way ANOVA: C1 versus C2  
 
Source   DF       SS      MS      F      P 

C2        1   2406.7  2406.7  25.31  0.000 

Error   128  12173.4    95.1 

Total   129  14580.1 

 

S = 9.752   R-Sq = 16.51%   R-Sq(adj) = 15.85% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level   N   Mean   StDev  -------+---------+---------+---------+-- 

1      36  8.605  13.792                           (------*-----) 

2      36  0.000   0.000  (------*------) 

                          -------+---------+---------+---------+-- 

                               0.0       3.5       7.0      10.5 

 

Pooled StDev = 9.752 
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 Guideline 4:  Build Holes Facing Upward 

 

Results for: Build Time 

One-way ANOVA: C1 versus C2  
 
Source  DF     SS     MS      F      P 

C2       1  13230  13230  32.04  0.000 

Error   64  26431    413 

Total   65  39661 

 

S = 20.32   R-Sq = 33.36%   R-Sq(adj) = 32.32% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ------+---------+---------+---------+--- 

1      33  28.32  28.74                          (-----*----) 

2      33   0.00   0.00  (-----*-----) 

                         ------+---------+---------+---------+--- 

                               0        12        24        36 

 

Pooled StDev = 20.32 

 

 

 

 

  

Results for: Material Volume 
  

One-way ANOVA: C1 versus C2  
 
Source   DF       SS      MS      F      P 

C2        1   1675.6  1675.6  22.95  0.000 

Error   128   9343.4    73.0 

Total   129  11019.0 

 

S = 8.544   R-Sq = 15.21%   R-Sq(adj) = 14.54% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level   N   Mean   StDev  -------+---------+---------+---------+-- 

1      33  7.180  12.083                          (------*------) 

2      33  0.000   0.000  (------*------) 

                          -------+---------+---------+---------+-- 

                               0.0       3.0       6.0       9.0 

 

Pooled StDev = 8.544 
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 Guideline 5:  Minimize Number of Holes 

 

Results for: Build Time 

One-way ANOVA: C1 versus C2  
 
Source  DF     SS    MS      F      P 

C2       1   3415  3415  19.71  0.000 

Error   72  12474   173 

Total   73  15889 

 

S = 13.16   R-Sq = 21.49%   R-Sq(adj) = 20.40% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  -------+---------+---------+---------+-- 

1      37  13.59  18.61                        (-------*------) 

2      37   0.00   0.00  (------*------) 

                         -------+---------+---------+---------+-- 

                              0.0       6.0      12.0      18.0 

 

Pooled StDev = 13.16 

 

 

 

 

 

Results for: Material Volume 
  

One-way ANOVA: C1 versus C2  
 
Source  DF      SS    MS     F      P 

C2       1    42.1  42.1  0.53  0.468 

Error   72  5697.6  79.1 

Total   73  5739.7 

 

S = 8.896   R-Sq = 0.73%   R-Sq(adj) = 0.00% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level   N   Mean   StDev  -----+---------+---------+---------+---- 

1      37  1.508  12.580          (--------------*-------------) 

2      37  0.000   0.000  (--------------*--------------) 

                          -----+---------+---------+---------+---- 

                            -2.0       0.0       2.0       4.0 

 

Pooled StDev = 8.896 
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 Guideline 6:  Build Object with Largest Surface on Bottom 

 

Results for: Build Time 

Source  DF     SS     MS      F      P 

C2       1  13389  13389  30.46  0.000 

Error   66  29013    440 

Total   67  42402 

 

S = 20.97   R-Sq = 31.58%   R-Sq(adj) = 30.54% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ------+---------+---------+---------+--- 

1      34  28.06  29.65                         (-----*-----) 

2      34   0.00   0.00  (-----*-----) 

                         ------+---------+---------+---------+--- 

                               0        12        24        36 

 

Pooled StDev = 20.97 

 

 

 

 

 

Results for: Material Voume 
  

One-way ANOVA: C1 versus C2  
 
Source  DF     SS    MS      F      P 

C2       1   2903  2903  26.28  0.000 

Error   66   7291   110 

Total   67  10194 

 

S = 10.51   R-Sq = 28.48%   R-Sq(adj) = 27.40% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ------+---------+---------+---------+--- 

1      34  13.07  14.86                        (-----*-----) 

2      34   0.00   0.00  (-----*-----) 

                         ------+---------+---------+---------+--- 

                             0.0       6.0      12.0      18.0 

 

Pooled StDev = 10.51 
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 Guideline 7:  Maximize Layer Thickness 

 

Results for: Build Time 

 

One-way ANOVA: C1 versus C2  
 
Source   DF        SS        MS        F      P 

C2        1  34026.22  34026.22  3935.83  0.000 

Error   128   1106.59      8.65 

Total   129  35132.81 

 

S = 2.940   R-Sq = 96.85%   R-Sq(adj) = 96.83% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level   N    Mean  StDev  -+---------+---------+---------+-------- 

1      65  32.357  4.158                                   *) 

2      65   0.000  0.000  (*) 

                          -+---------+---------+---------+-------- 

                           0        10        20        30 

 

Pooled StDev = 2.940 

 

  

 
 
 
Results for: Material Volume 
  

One-way ANOVA: C1 versus C2  
 
Source   DF      SS     MS      F      P 

C2        1   667.2  667.2  33.69  0.000 

Error   128  2535.4   19.8 

Total   129  3202.6 

 

S = 4.451   R-Sq = 20.83%   R-Sq(adj) = 20.22% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level   N    Mean  StDev  --------+---------+---------+---------+- 

1      65  -4.531  6.294  (----*-----) 

2      65   0.000  0.000                         (----*----) 

                          --------+---------+---------+---------+- 

                               -4.0      -2.0       0.0       2.0 

 

Pooled StDev = 4.451 
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 Guideline 8:  Rotate 45 degrees 

 

Results for: Build Time 

One-way ANOVA: C1 versus C2  
 
Source   DF      SS     MS      F      P 

C2        1   968.4  968.4  81.06  0.000 

Error   120  1433.5   11.9 

Total   121  2401.8 

 

S = 3.456   R-Sq = 40.32%   R-Sq(adj) = 39.82% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  ----+---------+---------+---------+----- 

1      61  5.635  4.888                              (---*----) 

2      61  0.000  0.000  (---*---) 

                         ----+---------+---------+---------+----- 

                           0.0       2.0       4.0       6.0 

 

Pooled StDev = 3.456 

 

  

 
 
 
Results for: Material Volume 
  

One-way ANOVA: C1 versus C2  
 
Source   DF      SS     MS      F      P 

C2        1   71.64  71.64  17.88  0.000 

Error   122  488.70   4.01 

Total   123  560.34 

 

S = 2.001   R-Sq = 12.79%   R-Sq(adj) = 12.07% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  -------+---------+---------+---------+-- 

1      61  1.520  2.830                        (------*------) 

2      61  0.000  0.000  (------*------) 

                         -------+---------+---------+---------+-- 

                              0.00      0.70      1.40      2.10 

 

Pooled StDev = 2.001 
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