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Today's world is increasingly relying on computer networks. The increase in the use

of  network  resources  is  followed  by  a  rising  volume  of  security  problems.  New

threats and vulnerabilities are discovered everyday and affect users and companies at

critical levels, from privacy issues to financial losses. Monitoring network activity is

a mandatory step for researchers and security analysts to understand these threats and

to build better protections. Honeypots were introduced to monitor unused IP spaces to

learn about attackers. The advantage of honeypots over other monitoring solutions is

to  collect  only  suspicious  activity.  However,  current  honeypots  are  expensive  to

deploy and complex to administrate especially in the context of large organization

networks.

This  study addresses  the  challenge  of  improving the scalability and  flexibility  of

honeypots by introducing a novel hybrid honeypot architecture. This architecture is

based on a Decision Engine and a Redirection Engine that automatically filter attacks

and  save  resources  by  reducing  the  size  of  the  attack  data  collection  and  allow



researchers to actively specify the type of attack they want to collect. For a better

integration  into  the  organization  network,  this  architecture  was  combined  with

network  flows  collected  at  the  border  of  the  production  network.  By offering  an

exhaustive view of all  communications between internal  and external  hosts of the

organization,  network  flows  can  1)  assist  the  configuration  of  honeypots,  and  2)

extend the scope of honeypot data analysis by providing a comprehensive profile of

network  activity to track  attackers  in  the organization network.  These capabilities

were  made  possible  through  the  development  of  a  passive  scanner  and  server

discovery algorithm working on top of network flows. This algorithm and the hybrid

honeypot architecture were deployed and evaluated at the University of Maryland,

which represents a network of 40,000 computers.

This study marks a major step toward leveraging honeypots into a powerful security

solution. The contributions of this study will enable security analysts and network

operators  to  make  a  precise  assessment  of  the  malicious  activity  targeting  their

network.
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  CHAPTER I 

INTRODUCTION

 1.  Introduction

Today's world increasingly relies on computer networks. The use of network resources

is growing and network infrastructures are gaining in size and complexity. This increase

is followed by a rising volume of security problems. New threats and vulnerabilities are

found everyday, and computers are far from being secure. In the first half of 2008, 3,534

vulnerabilities were disclosed by vendors, researchers and independants [42]. Between 8

and 16% of these vulnerabilities were exploited the day they were released by malicious

programs  [42].  The  consequences  affect  users  and  companies  at  critical  levels,  from

privacy issues to financial losses [68].

To address this concern, network operators and security researchers have developed

and  deployed  a  variety  of  solutions.  The  goal  of  these  solutions  is  two-fold:  first  to

monitor,  and  second  to  protect  network  assets.  Monitoring  allows  researchers  to

understand  the  different  threats.  Data  are  being  collected  to  better  characterize  and

quantify malicious activity.  The goal  of this dissertation is to introduce an innovative

framework  to  better  measure  malicious  threats  in  the  organization  network.  The

framework is based on a flexible hybrid honeypot architecture that we integrate with the

organization network using network flows.
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 2.  Background

 2.1.  Network Security

Network malicious activity can be quantified and characterized through two distinct

approaches: the first is to monitor production networks, where live hosts and devices are

actually used by people; the second is to monitor an unused address space that nobody

uses. The advantage of the second approach over the first is that there is no user traffic to

filter  out.  Indeed,  the traffic  received by unused addresses  falls  into three categories:

malicious activity, misconfiguration, and backscatter from spoofed addresses [55]. On the

other hand, the disadvantage of the second approach is to rely on the assumption that

malicious activity destined to unused addresses is similar to the one targeting production

machines.

Tools used in these two different approaches can be divided into two groups: passive

and active tools. When monitoring production networks, passive security tools include

intrusion detection systems (IDSs) such as Snort [70], and network traffic sniffers such as

Tcpdump  [80]tc or Netflow  [58]. Active tools include firewalls such as Netfilter  [57],

intrusion prevention systems (IPSs) such as Snort Inline [74], and vulnerability scanners

such as Nessus [30]. When monitoring an unused address space, passive tools are similar,

but active tools are specific sensors developed with the only goal of better investigating

the malicious activity received. Historically, unused address spaces were only passively

monitored. Then researchers had the idea of actively replying to the traffic received to

discover  the exact  threat  behind each connection attempt.  To understand the research

challenges  introduced with this new idea,  we will  now describe the different  existing

types of active sensors.
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 2.2.  Honeypots

 2.2.1.  Definitions

The  following  vocabulary  is  important  to  understand  the  remaining  parts  of  this

dissertation:

� We define a  network sensor as  an unused IP  address  instrumented to collect

information  about  suspicious  traffic.  We separate  sensors  into  two categories:

passive sensors, which simply collect data without any interaction with the source

of  traffic;  and  active sensors, which  can  interact  with  the source  of  traffic  to

collect additional information. 

�  We  define  a  honeypot as  a  network  device  that  provides  a  mechanism for

completing network connections not normally provided on a system and logging

those connection attempts [19]. We note that honeypot and active network sensor

are synonyms.

� We define a darknet as a network of passive sensors.

� Similarly, we define a honeynet as a network of honeypots.

� By honeypot architecture, we mean a specific combination of software solutions

to administrate a honeynet.

� Finally  by  honeypot  framework,  we  mean  the  combination  of  a  honeypot

architecture and a data processing solution to analyze malicious network activity.

 2.2.2.  Honeypot Attributes and Classification

The main goal of honeypots is to provide information about network attacks. A large

variety  of  honeypots  have  been  proposed  by  researchers  to  collect  various  types  of

security threats. These honeypots can be organized according to three main attributes:
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� Fidelity: honeypots have different levels of interaction, whether they offer emulated

or real services to attackers. The more interactions a honeypot has with an attacker,

the more knowledge is gained about the attack.  Hence,  three different  levels  of

interaction are defined: 

1. A  high-interaction honeypot is a conventional network resource,  such as a

computer or router, with no active user and no specific task other than getting

attacked. From an attacker’s point of view, this type of honeypot can hardly

be differentiated from another production machine. The advantage is to gain

as  much information as possible  about the attack.  Of course,  with  such a

genuine  exposure,  the  risk  of  being  effectively  compromised  is  real.

Consequently, these honeypots should be closely monitored and data control

mechanisms, such as a reverse firewall, should be configured to prevent an

attacker from using the honeypot to damage other production resources. The

Honeynet  Project  [40] provides  tools  and  documentation  to  deploy  and

administrate this type of honeypot. 

2. A low-interaction honeypot provides limited interaction with the attacker by

emulating a set of services. The goal of low-interaction honeypots is to gather

information  about  the  first  steps  of  an  attack.  Information  about  the

motivation  of  the  threats  received  is  rarely  captured  because  the  level  of

interaction  is  too low for  the honeypot  to  be effectively compromised.  A

well-known implementation of a low-interaction honeypot is Honeyd [62].

3. A zero-interaction sensor is no longer a honeypot but a passive sensor that

does  not  respond  to  attackers.  Such  sensors  are  called  darknets  and  are
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nonetheless able to collect important information about how attackers probe

networks and what services they target. Relevant darknet projects are [6] and

[88].

� Scalability:  the  level  of  interaction  of  honeypots  affects  the  number  of  IP

addresses  on  which  the  honeypots  can  be  deployed  as  well  as  the  maximum

bandwidth they can sustain. Indeed, a darknet is more scalable than a set of high-

interaction honeypots because, from a resource perspective, passively monitoring

thousands  of  network  addresses  is  less  demanding  than  deploying  and

administrating a few high-interaction honeypots.  As a result,  current  honeypot

architectures offer either large scalability or high interaction but not both.

� Security:  as  explained  for  high  interaction  honeypots,  deploying  honeypots  to

actively  collect  malicious  traffic  is  not  a  safe  activity.  Honeypots  can  be

compromised and so several protection systems currently exist to avoid attackers

from using honeypots to relay malicious activity.

Honeypots are governed by these three contending attributes:  scalability,  fidelity and

security. Researchers have to balance these attributes according to their needs and their

resources. They can either study the first steps of an attack by deploying a large number

of low interaction honeypots. Or they can study the full attack process by deploying high

interaction  honeypots.  This  last  option  requires  constant  monitoring  and  important

software and hardware resources. 

 2.2.3.  Honeypots and Network Attack Processes

To better understand how honeypots can be used, it is important to first describe how

network attacks proceed to spread and to compromise computers. For this purpose, we
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define an attack process as a sequence of network communications between an attacker

and a victim, with a malicious purpose. We divide the network attack process in three

phases:

1. The first  phase  is  to  reach  a  victim,  which  means  to  send  a  communication

attempt  to  a  specific  service  hosted  on  a  network  device.  For  example,  a

technique  for  an  attacker  to  discover  a  large  number  of  victims  is  to  scan

incrementally all network addresses within a specific subnet. The attacker goes to

the next phase only if the victim replies and the service is open to the attacker. 

2. The second phase is to exploit the service  found on the victim’s machine by

launching an attack payload. There is not always a clear boundary between the

first and second phase, because some attacks are made of a single network packet

[54], so communication attempts and attack payload overlap. Moreover, attackers

often use the connection initialized during the scan to send the attack payload.

The  attacker  goes  to  the  next  phase  only  if  the  service  is  successfully

compromised by the attack launched. 

3. The third phase is to use the newly corrupted victim’s machine. The attacker can

be someone who wants to gain access to a specific resource, or a worm that is

simply spreading  from one  vulnerable  machine  to  another.  In  such  case,  the

worm  installed  on  the  newly  corrupted  machine  will  start  probing  for  other

victims and will create a new attack process starting with phase one again.

From this model we can map the different phases of network attack with the different

types of honeypots. Figure 1 details this mapping and explains how honeypots attributes

are related. 
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The  probing  phase  of  an  attack  can  be  detected  by  all  types  of  sensors  (zero-

interaction sensors, low and high-interaction honeypots). However, to gather significant

statistical results about scanning techniques and services targeted, one need to monitor

large address space. Therefore, darknets are the most suitable solution to study this attack

phase because of their high scalability. 

The second phase of an attack can be detected only by sensors which can reply to

probes. The reason is that an attack payload can be sent by the attacker to the sensor only

if a network connection is correctly established between the two peers. As we just saw

when explaining the second phase  of  an attack,  we can find some exceptions to this

requirement,  because some attacks are made of a single network packet  that does not

need first an acknowledgment from the victim to be sent. Low interaction honeypots are

well suited to gather exploits sent during the second phase of an attack, because they are

scalable  and  provide  enough  interaction  for  the  attacker  to  send  its  attack  payload.

However, emulated scripts hosted by low interaction honeypots will not always satisfy

the level of interaction required by complex attacks. This threshold between simple and

complex attacks is represented by the level of emulation on Figure 1. Furthermore, low

interaction  honeypots  cannot  be  compromised by attackers,  so  the third  phase  of  the

attack process is never collected by this type of architecture.

As a result, the full attack process requires high interaction honeypots to be analyzed

in detail. High interaction honeypots are not only able to collect complex exploits, they

can  also collect  the third  phase of  an attack,  which is  how the attacker  will  use the

compromised  resource.  This  phase  gives  information regarding  the  motivation  of  the

attack. For example, attacks can lead to the installation of a rogue software to provide
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illicit services to the attacker community, such as a botnet client, illegal file sharing or

hidden remote control. Of course, high interaction honeypots should be closely monitored

to learn enough of the attacker's actions while staying under control. The risk is to have

an attacker being able to use the honeypot to attack external production resources. Thus,

the amount of information gathered on the attack will depend on the level  of control

deployed in the honeypot architecture. This level of control is represented on Figure 1 as

the boundary between high interaction honeypots and vanilla systems such as live hosts.

This  requirement  to  closely  monitor  and  control  honeypots  directly  reduces  the

scalability. Moreover, high interaction honeypots, even if ran on virtual machines such as

VMWare [85], need important hardware resources.
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 3.  Related Work

This  section  provides  a  broad  overview  of  relevant  solutions  to  collect  attack

processes  using  passive  sensors  and  honeypots.  A  more  specific  review  of  related

literature per topic is given at the beginning of Chapters 2 to 5.

 3.1.  Darknets

The idea of passively monitoring unused IP space to learn about suspicious traffic has

spread  through  several  research  projects  with  various  names.  First,  the  Network
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Telescope  [53] [56] has pioneered the use of darknets to learn about denial of service

attacks [55]. Another project called Blackholes [75] was able to collect traffic from 16.8

million IP addresses (1/256th of the Internet) to study global trends of worm activity. The

Darknet project  [29] provides a full guide to learn how to configure a darknet and start

monitoring malware traffic.

While  darknets  offer  the  greatest  scalability  of  all  monitoring  solutions,  they  are

greatly limited by the lack of active responders. The Internet Motion Sensor [5] and iSink

[88] are two research projects that implemented stateless active responders to darknets.

As a result,  they were able to keep a high scalability while capturing the first  attack

payloads sent by attackers. These two architectures provided important discoveries on the

attributes of unused IP space to understand the differences in traffic collected. They are at

the transition between passive darknets and active honeypots.

 3.2.  Low Interaction Honeypots

The most widely used low interaction honeypot is Honeyd [62]. Honeyd can create a

population of virtual hosts on a network using unassigned IP addresses. Each host can be

configured with a set of emulated services and a specific operating system behavior. The

simplicity and flexibility of Honeyd makes it a relevant solution to host a complete low

interaction honeynet. However, attacks collected depend on the interaction provided by

the emulated services, and developing these services is often a difficult challenge.

Another  well-known  low  interaction  honeypot  is  Nepenthes  [2].  Nepenthes  was

designed to automatically capture malware that spread from one computer to another. It

consists of a set of emulated vulnerabilities that give enough interaction to capture the
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infection attempt of malware. Then Nepenthes examines the attack payload and tries to

download the remaining part of the malware.

 3.3.  High Interaction Honeypots

The  Honeynet  Project  [40] has  developed  a  variety  of  tools  to  help  researchers

deploying their honeynet and analyzing suspicious network traffic.  One of these tools

called  Honeywall  [41] was  especially  designed  to  administrate  high  interaction

honeypots.  It  provides  a  web  interface  to  monitor  the  data  collection,  and  a  reverse

firewall  to  control  outgoing  connections  from  potentially  compromised  honeypots.

Honeywall  also  integrates  system  monitoring  capabilities  through  the  Sebek  kernel

module [71].

The more cost efficient solution to host high interaction honeypots is to use virtual

machines.  Compared  to  genuine  systems,  virtual  environments  have  the  important

advantage of being easier to monitor, to save and to clean after a successful compromise.

The current virtual machine solutions are: VMWare  [85], VirtualBox  [83], Qemu [13],

User Mode Linux [33], Xen [11] and Virtual PC [82] from Microsoft.

A recent  project  based on Qemu and called Argos  [59] allows memory tainting to

follow network data inside the virtualized environment.  As a result,  attacks  based on

buffer  overflows  can  be  immediately  detected,  analyzed  and  associated  to  a  remote

network attacker.

 3.4.  Hybrid Honeypots

The need to collect detailed attack processes on large IP spaces has pushed researchers

to invent more scalable and intelligent architectures. These projects fall into the category

of hybrid honeypot architecture. We provide a detailed comparison between our approach
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and existing solutions at the beginning of Chapter 4, when we introduce our Honeybrid

architecture. 

Collapsar  [43] simplifies  the  deployment  and  administration  of  high  interaction

honeypots  on large  IP  spaces  by using GRE tunnels  to route traffic  from distributed

networks  into  a  centralized farm of  honeypots.  The  limitation of  Collapsar  is  to  not

provide any filtering mechanism that can prevent high interaction honeypots from being

overloaded. 

Another project called Potemkin  [86] is based on the idea that idle high interaction

honeypots  do  not  even  need  to  run.  As  a  result,  the  architecture  saves  resources  by

starting a new virtual  machine for  each  active IP  address.  As soon as  an IP  address

becomes inactive, the virtual machine is destroyed to save physical memory and CPU

resources. Such a system allows hundreds of virtual machines to run on a single physical

host. 

 4.  Publications

We  ran  different  experiments  at  the  University  of  Maryland  using  honeypots  to

quantify and analyze malicious threats targeting the campus network. The results of these

experiments have been released in the following publications:

� In [28] we investigated which network characteristics would be the most relevant

to automatically separate network attacks collected by high interaction honeypots.

During  four  months,  we  deployed  two  high  interaction  honeypots  running

Windows 2000 with a set of 25 vulnerabilities. We discovered that 78% of the

4,707 attacks collected tried to compromise the Microsoft Netbios service. Thus,

we focused on investigating how attackers exploited Netbios vulnerabilities and
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we  defined  a  methodology  based  on  the  K-Means  clustering  algorithm  to

automatically classify the different attacks received. We presented our findings at

the International Conference on Dependable Systems and Networks 2006 (DSN

'06, 24% acceptance rate). In [16] that was published in the International Journal

of  Security  and  Networks,  we  extended  our  analysis  of  automatic  attack

classification  by  running  the  K-Means  algorithm  on  combinations  of

characteristics. 

For  these  two  experiments,  we  collected  attacks  using  high  interaction  honeypots

because  we  did  not  want  emulated  services  from low interaction  honeypots  to  limit

attackers.  We  closely  monitored  and  controlled  outbound  connections  and  we  re-

initialized  the  honeypots  when  we  detected  that  they  were  compromised.  Thus,  we

collected little to no information about the third phase of attack processes (when attackers

can use the compromised system).

� This third phase of the attack process was the focus of our next experiment, where

we  decided  to  study  the  motivation  of  attackers  trying  to  compromise  SSH

servers. We deployed a set of four high interaction honeypots running Linux and

SSH servers  with simple passwords.  During a first  experiment of 24 days,  we

collected  on average  2,805 connection attempts  per  computer  per  day.  Out of

these,  824 logged  in  successfully.  From this  significant  number  of  successful

compromised sessions,  we were able to  draw a  state  machine  of  the different

actions  taken  by  attackers  to  use  the  corrupted  honeypots.  For  example,  we

discovered  that  most  of the attackers  started by changing the password of  the

compromised  account,  then  checking  the  computer  configuration,  to  finally
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download and install a rogue software. The results of this analysis were published

in [65] and presented at the International Conference on Dependable Systems and

Networks 2007 (DSN '07, 25% acceptance rate). 

� We then ran a second experiment for a longer period of 8 months, during which

we recorded a total of 1,171 attack sessions. In these sessions, attackers typed a

total of 20,335 commands that we could more precisely categorize in 24 specific

actions. These actions were then analyzed based on the type of rogue software

installed  by attackers.  This  experiment  is  described  in  detail  in  Chapter  2  to

illustrate the significance of high interaction honeypots to learn about attackers.

Our  findings  have  been  published  in  [14] and  will  be  presented  at  the

International Conference on Dependable Systems and Networks 2009 (DSN '09)

next June.

� To  understand  the  global  or  local  characteristics  of  network  attacks,  we  then

deployed two identical high interaction honeynets in two different locations: an

academic network (at the University of Maryland) and a corporate network (at

AT&T Labs  Research).  We  correlated  the  volumes  and  the  sources  of  attack

collected with a global IDS and a globally distributed honeynet. We found that

only 30% of attack traffic could be globally correlated. The remaining 70% were

specific  to  the  local  network.  This  experiment  showed  the  importance  of

honeypots inside organization network to provide an accurate view of network

threats.  We published our results  in  [17] and we presented our findings at  the

IEEE Symposium on High Assurance System Engineering 2008 (HASE '08, 22%

acceptance rate).
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We learned from these different experiments that honeypots provided unique insights

about malicious threats. They offered an invaluable solution to understand attacks and

quantify network security,  without the problem faced by IDSs of filtering user traffic.

However,  the  administrative  burden  required  by  high  interaction  architectures  was

heavily time and resource consuming. Moreover, it took us several months after the end

of each experiment to analyze and extract insightful results from the large amount of data

collected.  Moreover,  we  were  able  to  collect  attacks  using  only  few  honeypot  IP

addresses. These conclusions are the direct consequence of the poor scalability of high

interaction  honeypots.  With  such  architecture,  offering  a  high  level  of  interaction  to

attackers could not be expanded to a large panel of services and to a large IP space. For

example, we know that the University of Maryland network is made of two /16s subnets.

This represents a total of 131,074 allocatable IP addresses. Quantifying malicious activity

on  such  space  would  require  deploying  honeypots  on  more  than  a  handful  of  IP

addresses. 

� To precisely assess this problem of coverage (the number of honeypots that need

to be deployed to collect a representative sample of the malicious activity that

targets the organization), we collected during six weeks the complete scanning

activity occurring on campus. We used network flow collectors deployed at the

edge of the campus network to store all the network flows destined to unused

addresses. We discovered that a single honeypot was collecting traffic from only

3% of the overall campus malicious activity.  We also assessed that to reach a

coverage of  50% of this overall  activity,  we needed to deploy more than 500

honeypots.  The  results  of  this  analysis  are  presented  in  Chapter  3  and  were
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published in  [15]. Our findings were presented  the IEEE Symposium on High

Assurance System Engineering 2008 (HASE '08, 22% acceptance rate). 

These  publications  outline  our  experience  in  assessing  the  limitations  of  current

honeypot technologies. We summarize these limitations and we detail our approach in the

next two sections.

 5.  Problem Statement

When deploying  honeypots,  researchers  have to  precisely  define  three  elements: a

location, an architecture, and a configuration. Data collected by honeypots is critically

affected by these three keys. Therefore, they need to be carefully selected. We will now

detail the different problems related to each of these elements.

The  location is  the  set  of  IP  addresses  used  by  honeypots  to  receive  and  collect

network traffic. The current addressing protocol deployed on the Internet is IPv4  [60],

which is made of 4.3 billions unique addresses. The volume and the nature of attacks can

greatly change from one IP address to another. Some attack threats such as the Slammer

worm  [54] are globally distributed, while others such as Denials of Service  [55] target

precise locations. So the location of honeypots can greatly affect the data it will receive.

Recent studies started to compare attack data from different locations  [61] and defined

network characteristics such as reachability or proximity to production networks [23] that

could partially explain the differences observed. Moreover, not only the location but the

size of the network of honeypots is important to collect significant  attack results. We

detail  further  in  Chapter  3  the  relation  between  number  of  honeypots  and  malicious

activity coverage.
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The honeypot  architecture refers to the type of honeypot. We saw in the previous

section that the different types of honeypots were governed by three attributes: fidelity,

scalability  and  security.  There  is  currently  no  solution  available  that  offers  both

scalability  and  a  high  level  of  interaction  [63].  As  a  result,  researchers  and network

operators who want to deploy honeypots cannot collect and analyze datasets which have

both  detailed  attack  processes  and  large  network  space  coverage.  We  introduce  in

Chapter 4 a hybrid honeypot architecture to precisely address this challenge.

The  configuration defines  the  set  of  services  offered  to  attackers  and  thus  the

behavior  of  the  honeypot.  By  set  of  services  we  mean  the  set  of  opened  ports  and

software  listening  for  network  connections  on  the  honeypot.  These  services  can  be

emulated or real. They can be host-specific resources or vulnerabilities to study specific

categories  of  attack.  The  problem when deploying  honeypots  in  a  large  organization

network is that there is a very large number of possible configurations to choose from.

There is currently no solution to determine whether the configuration of a network of

honeypots is optimal to collect malicious threats; and to make sure that the fingerprint of

the network of honeypots  is  small  enough to prevent  attackers  from detecting it.  We

present in Chapters 5 and 6 a method based on network flows to precisely address this

challenge. 

The last major issue of current honeypots is that even if they actively reply to attackers

with more or less interaction, they do not allow researchers to select the type of attack

they want  to study.  This means that  because honeypots  collect  attacks  randomly,  the

information  collected  is  not  often  the  information  researchers  were  really  looking to

analyze.  From  such  point  of  view,  existing  honeypots  are  collecting  attack  traffic
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passively.  We believe that if honeypots adopt a more active approach when receiving

illegitimate connections, they could 1) provide better results on the exact threat expected

to be studied, and 2) reduce the resources spent to analyze and filter data collected.

 6.  Approach

The  purpose  of  our  study  is  to  develop  efficient  solutions  to  overcome  current

honeypot limitations. We addressed the issue of the size and the location of honeynets by

correlating network flows with darknet data. We solved the problem of scalability of high

interaction honeypot by implementing an advanced hybrid honeypot architecture called

Honeybrid.  We  solved  the  problem  of  configuring  honeynets  in  large  organization

network  by  using  a  server  and  scanner  discovery  program  based  on  network  flows.

Finally  we  addressed  the  challenge  of  cost  effectively  analyzing  large  volumes  of

malicious data by implementing an aggregation process that integrates network flows and

honeypot  data.  These solutions are integrated into  a  complete framework to facilitate

honeypot deployment and attack data analysis. The different software solutions of this

framework are represented on Figure 2. The overall goals are 1) to provide to the security

community  an  advanced  honeypot  solution  that  can  be  better  integrated  into  the

landscape of security tools used by researchers and network operators, and 2) to deploy

such  architecture  at  the  University  of  Maryland  to  better  quantify  malicious  activity

occurring  on  the  campus  network.  The  cornerstone  of  this  architecture  is  a  hybrid

gateway that offers both advantages of high and low interaction honeypots: fidelity and

scalability.
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Figure 2: Overview of our malicious traffic analysis framework
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 7.  Contributions

The contributions of this work are: 

� Honeypot classification and mapping with attack process: we provide a detailed

classification of current honeypot solutions and we link this classification with the

different  phases  of  attack  collected.  We  outline  the  different  properties  and

limitations of honeypots. 

� Hybrid architecture: we describe an innovative honeypot solution that provides

both a  high  scalability and  a high  level  of  interaction.  We also introduce  the

concept of an attack event, to differentiate network attacks worth of analysis from

the noise of malicious traffic. Our architecture is designed to be able to harvest

large  IP  spaces  while  actively  filtering  attack  events  from  attack  traffic  for

detailed focused analysis.

� Dynamic configuration engine: we address the problem of honeypot configuration

by  combining  network  flows  and  automated  honeypot  management.  From  an

exhaustive monitoring of the existing attack patterns targeting the organization

network,  we infer  the required  honeypot  configuration  to assess  the malicious

activity.

� Architecture integration: we provide the first open source implementation of an

hybrid honeypot architecture. We integrate this architecture with network flows to

provide  a  complete  attack  assessment  framework.  Finally,  we  deploy  this

framework at the University of Maryland and we show how it can be used to

accurately detect compromised computers inside the organization network.
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 8.  Structure

In this dissertation we present our research into developing case studies based on data

collected on high interaction honeypots and designing an advanced architecture to better

characterize  malicious  activity  on large  IP  space  such as  the University of  Maryland

network. We organize this research as follow: in Chapter 2, we illustrate the usefulness of

high interaction honeypots by presenting an experiment based on determining attacker

profiles. We also present the difficulties to expand such experiment to cover larger IP

spaces. In Chapter 3, we motivate further the need for an adaptive honeypot architecture

by assessing the required number of honeypots to cover a significant volume of attack

traffic.  This  study leads  to  Chapter  4,  where  we present  the complete design  of  our

innovative honeypot architecture. We first give the specifications of the hybrid honeypot

technology that addresses the problem of scalability and level of interaction. We then

detail  our implementation,  and we evaluate its  functionalities on a large  IP  space.  In

Chapter 5, we introduce a heuristic-based algorithm to detect scanners and servers from

network flows. We integrate this algorithm with the hybrid architecture in Chapter 6, to

offer a complete network attack assessment framework for the organization network.
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  CHAPTER 2

HIGH INTERACTION HONEYPOTS AT WORK

 1.  Introduction

This  chapter  illustrates  the  depth  of  understanding  that  can  be  gained  from  high

interaction honeypots. As we mentioned in Chapter 1, high interaction honeypots are well

suited for collecting information on the third phase of attack processes,  which is how

attackers use the computer resources they successfully took over. We therefore designed

an experiment with the maximum level of interaction to gather more information about

this attack phase.

Our  first  observation  of  the  network  of  the  University  of  Maryland  showed  us  a

constant scanning activity by attackers looking for SSH servers to compromise. We also

found in  the  literature  that  most  security  analysis  experiments  focus  on  methods  for

keeping attackers  out of target  systems, but  do little to address  their  behavior  after a

remote  compromise.  We  therefore  started  an  experiment  to  understand  attackers’

motivation  by  focusing  exclusively  on  post-compromise  attacker  behavior.  We

configured four high interaction honeypots with SSH servers running on Linux. These

servers were configured with simple passwords to attract attackers. This chapter presents

our findings from eight-month of data collection.

The chapter is structured as follows. Section 2 discusses the related work. Section 3

describes the experimental setup used to collect the attack data. In Section 4, we discuss

the analyses on the attack data, we present the attackers’ action, and the rogue software
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that was downloaded, installed and run on the target computers. Finally, we summarize

our findings in Section 5.

 2.  Related Work

The experiment described in this chapter has been published in [14]. A previous study

based on a smaller data collection period of 24 days was published in [65].

In  [66],  the  authors  performed  an  in-depth  forensic  analysis  of  post-compromise

attacker  behavior.  Their  primary  focus  was  on  investigating  the  actions  of  more

sophisticated attackers.  The main difference between their project  and our experiment

was that we focused on a larger set of less sophisticated attackers and gathered aggregate

statistics about their actions rather than investigating individual incidents in detail.

In  [72], the author described the login attempts on a single honeypot over a 22-day

period. A modified SSH server was used to collect password attempts, and most of the

article was dedicated to the analysis of these attempts. During a period of seven days

where Sebek was also installed on the honeypot, the author recorded one successful login

attempt, providing some insight into attacker behavior.

The project which is the most similar to our study is [1], in which the authors collected

SSH intrusions during six months from a total of 35 attackers. By comparing IP addresses

of attackers with the ones collected using a large distributed low interaction Honeynet,

the authors determined that intruders and scanners were two distinct sets of attackers.

They also came to  the same conclusion that  attackers  targeting  weakly secured  SSH

servers were low skilled. Our work differs with [1] due to our larger data collection (we

collected  attacks  from  305  distinct  attackers),  which  allowed  a  more  precise

quantification of actions performed by attackers and rogue software downloaded.
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 3.  Experimental Setup

To collect our data, we used a set of four high-interaction Linux honeypot computers

on  a  sealed-off  network  that  allowed  all  incoming  connections,  but  severely  limited

outgoing connections to minimize damage by the attackers.  The IP addresses of these

honeypots were never advertised. The four honeypots all ran on an identical Linux disk

image: a slimmed-down installation of Fedora Core 3. To monitor attacker activity, we

used  the  following  tools:  a  modified  OpenSSH server  to  collect  password  attempts,

syslog-ng [79] to remotely log important system events, including logins and password

changes, strace [78] to record all system calls made by incoming SSH connections, and

the Honeynet Project's Sebek tool [71] to secretly collect all keystrokes on incoming SSH

connections. As described in  [65], Each honeypot had one privileged root account plus

five non-privileged user accounts. To get an idea about commonly tried usernames, we

ran some initial experiments.  Based on these results, we decided to use the following

usernames:  admin,  mysql,  oracle,  sarah, and  louise. These experiments also revealed

that the most commonly tried passwords were '(username)', '(username)123', 'password',

and '123456', where (username) represents the username being tried. We rotated among

these four passwords for each username as follows: after a compromise, we re-deployed

the honeypot and moved on to the next password in the list. To ensure quick turnaround

after a compromise, we used a pre-built disk image and automated scripts to manage the

deployment  of  the  honeypots.  We monitored  the  syslog  messages  coming  from each

honeypot  at  least  every  24  hours  to  check  for  logins  and  password  changes.  In  this

context,  we defined  a compromise  as  an unauthorized login  followed by a  password

change,  rather  than  using  the  traditional  definition  of  an  unauthorized  login  only.

Password  changes  typically  happened  every  day.  Following  a  password  change,  we
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waited at least one hour before we copied the disk  image back onto the honeypot, re-ran

the deployment script, and continued monitoring the live syslog data.

In  order to encourage attackers to enter the non-privileged user accounts instead of

the root account, two of the honeypots were set up with strong root passwords. The other

two  honeypots  had  root  accounts  which  rotated  among  the  four  passwords  'root',

'root123', 'password', and '123456'.

 4.  Analyzing the Attacks

The first step of our analysis was to divide the information we collected into different

attacks and sessions. We assumed that each IP address over a time window of 24 hours

corresponded  to  an  attacker.  We defined  an  attack  to  be  all  interactions  between  an

attacker and a honeypot. We then defined a session as a single SSH interaction between

an  attacker  and  a  honeypot.  We  extracted  a  total  of  1,171  different  sessions.

Differentiating  attacks  from  sessions  is  important  because  we  discovered  that  some

attackers  used  several  SSH  sessions  in  parallel  to  perform  their  attack.  Our  results

showed that 47% of attackers used a single session, and the remaining 53% of attackers

used at least two parallel sessions. Table 1 provides the number of sessions associated to

the  four  honeypots.  After  several  months  of  collecting  data,  we  changed  the  set  of

honeypot IP addresses (March 28 - August 18, 2007 we used one set of IP addresses and

August 19 - December 4, 2007 we used a second set). The change was a request from the

network administrator on which our testbed was located.
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Table 1: Number of sessions collected by each honeypot

Hosts No. of Sessions 

(First set of IPs)

No. of Sessions 

(Second set of IPs)

Honeypot A 91 231

Honeypot B 155 262

Honeypot C 122 127

Honeypot D 101 81

 4.1.  Analyzing Attackers’ Actions

In  this section, we refined the analysis on the different sessions by introducing the

concept of actions. An action is defined as a set of commands run by an attacker to reach

a goal, for example, gathering information or installing software. Table  2 provides the

detail of each action with examples of commands and overall statistics. We can see from

Table 2 that typical attack sessions consist of three steps:

� First,  attackers check the system configuration,  by reviewing network settings,

user accounts, processes running and software installed;

� Second,  attackers  change  the  system  configuration  by  adding  user  accounts,

modifying passwords and altering software settings; and

� Third, attackers download, unpack, install and run rogue software.

From Table  2, typical actions appear to include getting information related to users

(present in 66% of the sessions), getting information related to the system (39%), and

getting information related to other parts (38%). Passwords were changed in 37% of the

sessions and system files were modified in 34%. We observed that files were downloaded

and unpacked in more than 41% of the sessions. A total of 2,437 commands (12% of the

20,335 commands) could not be identified. Most of these unidentified commands were

discovered to be typos that did not correspond to actual commands.
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Besides these typical sessions, some attackers took other interesting actions such as

trying to hide their intrusion. In 26% of the sessions, attackers deleted log entries and the

command history.  A few attackers recreated deleted files to make sure their intrusion

would remain undetected. Another practice to hide intrusions was to obscure the name of

the folder in which the rogue software was installed.  The most popular folder  names

were: “ ”, “...”, “.. ”, “. ” and “..”. Finding one of these folders is an unmistakable sign

that an attack occurred. We also found that some attackers were compulsively using the

Unix command “w” or “who” to make sure no other legitimate user could connect while

they were attacking the system. 

Most of the attack sessions were short and lasted less than one minute. Some lasted a

few hours because attackers would sometimes launch rogue software such as a network

sniffer  and would return to check the output.  The distribution of  session durations is

provided in Figure 3.

27



Table 2: Grouping of attacker's actions and statistics on the number of commands

Group Action Commands
Commands Sessions

No. % No. %

Get 

information

get information related to

users

w, whoami, who,

last, id, finger,

lastlog

1,464 7.20% 768 65.64%

get information related to

the system

uptime, uname, if-

config, netstat,

locate, php -v,

hostname, whereis,

nmap, cat

/etc/<system file>

894 4.40% 454 38.80%

get other type of 

information

ps -a, ps -ax, his-

tory, cat <file> 876 4.31% 445 38.03%

Change 

configura-

tion

add one or multiple users

and set passwords

adduser, useradd,

passwd 116 0.57% 48 4.10%

gain root privileges su, sudo 85 0.42% 40 3.42%

change the password passwd 569 2.80% 432 36.92%

modify system files cp, mkdir, mv, rm 1,030 5.07% 400 34.19%

change system 

configuration

path, userdel, ipt-

ables, ln, export,

chown, chmod, rhsnd
610 3.00% 236 20.00%

Edit files

read system files

nano, pico, vi

<lastlog, wtmp,

bash_history, /etc/

passwd>

139 0.68% 13 1.11%

read other files nano, pico, vi 39 0.19% 86 7.35%

edit system files nano, pico, vi 430 2.11% 63 5.38%

Hide 

intrusion

tamper with system files or

user variables to hide traces

of the intrusion 

unset <ENV_VAR>, rm

[-rf] <file>, ex-

port

<ENV_VAR>=/dev/null

, cat /dev/null >

<file>

859 4.22% 313 26.75%

Restore 

deleted files

restore deleted files to hide

traces
touch 95 0.47% 27 2.31%

Kill process
terminate the execution of

processes

kill, cat <file-

name>.pid, ps 362 1.78% 109 9.32%

Fetch rogue 

software

download a file from a 

remote host and unpack it

lwp-download, scp,

curl, ftp, wget,

unzip, tar
2,339 11.50% 484 41.37%

Deploy

rogue 

software

run a rogue software perl, ./<command> 1,065 5.24% 459 39.23%

install a rogue software
./configure, make,

make install,

./setup, gcc
25 0.12% 11 0.94%

Tool cmd Unix tool commands cd, ls, pwd, clear 5,700 28.03% 892 76.24%

Other 

actions

use SSH ssh, "yes" 47 0.23% 23 1.97%

launch a new console sh, bash 79 0.39% 69 5.90%

launch a new console screen 68 0.33% 30 2.56%

failed attempt of getting

files using SCP

winscp unsuccessful

attempt 611 3.00% 8 0.68%

chat with other users wall 56 0.28% 6 0.51%

Exit exit the session exit 340 1.67% 291 24.85%

Total

Identified commands
17,898 88.02%

1171
Unidentified commands 2,437 11.98%

Total commands 20,335 100.00%
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 4.2.  Analyzing Rogue Software

The  honeypots  were  instrumented  to  record  all  network  traffic.  We  analyzed  the

incoming traffic using tcpdump [80] and chaosreader [20] to extract files downloaded on

the  honeypots.  We  extracted  250  files  from  379  attack  sessions  where  attackers

downloaded  files.  We  could  not  extract  files  in  the  other  129  sessions  because  the

attacker file download had failed mainly due to incorrect  URLs or missing files. This

result let us believe that attackers were neither skilled nor organized. Here is an example

of an attack session where the attackers did not succeed downloading a remote file. We

found that the attacker tried to download several files, was unsuccessful and then left.

9:53:31 w 

9:53:33 uname -a

9:53:34 uptime  

9:53:45 cat /cpuproc/cpuinfo 

9:53:48 cd /tmp 

9:53:49 ls -al

9:53:53 mkcd # 

9:53:54 ls -al

9:53:58 mkdir   “ ”

9:54:00 cd  “ ”

9:54:03 ls wget 

9:54:07 /sbin/ifconfig 

9:54:31 wget

9:55:09 ftp

9:55:47 o 

9:55:54 ftplynx www.almerimur.com/capella/linux.tar.gz 

9:56:08 wget www.geocities.com/capella99_2000/linux.tar.gz

9:56:18 ftp 207.150.179.22 

9:57:18 wget  www.almerimur.com/capella/linux.tar.gz

9:57:26 history -c -d offset

To analyze the nature of the files we extracted, we submitted them to the VirusTotal

web service  [84]. 50% of the files could be identified using VirusTotal. The remaining

50% were identified manually using their source code. Figure 4 provides the categories

and the volume of files downloaded by attackers during the data collection period. Figure

4 indicates that the popularity of our honeypots grew over time. The gap in August 2007

is  due  to  the  change  in  IP  addresses.  Figure  4 also  shows  that  the  main interest  of
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attackers  was  to  install  “IRCBots”  (most  were  Mech-based  IRCBots  [51]).  The

motivation to deploy IRCBots is to make the compromised computer part of a botnet. An

army of several thousand bots can be turned into profit by attackers who sell computer

resources on the black market [35]. Here is an example of IRCbot based attack session:

13:46:06 cd /var/tmp

13:46:11 wget http://www.shaq.profesor.info/like/error.tar.gz

13:46:16 tar xzvf error.tar.gz

13:46:18 rm -rf error.tar.gz

13:46:19 cd error

13:46:21 chmod +x*

13:46:22 ./x

13:46:28 exit

The second most  popular  software  installed was  “Bouncers”,  which are  programs

used to relay network connections, much like a proxy. Attackers often use this type of

software to hide their source IP address and hostname. Most of the bouncers we collected

were based on Psybnc [64]. Under “Attack Tools”, we grouped various programs used

by attackers to compromise the computer. These tools included non-malicious software,

such as rogue SSH servers,  and malicious programs, such as john-the-ripper  [44], log

cleaners, process hiders and network sniffers. In this category,  we included rogue web

servers  installed  by  attackers  to  setup  phishing  websites  [31].  The  “Rootkits”  type

included  system  exploits  and  rogue  binaries  used  to  gain  root  privileges  on  the

compromised computer. “Network Scanner” contained software to automatically probe

for  listening SSH servers  or  to perform port  scans.  The “Flooder” type  consisted of

network applications built to launch denial-of-service attacks [55] against a given target.

“Backdoor”  included  programs  to  stealthily  and  remotely  control  the  compromise

computer. “Files” contained non-malicious files, such as movie trailers, computer drivers

or even Windows update patches. Attackers  who downloaded these files were simply
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using the compromised computer for storage. We even found an attacker who attempted

to turn the compromised computer into a CounterStrike game server.

The  final  step  in  our  analysis  was  to  label  each  session  with  the  type  of  file

downloaded. We discovered that  in 58 out of the 379 sessions, attackers downloaded

more than one type of file. This number increases to 158 if we aggregate files per attack

instead of session. This is because attackers often used auxiliary sessions to download

other files or performed other tasks in parallel. Main and auxiliary sessions were linked

using the source IP and a time window of 24 hours.

Table  3 indicates that for all categories of rogue software, approximately half of the

attackers  used  auxiliary  sessions.  These  auxiliary  sessions  had,  on  average,  fewer

command  lines  compared  to  main  sessions  and  tended  to  be  shorter,  except  for  the

“Flooder” and “File” types. We investigated the delay between the first command typed

by attackers and the time when they deployed their rogue software, in order to get insight
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Figure 4: Number of files downloaded by

attackers over time, sorted by type
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on the detection time required by a security tool before damage occurred. On average, for

main sessions,  it  took between 2 minutes 14 seconds and 30 minutes for attackers to

deploy their rogue software.

Table 3: Comparison between attack sequences based on the type of rogue software

Main rogue 

software:
IRCBots Bouncer Attack Tool Rootkit Net. Scanner Flooder Backdoor File None

Other rogue 

software often

associated:

Bouncer (12)IRCBots (5) IRCBots (7) IRCBots (4) Rootkit (2) Rootkit (3) Rootkit (1) File (6)  

Rootkit (11) Att. Tool (6) File (4) File (4) Att. Tool (2)Att. Tool (2)Att. Tool (1)   

Flooder (11) Rootkit (4) Bouncer (4)Net. Scan. (3)IRCBots (1) File (1)    

Net. Scan. (9)Backdoor (2)Net. Scan. (4)Att. Tool (3) Flooder (1)     

 Rootkit (1) File (2)      

Number of 

attackers:
83 29 24 22 17 18 4 4 182

Attackers us-

ing aux. ses-

sions:

53 15 11 9 9 8 0 1 89

Type of ses-

sion:
main aux. main aux. main aux. main aux. main aux. main aux. main aux. main aux. main aux.

Number of ses-

sions:
144 136 40 48 29 45 24 24 22 17 21 17 7 6 3 262 326

Avg. session

duration (s):
685 253 761 306 980 252 936 541 1,094 192 680 1,700 563 742 755 543 854

Min. session

duration (s):
4 0 33 0 88 0 60 0 45 14 19 0 155 366 0 0 0

Max session

duration (s):
11,470 3,339 3,645 2,611 2,750 2,664 4,183 4,582 4,512 998 2,819 19,672 1,227 1,976 2,264 7,647 76,629

Avg. number of

lines:
28 17 31 15 212 30 41 18 36 10 21 16 28 18 4 15 13

Min. number of

lines:
2 1 3 1 15 1 9 1 4 2 3 1 12 6 1 1 1

Max. number of

lines:
676 702 93 88 914 859 116 95 261 26 98 59 47 39 9 217 237

Avg. delay be-

fore exploit. (s):
1,030 204 939 371 715 94 1,891 987 2,105 74 1,119 21 358 96 0 581 432

Percentages of attackers for each group of actions:

Get info. 87% 94% 90% 100% 96% 91% 91% 89% 94% 100% 89% 88% 100% 100%100% 80% 87%

Edit files 17% 11% 31% 33% 33% 9% 18% 11% 29% 17% 25% 25% 18% 27%

Change conf. 80% 87% 83% 80% 88% 82% 96% 67% 59% 67% 72% 75% 100% 75% 100% 62% 81%

Fetch rogue

software
100% 55% 100% 53% 100% 82% 100% 78% 100% 67% 100% 38% 100% 100%100% 50% 60%

Deploy rogue

software
76% 40% 69% 33% 83% 36% 82% 44% 77% 44% 67% 25% 25% 25% 41% 51%

Kill process 16% 21% 24% 7% 17% 9% 14% 11% 18% 11% 25% 7% 23%

Hide intrusion 30% 34% 45% 40% 38% 46% 36% 11% 29% 11% 28% 38% 25% 25% 26% 30%

Restore deleted

files
1% 7% 7% 4% 9% 11% 13% 25% 5% 5%

Other actions 17% 13% 28% 27% 33% 46% 14% 33% 29% 11% 6% 25% 12% 20%

Tool commands 98% 72% 97% 87% 100% 82% 100% 67% 94% 67% 94% 75% 100% 100%100% 72% 84.00%

This delay is on average shorter for auxiliary sessions, and can even reach 0 seconds

for the “Backdoor” and “File” types, because auxiliary sessions were sometimes used
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only  to  deploy  the  rogue  software  previously  downloaded  in  the  main  session.  This

explanation is confirmed if we consider the breakdown of attacker actions per type of

session and category of rogue software. We can see that all attackers used a main session

to fetch rogue software, while using auxiliary sessions to obtain information about the

system or to change program settings. We can also see that for all categories except for

“Rootkit” and “Network Scanner”, attackers primarily used auxiliary sessions to hide

their intrusion and restore deleted files. 

 4.3.  Discussion

The data we analyzed provided evidence that attackers targeting weakly secured SSH

servers tend to be low skilled humans. The large number of typos in recorded commands

and the timing between commands indicate that attacks are rarely from automated scripts,

but from human beings who used interactive terminals. For scalability reasons, automated

attacks are predominantly on the Internet. However, our dataset shows that this rule does

not apply for the specific service we opened on our honeypots (SSH on port tcp/22). We

believe  that  human attackers  use  automated  scripts  to  scan  and  find  SSH servers  to

compromise. Once successfully logged onto the machine they proceed to manually install

rogue software. 

Further evidence of the low skill level is found from the relatively low percentage of

attackers who attempted to hide their intrusions as well as the large volume of attackers

who were not able to complete their attacks. We found a number of attackers did not

complete  their  attacks  because  some system tools  were  missing  on  the  honeypot,  or

because the URL from which they tried to download rogue software was invalid. These

findings confirm the conclusions of [1] and [66].
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 5.  Summary

We found in this experiment that a typical attack session consisted of: 1) checking the

system  configuration,  2)  changing  the  system  configuration,  and  3)  downloading,

installing and running rogue software. In about 25% of the cases, attackers will try to

hide their intrusion. 

We identified 250 rogue software files of various types. The most popular were IRC

bots,  bouncers,  attack  tools,  root  kits,  network  scanners,  flooders  and  back  door

programs. We also found that attackers often launched more than one attack session at a

time. We compared the main session with the auxiliary ones. We also found that in 27%

of the sessions, attackers did download some software which was never used. This is an

indication that we might have not given attackers enough time before redeploying the

honeypot.

We  also  learned  from  this  experiment  that  high  interaction  honeypots  required

important computer and human resources. Our hardware configuration consisted of six

machines to collect data from only four IP addresses. We spent several months to build

our installation and then to analyze the data collected. Moreover, the honeypots had to be

closely monitored on a daily basis. To increase the scope of our study and to collect a

larger variety of attacks from a greater number of IP addresses would have been very

challenging. In order to assess the required size of a honeynet to collect attacks from a

majority of attackers targeting the University of Maryland, we started correlating large

scale attack information from network flows with small scale attack information from

honeypot data. The design of our correlation process and the related results are detailed in

the next chapter.
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  CHAPTER 3

DARKNET SCALE IN THE ORGANIZATION NETWORK

 1.  Introduction

We presented in Chapter 2 an experiment based on high interaction honeypots. The

substantial findings of this experiment demonstrate the advantage of honeypots to better

understand  malicious  threats.  We  then  wanted  to  know whether  these  findings  were

collected from a significant proportion of attackers targeting the organization network of

the University of Maryland. To precisely understand the relationship between the size of

a honeynet and the volume of attackers captured in a given organization network such as

the University of Maryland's network, we have to analyze malicious activity for the entire

organization. By providing an exhaustive view of all communications between internal

and  external  hosts,  network  flows  can  precisely  address  this  challenge.  The  network

flows collected at the University of Maryland are obtained with Cisco’s Netflow  [58].

Our methodology consists in correlating the data collected for a given set of unused IP

addresses,  or  darknet,  with  the  scanning  activity  detected  in  network  flows  from

collectors deployed at the edge of the University of Maryland's network. This correlation

was performed in two ways.  First,  by comparing the source IP addresses of attackers

hitting the darknet with the list of attackers scanning the network, we were able to assess

the nature of data collected by the darknet. Second, by comparing the list of destination

IP addresses scanned with a simulated set of unused IP addresses, we were able to assess
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the darknet size needed to reach a significant coverage of the overall scanning activity

that occurred at the University of Maryland's network. 

The results of this experiment address the problem of location and size of honeynets

deployed  within  organization  networks.  Figure  5 indicates  which  components  of  our

framework are involved in this chapter.
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Figure 5: Overview of the components of our framework involved in this Chapter



This chapter is organized as follows. The related publications are reviewed in Section

2. In Section 3, we present an investigation of the different types of activity received by

unused IP addresses. In Section 4, we provide statistics about the scanning activity at the

University of Maryland’s network level, which leads to Section 5 where we explain how

we could use this scanning activity to improve darknet coverage. Finally, in Section 6, we

identify future work and summarize our findings.

 2.  Related Work

This study is based on two areas of research: darknets and port scan detection. We

review the related publications for each of these areas in the next two sub-sections.

 2.1.  Darknets

The idea of monitoring unused address space to detect malicious activity has led to

several  research  projects  including  [29],  [75],  [56] and  [3].  Bailey  et  al.  provided

practical solutions on darknet measurement in [4] and analyzed further in [24] the impact

of  darknet  location  by  comparing  traffic  collected  using  10  distributed  darknets  that

ranged in size from /25 to /8 networks. They presented evidence that very different traffic

activities were observed among distributed address blocks. They also built a list of sensor

properties, such as reachability, visibility, and local scanning preferences, to explain the

differences  and  to  better  understand  the  implication  of  sensor  location.  They  also

introduced  in  [6] a  source-based  filtering  algorithm  to  reduce  datasets  collected  by

darknets. Our work differs from their study because we focused on assessing the size of a

single darknet deployed within a given organization’s network by comparing data from

both the darknet  and the production network.  We believe that  tracking attackers who
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visited dark IP addresses within the production network can greatly help understanding

the different attack strategies.

Sensor size was also analyzed by  [55] but  from the perspective of detection time,

whereas in this study, we were motivated by the problem of the volume of malicious

activity covered.

 2.2.  Port scan detection

We defined a port scan as the activity of an attacker that probes a set of IP addresses at

a site looking for vulnerable servers  [45]. Algorithms to detect  such patterns fall  into

three categories:

� The simplest  solution is  to identify attackers  generating more than N network

events within a given time window T [39]. This method is currently used by the

Snort [70] IDS. The drawback of this solution is to rely on parameters that have a

great impact on performance [69].

� To reduce this problem, a probabilistic distribution model was suggested by [47].

The idea is to rank remote source IP addresses as normal or attacker by computing

for each of their local destination addresses a measure of unusual access.  This

metric  is  calculated  using  an  access  probability  distribution  based  on  access

history.

� To address the problem of fast detection speed, sequential hypothesis testing was

introduced by  [45] with an algorithm called Threshold Random Walk (TRW).

This algorithm computes a series of updates of a likelihood variable based on the

assumption that attackers will generate many more failed connections than normal

hosts.
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In this study we did not have the constraint of detection time and we had only access

to a dataset of failed TCP connections. We also had the motivation of focusing solely on

scanners  and thus limit  the impact of false positive.  Therefore we decided to use the

simple threshold methodology with a conservative value of more than 30 local source

addresses targeted in less than 24 hours. We justify these thresholds in Section 4. We

leave the possibility to implement a more complex algorithm for a future extension of this

work.

 3.  Assessing Darknet Activity

In this section, we first define and then quantify the different types of traffic received

by unused IP addresses on our organization’s network. We limit the scope of this study to

external TCP traffic, where external means traffic coming from network addresses that do

not belong to the organization’s network, because we will correlate darknet traffic with

Netflow information collected at the edge of the organization’s network. We limit the

study to TCP traffic because we will use the protocol flag information to more precisely

filter the different types of traffic. We will provide the volumes of UDP and ICMP traffic

collected to show that TCP traffic is a significant amount of the overall traffic received.

We define  an  attacker,  or  source,  as  a  tuple  {day;  source  address;  destination  port;

protocol}.  This  means  that  a  single  source  IP  address  sending  TCP  packets  at  two

different days to two different ports each day will be seen as four distinct sources. The

decision to include the destination port in our definition of a source was made to better

identify attacks that are linked to a specific network service.
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 3.1.  Defining categories of TCP traffic received by unused IP addresses

By definition, unused IP addresses do not receive user traffic. So the remaining types

of traffic they are susceptible to receive include:

1. Misconfiguration traffic: when a source is trying to establish a connection with

an incorrectly configured destination, which happens to be an unused IP address;

2. Backscatter  traffic:  when  the  victim of  a  DoS  attack  is  trying  to  reply  to  a

spoofed network address and;

3. Malicious traffic: when an attacker is trying to compromise a network resource.

We can further divide this last category into: 

� Random attacks: when an attacker uses scanning techniques to discover victims

and;

� Targeted attacks: when an attacker has knowledge of the location of a specific

network resource to compromise. The victim is therefore a target of choice, and

the attacker does not usually need to scan multiple network addresses to find it.

From a source point of view, these categories have specific characteristics that could

help  us  to  differentiate  them.  If  we  take  the  characteristic  “number  of  destination

addresses”, then scans can be characterized by a single source address sending packets to

a large number of destination addresses. On the contrary, traffic due to misconfiguration

or directed attacks will often be characterized by a single source address sending packets

to few destination addresses (the ones that are incorrectly configured or the ones that are

specifically targeted). So, by correctly defining what low and high numbers of destination
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addresses  represent,  we can use this  characteristic  to  differentiate  between  scans  and

misconfiguration traffic or directed attacks.

In  the context of the TCP protocol,  another characteristic we can use are the TCP

flags. For example, usual backscatter from TCP DoS attacks are characterized by packets

with the flags SYN and ACK enabled (because the victim of the DoS attack is trying to

acknowledge  the  TCP  handshake  initiated  by  the  spoofed  addresses).  TCP  scans,

misconfigurations  and  directed  attacks  are  trying  to  initialize  TCP  connections.

Therefore, these categories are characterized by first packets that have only the flag SYN

enabled. Finally, unused IP addresses can be targeted by other types of TCP scans besides

SYN-scans. This category will therefore be characterized by first packets that have other

combinations of TCP flags than a single SYN.

According to these characteristics, we can differentiate three groups using only two

characteristics: the number of destination addresses and the flags. To distinguish between

low and high number of destination sources, we used a threshold N and a time window of

one day. If more than N destination addresses are contacted by a single source during a

day, then we characterize this source as having a high number of destination addresses. In

Section 4 we will empirically assess the value of N. Table  4 summarizes the filters we

developed to separate the three groups according to these two characteristics.

Table 4: Groups of traffic and related filters

Groups of traffic Filters

- Misconfiguration

- Directed attacks

SYN flag and less than N destination

addresses per day

- SYN-scan SYN flag and more than N

destination addresses per day

- Other scanning techniques

- Backscatter

Other flag combinations than a single

SYN
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 3.2.  Quantifying traffic received by unused IP addresses

Our  methodology  to  quantify  the  categories  of  external  TCP  traffic  collected  by

unused IP addresses was to correlate Netflow information collected at the edge of the

University  of  Maryland’s  network  with  darknet  traffic.  This  correlation  provides  the

required information on the total number of destination addresses per source and per day,

to separate sources with low and high numbers of destination addresses.

The empirical results are based on a darknet of 77 network addresses, deployed in one

of two /16 university networks. The 77 monitored addresses are spread over a single /23

subnet where other live hosts are in use. 

Netflow  traffic  was  collected  at  the  edge  of  the  university’s  network  using  the

Nfsen/Nfdump architecture [38]. The university’s network is protected by a firewall and

the traffic rejected is not part of our data collection. Therefore, only the traffic that went

through the firewall was recorded. We used a filter to store all the traffic towards the

darknet on a daily basis. We wrote a script to extract, on a daily basis, all the university’s

network activity coming from the sources identified in the traffic towards the darknet.

Finally, we correlated the Netflow and darknet datasets to classify each source sending

packets to the darknet in the categories defined in Table  4. We collected data during a

period of six weeks, from September 21 to November 4 2007. During the time of the

experiment, we recorded a total of 18,778 external sources. 36% of these sources sent

TCP packets,  45% sent UDP packets and 19% sent ICMP packets.  After running the

filters on the TCP data collection with a value of N=30 for the threshold between low and

high number of destination addresses (we justify the threshold value of N=30 in the next

section), 66% of sources were classified in the group of SYN-scans, 21% in the group of
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backscatter and other scanning techniques, 13% in the group of misconfiguration and

directed attacks. Figure  6 shows the evolution of the percentage of distinct sources per

day and per group. 

We can see from Figure  6 that the category “SYN-scans” prevails. The purpose of

using darknets  is  to monitor  malicious  behavior,  and potentially to  understand attack

processes  using interactive sensors: how attackers are trying to compromise machines

and for what purpose. The problem is that the current darknet provides only a sample of

the scanning activity that occurs over the entire organization’s network. Consequently,

the next phase of our study is to know how significant this sample is. By understanding

the actual coverage of our darknet of 77 network addresses among the two /16 networks

in our organization,  we can better  decide if we need to monitor additional  unused IP

addresses to acquire more statistically significant results.

Figure 6: Darknet external TCP activity per group (Normalized)
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This question is addressed in the two following sections: in Section 4 we measured the

scanning activity at the organization level, and in Section 5 we correlated the destination

addresses of these scans with various simulated darknets.

 4.  Measuring University Scanning Activity

Figure 7: Daily number of sources per number of distinct destination

addresses (average on 45 days)

In Section 3, we found that more than 66% of the external TCP sources collected by

our set of 77 unused addresses were performing SYN-scans. In this section, we measure

the overall SYN-scan activity at the organization’s level. Our data collection is based on

the assumption that an attacker scanning the organization network using the TCP protocol

will most likely generate failed connections. We are confident in this assumption because

we know that the ratio between the number of network devices that could successfully

reply to a given probe, and the ones that could not due to filtering or because the network

address  is  not  used,  is  close  to  zero.  For  example,  for  port  22 we detected  that  870

destination  addresses  in  the  university's  network  would  accept  incoming  connections
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from an external source.  Compared to the 131,072 addresses available in the two /16

networks in our organization, the probability that a scan hits an open port 22 is below

0.7%.  Therefore,  we  are  using  noise  of  failed  TCP  connections  to  identify  sources

scanning  the  network.  Flows  generated  from  failed  TCP  connections  are  easily

characterized  because  they  only  have  the  SYN  flag  enabled.  Consequently,  our

methodology to record the scanning activity consists in collecting daily all ingress flows

that only have the SYN flag enabled. Then, we aggregate these flows per source to find

the number of destination addresses each source was trying to reach. As mentioned, we

define a source as a tuple {day; source address; destination port; protocol}. Finally, we

separate sources into two categories: user traffic and malicious traffic. We assume that

the  difference  between  these  two  categories  is  based  on  the  number  of  destination

addresses attempted in a day. Our dataset only consists of failed initializations of TCP

connections. This means that the destination addresses did not send any packets back to

the source. On large networks, failed connections can occur for various reasons:

� At  the  network  level:  packets  can  be  dropped  because  of  a  network  outage  or

network policy,  such as failures in the network infrastructure, packet  shaping or

packet filtering and;

� At the host  level: the connection can fail  because the destination address is  not

allocated, or the host is shut down or the service is not hosted and/or filtered.
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Table 5: Daily number of sources for a range of destination addresses (average over 45

days)

Ranges of destination

addresses

Average number of

sources per day
Categories

1 1,631,703
Legitimate failed

connections
2-16 86,768

17-30 1,818

31-100 411

Scans

101-1,000 362

1,001-10,000 53

10,001-100,000 43

100,001-131,000 2

With a time window of one day,  we assume that failed connections from a single

source is not characterized by a large number of distinct destination addresses, except if

the source performed a scan. So we used a threshold of more than N destination addresses

per  day  to  separate  sources  generating  legitimate  failed  connections  from  sources

scanning the network. Figure 7 provides the distribution of the daily average number of

sources  that  unsuccessfully  tried  to  contact  between  1  and  100  distinct  destination

addresses.  The  error  bars  in  Figure  7 indicate  the  standard  deviation,  and  the  daily

average of 460 sources that contacted more than 100 destination addresses on campus are

not shown due to space.  The logarithmic scale of the number of sources in Figure  7

highlights two different modes in the distribution. From 1 to 30 destination addresses, we

see an important volume of sources, which quickly decreases from more than one million

to ten. After 30 destinations addresses, the number of sources steadily decreases, except

for a few spikes, which are likely to reveal specific scanning software that use similar

algorithms to find victims on the organization network. To select a threshold between

legitimate failed connections and scans, we collected all failed connections generated by

two computers under standard usage,  with various network applications including P2P
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software during 17 days. The average number of distinct destinations from failed TCP

connections per computer and per day was 16 with a standard deviation of 13. Based on

this information and the distribution given by Figure 7, we selected a value of N=30 for

the threshold separating legitimate failed connections and scans. There might be external

sources scanning less than 30 destinations in our organization’s network, however we

believe that a threshold of 30 is  a conservative value to use to filter out  most of the

legitimate  failed  connections  from  the  scanning  activity.  Table  5 gives  the  average

number of sources for different ranges of destination addresses.

 5.  Darknet Coverage

The previous section focused on the distribution of sources that launched TCP scans

against the organization’s network. In this section, we investigate the distribution of the

destination addresses scanned. The goal is to discover if these destination addresses are

uniformly  distributed,  or  if  they  are  concentrated  in  specific  regions  within  the

organization’s  network.  This  information  will  help  us  understand  where  the  darknet

should be located to cover a large malicious activity targeting the organization’s network.

We  first  quantified  the  malicious  activity  coverage  of  the  current  darknet  of  77

addresses. Then, we analyzed the distributions of destination addresses scanned to find

the best deployment strategy. It is important to note that we are working with a dataset of

failed  TCP  connections.  This  means  that  from  all  destination  addresses  scanned  by

external sources, we did not include in our statistical results the destination addresses that

replied to the attacker. We do not think that this alters our findings because, as we show

with an empirical example in Section 4, the number of unused addresses is much higher

than the number of live hosts. Therefore,  the ratio between the number of destination
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addresses replying to SYN-scans and the total number of destination addresses probed is

likely to be close to zero.

 5.1.  Current darknet coverage

As mentioned in Section 3, we monitored 77 unused addresses on a single /23 subnet

where other production machines are used. Our organization’s network is made up of two

/16 networks  that  we will  call  Network  A and  Network  B.  The  darknet  is  currently

deployed on Network B. During the six-week experiment, 66% of the 6,693 distinct TCP

sources collected by the darknet also scanned the organization’s network. These 4,398

sources  represent  an  average  of  14% of  the  overall  dataset  of  sources  scanning  the

organization’s network during the same period of time. This percentage increases to 26%

if  we  simply consider  sources  that  scanned  Network  B.  Figure  8 provides  the  daily

evolution of the number of sources collected by Network A, Network B and the darknet

over  the  six-week  period.  We can  see  from this  evolution  that  the  daily  number  of

external sources scanning the network greatly fluctuated, from 200 sources to more than

2,000  in  only  a  few  days.  However,  the  darknet  activity  always  shows  a  strong

correlation with the activity occurring in Network B, which is confirmed by a Spearman

correlation coefficient of 0.91 between these two datasets.
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Figure 8: Daily evolution of the number of sources scanning the campus

networks

The  conclusion  of  this  analysis  is  that  our  darknet,  on  average,  does  not  collect

information  from  84%  of  the  sources  scanning  the  organization’s  network.  In  the

remaining part of this section, we will determine the required darknet size and location to

increase this coverage. 

 5.2.  Distribution of destination addresses scanned

Our  methodology  to  increase  the  darknet  coverage  consists  of  understanding  the

different strategies used by attackers to scan the organization’s network. For this purpose,

we  applied  on  each  source  an  entropy-based  metric  that  detects  clusters  or  uniform

distributions  in  a  two-dimensional  space  [37].  Our  dataset  can  be  seen  as  a  two-

dimensional space because the first two bytes of all destination IP addresses belong to the

only  two  prefixes  that  uniquely  characterize  the  two  /16  networks:  Network  A  and
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Network B. Therefore, if we focus on one of these two networks, only the last two bytes

will change. 

The metric computes two scores for each source: the third byte entropy and the fourth

byte  entropy.  This entropy is defined as  the weighted sum of densities of destination

addresses per third or fourth byte ranges. For example, for the third byte in Network A,

we define XA(i) as the number of destination addresses in Network A that are scanned by

the external source i. We define XA[j](i) as the number of destination addresses scanned in

Network A by the source i that have a third byte equal to j (this means that all destination

addresses counted in XA[j](i)  belong to the same /24 subnet). Then, the entropy of the

external source i for the third byte in Network A is defined by equation (1): 
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The result of this metric is a number between 0 and 1 that quantifies how concentrated

or uniformly spread the scanned destination addresses are within the /16 network. For

example, if a single source scanned 200 destination addresses in the same /24 subnet,

then the third byte entropy will be equal to 0. This indicates the existence of a high-

density cluster,  because all targets are in the same range. On the contrary,  if the 200

destination addresses were scanned on 200 distinct /24 subnet ranges, then the third byte

entropy would be equal to 1. This indicates a random uniformity, because all targets are

spread across all ranges. An entropy of 0.5 is the result of an equal combination between

uniformity and clustering. For example, an exhaustive scan of all destination addresses of

a /16 network reunites both uniformity and high concentration. Therefore, it will produce

an entropy of 0.5. Figure 9 displays, for each of the 39,225 sources recorded during the
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six-weeks’ data collection, the distributions of the total number of destination addresses

and  the  percentage  of  sources  for  the  third  and  fourth  byte  entropy  of  destination

addresses scanned in Network A and B. 
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Figure 9: Distributions of the number of targets and the percentage of sources for the

3rd and 4th byte entropies of destination addresses scanned in Network A and B.

Two important remarks can be made based on Figure 9: 

� On both Network A and Network B, 99.5% of the sources have a fourth byte

entropy above 0.5, and 88% are above 0.8. This is a strong evidence that almost

no  source  is  targeting  specific  fourth  bytes  across  multiple  /24  subnets.  This

profile is clearly highlighted by the distribution of the number of targets for the

fourth byte entropy displayed in Figure 9
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� The third byte entropy reveals a similar result with 82% of the sources above 0.5

and  61%  above  0.8.  This  means  that  only  18%  of  the  sources  are  targeting

specific ranges across the /16 networks.

These results show that the overall scanning activity for more than 80% of the sources

is not to target specific /24 subnet ranges across the /16 networks. 

Figure 10: Average number of sources for the third byte of all destination addresses

scanned

Figure 11: Average number of sources for the fourth byte of all destination addresses

scanned

This conclusion is confirmed by Figures 10 and 11 that provide the average number of

sources for the third and fourth byte, respectively. Both graphs show strong linear trends

for the average number of sources per byte for Network A and B. More precisely, if we

remove the gaps in Figure 10 (where the average is below 2 sources per byte), which are

due to unallocated subnets where most of the traffic is not routed, we obtain for the third

byte an average of 25.4 sources per byte for Network A with a standard deviation of 4.5,
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and an average of 20.2 for Network B with a standard deviation of 2.0. The linear trend is

even stronger for the fourth byte, where we found an average of 22.8 sources per byte for

Network A with a standard deviation of 1.1, and an average of 17.6 sources per byte for

Network B with a standard deviation of 0.6. These low standard deviations indicate that

the  overall  scanning  activity  is  uniformly  distributed  across  the  two  /16  networks.

Nonetheless, we notice in Figure 11 that the trend is slightly decreasing for Network A,

from an average of 24 distinct sources per day at the beginning of the range to 22 at the

end. This means that on Network A, for a given /24 subnet, IP addresses at the beginning

of the range are receiving scans from 8% more sources on average than those at the end.

The conclusions of this analysis are that 1) we observed differences between the two /

16 networks of our organization’s network, and 2) the location of monitored IP addresses

within a /16 network will have almost no impact on the overall coverage for this single /

16 network. The goal of the next section is to estimate this coverage for a single /16

network as a function of the size of the darknet.
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 5.3.  Coverage for different darknet sizes

Figure 12: Scanning activity coverage for different darknet sizes

within Network B

The methodology to assess the coverage reached by different darknet sizes consists of

correlating the scanning data collected during our six-week experiment with a given set

of unused IP addresses. We focused on only one of the two /16 networks, so the unused

IP  addresses  were  randomly selected  within Network  B only.  To make sure  that  the

random selection was not affecting the results, we ran five different simulations using

five distinct random seeds. The simulation consisted in increasing the size of the darknet

by adding twenty new randomly located monitored IP addresses at each step. After each

growth, we correlated the number of external scanning sources that our set of simulated

unused  IP  addresses  would  have  covered  during  the  six  weeks.  We  stopped  the

simulation after 250 steps leading to a final darknet  of 5,000 IP addresses.  Figure  12
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provides the overall results for the five simulations. The coverage is given in percentages

based on the total number of 21,837 external sources that we collected in Network B

during six weeks. Figure 12 shows that the coverage for a growing darknet size follows a

logarithmic function, except for few increments where we observe jumps of up to 17% in

the percentage of attackers covered. After investigation, we discovered that these jumps

were because of the presence in the data of “vertical” port scans. A vertical port scan

occurs when a single attacker probes a large number of ports of a single targeted host.

From our definition in Section 3, we counted one new source for each new port probed,

even if the probes came from a single source IP address. Consequently, when the target

of a vertical port scan was added as part of our simulated darknet, the number of new

sources covered jumped by several thousands. 

We note also from Figure  12 that  a single  unused IP  address  randomly located is

covering on average 717 sources, which represents 3.3% of the total number of sources.

A set  of  560 monitored IP  addresses  randomly located covers  10,729 sources,  which

represents almost 50% of the total number of sources.

Using a logarithmic regression, we estimated on average, based on the empirical data

displayed  in Figure  12, that  the equation followed by the coverage  C of a single /16

network in function of the number N of unused IP is given by (2):

X = 0.18 · ln(N) – 0.52 (2)

The average error distance between the data collected and this logarithmic equation is

only 3%.

The next step to learn more about attackers targeting our organization’s network is to

increase the size of our darknet. The empirical assessment provided in Figure 12 allows
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our  team  of  security  researchers  and  network  operators  to  determine  the  malicious

activity coverage they would prefer to study using darknet sensors. After setting this goal,

another important information to take into consideration is the technology requirements

for collecting network traffic from several hundreds or thousands of unused IP addresses.

[86], [88], [43], [62] and [7] detailed innovative ideas to deploy such architecture. 

 6.  Summary

We investigated the significance of data collected by darknet sensors deployed at a the

University of Maryland's network. We showed, based on empirical data collected over

six weeks on two /16 networks, that 66% of the external TCP traffic collected by unused

IP  addresses  were  from sources  scanning the university's  network.  We quantified the

daily scanning activity that occurred on the university’s network, and we demonstrated

that  the  destination  addresses  targeted  by  external  scans  were  uniformly  distributed

within each of the two /16 networks. In particular, we measured that less than 18% of

attackers  scanned  specific  clusters  of  destination  addresses.  Finally,  we  assessed  the

coverage of the overall scanning activity reached by a given darknet size by correlating

the empirical  data  with multiple  sets of 1 to  5,000 monitored IP  addresses  randomly

located. The conclusion of this assessment was that a single unused IP covers 3.3% of the

scanning activity, but we can extend this coverage to 50% by increasing the number of

network addresses monitored to 560. 

The next step toward precisely assessing malicious activity at the scale of the University

of Maryland's network is to increase the size of our honeynet and to instrument it with

high  interaction  honeypots.  The  problem is  that  with  current  honeypot  technologies,

deploying a large number of high interaction honeypots requires an important amount of

58



hardware and human resources. The solution is to develop a hybrid honeypot architecture

in order to increase the scalability of high interaction honeypots while using only limited

resources.  This  was  our  motivation  to  start  building  an  advanced  hybrid  honeypot

architecture.  We  introduce  the  design  and  the  evaluation  of  this  architecture  called

Honeybrid in the next chapter.
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  CHAPTER 4

HONEYBRID: HYBRID HONEYPOT ARCHITECTURE

 1.  Introduction

Honeypots provide high quality attack datasets that help measuring and understanding

network  threats.  However,  honeypots  are  either  expensive  to  administer  and  poorly

scalable (high-interaction honeypots) or based on emulated resources that limit the level

of detail they can collect about attacks (low-interaction honeypots). We showed in the

previous chapter that for a large organization such as the University of Maryland, we

needed to deploy honeypots on 560 IP addresses in order to collect malicious activity

from 50% of attackers. 

To  reach  such  scalability  while  minimizing  the  cost  of  deploying  honeypots,  we

introduce  in  this  chapter  Honeybrid,  a  hybrid  honeypot  architecture  that  offers  high

flexibility through an active network redirection mechanism. This flexibility manifests

through the capabilities to 1) write custom filtering and redirection policies, and 2) plug

existing low and high-interaction honeypots to the architecture. 

Figure 13 indicates which components of our framework are involved in this chapter.
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Figure 13: Overview of the components of our framework involved in Honeybrid



This chapter is organized as follow: Section 2 is dedicated to review the related work

on  hybrid  honeypot  architectures.  In  Section  3  we  introduce  the  architecture  of

Honeybrid  and  we  detail  the  functionalities  of  both  the  Redirection  Engine  and  the

Decision Engine. In Section 4 we describe possible applications of Honeybrid. In Section

5 we provide the results of our evaluation. In Section 6 we discuss the current limitations

and related future work. Finally in Section 7 we provide a summary of this chapter.

 2.  Related Work

The idea of extending the scalability of high-interaction honeypots has spread through

several research projects. 

The  simplest  solution to  achieve  this  goal  is  to  use a  network  address  translation

firewall (NAT), as described in [63], that consists in translating a large set of IP addresses

into a  small  set  of high  interaction honeypots  by modifying in real  time destinations

addresses  of  incoming  attacks.  The  problem  with  such  solution  is  that  it  lacks  the

capability  to  filter  attacks,  and  high  interaction  honeypots  can  easily  become

overwhelmed  by  a  large  volume  of  incoming  probes.  As  a  result,  more  advanced

solutions have emerged. So far we can distinguish three areas of improvement:

1. Solutions to enhance resource management at the high-interaction level;

2. Architectures  centralized  on  a  smart  gateway  to  filter  out  uninteresting

traffic;

3. Solutions to generate automatically network responders at the low-interaction

level.
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The focus of Honeybrid is the second area: using a smart gateway to better scale high-

interaction honeypot deployments. We review the projects related to all three of these

research areas in the following sub-sections.

 2.1.  Enhancing Resource Management

The  concept  of  Collapsar  [43] is  to  collect  detailed  traffic  from  multiple  remote

networks and to minimize the cost and the risk of deploying high-interaction honeypots.

The authors used a farm of virtual machines to centralize high-interaction honeypots in a

uniform  architecture,  and  deployed  a  set  of  Generic  Routing  Encapsulation  (GRE)

tunnels to forward traffic from different locations. Thus, to attackers, honeypots appear in

different networks, but the centralized physical location has the advantages of reducing

constraints of deployment, monitoring and analysis. For example, such architecture uses a

central tarpitting module for mitigating outgoing attacks from all honeypots. This module

slows down outgoing connections  and alters  exploit  payloads  sent  by honeypots  that

match harmful  attack signatures.  Collapsar  has also a  central  correlation module  that

provides  data  mining  functionalities  over  threats  spanning  on  multiple  networks.  A

limitation of this architecture is that there is a one-to-one relation between the number of

IP addresses configured to collect traffic and the number of high-interaction honeypots.

Another project called Potemkin [86] was built to collect traffic from large IP spaces

using high-interaction honeypots only. The idea of the project is based on the fact that

honeypots have no production value: when they do not receive malicious traffic they do

not have to run at all. Consequently, the architecture creates a new virtual machine for

each active IP address. When an IP becomes inactive, the virtual machine is destroyed to

save  physical  memory  and  CPU  resources.  Such  system  allows  hundreds  of  virtual
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machines to run on a single physical host. Another interesting innovation of Potemkin is

the containment module that  prevents  corrupted honeypots  from attacking the outside

world. When an outgoing connection is detected from a compromised virtual machine, a

system called the reflector creates a new virtual honeypot with the destination address

corresponding to the denied outbound packet. Thus, the whole Internet can be virtualized

and researchers can observe for example the propagation behavior of a worm that tries to

spread. Contrary to Collapsar, the scalability Potemkin was tested on a /16 network to

collect  traffic  from 65,000 IP addresses.  On average,  58 active virtual machines were

required,  but  during  peak  activity,  over  10,000  virtual  machines  were  running

concurrently.

 2.2.  Using a Smart Gateway

In  [7], the authors implemented a redirection mechanism similar to ours, where they

increased  the  exposure  of  high-interaction  honeypots  by  employing  low-interaction

honeypots as front-end content filter. They showed based on five months of darknet data

that 50% of packets collected did not have payloads, and 95% of the payloads received

had been seen before. Thus, they established that redirecting only filtered connections to

high-interaction honeypots was a scalable solution even for very large IP spaces.  This

work differs from ours in two ways: first the authors did not provide any detail on the

design of their implementation, second their framework does not offer other redirection

policy than sampled payload digest or source-based filtering.

 2.3.  Generating Low-interaction Responders

Another  solution  built  with  the  motivation  of  extending  the  scalability  of  high

interaction honeypots to collect new worms is the GQ architecture  [26]. This project is
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the  most  similar  to  our  architecture  since  it  features  both  a  honeypot  independent

framework and a dynamic replay mechanism. The replay mechanism is built on top of the

RolePlayer project [27] and allows real time updates of the database of known attacks for

maximum filtering efficiency. RolePlayer is able to build client/server scripts from only

two  well  selected  instances  of  the  same  attack,  without  any  knowledge  about  the

underlying  application  protocol.  Thus,  the  RolePlayer-based  proxy  of  GQ  can

dynamically  select  a  redirection  threshold  when  an  incoming  attack  deviates  from a

previously collected sample. However, the authors were not yet able to develop a truly

scalable  implementation  of  their  solution.  They  evaluated  their  approach  from  a

functionality point of view and they show that it can handle a maximum of 100 incoming

connections per second. As we will see in Section 5, our implementation is able to handle

more than 250 incoming connections per second. 

A project  similar to GQ is SGNET  [49], which is built  on top of ScriptGen  [50].

SGNET  is  a  distributed  honeypot  system  that  reduces  the  load  on  high-interaction

honeypots by generating automatically low-interaction honeypot scripts. These scripts are

built to provide a high-depth view of the attack with a limited resource consumption. The

main contribution of SGNET is to be able to automatically learn the behavior of a given

network protocol and to translate it into a script. This learning takes place by using high

interaction honeypots as oracles to extract information from attackers. As a result, the

scalability  of  the  SGNET architecture  is  increasing  over  time.  At  the  beginning,  all

connections  are  forwarded  to  high-interaction  honeypots  and  the  system  is  poorly

scalable. But then after few weeks, most of the connections are handled by the generated

scripts and so the load on the high interaction honeypots is greatly reduced. 
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The GQ and SGNET architectures are hybrid architectures that not only use a filtering

gateway but  also a  system to  automatically generate  low-interaction  responders  from

empirical data. Compared to our project, the two advantages of these approaches are that

1) it removes the dependency on hand-built low interaction scripts to serve as the front-

end responder; and 2) it allows a very accurate filtering policy to filter out known attacks

from the data collection and save back-end resources. However, these advanced systems

are rigid architecture with the only scope of collecting worm attacks. The advantages of

our  architecture  are  its  flexibility  and scalability.  Our  highly modular  filtering policy

allows  researchers  to  deploy  and  combine  filters  for  a  large  variety  of  experiments,

including  the  large  scale  analysis  of  worm  attacks.  Moreover,  Honeybrid  was  built

without  any requirement  on  the  low and  high  interaction  honeypots  deployed.  Thus,

protocol reverse engineering algorithms such as those implemented in GQ and SGNET

could be easily plugged to our architecture. 

Two other interesting protocol reverse engineering systems are Discoverer [25] from

the authors of GQ, and [73], which focuses on extending web-honeypot capabilities. This

research project consists of 1) a dynamic content generation system that build a corpus of

vulnerable  web  requests/responses  from training  data;  and  2)  an  online-classification

module able to deduce the response that is most similar to the incoming request. This

system was deployed live during two months. The uniqueness of this project was to be

able  to  reference  the honeypots  in  search  engine  indexes  in  order  to  collect  targeted

attacks. This technique greatly paid off with 368,000 attacks targeting several hundred

distinct webapps, including 0-day threats recorded in only two months. 
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 3.  Architecture

Honeybrid’s architecture is shown in Figure 14. Honeybrid is divided into three parts:

a gateway, a set of low-interaction honeypots and a set of high-interaction honeypots.

The  idea  of  the  architecture  is  to  monitor  a  large  number  of  IP  addresses  using  the

scalable low-interaction honeypots. By default, all incoming traffic is routed to the low-

interaction honeypots. These low-interaction honeypots provide the necessary interaction

for: 1) the attacker to establish a network session, and 2) the gateway to detect interesting

attack processes among the network sessions established. Information such as source IP

address, destination port or payload, is gathered to decide what sessions are worthy of

further investigation. As soon as an interesting attack is detected, the gateway is in charge

of transparently redirecting the flow of the interesting attack from the low-interaction

honeypot  to  the  high-interaction  honeypot.  Finally,  the  role  of  the  high-interaction

honeypot is to offer full interaction to the attacker, in order to record detailed information

about the attack process that was flagged as interesting.
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Therefore, the central part of the architecture is the Honeybrid gateway, because it is

in charge of orchestrating the filtering and the redirection between the front-end of low-

interaction  honeypots,  and  the  back-end  of  high-interaction  honeypots.  This  gateway

hosts  the  Redirection  Engine  and  the  Decision  Engine.  The  Decision  Engine  filters

network traffic,  which means it  selects  network sessions worthy of analysis  from the

overall  traffic  received.  The Redirection Engine handles selected network sessions by

transparently  changing  the  destination  of  selected  sessions  from  low-interaction

honeypots to the farm of high-interaction honeypots. The design of these two engines is

discussed in the next two sub-sections. 

For  a  better  flexibility,  the  Honeybrid  gateway is  connected  to  the  low and  high-

interaction honeypots through the TCP/IP network and is fully responsible for logging

and recording the network traffic collected. As a result, there is no requirement regarding

the low and high-interaction honeypots besides replying to incoming attack traffic. This
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means that once the gateway is installed and configured, any low and high-interaction

honeypots can be plugged in the architecture, even remotely. For our evaluation, we used

Honeyd  [62] as front-end and we tested both Qemu images  [13] and Nepenthes  [2] as

back-end.

 3.1.  Decision Engine

The first question that we had to address to design the Decision Engine was: how to

define  an  interesting  attack?  In  other  words,  what  does  an  attack  worthy  of  further

investigation  exactly  mean?  The  problem  with  this  question  is  that  the  answer  is

subjective and depends on the type of experiment security researchers want to conduct.

For example, here is a list of potential answers:

1. Attacks matching a specific fingerprint; 

2. Attacks presenting an original content that was never seen before [32]; 

3. Attacks  sending  commands  that  are  not  implemented  in  the  low-interaction

honeypots.

Definitions 1 could be used to investigate all attacks targeting a specific vulnerability,

definition 2 could be used to track 0-day attacks, and definition 3 could be used to help

improving scripts that emulate services. This list is not exhaustive and we believe that a

large number of criteria could be applied to classify a network attack as interesting. For

this reason, we developed our filtering solution in a modular fashion, where each module

is the implementation of a specific criterion. Criteria are applied on network sessions with

a packet-level granularity. For example, we coded a module called HASH that implements

the criteria: “the connection presents original content”. This module simply computes a
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message digest of the payload of each packet received using the  SHA1 algorithm, and

then compares this digest against a database of known payloads. If a match is found, it

means that the payload has already been seen before and therefore the connection is not

redirected.  Otherwise,  the payload is  recognized as  original  content  and the Decision

Engine sends a signal  to the Redirection Engine to redirect  the connection to a high-

interaction  honeypots.  To  allow multiple  criteria  to  be  applied  on  the  same network

session, the Decision Engine can combine them using a Boolean equation. For example,

the rules to redirect a network session could be:

1. “The session is destined to port TCP/25” and

2. “The session sends original content” or 

3. “The interaction limit of the low interaction script is reached”

This set of rules means that all TCP connections targeting port 25 and matching rules

2. or 3. will be redirected to the high-interaction farm of honeypots. Rules 2. and 3. are

implemented as independent modules in the Decision Engine. As mentioned earlier, these

modules process each packet received by the architecture and return a Boolean value to

the Decision Engine. This Boolean value indicates whether the criterion is met (true) or

not  (false).  These  answers  are  computed  according  to  the  Boolean  equation  and  the

Decision Engine labels a session as worth redirecting if the result of the Boolean equation

for the sequence of packets received is  true. The Decision Engine reads these Boolean

equations using a configuration file organized per honeypot and per port. As a result, one

can  define  a  complete  redirection  policy  for  each  IP  address  monitored  by  the

architecture and for  each service opened. For example,  the Boolean equation that  we
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presented, applied to IP address 192.168.0.3, would be written in the configuration file

with the following command line:

192.168.0.3:25 -> HASH(db_payload) OR LIMIT(smtp_script)

where  HASH is the module in charge of detecting unknown payloads,  db_payload is the

database  of  known  payloads  against  which  HASH should  compare  newly  received

payloads, LIMIT is the module in charge of checking that the interaction limit of the low-

interaction honeypot that replies to the connection is not reached. Finally, smtp_script is the

script that  emulates the SMTP service on the low-interaction honeypot that replies to

connections on port 25. We provide additional examples of modules and use cases in

Section 4.

The next step after flagging that a network session was  interesting is to redirect it.

This task is handled by the Redirection Engine that we present in the following section.

 3.2.  Redirection Engine

The Redirection Engine offers  the possibility to forward an active network session

between the low-interaction honeypots and the high-interaction honeypots. To guarantee

such functionality, we first have to address the following question: how to redirect and

preserve an active network session? 

The different  TCP/IP  protocols involved in network communications were built  to

transfer information from a source  S to a destination  D over one or multiple networks.

However, the protocols were not conceived to transfer information from a source S to a

first  destination  D1,  and  then  to  another  destination  D2 within  the  same  network

communication.  This  S-to-D1-and-then-D2 relationship  is  the  main  functional
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requirement of Honeybrid. The second implicit requirement is that the source S must not

detect that the destination D1 has been changed to D2.

The  key  problem  to  meet  these  requirements  is  the  presence  of  states  in  the

communication.  When  a  source  and  a  destination  communicate,  they  both  evolve  in

specific  states  that  manifest  at  different  layers  of  the communication model.  For  our

redirection system to work correctly, we need to guaranty that S, D1 and D2 all move to

coherent states. For instance, if S starts a communication with D1, then after few packets

exchanged,  D1 will have moved to a different state that  D2 needs to reach before being

able to take over the communication with S. In the five-layer TCP/IP model [77], these

states appear  at  the transport  layer  and at  the application layer.  The network layer  is

stateless, therefore, the only task of the Redirection Engine at this layer is to replace the

IP address of D1 by the IP address of D2 in the redirected communication, like a standard

NATing device. Of course, this replacement is performed only between the Honeybrid

gateway and  D2, because  S should not see the address of  D2 in the packets it sends or

receives. 

At  the  transport  layer,  the  situation  becomes  more  complex  because  the

communication can be stateful. Honeybrid handles both UDP and TCP protocols. UDP’s

stateless nature implies that the Redirection Engine only needs to update the checksum of

the UDP headers in redirected UDP packets. TCP’s stateful nature implies that more than

the checksum field needs to be updated in the TCP headers of redirected TCP packets.

TCP  was  built  to  provide  a  reliable  stream  of  packets  between  the  source  and  the

destination  of  the  communication.  This  reliability  is  guaranteed  through  several

mechanisms that prevent packets to be lost, or to be received at the application layer in
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the wrong order. These mechanisms include a sequence number randomly generated by

the source  and the destination,  then acknowledged  and incremented  by each network

stack  to  guaranty  that  all  the  packets  are  correctly  transmitted.  Therefore,  when  the

Redirection  Engine  takes  over  a  TCP connection  established  between  S and  D1 and

redirects it to D2, it needs to update the sequence and acknowledgment numbers of both

packets coming from S and packets coming from D2 to preserve the characteristics of the

header that were established between S and D1. These characteristics also include the size

of the TCP window and the TCP options.

At  the  application  layer,  the  only  requirement  is  to  prepare  D2 to  accept  the

communication already started between S and D1. The Redirection Engine performs this

task using a replay mechanism. This means that all packets already sent by S are stored in

memory, in order to be replayed to D2 if the communication is redirected.

Figure  15 summarizes  the  different  mechanisms  involved  in  the  redirection.  The

Redirection Engine works in three phases: 

� Initialization phase:  incoming packets from  S are forwarded to  D1 while being

inspected by the Decision Engine; 

� Replay phase: if the Decision Engine flags the connection as worth redirecting, it

sends a signal to the Redirection Engine that starts replaying the connection to

D2;

� Forwarding phase: when D2 is ready to take over, packets are proxied between S

and  D2. Thanks to the update of the TCP headers of all packets proxied during

this  phase,  S believes  it  still  communicates  with  D1 from  the  connection
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initialized in phase 1, while  D2 believes it still communicates with the gateway

from the connection initialized in phase 2.

It  is  important  to  notice  that  while  most  of  the  network attacks  can  be redirected

through  this  mechanism,  some  specific  attack  processes  are  out  of  the  scope  of  our

current  architecture.  These  processes  include  connections  based  on  cryptographic

protocols  such  as  SSH  or  HTTPS.  However,  in  such  cases,  Honeybrid  can  still  be

configured for specific services and IP addresses to skip the low interaction front-end and

to forward directly the connections to the farm of high-interaction honeypots.

Another functionality of Honeybrid is to record in two different PCAP files the non-

redirected and the redirected traffic. This last file collection allows researchers to directly

work on a reduce dataset containing only interesting network events.
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 4.  Application

Honeybrid  was  built  to  provide  a  high  level  of  flexibility  in  order  to  suit  a  large

diversity  of  honeypot  experiments.  This  flexibility  is  mainly  expressed  through  the

Decision Engine and its set of modules. We described in Section 3.A the following two

modules:

� HASH: to redirect attacks presenting an original content that was never seen before

(content-based filtering); 

� LIMIT: to redirect attacks made of commands that are not implemented in the low-

interaction honeypots.

We  also  implemented  a  set  of  modules  specifically  built  to  simplify  large  scale

honeypot deployment:
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� SOURCE:  to  redirect  only  the  first  connection  of  each  IP  address  (source-based

filtering). This module works similarly to the HASH module, by maintaining a table

of known items. In the case of  SOURCE, these items are source IP addresses, that

are automatically expired after a given period of time;

� RANDOM:  to randomly redirect  one out of any given number of connections. For

example RANDOM(100) would randomly redirect 1% of incoming connections;

� SAMPLE: to sequentially redirect one out of any given number of connections. For

instance, SAMPLE(40) would redirect one every 40 connections;

� LOAD:  to redirect  connections up to a given high interaction load.  For example,LOAD(10) would stop redirecting after 10 connections per high interaction honeypot

per second;

� COUNTER: to redirect connections after a given number of packets.

We note  that  these  modules  are  extremely  simple  to  add  to  the  architecture.  The

smallest one is  SAMPLE with 8 lines of C code, and the largest one so far is the  HASH
module with less than 150 lines of code.  The fact  that  they can be combined greatly

leverage  the  capabilities  of  Honeybrid.  For  example,  it  takes  only  one  line  in  the

configuration file of Honeybrid to collect unique attacks targeting web servers on a large

network of 65,535 IP addresses (/16) with a single high-interaction honeypot:

192.168.0.0/16:80 -> HASH(web_db) AND LOAD(10)
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The HASH module will filter out non-unique attack requests, and the LOAD module will

guarantee  that  the  high-interaction  honeypot  is  never  overwhelmed.  By  adding  theRANDOM module to the equation, we can collect additional attack requests that would look

identical after the first payload, but that could then potentially differ: 

192.168.0.0/16:80 -> (HASH(web_db) OR RANDOM(10)) AND LOAD(10)

Thanks to the versatility of our solution, another possible usage of Honeybrid is be to

deploy it in front of a legitimate server and dynamically redirect suspicious connections

to a high interaction honeypot configured exactly like the server. Benefits would be to 1)

prevent  the  legitimate  server  from being  potentially  compromised,  and  2)  study  the

suspicious connection in a safe and controlled environment. This functionality would be

similar  to  the  one  provided  by  the  BaitnSwitch  project  [10] that  has  now  been

implemented into Snort [9].

 5.  Evaluation

We evaluated Honeybrid in two ways:  first,  we measured the impact of the replay

mechanism on the duration of a redirected connection. Then, we empirically evaluated

the  performance  of  the architecture  configured  with  the  HASH module.  The  first  part

addresses  the  problem  of  how  a  remote  attacker  could  potentially  fingerprint  the

architecture.  The second part  validates the functionalities of the architecture in a  live

environment.

 5.1.  Evaluation and impact of the replay mechanism

We studied  in  this  section  the  latency  added  to  a  TCP connection  by  the  replay

mechanism for an increasing number of packets replayed. The experiment consisted of
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four computers: an attacker running Metasploit, two identical virtual machines running

Windows 2000 using Qemu,  and  the  Honeybrid  gateway configured  to  redirect  TCP

connections after a given number of packets from the first virtual machine to the second

one. We note that  all the measurements part  of these evaluations were repeated three

times, and so each numerical result presented in Figures  16 and  17 is an average from

three consecutive measurements.

The  attacker  was  configured  to  send  a  buffer  overflow  exploit  attempt  via  the

Microsoft Netbios service on port TCP/445. This exploit is launched through a single

TCP connection for a total of 40 packets.  We note that this overflow is based on the

MS03-49  vulnerability  for  which  the  Windows  2000  virtual  machines  were  not

vulnerable. We could therefore repeat the experiment without compromising the virtual

honeypots but still checking using the output of Metasploit that the exploit attempt was

correctly carried out while being transparently redirected.

We measured the duration of the three phases of the redirection from the attacker

perspective:

• The initializing phase, in which the attacker communicates with the first virtual

machine,

• The  replaying phase, in which Honeybrid replays the initialization phases with

the second virtual machine,

• The  forwarding  phase,  in  which  the  attacker  communicates  with  the  second

virtual machine.
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The boundary among these three phases was given by the precise attack packet that

triggered  the  redirection.  We  changed  the  redirection  rule  incrementally  to  redirect

connections on port 445 after up to 20 packets from the attack. We note that only packets

carrying a payload and coming from the attacker were counted as attacker packets. So the

TCP handshake was not counted in the number of attacker packets replayed. We can see

from the results provided on Figure 16 that the duration of the replaying phase (difference

between the end of the replaying phase and the end of the initialization phase) increases

according to the number of attacker packets to replay. The duration of the initialization

phase also increases because Honeybrid waits longer before triggering the redirection.

Finally the total  duration of  the connection increases  because  of  the overhead  of the

replaying phase. This total duration can be compared with the first measurement (number

of packets equal to zero) that corresponds to a non-redirected connection. 

Figure  17 shows  in  more  detail  the  exact  duration  of  the  replaying  phase.  It  is

interesting to see that redirecting between 1 and 5 attack packets takes less than 40ms,

which is approximately equal to the maximum RTT delay measured for a non-redirected

connection.  This  indicates  that  up to  5  packets,  the redirection mechanism would be

totally invisible to our local attacker. After 5 packets, the duration increases from 60ms

up to 120ms. Such delays  are  commonly found on the Internet  and indicate that  the

redirection  mechanism would  also  be  invisible  for  a  remote  attacker  even  up  to  20

packets replayed.
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 5.2.  Empirical results

To validate the functionality of Honeybrid, we deployed it on five /24 networks during

48 hours. These networks represent a total of 1,275 IP addresses. Honeyd was deployed

as a low-interaction front-end and Nepenthes was deployed as a high-interaction back-

end  to  offer  vulnerabilities  and  collect  exploits.  A  collection  of  29  TCP  ports  were
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opened by Nepenthes. Honeyd was configured to reply to these 29 ports to initiate TCP

connections with attackers. All other ports were closed. Honeybrid was configured with

the  HASH module  on  each  of  these  29  ports.  An  hourly  graph  of  the  number  of

connections handled by Honeybrid is depicted on Figure  18. This graph shows that an

average of 2,400 connections were received every hour, ranging between a minimum of

1,016 and a maximum of 7,250 connections. The peak on hour 22 is because of a massive

attack targeting web servers (port TCP/80). This event is interesting because we recorded

that Honeybrid was able to correctly handle up to 257 connections per second. We also

recorded that the Decision Engine sustained a rate of 155 connections per second and the

Redirection Engine a rate of 48 connections per second. These values give an idea of the

traffic rate that can be received when 1,275 IP addresses are instrumented. We plan as

future  work  to  deploy  Honeybrid  on  a  much  larger  network  in  order  to  study  the

maximum traffic rate it can handle.
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Figure 18: Hourly number of connections handled by Honeybrid, for

both all ports and open ports.

To investigate  if  the  Decision Engine  and the  HASH module  correctly  worked,  we

extracted data from hour 22 for port TCP/80 related to the massive web attack that lasted

12 minutes. The results are detailled on Figure  19. A total of 5,522 connections were

handled by Honeybrid. The series redirected represent the 2,550 connections that had a

unique payload which was not yet recorded in the HASH database. These connections were

thus  replayed  and  then  forwarded  to  Nepenthes.  113  connections  had  also  a  unique

payload and started to be replayed, but the replay process was not completed because

Nepenthes was too busy and could apparently not reply to all of Honeybrid's requests.

These connections are represented by the series  interrupted and represent 4.24% of the

2,663 connections that carried a new payload. Finally the series not redirected represent

the 2,858 connections that had a payload already recorded in the HASH database. Theses

connections were handled only by Honeyd and they were not recorded as part of the
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Nepenthes  traffic.  After  four  minutes  of  attack,  we clearly  see on Figure  19 that  the

number of redirected connections drops while the number of non redirected connections

raises.  This indicates  that  the  HASH table has  caught  up and connections  with known

payloads are automatically discarded by the Decision Engine. Each redirected connection

represents  one  unique  attack  payload  that  was  added  to  the  HASH  table.  After  four

minutes,  the table made of 2,663 hashes was used to discard a  total  of 2,858 known

attacks. As a result, traffic sent to Nepenthes was divided by a factor of two, as well as

the size of the network data collection. These results show that Honeybrid and the HASH
module worked as expected even under heavy load. The only issue was due to Nepenthes

which was slightly overwhelmed at the beginning of the attack, when the HASH table was

almost empty. We note that adding the module LOAD to the configuration of Honeybrid

would have prevented this issue but would also have decreased the number of unique

hashes collected. A possible solution is to use multiple backends in order to share the

load of connections handled by high interaction honeypots while not affecting the number

of unique hashes collected.
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Over the 48 hours of the experiment,  Honeybrid  collected a  total  of  3,491 unique

payload hashes targeting web servers. After investigation, we were able to classify these

hashes in 31 unique web requests, ranging from inoffensive “GET HTTP/1.1” to exploit

attempts such as “GET /user/soapCaller.bs”. We found that each web request had a large

number of different hashes because the destination IP address targeted by the attacker

was often included in the request (through the “Host” field of the HTTP header). This

prompted us to modify the HASH module to replace any occurrence of the destination IP

address with a generic string before calculating the hash. This small hack reveals that

Honeybrid  and  its  current  set  of  module  has  a  limited  understanding  of  the  attack

processes, compared to architectures such as GQ  [26] or SGNET  [49]. But Honeybrid

was built with the goal of simplicity and robustness, and attacks intelligence has to be

handled through the system of modules. As we showed in this evaluation,  Honeybrid

offers  a  robust  and  flexible  architecture  where  one  can  easily  add  more  advanced
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Honeybrid for a sustained attack targeting web servers.
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functionalities  without  sustaining  the  expensive  cost  usually  inherent  to  honeypot

experiments.

 6.  Limitations and Future Work

Our study contributes to the field of honeypot technologies by detailing the complete

design of a hybrid architecture. The result is a robust and flexible implementation that

offers a simple and scalable framework for honeypot researchers. As a result, the main

advantages of Honeybrid over other honeypot implementations are:

� Versatililty: Honeybrid can be used as a front-end to handle traffic toward any

low and high interaction honeypots;

� Flexibility:  modules  can  be  added  to  the  Decision  Engine  of  Honeybrid  and

combined to write highly customized filtering policy;

� Scalability:  Honeybrid  was  built  to  process  several  hundred  connections  per

second with a low resource consumption;

� Simplicity: Honeybrid is based on two robust engines, each supporting a single

functionality.  Modules  can  be easily added to the architecture  to  handle more

advanced functionalities. 

The  current  limitations  of  honeybrid  compared  to  other  advanced  honeypot

architectures are:

� Multi-stage attacks: Honeybrid works with a network session granularity, where

network  sessions  are  identified  by  protocol,  IP  addresses,  and  ports.

Consequently, an attack made of multiple network sessions might be incorrectly

spread out to different low or high interaction honeypots;
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� Attack intelligence: Honeybrid relies on existing low-interaction scripts to extract

information  to  make  a  decision.  Unlike  the  GQ  or  SGNET  architectures,

Honeybrid lacks the capability to automatically learn and adapt itself to better

collect network threats.

It is part of our future work to address these limitations. We are also working on 1)

deploying Honeybrid on larger networks to precisely assess the impact of the filtering

policy on the scalability of the architecture;  and 2) implementing additional  modules,

including one to use the output of an Intrusion Detection System such as Snort to decide

on network sessions worth redirecting.

 7.  Summary

In this chapter we presented Honeybrid, a hybrid honeypot architecture that offers two

majors capabilities: 1) to combine the scalability of low-interaction honeypots with the

advantage of high-interaction honeypots in order to collect detailed attack processes over

large IP spaces using inexpensive resources; and 2) to offer a highly flexible framework

on which security researchers  can apply customized filtering and redirection policies,

using the low and the high interaction solutions they need.

Honeybrid  is  based  on  a  central  gateway  that  hosts  a  Decision  Engine  and  a

Redirection Engine. The Decision Engine filters and selects network sessions worthy of

analysis  from  the  overall  traffic  received.  The  Redirection  Engine  handles  selected

network  sessions  by  transparently  changing  their  destination  from  the  default  low-

interaction front-end to the back-end of high-interaction honeypots.

We  evaluated  these  two  engines  by  deploying  Honeybrid  during  48  hours  on  a

network  of  1,275  IP  addresses.  Honeybrid  successfully  sustained  more  than  250
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connections per second and collected 3,491 unique hashes representing 31 unique probes

or attacks targeting web servers. We also evaluated the latency of the replay mechanism,

by showing that replaying 20 packets sent by an attacker would take less than 120ms.

Honeybrid  is  the  central  component  of  our  attack  assessment  framework.  The

scalability  offered  by  Honeybrid  addresses  the  challenge  of  easily  deploying  a  large

honeynet with limited resources. To integrate Honeybrid in the organization network and

to  continue  the  implementation  of  our  framework,  we  now need  to  include  network

flows.  By providing an exhaustive view on all  communications  between internal  and

external  hosts  of  the  organization  network,  network  flows  can  greatly  assist  the

configuration of Honeybrid and the data analysis of malicious traffic.  The goal  of the

next chapter is to introduce a scanner  and server  discovery application that  aggregate

network flows to generate a relevant dataset for our framework.
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  CHAPTER 5

NETWORK VISIBILITY THROUGH NETWORK FLOWS

 1.  Introduction

We studied in Chapter 3 how network flows could be used to assess the required size

of a honeynet. We learned from this study that network flows have a great potential to

improve the understanding of attacks collected by honeypots. In order to better integrate

network flows in our honeynet architecture, we designed an algorithm to automatically

extract scanner and server information. This information can not only contribute to better

configure honeypots but can also help tracking attackers within the organization network.

The goal of this chapter is to introduce the server and scanner detection algorithm. We

will study in the next chapter how we can combine this information with honeypot data.

Figure 20 indicates which components of our framework are involved in this chapter.
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Figure 20: Overview of the components of our framework involved in the

scanner and server discovery application



This chapter is organized as follow: background about service discovery is provided in

Section 2. Our approach is presented in Section 3. Then the architecture of our solution is

described in Section 4. The evaluation on a large campus network is detailed in Section 5.

Section 5 also includes a discussion about the limitations of our approach, such as flow

sampling, and details future work. Section 6 summarizes the study.

 2.  Related Work

Learning about which servers are deployed in the organization network and who is

scanning the network falls in the research area of network visibility. Existing solutions to

gain network visibility are divided into two categories: active and passive techniques. 

Active sensors involve sending network probes to a set  of targets to check for the

presence of a listening service. Passive sensors extract information about services from

network  sniffing  devices.  The  advantage  of  active  solutions  is  accuracy  and

completeness. However, the drawbacks of active techniques are 1) they provide only a

snapshot of the network in time, 2) they cannot detect services protected by firewalls, 3)

they are intrusive and not scalable, and 4) aggressive scanning may also cause system and

network disruptions or outages.  On the other hand, passive solutions offer a continuous

view of the network, their results are not impacted by firewalls and they are completely

nonintrusive for the network. The main disadvantage of the passive approach is that it

detects  only  active  services.  Unused  services  for  which  there  is  no  incoming  traffic

cannot be discovered. Moreover, some services which are rarely used will take days or

even  weeks  to  be  detected  by a  passive  technique.  [87] and  [12] provides  extensive

results about the pros and cons of active scanning and passive detection. They show that

the two techniques can be efficiently combined to mitigate each other's disadvantages.
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On large  networks,  the role  of  active scanning is  limited,  supplanted by the more

scalable passive approach. Well known commercial solutions include Cisco MARS [21],

Real-Time Network Awareness (RNA [76]) from Sourcefire and a Passive Vulnerability

Scanner (PVS [81]) from Tenable. The limitation of these solutions is that they often use

payload  information.  Storing  and  analyzing  packet  payloads  is  very  expensive  [52],

which makes such solutions less scalable than flow based architectures.

To our knowledge, the only existing tool that was built to merge unidirectional flows

into connection-oriented bidirectional flows is rwmatch from SiLK [36]. But this tool has

a single functionality (merging flows) and was not built to accurately classify end points

like we wanted to.

 3.  Approach

This chapter focuses on the use of passive service discovery and historical comparison

to assess the population of rogue servers and compromised computers. Our motivation is

to provide a simple yet effective method to continuously and accurately detect the entire

population of servers of a given network, from which network and security administrators

can validate legitimate services and be alerted when suspicious services appear.

Our solution is built on top of Netflow from Cisco [22]. The design choice of using

Netflow is motivated by three factors:

1. a wide majority of networks are already instrumented with Netflow;

2. unlike  active  probing,  information  gathered  by  Netflow  is  continuously

updated;

3. Netflow is scalable and non-intrusive.
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The problem with Netflow is that it was primary conceived for accountability and not

for security. This translates into three main limitations: 

� Netflow provides  only header  information.  As  a  result,  servers  detected  from

Netflow  data  can  be  categorized  at  layer  4  (transport)  but  not  at  layer  7

(application). This means that applications listening to non-standard ports cannot

be recognized at  the application level.  It  is  important  to note that  applications

increasingly  use  encrypted  protocols,  so  even  having  access  to  payload  data

would not help categorizing them;

� Netflow  collects  unidirectional  flows.  Consequently,  information  about  the

orientation of network connections is not collected. This means differentiating a

server from a client based solely on unidirectional flows requires heuristics.

� Traffic that is confined to a local area network segment is typically not collected

as it does not cross a Netflow-instrumented device such as a router.

The first  listed limitation on identifying applications using Netflow is the focus of

ongoing  research  [46] and  is  out  of  the  scope  of  this  chapter.  This  study  addresses

specifically  the  second  issue  regarding  the  limitation  of  unidirectional  flows.  More

precisely, the main contributions of this study are:

1. To provide an innovative and accurate method to reassemble unidirectional flows

into connection-oriented bidirectional  flows,  and therefore to leverage  Netflow

into a security monitoring solution;
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2. To provide an implementation of this method that is built with the goals of high

efficiency and simplicity (this implementation is under review to be released as an

open source application);

3. To  evaluate  this  implementation  on  a  campus  network  of  about  40,000

computers.

 4.  Architecture

The architecture of our Netflow-based server discovery tool is made of a back end

module  designed  to  process  newly  received  flow  files  and  to  extract  server-related

information. This section details how this module works.

 4.1.  Netflow concepts

Netflow is a network protocol developed by Cisco and implemented in most routers to

collect traffic information using packet headers. The two main versions currently in use

are Netflow version 5 and version 9 [22]. Netflow is proprietary but an industry standard

called IPFIX [48] based on Netflow version 9 is soon to be released.

The  concept  behind  network  flows  is  to  collect  summarized  information  about

network traffic by grouping packets that share similar source and destination information.

More precisely, a network flow is defined as a unidirectional sequence of packets sharing

all of the following five parameters:

� source IP address;

� source port (for TCP or UDP, 0 for other protocols);

� IP protocol;
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� destination IP address;

� destination port (for TCP or UDP, 0 for other protocols).

For each packet received on one of its Netflow-enabled interfaces, a router will try to

find in its cache an existing flow that shares the five parameter values listed above from

the packet's headers. If no match is found, a new flow record is created. Otherwise, an

existing flow record is  updated.  A netflow record  carries  a  wide variety of  network-

related  information  including:  timestamp of  the  first  packets  received,  duration,  total

number of packets and bytes, input and output interfaces, IP address of the next hop,

source and destination IP masks and cumulative TCP flags in the case of TCP flows.

After being created and updated, a network flow has to be expired and exported. There

are three possible expiration rules:

• For TCP flows, a valid sequence of FIN packets is observed, or a RESET packet

is received;

• No new packet has been received and the flow has not been updated since a given

period of time (usually 5 minutes);

• The flow reaches a maximum age limit (usually 15 minutes).

Expired network flows are exported in batch by routers toward a Netflow collector

using the UDP protocol. The role of a Netflow collector is to receive and store Netflow

feeds sent by routers. We used the Nfsen/Nfdump framework [38] to achieve this task.

Nfsen  is  an  application  designed  to  1)  configure  and  display  the  Netflow  data

collection, and 2) start and stop the nfcapd daemon which is in charge of storing Netflow

records  into compressed binary files at  a regular  interval  (5 minutes by default).  The
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nfdump tool can then be used to convert these binary files into human-readable text files.

Nfdump can also sort, aggregate and filter flows using the tcpdump filtering syntax [80].

 4.2.  Backend script and the challenge of flow timing

The backend modules include a Perl script (backend.pl) that runs every 5 minutes on

the last flow file received and stored by the Nfsen collector.  A handler automatically

pipes the output of nfdump into the backend.pl script using the following command:

$ nfdump -o pipe -m -r <last flow file> | ./backend.pl > results.output

The role of the backend.pl script is to extract server-related information from a given

flow file. This process is based on the difficult task of merging unidirectional flows into

connection-oriented bidirectional flows. The specifics of this process are explained in the

next section but first it is important to understand the mechanism behind it and why it is a

challenge.

Unidirectional  flows are  an aggregate  of  packets  that  track from a specific  source

toward a specific destination during a given period of time. Therefore, a network session

between a client and a server will consist of two distinct unidirectional flows: a first flow

of  packets  sent  by the  client,  and  a second  flow of  packets  sent  by the  server.  The

following example illustrates a network session between the client 10.0.0.1 and the web

server 10.0.0.2 listening on port 80:

timestamp source IP:port dest. IP:port Proto.

Packets Flags

2009-01-01 12:34:56.789 10.0.0.1:30323 10.0.0.2:80 TCP

12      .SAP..

2009-01-01 12:34:56.791 10.0.0.2:80 10.0.0.1:30323 TCP

11      .SAP..

The first flow is called a request flow and the second flow is called a reply flow. It is

relatively easy to  merge  a request  and a  reply flow by matching  the  source  and  the
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destination information. The bidirectional flows that one could extract from the previous

example would be:

timestamp src IP:port dest. IP:port Proto Pkts

2009-01-01 12:34:56.789 10.0.0.1:30323 → 10.0.0.2:80 TCP 23

A direction arrow has been added to indicate which one of the source and destination

is the client and which one is the server. Finding this direction in our example is simple

because a request occurs always before a reply and according to the timestamp values, we

can clearly see that  the first  packet  of the request  flow was received by the router 2

milliseconds before the first packet of the reply flow.

A problem arises when the timestamps of a request and a reply are identical. This

problem occurs  frequently  (on  average  20% of  the  times  according  to  our  empirical

results) because  of the relatively low time resolution of netflow records  which is  the

millisecond. We will see in Section 4.2 that the timestamp of a request flow can even be

reported by a router few milliseconds after the timestamp of the related reply flow. The

next section details the different heuristics we developed to address this challenge and

accurately detect clients and servers from Netflow records.

 4.3.  Heuristics

We defined six heuristics to try to correctly merge connection-related flow records.

These heuristics were developed to cover a variety of intuitions gathered from network

experts. The goal is to evaluate each of them using empirical data to find the best ones,

individually  or  in  combinations.  For  each  bidirectional  flow  processed,  a  default

orientation is selected from the order by which flows were read by the backend script.

Then each heuristic is evaluated and can have 3 possible outcomes: 
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� the heuristic can be in favor of keeping the current direction of the flow;

� the heuristic can be in favor of reversing the direction of the flow;

� the heuristic cannot decide.

These six heuristics are:

� Flow timing (H.0): this heuristic consists in trusting the timestamps of the flows to

decide which one is the request and which one is the reply. If both the request and

the  reply  flows  have  the  same  timestamp,  then  this  heuristic  cannot  make  a

decision.

� Port number (H.1):  this heuristic states  that  servers  usually have  a lower port

number  than  clients.  Therefore  when  two  unidirectional  flows  are  merged,

according to this heuristic, the direction of the bidirectional flow will go from the

higher port number (source port) to the lower port number (destination port). If

both the source and the destination ports are equal, then this heuristic will not

make a decision.

� Port number with threshold at 1024 (H.2): this heuristic is similar to the previous

one but applies a threshold of 1024 to decide between client and server ports. The

value  of  1024  corresponds  to  the  limit  under  which  ports  are  considered

privileged and designated for well-known services. This heuristic will not make a

decision if both the source and the destination ports are above or below 1024.

� Port number advertised in /etc/services (H.3): this heuristic uses the system file

/etc/service  that  compiles  assigned  port  numbers  and  registered  port  numbers

[67]. These ports are mostly used by well-known services and should therefore
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not be used by clients as source ports. If both the source and the destination port

are not in /etc/services, then this heuristic will not make a decision.

� Number of distinct ports related to a given port (H.4): this heuristic compares the

numbers of distinct ports that are related to the source port and to the destination

port of a bidirectional flow. The port that was involved in network connections

with a greater variety of other port numbers is designated as the server port. This

heuristic  comes from the fact  that  ports  on the client-side are often  randomly

selected. Therefore ports on the client-side of a connection are less likely to be

used in other connections compared to ports on the server-side. If both the source

and  the  destination  ports  are  related  to  the  same  number  of  ports,  then  this

heuristic cannot make a decision.

� Number  of  distinct  ports  related  to  a  given  port  with  a  threshold  (H.5):  this

heuristic  is  identical  to  the  previous  one  but  applies  a  threshold  of  5  as  the

minimum number of ports required to be server. The value of 5 was picked to be

conservative. A full range of values will be evaluated. If both the source and the

destination ports are related to fewer than 5 other ports, then this heuristic cannot

make a decision.

The algorithm to apply these six heuristics on the flow dataset is described in the next

section.

 4.4.  Algorithm

The script  backend.pl reads flow records from the standard input and then outputs a

list of clients and servers when the analysis process is complete. We configured the input
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to cover a time window of 5 minutes of flow records, which is the default value used by

Nfsen to store a new flow file.

The  analysis  process  consists  in  trying  to  combine  unidirectional  flows  into

bidirectional flows using the protocol, the source and destination IP addresses and the

source and destination ports. In the case of the TCP protocol, the number of packets per

flow and the TCP flags are used to discriminate between valid and invalid connections. A

valid TCP connection is made of two unidirectional flows with at least two packets per

flow  and  the  flags  SYN  and  ACK  enabled  on  each  flow.  Therefore  the  algorithm

considers three types of flow:

� Unidirectional flows that cannot be paired;

� Valid bidirectional flows;

� Invalid bidirectional flows.

From these three types of flow we can extract four types of end points, where an end

point is defined by a 3-tuple {IP address; protocol; port} according the following rules:

1. A scanner is the source end point of an unpaired unidirectional flow, or the source

end point of an invalid bidirectional flow;

2. A client is the source end point of a valid bidirectional flow;

3. A server is the destination end point of a valid bidirectional flow;

4. An invalid is the destination end point of an unpaired unidirectional flow, or the

destination end point of an invalid bidirectional flow.

It is important to note that since the source ports on the client-side of a connection are

mostly random, the 3-tuple defining source end points is {source IP address; protocol;
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destination  port},  whereas  the  3-tuple  defining  destination  end  points  is  {source  IP

address; protocol; source port}. The following example illustrates the three types of flow

and the four types of end-points:

Id timestamp source IP:port dest. IP:port Proto Pkts Flags

#1 00:00:00.555 10.0.0.1:3006 10.0.0.2:445 TCP 1 .S....

#2 00:00:01.100 10.0.1.3:4000 10.0.1.4:22 TCP 64 .SAP..

#3 00:00:01.102 10.0.1.4:22 10.0.1.3:4000 TCP 65 .SAP..

#4 00:00:20.000 10.0.2.5:21560 10.0.2.6:8080 TCP 1 .S....

#5 00:00:20.001 10.0.2.6:8080 10.0.2.5:21560 TCP 1 ....R.

From these set of 5 flows, the algorithm will extract the following information:

• Flow  #1  is  a  unidirectional  flow  that  cannot  be  paired  with  any  other

unidirectional flow. 

o The source end point {10.0.0.1; TCP; 445} is labeled as scanner;

o The destination end point {10.0.0.2; TCP; 445} is labeled as invalid;

• Flows #2 and #3 are part of a valid bidirectional flow;

o The source end point {10.0.1.3; TCP; 22} is labeled as client;

o The destination end point {10.0.1.4; TCP; 22} is labeled as server;

• Flows #4 and #5 are part of an invalid bidirectional flow;

o The source end point {10.0.2.5; TCP; 8080} is labeled as scanner;

o The destination end point {10.0.2.6; TCP; 8080} is labeled as invalid;

Note  that  the  label  scanner designates  end  points  that  generate  suspicious  traffic

activity,  which means requests to non-existent or filtered services. Such traffic can be

generated because of scanning activity or because of misconfiguration.
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The algorithm used by backend.pl to analyze flows is the following:

 Loop from standard input (one flow record per line piped from Nfdump) {

Parse line to extract the values of each field of the flow record

Exclude if the flow is not TCP or not UDP

Exclude if the source or the dest. IP does not belong to a defined

internal subnet

Create or update the flow record into memory using a hash LINKS

indexed by the key:

 {source IP; source port; protocol; dest. IP; dest. port}

 }

 Loop on flows from the hash LINKS {

Search for a flow in the hash LINKS with the mirrored key: 

 {dest. IP; dest. port; protocol; source IP; source port}

If a mirror flow is found {

If flow and mirror flow are valid {

Label flow and mirror flow as “Valid Bidirectional Flow”

} else {

Label flow and mirror flow as “Invalid Bidirectional Flow”

}

For each heuristic {

Apply the heuristic to decide on the direction of the flow

}

For each of the two possible flow directions {

Create or update end points into memory using a second hash

NODES

 indexed by: {IP address; protocol; port; supporting

heuristics}

According to the direction and the validity of the flow,

label  

 each end points as Scanner or Client or Server or Invalid

}

} else {

Label flow as “Unidirectional Flow”

Create or update source and destination end points into memory

using the

 second hash NODES indexed by: {IP address; protocol; port}

Label the source end point as Scanner and the dest. end point as

Invalid

}

 }

 Loop on end points from the second hash NODES {

Write information about the end point to standard output

 }

 4.5.  Data format

Every 5 minutes, the script backend.pl outputs information about end points detected

from the flow file provided in input. This information is stored in a new text file and is

organized with one end point per line. Each line carries the following fields:
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1. End point identification: {IP address; protocol; source or destination port}

2. Location of the end point:  Internal or External (based on the list of subnets that

defines  the  organization  network  and  provided  in  the  configuration  file  of

backend.pl)

3. Type of end point: Scanner or Client or Server or Invalid

4. Statistics about the end point: number of related flows, number of packets and

number of bytes

5. List of supporting heuristics

End points  which have  more than one  type  or  which were  supported by different

combinations of heuristics are spread on multiple lines.

 5.  Evaluation

The goal of the evaluation is to use empirical data to determine the efficiency of the

different  heuristics  to  passively  identify  servers  using  Netflow.  The  efficiency  was

measured  using  an  active  service  discovery  script  running  Nmap.  Heuristics  were

evaluated individually and in combinations. Results are discussed according to different

network parameters including: timing of request and reply flows, number of flows and

number of hosts and ports related to servers detected.

 5.1.  Presentation of the dataset:

Data were collected over 48 hours at the border of a campus network made of two /16

networks (131,072 distinct IP addresses) and hosting approximately 40,000 computers.

Statistics collected by the script backend.pl are provided in Table 6. Values in Table 6 are

averages calculated from the 576 output files written by the script every 5 minutes during
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the 48 hours of data collection. Percentages are derived from the averages and therefore

do  not  always  sum  up  to  100%.  For  the  purpose  of  the  evaluation,  the  script  was

configured to report end points detected by any combination of heuristics. This means

that statistics about end points in Table 6 include all end points detected by at least one

heuristic.

Table 6: Average statistics for 5 minutes of flow processed by the script backend.pl

Processing time 170.47 seconds

Flows analyzed 442,356 100.00%

Incoming flows 226,831 51.28%

Outoing flows 204,761 46.29%

TCP flows 271,608 61.40%

UDP flows 159,985 36.17%

ICMP flows 10,761 2.43%

Other flows 2 0.00%

Flows discarded 10,764 2.43%

Unique flows extracted 423,794 100.00%

Flows combined into bidirectional

flows
191,315 45.14%

Unique end points extracted 449,452 100.00%

Scanner end points detected 20,269 4.51%

Client end points detected 157,441 35.03%

Server end points detected 99,226 22.08%

Invalid end points detected 4,423 0.98%

The processing time provides  an idea of the scalability of the backend script.  The

backend  script  and  the  Nfsen  framework  ran  on  the  same  machine  which  is  a  dual

processor  (Intel  Xeon 3.80GHz) with  2  GB of  memory.  The processing time had  an

average of 170.47 seconds and ranged from 76 seconds (with 203,522 flows processed)

up to 296 seconds (with up to 877,801 flows processed). We note again that the script

was configured for the purpose of the evaluation to record end points detected from all

combinations of heuristics. In a production environment, only accurate combinations of
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heuristics would be kept and so the great reduction of false positives compared to our

evaluation configuration would decrease the processing time.

A total of  404,615  unique TCP servers inside the campus network were discovered

over  the  48  hours  of  data  collection.  These  servers  are  used  as  the  baseline  for  the

evaluation.

 5.2.  Classifying results with Nmap

To evaluate  the accuracy  of  the  heuristics  implemented in  the backend  script,  we

checked the status of each internal TCP server discovered by the backend script using an

active probing module based on Nmap. Scans originated  from a computer  inside the

campus and therefore were not recorded by the routers collecting Netflow at the border of

the network.  Three possible outcomes can be returned by Nmap:

• Open: if the target of the scan sent back a valid reply;

• Closed: if the target of the scan sent back an invalid reply (reset packet);

• Unknown: if the target of the scan did not send anything back.

An unknown status occurs  either  because  the target  is  not a server,  or because its

access is restricted by a firewall, or because the server was transient and is no longer

connected to the network. To have further information about the unknown status, each

time a server did not reply we checked from the log files of the backend script if this

server  communicated  with  one  or  multiple  end  points.  If  only  one  end  point  was

involved, we configured the active probing module to send an alternative probe to this

end point, in order to check if it was not actually the server. If it replied to the probe, then
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we  knew  that  the  heuristic  responsible  for  this  detection  made  a  wrong  decision.

Therefore we collected three more outcomes:

• Source open: if the end point targeted by the alternative scan sent back a valid

reply;

• Source  closed:  if  the  end  point  targeted  by  the  alternative  scan  sent  back  an

invalid reply (reset packet);

• Source unknown: if the end point targeted by the alternative scan did not reply.

We configured the active probing script not to scan the same target multiple times in

less than 60 minutes. This means that for end points which were constantly detected as

server by the backend script over the 48 hours of data collection, we could have up to 48

measurements.  We received varying outcomes for only 4,027 end points (0.99%). To

decide on the correctness of the detection, we picked the final outcome according to the

following priority order:  open > closed > source closed > source open > unknown >

source unknown. This means that even a minority of open led to a final open outcome for

the 48 hours. The reason behind this choice is that Nmap sent a probe up to 15 minutes

after the passive detection of a server. Therefore transient servers that would be shutdown

during  the  delay  between  the  passive  detection  and  the  active  probing  could  be

incorrectly classified as false positives if the  open outcome was not leader for the final

outcome. 

The  active  probing  script  was  automatically  launched  on  the  last  set  of  servers

detected. Every 5 minutes, a new set of servers was logged by the backend script and the

current  active probing script was killed to allow a new instance to be launched. As a

result, some servers could not be scanned and the status timeout was used to differentiate
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them. It occurred for 26.14% of the servers. Several instances of the Nmap script were

running concurrently (one per /24 networks). Each instance was then scanning the list of

detected  server  sequentially.  This  way we managed  to have  a  good  tradeoff  between

reducing the volume of timeout while keeping a reasonable level of aggressiveness to

prevent undesired disruption and to avoid possible outages.

Table  7 summarizes the different outcomes, their meaning for the passive detection

accuracy and the number of  unique end points collected during the 48 hours of data

collection.  We can see from Table  7 that 4 out of the 7 possible outcomes lead to a

precise validation or invalidation of the passive detection accuracy. However the three

outcomes unknown, source unknown and timeout are inconclusive.

It is important to understand that our backend script was configured for this evaluation

to record detected end points from all combinations of heuristics. This means that for a

given bidirectional flow, if heuristics H.0 and H.1 are in favor of reversing the direction

of the flow, but heuristics H.2 to H.5 are in favor of keeping the current direction of the

flow, then the backend script will accept both decisions and will output two possibilities

for each end point. Such configuration leads always to one set of true positives and one

other set of true negatives. This explains why the numbers of incorrectly detected end

points in Table  7 are so important. In a production environment, the script would have

been configured  to  output  only one orientation for  every bidirectional  flows,  and the

number  of  false  positives  would  have  been  greatly  reduced.  The  purpose  of  this

evaluation is to choose which heuristics to trust for better results.
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Table 7: Classification of active scan results and related ground truth for the passive

technique

Status from

active scan
Possible scenarios

Passive

Detection

Distinct

end points

Open Server exists Correct 14,242

Closed Server does not exist Incorrect 137,407

Unknown

Server exists but is filtered

Server exists but was transient

Server does not exist

Correct

Correct

Incorrect

12

Source open Client is actually a server Incorrect 103,555

Source closed Client is not a server Correct 34,728

Source unknown

Client is a server but is filtered

Client is a server but was

transient

Client is not a server

Incorrect

Incorrect

Correct

8,899

Timeout Scan could not be run - 105,772

Total 404,615

We note  that  of  the  298,843  successfully  scanned  end  points  reported  during  the

evaluation, a total of 239,329 end points appeared only once (80.08%). This high volume

of one-time servers is likely to indicate a large number of false positives. To find out

which heuristic or which combinations of heuristics led to accurate  detection or false

positives, we investigate in detail the results in the next two sections. 

 5.3.  Results per heuristic

Table 8 provides an overview of the results per heuristic. The second and third column

entitled Undecided and Supported indicate the number of end points for which heuristics

could take a decision or not. We defined and labeled the heuristics in Section 3.1.3. As

mentioned, heuristics do not always make a decision because, for example, the source

and destination ports are above 1024 (H.2) or both ports are equal (H.1). Table 8 shows

that  heuristics  H.2,  H.3  and  H.5  have  almost  a  perfect  detection  score  with  at  least

97.71% of correctly classified end points. Heuristic H.4 has a relatively good score with
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66.92% of correctly classified end points. Heuristic H.1 shows an opposite result with

only 17.91% of correctly classified end points. This low percentage strongly indicates

that relying on the intuition that client port numbers are higher than server port numbers

is incorrect.

Table 8: Overall accuracy results per heuristic

Heur.

Unique end points Correct Incorrect unknown

Accuracy
Undecided Supported Open

Source

Closed
Closed

Source

Open
Unknown

Source un-

known
Timeout

H.0 27,542 89,002 11,608 4,299 55,219 230 7,584 3,188 17,158 22.29%

H.1 13 343,868 12,284 31,311 93,786 106,088 144,172 10,389 110,575 17.91%

H.2 381,406 9,165 8,966 69 57 9 206 131 981 99.27%

H.3 381,678 8,964 8,775 69 51 4 194 125 957 99.38%

H.4 217,555 9,566 5,381 141 1,780 950 1,375 270 1,819 66.92%

H.5 301,236 2,833 2,675 18 51 12 128 55 374 97.71%

Table 8 provides some insight about the timing of the request and reply flows. We can

see that heuristic H.0 could not decide for 27,542 end points because they came from

bidirectional flows that had identical starting times. We also see that only 22.29% of the

successfully  scanned  end  points  for  which  H.0  could  decide  on  the  orientation  were

incorrectly classified. To analyze how heuristics H.1 to H.5 could help make a decision

with or against H.0, we divided the empirical results in three parts:

• End points created from flows that have identical request and reply timestamps;

• End points created from flows that have a request recorded before the reply;

• End points created from flows that have a request recorded after the reply.

Table  9 gives the detailed results for heuristic H.1 to H.5 according to these three

groups of end points. Results indicate first that when timestamps are identical, heuristics

H.2  to  H.5  have  excellent  detection  accuracies  in  providing  a  correct  orientation  to

request  and reply flows. The second conclusion from Table  9 is  that  heuristic H.1 is
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responsible for the large majority of end points classified as servers against the timing

convention of requests occurring before replies. From the low score of only 15.66% of

correctly identified servers, we note that, decisions from heuristic H.1 are again mostly

incorrect. On the other hand, Table 9 shows that heuristics H.2, H.3 and H.5 should be

trusted even if the timing looks reversed. They offer at least 94.86% of correctness when

requests are recorded after replies.

Table 9: Results detailed according to the timing of request and reply flows

Identical

timestamp

Request

before

reply

Request

after

reply

Total 31,525 97,313 338,439

H.1

correct 6,983 10,741 31,782

incorrect 13,787 15,967 171,170

% 33.62% 40.22% 15.66%

H.2

correct 5,113 8,217 818

incorrect 21 19 30

% 99.59% 99.77% 96.46%

H.3

correct 4,960 8,043 804

incorrect 18 17 23

% 99.64% 99.79% 97.22%

H.4

correct 3,815 3,811 886

incorrect 420 268 2,047

% 90.08% 93.43% 30.21%

H.5

correct 2,391 1,229 702

incorrect 12 15 38

% 99.50% 98.79% 94.86%

 5.4.  Results and flow parameters

We saw in  the previous  section that  requests  from clients  could sometime have a

timestamp posterior to replies from valid servers. To investigate further this issue and to

get  insight about flow timing and server  detection,  we plotted on Figure  21 the time

difference between request and reply flows against the active probe result for the first half

of the data collection (24 hours). Each dot on Figure 21 is a scan triggered by the correct

or incorrect orientation of a bidirectional flow. Jittering on the Y axis has been applied to
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have a better idea of the density of points for a given time difference. The range -10 to 10

seconds represents 99.95% of bidirectional flows recorded. 1,882 end points have been

detected outside of the range -5 to 5 seconds, among which only 32 were valid servers.

All  the  correctly  classified  servers  with  a  request  timestamp recorded  after  the reply

timestamp  have  been  detected  thanks  to  heuristic  H.2.  This  indicates  again  that  H.2

should have the priority over H.0 to decide on the correct orientation of a bidirectional

flow.

Figure 21: Time difference between request and reply flows categorized per detection

results

We can clearly see some clusters on Figure  21 with the bulk of request and replies

flows having less than 400 milliseconds of delay.  92.67% of the end points are from

flows in the range -400 to 400 milliseconds. This range represents also 97.91% of the

valid  servers  detected.  This  means  that  most  of  the valid  servers  have  a  short  delay
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between request and replies.  We believe that this value is specific to the organization

network but could be implemented as a parameterized heuristic in our architecture to

improve the accuracy of the detection. We note also that we detect two clusters at -3 and

3 seconds, and two other clusters at -9 and 9 seconds. We are still investigating from a

network topology point of view why these values.

Other  parameters  that  we investigated to improve the heuristics are the number of

flows per connection, the number of unique hosts and the number of unique ports related

to a given end point. If a web server listening on port 80 is contacted by two clients, and

each of these clients makes two connections using the random source ports 2000, 2001,

4000  and  4001,  then  the  end  point  {web  server;  TCP;  80}  will  have  the  following

parameter values:

• Number of flows: 8 (2 per connections);

• Number of related hosts: 2 (the two clients);

• Number of related ports: 4 (the four random client ports).

Figure 22 shows the distributions of these three network parameters according to the

correctness of the passive detection.
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Figure 22: Distributions of (a) the number of flows, (b) the number of unique hosts and

(c) the number of unique ports related to end points detected by the architecture.

We see from Figure 22 that almost all of the incorrectly classified end points have the

following parameter values:

• A number of flows below 10;

• A population of related hosts lower or equal to 3;

• A number of related ports lower or equal to 4.

The number 4 of related ports explains why heuristic H.5 that used a threshold of 5

had such a good accuracy (98.01% of correctly detected servers).

The problem with these parameters is that once combined, they match only 350 of the

38,662 servers correctly detected. If we take them independently: 
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• 1,101 correctly classified servers (2.84%) have a number of flows above or equal

to 10;

• 396 correctly identified servers (1.02%) have a number of related hosts above or

equal to 4;

• 1,100 correctly classified servers (2.84%) have a number of related ports above or

equal to 5.

As  a  result,  these  parameters  offer  a  strong  accuracy  but  are  limited  to  a  small

population of servers.

 5.5.  Results per combination of heuristics

For each bidirectional flow, each heuristic can have 3 possible outcomes: 

� Heuristic is in favor of reversing the direction of the flow (labeled with “+” in this

section);

� Heuristic is in favor of keeping the direction of the flow (labeled with “-” in this

section);

� Heuristic cannot make a decision (labeled with “=” in this section).

Therefore for our 6 heuristics, a total of 63 = 216 combinations can be used. Over the

48 hours of evaluation, 83 combinations have been recorded in the dataset. Our goal is to

rank each combination according to its accuracy in order to eliminate combinations that

lead to incorrect detection. 

As we mentioned in Section 4.2, whenever heuristics disagree on the orientation of a

bidirectional flow, we configured our backend script in this evaluation to output both

orientations. 

113



On the 83 combinations that we collected, 39 had disagreeing heuristics and so we

have  accuracy  results  for  both  orientations  of  these  combinations.  Some  of  these

combinations offer an obvious indication about which orientation lead to more accurate

results.  For  example,  the  combination  (H0-)(H1+)(H2=)(H3=)(H4-)(H5-)  has the

following accuracy results:

• Orientation kept: 97.22% of correctly classified servers;

• Orientation reversed: 0.18% of correctly classified servers.

We note that this result concords with the conclusion of Section 4.3 where heuristics

were studied individually: (H0-)(H1+)(H2=)(H3=)(H4-)(H5-) means that H.1 is in favor

of reversing the orientation of the flow (0.18% of correctness) and H.0, H.4 and H.5 are

in favor of keeping the orientation of the flow (97.22% of correctness).

But  for  other  combinations,  the  results  are  not  so  obvious.  For  instance,  the

combination (H0-)(H1-)(H2=)(H3=)(H4+)(H5=) has the following accuracy results:

• Orientation kept: 7.50% of correctly classified servers;

• Orientation reversed: 2.56% of correctly classified servers.

Such results  indicate that  our current  set  of heuristics is  not  sufficient  to correctly

decide on the orientation of flows matching the conditions of (H0-)(H1-)(H2=)(H3=)

(H4+)(H5=).  Implementing  and  evaluating  additional  heuristics  to  improve  the

performance of our tool is part of the future work.

Table  10 and  11 provides the top 5 and worst 5 combinations evaluated during 48

hours. Results are sorted per accuracy and number of servers reported. The letter “R” in

front of heuristics indicates that the orientation of the flow was reversed, and the letter
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“K” indicates the orientation of the flow was kept (according to the original orientation at

which the flow was received by the script).

Table 10: Top 5 combinations of heuristics having classified more than 1,000 tuples

Orient. Heuristics Total Open Closed Timeout Unk. Src. op. Src. cl. Src. unk Classified Uncl. Correct Incorrect

K H0=H1-H2-H3-H4=H5= 2908 2829 7 2 0 28 22 134 2838 184 99.93% 0.07%

K H0-H1-H2-H3-H4=H5= 5639 5470 23 6 0 48 29 337 5499 414 99.89% 0.11%

R H0+H1+H2+H3+H4=H5= 5596 5412 17 6 0 47 32 345 5435 424 99.89% 0.11%

R H0+H1+H2+H3+H4+H5= 2097 2041 9 3 0 25 15 126 2053 166 99.85% 0.15%

R H0=H1+H2+H3+H4+H5= 1197 1171 1 2 0 8 6 46 1174 60 99.83% 0.17%

Table 11: Worst 5 combinations of heuristics having classified more than 1,000 tuples

Orient.
Heuristics Total Open Closed Timeout Unk.

Src.

op.

Src.

cl.

Src.

unk
Classified Uncl. Correct Incorrect

K H0+H1-H2=H3=H4+H5+ 57826 10 43 9770 24588 25248 766 24599 34411 50613 0.15% 99.85%

R H0-H1+H2=H3=H4-H5- 58112 14 50 9895 24832 25562 809 24484 34791 50855 0.18% 99.82%

R H0-H1+H2=H3=H4-H5= 54550 12 795 14892 19958 22148 1765 18971 35657 42884 2.26% 97.74%

K H0+H1-H2=H3=H4+H5= 54798 14 838 14682 20179 22453 1822 19104 35713 43379 2.39% 97.61%

K H0-H1+H2=H3=H4=H5= 23917 890 27 19587 0 566 539 3149 20504 4254 4.47% 95.53%

 6.  Discussion and future work

Heuristics  were evaluated  with  48 hours  of  network traffic  collected on a campus

network of 40,000 computers. The results of this evaluation show that:

• Relying on the timing of request and reply flows (heuristic H.0) is not accurate to

identify clients and servers;

• Relying on ports numbers (heuristic H.1) when both source and destination ports

are above 1024 is highly inaccurate (82% of false positives);

• However, relying on port numbers when one of the port is below 1024 (heuristics

H.2), or advertised by /etc/services (heuristic H.3), or linked to at least five other

ports  (heuristic  H.5)  offers  an  almost  perfect  accuracy,  with  at  least  97% of

correctly classified servers;
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A first limitation of our tool is that the current set of heuristics is not sufficient to

correctly classify end points from Netflow. But adding new heuristics to our backend

script is easy and we are currently investigating the following idea:

• Number  of  detections  during  a  given  time  window:  if  the  orientation  of  a

bidirectional  flow cannot be decided, we could keep an history of it  over few

hours and use this history to help future decision.

• Port number: instead of using /etc/services as a white list of server ports, we can

build our own list based on empirical evaluations.

A second  limitation  that  we  did  not  yet  investigate  is  flow sampling.  Our  tool  was

evaluated without any sampling and it would be interesting as part of the future work to

study the effect of sampling on the detection accuracy of the different heuristics.

 7.  Summary

We  introduced  in  this  chapter  a  passive  server  discovery  architecture  based  on

network flows. We presented the design of this tool driven by the motivation to provide a

simple and efficient solution to gain visibility in organization networks. Simplicity comes

from the fact that we use only network flows. Efficiency comes from a set of heuristics

that  addresses  the  challenge  of  accurately  combining  unidirectional  flows  into

connection-oriented  flows.  We  evaluated  these  heuristics  during  48  hours  on  the

University of Maryland network which is made of 40,000 computers. The results of this

evaluation  were  used  to  1)  show  the  scalability  of  our  implementation,  2)  discard

inaccurate heuristics and approve accurate heuristics and 3) suggest network parameters

to be included in additional heuristics.
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The server and scanner dataset provided by this application can be directly used to

assist the configuration of our honeynet and the data analysis of malicious traffic. The

integration of the scanner and server discovery application into our malicious activity

assessment framework is the topic of the next chapter.
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  CHAPTER 6

COMBINING HONEYPOT DATA AND NETWORK

FLOWS

 1.  Introduction

The final  phase of our project  to integrate  our  hybrid  honeypot  architecture in the

organization' set of security solutions is to combine it with network flows. We explained

in the first chapter that honeypots data could give a detailed view of network threats but

on a restricted IP space. By providing a high level but exhaustive view of the network

traffic,  network  flows  can  adequately  balance  the  limitations  of  honeypots.  More

precisely,  network flows can assist our hybrid honeypot architecture in two important

ways:

• To  improve  the  configuration  of  honeypot  sensors  in  order  to  extract  more

information from network threats;

• To extend the understanding of attacker’s actions by providing a complete history

of their communications in the organization network.

This chapter is dedicated to study these two issues in detail by presenting a complete

architecture that integrates network flows and honeypots data. The components of our

framework involved in this chapter are indicated on Figure 23.
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Figure 23: Overview of the components of our framework involved in this

chapter



This chapter is organized as follow: in Section 2, we introduce an algorithm that uses

flows to automatically configure honeypots.  In  Section 3,  we detail  a correlation and

aggregation method that combines honeypot data and flows to profile and track attackers.

We summarize this chapter in Section 4.

 2.  Assisted Honeypot Configuration

Attackers hunt for specific vulnerable network services and then attempt to exploit the

ones  they find.  On the defense  side,  honeypots  sensors  try to  be part  of  the pool  of

victims in order to gain intelligence about attacks. The main requirement for this process

to  work  is  for  honeypots  to  offer  network  services  that  match  the  ones  targeted  by

attackers. In case of mismatch, attackers and honeypots simply cannot communicate. As

a result,  the choice of network services deployed  critically affects  the efficiency of a

honeypot architecture. We distinguish two possible motivations behind this choice:

• Protecting  the  organization  network.  In  a  production  network,  the  goal  of

security  analysts  is  to  defeat  attacks  targeting  the  organization’s  assets.

Consequently, honeypots deployed in such environment should offer to attackers

the same type of services running in the production network.

• Studying  the  latest  attack  trends.  In  a  research  environment,  the  goal  of

researchers  is  to  assess  network  threats  and  learn  about  unknown  or  recent

vulnerabilities. Therefore, research honeypots should offer to attackers the type of

services that are the most targeted.

We will now study how network flows can assist honeypot architectures for both of these

motivations.
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 2.1.  Protecting the Organization Network

In an ideal case, honeypots deployed in the organization network would be a perfect

duplicate  of  the  production network  [8].  In  reality,  the  size  of  the  IP  space  and  the

resources allocated to the honeypot architecture force security analysts to build honeypot

configurations  that  are  a  scale  down version of  the production network.  This  task is

simple for small organizations with a single network administrator in charge of both the

production  machines  and  the  honeypots.  However,  it  reaches  an  impossible  level  of

complexity in the case of large organizations where network administration is spread over

different departments, each hosting potentially thousands of possible configurations of

network services. This challenge can be precisely addressed by using the server discovery

application that we introduced in Chapter 5. 

The server discovery application passively returns the entire set of network services

running in the production network and communicating with external  hosts.  From this

dataset,  we  can  have  a  precise  assessment  of  the  nature  and  the  volume of  services

deployed  in  the  organization  network.  We  can  directly  use  this  information  to

automatically generate the network configuration of a honeypot architecture. [8] listed the

two key properties of such method to be successful:

� Proportional  representation.  “The  possible  vulnerable  population  on  a

honeynet should proportionately represent the vulnerable hosts on the network.”

� Individual  host  consistency.  “To  be  effective  in  warding  off  possible

fingerprinting efforts, we would like configurations for each host on the honeynet

to be individually consistent.”
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We designed an algorithm that complies with these two properties by automatically

generating the network settings of a given set of honeypots from the knowledge of the

different  services discovered in the production network.  This algorithm works in four

phases:

1. Parsing  input  data.  The  algorithm  starts  by  reading  the  raw  dataset  of

services discovered over a selected period of time by the server discovery

application. Services are identified by a tuple {protocol; hosted port}. The

ones  hosted  by  honeypots  are  discarded.  The  ones  hosted  by  production

servers are grouped in combinations per IP address. The algorithm then ranks

each combination of services according to their volume of hosting IP.  For

example,  if  15 distinct  IP  addresses  are  detected having both the services

{TCP; 22} and {TCP; 80} open, then the value “15” wil be used to rank the

combination  [{TCP;  22},  {TCP;80}]  among  all  combinations.  The  most

popular combinations,  i.e., the ones associated to the greatest number of IP

addresses, are ranked at the top of the list.

2. Applying a proportionality factor. The proportionality factor is calculated

by dividing the number of unique IP addresses in the server discovery dataset

by the size of the IP space dedicated to the honeypot architecture. This factor

is then applied to the number of hosting IP for each combination of tuples. A

threshold  is  used  to  keep  only  the  most  popular  services  and  to  discard

services which are too infrequent (these services are saved for later review).

The result is a list of combinations of services associated with a scaled down

number of IP addresses. 
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3. Generating a network configuration. The list generated is then converted to

a sequence of firewall “ACCEPT” rules. The set of IP addresses hosting each

combination of tuples are selected randomly from the pool of honeypot IP

addresses  in order  to  distribute  services  in the IP  space  dedicated  for  the

honeynet.  This  process  is  done  iteratively  starting  with  the  most  popular

combination of services.

4. Generating a Honeybrid configuration. The list of ports used to build the

firewall configuration is now used to generate automatically the configuration

file of Honeybrid to deal with traffic on the ports of interest.

We  ran  the  script  on  two  week  days  of  server  discovery  data  collected  at  the

University of Maryland. We declared a honeynet of five /24 subnets, which represents a

total of 1,275 IP addresses. The script found 8,221 IP addresses hosting a total of 1,661

different combinations of services on the campus network. The top combination hosted

by 1,504 different IP addresses was made of the single service {TCP; 22}. By dividing

the count of 8,221 active IP  addresses by 1,275 declared honeypot sensors,  the script

found a proportionality factor of 6.44. It then generated the firewall rules starting with the

top combination and up to combinations hosted by at least 7 IP addresses. A sample of

the processing output of the script is provided below:

# 1275 honeypots declared

# Generating the combinations of protocol/ports...

# Total ip: 8221, Total honeypot: 1275, Ratio: 6.44

# Distributing combinations to IP addresses in the honeynet...

#  Converted 1504 into 233 for combination "TCP-22"

#  Converted 710 into 110 for combination "TCP-80"

#  Converted 660 into 102 for combination "TCP-23 TCP-80"

#  Converted 423 into 65 for combination "TCP-8081"

#  Converted 343 into 53 for combination "TCP-3389"

#  Converted 338 into 52 for combination "TCP-443 TCP-80"

#  Converted 336 into 52 for combination "TCP-5900"

...
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#  Converted 7 into 1 for combination "TCP-53 UDP-53"

#  Converted 7 into 1 for combination "TCP-3306 TCP-80"

#  Converted 7 into 1 for combination "UDP-7000"

#  Converted 7 into 1 for combination "UDP-6970"

# Count is below 1, so we stop

# 967 IP addresses were assigned in your honeypot (75.85%

covered)

# Generating Honeybrid config per service...

# 30 services defined for 5 honeypot networks with module sha1()

The script was able to assign the 70 combinations that were hosted by at least 7 IP

addresses.  On the  remaining  1,591  combinations,  1,450  were  hosted  by only  one  IP

address. As a result,  the 70 assigned combinations represent 78.03% of the servers on

campus (6,415 IP addresses out of 8,221). A similar calculation can be applied on the

number of services: 30 services out of a 65,619 unique services could be assigned. But

again, these 30 services are hosted by 78.03% of the servers.

The two configuration files generated by the script can then be automatically installed

in iptables and Honeybrid. The result is a honeynet which is a scaled down representation

of  the production network, where each combination of services  hosted by honeypots

match the combination of services of a set of production servers. 

 2.2.  Studying the Latest Attack Trends

The goal with research honeypots is to learn about the current and future trends of

network  threats.  For  example,  catching  a  0-day  exploit  is  a  proof  of  success  for  a

honeypot-based experiment. Following the assumption that attackers use a cost-benefit

approach to select the services they scan and exploit, the fact that a network service is

scanned by a large variety of attackers is an important indication that attacks against this

service offer  a good return on investment.  Researchers  should therefore try to collect

these attacks. The challenge is to configure honeypots with the network services that are
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the  most  often  scanned  by  attackers.  Here  again,  the  server  discovery  application

introduced in Chapter 5 can greatly facilitate this process.

The idea is to build the network configuration of honeypots by using the dataset of

scanners targeting the organization network. The algorithm to achieve this task works as

follow:

� Parsing input data. The algorithm starts by reading the raw dataset of scanners

detected  over  a  selected  period  of  time  by  the  server  discovery  application.

Services, which are identified by tuples {protocol; targeted port}, are individually

extracted.  Then the number of scanners is  used to rank each service.  Services

which were scanned by the largest number of IP addresses are ranked at the top of

the list. 

� Selecting the most popular services. A user-defined threshold is then applied on

the list of services to discard the ones scanned by only few attackers.

� Generating  a  network  configuration.  The  list  of  services  generated  is  then

converted to a sequence of rules for Honeybrid. These rules use the equation of

modules  “SOURCE()  or  RANDOM()”  in  order  to  collect  at  least  one  attack

sample  from  all  attackers.  The  module  SOURCE()  guarantees  that  the  first

attempt  of  each  attacker  will  be  collected.  Further  attempts  from  the  same

attackers will be discarded to prevent attackers from fingerprinting the honeypot

architecture.  The  module  RANDOM()  allows  Honeybrid  to  collect  additional

samples of attacks without advertising the presence of honeypots. We note that to

be even more realistic, the probability given in argument of RANDOM() could be

125



extracted  from the popularity of  the service in the organization network.  This

popularity can be provided once again by the server discovery application.

The main difference with the previous approach is the location of the filtering. In the

case of production honeypots, the knowledge of servers was used to generate firewall

rules.  The  Honeybrid  gateway  was  then  accepting  everything  that  went  through  the

filtering firewall. In the case of research honeypots, the knowledge of scanners is used to

generate  Honeybrid  rules  and to build the largest  possible fishnet. The filtering is  no

longer on the firewall but on Honeybrid itself. The advantage of the first approach is to

build a highly realistic honeynet. But if an attacker targets an IP on a service that was not

declared open, the attack fails. On the other hand, the second approach has the advantage

of building a giant fishnet, able to catch traffic from all attackers. The realistic part of the

honeynet is weaker since it relies on the RANDOM() module to sample attacks from the

same attacker toward the same service randomly.

We ran  this  script  on  24  hours  of  scanner  data  collected  by  the  server  discovery

application. A total of 2,069 unique services had been scanned on the campus network by

7,604 distinct IP addresses. We configured the script with a threshold of 10 to discard

services  that  were  scanned  by  9  IP  addresses  or  less.  As  a  result,  41  services  were

extracted,  representing  97.40%  of  the  scanners  (7,406  out  of  7,604  scanning  IP

addresses). The top 5 most scanned services are provided below:

• Service UDP-53 scanned by 2,716 IP addresses;

• Service TCP-80 scanned by 2,037 IP addresses;

• Service TCP-25 scanned by 2,021 IP addresses;
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• Service TCP-443 scanned by 272 IP addresses;

• Service UDP-389 scanned by 99 IP addresses;

The result is a new configuration file for Honeybrid defined by 41 entries.

 2.3.  Advantages and Limitations

We presented in this section two techniques to take advantages of network flows to

remove the burden of manually handling the network configuration of honeypots. These

two techniques cover the two possible motivations behind honeynet deployment: either to

protect a production network, or to run research experiments. The contributions of our

approach are:

• Efficiency: the method is fast and automated;

• Accuracy: the configuration is based on precise server and scanner detection;

• Stealthiness: the two properties of proportional representation and individual host

consistency reduce the fingerprint of the honeynet architecture;

• Dynamicity: the script can be run on a daily basis to guarantee that the honeynet

follows the latest attack or service trends.

This approach is a major step to solve the issue of honeynet configuration. However, it

remains limited to the network configuration of honeypot sensors, and it does not provide

a solution for host configuration. This is because our approach is based on network flows,

which  gives  information  at  the  network  level  (protocol  and  ports)  but  not  at  the

application level. For example, when port TCP-80 is configured to be open on a given set

of honeypots, we have no information to decide which web server to deploy (Apache or

IIS?) and which application to exactly run. We note that a possible solution would be to
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configure a dynamic low interaction responder such as [49] or [26] to dynamically infer

the type of application from the attacker's requests. Then we would have to implement a

new module in Honeybrid to adjust the configuration of the redirection from the output of

the responders.

 3.  Building Attacker Profiles from Multiple Datasets

We studied in the previous section how network flows could help the deployment of

honeypot sensors before starting the data collection. In this section, we investigate how

network flows can assist security analysts after collecting data. The idea is to use flows as

a tracking system to trace attackers in the organization network. Using this information,

we  can  present  to  security  analysts  a  complete  history  of  communication  for  each

attacker, including scanning activity, client activity and server activity. This information

combined  with  the  type  of  attack  identified  by  the  honeypot  solution  provides  a

comprehensive attacker profile.

 3.1.  Aggregation Scheme

The first step to be able to merge various datasets is to define an aggregation process.

The concept of aggregation is to build layers of abstraction, in order to present to the end

operators  only the more relevant  information. The amount of information reported by

honeypot and network flow sensors can be quickly overwhelming, especially in a large

organization network. This is why building an efficient aggregation scheme is critical.

We define the following layers of abstraction, from bottom to top:

1. Raw data. The lowest layer is the smallest amount of output data provided by

the different  sensors.  For  example,  in the case of network flow, a single line

representing one flow would be seen as raw data.
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2. Event. An event is the result of the first aggregation operation. Raw data can be

combined in similar objects over a given period of time to generate events.

3. Profile. Profiles are the key part of the aggregation process, since they regroup

events from multiple heterogeneous sources.

4. Alert.  The  top layer  is  the most abstract.  Similarly  to  a  distributed  intrusion

detection system (IDS), it consists of a set of alerts that a security analyst can

quickly review to assess a situation. The alerts are often the starting point for

more in-depth analysis. The alerts are triggered by a set of rules defined either by

learning algorithms or human operators.

Figure  24 provides  a  representation  of  this aggregation  scheme in  the case of  our

architecture, where data from network flows collectors  and honeypots are combined.

Raw data and events for both honeypots and network flows collectors have already

been  introduced  in  Chapters  4  and  5  through  the  Honeybrid  and  Server  Discovery

applications. The contribution of this chapter is the attacker profile. The alert layer is out

of the scope of this study but will be discussed at the end of this section.
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Figure 24: Overview of the aggregation scheme to regroup network flow and honeypot

data

 3.2.  Aggregation Key

Events  are  automatically  imported  to  a  central  database  where  a  script  is  run

automatically to build attacker profiles. A profile is a high-level representation of events

collected through the organization network flows and through the honeypot architecture.

The  key  used  to  regroup  similar  events  in  the  same  profile  is  the  IP  address.  This

approach has the following limitations:

� IP addresses can be spoofed by attackers;

� Attackers can bounce through multiple IP addresses before launching their attack;

� Attacks can be distributed over multiple IP addresses.
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The first issue has a limited impact because 1) it concerns only single packet attacks,

since packet  replies  sent  back by victims to  the spoofed sources  will  be lost;  and 2)

Internet service providers are more and more controlling outbound communications to

automatically drop those coming from IP addresses out of their designated IP space [18].

Moreover,  there  is  on-going  research  on  the  concept  of  backtracking  to  be  able  to

traceback the source of spoofed packets [34].

The second issue is not a real limitation since the last IP address used by attackers and

recorded in our log still reveals an infected system.

We partially solve the third issue by aggregating profiles not only by attackers but also

by victims. Thus, attacks patterns involving multiples attackers will be recorded in the

victim  profiles.  However,  attackers  who  use  different  source  IPs  to  target  different

victims might still be diluted in the dataset. A possible solution is to rely on advanced

alerting rules at a higher aggregation level to be able to find them.

 3.3.  Profile Content

The different data fields in a profile were selected to provide a comprehensive summary

of an attack. Their definition is generic enough to fit a large variety of attacks, but based

on user  needs, their aggregation thresholds can be adjusted to highlight  more specific

attack patterns.

A profile is divided in four sections: key, overview, flow report and honeynet report.

These sections have the following fields:

� Key: IP address;

� Overview: 
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◦ Total time range (first date and last date of network activity collected);

◦ Total number of flows, packets and bytes collected;

◦ Total number of distinct hosts that communicated with this IP;

� Flow report(s):

◦ Key: port(s) or port-range(s) and an activity type (determined by the server

discovery application): 

▪ Scanner;

▪ Client;

▪ Server;

▪ Invalid;

◦ Associated time range;

◦ Associated number of flows, hosts, packets and bytes;

� Honeynet report(s):

◦ Key: port(s) or port-range(s) and an activity type: 

▪ scan: if no IDS signature is triggered besides scanning;

▪ attack: if one or more IDS signature(s) is/are triggered;

◦ Associated exploit detected (if any);

◦ Associated time range;

◦ Associated number of flows, hosts, packets and bytes;
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Multiple flow and honeynet reports can be associated to a single key. Each report is an

aggregated view of a set of events linked together by three elements:

1. A major key: the IP address of the profile;

2. A minor key: a port or a set of ports and a type;

3. A time range.

The first element is the primary key of the profile and obvious to use as a filter. The

second  and  third  elements  are  calculated  using  thresholds.  The  first  threshold  to  be

applied is an inactivity timeout between events. It is used as a minimum gap to separate

events which are disjoint in time into separate reports. For example, if the three following

events are collected: 

• 10.0.0.1 is a scanner targeting port tcp/80 between 5:32pm and 5:37pm,

• 10.0.0.1 is a scanner targeting port tcp/80 at 5:57pm,

• 10.0.0.1 is a scanner targeting port tcp/80 between 11:03pm and 11:24pm,

and if we apply a timeout threshold of one hour, then events 1) and 2) would be grouped

in  a  first  flow report,  since  they  occurred  20  minutes  apart;  but  event  3)  would  be

associated to a second flow report, since it occurred 5 hours and 6 minutes after event 2).

The second threshold applied concerns the ports. The idea is to produce as few reports

as possible while keeping a maximum volume of information. When an IP  address is

detected having the same type of activity toward a list of different ports over a short

period of time (defined by the first threshold), then we group all these events in the same

report, and we display the port information either using an exhaustive list of all the ports

involved, or using a count of ports and a port range. The problem is to decide the most
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relevant solution between these two options: in the first case, we do not lose information,

but we take the risk of confusing security analysts with too many displayed elements. In

the second case, we lose information but we only have to keep record of two ports (the

upper and lower boundaries of the range).

 3.4.  Aggregation Algorithm

Our aggregation algorithm fills the task of generating profiles from events. Events are

added to our central database constantly.  The aggregation algorithm loops over events

and tries to group them using the keys and thresholds defined in the previous subsection.

This process has two main constraints:

• Each new event added to the database has to be analyzed;

• Profiles and reports are constantly updated.

The first constraint is easily solved by using an auto-incremented id on each event and

then keeping track of the last id analyzed. To address the second constraint, we divided

the data storage of profiles in three tables:

1. A master table stores the overall information about the profile;

2. A flow report table stores all the reports created from network flow events;

3. A honeynet report table stores all the reports created from honeypot events.

Each  of  these  three  tables  uses  the  same  field  “IP  address”  as  a  key.  Overall

information in the master tables are re-calculated after each update of the associated flow

and honeynet reports. As such, the removal of old information is automatically taken care

of in the master table when records are expired in the flow and honeynet report tables.

We discuss further about the aging process in the next subsection.
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The flow chart of the aggregation algorithm is described on Figure 25. 

 3.5.  Automatic Aging and Backup Process

The  volume  of  events,  reports  and  profiles  stored  in  the  database  can  be  very

important  for  a  large  organization  network.  As  a  result,  it  is  critical  to  develop  an

automated  aging  process  in  order  to  remove  records  which  are  too  old,  while  not

removing important  information. Each record in the database has a field named “last

visited”, that hold the timestamp of the last time the record was queried by a user. The

difference between the current  day and the value of this field “last visited” is used to

expire records.  As a result,  records  which are queried often never  expire (the system
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assumes that these records are important). Then our aging process uses two threshold for

records  which  have  been  either  never  queried  or  queried  a  long  time  ago:  a  short

threshold (for example 7 days) is used to expire records with a small volume of network

activity; and a  long threshold (for example a 60 days) is used to expire records with a

large volume of network activity. The volume of network activity is computed using both

the number of flows collected in the organization network, and the number of attacks

detected in the honeynet. Here, the assumption is that a trace of major disruptive activity

should be kept during a longer period of time.

 3.6.  Case Study at the University of Maryland

 3.6.1.  Overview

We evaluated the aggregation architecture over a period of nine days at the University

of Maryland. The campus network is made of two /16s which represent a total of 131,072

IP addresses. 1,275 of these IP were dedicated to the Honeybrid architecture. Honeybrid

was configured with the Nepenthes program to handle low interaction traffic, and three

high  interaction  honeypots  running  Windows  2003.  During  the  nine  days  of  the

experiment,  the  server  discovery  application  reported  a  total  of  5,370,985  events.

Honeybrid recorded a total of 772,218 network sessions, from which 34,495 carried an

exploit detected by the Snort IDS.

The  aggregation  algorithm  generated  180,768  profiles,  285,718  flow  reports  and

165,293 honeynet  reports.  1,329 profiles generated had both flows and honeypot data

associated. 15,362 profiles were for IP addresses internal to the campus network but only

9 profiles had honeypot data. These 9 profiles are likely to reveal compromised internal

computers. We investigate further these profiles in the next subsection. On the 165,406

profiles of external IP addresses, 138,327 profiles had at least one honeynet report and
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1,324 profiles had both flows and honeypot data associated. The low number of profiles

with both flows and honeypot data can be explained by two reasons: 1) we deployed the

server/scanner  discovery  application  only  on  the  main  Internet  providers  of  the

University of Maryland, which is connected through two providers; and 2) we did not

record client information in the flows report but only scanners and servers information.

So if an attacker targets the honeynet and then only responsive servers in the production

network, it will be recorded in the honeynet reports but not in the flow reports.

By aggregating reports per port we can quickly identify the top attack ports on the

honeynet and the different threats targeting the organization network. Table 12 details the

top  15  ports  targeted  on  the  honeynet  and  the  related  scanning  traffic  recorded  by

network  flow  collectors.  Table  12 also  indicate  the  number  of  different  payloads

collected by Honeybrid for the ports where the HASH module was installed. We see from

the results that by comparing the number of attackers and scanners, we can divide ports in

two categories: 1) ports such as UDP-389 or TCP-2967 with a low activity inside the

organization network but a relatively important activity in the honeynet; and 2) ports such

as TCP-22, TCP-80 or TCP-25 with a very large volume of traffic inside the organization

network and a regular activity in the honeynet. This last set of ports is targetted by a large

number of attackers because they are the most popular services hosted at the University

of Maryland. These results are important to tune the honeynet architecture and to improve

the data collection by focusing on the most important services.
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Table 12: Overview of attacks collected by Honeybrid per port and related traffic at the

University of Maryland

 3.6.2.  Web Attacks Collected 

Figure 26 details the type of attacks collected by the HASH module of Honeybrid for

the port TCP/80 (web servers) over 10 days. This report is useful to undertand the type of

threat targeting the organization network, and to be able to make sure that applications

deployed in the organization network are not vulnerable to these specific attack payloads.

Figure 26: Volume of web attacks collected by Honeybrid and aggregated per type
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Ports
Honeynet Network flows

Attackers Flows Scanners Flows

 UDP-389  257 456 366 723 no service deployed

 TCP-3268 217 314 227 309 no service deployed

 TCP-2967 164 408 140 264 no service deployed

 TCP-22   109 140 1,128 3,297 no service deployed

 TCP-1433 97 216 119 184 10,191 brute force attack payloads

 TCP-3072 47 131 38 67 no service deployed

 TCP-80   47 272 8,562 20,298 1,181 attack payloads

 TCP-8080 41 91 69 100 no service deployed

 TCP-1024 39 101 43 77 no service deployed

 TCP-23   19 37 255 287 no service deployed

 TCP-3389 19 42 24 27 no service deployed

 TCP-25   16 55 7,115 22,950 260 attack payloads

 TCP-2968 14 17 91 118 no service deployed

 UDP-2176 14 17 4 4 no service deployed

 UDP-53   13 63 11,235 31,102 7,633 payloads
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 3.6.3.  Finding Internal Compromised Hosts

By filtering profiles to retrieve only those for internal IP addresses with at least one

honeynet report, we got a list of nine IP addresses. We were surprised to discover that

two of them were security scanners from the OIT department of the University.  Five

others  had  only  a  single  hit  in  the  honeynet  and  no  flow  report.  The  two  other  IP

addresses could be immediately identified as compromised computers. Tables 13 provide

the detailed information for the profile of one of these two addresses.

The  profile  represented  on  Table  13 reveals  that  IP  address  A belongs  to  a

compromised  computer.  The  slow  scanning  pattern  of  this  computer  (the  maximum

scanning rate is only six connection attempts per minute to the port TCP-445) makes it

relatively undetectable by traditional security solutions. However, the honeynet succeed

in capturing and precisely identifying the malicious activity carried by this computer. The

aggregated  profile  offers  a  comprehensive  timeline  of  events  that  allows  a  network

operator to quickly identify the problem and take action (for example, by blocking the

computer  and  contacting its  owner).  We notice  that  it  took  only 24  minutes  for  the

honeypot  sensors  to  receive  attack  probes  from the  second  scanning  campaign  of  IP

address A, which started on Tuesday at 4:25am and targeted 1,216 IP during 4 hours.
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Table 13: Aggregated activity profile for IP address A

Profile for IP Address A

Overview:

First seen: Monday 4:45am

Last seen: Thursday 2:30pm

Flows: 19,614

Peers: 19,608

Honeynet reports: (7)

Start Duration Type Port Flows Peers

Tues. 4:49am 2h Scanning TCP-445 64 64

Wed. 8:52am 1h Scanning TCP-445 7 7

Wed. 11:34am 1s Scanning TCP-445 2 2

Wed. 3:11pm 1s Scanning TCP-445 4 4

Wed. 3:11pm 31s Netbios

Exploit

TCP-139 1 1

Wed. 7:14pm 1h Scanning TCP-445 16 16

Thur. 11:38am 34min Scanning TCP-445 5 5

Flow reports: (9)

Start Duration Type Port Flows Peers

Mon. 4:45am 5min Server UDP-1027 2 1

Mon. 8:45am 5min Scanner TCP-445 25 25

Tues. 3:25am 5min Server UDP-1027 2 1

Tues. 4:25am 4h Scanner TCP-445 1,216 1,216

Tues. 1:40pm 5min Server UDP-1027 2 1

Tues. 7:25pm 5min Server UDP-1027 2 1

Tues. 9:10pm 2 days Scanner TCP-445 18,262 18,262

Thur. 5:10am 5min Server UDP-1027 2 1

Tues. 7:55am 5min Server UDP-1027 2 1

 3.7.  Limitation and Future Work

The first limitation of our aggregation framework is that it depends on the location of

network  flow  collectors.  In  the  case  of  the  University  of  Maryland,  network  flows

collectors are deployed at the border of the organization network. This means that all

communications  between  internal  hosts  and  external  hosts  are  captured,  but
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communications between internal hosts only remains off the record. So internal attackers

who  target  IP  addresses  inside  the  organization  network  might  be  detected  by  the

honeynet but they will not leave any trace in the network flow data. This problem can be

addressed  by  deploying  additional  network  flow  collectors  between  subnets  of  the

organization network.

A second limitation is the lack of automated alerting system at the top layer of our

aggregation process. Security analysts currently have to manually query for suspicious

data.  It  is  part  of  our  future  tasks  to  implement  an  alerting  system  that  would  be

automatically triggered when a profile carries an attack pattern. In the case study that we

mentioned previously,  the attack signature could be: { “repeated scanning to port 445

detected in the flows” + “Netbios exploit detected in the honeynet” }.

 4.  Summary

In  this  chapter,  we  first  show  how  network  flows  could  be  integrated  with  our

honeynet  architecture in order  to generate  automatically the network configuration of

honeypots. Thanks to the server and scanner discovery application introduced in Chapter

5, we were able to build a program that takes the list of detected production servers to

generate a honeynet configuration that accurately represent the production network at a

smaller scale. We then presented a second program that takes the list of detected scanners

to generate a honeynet configuration optimized to gather as much information as possible

from the current  population of attackers.  These two programs contribute to  solve the

problem of configuring a large honeynet.

We then presented a second application of network flows to  assist  the analysis  of

honeypot  data.  By  aggregating  events  from  network  flows  and  honeypot  data  into
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summarized reports, we were able to build comprehensive attacker profiles that facilitate

the work of security analysts to spot malicious activity and to understand attack patterns.

We showed how we could detect two internal compromised computers after a few days

of deployment at the University of Maryland.
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  CHAPTER 7

CONCLUSIONS

 1.  Summary

As our dependence on computers and network constantly increases,  comprehensive

network security is of tremendous importance. A first requirement to be able to better

protect  networks  assets  is  to  gain  a  detailed  understanding  of  malicious  threats.  The

concept of honeypot has been precisely invented to fill this task. In this dissertation, we

presented  a  complete  architecture  to  address  the  current  limitations  of  honeypots

deployed in the context of large organization networks. We started by defining what are

honeypots  and  what  types  of  attack  they  can  capture.  We  then  reviewed  the  three

elements that researchers and security analysts need to define when deploying honeypots

in a large organization network: a location, an architecture and a configuration. We then

introduced  different  software  solutions  to  help  defining  these  three  elements  and  to

greatly  reduce  the  costs  associated  with  the  deployment  and  the  administration  of

honeypots. The cornerstone of our approach is the first open source implementation of a

hybrid honeypot architecture that provides scalability and high level of interaction. We

then integrated network flows into this architecture through an innovative passive server

and scanner  discovery application that 1) assists  the automated configuration of large

honeynet,  and  2)  extends  the  scope  of  honeypot  data  analysis  by  providing  a

comprehensive profile of network activity to track attackers in the organization network.

Our  final  honeypot  architecture  marks  a  major  step  toward  leveraging  honeypot

technologies into a powerful security solution for the organization network.
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 2.  Insights

The first contribution of our work is to provide a detailed implementation of a hybrid

honeypot  architecture.  We  developed  an  advanced  Decision  Engine  and  Redirection

Engine that offer to honeypot administrators a flexible and scalable solution to collect a

large  variety  of  network  attacks.  We  introduced  the  notion  of  modular  filtering  to

automatically separate interesting attack events from the noise of background traffic.

The second contribution of our work is to include network flows into our architecture

to  assist  and  extend  the  capabilities  of  honeypots.  We  detailed  an  algorithm  to

automatically handle the network configuration of honeypots without the need of human

intervention. We then show how using network flows and honeypot data could improve

the understanding of attacker's activity. 

The third contribution of our work is to have deployed and tested our architecture in

the large organization network of the University of Maryland. Thanks to the scalability of

our  honeynet,  we  are  able  to  automatically  collect  malicious  traffic  from  1,275  IP

addresses  with  small  computer  and  human  resources.  Moreover,  we  show  that  the

aggregation process we designed could efficiently reduce a large volume of data into a

comprehensive set of attacker profiles.

 3.  Limitations

While the flexibility introduced by our advanced architecture allows broadening and

expanding the spectrum of attack type collected,  we still  do not cover the analysis of

targeted  attacks.  If  we classify  malicious  activity  in  two categories:  targeted  attacks,

involving  skilled  human  attackers,  targeting  specific  resources  using  stealthy

reconnaissance  techniques;  and  random attacks,  involving  scan-based  threats  such  as
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worms or botnets; then honeypots are mostly able to collect random attacks. The reason

is that honeypots are deployed on unused IP spaces; therefore they can hardly be a target

of choice for directed attacks. However, the impact of this limitation is reduced because

the volume of directed attacks can often be neglected compared to the volume of random

attacks.  A  possible  solution  is  to  deploy  our  Honeybrid  architecture  as  a  shadow

honeypot in front of production servers instead of unused IP. Legitimate traffic would be

sent to the server, but whenever malicious traffic is detected by the Decision Engine, the

connection would be replayed by the Redirection Engine toward a honeypot for further

analysis.

A second limitation of our architecture is the lack of automatic responder to handle

traffic directed to services we did not yet deploy. Our automatic honeynet configuration

program takes care of the network configuration of honeypots, but the administrators are

still in charge of the host configuration of honeypots. The consequence is that a delay is

induced between the discovery of a new vulnerable services and its deployment in the

honeynet.  To  instrument  Honeybrid  with  reverse  engineering  protocol  capabilities  in

order to create low interaction responders on the fly would suppress this delay.

Finally,  a  limitation  of  honeypots  that  we  did  not  address  is  the  host  monitoring

functionality. We are using Argos based on Qemu to taint network packets in the virtual

machine and detect intrusions, but we do not yet have a fully automated solution to save,

analyze and clean our farm of high interaction honeypots.

 4.  Future Work

The limitations reviewed in the previous section provide some first indications on the

future tasks required to improve our architecture: 1) using intelligent responders in place
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of traditional low interaction scripts, and 2) implementing a virtual machine handler to

detect compromised honeypots and re-image them automatically.

Another  area that  we did not explore is the user  interface of  our data aggregation

framework. We built a first prototype that allows network operators to display attacker

profiles and review the status of the different honeypots, but the functionalities are still

limited. We see four possible improvements that could be implemented:

1. Making use of data visualization techniques to help human analysts getting a

better understanding of attack processes;

2. Adding an alerting system to be able to define attack signatures from network

flows and honeynet reports;

3. Allowing security analysts to share their findings through a collaborative user

interface;

4. Adding data anonymization and data export functionalities to enable cross-

organization data sharing for a better threat management.
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