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Estimating proportions of units with a given characteristic for small areas 

using small area estimation (SAE) techniques is a common problem in survey 

research. The direct survey estimates, usually based on area-specific sample data, are 

very imprecise or even unavailable due to the small or zero sample sizes in the areas. 

In order to provide precise estimates, a variety of model-dependent techniques, using 

Bayesian and frequentist approaches, have been developed. Among those, empirical 

best prediction (EBP) and hierarchical Bayes (HB) methods relying on mixed models 

have been considered for estimating small area proportions.  

Mixed models can be broadly classified as area or unit level models in SAE. 

When an area level model is used to produce estimates of proportions for small areas, 

it is commonly assumed that the survey weighted proportion for each sampled small 

area has a normal distribution and that the sampling variance of this proportion is 

known. However, these assumptions are problematic when the small area sample size 



  

is small or when the true proportion is near 0 or 1. In addition, normality is commonly 

assumed for the random effects in area level and unit level mixed models. However, 

this assumption maybe violated for some cases. 

To address those issues, in this dissertation, we first explore some alternatives 

to the well-known Fay-Herriot area level model. The aim is to consider models that 

are appropriate for survey-weighted proportions and can capture different sources of 

uncertainty, including the uncertainty that arises from the estimation of the sampling 

variances of the design-based estimators. Then we develop an adaptive HB method 

for SAE using data from a simple stratified design. The main goal is to relax the usual 

normality assumption for the random effects and instead determine the distribution of 

the random effects adaptively from the survey data.  The Jiang-Lahiri type 

frequentist’s alternative to the hierarchical Bayesian methods is also developed. 

Finally we propose a generalized linear mixed model that is suitable for binary data 

collected from a two-stage sampling design. 
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Chapter 1:  Introduction and Literature Review 

1.1  The Need for Small Area Estimation 

 
Sample surveys are usually designed to produce estimates for the target 

survey population and for major population subgroups. Standard survey estimates for 

major subgroups are termed “design-based” or “direct” estimates because they are 

based only on the survey data and the selection probabilities for the sample in the 

subgroup of interest. Statistical inferences based on direct estimates under the usual 

design-based mode of inference do not depend on the validity of a statistical model, 

unlike the situation in most other areas of statistics.  However, the design-based mode 

of inference becomes problematic when the sample sizes in the subgroups of interest 

are small (or even zero).  In this situation, model-dependent methods are increasingly 

being used to produce what are termed as “small area” or “indirect” estimates.       

The term “small area” usually refers to a small geographic area such as a state, 

county, municipality, school district, metropolitan area, or a small domain such as a 

specific age-sex-race group within a large geographic area. Small areas can be design 

domains, which are included in the sampling design stage, for example, as strata or 

primary sampling units (PSUs), or analytic domains which are identified only during 

the analysis phase of the study.   

During the past three decades, the demand for survey estimates for small areas  

has increased dramatically in many different areas of application, including income 

and poverty, education, health, substance use, and agriculture. The reason for the 

increased demand for small area estimates is to be found in the recent trend in federal 
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policy to target social and economic programs at a more local level. The survey data 

that were originally designed to provide statistically reliable, design-based estimates 

of characteristics for a high level of aggregation (e.g., for the nation as a whole, for a 

large geographic domain such as region), are now also being used to generate model-

dependent estimates at a lower level (e.g., states, counties).  

Estimates for small areas may be used for allocation of federal funds in 

government programs, regional planning, and program evaluation. For example, in 

order to provide updated and precise estimates of income and poverty statistics for the 

administration of federal programs and the allocation of federal funds to local 

jurisdictions, the U.S. Census Bureau, with support from other Federal agencies, 

created the Small Area Income and Poverty Estimates (SAIPE) program beginning in 

the early 1990’s. The program produces timely estimates for several characteristics of 

income and poverty than the decennial Census in small areas including states, 

counties, and school districts.  Citro and Kalton (2000) reviewed a variety of uses of 

these estimates. The following summarizes some of them. The estimates produced by 

the SAIPE program are used to allocate more than $130 billion of U.S. federal funds 

each year to states and localities. States also use SAIPE estimates to allocate their 

own and federal funds to substate areas. The Improving America's Schools Act of 

1994 called for the use of the SAIPE estimates of poor school-aged children (aged 5-

17) for counties and school districts to allocate more than $7 billion (now over $12 

billion) of federal funds annually for programs providing extra help to educationally 

disadvantaged children under Title I of the Elementary and Secondary Education Act. 
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Estimates of health related statistics in small areas are needed for local health 

planning and treatment. The U.S. National Health Planning and Resources 

Development Act of 1974 strongly emphasize local health planning and require local 

Health System Agencies to collect and analyze data related to the health status of 

their residents and to the health delivery systems in their health service areas 

(Nandram, 1999). The U.S. Substance Abuse and Mental Health Services 

Administration (SAMHSA) produces small area estimates for more than 20 outcomes 

related to substance use, treatment, and mental health in areas such as states, groups 

of counties, and census tracts based on data from the National Household Survey on 

Drug Use and Health (NSDUH) in order to give policy officials a better perspective 

on the variability in prevalence within and across states.  States use these estimates 

for treatment planning purposes. For more information, see the SAMHSA website 

(http://www.oas.samhsa.gov/2k5State/AppA.htm) and the Research Triangle Institute 

small area estimation website (http://www.rti.org/page.cfm/Small_Area_Estimation). 

The Adult Education Amendments of 1988 requires the U.S. Department of 

Education to submit a report to Congress on the definition of literacy and then report 

on the nature and extent of literacy among adults in the nation 

(http://nces.ed.gov/NAAL/naalhistory.asp). To satisfy this requirement, the National 

Center for Education Statistics (NCES) conducted the 1992 National Adult Literacy 

Survey (NALS) and the 2003 National Assessment of Adult Literacy (NAAL) to 

assess the English language literacy skills of adults in the U.S. based on an 

assessment containing a series of literacy tasks completed by sampled adults. These 

surveys produced direct estimates of English language literacy for the nation and 
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major subdomains of interest. However, policymakers, researchers, and business 

leaders often need adult literacy estimates, particularly at the lowest literacy level, for 

all states and for smaller jurisdictions within the states. This need has led to the 

production of small area estimates for all states and counties within the U.S. using the 

survey data from NAAL and NALS (Mohadjer et al., 2007; 2008). 

The need for small area estimates is also growing in other countries. For 

example, policy makers in the U.K. need information about local areas for economic 

planning, resource allocation and policy making. Recognizing this need, the U.K. 

Office of National Statistics (ONS) has been carrying out research into the most 

appropriate ways of constructing small area estimates. A typical example is the Small 

Area Estimation Project (SAEP) established by the Statistical Methodology Division 

of the ONS in April, 1998 (SAEP Report, 2003). The Australian Bureau of Statistics 

(ABS) acknowledges the demand for small area data in various areas in Australia to 

support planning, decision making and service delivery at local area level. To 

increase knowledge and understanding of small area estimation techniques, to ensure 

greater consistency in their application, and to provide a guide for choosing the best 

method to apply for a particular situation, ABS published a small area estimation 

practice manual in 2005 (Australian Bureau of Statistics, 2005).  

The growing demand for small area estimates applies in many different areas 

of application and in many countries. Rao (2003) and Jiang and Lahiri (2006a) 

provide many more examples.  
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1.2 Direct Estimation for Small Areas  

 
Survey data are extensively used to produce reliable direct estimates of totals 

or means not only for the population surveyed but also for large areas or domains. A 

direct estimate for a characteristic of interest in a domain is usually based on the 

sample units in the domain. Traditional theories on direct domain estimation under 

the design-based framework are covered in sampling theory books such as Cochran 

(1977), Sarndal, Swensson and Wretman (1992), and Lohr (1999).  Those theories are 

developed for large domains. In this dissertation, we focus on estimates for small 

domains, i.e., small areas.  

Suppose there are m  small areas of interest. Let iU  and is  denote the index 

set of the units in a finite population and in a sample, respectively, that are in area i , 

1,..., .i m=  Let iN  and in  be the number of population units and sample units 

respectively in area i . Let iky  denote the response for a certain characteristic of 

interest for the k th unit in the i th small area ( 1,..., ;  1,..., ).ii m k N= =   Suppose we 

want to estimate the population mean 1
iN

i ik ikY y N==∑  for the i th small area, as 

well as the associated variance of the estimator, using the sample drawn from the 

finite population under a complex sample design. Let ikw  denote the sampling weight 

for sampled unit k  in small area i ( 1,..., ;  1,..., ),ii m k n= =  which is defined as the 

inverse of the first-order inclusion probability under the sample design used.  

If the sample size in a small area is positive and the sampling weights are the 

same within the small area, that is, when we have an equal probability of selection 
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(EPSEM) design within the small area, then the sample mean 1
in

i ik iky y n==∑  is an 

unbiased estimator of the population mean iY  under the randomization-based 

inference. When the sampling weights vary within the small area, that is, when we 

have unequal sampling selection probabilities within the small area, an estimator 

popularly used among survey practitioners is given by:     

 1

1

,    1,..., .
i

i

n
ik ikk

iw n
ikk

w y
y i m

w
=

=

= =
∑
∑

 (1.1) 

This estimator was proposed by Brewer (1963) and Hajek (1971). The traditional 

design-based domain estimation techniques developed in sample surveys (e.g., 

Cochran, 1977; Sarndal, Swensson and Wretman, 1992; Lohr, 1999) and resampling 

methods (Wolter, 1985) may also be used to estimate the associated sampling 

variances for the direct small area means.   

However, these design-based estimates (or direct estimates) are very 

imprecise when the sample sizes in the small areas are small, or are even unavailable 

when the sample size is zero. Therefore, alternative approaches have to be used in 

order to produce reliable estimates for small areas of interest. The demand for precise 

small area estimates has led to the development of model-dependent techniques of 

small area estimation (SAE). 

 

1.3 Model-based Estimation for Small Areas  

 
In the absence of adequate sample sizes, any improved estimation procedure 

calls for statistical models that can combine information from related sources.  Small 
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area estimation techniques combine information from a variety of relevant sources to 

form indirect estimators that generally increase the precision of the small area 

estimates. These indirect estimators are based on various implicit or explicit models 

that provide a link to related small areas through supplementary data (e.g., recent 

census and/or administrative records).  

A variety of indirect estimators have been proposed in the literature. One of 

the first was synthetic estimation (Gonzales, 1973; Gonzales and Hoza, 1978). 

However, this methodology produces model-unbiased estimators under a very 

restrictive model, which is usually unrealistically simple. Composite estimators were 

developed to balance the potential bias of the synthetic estimator under model failure 

against the instability of a direct estimator by taking a weighted average of the two 

estimators. One main challenge in composite estimation is how to determine the 

weight. Later on, model-based composite estimators based on realistic or explicit 

small area models that account for local variations were developed (Rao, 2003). An 

explicit model is useful since it gives users an idea of the data generation process and 

how different information sources are combined. Among the range of explicit small 

area models, mixed models that include both fixed effects and random area-specific 

effects have been widely used in small area estimation in recent years (Jiang and 

Lahiri, 2006a). We briefly review them in the next section.  

 

1.4 Mixed Models in Small Area Estimation  

 
The popularity of mixed models in SAE is owing to their flexibility in 

combining information from different sources and taking account of different sources 
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of error. A mixed model typically incorporates area-specific random effects that 

reflect additional between-area variations in the data that are not explained by the 

fixed effects part of the model. Two primary types of mixed model have been 

employed in the small area estimation literature: area level models and unit level 

models. 

 

1.4.1 Area Level Model 

 
A general area (or aggregate) level model consists of two models. One is the 

sampling model that accounts for the sampling error of the direct survey estimates. 

The other is the linking model that relates the population value to a set of known area-

specific auxiliary variables. Since the design-based survey estimates are modeled 

directly, area level models usually produce design-consistent estimators. However, 

area level models require precise estimates of the sampling variances of the design-

based survey estimates, which is a challenging problem due to the small sample sizes 

in the small areas. 

 

Basic Area Level Model 

 
A typical example of a basic area level model is the Fay-Herriot model (Fay 

and Herriot, 1979). Assume that ( )i ih Yθ =  is related to area-specific auxiliary data 

( )1,...,i i ipz z ′=z  through a linear model for some specified function ( )h i . Let îθ  

denote the direct estimate of iθ . In order to estimate the per-capita income (PCI) in 
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1969 for small places (i.e., population less than 1000) in the United States, Fay and 

Herriot (1979) proposed the following two-level model, often referred to as the Fay-

Herriot model: 

Level 1 (sampling model): ˆ | ~ ( , )
ind

i i i iNθ θ θ ψ ,  1,..., ,i m=                         (1.2) 

Level 2 (linking model): 2 2| , ~ ( , )θ σ σ′
ind

i v i vNβ z β , 1,..., ,i m=                       (1.3) 

where level 1 is used to account for the sampling variability of the regular survey 

estimates îθ  of the true small area means iθ ; level 2 links iθ  to a vector of p  known 

auxiliary variables iz .  The two-level model (1.2)-(1.3) is also referred to as a 

matched model because (1.2)-(1.3) can be combined into a single linear mixed model 

with the following form: 

 ˆ ,    1,..., ,i i i iv e i mθ ′= + + =z β  (1.4)                               

where iv  is the random area effect and ie  is the sampling error. Further, 

2~ (0,  )
iid

i vv N σ  and ~ (0,  )
ind

i ie N ψ  are commonly assumed. Under model (1.4), the 

true small area mean can be written as i i ivθ ′= +z β . The parameters β  and 2
vσ  are 

generally unknown and are estimated from the available data. The sampling variances 

iψ  are customarily assumed known, whereas in practice, they have to be estimated. A 

commonly used approach is to estimate iψ  from the unit-level data using the 

traditional domain estimation techniques first, and then smooth the estimated 

variances ˆiψ  to get more stable estimates of iψ . Fay and Herriot (1979) used 

logarithmic transformation ˆ log( )i iyθ =  in order to stabilize the sampling variance. 



 

 10 
 

More recently, a generalized variance function (GVF) technique (Wolter, 1985; 

Valliant, 1987) has been commonly employed to smooth the sampling variances in 

the small area estimation problem (e.g., see Otto and Bell, 1995; Mohadjer et al., 

2007). GVFs estimate variances (or relative variances) through suitable models which 

describe the relationship between the variance (or relative variance) of a survey 

estimator and its expectation. 

The Fay-Herriot type of model with different choices of transformation 

function ( )h i  has been extensively used in small area estimation and related 

problems by practitioners and researchers. A recent example is the SAIPE state level 

model. SAIPE has applied the Fay-Herriot type of model without transformation 

(i.e., î iyθ = ) to produce mean household income estimates and poverty rates by age 

group for all U.S. states since 1993 (Citro and Kalton, 2000; Maples and Bell, 2005). 

Prior to Fay and Herriot (1979), Efron and Morris (1975) applied the arc-sine 

transformation [ ˆ arcsin (2 1)i i in pθ = − ] to the sample proportions ip  in order to 

stabilize the sampling variance in their well-known baseball data example, where they 

used the two-level Fay-Herriot model (1.2)-(1.3) without any covariates to predict the 

batting average for all the players for the remainder of the 1970 season based on their 

batting averages for the first 45 at bats, ip  (sampling proportion). Carter and Rolph 

(1974) applied a similar transformation function [ ( )ˆ arcsini ipθ = ] in their false 

alarm probability estimation example.  

Following Fay and Herriot (1979), SAIPE has also applied the logarithmic 

transformation for their county level model in estimating poverty rates or counts of 
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school-age children for all U.S. counties (Citro and Kalton, 2000). To overcome the 

problem that the logarithmic transformation cannot be applied to the areas with zero 

direct estimates, Fisher and Asher (1999, 2000) developed a hierarchical Bayes model 

based on a scaled binomial kernel as an alternative to the SAIPE county models.  

The justification for the transformation method is based on the central limit 

theorem, which relies on the sample size being large. That is, a well chosen 

transformation of a direct estimate will be more nearly normally distributed than the 

direct estimate itself. If the area level sample size is small, this approach is less 

effective. 

 

Extensions of the Basic Area Level Model 

 
Various extensions of the basic area level model have been developed in the 

literature. One type of extension is to extend the univariate model (1.4) to a 

multivariate model in order to take advantage of the correlations between different 

characteristics of interest. For example, Fay (1987) and Datta, Fay and Ghosh (1991) 

considered the following multivariate model as an extension to model (1.4): 

 ˆ ,    1,..., ,i i i i i m= + + =Z v eθ β  (1.5)                               

where 1
ˆ ˆ ˆ( ,..., )i i irθ θ ′=θ  is an 1r×  vector of the direct estimates of the characteristics 

of interest, iZ  is an r rp×  matrix with j th row given by ( ),..., , , ,...,ij′ ′ ′ ′ ′0 0 z 0 0  with 

0  being the 1p×  null vector, β  is the rp −vector of regression coefficients, iv  are 

the area-specific random effects which are assumed to be independent multivariate 
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normal with mean 0  (the 1r×  null vector) and variance vΣ , i.e.,  ( )~ ,  
ind

i r vNv 0 Σ , 

and 1( ,..., )′=i i ire ee  are the sampling errors which are assumed to be independent 

multivariate normal with mean 0  and known covariance matrix iΨ , i.e.,  

( )~ ,  
ind

i r iNv 0 Ψ . The authors demonstrated that the multivariate model (1.5) can lead 

to more efficient estimators of the small area means than the univariate model (1.4). 

Note that model (1.5) is general enough to allow the vector of covariates to be 

different for every characteristic, although, in practice, datasets may not be rich 

enough to support this. 

A second type of extension is to extend the basic area level model to a model 

that can handle cross-sectional and time series data (e.g., the labor force survey data). 

For instance, a cross-sectional and time series model with the following form has 

been considered in the literature: 

 ˆ ,    1,..., ;  1,..., ,it it i it itv u e i m t Tθ ′= + + + = =z β  (1.6) 

where îtθ  is the direct survey estimate of the characteristic of interest for small area i  

at time t , ( )2~ 0,  
iid

i vv N σ  are the area-specific random effects, itz  is a vector of area-

specific covariates, some of which may change with time t , ite  are sampling errors 

normally distributed with zero means and a known block diagonal covariance matrix 

Ψ  with blocks iΨ . Rao and Yu (1994) proposed a model with form (1.6) assuming 

that the itu  follow a common first-order autoregressive model (AR1) for each i .  

Datta, Lahiri and Maiti (2002) and You (2008) considered models similar to (1.6) 
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assuming that the itu  follow a random walk model.  Datta et al. (1999) considered a 

model similar to (1.6), adding extra terms to the linking model to reflect seasonal 

variation in their application of estimating unemployment rates for all U.S. states. 

You, Rao and Gambino (2003) employed a simpler cross-sectional and time-series 

model than the one developed by Datta et al. (1999) to produce small area estimates 

of unemployment rates for the Canadian Labor Force Survey. For more versions and 

applications of the cross-sectional and time series model, we refer to Section 5.4.3 of 

Rao (2003). 

A third type of extension is to extend the basic area level model to unmatched 

sampling and linking models.  When iθ  is not a linear function of iY , the sampling 

error assumption ( )| 0i iE e θ =  in model (1.4) may not be valid for areas with small  

sample sizes (Rao, 2003, Sec. 5.2 and 10.4). To overcome this problem, You and Rao 

(2002a) proposed an unmatched sampling and linking model with the following form: 

Level 1 (sampling model): | ~ ( ,  ),  1,..., ,θ θ ψ =
ind

i i i iy N i m                         (1.7) 

Level 2 (linking model): 2 2( ) | , ~ ( , ),  1,..., ,θ σ σ′ =
ind

i v i vg N i mβ x β                  (1.8) 

where iy  is a design-unbiased survey estimate of the small area mean iθ , and ( )g i  is 

a specific linking function. The logarithm and logit functions are commonly used as 

linking functions. The two-level model defined by (1.7) and (1.8) is called an 

unmatched model in the sense that the sampling and linking models cannot be 

combined into a single linear mixed model. You and Rao (2002a) applied their 

proposed unmatched model (1.7)~(1.8) with ( ) ( )logi ig θ θ=  to the estimation of 

Canadian Census under-coverage. 



 

 14 
 

Following You and Rao (2002a), Mohadjer et al. (2007) developed an 

unmatched area-level model which incorporates both state and county random effects 

to produce estimates of the percentages of adults at the lowest level of English 

language literacy for all states and counties in U.S. using the 2003 NAAL data. The 

logit function was used as the linking function in order to guarantee the outcome of 

the small area estimates falling into the right range of (0, 1). 

A fourth type of extension is to replace the normality assumptions typically 

assumed for the basic area level model by some more appropriate alternatives.  The 

typical Fay-Herriot type of model assumes normality for the error components in the 

models, namely the area-level random effects and/or the sampling errors of the direct 

survey estimates. However, real data often show significant departures from normal 

distributions. Heavy-tailed distributions and asymmetric distributions are frequently 

encountered in empirical studies (Sec. 1.2 of Hampel et al., 1986; Azzalini, 1985; 

1986). For cases where the assumption of normality is not tenable, more flexible 

models can be adopted to accommodate non-normal features related to skewness, 

kurtosis, and heavy tails. However, the literature in small area estimation on this 

aspect is not rich.  

Some researchers have extended the Fay-Herriot models by assuming non-

normal distributions for the area-level random effects as a means of dealing with 

outliers. For example, Datta and Lahiri (1995) developed a model assuming that the 

random effect follows a scale mixture of normal distributions, where the 

t − distribution is a special case. Huang and Bell (2006) proposed an extension of the 

SAIPE Fay-Herriot state level model by assuming either the random effects or the 
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sampling errors (but not both) follow a t − distribution. Xie et al. (2007) used an 

extension of the Fay-Herriot model by assuming the random area effects follow a 

t − distribution with unknown degrees of freedom in order to produce estimates of the 

proportion of overweight individuals in small areas using the 2003 public-use 

Behavioral Risk Factor Surveillance System (BRFSS) data. Recently, Fabrizi and 

Trivisano (2007) proposed two extensions of the Fay-Herriot model by assuming the 

random area effects follow either an exponential power distribution or a skewed 

exponential power distribution.  

For more extensions of the basic area level mixed model and their 

applications, we refer to Rao (2003).  

 

1.4.2 Unit Level Model 

 
A unit (or respondent) level mixed model can be used when unit-specific 

response variables are available in each small area. This class of models can 

incorporate auxiliary information at both the unit and area level (Moura and Holt, 

1999). The area-specific random effect terms in unit level models can capture the 

correlation possibly present among the sample units within a small area. The main 

advantage of unit level models is that they can incorporate all sources of uncertainty; 

in particular, they can capture the uncertainty due to the estimation of the sampling 

variances.  

Design-consistent model-based estimators are appealing to survey 

practitioners because such estimators provide protection against model failures as the 

small area sample sizes increase (Rao, 2003, p. 148). As we mentioned in Section 
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1.4.1, estimators produced using area level models usually satisfy the design-

consistency property because area level models employ the design-unbiased direct 

estimates which account for the survey design in the sampling model. Unit level 

models do not use design-based estimators directly.  In order to produce design-

consistent estimators using a unit level model, if the detailed design information (e.g., 

stratification and clustering) is available at the individual level, one can build a unit 

level model which incorporates all the design information, although the modeling 

may become challenging if a very complex design is used. If the design information 

is not available at the individual level, one can incorporate the survey weights 

following the approaches outlined in Kott (1989), Prasad and Rao (1999), You and 

Rao (2002b). The fundamental idea is to obtain a survey-weighted aggregated area 

level model from the unit level model by taking a weighted average with weights 

being normalized survey weights.  

We now briefly review two primary types of unit level mixed model 

employed in the SAE literature: the unit level linear mixed model and the unit level 

generalized linear mixed model. 

 

Unit Level Linear Mixed Model 

 
A simple example of a unit level mixed model is the nested error regression 

model originally employed by Battese, Harter and Fuller (1988) to estimate areas 

under corn and soybean for each of the 12 counties of North Central Iowa using 

survey and satellite data. They used the following linear mixed model (BHF model): 

 ,    1,..., ;  1,..., ,ik ik i ik iy v e k n i m′= + + = =x β  (1.9)                              
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where iky  is the number of hectares of corn (or soybeans) in the k th segment of the 

i th county, and the random error terms iv  and ike  are assumed i.i.d 2(0,  )vN σ  and 

(0,  ).N ψ  The random term iv  represents the effect of area characteristics that are not 

accounted for by the auxiliary variables ikx . Under model (1.9), the true small area 

mean iθ  can be written as  ( )i i p ivθ ′= +x β  , where ( ) 1 /iN
i p ik ik N== Σx x   and iN  is the 

total number of segments in the i th county.   

Model (1.9) can produce design-consistent estimators only for data collected 

using a simple survey design. More complex models are needed to handle data 

collected from complex survey designs. For data collected from a stratified two-stage 

sampling, where the strata were the small areas, Stukel and Rao (1999) proposed the 

following two-fold nested error regression model: 

 ,  1,..., ;  1,..., ;  1,..., ,ijk ijk i ij ijk ij iy v u e k N j M i m′= + + + = = =x β  (1.10)                

where ijky  and ijkx  are the response values of the characteristic of interest and the 

associated auxiliary variables for individual k  in primary sampling unit (PSU) j  in 

small area i  respectively; 2~ (0, )
iid

i vv N σ  are the random area-specific effects; 

2~ (0, )
iid

ij uu N σ  are the random within area PSU effects, and 2~ (0, )
iid

ijk ee N σ  are the 

sampling errors. Ghosh and Lahiri (1988) studied model (1.10) for the case of no 

auxiliary information, i.e., ijk β′ =x β , and did not specify a specific distribution for iv  

and iju  as a robustness feature of their method.  Datta and Ghosh (1991) used model 

(1.10) for the special case of cluster-specific covariates, that is, ijk ij=x x . 
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Logistic Regression Model with Mixed Effects 

 
Linear mixed models like the BHF and the two-fold nested error regression 

models are applicable for continuous observations. Recent research in SAE focuses 

on the situations where the dependent variables are categorical or discrete and where 

the small area parameters of interest are proportions or counts. In such cases, a unit 

level linear mixed model is no longer applicable. Generalized linear mixed models 

(GLMM) are thus developed to fulfill the needs (McCulloch, 2003; Jiang and Lahiri, 

2006a). Among those, logistic regression models with mixed effects are commonly 

used models in estimating small-area proportions. 

To estimate the census undercount for local areas, Dempster and Tomberlin 

(1980) proposed an empirical Bayes method based on a logistic regression model 

containing both fixed and random effects. This proposal was further developed by 

MacGibbon and Tomberlin (1989). In order to estimate the true area proportions 

1 /iN
i ik ikP y N== Σ , MacGibbon and Tomberlin (1989) proposed the following model: 

 
( ) 2

| ~ ( ),

logit( ) log 1 ;  ~ (0, ),    

ind
ik ik ik

iid
ik ik ik ik i i v

y p Bernoulli p

p p p v v N σ′⎡ ⎤= − = +⎣ ⎦ x β
 (1.11)                   

where ikp  denotes the probability of a response for the k th unit in the i th area, and 

iky  and ikx , 1,..., ;  1,...,ik n i m= = , are unit-specific binary (0 or 1) responses of the 

characteristic of interest and covariates respectively. The model-based estimator of iP  

was obtained using 1ˆ ˆ /iN
i ik ikp p N== Σ , where ˆikp  is obtained from (1.11) by 

estimating β  and the realization of iv  through empirical Bayes or hierarchical Bayes 
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methods which will be discussed in Section 1.5. Applications of similar models can 

also be found in Wong and Mason (1985) and Tomberlin (1988). Farrell, MacGibbon 

and Tomberlin (1997a and b) further developed the model to produce estimates of 

small area proportions in multistage designs.  

Malec et al. (1997) considered a different logistic regression model with 

random regression coefficients using data from the National Health Interview Survey 

(NHIS), a multistage, personal interview sample survey that is conducted annually by 

the National Center for Health Statistics. Suppose each individual in the population is 

assigned to one of J  mutually exclusive and exhaustive classes based on the 

individual’s socioeconomic/demographic status. The binary response ijky  for 

individual k  ( 1 )ijk ,...,N=  in class j  in cluster i  is assumed independent Bernoulli 

with common probability ijp . In the absence of detailed design information, to make 

inferences about a finite population proportion for a specified small area and 

subgroup 
1

ijN

ijl ij
i I j J k i I j J

P y N
∈ ∈ = ∈ ∈

=∑∑ ∑ ∑∑ , where I  is the collection of clusters that 

define the small area and J  is the collection of classes that defines the subpopulation, 

the following models are assumed: 

 ( )
| ~ ( );

logit( ) log 1 ;  

;    ~ (0, );    

ind
ijk ij ij

ij ij ij j i

iid
i i i i v

y p Bernoulli p  

p p p

Nα

⎡ ⎤ ′= − =⎣ ⎦

= +

x β

β Z v v Σ

 (1.12)                              

where jx  is the class-specific covariate vector and iZ  is a p q×  area level covariate 

matrix. Note that the first level of (1.12) can be transformed to a binomial 
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model ( )| ~ ,  
ind

ij ij ij ijy p Binomial p n , and thus model (1.12) can also be considered as 

an area level model. We also note that model (1.12) does not take into account the 

detailed design information of NHIS because design information was not avaliable. 

Thus, the design-consistency of the HB estimators produced using this model is 

questionable.  

Other applications of logistic regression models with mixed effects in 

estimating small area proportions can be found in Stroud (1991), Malec, Sedransk and 

Tompkins (1993), Malec, Davis and Cao (1999), Jiang and Lahiri (2001), among 

others. GLMM also includes models for mortality and disease rates, exponential 

family models, semi-parametric models, etc. For details of these applications and for 

other references, we refer to Pfeffermann (2002) and Rao (2003). 

 

1.5 Inference Using Mixed Models  

 
Based on the mixed models reviewed in Section 1.4, small area estimates can 

be expressed as a linear or nonlinear combination of the fixed and random effects. 

Two primary approaches – the empirical best prediction (EBP) approach and 

hierarchical Bayesian (HB) approach, have been used for inference about the small 

area parameters (e.g., means, totals, proportions, etc.) using mixed models. Both 

approaches are used to approximate the conditional probability distributions that arise 

from Bayes’ theorem for the small area quantities.  The EBP approach is usually 

referred to as a classical (or frequentist) approach because it uses classical methods to 

estimate the unknown hyperparameters of the mixed model under consideration (e.g., 
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β  and 2
vσ  in the Fay-Herriot model). The HB approach is referred to as the Bayesian 

approach because it assumes prior distributions on the unknown hyperparameters.  

Rao (2003) reviews both approaches. Jiang and Lahiri (2006a) provided an extensive 

review of the EBP approach.  We briefly review the two approaches in the following 

two subsections.   

 

1.5.1 Empirical Best Prediction Approach 

 
Consider the area level model (1.4). Under that model, the small area mean iθ  

can be written as i i ivθ ′= +x β . Assuming that both β  and 2
vσ  are known, we can 

obtain the best predictor (BP) of iθ  in the form:  

(1 )( )BP
i i i i iB yθ ′ ′= + − −x β x β , where ( )2 ,i i v iB ψ σ ψ= + 1,..., .i m=   

Next, assume 2
vσ  is known and β  is unknown. Let 1( ,..., )m ′=X x x ,  

1( ,..., )my y ′=Y , 2 2
1( ,..., )v v mDiag σ ψ σ ψ= + +V . We can get the maximum 

likelihood estimator (MLE) of β  in the form: 1 1 1ˆ ( )− − −′ ′=β X V X X V Y . Replacing β  

by β̂  in the BP, we can get the best linear unbiased predictor (BLUP) of iθ  with the 

form: ˆ ˆ(1 )( )BLUP
i i i i iB yθ ′ ′= + − −x β x β .  In practice, the variance components for the 

random effects (namely, parameter 2
vσ  in the model (1.4)) are rarely known. A 

common procedure under the EBP approach is to replace them in the BLUP by the 

standard variance component estimators obtained through the methods of moments 

(Fay and Herriot, 1979; Prasad and Rao, 1990), maximum likelihood (ML), or 
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restricted maximum likelihood (REML). The resulting estimator of iθ  is called 

empirical BLUP (EBLUP). Common limitation of these methods is the possibility of 

producing zero or negative estimates of the variance components. The Adjusted 

Density Maximization (ADM) methods proposed by Morris (1988) and Li (2007) are 

very promising because they avoid zero or negative estimates of the variance 

components and have good asymptotic properties. For an extensive review on 

different variance component estimation methods, we refer to Jiang and Lahiri 

(2006a). 

Estimation of the variance components is relatively easy, whereas, assessment 

of the uncertainty due to the estimation is quite challenging. Extensive references can 

be found in the SAE literature for assessing this uncertainty. For instances, Prasad 

and Rao (1990) used a mean squared error (MSE) criterion to measure the uncertainty 

of EBLUP under a general linear longitudinal mixed model, and proposed a second-

order approximation to the MSE using the Taylor series method under normality 

assumption for the Fay-Herriot model. Lahiri and Rao (1995) demonstrated the 

robustness of this approximation against non-normality. Kleffe and Rao (1992) 

provided a second-order approximation to the MSE of EBLUP using a random error 

variance linear model. Their work was further extended by Butar and Lahiri (2002) to 

a more general model. More recently, Jackknife methods (e.g., see Jiang, Lahiri and 

Wan, 2002; Chen, 2001; Lohr and Rao, 2007) and parametric bootstrap methods (e.g., 

see Butar and Lahiri, 2003; Lahiri, 2003; Pfeffermann and Tiller, 2005; Hall and 

Maiti, 2006) have been proposed to estimate the MSE of EBLUP. Chatterjee, Lahiri 

and Li (2008) used a parametric bootstrap approximation to study the distribution of 
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EBLUP and related prediction intervals, a quite challenging problem under the EBP 

approach. For extensive reviews on these resampling methods, we refer to the review 

paper by Gershunskaya, Jiang and Lahiri (2008).  

 

1.5.2 Hierarchical Bayesian Approach  

 
In the HB approach, a subjective prior distribution on the hyperparameters is 

specified and the posterior distribution of the parameter of interest is obtained. The 

HB approach is straightforward compared to EBP in the sense that, the posterior 

distributions, once computed, can be used for all inferential purposes. A second 

advantage of the HB approach is its ability to incorporate complex models which 

EBP approach cannot handle easily, such as unmatched sampling and linking models 

(e.g., see You and Rao, 2002a), and models assuming the random effects follow a 

class of distributions in stead of relying on the normal distribution (e.g., see Datta and 

Lahiri, 1995; Fabrizi and Trivisano, 2007). Another advantage of the HB approach is 

its flexibility to take account of the uncertainty of the direct sampling variances by 

assuming prior distributions. As we mentioned earlier, the direct sampling variances 

are assumed known in area-level mixed models even though they are often estimated 

and smoothed in practice using techniques such as GVF. This extra uncertainty was 

not assessed by any of the EBP approach until the work by Arora and Lahiri (1997). 

Hinrich (2003) expanded the Arora and Lahiri model and proposed some new models 

to account for the uncertainty of the sampling error using area-level mixed models.  

HB inferences can be implemented using the Markov Chain Monte Carlo 

(MCMC) technique. MCMC methods are a class of algorithms for sampling from a 
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probability distribution by constructing and simulating a Markov chain that has the 

desired distribution as its equilibrium distribution. Robert and Casella (1999) and Rao 

(2003, Sec. 10.2) describes MCMC methods in detail.  We briefly review them here. 

Let ( ,  )′=η θ λ  be the vector of small area parameters θ  and model parameters λ . In 

general, it is not feasible to draw independent samples from the joint posterior 

distribution ( | )sf η y , because the denominator of the posterior, 1( )sf y , is usually 

intractable. MCMC avoids this difficulty by constructing a Markov chain 

{ }( ) ,  0,  1,  2,  ...k k =η  with a starting point (0)η  such that the distribution of ( )kη  

converges to a unique stationary distribution, ( )π η , which is equivalent to the 

posterior distribution ( | )sf η y . Therefore, after a sufficiently large “burn in”, d , we 

can treat ( 1) ( ),...,d d T+ +η η  as T  dependent samples from the target distribution 

( | )sf η y , regardless of the starting point. The average of the sequence 

{ }( 1) ( ),...,d d T+ +η η  can be used to approximate the posterior mean ( | )sE yη . This 

property follows from the ergodic theorem of stochastic process, which can be 

viewed as the law of large numbers for a dependent sequence.  

HB methods are now widely used, largely due to advances in computing 

power and user-friendly software. Among the broad range of MCMC simulation 

methods, one algorithm, Gibbs sampling, has been increasingly used in applied 

Bayesian analyses (see Gelfand and Smith, 1990; Gilks et al., 1996; Robert and 

Casella, 1999). The appeal of Gibbs sampling is that it can be used to estimate 

posterior distributions by drawing sample values randomly from the full conditional 

distributions for each of the individual parameters (i.e., the conditional distribution of 
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a parameter given the other parameters and the observed data). On many occasions, 

the full conditional distributions do not have closed form; in such cases, some 

rejection sampling algorithm, such as the Metropolis-Hastings (M-H) algorithm 

within the Gibbs sampler, can be used (Chib & Greenberg, 1995). The necessary 

computation routines are now freely available in the software package WinBUGS 

(http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml), which makes the 

implementation of Bayesian methods straightforward.  

In addition to MCMC, HB estimation can also be implemented using 

alternative approximate methods including Laplace’s method (e.g., see Laplace, 

1847; Erdelyi, 1956), and Gauss-Hermite Quadrature (e.g., see Davis and Rabinowitz, 

1975).  Applications of Laplace’s method to approximate a complex posterior 

distribution and its moments have been explored by a number of researchers, 

including Tierney and Kadane (1986),  Kass, Tierney and Kadane (1988), Tierney, 

Kass and Kadane (1989), Morris (1988, 2006), Kass and Steffey (1989), Wolfinger 

(1993), and Christiansen and Morris (1997). The approximations offer simple 

interpretations of the Bayesian methodology. Some researchers have also applied 

Laplace’s method to obtain the maximum likelihood estimator (MLE) of model 

parameters (e.g., see Raudenbush et al., 2000; Olsen and Schafer, 2001).  Gauss-

Hermite Quadrature is a standard numerical approach to approximate integrals. It is 

often used for numerical integration in statistics because of its relation to Gaussian 

densities (Liu and Pierce, 1994). Raudenbush et al. (2000) considered Gauss-Hermite 

Quadrature in addition to Laplace’s method to obtain their MLEs of model 

parameters. 
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1.6 Auxiliary Data and Model Selection for Small Area Estimation  

 
Auxiliary data (or predictor variables) play an important role in small area 

estimation. The choice of small area models depends on the availability of auxiliary 

data and the relationship between these data and the variables of interest at the small 

area level. Auxiliary data are often obtained from various administrative and census 

records.  In essence, we want to “borrow strength” from these auxiliary data to 

increase the accuracy of the estimates for small areas.  

When a large pool of potential auxiliary variables is available, the selection of 

a smaller set of suitable auxiliary variables is necessary in many small area estimation 

projects. For instance, only seven auxiliary variables were finally chosen from over 

100 potential auxiliary variables in the NAAL small area estimation model (Mohadjer 

et al., 2008).  

Model selection techniques may be applied to select the best set of auxiliary 

variables given a big pool of potential auxiliary variables. With the classical modeling 

approach, the Akaike information criterion (AIC) and Bayesian information criterion 

(BIC, also known as the Schwarz criterion) are commonly used criteria for model 

selection purposes. For detailed information on these criteria and how to use them in 

the small area estimation context, we refer to Rao (2003, p. 105-107). With the HB 

modeling approach, a commonly used model selection criterion is the deviance 

information criterion (DIC) proposed by Spiegelhalter et al. (2002). Since this 

dissertation emphasizes HB modeling, we provide details about the DIC in the next 

few paragraphs.   
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The DIC is a generalization of the AIC and BIC for a hierarchical model. It is 

particularly useful in Bayesian model selection problems where the posterior 

distributions of the models have been obtained by MCMC simulation. Like AIC and 

BIC, it is an asymptotic approximation as the sample size becomes large. It is valid 

when the posterior distribution is approximately multivariate normal. DICs are 

comparable only over models with exactly the same observed data. 

Let θ , y , and ( | )p y θ  denote the unknown parameters of the model, the data, 

and the likelihood respectively. Let ( )f y  be some fully specified standardizing term 

that is a function of the data alone. Then define the deviance as: 

 [ ] [ ]( ) 2 log ( | ) 2 log ( ) .D p f= − +θ y θ y  (1.13)                               

The second term in the deviance involves y  only and cancels out when comparing 

deviances for different models; the term can therefore be dropped. The posterior 

mean of the deviance, [ ]( ) |D E D= θ y , is a measure of goodness-of-fit of the model; 

the larger D , the poorer is the fit. The D  statistic has been used to compare models 

in the literature, but this measure does not penalize overly complex models. As the 

number of parameters in a model increases, D  decreases. 

The measure of the effective number of parameters of a Bayesian model is 

computed as: 

( )Dp D D= − θ , 

where ( | )E=θ θ y  is the posterior mean of the parameters. The measure Dp  

represents the effect of model fitting. The larger Dp , the easier it is for the model to 

fit the data.  
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The DIC is calculated as: 

 2 ( ).DDIC p D D D= + = − θ  (1.14) 

The model with the smallest DIC is judged to be the model that would best predict a 

replicate dataset of the same structure as the one currently observed. Incorporating 

Dp  in the DIC calculation penalizes models with larger numbers of parameters. The 

DIC assumes that the posterior mean is a good measure of the stochastic parameter. If 

this assumption is violated, say because of extreme skewness or even bimodality, then 

the DIC may not be appropriate. For more details on the DIC, we refer to 

Spiegelhalter et al. (2002) and Gelman et al. (2004). 

Even though DIC is a useful model selection criterion, implementing a HB 

model with large number of auxiliary variables may be quite challenging. The 

covariance matrix may be singular, and the convergence speed may be slow because 

of the large number of model parameters. In such situations, classical stepwise 

regression may be implemented as a preliminary step for selecting auxiliary variables 

among a large pool of potential auxiliary variables for the HB models (e.g., see Malec 

et al., 1997;  Mohadjer et al., 2007).  

Jiang et al. (2008) recently introduced a new class of strategies, known as 

fence methods, for mixed model selection. The models include linear and generalized 

linear mixed models. Unlike AIC, BIC and DIC, fence methods do not try to 

minimize a criterion function. The optimization procedure of fence methods involves 

two steps. The first step is to isolate a subgroup of correct models, including the 

optimal model, by constructing a statistical fence to carefully eliminate incorrect 
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models. The second step is to select the optimal model among those within the fence 

according to a criterion which can be made flexible.   

 

1.7 Model-based Prediction Methods under Finite Population 

Sampling 

 
Under the finite population framework, we need essentially to make 

inferences about the small finite population means iY  based on inferences about the 

model parameters iθ . A prediction approach is needed to produce values for the non-

sampled units utilizing the small area model employed.  Model-based prediction 

methods under finite population sampling have a long history. We briefly review 

them in this section.   

The model-based approach in survey sampling theory views the finite 

population as a realization from a hypothetical super-population (Cochran, 1939). 

Brewer (1963) and Royall (1970) used a prediction approach to estimate the 

population mean, partly motivated by a super-population model. Under the prediction 

approach, the super-population model is used to predict values for the non-sampled 

units from the knowledge gained through the sample. The books by Bolfarine and 

Zacks (1999) and Valliant et al. (2000), and the review paper by Graubard and Korn 

(2002) gave comprehensive reviews on this subject. Ghosh and Meeden (1997) 

explored related Bayes and empirical Bayes approaches. Rao (2005) examined the 

interplay between sample survey theory and practice over the past 60 years or so.  
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A concern about the prediction approach is that the predictions may be 

unreliable in the case of model misspecification. Therefore, model robustness is 

important, and is studied by researchers from different perspectives.  Valliant (1985; 

1986) extended Royall’s (1970; 1976) super-population approach to cover certain 

nonlinear models. Li and Lahiri (2007) proposed a new robust prediction approach in 

which the super-population model is chosen adaptively from the well-known Box–

Cox class of probability distributions.  

In the Bayesian approach, a prior distribution is assumed on the parameters of 

the finite population. Ericson (1969) first formulated the normal theory of Bayesian 

analysis for finite population sampling. Ghosh and Meeden (1986) introduced 

empirical Bayes estimation of the finite population mean assuming a normal 

superpopulation model. Ghosh and Lahiri (1987a; b) relaxed the normality 

assumption and motivated their estimators of means and variances from stratified 

samples using a linear empirical Bayes approach. Arora, Lahiri and Mukherjee (1997) 

relaxed the homoscedasticity assumption of Ghosh and Meeden (1986). Ghosh, Lahiri 

and Tiwari (1989), and Lahiri and Tiwari (1991) proposed a nonparametric empirical 

Bayes method that uses the Dirichlet process prior for estimating means and 

variances.  Scott and Smith (1969) proposed a super-population model for two-stage 

sampling from a finite population and carried out a Bayesian predictive inference for 

a linear function of the finite population elements by assuming a normal prior. Their 

results were extended to a three-stage sampling by Malec and Sedransk (1985). 

Ghosh and Lahiri (1988) relaxed the normality assumption for the prior distribution 

and derived Bayes estimators of strata means for two-stage samples under the 
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assumption of posterior linearity. Meeden (1999) proposed a non-informative 

Bayesian approach for two-stage cluster sampling.  

More references can be found in Little’s work (e.g., Little 1983; 1993; 2004) 

and Jiang and Lahiri (2006b), which also made significant contributions to model-

based/model-assisted inferences under finite population sampling.  

 

1.8 Discussion and Layout of the Dissertation 

 
We have given a broad review of the needs, statistical techniques, and 

applications of small area estimation from a historical perspective. As we reviewed, 

small area estimation techniques are developed not only for continuous data, but also 

for binary data.  Many examples demonstrate that estimating proportions of units with 

a given characteristic for small areas by using small area estimation techniques is a 

common problem.  When an area level model is used to produce estimates of 

proportions for small areas, it is commonly assumed that the survey weighted 

proportion for each sampled small area has a normal distribution and that the 

sampling variance of this proportion is known. In addition, normality is commonly 

assumed for the random effects of the area level or unit level mixed models. 

However, these assumptions need justification and may not be valid in many 

situations. 

To tackle the above mentioned issues, in this dissertation, we develop 

statistical methodologies for estimating small area proportions using complex survey 

data based on models with better assumptions. Both area level and unit level mixed 

models that incorporate non-normality and non-linearity under different complex 
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sampling designs for dichotomous variables (say, whether a person is unemployed, or 

whether a baby has low birthweight) are proposed.  For inference, we focus on the 

HB approach, although the EBP approach is also developed for one of the proposed 

unit level models.  

This dissertation is organized as follows. In Chapter 2, we consider two new 

area level hierarchical Bayesian models to estimate small area proportions using 

survey data. To evaluate the performance of these models, we present a simulation 

study based on a real finite population. For each model and each dataset, the HB 

estimates are computed using the MCMC technique. We compare the frequentist 

coverage properties of these estimates with those of two existing HB models.  

In Chapter 3, in order to accommodate zero direct survey estimates and the 

kurtosis problem for the random effects, under a one-stage sampling design we 

propose an adaptive HB estimation approach in which the distribution of the random 

effects is chosen adaptively from the exponential power class of probability 

distributions. The richness of the exponential power class ensures the robustness of 

our HB approach against departure from normality. We demonstrate the robustness of 

our proposed model using simulated data and several real datasets. A fully Bayesian 

approach based on the MCMC technique is used to make inferences. 

In Chapter 4, based on the HB model proposed in Chapter 3, we study several 

approximate methods for Bayesian inference including first- and second-order 

Laplace approximations, Gauss-Hermite Quadrature, and Monte Carlo integration 

methods. We conduct a study using simulated data to compare the methods for the 

simple case when all the hyperparameters are assumed known. The results of the 
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study demonstrate the deficiencies of the Laplace methods. We also propose a 

method to conduct the analysis when all the hyperparameters are unknown.  

In Chapter 5, we develop the Jiang-Lahiri type frequentist alternative to the 

HB methods based on the Bayesian model proposed in Chapter 3.  Mean squared 

error formulas are developed under certain assumptions. We also propose a second-

order bias corrected Taylor series linearization method and a computationally simple 

double parametric bootstrap method for estimating the mean squared errors of the 

small area estimates. 

In Chapter 6, we propose a generalized linear mixed model that is suitable for 

binary data collected from a two-stage sampling design. The methodology developed 

in Chapter 3 is extended to this more complex design. Data analysis based on a 

sample drawn from a real finite population is conducted for evaluation purpose. 

In Chapter 7, we give a summary of this dissertation and give directions for 

future research. 
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Chapter 2:  Hierarchical Bayes Modeling of Survey-

Weighted Small-Area Proportions 

2.1 Introduction 

 
This chapter proposes two new hierarchical Bayes models to estimate small 

area proportions using survey data and evaluates their performances through a Monte 

Carlo simulation study in which simple random samples and stratified simple random 

samples are generated from a fixed finite population. We compare the results 

obtained from these alternative models with those obtained from two commonly used 

models. Only HB area level modeling approach is considered in this chapter.   

We organize this chapter as follows. We first review the sampling variances 

for direct small area proportions and discuss the problems with the current estimation 

methods in Section 2.2. We then introduce two commonly used models and two 

proposed alternative models in Section 2.3.  A simulation study is presented in 

Section 2.4. The chapter concludes with a summary and discussion in Section 2.5.  

  

2.2 Direct Sampling Variance and Design Effect 

 
Let iky  denote the binary response for a certain characteristic of interest for 

the k th unit in the i th small area ( 1,..., ;  1,..., ).ii m k N= =   Suppose we want to 

estimate the population proportion given by 1
iN

i ik ikP y N==∑  for the i th small area 

as well as the associated variance of the estimator using the sample values 
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iky ( 1,..., ;  1,..., ),ii m k n= =  drawn from the finite population under a complex sample 

design. We assume that 0in >  for all small areas. As we reviewed in Section 1.2, 

under an EPSEM design within each area, the sample proportion (mean) 

1 /in
i ik ikp y n==∑   is an unbiased estimator of iP .  Under a NONEPSEM design 

within each area, a commonly used estimator is given by 

1 1
i in n

iw ik ik ikk kp w y w= ==∑ ∑ , 1,  ...,  i m= .  

 Let ( )srs iwVAR p  and ( )st iwVAR p  be the true variance of iwp  under a simple 

random sampling (SRS) design and a stratified SRS design within each area 

respectively. Following Kish (1965), the true design effect iDEFF  for iwp  is given 

by 

2
1

2
h 1

( )
( )

(1 )(1 )
1           (1 )(1 )

1

(1 ) /
           ,   assuming  0 and  0,

(1 ) /

i
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i
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=

=

=
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−

−
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−

∑

∑

            (2.1) 

where iH  is the number of strata in the i th area; ihn  is the sample size allocated to 

the h th stratum in the i th area; 1
iH

i ihhn n==∑ is the sample size for the i th area; ihN  

is the population size of the h th stratum in the i th area; 1
iH

i ihhN N==∑  is the 

population size of the i th area; ihP  is the population proportion for the h th stratum 



 

 36 
 

in the i th area; 1
iH

i ih ihhP W P==∑  is the population proportion for the i th area; 

ih
ih

ih

nf
N

= ; i
i

i

nf
N

= ; ih
ih

i

NW
N

= .  

Equivalently, we can write ( )st iwVAR p  as: 

 (1 )( ) .i i
st iw i

i

P PVAR p DEFF
n
−

=  (2.2)                              

Note that iDEFF  is a function of ihP  and is unknown in practice. If 

(1 ) (1 )ih ih i iP P P P− ≈ − , iDEFF  can be approximated by: 

 2
1 .iH

iw i ih ihhdeff n W n== ∑  (2.3) 

The terms in this approximation are known and can be easily obtained from the data.  

Under the stratified SRS design, the direct estimator iwp  can be written as: 

1
iH

iw ih ihip W p==∑ , where ihp  is the sample proportion for the h th stratum in the i th 

area. The problem with iwp  is that it is highly unstable when the sample size in  is 

small. One way to improve its precision is to borrow strength from other similar small 

areas. The synthetic estimation approach, which borrows strength from a large area 

covering the area of interest, has been considered in the literature (e.g., see Gonzales 

and Hoza, 1978).  A synthetic estimator of iP  is given by: 

 1 1

1 1

,
i

i

m n
ij iji j

w m n
iji j

w y
p

w
= =

= =

=
∑ ∑
∑ ∑

 (2.4)      
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the direct design-based estimator for the large area containing the i th small area. The 

underlying assumption of this approach, that all the small areas are very similar, is 

very strong and can be easily violated. 

Another way to improve the precision of the small area estimates is by means 

of the HB approach. When an HB area level model is used to produce estimates of iP , 

it is commonly assumed for the sampling model that the design-based estimates iwp  

(or a function of them) conditioning on iP  follow normal distributions with known 

sampling variances. However, normality may not be a reasonable assumption if the 

sample sizes in  is small or if iP  is near 0 or 1. The assumption of known sampling 

variances is problematic as well.  

In an effort to overcome these problems, we examine two alternative models 

for small area proportions and compare them with two commonly used models. The 

models are described in the next section.  

 

2.3 Models Studied 

2.3.1 Two Commonly Used Models 

 
We study two commonly used models for estimating small area proportions 

for comparison with the alternative models described in Section 2.3.3. The first is the 

well-known Fay-Herriot model (Fay and Herriot, 1979), which assumes known 

sampling variances and normal distributions for both the sampling and the linking 

models. The second is the normal-logistic model, which differs from the Fay-Herriot 
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model only by the replacement of a logit-normal distribution for the normal 

distribution in the linking model.  

 

Model 1: (The Fay-Herriot model) 

Sampling model:     | ~ ( ,  )
ind

iw i i ip P N P ψ ,     1,..., ;i m=                               (2.5) 

Linking model:     2 2| , ~ ( ,  )
ind

i v i vP Nσ σ′β x β ,    1,..., .i m=                             (2.6) 

 

Model 2: (Normal-logistic model) 

Sampling model:     | ~ ( ,  )
ind

iw i i ip P N P ψ ,     1,..., ;i m=                              (2.7) 

Linking model:   2 2logit( ) | , ~ ( ,  )
ind

i v i vP Nσ σ′β x β ,   1,..., .i m=                     (2.8) 

 

In both models the sampling variances iψ  are assumed to be known. As we 

discussed in Chapter 1, Model 1 is referred to as a matched model because the 

sampling and linking models can be combined to produce a relatively simple linear 

mixed model. However, a nonlinear linking model is often preferred for modeling 

proportions, leading to unmatched sampling and linking models, as in Model 2 (see, 

for example, You and Rao, 2002a). Several link functions such as logit, probit, and 

loglog can be considered for the linking model. We choose the widely used logit 

function in order to guarantee that the estimates of iP  always fall into the right range 

of (0, 1). 
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2.3.2 Issues with Model 1 and 2 

 
There are two main issues associated with Models 1 and 2. The first is that 

both models assume known sampling variances iψ , whereas in practice the sampling 

variances have to be estimated. A simple approach is to use the direct variance 

estimates but they are very imprecise for areas where the sample sizes in  are small. 

An alternative, more complex, approach is to develop approximate estimates of iP , 

say isynp , from a simple model such as a logistic model for iwp  in terms of the 

auxiliary variables, and then use these estimates in the following synthetic variance 

estimator: 

 
(1- )

var ( ) ,   1,..., .isyn isyn
isyn iw iw

i

p p
p deff i m

n
= =  (2.9)                         

In the absence of any auxiliary variable, the overall sample proportion may be 

used for isynp  in the computation of the synthetic variance estimator (e.g., see Morris 

and Christiansen, 1994). The synthetic variance estimator becomes: 

 (1- )var ( ) ,w w
isw iw iw

i

p pp deff
n

=  (2.10)                              

where wp  is defined by (2.4).  Applications of (2.9) and (2.10) need accurate, reliable 

estimates of the design effects. 

The second issue concerns the normality assumption of the sampling model, 

which is based on a large sample approximation. When the sample size in  of area i  is 

small and iP  is near 0 or 1, as is often the case with small area estimation, the 

normality assumption does not work well. 



 

 40 
 

2.3.3 Two Alternative Models 

 
Under Models 1 and 2, the unknown sampling variances iψ  are estimated in 

some way, and then the resultant estimates are treated as if they were known true 

values. An alternative approach is to treat the iψ  as unknown parameters in the HB 

model. Treating the sampling variances (covariances) as unknown has been recently 

considered in the literature in various applications. For example, Arora and Lahiri 

(1997) modeled the design-based variance through the use of a HB model. Singh et 

al. (2005) suggested the use of a generalized design effects to smooth the sampling 

covariance matrix in small area modeling with survey data. More recently, You 

(2008) proposed the use of equal design effects over time to model the sampling 

variances in estimating small area unemployment rates using a cross-sectional and 

time series log-linear models. 

We consider the following two alternative models, denoted as Models 3 and 4, 

that may serve to address the issues associated with Models 1 and 2. Model 3 is 

different from Model 2 only in the assumption made about the sampling variances 

iψ : iψ  are assumed known in Model 2 and are assumed unknown in Model 3. The 

only difference between Models 3 and 4 is in the sampling distribution of the 

sampling model: the normal distribution is assumed in Model 3 and the beta 

distribution is assumed in Model 4. Model 4 was initially considered by Jiang and 

Lahiri (2006b) for an EBP approach in one of their illustrative examples to estimate 

finite population domain means.  
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Model 3 (Normal-logistic model with unknown sampling variance): 

Sampling model:  | ~ ( ,  )
ind

iw i i ip P N P ψ ,     1,..., ;i m=                               (2.11) 

Linking model:  2 2logit( ) | , ~ ( ,  )
ind

i v i vP Nσ σ′β x β ,   1,..., .i m=                    (2.12) 

 

Model 4: (Beta-logistic model with unknown sampling variance) 

Sampling model: | ~ [ ,  ]
ind

iw i i ip P beta P ψ ,      1,..., ;i m=                           (2.13) 

Linking model: 2 2logit( ) | , ~ ( ,  )
ind

i v i vP Nσ σ′β x β ,   1,..., ;i m=                     (2.14) 

where 2[ ,  ]beta μ σ  denotes the beta distribution with mean μ  and variance 2σ . We 

prefer this parameterization here to the usual beta parameterization for the purpose of 

visual illustration of the similarity and difference between Model 4 and the other 

three models on the sampling model assumption. For both Model 3 and Model 4, the 

approximate variance function [ (1 )/ ]i i i i iwP P n deffψ = −  is used. Under the usual beta 

parameterization,  [ ,  ]i ibeta P ψ  in (2.13) becomes ( ,  )i ibeta a b , where the beta 

parameters ia  and ib  are given by: 

1i
i i

iw

na P
deff

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
,  (1 ) 1i

i i
iw

nb P
deff

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
. 

The beta distribution is chosen here to model the distribution of sample proportions 

because: 1) it covers a rich class of distributions; 2) it may be asymmetric; 3) it is 

restricted to (0, 1).  

HB small area estimates for all the four models can be computed using the 

Metropolis-Hastings algorithm within the Gibbs sampler. Details of the algorithm, 
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which draws random samples based on the full conditional distributions of the 

unknown parameters starting with one or multiple sets of initial values, are given by 

Robert and Casella (1999) and Chen, Shao and Ibraham (2000). You and Rao (2002a) 

also showed in detail how the Metropolis-Hastings algorithm within the Gibbs 

sampler works for models similar to Models 1 and 2. The algorithm works the same 

way for Models 3 and 4 as for Model 2. We include the full conditional distributions 

for each model in the appendix of this Chapter. 

 

2.4 Simulation study  

2.4.1 The Study Population and the Sample Designs 

 
This section describes the simulation study that was conducted to compare the 

efficiency of the small area estimates produced by the four HB models. The variable 

of interest of our study is low birthweight. Birthweight is one of the most accessible 

and most understood variables in epidemiology.  A baby’s weight at birth is a strong 

indicator not only of a birth mother's health and nutritional status but also a newborn's 

chances for survival, growth, long-term health and psychosocial development. Babies 

born weighing less than 5 pounds, 8 ounces (2,500 grams) are considered as low 

birthweight. In contrast, the average newborn weighs about 7 pounds. Over 7 percent 

of all newborn babies in the United States have low birthweight. Low birthweight 

babies are at increased risk of serious health problems as newborns, lasting 

disabilities and even death. The overall birth rate of these very small babies in the 
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United States is increasing (http://www.healthsystem.virginia.edu 

/uvahealth/peds_hrnewborn/lbw.cfm). 

There are thousands of research papers on birthweight, with hundreds more 

appearing every year.  Wilcox (2001) compiled work from recent decades that brings 

a clearer understanding of what we know and do not know about birthweight. The 

paper summarizes why birthweight has been so popular: 1) birthweight data are free 

and abundant (through vital statistics); 2) birthweight is a strong predictor of an 

individual baby's survival (Wilcox and Russell, 1983); 3) groups with lower mean 

birthweight often have higher infant mortality (Wilcox, 1993; Humphrey and Elford, 

1988); and 4) low birthweight is associated with poor outcomes later in life such as 

asthma, low IQ and hypertension (Steffensen et al., 2000; Godfrey and Barker, 2000; 

Nepomnyaschy and Reichman, 2006).  

The simulation study was based on the 2002 Natality public-use data file. The 

file included all births occurring within the United States in 2002. Data were obtained 

from certificates filed for births occurring in each of the 50 states plus the District of 

Columbia (DC). We use the term “51 states” to refer to the 50 states plus DC in this 

study. Details about the births recorded in the National Vital Statistics System are 

given at the website for the National Center for Health Statistics 

(http://www.cdc.gov/nchs/births.htm). 

The finite population studied comprised of 4,024,378 live birth records in the 

U.S. with birth weights reported. The parameters of interest are the state level low 

birthweight rates iP , 1,...,51i = . The values of iP  varied from 5.7 percent to 11.0 

percent across the states. We also computed the state level low birthweight rates by 
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mother’s race (White, Black, and Others).  Let W
iP , B

iP , and O
iP  denote the state 

level low birthweight rate among babies with White mothers only, Black mothers 

only, and mothers of Other race only, respectively. The values of W
iP varied from 5.1 

percent to 9.0 percent across the states, the values of B
iP  varied from  0 percent to 

16.2 percent across the states, and the values of O
iP  varied from  1.9 percent to 10.8 

percent across the states. Figure 2-1 displays state level low birthweight rates iP . The 

x-axis of the figure represents the proportion in percentage. The 51 states were sorted 

by the corresponding low birthweight rates. Similarly, we display W
iP , B

iP , and O
iP  

in Figures 2-2 to 2-4 respectively. These figures show general pictures of the true 

state level proportions of low birthweight babies. The state level low birthweight rates 

among babies with White mothers only are the smallest for most of the states among 

the three race groups. Except for Vermont, the state level low birthweight rates 

among babies with Black mothers only are at least 1.35 times larger than those with 

White mothers only.  
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Figure 2-1:  State level low birthweight rates (in percentages): iP  (states were sorted by iP ) 
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Figure 2-2:  State level low birthweight rates (in percentages) among babies with White 
mothers only: W

iP (states were sorted by W
iP ) 
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Figure 2-3:  State level low birthweight rates (in percentages) among babies with Black 
mothers only: B

iP  (states were sorted by B
iP ) 
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Figure 2-4:  State level low birthweight rates (in percentages) among babies with mothers of 
Other race only: O

iP (states were sorted by O
iP ) 

 
 



 

 47 
 

Within each state, two sample designs, simple random sampling (SRS) and 

stratified SRS, were used to draw samples from the birth records respectively. Under 

the stratified SRS, mother’s race was used as the stratification variable. The national 

sample size was set to be about 1,500 birth records for each race group in order to 

differentiate the sampling weights. The minority groups are oversampled based on 

this design. A uniform sampling fraction was used across the states for each race 

group subject to the condition that at least two birth records were sampled within each 

race group in each state. The resultant national sample size turned out to be 

4,526n =  birth records. The state level sample sizes in  ranged from 7 (for Vermont) 

to 690 (for California), with a median sample size of 61. The sample sizes in  

remained the same across different designs. This sampling procedure was repeated 

500R =  times, creating 500 independent sample datasets under each design. Under 

the stratified SRS design, the sample size ijn  for race j  in state i  remained the same 

for each replication. Under each design, the sampling weights remained the same over 

different simulation runs. The sample sizes were fixed over replications in order to 

avoid extra random variability. 

 

2.4.2 Auxiliary Variables 

 
As noted in Section 1.6, auxiliary variables play an important role in small 

area estimation. When a large number of auxiliary variables are available, model 

selection techniques may be used to select a reasonable set of auxiliary variables. 
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We treated the finite population data as the main source for auxiliary variables 

because it contained many other variables in addition to the birthweight variable. 

Table 2-1 presents the 13 potential auxiliary variables obtained from the finite 

population data. Because mother’s race was used as stratification variable in one 

design, we excluded it from the pool of potential auxiliary variables.  

 

Table 2-1:  Potential state level auxiliary variables  

Index Potential Auxiliary Variables 
1  Percentage of births with mother’s age less than 15 
2  Percentage of births with mother’s age less than 18 
3  Percentage of births with father’s age less than 15 
4  Percentage of births with father’s age less than 18 
5  Percentage of births with non-Hispanic mother 
6  Percentage of births with White father 
7  Percentage of births with mother’s education no more than high school 
8  Percentage of births with native born mother 
9  Percentage of births being the first child in the family 

10  Percentage of births with no prenatal care mother 
11  Percentage of births with mother whose weight gain was less than 16 pounds 

during pregnancy  
12  Percentage of births with mother drinking alcohol during pregnancy 
13  Percentage of births with mother smoking during pregnancy 

Notes: 1) The percentages were computed within a state. 2) The bold variables were significant in 

predicting iP  at significant level 0.05α =  based on the logistic regression model (2.15). After 

further HB model selection using DIC as the main criterion, we only kept variables 1 and 9 in our 

data analysis.  

 
 

We considered DIC as the major measure to select a reasonable set of 

auxiliary variables from a pool of potential auxiliary variables.  However, the 

inclusion of a large number of auxiliary variables would make the convergence of the 

HB models harder and hence would increase the computer running time dramatically. 
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In order to reduce such computational burden, we first selected a smaller set of 

auxiliary variables from the pool of auxiliary variables using classical methods. We 

then ran a set of HB models by varying the set of selected auxiliary variables, and 

finally applied the DIC criterion to choose the best set of auxiliary variables. 

We fit the following logistic regression model using the stepwise selection 

procedure in SAS: 

 
13

0
1

logit( ) ,i j ij i
j

P xβ β ε
=

= + +∑  (2.15)                               

where iP , 1,  ...,  51i = , are the state level population proportions of low birthweight 

of live births obtained from the finite Natality population; ijx , 1,...,13j = , are the 13 

variables listed in Table 2-1; and iε  are the model errors that are assumed to be i.i.d. 

2(0,  )eN σ . The modeling result showed that only variables 1, 4 and 9 are significant 

in predicting iP  at the significance level 0.05α = , variable 6 (percentage of births 

with white father) is almost significant (with p -value=0.08), and all the other 

variables are not significant (with p -value >0.1). Starting with the three significant 

variables, we did a few test runs based on one sample. Based on the resulting DICs, 

we finally choose variable 1 (Percentage of births with mother’s age less than 15) and 

variable 9 (Percentage of births being the first child in the family) as the final 

auxiliary variables to be included in our HB models.  

Census 2000 data could be another source of potential auxiliary variables. For 

example, the state level poverty rate from Census data might be a good predictor 

variable for low birthweight rate. We did not consider data sources other than the 
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Natality database because the selection of auxiliary variables is not the main objective 

of this research. In addition, the inclusion of too many auxiliary variables would 

dramatically increase the computer running time for each HB model. As a result, for 

our study, we considered only the variables that were available for the finite Natality 

population. 

 

2.4.3 Smoothed Sampling Variances  

 
Both Models 1 and 2 assume that the sampling variances are known.  In 

practice, only very imprecise estimates of the sampling variances are available. These 

estimates need to be “smoothed”. In order to stabilize the sampling variances for the 

small areas, Fay and Herriot (1979) adopted the variance computations from the 1970 

census process, where the sampling variances were estimated in eight states and the 

findings were generalized to the rest of the country.  Following the same spirit, we 

adopted a synthetic approach to produce model-dependent estimates of the sampling 

variances. In each sample, we first fit the following logistic regression model on the 

19 states with sample sizes 80in >  and obtained the estimate of the regression 

coefficient vector 0 1 2( , , )β β β ′ : 

 0 1 1 2 2logit( ) ,    1,...,19,iw i i ip x x iβ β β ε= + + + =  (2.16)                               

where iwp  is the direct estimate of iP , 1ix  and 2ix  are the two auxiliary variables 

selected in Section 2.4.2, and 2~ (0, )
iid

i eNε σ .  

We then computed a synthetic estimator of iP  for all the 51 states as follows: 
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( )
( )

0 1 1 2 2

0 1 1 2 2

ˆ ˆ ˆexp
,  1,...,51,

ˆ ˆ ˆ1 exp
i i

isyn
i i

x x
p i

x x

β β β

β β β

+ +
= =

+ + +
 (2.17) 

where 0 1 2
ˆ ˆ ˆ( , , )β β β ′  denotes the estimate of the coefficient vector 0 1 2( , , )β β β ′  from 

(2.16). 

We finally computed the following smoothed synthetic sampling variance of 

iwp : 

 
(1 )

v ( ) ,isyn isyn
isyn iw iw

i

p p
p deff

n
−

=  (2.18) 

where iwdeff  is defined by (2.3). The smoothed synthetic sampling variances 

( )syn iwv p defined by (2.18) were used as the final sampling variances for Models 1 

and 2 and were treated as known.  

For Models 3 and 4, we used sampling variance [ (1- )/ ]i i i i iwP P n deffψ = , 

where iwdeff  is defined by (2.3), and iP  is unknown. We estimated iψ  concurrently 

with iP  through the HB modeling.   

For the SRS design, 1iwdeff ≈ . For the stratified SRS design, a check on the 

use of the approximate iwdeff  defined by (2.3) in place of iDEFF  in (2.1) showed 

that the approximation was reasonable: the two quantities were close, with a product 

moment correlation of 0.96, and the ratio /iw ideff DEFF  varying from 0.98 to 1.30 

with a mean of 1.08 and a median of 1.07. 
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2.4.4 Computation of the HB Estimates 

 
The HB approach requires prior assumptions for the hyperparameters β  and 

2
vσ . The inverse-gamma prior distribution has been widely used for variance 

components in Bayesian data analysis in the literature (e.g., see Datta and Ghosh, 

1991; You and Rao, 2002a). However, Gelman (2006) has noted that for datasets in 

which low values of 2
vσ  are possible, inferences under the inverse-gamma prior are 

very sensitive to the choice of small values of its parameters. In this sense, the non-

informative uniform prior is preferable. For simplicity, we assumed the commonly 

used flat prior for β , i.e., ( )   1,f ∝β  and uniform prior for 2
vσ , i.e., 

2 ~ (0,   )v Uniform Lσ , where L  is a large known positive number. We used 100L =  

in this chapter. MCMC techniques as reviewed in Section 1.5.2 were used to 

implement the HB modeling through WinBUGS software. 

For each sample dataset, the first step in the computations was to calculate the 

state level direct estimates. The corresponding smoothed sampling variances were 

also obtained following the methods described in Section 2.4.3. The direct estimates 

for each sample dataset were then used in turn as input to the WinBUGS software, 

which was used to produce the HB estimates for all four models. 

For more than half of the states, the direct estimates were zero for at least one 

of the sample datasets. We counted the number of states with zero direct estimates 

(i.e., 0iwp = ) for each replicate under each sample design. Let ( )tφ  denote the 

counts, 1,...,500t = . The values of ( )tφ  varied from 1 to 11 among the 51 states under 
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the SRS design and varied from 1 to 10 under the stratified SRS design. In the six 

smallest states, more than 40% of the 500 direct estimates were zeros under each 

sample design.   

Due to the zero direct estimates, WinBUGS ran into errors with undefined real 

results showing up for some input datasets while implementing the three HB models 

with the logit link (Models 2, 3, and 4). In order to make the Monte Carlo simulation 

of 500 replications run smoothly, the zero direct estimates were perturbed to very 

small positive numbers for the three HB models with the logit link. 

For each WinBUGS run, three independent chains were used. For each chain, 

burn-ins of 10,000 samples were produced, with 10,000 samples after burn-in. The 

samples after burn-in were thinned to 5,000 to reduce auto-correlation of the MCMC. 

The resultant 15,000 MCMC samples after burn-in were then used to compute the 

posterior mean and percentiles for each HB model based on each sample dataset. The 

estimated potential scale reduction factor R̂  proposed by Gelman and Rubin (1992) 

was computed for each parameter. We used R̂  as the primary measure for 

convergence. The potential scale reduction factor is the factor by which the scale 

parameter of the estimated marginal distribution might be reduced if the simulations 

were continued indefinitely. The expected value of R̂  is 1. Values of R̂  below 1.1 

are acceptable for most examples. For further details, we refer to Gelman et al. (2004, 

p. 296-297).  
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2.4.5 Simulation Results 

 
Let HB

iP  denote an HB estimator of iP , the percentage of live births with low 

birthweight in state i, and let ,
HB

i qP  denote the q th percentile of the posterior 

distribution of iP  ( 1,...,i m= ). The noncoverage probability for the 95 percent 

credible intervals, i.e., the probability that the interval from ,.025
HB

iP  to ,.975
HB

iP  fails to 

cover iP , can be estimated using the following fraction over R  replications: 

 ( )
1

1 ,  1,..., ,R r
i irfract I i m

R == =∑  (2.19) 

where 
( ) ( )

( ) ,.025 ,.9751,  if the credible interval ,  fails to cover 

0,                                                                             otherwise

HB r HB r
ir i i

i
P P P

I
⎧ ⎡ ⎤⎪ ⎣ ⎦= ⎨
⎪⎩

, 

1,..., .r R=  

The Monte Carlo simulation standard error of ifract  is given by: 

 ( ) (1 ) / ,  1,..., .i i is fract fract fract R i m= − =  (2.20)     

For summary purpose, the average noncoverage probability of the 95% credible 

intervals for an HB estimator over a group of b  states, where b m≤ , can be further 

estimated by: 

 1
1 . b

b iiAfract fract
b == ∑  (2.21) 

The associated Monte Carlo simulation standard error of LAfract  is given by: 
 

 [ ]21
1( ) ( ) , b

b iis Afract s fract
b == ∑  (2.22) 

where ifract  and ( )is fract  are defined by (2.19) and (2.20) respectively. 
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The mean width ( imw ) of the credible intervals 975 025
HB HB

i,. i,.P - P  and its Monte Carlo 

simulation standard error [ ( )is mw ] over R  replications can be computed as: 

 ( ) ( )
,.975 ,.0251

1 ,  R HB r HB r
i i irmw P P

R =
⎡ ⎤= −⎣ ⎦∑  (2.23) 

 
2( ) ( )

,.975 ,.0251
1( ) .

( 1)
R HB r HB r

i ii irs mw P P mw
R R =

⎡ ⎤= − −⎣ ⎦− ∑  (2.24) 

Again, for summary purpose, the average mean width ( bAmw ) of the 95% credible 

intervals for an HB estimator over a group of b  states, where b m≤ , and the 

associated Monte Carlo simulation standard error [ ( )bs Amw ] over R  replications can 

be further computed as: 

 1
1 ,b

b iiAmw mw
b == ∑  (2.25) 

 [ ]21
1( ) ( ) ,b

b iis Amw s mw
b == ∑  (2.26) 

where imw  and ( )is mw  were defined by (2.23) and (2.24) respectively. 

Based on results from the 500 simulation datasets for each model, Tables 2-2 

and 2-3 present the following for each sample design:  the noncoverage probability 

for the 95 percent credible intervals and the mean width of the credible intervals 

975 025
HB HB

i,. i,.P - P  over simulations. To examine the effect of state sample size on the 

simulation results, the 51 states are placed into three groups according to their sample 

size: small ( 30);in ≤  medium (30 100);in< ≤  and large ( 100)in > .  The small group 

contains 16 states, the medium group contains 23 states, and the large group contains 
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12 states. The results presented in the tables are overall averages across all states and 

averages for the three groups separately. 

The upper half of Table 2-2 reports the average percentage of times that the 95 

percent credible interval for each iP  failed to cover the true value of iP  over the 500 

replications along with the Monte Carlo simulation standard errors under the SRS 

design. The statistics for each model were computed based on formulas (2.21) and 

(2.22). The lower half of Table 2-2 displays the average widths of the 95 percent 

credible intervals along with the Monte Carlo simulation standard errors, which were 

computed based on formulas (2.25) and (2.26). The Fay-Herriot model (M1) credible 

intervals are the most conservative among the four models, giving about 1.5 percent 

overall noncoverage. The M1 credible interval widths are stable. A small proportion 

of the M1 credible intervals had negative lower bound. These negative lower bounds 

were truncated to zero. At overall 1.8 percent and 1.7 percent, the noncoverage rate of 

the credible intervals for the normal-logistic model (M2) and the normal-logistic 

model with unknown variance (M3) are very close to that for M1. Model M3 

performs a little bit better in the small group compared with M1 and M2 using the 

noncoverage rate criterion. The noncoverage rates do not vary much across different 

size groups for the first three models.  

At overall 10.0 percent, the noncoverage rate of the credible intervals for the 

beta-logistic model (M4) is well above the nominal rate of 5 percent. The 

noncoverage rate of 4.2 percent and 4.0 percent for the medium group and large 

group are closest to the nominal noncoverage rate. However, the noncoverage rate for 

the small group reaches 22.8 percent, pulling the overall average up. This is an 
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unexpected result in this study. The average width and the simulation errors are larger 

than those of the other three models. This instability may be due to the complexity of 

the full conditional distributions for the beta model. The large proportion of the 500 

direct estimates that were 0 for some of the small states (see Section 2.4.4) may also 

cause significant problems in fitting the beta distribution. The noncoverage rates do 

not vary much between the medium and the large groups.  

Table 2-3 displays the same results as those in Table 2-2, except that it is for 

stratified SRS design within each state. Table 2-3 shows a consistent pattern to that 

for the SRS design for the first 3 models, but with the overall and within group 

noncoverage rates being smaller than those shown in Table 2-2. At an overall 

noncoverage rate of 1.6 percent under the stratified SRS design, the performance of 

M3 is again showing a little bit improvement on M1 and M2 in terms of noncoverage, 

but it is still conservative comparing with the nominal 5 percent.  

The performance of M4 improves much under the stratified SRS design. The 

noncoverage rate of 3.9 percent overall is closest to the nominal noncoverage rate 

among the four models. The noncoverage rate in the small group drops to 7.4 percent, 

a much more reasonable figure than 22.8 percent we saw earlier in Table 2-2. 

Comparing with other models under the stratified SRS design, M4 produces 

noncoverage rates closest to the nominal 5 percent, with reasonable average interval 

width, though it again has the largest simulation errors.  

As expected, for all four models the mean width of the credible intervals 

declines with increasing state sample size. Despite these declines, however, the 

noncoverage rates also decline with increasing sample size for Models 3 and 4. The 



 

 58 
 

noncoverage rates are in fact very small for the states with large in , suggesting that 

the credible intervals are not adequately reflecting the effect of the greater precision 

of the direct estimates in the states with large sample sizes. 

The posterior mean of iP  based on the Fay-Herriot model M1 does not have a 

finite range, so it is possible that the HB estimate falling outside of the (0, 1) range.  

In fact, one of the HB estimates in the medium group was negative. We left it as is for 

model comparison purpose. In practice, negative estimates have to be fixed by 

alternative modeling approach. In our study, under the SRS design, 1.7 percent of the 

credible intervals in the small group had negative lower bounds. Under the stratified 

SRS design, credible intervals with negative lower bound appeared in each group. 

Specifically, 11.6 percent of the credible intervals in the small group, 3.9 percent of 

the credible intervals in the medium group, and 0.2 percent of the credible intervals in 

the large group had negative lower bounds.   

We attempted to produce the noncoverage rates for the direct estimates as 

well. However, it was problematic to produce 95% confidence intervals using the 

regular direct estimation methods whenever the direct point estimates were zero. 

Alternative methods were needed to produce reasonable confidence intervals. Even 

for the cases with positive direct point estimates, the standard errors of the point 

estimates were very unstable. Therefore, we do not report the noncoverage rates for 

the direct estimates in this chapter.  
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Table 2-2:  Percentage of times that the 95 percent credible intervals fail to cover iP  

and mean width of the 95 percent credible intervals, along with the Monte Carlo 

simulation standard errors over 500 simulations (in percentages) - SRS 

Sample size M1 M2 M3 M4 
Average noncoverage percentage 
(Monte Carlo simulation standard error)     

Overall 
1.48 

(0.075)
1.78 

(0.082)
1.68 

(0.080) 
9.98 

(0.175)

Small in  1.24 
(0.123)

1.51 
(0.135)

1.68 
(0.142) 

22.80 
(0.450)

Medium in  1.68 
(0.119)

1.93 
(0.127)

1.83 
(0.124) 

4.21 
(0.186)

Large in  1.43 
(0.153)

1.87 
(0.174)

1.42 
(0.152) 

3.97 
(0.252)

Average mean width of the 95% credible intervals 
(Monte Carlo simulation standard error)     

Overall 
6.50 

(0.007)
6.51 

(0.010)
6.45 

(0.008) 
9.25 

(0.022)

Small in  7.52 
(0.015)

7.31 
(0.023)

7.13 
(0.018) 

10.53 
(0.061)

Medium in  6.59 
(0.010)

6.71 
(0.013)

6.71 
(0.012) 

9.71 
(0.024)

Large in  4.96 
(0.008)

5.05 
(0.010)

5.06 
(0.009) 

6.64 
(0.014)

Notes: 1) M1 is the HB version of the Fay-Herriot model; M2 is the normal-logistic model;  M3 is 

the normal-logistic model with unknown variance;  and M4 is the beta-logistic model with unknown 

variance.  

2) For Model 1, a small percent of the credible intervals in the small group had negative lower 

bounds. 

3) The large noncoverage rate (22.8%) for M4 in the small group is an unexpected result. This may 

due to the large proportion of the 500 direct estimates that were zero for some of the small states (see 

section 2.4.4) and the complexity of the full conditional distributions of M4. For more explanation, 

see Section 2.5. 
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Table 2-3:  Percentage of times that the 95 percent credible intervals fail to cover iP  

and mean width of the 95 percent credible intervals, along with the Monte Carlo 

simulation standard errors over 500 simulations (in percentages) - Stratified SRS 

Sample size M1 M2 M3 M4 
Noncoverage percentage 
 (Monte Carlo simulation standard error)     

Overall 
1.04 

(0.063) 
1.41 

(0.073) 
1.65 

(0.079) 
3.91 

(0.118) 

Small in  0.84 
(0.102) 

1.19 
(0.121) 

2.03 
(0.157) 

7.40 
(0.283) 

Medium in  1.14 
(0.098) 

1.46 
(0.111) 

1.53 
(0.114) 

2.73 
(0.150) 

Large in  1.12 
(0.135) 

1.60 
(0.161) 

1.37 
(0.149) 

1.53 
(0.158) 

Mean width of the 95% credible intervals 
(Monte Carlo simulation standard error)     

Overall 
8.41 

(0.010) 
8.68 

(0.018) 
8.83 

(0.014) 
9.41 

(0.019) 

Small in  9.70 
(0.023) 

9.90 
(0.045) 

9.77 
(0.034) 

10.02 
(0.045) 

Medium in  8.53 
(0.014) 

8.86 
(0.021) 

9.19 
(0.020) 

10.00 
(0.026) 

Large in  6.48 
(0.012) 

6.70 
(0.016) 

6.89 
(0.015) 

7.48 
(0.020) 

Notes: 1) M1 is the HB version of the Fay-Herriot model; M2 is the normal-logistic model;  M3 is 

the normal-logistic with unknown variance;  and M4 is the beta-logistic model.  

2) For Model 1, portion of the credible intervals with negative lower bound appeared in each group.  

In addition, one of the HB estimates in the medium group was negative. 
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In addition to the noncoverage property, we also considered the following 

three statistics for each estimate under each design: the overall average bias (OAB), 

the overall average absolute deviation (OAAD), and the overall average absolute 

relative deviation (OAARD) across all simulations and states which were defined as: 

 ( )
1 1

1 ,m R r
iii rOAB p PmR = =

⎡ ⎤= −⎣ ⎦∑ ∑  (2.27) 

 ( )
1 1

1 ,m R r
iii rOAAD p P

mR = == −∑ ∑  (2.28) 

 ( )
1 1

1 ,m R r
i iii rOAARD p P P

mR = == −∑ ∑  (2.29) 

 
where ( )r

ip  is the estimate of iP  based on the r th sample for state i , 51,m =  and 

500R = .  The corresponding Monte Carlo simulation standard errors of OAB, 

OAAD and OAARD were defined as: 

 
2( )

1 1
1 1( ) ,

( 1)
m R r

i iii rs OAB p P B
m R R = =

⎡ ⎤= − −⎣ ⎦− ∑ ∑  (2.30) 

 
2( )

1 1
1 1( ) ,

( 1)
m R r

i iii rs OAAD p P AAD
m R R = =

⎡ ⎤= − −⎢ ⎥⎣ ⎦− ∑ ∑  (2.31) 

 

2( )

1 1
1 1( ) ,

( 1)

r
iim R

ii r
i

p P
s OAARD AARD

m R R P= =

⎡ ⎤−
⎢ ⎥= −⎢ ⎥−
⎢ ⎥⎣ ⎦

∑ ∑  (2.32) 

where ( )
1

1 ,R r
i iirB p PR =

⎡ ⎤= −⎣ ⎦∑  ( )
1

1 ,R r
i iirAAD p P

R == −∑  and 

( )
1

1 .R r
i i iirAARD p P P

R == −∑  
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Table 2-4 reports the OAB, OAAD, and OAARD along with the Monte Carlo 

simulation standard errors for each HB model under each design. The results for the 

direct estimates are also reported in the table. As expected, the OABs of the direct 

estimates under both designs were very close to zero, but the Monte Carlo simulation 

errors were very large. Comparing with the HB methods, the direct estimates 

produced the largest OAAD and OAARD with largest Monte Carlo simulation errors. 

This indicates that the direct estimates are highly variable. All the HB models 

produced negative OABs.  Under both designs, the beta-logistic model (M4) 

produced the largest absolute OAB, OAAD and OAARD among the four HB models 

being considered. Those statistics for the first three HB models do not vary much. 

Under the stratified SRS, absolute OAB, OAAD and OAARD are increasing in the 

direction of M1 to M4, a direction that the model goes from simple to complex. 

However, such pattern does not hold under the SRS design.  

Table 2-4:  The overall average bias, the overall average absolute deviation, and the 

overall average absolute relative deviation, along with the Monte Carlo simulation 

standard errors over the 500 simulations and the 51 states (in percentages) 

SRS Stratified SRS 
Statistics M1 M2 M3 M4 Direct M1 M2 M3 M4 Direct

OAB 
( )( )s OAB  

-0.05 
(0.007) 

-0.09 
(0.008) 

-0.08 
(0.007)

-0.40 
(0.014)

0.00 
(0.029)

-0.02 
(0.009)

-0.10 
(0.011)

-0.18 
(0.011) 

-0.21 
(0.011) 

0.02 
(0.040)

OAAD 
( )( )s OAAD  

1.03 
(0.005) 

1.07 
(0.005) 

1.05 
(0.005)

1.81 
(0.009)

3.38 
(0.017)

1.22 
(0.006)

1.36 
(0.009)

1.37 
(0.007) 

1.45 
(0.007) 

4.48 
(0.024)

OAARD 
( )( )s OAARD  

13.51 
(0.064) 

13.83 
(0.071) 

13.51 
(0.065)

23.64 
(0.119)

45.03
(0.225)

16.01
(0.083)

17.52
(0.118)

17.59 
(0.096) 

18.82 
(0.095) 

59.89
(0.343)
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2.4.6 Sensitivity Analysis on Model 1 and 2 

 
To investigate how sensitive the HB models are to the prior assumptions about 

the variance component and the sampling variance estimation, we conducted a 

sensitivity analysis using Models 1 and 2. We considered two prior assumptions: 1) 

2 ~ (0,  100)v Uniformσ ; and  2) 2 ~ (0.001,  0.001),v INGσ   with the combination of 

two sampling variance estimators for iψ : i) the smoothed synthetic variance estimator 

defined by (2.18) in Section 2.3.3; ii) the overall synthetic variance estimator defined 

by (2.10) in Section 2.2.2. Thus there were four different assumptions in terms of 

prior and variance estimation.  

Under each of the four assumptions, HB estimates were computed using 

WinBUGS following the set up described in Section 2.3.4. We conducted the 

sensitivity analysis using both sample designs for Model 1 and using the stratified 

SRS design for Model 2. Since the finite population is known in our study, the true 

variance of the sample proportion is computable. In order to evaluate the effects of 

the two variance estimation methods, we also carried out the HB estimates based on 

Model 1 using the true sampling variance and the uniform prior for 2
vσ . Table 2-5 

and Table 2-6 present the summary results for each assumption by design for Model 

1: the noncoverage rates for the 95 percent credible intervals, and the average of the 

absolute relative deviations defined by 100%
HB

i i
i

i

P P
ARD

P

−
= × . As in Tables 2-2 

and 2-3, we present the summary results by group.  
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Table 2-5:  Percentage of times that the 95 percent credible intervals fail to cover iP  

along with the Monte Carlo simulation standard errors based on 500 simulations (in 

percentages) for the Fay-Herriot model (M1)  

  SRS   Stratified SRS  

  

  
Uniform prior 

 for 2
vσ   

Inverse  
Gamma Prior 

for 2
vσ    

  
Uniform prior 

 for 2
vσ   

Inverse  
Gamma Prior 

for 2
vσ    

  stVAR  isynv  varisw isynv  varisw stVAR isynv  varisw  isynv  varisw

Overall 
1.32 

(0.071) 
1.48 

(0.075) 
1.30 

(0.071)
0.94 

(0.060)
0.74 

(0.053)
0.90 

(0.059)
1.04 

(0.063)
0.73 

(0.053) 
0.81 

(0.056) 
0.44 

(0.041)

Small in  
1.19 

(0.120) 
1.24 

(0.123) 
1.13 

(0.117)
0.35 

(0.066)
0.15 

(0.043)
0.68 

(0.091)
0.84 

(0.102)
0.55 

(0.083) 
0.33 

(0.064) 
0.10 

(0.035)

Medium in  
1.47 

(0.111) 
1.68 

(0.119) 
1.43 

(0.110)
0.91 

(0.088)
0.74 

(0.079)
0.83 

(0.084)
1.14 

(0.098)
0.75 

(0.080) 
0.89 

(0.086) 
0.37 

(0.056)

Large in  
1.20 

(0.140) 
1.43 

(0.153) 
1.28 

(0.145)
1.77 

(0.170)
1.52 

(0.157)
1.35 

(0.148)
1.12 

(0.135)
0.92 

(0.122) 
1.32 

(0.146) 
1.03 

(0.130)
Notes: stVAR  is the true variance defined by (2.2); isynv  is the smoothed synthetic variance 

estimator defined by (2.18); varisw  is the overall synthetic variance estimator defined by (2.10). The 

results included in the parentheses are the simulation standard errors.  

 

The left half of Table 2-5 reports the average noncoverage rates of Model 1 

under each model assumption under the SRS design, and the right half of the table 

reports the same statistics under the stratified SRS design. Comparing to the nominal 

5 percent noncoverage rate, under the same prior assumption, the smoothed synthetic 

estimator isynv  defined by (2.18) appears a little bit more favorable than the overall 

synthetic estimator varisw  defined by (2.10) in terms of noncoverage. But the 

improvement is trivial. While under the same sampling variance estimator, the 

uniform prior for 2
vσ  works more favorable than the inverse-gamma prior in terms of 

noncoverage.  Again, the improvement is not large. Under the same uniform prior 
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assumption for 2
vσ , the Fay-Herriot model is still conservative even if the true 

sampling variances were used.  

Table 2-6:  Absolute relative deviations along with the Monte Carlo simulation 

standard errors based on 500 simulations (in percentages) for the Fay-Herriot model 

(M1)  

  SRS   Stratified SRS  

  

  
Uniform prior 

 for 2
vσ   

Inverse  
Gamma Prior 

for 2
vσ    

  
Uniform prior 

 for 2
vσ   

Inverse  
Gamma Prior 

for 2
vσ    

  stVAR  isynv  varisw isynv  varisw stVAR isynv  varisw  isynv  varisw

Overall 
13.06 

(0.061) 
13.51 

(0.064) 
13.12 

(0.060)
15.19 

(0.073)
14.71 

(0.070)
15.14 

(0.075)
16.01 

(0.083)
14.80 

(0.071) 
17.50 

(0.089) 
16.27 

(0.079)

Small in  
15.69 

(0.125) 
16.14 

(0.132) 
15.61 

(0.123)
17.44 

(0.147)
16.55 

(0.137)
17.86 

(0.153)
19.15 

(0.178)
17.56 

(0.146) 
20.27 

(0.187) 
18.50 

(0.157)

Medium in  
13.10 

(0.091) 
13.57 

(0.095) 
13.25 

(0.091)
15.31 

(0.110)
14.95 

(0.106)
15.06 

(0.112)
15.94 

(0.119)
14.80 

(0.106) 
17.42 

(0.130) 
16.27 

(0.119)

Large in  
9.49 

(0.093) 
9.86 

(0.099) 
9.54 

(0.094)
11.95 

(0.117)
11.78 

(0.114)
11.67 

(0.119)
11.97 

(0.122)
11.15 

(0.112) 
13.93 

(0.138) 
13.31 

(0.131)
Notes: stVAR  is the true variance defined by (2.2); isynv  is the smoothed synthetic variance estimator 

defined by (2.18); varisw  is the overall synthetic variance estimator defined by (2.10). The results  

included in the parentheses are the simulation standard errors.  

 

The left half of Table 2-6 reports the average absolute relative deviation 

(ARD) of Model 1 for each case under SRS design and the right half of the table 

presents the same statistics under the stratified SRS design. When holding the same 

prior for 2
vσ , the overall synthetic estimator varisw  produces a little bit less absolute 

relative deviation than the smoothed synthetic estimator isynv  does. This is expected 

because the overall synthetic estimator smoothes the variance extensively. On the 

other hand, while holding the sampling variance estimator fixed, the uniform prior for 

2
vσ  leads to a little bit less absolute relative deviation than the inverse-gamma prior 
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does. The patterns shown in this table are consistent with those in Table 2-5. Both 

tables showed consistent patterns between the two designs for Model 1. 

 

Table 2-7:  Percentage of times that the 95 percent credible intervals fail to cover iP  

and absolute relative deviations, along with the Monte Carlo simulation standard 

errors based on 500 simulations (in percentages) for the Normal-logistic model (M2) 

under the stratified SRS design  

  Noncoverage percentage Absolute relative deviation  

  

Uniform prior  
for 2

vσ  
Inverse Gamma 

prior for 2
vσ  

Uniform prior 
 for 2

vσ  
Inverse Gamma 

prior for 2
vσ  

  isynv  varisw  isynv  varisw  isynv  varisw  isynv  varisw  

    Overall 
1.41 

(0.073) 
0.88 

(0.058)
3.06 

(0.107)
2.71 

(0.100)
17.52 

(0.118)
15.78 

(0.086) 
15.60 

(0.097) 
14.35 

(0.070)

    Small in  
1.19 

(0.121) 
0.74 

(0.095)
3.91 

(0.214)
3.65 

(0.206)
21.06 

(0.297)
18.37 

(0.188) 
19.26 

(0.243) 
17.39 

(0.151)

    Medium in  
1.46 

(0.111) 
0.90 

(0.087)
3.02 

(0.158)
2.62 

(0.147)
17.18 

(0.142)
15.69 

(0.121) 
15.24 

(0.119) 
14.20 

(0.101)

    Large in  
1.60 

(0.161) 
1.03 

(0.130)
2.02 

(0.180)
1.63 

(0.163)
13.47 

(0.137)
12.50 

(0.126) 
11.42 

(0.115) 
10.60 

(0.102)
Notes: isynv  is the smoothed synthetic variance estimator defined by (2.18); varisw  is the overall 

synthetic variance estimator defined by (2.10). The results included in the parentheses are the 

simulation standard errors.  

 

Table 2-7 presents the summary results of the noncoverage probability and the 

average absolute relative deviations under each assumption for Model 2 based on the 

stratified SRS design. The left half of Table 2-7 reports the average noncoverage rates 

of Model 2 under different assumptions based on the stratified SRS design, and the 

right half of the table reports the corresponding average absolute relative deviation.  

The table indicates that for Model 2, the inverse-gamma prior works better than the 

uniform prior in terms of both coverage property and absolute relative deviation. On 

the other hand, the smoothed synthetic estimator isynv  works better with respect to the 
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5 percent nominal noncoverage rate than the overall synthetic estimator varisw , 

however, the latter one produces a little bit less absolute relative deviation.  

In summary, the sensitivity analysis shows that for both Models 1 and 2, the 

smoothed synthetic estimator isynv  is superior to the overall synthetic estimator 

varisw  in terms of coverage; the uniform prior for 2
vσ  is better than the inverse-

gamma prior in terms of both coverage and the absolute relative deviation for Model 

1, while for Model 2, the inverse-gamma prior is superior to the uniform prior. Model 

1 is less sensitive to the prior assumption than Model 2. However, many of the 

differences are trivial.   

 

2.5 Summary and Discussion  

  
In the simulation study, we have compared design-based coverage properties 

of credible intervals resulting from different HB models to estimate small area 

proportions from a simple random sample design and a stratified simple random 

sample design. We have also compared the HB estimates with the direct estimate. 

The simulation results confirmed that HB methods work better than the direct 

estimate in terms of both coverage and absolute relative deviation properties.   

The HB version of the well-known Fay-Herriot model appears to produce the 

most conservative credible intervals. A big disadvantage of the Fay-Herriot model for 

binary data is it can produce credible intervals with negative lower bounds or even 

negative posterior means. The normal-logistic hierarchical model (M2) performs like 

the Fay-Herriot model, but its coverage is less conservative than the Fay-Herriot 
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model. The unknown sampling variance version of the normal-logistic hierarchical 

model with unknown sampling variances (M3) improves on coverage compared with 

the first two models, but only by a small percentage.  

Compared to the other three models, the beta-logistic model with unknown 

sampling variances (M4) achieves credible intervals that are closest to the nominal 

coverage for the finite population proportions under the stratified SRS design and the 

proportions of the states with medium or large sample sizes under the SRS design. 

However, under the SRS design, this model produces credible intervals with the worst 

coverage among the four models for the states with small sample sizes. Model M4 did 

not achieve good results in terms of overall average bias, overall average absolute 

deviation, and overall average absolute relative deviation compared with other 

models. Since one of the full conditional distributions for the beta-logistic model 

involves the survey-weighted proportions, there is a problem with the MCMC 

whenever the survey-weighted proportion is zero. The credible intervals for this 

model are also wider than those for the other two models with a logistic linking 

model under the SRS design. However, the widths of the credible intervals are similar 

to those of the other three models under the stratified SRS design.  

A second explanation for the inconsistent performance of the beta-logistic 

model between the two designs for the small group could be: under the SRS design, 

all the observations within the same area got equal sampling weights. When the state 

sample sizes are very small, the direct estimates iwp  appear more discrete than 

continuous; the beta distribution may be problematic to fit the discrete data. However, 

when the stratified SRS design is used, the observations within the same area have 
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different sampling weights and the variation of the weights is quite large. The unequal 

weighting could have improved the continuous feature of iwp  in the small group.  

Mother’s race was used as stratum variable within state under the stratified 

SRS design. For the concern of double counting its effect under the stratified SRS 

design, we did not include it in the pool of auxiliary variables when selecting 

auxiliary variables in Section 2.4.2. In a further study, we will include it in the pool of 

auxiliary variables which may help to improve the efficiency of the HB models under 

the SRS design.  

We considered 500 simulations under each design in this study. However, the 

results in Tables 2-2 to 2-4 consistently showed that M4 had the largest Monte Carlo 

simulation errors compared with the other three HB models. A larger number of 

simulations are needed for M4 in order to reduce the simulation errors.  

We have investigated whether different prior assumptions for the variance 

component 2
vσ  and different sampling variance estimation methods can affect the HB 

estimation results for the Fay-Herriot model and the normal-logistic model (M2). The 

results indicated that both the HB models are not very sensitive to the sampling 

variance estimation method, and M2 is more sensitive to the prior assumption for 2
vσ  

than M1 is.  

The simulation study was restricted to two simple sample designs. In addition, 

for simplicity only two auxiliary variables from one source were included in the 

linking models, whereas in practice the inclusion of such variables from multiple 

sources, especially from the census data is routine and almost essential. Further 
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simulation studies to cover different sample designs, different sample sizes, and to 

incorporate more auxiliary variables in the linking models are needed. 
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Appendix for Chapter 2 

Appendix A:  Full Conditional Distributions for the HB Models 

 Assume that the prior distributions for the model parameters β  and 2
vσ  are 

21,  ~ (0,  )v Uniform Lσ∝β . Let 1( ,..., )w mwp p ′=p and 2
i

i
i v

r ψ
ψ σ

=
+

. 

The full conditional distributions for the Fay-Herriot model (M1) are given as 

follows:  

  i) [ ]2 (1 ) ,  (1 )| , , ~ i iw i i i ii v r p r rN ψθ σ ′− + −x ββ p ,  for i Rθ ∈ ; 

ii) 
1 1

2 2

1 1 1
| , , ~ ,

m m m

i v i i i i v i i
i i i

Nθ σ θ σ
− −

= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥′ ′⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑β p x x x x x ,  for P∈β R ;  

iii) 
2 2

2
1

2

1 11,  ( ) ,       for (0, )
2 2| , , ~

0,                                                   for L    

m

i i v
iv i

v

ING m Lθ σ
σ θ

σ

=

⎧ ⎛ ⎞
′− − ∈⎪ ⎜ ⎟⎪ ⎜ ⎟⎨ ⎝ ⎠

⎪
≥⎪⎩

∑ x β
β p . 

                 

The full conditional distributions for the normal-logistic model (M2) are given 

as follows:  

  i) 
2 2

2
2

( ) [logit( ) ]1| , , exp
2(1 ) 2

iw i i i
i v

ii i v i v

p θ θ
θ σ

ψθ θ σ ψ σ

⎧ ⎫′− −⎪ ⎪∝ − −⎨ ⎬
− ⎪ ⎪⎩ ⎭

x ββ p ,  

                                                                                                           

for (0,  1)iθ ∈ ; 
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ii) 
1 1

2 2

1 1 1
| , , ~ logit( ) ,

m m m

i v i i i i v i i
i i i

Nθ σ θ σ
− −

= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥′ ′⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑β p x x x x x ; for 

P∈β R ; 

iii) 
2 2

2
1

2

1 11,  [logit( ) ] ,       for (0, )
2 2| , , ~

0,                                                             for L    

m

i i v
iv i

v

ING m Lθ σ
σ θ

σ

=

⎧ ⎛ ⎞
′− − ∈⎪ ⎜ ⎟⎪ ⎜ ⎟⎨ ⎝ ⎠

⎪
≥⎪⎩

∑ x β
β p . 

The full conditional distributions for the normal-logistic model with unknown 

variance (M3) are the same as those of M2 except that iψ  is replaced by 

(1 ) /i i iw ideff nθ θ−  for the distribution of iθ  given other parameters.  

Let 1.i
iw

iw

n
deff

δ = −  The full conditional distributions for the beta-logistic 

model (M4) are given as follows:  

i)     
1 (1 ) 1 2

2
2

(1 ) [logit( ) ]1| , , exp
(1 ) ( ) [(1 ) ] 2

i iw i iwiwiw i i
i v

i i v i iw i iw v

p pθ δ θ δ θ
θ σ

θ θ σ θ δ θ δ σ

− − − ⎧ ⎫′− −⎪ ⎪∝ −⎨ ⎬− Γ Γ − ⎪ ⎪⎩ ⎭

x ββ p , 

                                                                                                             

for (0,  1)iθ ∈ ; 

ii) 
1 1

2 2

1 1 1
| , , ~ logit( ) ,

m m m

i v i i i i v i i
i i i

p Nθ σ θ σ
− −

= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥′ ′⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑β x x x x x ; for 

P∈β R ; 

iii) 
2 2

2
1

2

1 11,  [logit( ) ] ,       for (0, )
2 2| , , ~

0,                                                    for L    

m

i i v
iv i

v

ING m Lθ σ
σ θ

σ

=

⎧ ⎛ ⎞
′− − ∈⎪ ⎜ ⎟⎪ ⎜ ⎟⎨ ⎝ ⎠

⎪
≥⎪⎩

∑ x β
β p . 
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Appendix B:  WinBUGS Code for the HB Models 

WinBUGS code for Model 1: 
 
model  
{ 
for ( i in 1:N)   
{ 
pobs[i] ~ dnorm(theta[i], D[i]) 
D[i] <- 1/varhat[i] 
theta[i]<-inprod(beta[], X[i, ])+v[i] 
v[i]~dnorm(0, tau)      
} 
for ( i in 1:k)   
{ 
beta[i]~dflat() 
}  
tau<-1/A 
A~dunif(0, 100) 
}           
 
WinBUGS code for Model 2: 
 
model  
{ 
for ( i in 1:N)  
{ 
pobs[i] ~ dnorm(theta[i], D[i]) 
D[i] <- 1/varhat[i] 
logit(theta[i])<-inprod(beta[], X[i, ])+v[i] 
v[i]~dnorm(0, tau)       
} 
for ( i in 1:k)   
{ 
beta[i]~dflat() 
}  
tau<-1/A 
A~dunif(0, 100) 
} 
 
WinBUGS code for Model 3: 
 
model  
{ 
for ( i in 1:N)  
{ 
pobs[i] ~ dnorm(theta[i], E[i]) 
E[i] <- SAMPn[i]/(theta[i]*(1-theta[i])*DEFF_kish[i]) 
logit(theta[i])<-inprod(beta[], X[i, ])+v[i] 
v[i]~dnorm(0, tau)            
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D[i]<-1/E[i]       
}  
for ( i in 1:k)   
{ 
beta[i]~dflat() 
} 
tau<-1/A 
A~dunif(0, 100) 
} 
 
WinBUGS code for Model 4: 
 
model  
{ 
for ( i in 1:N)   
{ 
pobs[i] ~ dbeta(a[i], b[i]) 
a[i] <- theta[i]*(theta[i]*(1-theta[i])/D[i]-1) 
b[i] <- (1-theta[i])*(theta[i]*(1-theta[i])/D[i]-1) 
logit(theta[i])<-inprod(beta[], X[i, ])+v[i] 
v[i]~dnorm(0, tau) 
D[i]<-theta[i]*(1-theta[i])*DEFF_kish[i]/SAMPn[i] 
}  
for ( i in 1:k)   
{ 
beta[i]~dflat() 
} 
tau<-1/A 
A~dunif(0, 100) 
} 
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Chapter 3:  Adaptive Hierarchical Bayesian Estimation of 

Small-Area Proportions  

3.1 Introduction 

 
Logistic regression mixed models typically assume normality for the area-

level random effects (e.g., see model 1.11 and 1.12 in Section 1.4). The wide use of 

the normality assumption can be attributed to its conceptual and computational 

simplicity as well as its popularity in standard data analysis. Nevertheless, we would 

expect that certain type of measurements would not be normally distributed. For 

example, leptokurtic (kurtosis>0) distributions and platykurtic distributions 

(kurtosis<0) for individual errors can occur (e.g., see Chapter 3 of Box and Tiao, 

1973). For cases where the assumption of normality is not tenable, more flexible 

models can be adopted to accommodate non-normality. However, the literature in 

small area estimation on this aspect is not rich.  

Farrell, MacGibbon and Tomberlin (1994) considered the EBP approach for 

protecting against outlying parameters. Using a simple random-effect model which is 

a special case of model (1.11), Farrell et al. compared the effects of step-function 

priors with those of the normal and Laplace priors for the random effects. They found 

that as the tails of the prior become heavier, the Laplace distribution is the most 

appropriate prior. For skewed prior distributions, the use of a step-function prior was 

recommended. To the best of our knowledge, this is the only research paper 

addressing non-normality problem in the application of logistic regression models for 

estimating small-area proportions in the small area estimation literature.  
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In Chapter 2, we examined the performances of a normal-logistic model with 

unknown sampling variances (M3) and a beta-logistic hierarchical model (M4) that 

assumed a beta distribution for the sampling errors in the context of estimating small-

area proportions. The simulation study showed that M3 works marginally better than 

the Fay-Herriot model in terms of noncoverage, but it is still far too conservative 

compared to the nominal 5 percent noncoverage. The beta-logistic model performs 

fine for the small areas with medium and large sample sizes in terms of coverage.  

However, it was problematic for handling the states with very small sample sizes due 

to zero survey-weighted proportions.  

To accommodate zero survey-weighted proportions and non-normality related 

to kurtosis for the random effects, we propose robust unit level mixed models by 

assuming a class of distributions – the exponential power distributions, which 

includes the normal distribution as a special case for the random effects under 

complex sampling design. We make inference for small-area proportions using data 

from a stratified SRS design, where the small areas are the design strata. Skewness is 

another common feature of non-normality that may occur to many datasets. For 

simplicity, we do not consider it in this dissertation.  

This chapter is organized as follows. We briefly review the exponential power 

distribution in Section 3.2.  In Section 3.3, we present a motivating example for this 

study. In Section 3.4, we propose a robust unit level model for survey data drawn 

from a finite population using a stratified SRS design to accommodate kurtosis and 

zero problems. In Section 3.5, we illustrate some Bayesian inference procedures 

based on the proposed model. In Section 3.6, we evaluate the proposed model by 
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comparing it with the normal model using some purely simulated data and several 

real datasets. This chapter finishes with some concluding remarks in Section 3.7.  

 

3.2 Exponential Power Distribution 

 
The exponential power (EP) distribution is a three-parameter distribution 

whose density is given by: 

1/
01( | , , ) exp ( )EP

ccf x x
ϕ

μ σ ϕ μ
σ σ

⎧ ⎫
⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭

, x−∞ < < +∞  

where  ,  R ,  (0,1],Rμ σ ϕ+∈ ∈ ∈ 0 (3 ) ( )c ϕ ϕ= Γ Γ , [ ]1 0 2 ( )c c ϕ ϕ= Γ . 

The three parameters ,  , μ σ ϕ  are location, scale and shape (kurtosis) 

parameters respectively. This parameterization is preferred to the more usual one 

proposed by Box and Tiao (1973) because it implies ( )E X μ=  and 2( )Var X σ= , a 

property that can be useful in modeling. This family of distributions includes a range 

of symmetric distributions that change gradually from the uniform ( 0ϕ → ), through 

short-tailed distributions (platykurtic) to the normal ( 0.5ϕ = ), then through 

distributions with longer-than-normal tails (leptokurtic) to the double exponential 

shape ( 1ϕ = ). Figure 3-1 illustrates EP distributions with common mean 0μ =  and 

standard deviation 1σ =  for six special values of ϕ . Excess kurtosis is defined as:  

2
( ) (5 ) 3

(3 )
ϕ ϕγ

ϕ
Γ Γ

= −
Γ

, 

i.e., the amount of kurtosis greater (or less) than the value of 3 for a normal 

distribution. 
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Figure 3-1:   EP density plot with 0,  1μ σ= =  for different ϕ  
 

 
The exponential power distribution family can be very useful as a model in 

Monte Carlo robustness studies because it can attain a broad range of kurtosis values 

and includes three well-known symmetric distributions as special cases. Box and Tiao 

(1973) used this family extensively as an alternative to the normal distribution for 

statistical modeling and also as a tool to study Bayesian robustness. In all the 

examples they studied, they found that the inferences about the population mean 

could differ substantially as the kurtosis parameter changes.  Hogg (1974) discussed 

the exponential power distribution family with 0.5 1ϕ≤ ≤  in relation to adaptive 

estimators of location. Prescott (1978) studied the asymptotic properties of the ϕ -

trimmed means and other adaptive trimmed means from this family of distributions. 

For normal location problem, Choy and Smith (1997a) used the Laplace 

approximation method for integrals to approximate the posterior moments for the 
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leptokurtic class of the exponential power distribution family and found that this 

subclass of distributions makes the estimation procedure robust by downweighting 

the influence of outlying observations. For random effects models, Choy and Smith 

(1997b) made use of the scale mixture of normal representation of the leptokurtic 

density function for use in conjunction with MCMC methods.  

 

3.3 Motivating Example – Low Birthweight Rate Data  

 
For our evaluation purpose, we study the estimation of state level low 

birthweight rates using samples drawn from the 2002 Natality public-use data file. 

The information on the data file has been given in Section 2.4.1.  

We want to fit the logistic regression model (1.11) given in Section 1.4 

assuming that all the births in state i  have a common probability iP  of being low 

birthweight. Let ( 1 2, ,ik ik iky x x ) denote the indicator of low birthweight and two 

binary auxiliary variables (percentage of births with mother’s age less than 15 and 

percentage of births being the first child in the family) associated with the k th baby 

in the i th state ( 1,..., ;ik N= 1,...,51i = ), and let ( 1 2, ,i i iP x x ) denote the 

corresponding state level means. We computed 1 2, ,i i iP x x  using the population data 

and then fitted the following logistic regression model: 

0 1 1 2 2logit( )i i i iP x x vβ β β= + + + , where 2~ (0, )
iid

iv N σ , 1,...,51.i =   



 

 80 
 

Both auxiliary variables are significant in predicting iP  (with p -values far less than 

0.05 from the t -test). Our next goal was to assess the normality of the residuals iv . 

The following methods were thereby implemented: 

i) Kolmogorov-Smirnov (K-S) normality test (Stuart et al., 1999); 

ii) normal Quantile-Quantile (Q-Q) plot (Gnanadesikan, 1977); 

iii) a Bayesian method. 

The p -value from the K-S test is 0.0436, which indicates that iv  are not normal at 

significance level 0.05α = . The left panel of Figure 3-3 displays the normal Q-Q plot 

for iv . The plot indicates that the underlying distribution of iv  is more like a 

platykurtic distribution. To verify this, we produced the descriptive statistics for iv  

using SAS PROC UNIVARIATE and the results confirmed that iv  are platykurtic.   

Since SAS uses a different parameterization, we consider the Bayesian 

approach for estimating the kurtosis of the residuals iv . We assume a priori 

independence between the components of ( ,  σ ϕ ) and specify the following non-

informative priors: i) ~ (0,  1)Unifϕ  and ii) ~ (0,  )Unif Lσ , where L  is a large 

positive number. As in Chapter 2, we choose 100L =  here. For reference on this 

prior assumption, we refer to Gelman (2006). We implemented model 

~ (0,  ,  )iv EP σ ϕ  with these two prior assumptions using the WinBUGS software. 

The posterior mean of ϕ  is 0.2. The one-sided 95% credible interval is (0, 0.473), 

which does not include the normal case ( 0.5ϕ = ). The posterior density plot of the 

kurtosis parameter ϕ  is displayed on the left panel of Figure 3-2. Clearly, the 

posterior mode of ϕ  is around 0.23 and the chance of covering the normal case is 
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very small. To assess the model fit, we applied the DIC criterion and compared the fit 

of the alternative models for different given kurtosis. Among several alternative 

models including the normal one, the EP model with 0.2ϕ =  fitted the data best since 

it resulted in the smallest DIC.  

We then compared the Q-Q plot of iv  with the Q-Q plot of data randomly 

generated from a platykurtic exponential power distribution with 0.2ϕ =  (see the 

right panel of Figure 3-3). The similarity between the two Q-Q plots further confirms 

that the underlying distribution of iv  is platykurtic.  

All these analyses demonstrated that a platykurtic EP distribution (with 

0.5ϕ < ) describes the underlying distribution of these residuals iv  better than the 

normal distribution. Based on the prior assumption ~ (0,  100)Unifσ , we display the 

posterior density plot of the scale parameter σ  on the right graph of Figure 3-2. The 

mode of σ  is around 0.12.  That is, the mode of the variance 2σ  is around 0.01, 

which is very small. According to Gelman (2006), a uniform prior distribution is 

preferred here to the commonly used inverse-gamma prior distribution for the 

variance component 2σ  since the variance parameter 2σ  is very small. 
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Figure 3-2:   Posterior density of the hyperparameters ϕ  and σ  
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Figure 3-3:   Normal Q-Q Plots for residual iv  and randomly generated data from platykurtic 
EP distribution  
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3.4 Small Area Model  

 
Consider a finite population with m  strata. Let the i th stratum be denoted by 

iU  with units labeled 1,...,
ii iNU U . Let iky  denote the characteristic of interest 

associated with the k th unit in the i th stratum ( 1,..., ;  1,...,ik N i m= = ). Let is  

denote a random sample of fixed size in  taken from the i th stratum using simple 

random sampling (SRS).  Without loss of generality, suppose 1( ,..., )
ii i ins U U=  for 

1,...,i m= , and the sample values for the characteristic of interest are denoted by 

1,...,
ii iny y ( 1,...,i m= ). We assume no nonsampling errors are involved so that once a 

sample is drawn, the value of the characteristic iky  is known without error. Assume 

that the iky  are binary, that is, 0iky =  or 1, 1,..., ;  1,...,ik n i m= = . Our goal is to 

estimate the small stratum (small area) proportions 1 /iN
i ik ikP y N== Σ , 1,  ...,  i m= . 

Similar designs have been considered by other researchers (e.g., Ghosh and Meeden, 

1986; 1997; Ghosh and Lahiri, 1987a, b; Nandram and Sedransk, 1993; Jiang and 

Lahiri, 2001; MacGibbon and Tomberlin, 1989).  

Under this design, in order to estimate the small area proportions iP , 

1,..., ,i m=  the following basic logistic mixed effect model is commonly used (e.g., 

see Jiang and Lahiri, 2006b): 

Level 1: | ~ Bernoulli( )
ind

ik i iy θ θ ;       1,..., ;  1,... ,ik n i m= =                        (3.1)  

Level 2: logit( )i i ivθ ′= +x β  ,                                                                        (3.2) 

where 2~ (0, )
iid

i vv N σ , 1,...,i m= .                                                                (3.3) 
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Here iθ , 1,...,i m=  are the model parameters for the expectation of iky , 

1,..., ;  1,...,ik n i m= = .  For convenience, we call the model (3.1)~(3.3) the Bernoulli-

Logit-Normal model. As demonstrated in Section 3.3, the normal assumption for the 

random effects iv  in (3.3) does not allow for the possibility of kurtosis. One can 

possibly assume a specific distribution from the exponential power family such as 

Laplace (double exponential) distribution. However, there is still a mis-specification 

risk for the distribution of the random effects. To improve robustness, instead of 

assuming the normal or some other specific non-normal distribution, we assume that 

the random effects iv  follow an unspecified distribution belonging to the exponential 

power distribution family with two parameters: 

 ~ (0, , ).
iid

i v vv EP σ ϕ  (3.4)                              

We call the proposed model (3.1)-(3.2)-(3.4) the Bernoulli-Logit-EP model. We 

assume the hyperparameters vσ  and vϕ  are both unknown. The strength of this 

model is that we use a class of probability distributions instead of a specific one and 

the underlying model will be determined by the data.  

The EP density has been considered by Fabrizi and Trivisano (2007) as one of 

their robust extensions to the Fay-Herriot model for continuous data. The idea of 

using a class of distributions instead of a specific one for model-based inference of 

finite population total can also be found in Li and Lahiri (2007), where a super-

population model was chosen adaptively from the well-known Box-Cox class of 

transformations. However, they did not consider a small area application, which is 

more complex because of the presence of random effects. 
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3.5 Bayesian Inference  

 
We are interested in estimating the finite small-area proportions iP , 

1,  ...,  i m= , based on the Bernoulli-Logit-EP model. Let is  and c
is  denote the set of 

sampled units and non-sampled units respectively, and let 

111 1 1{ ,..., ,..., ,..., }
ms n m mny y y y ′=y . The Bayes estimator of iP  is the mean of the 

posterior distribution of iP . We can write iP  as:  

 

( )
( )

1

1   

    (1- ) ,      

ci i
i k s ik ikk s

i

i i i i ins
i

i i i ins

P y y
N

n p N n p
N

f p f p

∈ ∈= Σ +Σ

⎡ ⎤= + −⎣ ⎦

= +

 (3.5)                               

where /i i if n N=  are the sampling rates and 1 if−  are the finite population 

corrections, 
i

i ik ik sp y n∈=∑  are the area level proportions based on the sample 

units only, and ( )
i

i iins ikk s N np y∉ −=∑  are the area level proportions based on the 

nonsampled units only.  Since the ip  are known given the sample, from (3.5), we can 

say that the prediction of iP  is equivalent to the prediction of insp  given the sample.  

The Bayes estimator of iP  is: 
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( ) ( )

( ) ( )

( ) ( )

( ) ( ) [ ]

( | ) 1 |

1               1 |

1               1 | , |               

               1 | ( | ) ,

c
i

c
i

i s i i i ins s

i i i ik sk s
i i

i i i ik i s sk s
i i

i i i i s i i s

E P f p f E p

f p f E y
N n

f p f E E y
N n

f p f E g E

θ

θ θ

∈

∈

= + −

= + −
−

⎡ ⎤= + − ⎣ ⎦−

= + − ≡

∑

∑

y y

y

y y

y y

(3.6) 

where exp( )
1 exp( )

i i
i

i i

v
v

θ
′ +

=
′+ +

x β
x β

. From (3.6), we can see that once ( | )i sE θ y  is estimated, 

it is straightforward to estimate ( | )i sE P y  if if  is known. We can also see that 

( )|i sE θ y  is a good approximation of ( | )i sE P y  if 0if ≈ .  

Further, the posterior variance of iP  is given by: 

 [ ] [ ]( | ) ( | , ) | ( | , ) | .i s i s i s i s i sV P V E P E V Pθ θ= +y y y y y  (3.7)                              

Since ( )( | , ) 1i s i i i i iE P f p fθ θ= + −y , and ( )1( | , ) 1 (1 )i s i i i i
i

V P f
N

θ θ θ= − −y , 

formula (3.7) can be further written as: 

( ) ( ) [ ]

( ) ( )

( ) [ ]

2

2 2

1( | ) 1 ( | ) 1 (1 ) |

1               1 ( | ) 1 ( | ) ( | ) ( | )

1 1               1 1 ( | ) ( | ) 1 ( | )

               

i s i i s i i i s
i

i i s i i s i s i s
i

i i i s i s i s
i i

V P f V f E
N

f V f E V E
N

f f V E E
N N

θ θ θ

θ θ θ θ

θ θ θ

= − + − −

⎡ ⎤= − + − − −⎣ ⎦

⎧ ⎫⎛ ⎞⎪ ⎪= − − − + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

≡

y y y

y y y y

y y y

[ ]( | ),  ( | ) ,i i s i sh V Eθ θy y

  (3.8) 

Formula (3.8) indicates that ( | )i sV P y  is a linear function of ( | )i sV θ y  

and ( | )i sE θ y . Once ( | )i sV θ y  and ( | )i sE θ y  are obtained, it is straightforward to 
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obtain ( | )i sV P y  if if  and iN  are known. We can also see from (3.8) that  

( ) ( )| |i s i sV P V θ≈y y  if 0if ≈ . 

 Once ( | )i sE P y  and ( | )i sV P y  are obtained, the posterior density of iP  can 

be approximated by the normal density with mean ( | )i sE P y  and ( | )i sV P y . That is: 

 [ ]| ~ ( | ),  ( | ) .
ind

i s i s i sP N E P V Py y y  (3.9) 

 It is easy to make any inference on iP  such as posterior mean, posterior variance, 

credible intervals, using the posterior density of iP .  

In this chapter, we consider the case when 0if ≈  which occurs often when 

there are many small areas. As we demonstrated earlier, the inference on iP  is 

equivalent to the inference on iθ  if 0if ≈ . As a result, the Bayesian inference will be 

focused on the posterior distribution: 

1 1( ,..., | ) ( ,..., , , , | )
v v

m s m v v s v vf f d d d
σ ϕ

θ θ θ θ σ ϕ σ ϕ= ∫ ∫ ∫β
y β y β . 

Based on the small area models described in Section 3.4, the joint posterior 

distribution 1( ,..., , , , | )m v v sf θ θ σ ϕβ y  cannot be expressed in a single closed form; 

hence an approximation is needed. However, the joint posterior distribution can be 

simulated using a MCMC method, such as Gibbs sampling or the Metropolis-

Hastings algorithm. Following Malec et al. (1997), we will make inference about iθ  

through HB approach and implement the proposed model using the MCMC 

technique. The posterior mean ( )|i sE θ y  approximates the HB point estimate of iP  

and the posterior variance of ( )|i sV θ y  is used as a measure of variability.  
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The HB approach requires prior assumptions about the hyperparameters 

,  , vσβ and vϕ . Assume they are independent, that is, ( , , ) ( ) ( ) ( )v v v vf f f fσ ϕ σ ϕ=β β . 

We draw samples ( ) ( ) ( ) ( ) ( )
1{ ,..., , , , ; 1,..., }d d d d d

m v v d Tθ θ σ ϕ =β  from the joint posterior 

distributions 1( ,..., , , , | )m v v sf yθ θ σ ϕβ  using the Metropolis-Hastings algorithm 

within the Gibbs sampler. Details of the algorithm, which draws random samples 

based on the full conditional distributions of the unknown parameters starting with 

one or multiple sets of initial values, are given by Robert and Casella (1999) and 

Chen, Shao, and Ibraham (2000). 

 

3.6 Model Evaluation and Data Analysis 

 
In this section, we evaluate the robustness of our proposed model using both 

simulated data and real data.  

 

 3.6.1 Simulated Data Analysis  

 
The aim is to compare the Bernoulli-Logit-EP and Bernoulli-Logit-Normal 

models with the random effects iv  generated under different distributions.  In this 

simulation exercise, we would like to investigate the following issues: 

1) When iv  are non-normal, whether the Bernoulli-Logit-EP model is more 

effective than the Bernoulli-Logit-Normal model; 

 2) When iv  are actually normal, what is the effect of overparameterization by 

the Bernoulli-Logit-EP model. 
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To generate the data, we set 5in =  and 100m = . We also set four different 

cases of  σ  and ϕ  by varying the values:  

i) 2 0.01vσ =  and 0.1 ; 

ii) 0.2vϕ = (Platykurtic) and 0.5 (Normal).  

For each of the four combinations, we generated one sample dataset from the models: 

logit( )i ivθ μ= + , ~ (0, , ),i v vv EP σ ϕ  1,...,i m=  and ~ ( )ij iy Bernoulli P , 1,..., ij n= , 

1,...,i m= . Without loss of generality, we set 0μ = .  

To implement the HB modeling using the sampled data, we assume that no 

auxiliary variables are available, i.e., i μ′ =x β ; we also specify the following prior 

assumptions for individual parameters:  i) Flat prior for μ , i.e., ( )   1f μ ∝ ; ii) 

~ (0,  )v Uniform Lσ , and  iii) ~ (0,  1)v Uniformϕ . 

Using the data from each sample as input, we computed HB estimates for the 

two models using WinBUGS. For each WinBUGS run, three independent chains 

were used. For each chain, burn-ins of 1,000 samples were produced, with 4,000 

samples after burn-in. The resultant 12,000 MCMC samples after burn-in were then 

used to compute the posterior mean and percentiles for each HB model based on each 

sample dataset. The potential scale reduction factor R̂  was used as the primary 

measure for convergence (see Gelman and Rubin, 1992). 

Let HB
iθ  denote an HB estimator of iθ , and let ,

HB
i qθ  denote the q th percentile 

of the posterior distribution of iθ . To evaluate the two HB models, the following two 

evaluation statistics for each HB estimator are calculated: 
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• Average absolute deviation (AAD), 1
1 m HB

i iiAAD
m

θ θ== −∑  

• Average absolute relative deviation (AARD), 

1
1 m HB

i i iiAARD
m

θ θ θ== −∑  

Table 3-1 reports the ratios of AAD and AARD for the HB estimates based on 

the model Bernoulli-Logit-Normal over those based on the alternative model.  When 

the random effects iv  were generated from the EP distribution with 0.2ϕ = (see the 

first two rows in the table), the Bernoulli-Logit-Normal model gives poorer results 

than the Bernoulli-Logit-EP model. For example, the loss is over 13 percent in terms 

of both SRASRD and AARD for the first case.  When the random effects iv  were 

generated from normal distributions (see the last two rows in the table), the Bernoulli-

Logit-EP model gives fair results compared with the Bernoulli-Logit-Normal model.  

Overall, the results indicate that the effect of overparameterization is not worrisome 

in this example and that the Bernoulli-Logit-EP model is robust. The table also shows 

that when 2
vσ  is larger, the results from the two models are closer, which means that 

the results are less sensitive to the kurtosis measure.  

Table 3-1:  Ratios of AAD and AARD for the two models (Normal/EP) using 

simulated data 

Data generating distribution AAD AARD 

( )0,  0.1,  0.2v vEP μ σ ϕ= = =  1.131 1.132 

( )0,  0.33,  0.2v vEP μ σ ϕ= = =  1.029 1.027 

( )20,  0.01vN μ σ= =  
0.992 0.992 

( )20,  0.11vN μ σ= =  
0.996 0.996 
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3.6.2 Real Data Analysis 

 
In this subsection, we first conduct data analysis using samples drawn from a 

real finite population, the 2002 Natality public-use data file. We then conduct the 

analysis based on two real datasets: the well-known baseball data (Efron and Morris 

1975) and the 1994 Missouri turkey hunting data (He and Sun, 1998). 

1. Sample Data Drawn from the 2002 Natality Population 

 
We revisit the birthweight problem using the 2002 Natality public-use data as 

described in Section 3.3. Instead of running a simulation, we drew 6R =  sets of 

independent samples of size 4,526n =  using simple random sampling within states 

from the finite population. The state level sample sizes in  ranged from 7 (for small 

states such as Vermont) to 690 (for California). The sample sizes are the same as the 

ones used in Chapter 2. The sampling fractions if  varied from 0.0007 to 0.0046 

which are approximatly equal to zero, so the fpc can be ignored. We did not consider 

the stratified SRS design for this analysis because it requires more complex models 

than the models studied in this chapter. 

In this analysis, we want to compare the performance of the two models: 

Bernoulli-Logit-EP and Bernoulli-Logit-Normal. In addition, in order to further 

motivate the preference of the proposed unit-level mixed model over the area level 

models studied in Chapter 2 for our problem, we would like to compare the 

performance of the proposed Bernoulli-Logit-EP model with the two area level 
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models, normal-logistic model with unknown variance (M3) and beta-logistic model 

(M4) , studied in Chapter 2 as well. 

Using data from each sample, we computed the HB estimates for all the four 

models incorporating the two auxiliary variables used in Section 3.3. The prior 

distributions on the hyperparameters are identical to the ones used in Section 3.6.1.  

 To compare the four HB models, the two evaluation statistics, described in 

Section 3.6.1, are again computed for each HB estimator. Table 3-2 reports the ratios 

of the evaluation statistics for Bernoulli-Logit-Normal, M3, and M4 to Bernoulli-

Logit-EP. We do not report the simulation errors in this table because we only 

considered six replicate samples. The numbers in the table consistently show that the 

Bernoulli-Logit-EP model works better than the Bernoulli-Logit-Normal model in 

terms of the four evaluation statistics. The table also shows that the two unit level 

models perform better than the two area level models.  The performance of the beta-

logistic model (M4) is not good especially with the sixth sample. This is consistent 

with what we obtained in Chapter 2 under the SRS design. As we demonstrated in 

Section 3-3, the random effects iv  for this dataset are not normally distributed. 

Therefore, the analysis result in this subsection is consistent with what we found 

using purely simulated data in Section 3.6.1.  
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Table 3-2:  Ratio of the two summary statistics for three HB estimators over those for 

the HB estimator based on the Bernoulli-Logit-EP model using the Natality data  

Sample Model AAD AARD 
1 Bernoulli-Logit-Normal 1.016 1.016 
1 normal-logistic (M3) 1.037 1.030 
1 beta-logistic (M4) 1.477 1.519 
2 Bernoulli-Logit-Normal 1.045 1.040 
2 normal-logistic (M3) 1.103 1.078 
2 beta-logistic (M4) 1.320 1.254 
3 Bernoulli-Logit-Normal 1.021 1.012 
3 normal-logistic (M3) 1.142 1.130 
3 beta-logistic (M4) 1.879 1.973 
4 Bernoulli-Logit-Normal 1.023 1.016 
4 normal-logistic (M3) 1.018 1.015 
4 beta-logistic (M4) 1.719 1.713 
5 Bernoulli-Logit-Normal 1.076 1.076 
5 normal-logistic (M3) 1.153 1.147 
5 beta-logistic (M4) 1.525 1.496 
6 Bernoulli-Logit-Normal 1.014 1.013 
6 normal-logistic (M3) 1.037 1.028 
6 beta-logistic (M4) 2.396 2.382 

Note: The denominators of the ratios are the corresponding estimates from the Bernoulli-Logit-EP 

model.  

 

2. Baseball Data 

 
In this subsection, we revisit the well-known baseball data given in Efron and 

Morris (1975). This dataset has been analyzed by several researchers in the past, 

including Efron and Morris (1975), Morris (1983), Gelman et al. (2004), Datta and 

Lahiri (2000), Rao (2003), Jiang and Lahiri (2006a), among others. The dataset 

contains the batting averages of 18 major league players through their first 45 official 

at bats of the 1970 season ( ip ) and the true batting averages of all the 18 players for 

the rest of the 1970 season ( insp ).  Efron and Morris (1975) used this dataset to 
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demonstrate the performance of their empirical Bayes and limited translation 

empirical Bayes estimators derived using an exchangeable prior in the presence of an 

outlying observation. They considered the problem of predicting the batting average 

for all the players for the remainder of the 1970 season based on their batting 

averages for the first 45 at bats.  Gelman et al. (2004) provided additional data for this 

estimation problem and included important auxiliary data like the batting average of 

each player in the previous (1969) season. We consider the same estimation problem 

as Efron and Morris (1975) did. That is, we want to predict insp  using the sampled 

data.   

The sample size 45in =  is the number of times at bats for each player, 

1,...,18.i =  We computed the HB estimates for insp  using the two models based on 

the baseball data: Bernoulli-Logit-EP and Bernoulli-Logit-Normal. The previous 

season batting average was used as a covariate. From (3.6) and (3.8), we can derive  

that ( ) ( )| |ins s i sE p y E yθ=  and ( ) ( )| |ins s i sV p y V yθ= . 

For each player, Figure 3-4 displays the true batting average for the rest of the 

1970 season (Ptrue) along with the sample proportion (DirectP) and the two different 

HB estimators (HBEP and HBNorm) in the increasing order of the previous season 

average. The figure shows that two HB estimates are very close to each other and 

performed much better than the direct estimates. Table 3-3 reports the two summary 

statistics for both models and it further confirms the closeness of the two HB 

estimators.  
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Figure 3-4:  HB estimates of the batting averages for the rest of the 1970 season  

 

Table 3-3:  Summary statistics for the two HB estimators using the baseball data  

Model AAD AARD 
Bernoulli-Logit-EP  0.0195 0.077 
Bernoulli-Logit-Normal  0.0198 0.079 

 

The true values of insp  are available for the baseball data. In order to 

investigate the nature of the random effects iv , we fitted the logistic regression model 

considered in Section 3.3 on insp  incorporating the previous season average at bats as 

the covariate. We then tested the normality of the residuals iv  using the Kolmogorov-

Smirnov (K-S) normality test and the normal Q-Q plot. The p − value of 0.676 from 

the K-S test concludes that iv  appear to be normal.  Figure 3-5 displays the normal 

Q-Q plot of the residuals iv . One player on the extreme left of the graph appears as 



 

 96 
 

an outlier. Excluding that outlier,  iv  look approximately normal. The posterior mean 

of the kurtosis parameter vϕ  estimated using the Bernoulli-Logit-EP model equals to 

0.506, further confirming the approximate normality of iv .  

The finding from this analysis is consistent with the simulated data analysis, 

that is, when the random effects iv  are actually normal, the over-parameterization is 

not worrisome.  
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Figure 3-5:  Q-Q plot of the residuals iv  based on Baseball data 
 
 

3. Missouri Turkey Hunting Survey Data 

 
The Missouri Turkey Hunting Survey (MTHS) is a bi-annual postseason mail 

survey conducted by the Missouri Department of Conservation to monitor and aid in 

the regulation of the turkey hunting season. Questionnaires are mailed to a random 

sample of permit buyers after the turkey hunting season. The MTHS provides 
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information concerning the number of turkeys harvested by hunters on each day of 

the hunting season and the total number of trips made to the counties by these hunters 

on each hunting day. The success rates are then obtained from this information.  The 

1994 spring season data was analyzed by He and Sun (1998). Let in  be the total 

number of trips made by the sampled hunters to county i , iy  be the number of 

successful trips among the sample of in , and iP  be the probability of success for each 

trip in county i .  The problem was to estimate the county specific success rates iθ  for 

all counties in Missouri.  He and Sun (1998) provided HB estimates of success rates 

for all the 114 counties in Missouri using a simple Binomial-Beta model without 

covariates. With the 1996 spring season data, He and Sun (2000) estimated the county 

level success rates using a hierarchical Bayesian generalized linear model with spatial 

correlations.  

We revisit the 1994 spring season data analyzed by He and Sun (1998) in this 

subsection. We excluded three counties with zero sample size from our data analysis 

for simplicity. They can be predicted from the same model using the parameters 

estimated from the rest of the data. The sample sizes for the other 111 counties varied 

from 2 to 802. The total numbers of trips iN  made by the population of hunters were 

unknown, so we assumed the sampling fractions 0if ≈ . In addition, there were no 

covariates available for the data analysis. We computed the HB estimates for the 111 

counties using the models Bernoulli-Logit-EP and Bernoulli-Logit-Normal under the 

same prior assumptions considered in the earlier sections. 

 Figure 3-6a displays the two HB estimates (HBEP and HBNorm) along with 

the direct sample estimates (DirectP) sorted by the sample size in the increasing 
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order. Since we do not know the true proportions iP  for this dataset, we can only 

compare the different estimates. The two HB estimates appear close to each other for 

many of the counties, with HBEP being a little closer to the direct estimates than the 

HBNorm. The graph clearly shows that when the sample size is small, the deviation 

between the direct estimates and the HB estimates is large.  But as the sample size 

gets larger, the deviation is smaller. For the county with the largest sample size 

( 802in = ), all the three estimates become the same.  

To see the differences between the three estimators more clearly, we plotted 

the ratio of the DirectP and HBNorm to HBEP in the increasing order of the sample 

size (see Figure 3-6b). The plot confirms that when the sample size is small, the 

performance of the direct estimates is very variable.  It also shows that except for a 

few counties, the two HB estimators perform more or less the same. 
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Figure 3-6a:  Estimation of the Turkey hunting success rates 
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Figure 3-6b:  Ratios of DirectP and HBNorm over HBEP of the hunting success rates 
 
 

Figure 3-7 exhibits the standard errors/posterior standard errors associated 

with the estimates displayed in Figure 3-6a. The standard errors are decreasing as the 

sample sizes are increasing. The direct method produces extremely high standard 

errors for small counties. It also produces zero standard errors when the point 

estimates are zeros. The standard errors of the direct estimates are consistently larger 

than the standard errors of the two HB estimates. The standard errors of the three 

different estimates are getting closer as the sample sizes are increasing. We can see 

some differences between the posterior standard errors of the two HB estimates, but 

no special patterns are observed.  
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Figure 3-7:  Standard errors of the direct estimates and posterior standard errors of the HB 
estimates of the Turkey hunting success rates 
 
 

Figure 3-8 displays the posterior density plots for the hyperparameters vσ  and 

vϕ . The upper two panels present the standard deviation σ  and the kurtosis vϕ  from 

the Bernoulli-Logit-EP model respectively.  The lower panel presents vσ  from the 

Bernoulli-Logit-Normal model. Both of the plots on the left show bell shapes for vσ , 

although the estimates from the EP model appear to have a more sharp shape than the 

other one. The posterior density plot for vϕ  shows that the mode of vϕ  is around 

0.05. The posterior mean of the kurtosis parameter vϕ  is around 0.2. This evidence 

indicates that the random effects iv  are platykurtic and therefore the Bernoulli-Logit-

EP model may be a more appropriate model to fit this data. 
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Figure 3-8:  Posterior density plots of the hyperparameters vσ  and vϕ  
 

3.7 Concluding Remarks 

 

The proposed Bernoulli-Logit-EP model extends the usual logistic regression 

mixed model by assuming a class of probability distributions in modeling the 
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distribution of random effects. We considered an adaptive approach in which the 

shape parameter ( vϕ ) is determined by the survey data. The parameter vϕ  is 0.5 

under normality.  

Our empirical data analyses based on both simulated data and real survey data 

demonstrate the robustness of the Bernoulli-Logit-EP model and suggested that the 

proposed model works efficiently to accommodate potential kurtosis and zero 

problems. To avoid computation burden, we only generated a few samples in our 

evaluation study based on simulated data. So the evaluation results are limited. 

In this chapter, we proposed the new model for a simple sampling design from 

a finite population. The proposed model can be extended to accommodate multi-stage 

sampling designs. 
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Appendix for Chapter 3 

 

Appendix A:  WinBUGS code for the two HB models 

 
A1. Code for the Bernoulli-Logit-EP model: 
 
model  
{ 
for ( i in 1:m)   
{ 
yobs[i]~ dbin(theta[i], SAMPn[i]) 
logit(theta[i])<-inprod(beta[], X[i, ])+v[i]         
} 
                         
# trick for specifying EP priors for v[i] 
C<-10000 
for (i in 1:m) 
{ 
zero[i]<-0 
v[i]~dunif(-10000,10000) 
phi[i]<- -(log(c1)-log(sigmav) 
         -pow(abs(sqrt(c0)*v[i]/sigmav),1/psi)+C 
zero[i]~dpois(phi[i]) 
} 
c0<-exp(loggam(3*psi))/exp(loggam(psi)) 
c1<-sqrt(c0)/(2*psi*exp(loggam(psi))) 
# end of trick 
for ( i in 1:p)   
{ 
beta[i]~dflat() 
}              
psi~dunif(0,1) 
sigmav~dunif(0, 100)        
sig2v<-pow(sigmav, 2) 
} 
           
 
A2. Code for the Bernoulli-Logit-Normal model: 

 

model  
{ 
for ( i in 1:m)   
{ 
yobs[i]~ dbin(theta[i], SAMPn[i]) 
logit(theta[i])<-inprod(beta[], X[i, ])+v[i]  
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v[i]~dnorm(0, precisonv) 
}        
for ( i in 1:p)   
{ 
beta[i]~dflat() 
} 
precisonv<-1/sig2v   
sig2v<-pow(sigmav, 2) 
sigmav~dunif(0, 100) 
} 
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Chapter 4:  Bayesian Inference in Hierarchical Bayesian 

Models Using Approximate Methods 

4.1 Introduction 

 
We have implemented the Bayesian inference for our proposed hierarchical 

models using a fully Bayesian method by means of MCMC. However, some 

researchers have suggested alternative approximate methods such as Laplace’s 

method and Gauss-Hermite Quadrature for Bayesian inferences. Applications of these 

methods were reviewed in Section 1.5. A well-known example of the use of 

Laplace’s method is reported by Kass and Steffey (1989), who considered both first- 

and second-order Laplace approximations to estimate the posterior mean and 

posterior variance of a parameter of interest based on general conditionally 

independent hierarchical models.  Even though Laplace’s approximation can offer 

simple interpretations of the Bayesian methodology, the method suffers the 

deficiency that it is not very accurate when the sample size of the data is small. The 

Monte Carlo integration method is another alternative for Bayesian inference. 

Further, Gauss-Hermite Quadrature is also often used for numerical integration in 

statistics because of its relation to Gaussian densities (Liu and Pierce, 1994). To see 

how these methods perform for small area estimation, we study them using the 

proposed hierarchical Bayesian model from Chapter 3. First, we need to develop the 

formulas involved.  

This chapter is organized as follows: The proposed hierarchical Bayesian 

model is represented in Section 4.2. We review different integration methods in 
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Section 4.3. In Section 4.4, we make Bayesian inference and conduct data analysis 

using simulated data assuming that all the hyperparameters are known.  Section 4.5 

presents the Bayesian inference when all the hyperparameters are unknown.  The 

chapter ends with some concluding remarks in Section 4.6.  

4.2 Small Area Model 

 
Assume that a sample is drawn from a finite population using a stratified 

simple random sampling design. Let iky  denote the binary response for a 

characteristic of interest for unit k  in area i , where 1,..., ik n= ,  1,...,i m= . In order 

to accommodate kurtosis and zero problems, we apply the following robust unit level 

model — the Bernoulli-Logit-EP model defined in Chapter 3 — to estimate the area 

level finite population proportions 1 /iN
i ik ikP y N==∑ , 1,...,i m= : 

Level 1: | ~ Bernoulli( )
ind

ik i iy θ θ ;     1,..., ik n= ;  1,..., ,i m=                       (4.1) 

Level 2: logit( )i i ivθ ′= +x β  ,  where  ~ (0, , )
iid

i v vv EP σ ϕ ,  1,..., .i m=        (4.2)                              

The density function of  iv  is defined as: 

 
1/

01( ) exp ,
v

i
EP i

v v

c vcf v
ϕ

σ σ

⎧ ⎫
⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

 (4.3)                               

where v Rσ +∈ , (0,1]vϕ ∈ , 0
(3 )
( )

v

v
c ϕ

ϕ
Γ

=
Γ

,  0
1 2 ( )v v

c
c

ϕ ϕ
=

Γ
. 
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For the special case 0.5vϕ = , i.e., when the random effects iv  are i.i.d. normal, the 

model reduces to the mixed logistic regression model that has been studied in the 

literature (e.g., see Jiang and Lahiri, 2001).  

The parameters of interest are the finite small area proportions iP , 1,...,i m= . 

As we demonstrated in Chapter 3, inference about iP  is equivalent to inference about 

iθ  if 0if ≈ . We will focus on the inferences about iθ , 1,...,i m= . Bayesian inference 

for iθ ’s is based on the following posterior distribution: 

1 1( ,..., | ) ( ,..., , , , | )
v v

m s m v v s v vf f d d d
σ ϕ

θ θ θ θ σ ϕ σ ϕ= ∫ ∫ ∫β
y β y β , 

which cannot be expressed in a simple closed form. We will explore different 

approximate methods to estimate the posterior mean and posterior variances of the 

iθ ’s. 

 

4.3 Review of Various Numerical Integration Methods  

 
Bayesian inference based on the posterior distribution of iθ  involves complex 

multi-dimensional integrations. Different techniques have been developed to 

approximate integrals in the literature.  Among those, we review the first- and 

second-order Laplace approximations, Gauss-Hermite Quadrature, and Monte Carlo 

integration in this section.  
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First-order Laplace approximation - Assume ( )h i  is a smooth function of  

a d − dimensional parameter x  with ( )h− i  having a maximum at x̂ . The Laplace 

method approximates an integral of the form  

 [ ]( ) exp ( )I b x dxnh x= −∫  (4.4)                               

by expanding functions ( )h i  and ( )b i  around x̂ . The factor [ ]exp ( )nh x−  in the 

integrand is approximated by a function proportional to a normal density determined 

by the second-order Taylor series approximation to function ( )h i . When integrated 

against this normal density, the term of order 1/ 2( )O n−  in the expansions of ( )b i  and 

( )h i , which are odd functions of ˆx x− , vanish and the integral satisfies  

 [ ]1/2/2 12ˆ ˆ( )(2 / ) det exp ( ),( )ˆ( )dI b x n O nnh xD h xπ
− −⎡ ⎤= +−⎣ ⎦  (4.5)                       

where 2 ˆ( )D h x  is the Hessian matrix of ( )h i  at x̂  and n  is the sample size. ( )aD h x  

denotes the a -th derivative of function ( )h x , 1a ≥ .  

Let sy  denote the observed data. If the posterior density of x , ( | )sf x y ,  is 

proportional to exp[ ( )]nh x− , then the posterior expectation of ( )b x , 

 
( ) ( | ) ( ) exp[ ( )]

[ ( ) | ]
( | ) exp[ ( )]

s
s

s

b x f x dx b x nh x dx
E b x

f x dx nh x dx

−
= =

−
∫ ∫
∫ ∫

y
y

y
 (4.6)                             

may be approximated by applying the first-order Laplace method (4.5) to both the 

denominator and numerator to yield the first-order expansion  

 1ˆ[ ( ) | ] ( )[1 ( )].sE b x b x O n−= +y  (4.7)                               

To derive the posterior variance of ( )b x , we need the second-order Laplace 

approximation to [ ( ) | ]sE b x y  and 2[ ( ) | ]sE b x y , which will be introduced in the next 
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subsection. Kass, Tierney and Kadane (1988) obtained the first-order approximation 

to the posterior variance of ( )b x  as follows: 

 2 1 1ˆ ˆ ˆ[ ( ) | ] [ ( )] [ ( )] [ ( )][1 ( )].sV b x Db x nD h x Db x O n− −′= +y  (4.8)  

                           

Second-order Laplace approximation - For a one-dimensional parameter x , 

a second-order Laplace approximation to the integration given in (4.4) is: 

[ ]

[ ]{ {

}}

1/2 1 22 2

2 2 332 3 2

2 24 2

( ) exp ( )

1ˆ 2 exp ]ˆ( ) ( ) ˆˆ [ ( )( ) ˆ( )2
5ˆ ˆ ˆ     [ ( )][ ( )] ( )ˆ ˆ ˆ( ) ( ) ( )12

1 ˆ     ( ) ( ).ˆ( ) ˆ( )4

I b x dxnh x

nh x b x D b xD h x D h xn

Db x D h x b xD h x D h x D h x

b x O nD h x D h x

π
− −

− −

−

= −

⎡ ⎤= −− + ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤− +⎡ ⎤⎣ ⎦ ⎣ ⎦

∫

     (4.9) 

The posterior expectation of ( )b x  given in (4.6) may be approximated by (4.9) to 

yield the second-order expansion: 

 
[ ]

1 22

2 32
2

ˆ[ ( )]ˆ( )ˆ( ) | ( )
2

ˆ ˆ[ ( )][ ( )]ˆ( )
                ( ).

2

s
D b xD h x

b xE b x
n

D h x Db xD h x
O n

n

−

−
−

⎡ ⎤⎣ ⎦= +

⎡ ⎤⎣ ⎦− +

y
 (4.10)                              

The approximation given by (4.10) is called the standard form in the literature. Result 

(4.10) is used readily to approximate the expectation for a general function ( )b x .  

To obtain a second-order Laplace approximation to the posterior variance 

using the standard form, fourth and fifth derivatives of the log-likelihood of ( )b x  

would be required (Kass, Tierney and Kadane, 1988). We do not consider that 

approach here. 
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For a positive function, Tierney and Kadane (1986) obtained a second-order 

approximation to the posterior mean and variance using an alternative approach, 

which is described as follows. Assume ( )b x  is a positive function. Rewrite the 

posterior mean of ( )b x , [ ( ) | ]sE b x y , as follows: 

 [ ]
*exp ( )

( ) | ,
exp ( )

s
dxnL x

E b x
dxnL x

⎡ ⎤−⎣ ⎦=
⎡ ⎤−⎣ ⎦

∫
∫

y  (4.11)                               

where [ ]1 ( | )( ) log sf xL x
n

= − y  and [ ]* 1( ) log ( )( )L x L xb x
n

= − + . Assume that x̂  and 

*x̂  maximize ( )L x−  and *( )L x− , respectively.  Let 
12 ( )D L x
−

⎡ ⎤= ⎣ ⎦Σ  and 

1* 2 * *ˆ( )D L x
−

⎡ ⎤= ⎣ ⎦Σ .  Tierney and Kadane (1986) obtained the following second-

order approximation to [ ( ) | ]sE b x y  using result (4.5): 

 
( )
( ) { }

1/2*
2* *

det
ˆ ˆ[ ( ) | ] exp [1 ( )].ˆ ˆ( ) ( )

detsE b x n O nL x L x −
⎡ ⎤
⎢ ⎥ ⎡ ⎤= − +−⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

Σ
y

Σ
 (4.12)                     

The form of approximation given by (4.12) is called the fully exponential form.   

The second-order approximation to the posterior variance of ( )b x  can be 

obtained as follows:  

 { }2 2 2[ ( ) | ] [ ( ) | ] [ ( ) | ] [1 ( )],s s sV b x E b x E b x O n−= − +y y y  (4.13)                          

where both expectation terms in (4.13) can be obtained by applying (4.12).  

For more details, we refer to Kass, Tierney and Kadane (1988), and Kass and 

Steffey (1989). 
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Gauss-Hermite Quadrature (GHQ) - The GHQ formula is used to 

approximate an integral of the form 
2

( ) xb x e dx
+∞ −
−∞∫  by the formula: 

 
2

1
( ) ( ) ,

T
x

t t t
t

b x e dx w b x R
+∞ −
−∞

=
= +∑∫  (4.14)                               

where tx  are zeros of the associated Hermite polynomial 

2 2
( ) ( 1) [ ( )]T x T x

TH x e D e−= −  and tw  are weights defined by  
1

2 2
1

2 ( !)
[ ( )]

T

t
T t

Tw
T H x

π−

−
= . 

Moreover, the remainder function has the form 2! [ ( )]
2 (2 !)

T
T T

TR D b
T
π ξ=  for some ξ , 

so that if ( )b x  is a polynomial of degree 2 1T − , the remainder will be zero and the 

approximation becomes exact. Note that the values of tx  and tw  do not depend on 

the function ( )b i . Their values for specified value of T  are given by Stroud and 

Secrest (1966, Table 5, p. 218-251). 

Consider the family of Hermite formulas: 

 
2

1
( ) ( ) ( ) .

T
x

T Tt Tt
t

H b w b x b x e dx
∞ −
−∞

=
= ≈∑ ∫  (4.15)                               

If for all sufficiently large values of x , ( )b x  satisfies the inequality 
2

1( ) ,
xeb x

x ρ+≤  

for some 0ρ > , then 
2

lim ( ) ( ) x
T

T
H b b x e dx

∞ −
−∞→∞

= ∫ . See Davis and Rabinowitz 

(1967, p. 96-98).  
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Monte Carlo integration method - Monte Carlo integration methods are 

algorithms for approximating any definite integrals, usually multidimensional ones. 

The usual algorithms evaluate the integrand on a regular grid. Monte Carlo methods 

randomly choose the points at which the integrand is evaluated. The traditional Monte 

Carlo algorithm distributes the evaluation points uniformly over the integration 

region. Adaptive algorithms such as VEGAS (Lepage, 1980) and MISER (Press and 

Farrar, 1990) use importance sampling and stratified sampling techniques to reduce 

the Monte Carlo error. 

 

4.4 Bayesian Inference When ( ),  ,  v vσ ϕ=λ β  is Known   

 
The goal of this chapter is to make inference about iθ , i.e., compute the 

posterior mean and posterior variance of iθ  based on model (4.1)-(4.2), by applying 

the techniques reviewed in Section 4.3. We start with the simple case, in which the 

hyperparameters ( ),  ,  v vσ ϕ=λ β  are assumed known.  

Let ( ) logit( )i i ia θ θ ′= − x β . The posterior distribution of iθ  conditioning on 

sy  and λ  can be derived as follows: 

1 1(1 )

1/
1 0

( | , ) (1 ) ( | )

( )                  (1 ) exp
(1 )

n ni iik ikk k

v
i i i

y y
i s i ii

y n y i
ii

v i i v

f f

c c a
ϕ

θ θ θ θ

θθ θ
σ θ θ σ

= = −

−

∑ ∑∝ −

⎡ ⎤
⎢ ⎥= − −

− ⎢ ⎥
⎣ ⎦

y λ λ

    

                   
1/(2 )

1 1/11 0
1/

(1 ) exp .  ( )
v

i vi i

v

y n y
ii i

v v

cc
a

ϕ
ϕ

ϕ
θ θ θ

σ σ
− − − ⎡ ⎤

= − ⎢ ⎥−
⎢ ⎥⎣ ⎦

             (4.16) 
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Thus, the posterior mean of iθ , also denoted as the best predictor (BP) of iθ , is 

expressed as follows: 

 
1/(2 )

1/1 0
1/

1/(2 )
1 1/1 0

1/

( | , )
( | , )

( | , )

(1 ) exp ( )

     .

(1 ) exp ( )

v
i vi i

v

v
i vi i

v

i i s iBP
i i s

i s i

y n y
i ii i

v

y n y
i ii i

v

f d
E

f d

c da

c da

ϕ
ϕ

ϕ

ϕ
ϕ

ϕ

θ θ θ
θ θ

θ θ

θ θ θθ
σ

θ θ θθ
σ

− −

− − −

= =

⎡ ⎤
− ⎢ ⎥−

⎢ ⎥⎣ ⎦=
⎡ ⎤

− ⎢ ⎥−
⎢ ⎥⎣ ⎦

∫
∫

∫

∫

y λ
y λ

y λ

 (4.17) 

The posterior variance of iθ   is expressed as:                                                

 

[ ]

( )

22

2 2

( | , )( | , ) ( | , )

( | , )
                  .

( | , )

i si s i s

i i s i BP
i

i s i

EV E

f d

f d

θθ θ

θ θ θ
θ

θ θ

= −

= −∫
∫

y λy λ y λ

y λ

y λ

 (4.18) 

The first and second moments of iθ , ( | , )i sE θ y λ  and 2( | , )i sE θ y λ , can be 

obtained using the same approach.  Since the integrals involved in both moments 

cannot be expressed in explicit form, they have to be approximated.  To estimate 

( | , )i sE θ y λ  and ( | , )i sV θ y λ , we consider the four methods reviewed in Section 4.3.  

 

4.4.1 Approximation to the Posterior Mean and Variance of iθ   

 
We apply four different methods to approximate the posterior mean 

( | , )i sE θ y λ  and the posterior variance ( | , )i sV θ y λ , starting with the first-order 

Laplace approximation.  
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First-order Laplace approximation (Method 1): 

 
Rewrite (4.17) in the form of (4.4) as:  

 
[ ]

[ ]
( )( ) exp

( | , ) ,
( )exp
i ii i

i s
i i i

n hb d
E

n h d

θθ θ
θ

θ θ

−
=

−
∫
∫

y λ  (4.19)                              

where ( )i ib θ θ= , and  

           
1/(2 )

1/0
1/

1( ) ( 1) log( ) ( 1) log(1 ) ( ) .
v

v

v
i i i i i i i

i v

c
h y n y a

n

ϕ
ϕ

ϕθ θ θ θ
σ

⎧ ⎫⎪ ⎪= − − + − − − −⎨ ⎬
⎪ ⎪⎩ ⎭

(4.20) 

Applying (4.7), we get the first-order Laplace approximation, denoted as LP1, to 

( )| ,i sE θ y λ  as follows: 

 1 1ˆˆ ( | , ) ( ),LP
i s i iE O nθ θ −= +y λ  (4.21)                              

where îθ  is the value which maximizes the function ( )ih θ−  defined by (4.20).  

To find îθ , we need to solve the equation: ( ) 0iDh θ = . That is:  

 [ ]1/ 11/(2 ) 1/
0

1/
( 2) 1( ) [ ( )]

0
(1 )

vv v

v

i i ii i v v

v v i i i

n yc a sign a

n

ϕϕ ϕ

ϕ
θθ θ ϕ σ

ϕ σ θ θ

− − − ++
=

−
,             (4.22) 

where ( )sign ⋅  is the sign function defined by: 

,   if  0  
( )

0,   if 0

x x
xsign x

x

⎧ ≠⎪= ⎨
⎪ =⎩

. 

Note that the function ( )ia θ  is not differentiable at the point iθ  when ( ) 0ia θ = . 

Equation (4.22) is equivalent to: 

[ ]1/ 11/(2 ) 1/
0 ( 2) 1( ) [ ( )] 0vv v i i ii i v v n yc a sign aϕϕ ϕ θθ θ ϕ σ− − − ++ = ,            (4.23) 
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which has to be solved using a numerical method.  Once the solution of equation 

(4.23) is obtained, substitute it into (4.21), to give the first-order Laplace 

approximation 1ˆ ( | , )LP
i sE θ y λ . 

  Applying result (4.8), we can get the first-order Laplace approximation to the 

posterior variance of  iP   as follows:  

 
12

1 2
ˆ( )ˆ ( | , ) ( ),iLP

i s i
i

D h
V O n

n
θ

θ
−

−
⎡ ⎤⎣ ⎦= +y λ  (4.24)                              

where    

1/ 21/(2 ) 1/2
02

1/2 2 2

ˆ ˆ ˆ(1 ) ( ) ( 2) (1 )
ˆ( ) .

ˆ ˆ(1 )

vv v

v

v i v v i i i
i

v v i i i

c a n
D h

n

ϕϕ ϕ

ϕ

ϕ θ ϕ σ θ θ
θ

ϕ σ θ θ

−
− + − −

=
−

          (4.25)  

   Note that formula (4.25) gives the exact second derivative of ( )ih θ  at îθ . It 

can be further simplified using asymptotic theory as follows:                            

 2 11ˆ( ) ( ).ˆ ˆ(1 )i i
i i

D h O nθ
θ θ

−= +
−

 (4.26)       

Substitute (4.26) into (4.24), we can get the simplified version of the first-order 

Laplace approximation to ( | , )i sV θ y λ  as below: 

 1. 2ˆ ˆ(1 )ˆ ( | , ) ( ).LP s i i
i s i

i
V O n

n
θ θθ −−

= +y λ  (4.27)                               

From (4.21) and (4.27), the estimated posterior mean and posterior variance of 

iθ  are îθ  and 
ˆ ˆ(1 )i i

in
θ θ−  respectively.  
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 Second-order Laplace approximation (Method 2): 

 
In this subsection, we approximate the first two posterior moments for iθ  

using the second-order Laplace approximation. Applying formula (4.10), we get the  

the second-order Laplace approximation to ( | , )i sE θ y λ  using the standard form, 

denoted as 2SLP ,  as: 

2 32
2 2

ˆˆ [ ( )]( )ˆˆ ( | , ) ( )
2

iiSLP
i s i i

i

D hD h
E O n

n

θθ
θ θ

−
−

⎡ ⎤⎣ ⎦= − +y λ ,                         (4.28)  

where îθ  is the solution to equation (4.23),  2 ˆ( )iD h θ  is defined by (4.25), and 

( ) ( )
1/ 2 11/(2 )

0
3

1/3 3 3

2 2

ˆ ˆ ˆ ˆ1 ( ) 1 2 ( ) [ ( )] 3 (2 1)
ˆ( )

ˆ ˆ(1 )
ˆ2( 2)(2 1)                + .ˆ ˆ(1 )

vv

v

v i v i i v i

i
v i i i

i i

i i i

c a a sign a
D h

n

n
n

ϕϕ

ϕ

ϕ θ ϕ θ θ ϕ θ
θ

ϕ σ θ θ

θ
θ θ

− −⎧ ⎫− − + −⎨ ⎬
⎩ ⎭=

−

− −

−

         

It is difficult to interpret (4.28) because of its complexity. For the special case, 

when 0.5vϕ =  (normal), we can get a simpler form of 2ˆ ( | , )SLP
i sE θ y λ .  

At 0.5vϕ = , 2 ˆ( )iD h θ  and 3 ˆ( )iD h θ  become:  

2
2

2 2 2

ˆ ˆ1 ( 2) (1 )ˆ( ) ˆ ˆ(1 )
i v i i

i
i v i i

nD h
n

σ θ θ
θ

σ θ θ
+ − −

=
−

 

and 

 
2

3
2 3 3

ˆ ˆ ˆ(2 1) 3 2( 2) (1 )ˆ( ) .ˆ ˆ(1 )
i i i i

i
i v i i

n
D h

n

θ σ θ θ
θ

σ θ θ

⎡ ⎤− + − −⎣ ⎦=
−

 (4.29)                              

Substitute them into (4.28), we get: 
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2 2
2 2

22

ˆ ˆ ˆ ˆ ˆ(1 )(2 1) 1.5 ( 2) (1 )ˆˆ ( | , ) ( ).
ˆ ˆ1 ( 2) (1 )

v i i i i v i iSLP
i s i i

i v i i

n
E O n

n

σ θ θ θ σ θ θ
θ θ

σ θ θ

−
⎡ ⎤− − + − −⎣ ⎦= − +

⎡ ⎤+ − −⎣ ⎦

y λ       (4.30) 

There are terms of order 2( )iO n−  in the first part of formula (4.30). By ignoring them, 

the formula can be further simplified. We rewrite 3 ˆ( )iD h θ  given by (4.29) as: 

 3 1
2 2

ˆ2(2 1)ˆ( ) ( ).ˆ ˆ(1 )
i

i i
i i

D h O nθ
θ

θ θ
−−

= +
−

 (4.31)                               

Now, substituting the simplified versions of 2 ˆ( )iD h θ  given by (4.26) and of 3 ˆ( )iD h θ  

given by (4.31) into (4.28), we get the simplified version of the second-order Laplace 

approximation (denoted as SLP2.s) to ( | , )i sE θ y λ  using the standard form as: 

 2. 2ˆ1 2ˆˆ ( | , ) ( ).SLP s i
i s i i

i
E O n

n
θθ θ −−

= + +y λ  (4.32)                               

The second term in  (4.32) tends to zero for large sample size in .  

Next, we provide the details for estimating ( | , )i sE θ y λ  and ( | , )i sV θ y λ  

using the second-order Laplace approximation based on the fully exponential form. 

Applying result (4.12), we can get the second-order Laplace approximation to 

( | , )i sE θ y λ  using the fully exponential form, denoted as FLP2, as follows: 

{ }
1/2*

2 * * 2ˆ ˆ( | , ) exp ,( ) ( ) 1 ( )FLP i
i s i i i i

i
E n L L O nθ θ θ −

⎛ ⎞Σ ⎡ ⎤ ⎡ ⎤= −⎜ ⎟ − +⎣ ⎦ ⎣ ⎦⎜ ⎟Σ⎝ ⎠
y λ       (4.33) 

where 

         

[ ]

1/(2 )
1/0

1/

1 ( | , )( ) log

1         ;( 1) log( ) ( 1) log(1 ) ( )
v

v

v

i si
i

i i i i i i
i

fL
n

c
y n y an

ϕ
ϕ

ϕ

θθ

θ θ θ
σ

= −

⎡ ⎤
= − ⎢ ⎥− + − − − −

⎢ ⎥⎣ ⎦

y λ

 (4.34) 



 

 118 
 

( ) [ ]*

1/(2 )
1/0

1/

1 1 ( | , )( ) log log

1         ;log( ) ( 1) log(1 ) ( )
v

v

v

i si i
i i

i i i i i i
i

fL
n n

c
y n y an

ϕ
ϕ

ϕ

θθ θ

θ θ θ
σ

= − −

⎡ ⎤
= − ⎢ ⎥+ − − − −

⎢ ⎥⎣ ⎦

y λ

     (4.35) 

the posterior mode îθ  is the solution to equation (4.23); 

iΣ  is the inverse of 2 ˆ( )iD L θ  which is defined by (4.25) (it is a scalar here);  

the posterior mode *
îθ  is the solution to the following equation: 

 [ ]1/ 11/(2 ) 1/
0 ( 1)( ) [ ( )] 0vv v i i ii i v v n yc a sign aϕϕ ϕ θθ θ ϕ σ− − −+ =  ;                  (4.36) 

the second derivative of *( )iL θ  at *
îθ  is: 

1/ 21/(2 ) 1/* 2 * *
02 * *

1/2 * 2 * 2

ˆ ˆ ˆ(1 ) ( ) ( 1) (1 )
ˆ( ) ;

ˆ ˆ( ) (1 )

vv v

v

v i v v i i i
i

v v i i i

c a n
D L

n

ϕϕ ϕ

ϕ

ϕ θ ϕ σ θ θ
θ

ϕ σ θ θ

−
− + − −

=
−

       (4.37) 

*
iΣ  is the inverse of 2 * *ˆ( )iD L θ ; it is a scalar here. 

To approximate ( | , )i sV θ y λ , we first need to approximate 2( | , )i sE θ y λ . 

Applying result (4.12) again, we get the second-order Laplace approximation using 

the fully exponential form to 2( | , )i sE θ y λ  as below: 

{ }
1/2**

2 2 ** ** 2ˆ ˆ( | , ) exp ,( ) ( ) 1 ( )FLP i
i s i i i i

i
E n L L O nθ θ θ −

⎛ ⎞Σ ⎡ ⎤ ⎡ ⎤= −⎜ ⎟ − +⎣ ⎦ ⎣ ⎦⎜ ⎟Σ⎝ ⎠
y λ  (4.38) 

where, 

        

[ ]** 2

1/(2 )
1/0

1/

1 1 ( | , )( ) log( ) log

1         ( 1) log( ) ( 1) log(1 ) ( )
v

v

v

i si i
i i

i i i i i i
i v

fL
n n

c
y n y a

n

ϕ
ϕ

ϕ

θθ θ

θ θ θ
σ

= − −

⎡ ⎤
= − ⎢ ⎥+ + − − − −

⎢ ⎥⎣ ⎦

y λ

   (4.39) 
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the posterior mode **
îθ  under this case is the solution to the following equation:   

1/ 11/(2 ) 1/
0 ( ) [ ( )] ( 1) 0vv vi i v v i i ic a sign a n yϕϕ ϕθ θ ϕ σ θ− + − − = ;                       (4.40) 

**
iΣ  is the inverse of the second derivative of **( )iL θ  at **

îθ  and is defined as: 

1/ 21/(2 ) 1/** 2 ** **
0** 1 2 * **

1/2 ** 2 ** 2

ˆ ˆ ˆ(1 ) ( ) (1 )
ˆ( ) ( ) .

ˆ ˆ( ) (1 )

vv v

v

v i v v i i i
i i

v v i i i

c a n
D L

n

ϕϕ ϕ

ϕ

ϕ θ ϕ σ θ θ
θ

ϕ σ θ θ

−

−
− + −

Σ = =
−

       (4.41) 

Thus, we can calculate the second order approximation of ( | , )i sV θ y λ  as follows: 

       { }22 2 2 2 2ˆ ˆ( | , ) ( | , ) .( | , ) 1 ( )FLP FLP FLP
i s i s i s iV E E O nθ θ θ −⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦y λ y λ y λ  (4.42) 

Now, we want to further simplify 2( | , )FLP
i sE θ y λ  expressed by (4.33).  We showed 

earlier in (4.26) that 2 ˆ( )iD L θ  can be simplified to: 

2 11ˆ( ) ( )ˆ ˆ(1 )i i
i i

D L O nθ
θ θ

−= +
−

. 

Similarly, we can simplify 2 * ˆ( )iD L θ  to: 

2 * 1
* *

1ˆ( ) ( )ˆ ˆ(1 )
i i

i i
D L O nθ

θ θ
−= +

−
. 

Substitute the simplified versions of 2 * ˆ( )iD L θ  and 2 ˆ( )iD L θ  into (4.12), we get: 

           

1 * *

2 2

1
* *

1 ˆ( ) exp ( )ˆ ˆ(1 )
( | , ) .1 ( )

1 ˆ( ) exp ( )ˆ ˆ(1 )

i i i
i iFLP

i s i

i i i
i i

O n n L
E O n

O n n L

θ
θ θ

θ
θ

θ θ

−

−

−

⎡ ⎤+ −⎣ ⎦−
⎡ ⎤= +⎣ ⎦

⎡ ⎤+ −⎣ ⎦−

y λ     (4.43) 
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Substituting * *ˆ( )iL θ  defined by (4.35) and ˆ( )iL θ defined by (4.34) into (4.43), we get 

the simplified second-order approximation to ( | , )i sE θ y λ  using the fully exponential 

form, denoted as FLP2.s, as: 

       

1 1
* *2 22. *

1/(2 )
1/1/0 2*

1/

ˆ ˆ1ˆˆ ( | , ) ˆ ˆ1

ˆ ˆ                               exp .1 ( )( ) ( )

i i i

v
vv

v

y n y
FLP s i i

i s i
i i

ii i
v

E

c
O na a

ϕ
ϕϕ

ϕ

θ θθ θ
θ θ

θ θ
σ

− − −

−

⎛ ⎞ ⎛ ⎞−
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤× +−⎨ ⎬⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

y λ
  (4.44) 

Similarly, we get the simplified second-order approximation to 2( | , )i sE θ y λ  using 

the fully exponential form as: 

  
( )

1 1
** **2 222. 2 **

1/(2 )
1/ 1/0 2**

1/

ˆ ˆ1ˆˆ ( | , ) ˆ ˆ1

ˆ ˆ                                exp .1 ( )( ) ( )

i i i

v
v v

v

y n y
FLP s i i

i s i
i i

ii i
v

E

c
O na a

ϕ
ϕ ϕ

ϕ

θ θ
θ θ

θ θ

θ θ
σ

− − −

−

⎛ ⎞ ⎛ ⎞−
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤× − +−⎨ ⎬⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

y λ
  (4.45) 

Substituting (4.44) and (4.45) into (4.42), we can get a simplified version of the 

second-order Laplace approximation to ( | , )i sV θ y λ : 

{ }22. 2. 2 2. 2ˆ ˆ( | , ) ( | , ) .( | , ) 1 ( )FLP s FLP s FLP s
i s i s i s iV E E O nθ θ θ −⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦y λ y λ y λ  (4.46) 

 

Monte Carlo method (Method 3): 

From (4.2), we have exp( ) ( ,  )
1 exp( )

i i
i i

i i

v t v
v

θ
′ +

= =
′+ +

x β β
x β

. Replacing iθ  in (4.17) 

by ( ,  )it vβ , we obtain the following expression for ( | , )i sE θ y λ  in terms of β , vσ  

and vϕ : 
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1/(2 )
1/0

1/

1/(2 )
1/0

1/

( ,  ) ( ) exp

( | , ) ,

( ) exp

v
v

v

v
v

v

i i ii
v

i s

i ii
v

ct v v dvv

E
cv dvv

ϕ
ϕ

ϕ

ϕ
ϕ

ϕ

σ
θ

σ

⎡ ⎤
Ω ⎢ ⎥−

⎢ ⎥⎣ ⎦=
⎡ ⎤

Ω ⎢ ⎥−
⎢ ⎥⎣ ⎦

∫

∫

β

y λ                           (4.47) 

where [ ]{ }1 exp( )( ) exp log i ii i i i vv y v n ′+ +Ω = − x β . 

The range of iv  is ( ,  )−∞ +∞ . Let i vv σ ξ= , where ~ (0,  1,  )vEPξ ϕ . Thus: 

1/1/(2 )
0

1/1/(2 )
0

( ,  ) ( )exp
( | , ) . 

( )exp

vv

vv

v v
i s

v

t dc
E

c d

ϕϕ

ϕϕ

σ ξ σ ξ ξξ
θ

σ ξ ξ ξ

⎡ ⎤Ω −⎣ ⎦=
⎡ ⎤Ω −⎢ ⎥⎣ ⎦

∫
∫

β
y λ                              (4.48) 

Applying Monte Carlo integration method to (4.48), we get the Monte Carlo 

approximation, denoted by MC, to ( | , )i sE θ y λ  as: 

( ) ( )

( )

( ) ( ) 1/1/(2 )
0

1

( ) 1/1/(2 )
0

1

,  exp
ˆ ( | , ) ,  

exp

vv

vv

R
r r

v v
MC r

i s R
r

v
r

t c
E

c

ϕϕ

ϕϕ

σ ξ σ ξ ξ
θ

σ ξ ξ

=

=

⎡ ⎤Ω −⎣ ⎦
=

⎡ ⎤Ω −⎣ ⎦

∑

∑

β
y λ                      (4.49) 

 where ( ) ~ (0,  1,  ),    r 1,..., .r
vEP Rξ ϕ =  

Similarly, we can estimate 2( | , )i sE θ y λ  as: 

( ) ( )

( )

1/2 ( ) ( ) 1/(2 ) ( )
0

2 1
1/( ) 1/(2 ) ( )

0
1

,  exp
ˆ ( | , ) .

exp

vv

vv

R
r r r

v v
MC r

i s R
r r

v
r

t c
E

c

ϕϕ

ϕϕ

σ ξ σ ξ ξ
θ

σ ξ ξ

=

=

⎡ ⎤Ω −⎢ ⎥⎣ ⎦
=

⎡ ⎤Ω −⎢ ⎥⎣ ⎦

∑

∑

β
y λ               (4.50) 

Therefore, we can obtain the Monte Carlo approximation to ( | , )i sV θ y λ  as: 

 
22ˆ ˆ ˆ( | , ) ( | , ) ,( | , )MC MC MC

i s i s i sV E Eθ θ θ⎡ ⎤= − ⎣ ⎦y λ y λ y λ  (4.51)                           
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where the first and second terms in (4.51) are defined by (4.50) and (4.49) 

respectively.                                                      

 

Numerical Integration using GHQ (Method 4): 

 
Let 2ξ ζ= . We rewrite (4.48) in terms of ζ as follows: 

( ) ( ) ( )
( ) ( )

1/1/2 2 2
0

1/1/2 2 2
0

,  2 2 exp exp(2 )
( | , ) .

2 exp exp(2 )

vv

vv

v v
i s

v

t dc
E

dc

ϕϕ

ϕϕ

σ ζ σ ζ ζζ ζ ζ
θ

σ ζ ζζ ζ ζ

⎡ ⎤Ω − + −⎣ ⎦=
⎡ ⎤Ω − + −⎣ ⎦

∫
∫

β
y λ  

                                                                                                                                (4.52) 
 

Applying GHQ to (4.52), we obtain the numerical GHQ approximation to 

( | , )i sE θ y λ  as follows: 

       

1
1/2 2

0
1

1
1/2 2

0
1

( ,  2 ) ( 2 )exp (2 )
ˆ ( | , ) ,

( 2 )exp (2 )

K

k v k v k k k
kGHQ

i s K

k v k k k
k

w t c

E

w c

ϕ ϕ

ϕ ϕ

σ ζ σ ζ ζ ζ

θ

σ ζ ζ ζ

=

=

⎡ ⎤
Ω − +⎢ ⎥

⎢ ⎥⎣ ⎦=
⎡ ⎤

Ω − +⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

β

y λ   (4.53)                               

where K  is the number of quadrature points, kw is the quadrature weight, and kζ  is 

the quadrature node.  

Note that function gqz( ) in R gives the quadrature weight and node for a 

given number of quadrature points for the integral of the form ( )
2 / 2tf t e dt

+∞ −
−∞∫ . To 

use the  gqz( ) function, we do not need the 2ξ ζ=  transformation. 

Similarly, we can get the numerical GHQ approximation to 2( | , )i sE θ y λ  as: 



 

 123 
 

( ) ( )

( )

1/1/(2 )2 2
0

2 1

1/1/(2 ) 2
0

1

,  2 2 exp (2 )
ˆ ( | , ) . 

2 exp (2 )

vv

vv

K

k v k v k k k
GHQ k

i s K

v k k k k
k

w t c
E

w c

ϕϕ

ϕϕ

σ ζ σ ζ ζ ζ
θ

σ ζ ζ ζ

=

=

⎡ ⎤Ω − +⎢ ⎥⎣ ⎦
=

⎡ ⎤Ω − +⎢ ⎥⎣ ⎦

∑

∑

β
y λ

 

The numerical GHQ approximation to ( | , )i sV θ y λ  can be obtained using the 

following: 

 
22ˆ ˆ ˆ( | , ) ( | , ) ( | , ) .GHQ GHQ GHQ

i s i s i sV E Eθ θ θ⎡ ⎤= − ⎣ ⎦y λ y λ y λ  (4.54) 

4.4.2 Data Analysis Using Simulated Data   

 
In this data analysis, we consider data generated using three scenarios for the 

kurtosis ϕ : i) 0.5vϕ =  (normal);  ii) 0.2vϕ =  (platykurtic); iii) 

0.8vϕ = (leptokurtic). Our objective is to estimate ( | , )i sE θ y λ  and ( | , )i sV θ y λ  

using the methods described in Section 4.3.1. 

For each value of vϕ , we generated the true iθ  and observed iy  using model 

(4.1)~(4.2) for 18m =  small areas based on the following information which was 

based on the baseball data analized in Chapter 3:  

i) 0.1654vσ = ; 

ii) ( 1.716,  2.703)′= −β ;  

iii) (0.118,  0.249,  0.246,  0.264,  0.314,  0.275,  0.255,  0.248,  0.256,  =x  

            0.255,  0.303,  0.234,  0.281,  0.250,  0.244,  0.244,  0.257,  0.271) ;  

iv) 45,  1,...,18in i= = . 
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Using the observed data iy , we first obtained the posterior distribution 

( | , )i sf θ y λ  using result (4.16). Figure 4-1 illustrates the plots of the posterior 

distribution 1( | , )sf θ y λ  for the three different vϕ  values using the data from the first 

small area. Figures 4-2 presents the corresponding plots for [ ]1( | , )log sf θ y λ . 
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Figure 4-1:  The distribution of 1( | , )sf θ y λ  for the three values of vϕ  
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Figure 4-2:  The distribution of [ ]1( | , )log sf θ y λ  for the three values of vϕ   
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We then approximated ( )| ,i sE θ y λ  using the GHQ method defined by (4.53), 

the Monte Carlo (MC) method defined by (4.49), the first-order Laplace 

approximation (LP1) defined by (4.21), the second-order Laplace approximation, 

which includes four versions: the standard form (SLP2) defined by (4.28); the fully 

exponential form (FLP2) defined by (4.33); the simplified standard form (SLP2.s) 

defined by (4.32), and the simplified fully exponential form (FLP2.s) defined by 

(4.44). We also implemented the MCMC method described in Section 1.5.2 for 

evaluation purposes. Among these methods, the GHQ method should give the most 

accurate results since it uses purely numerical approximation. To compare different 

methods, we treated the values for the 18 areas given by the GHQ method as the gold 

standard values, and computed the following summary statistics for all other methods: 

• Average absolute deviation (AAD), 1
1 ( )m GHQ

i iiAAD est
m

θ θ== −∑  

• Average absolute relative deviation (AARD), 

1
1 ( )m GHQ GHQ

i i iiAARD est
m

θ θ θ== −∑  

where GHQ
iθ  and ( )iest θ denote the estimate of ( )| ,i sE θ y λ  using GHQ and other 

estimation methods respectively.   

Tables 4-1 presents the summary statistics for the six different approximations 

to the posterior mean ( )| ,i sE θ y λ  when the random effect iv  is normal ( 0.5vϕ = ), 

platykurtic ( 0.2vϕ = ), and leptokurtic ( 0.8vϕ = ) respectively.  The results show 

some inconsistent patterns for the Laplace’s method. For example, when iv  is 

platykurtic or leptokurtic, the first-order Laplace (LP1) performs better than the 
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second-order Laplace (SLP2 and FLP2), probably because the sample sizes in  are 

small.  In addition, the simplified versions of the Laplace’s estimates (SLP2.s and 

FLP2.s) did not show consistent improvement over SLP2 and FLP2. The patterns 

between MC and the Laplace’s method are not consistent as vϕ  varies. The MCMC 

method performed consistently better than the other methods in the non-normal cases. 

  Table 4-1:  Summary statistics AAD ( 410−× ) and AARD ( 410−× ) for different 

approximations to the posterior mean of iθ  given different values of vϕ  and 45in =  

0.5vϕ =  
(normal) 

0.2vϕ =  
( platykurtic) 

0.8vϕ =  
(leptokurtic) 

  AAD AARD AAD AARD AAD AARD
MCMC 1.5 6.0 1.9 7.4 2.2 8.6
MC 42.5 161.5 40.2 157.1 79.6 299.1
LP1 28.5 109.8 134.7 523.2 100.3 374.4
SLP2 0.4 1.4 330.4 1,217.6 176.9 814.9
FLP2 0.2 0.8 317.1 1,173.7 421.1 1,636.9
SLP2.s 78.4 304.2 122.9 452.0 109.6 432.2
FLP2.s 2.5 9.9 137.3 527.8 97.9 369.4
 

Note: the GHQ defined by (4.53) is used as gold standard to compute the summary statistics for the 

methods of:  Markov Chain Monte Carlo (MCMC), Monte Carlo (MC) defined by (4.49), first-order 

Laplace (LP1) defined by (4.21), second-order Laplace using the standard form (SLP2) defined by 

(4.28) and the fully exponential form (FLP2) defined by (4.33), simplified SLP2 (SLP2.s) defined by 

(4.32), and simplified FLP2 (FLP2.s) defined by (4.44). 

 

We also estimated the posterior variance ( | , )i sV θ y λ  using MCMC, the 

numerical GHQ method defined by (4.54), the Monte Carlo (MC) method defined by 

(4.51), the first-order Laplace approximation (LP1) method defined by (4.24) and its 

simplified formula (LP1.s) defined by (4.27), the second-order Laplace 

approximation method using the fully exponential form (FLP2) defined by (4.42) and 

the simplified formula (FLP2.s) defined by (4.46). Again we treated the numerical 
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GHQ approximation values as the standard values and computed the summary 

statistics AAD and AARD for all other methods. Corresponding to Table 4-1, the 

results for approximating the posterior variance are presented in Table 4-2. The 

results show similar patterns to those in Table 4-1.  

Table 4-2:  Summary statistics AAD ( 610−× ) and AARD ( 610−× ) for different 

approximations to the posterior variance of iθ  given different values of vϕ  and 

45in =  

0.5vϕ =  
(normal) 

0.2vϕ =  
( platykurtic) 

0.8vϕ =  
(leptokurtic) 

  AAD AARD AAD AARD AAD AARD
MCMC 6.4 7,925.2 9.2 10,969.8 16.7 19,881.9
MC 404.6 492,797.1 311.5 366,589.1 563.1 623,880.4
LP1 2.5 3,151.4 1,128.7 1,216,184.0 606.8 720,160.7
FLP2 0.1 105.8 7,212.2 7,891,897.0 17,089.9 18,410,918.2
LP1.s 3,439.8 4,215,435.5 3,420.4 4,160,449.3 3,421.4 4,042,930.5
FLP2.s 4.9 5,842.6 861.7 935,505.1 570.7 700,210.7
 

Note: the GHQ defined by (4.54) is used as gold standard to compute the summary statistics for the 

methods of:  Markov Chain Monte Carlo (MCMC), Monte Carlo (MC) defined by (4.51), first-order 

Laplace (LP1) defined by (4.24), second-order Laplace using the fully exponential form (FLP2) 

defined by (4.42), simplified LP1 (LP1.s) defined by (4.27), and simplified FLP2 (FLP2.s) defined 

by (4.46). 

 

Tables 4-1 and 4-2 have demonstrated that the MCMC method performs 

closest to the GHQ method compared to other approximation methods in the non-

normal cases. However, MCMC method performs secondary to the second-order 

Laplace method for the normal cases. The results for Laplace approximations are 

inconsistent; sometimes the first-order approximation performs better than the 

second-order approximation. This may due to the reminder terms 1( )iO n−  and 
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2( )iO n− , which are not negligible for small in , even though the sample size 45in =  

in this exercise is not small in a typical small area estimation problem. To confirm 

this, we replicate the study using data generated with large sample size 1,000in = . 

The summary results are presented in Tables 4-3 and 4-4.  

 

Table 4-3:  Summary statistics AAD ( 410−× ) and AARD ( 410−× ) for different 

approximations to the posterior mean of iθ  given different values of vϕ  and 

1,000in =  

0.5vϕ =  
(normal) 

0.2vϕ =  
( platykurtic) 

0.8vϕ =  
(leptokurtic) 

  AAD AARD AAD SRASRD AAD SRASRD
MCMC 1.3 4.8 2.8 9.3 2.0 7.6
MC 40.9 158.4 42.6 156.7 45.4 173.5
LP1 4.2 16.4 9.0 36.9 8.2 31.7
SLP2 1.0 3.7 3.1 10.6 7.5 29.3
FLP2 1.0 3.7 3.1 10.8 6.4 24.8
SLP2.s 1.1 3.8 7.9 30.9 9.1 36.3
FLP2.s 1.1 4.0 8.0 31.4 8.7 35.0

Note: the GHQ defined by (4.53) is used as gold standard to compute the summary statistics for the 

methods of:  Markov Chain Monte Carlo (MCMC), Monte Carlo (MC) defined by (4.49), first-order 

Laplace (LP1) defined by (4.21), second-order Laplace using the standard form (SLP2) defined by 

(4.28) and the fully exponential form (FLP2) defined by (4.33), simplified SLP2 (SLP2.s) defined by 

(4.32), and simplified FLP2 (FLP2.s) defined by (4.44). 
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Table 4-4:  Summary statistics AAD ( 610−× ) and AARD ( 610−× ) for different 

approximations to the posterior variance of iθ  given different values of vϕ  and 

1,000in =  

0.5vϕ =  
(normal) 

0.2vϕ =  
( platykurtic) 

0.8vϕ =  
(leptokurtic) 

  AAD AARD AAD AARD AAD AARD
MCMC 4.3 26,106.9 7.8 53,206.8 4.5 28,160.6
MC 37.4 231,991.3 31.7 203,207.4 46.3 264,973.3
LP1 4.9 29,512.2 11.9 79,032.4 21.1 138,137.6
FLP2 4.9 29,381.1 7.9 53,498.2 102.2 713,439.9
LP1.s 31.5 195,144.6 35.2 257,562.1 27.0 178,439.1
FLP2.s 4.9 29,504.5 11.9 79,647.6 25.2 163,313.0
 

Note: the GHQ defined by (4.54) is used as gold standard to compute the summary statistics for the 

methods of:  Markov Chain Monte Carlo (MCMC), Monte Carlo (MC) defined by (4.51), first-order 

Laplace (LP1) defined by (4.24), second-order Laplace using the fully exponential form (FLP2) 

defined by (4.42), simplified LP1 (LP1.s) defined by (4.27), and simplified FLP2 (FLP2.s) defined 

by (4.46). 

 
From Tables 4-3 and 4-4, we can see the results for Laplace’s method are as 

expected, with the second-order approximation working consistently better than the 

first-order approximation. The second-order Laplace performs closer to the MCMC 

method with these large samples. The MCMC method still performs the closest to the 

GHQ method among all the approximation methods in the non-normal cases. In the 

normal cases, the performances of MCMC method and the second-order Laplace 

method are very close now.  There is no evidence showing that the simplified 

versions of the Laplace approximations are consistently better than the non-simplified 

versions. 
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4.5 Bayesian Inference when ( ),  ,  v vσ ϕ=λ β  is Unknown   

 
In practice, the hyperparameter vector λ  is unknown. A prior assumption 

( )π λ  is often applied in Bayesian analysis. This section studies how to make 

inference about iθ  based on model (4.1)~(4.2) when the hyperparameter vector λ  is 

unknown.  

4.5.1 Bayesian Inference for a General Function of iθ  

Let ( )ib θ  be a continuous function of iθ  having the first three derivatives. 

Our goal is to estimate the posterior mean [ ]( ) |i sbE θ y  and posterior variance 

[ ]( ) |i sbV θ y .  

Note that: 

 [ ] [ ]{ }( ) | ( ) | , ;i s i s sb bE E Eθ θ= λy y λ y  (4.55)                               

[ ] [ ]{ } [ ]{ }( ) | ( ) | , ( ) | , .i s i s s i s sb P b bV E V V Eθ θ= +λ λy y λ y y λ y             (4.56) 

Assume that [ ]( ) | ,i sbE θ y λ  and [ ]( ) | ,i sbV θ y λ  can be written as functions of λ  

analytically, that is, [ ]( ) | , ( )i sbE Gθ =y λ λ  and [ ]( ) | , ( )i sbV Hθ =y λ λ , where G  

and H  are some smooth functions of λ  having the first three derivatives. Then (4.55) 

and (4.56) become: 

 [ ] [ ]( ) | ( ) | ;i s sE b E Gθ = λy λ y  (4.57)                               

[ ] [ ] [ ]
[ ] [ ]{ }22

( ) | ( ) | ( ) |

( ) | ( ) |                    .( ) |

i s s s

s ss

b H GV E V

H GE E EG

θ = +

⎡ ⎤= + −⎣ ⎦

λ λ

λ λ λ

y λ y λ y

λ y λ yλ y
       (4.58) 
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Next, we illustrate how to approximate [ ]( ) | sGEλ λ y . A Similar approach 

can be used to approximate each term in (4.58). 

Since [ ]
( ) ( | )

( ) |
( | )

s
s

s

G f d
GE

f d
= ∫

∫
λ

λ λ y λ
λ y

λ y λ
, we need to find the posterior 

distribution ( | )sf λ y . The joint density of ,   sy λ and 1( ,..., )mv v ′=v  is: 

1

1

1

( ,  ,  ) ( | ,  ) ( | ) ( )

exp( ) 1
               ( , ) ( )

1 exp( )1 exp( )

exp( ) 1
              ( )

11 exp( )

i i i
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y n ym
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′ +⎡ ⎤
= ⎢ ⎥′+ +⎣ ⎦

∏

y λ v y v λ v λ λ

x β
λ λ

x βx β

x β
λ

x β1
( , ) ,

exp( )

i in ym
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H v
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where 
1/(2 )

1/0
1/

( , ) exp
v

v

v
i i

v

c
H v v

ϕ
ϕ

ϕσ

⎡ ⎤
= ⎢ ⎥−

⎢ ⎥⎣ ⎦
λ . Note that both 0c  and 1c  are functions of 

vϕ . Thus, the joint density of sy  and λ  can be derived as below: 

[ ]
[ ]

1
1

1 1
1

( ,  ) ( ,  , )

exp( ) 1
( ) ( , )

1 exp( )1 exp( )

( )exp
( ) ... ( , ) ...
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s s

y n ym
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v i
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1 exp( )
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x β
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Note that at the penultimate step of (4.59), we are able to move the product 

over the small areas (the index i ) to the outside of the integral because the random 

effects iv  are assumed independent. Since the integral with the product over the index 

i  has no closed-form, numerical integration has to be used.  

Applying the numerical GHQ method to the integral in (4.59), we get: 

[ ]

1/(2 )
1/ 20

1/
1

11

( ,  ) ( ,  , )d

exp ( )
             ( ) ,

1 exp( )

v
v

v

i

s s

m T t i i t t tm m
v v

ti n
i t

f f

cw y v v v
c

v

ϕ
ϕ

ϕσ π σ−

==

=

⎧ ⎫⎡ ⎤
⎪ ⎪′⎢ ⎥+ − +⎪ ⎪∝ ⎢ ⎥⎨ ⎬⎣ ⎦
⎪ ⎪

′+ +⎪ ⎪⎩ ⎭

∫

∑∏

y λ y λ v v

x β
λ

x β

 

 where T  is the number of quadrature points , tw  is the quadrature weight, and tv  is 

the quadrature node for a given number of quadrature points, 1,...,t T= . Thus the 

posterior distribution of λ  is given by: 

     

[ ]

1/(2 )
1/ 20

1/
1

11

exp ( )
( | ) ( )

1 exp( )

v
v

v

i

m T t i i t t tm m
s v

ti n
i t

cw y v v v
f c

v

ϕ
ϕ

ϕσ π σ−

==

⎧ ⎫⎡ ⎤
⎪ ⎪′⎢ ⎥+ − +⎪ ⎪∝ ⎢ ⎥⎨ ⎬⎣ ⎦
⎪ ⎪

′+ +⎪ ⎪⎩ ⎭

∑∏
x β

λ y λ

x β

. (4.60) 

Note that (4.60) only holds if the term on the right hand side is proper, that is, the 

multi-dimensional integrals over λ  for the term on the right hand side of (4.60) must 

be bounded.   

As a result, we can write the posterior expectation of ( )G λ  as: 

[ ]
[ ]

[ ]
( ) ( | ) ( ) exp ( )

( ) |
( | ) exp ( )

s
s

s

G f d G dmh
E G

f d dmh

−
= =

−
∫ ∫
∫ ∫
λ λ y λ λ λλ

λ y
λ y λ λλ

,                   (4.61) 

where  
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[ ]

1
1 1

1 ( | )( ) log

1      log( ) log( ) log[ ( )] log ;( )

s

m T

v it
i t

fh
m

m c m
m

σ π ψ
= =

= −

⎧ ⎫⎡ ⎤⎪ ⎪= − − + + ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑

λ yλ

λ λ
 (4.62)   

and 

 
[ ]

1/(2 )
1/ 20

1/
exp ( )

( ) .
1 exp( )

v
v

v

i

t i i t t t
v

it n
i t

cw y v v v

v

ϕ
ϕ

ϕσ
ψ

⎡ ⎤
′⎢ ⎥+ − +

⎢ ⎥⎣ ⎦=
′+ +

x β

λ
x β

 (4.63)                              

We next apply both first- and second-order Laplace approximations to 

estimate the posterior mean and variance of ( )G λ . 

 

First-order Laplace approximation: 

 
Following Kass and Steffey (1989, formulas 3.5 and 3.6), we can get the first-

order Laplace’s approximation for the posterior mean and variance of ( )G λ  as: 

 [ ] 1ˆ( ) | ( ) ( );sGE G O m−= +λ y λ  (4.64) 

 [ ] 2ˆ ˆ( ) | [ ( )] [ ( )] ( );sGV DG DG O m−′= +λ y λ Σ λ  (4.65)                               

where λ̂  is the posterior mode and Σ  is the inverse of the Hessian matrix of 

( )mh λ evaluated at λ̂ : 2 1ˆ{ [ ( )]}m D h −=Σ λ .  

The posterior mode λ̂  is the value which maximizes the function ( )h λ  

defined by (4.62).  A numerical method such as the Newton-Raphson or EM 

algorithm is needed to find λ̂ .  
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Second-order Laplace approximation: 

 
   Assume ( )G λ  is a positive function.  We use the fully exponential form to 

obtain the second-order Laplace’s approximation. Let 

[ ] [ ]( | )( ) log log( ) ( ) sfL L π= = λ yλ λ λ  and [ ]*( ) log ( )( )L LG= +λ λλ , where ( )L λ  is 

the likelihood function. Assume that *λ̂  is the point that maximizes *( )L λ .  Let 

* 2 * * 1ˆ[ ( )]D L −= −Σ λ . λ̂  and Σ  are defined in (4.64) and (4.65). Then following 

Tierney  and Kadane (1986) and Kass and Steffey (1989),  we have 

 [ ]
1/2*

2* *det( ) ˆ ˆ( ) | exp ( );( ) ( )
det( )sGE O mL L −⎡ ⎤

⎡ ⎤= +−⎢ ⎥ ⎣ ⎦
⎣ ⎦

Σλ y λ λ
Σ

 (4.66)                      

 [ ] 22( ) | ( ) ;( )s ssGV E E GG⎡ ⎤ ⎡ ⎤= − ⎣ ⎦⎣ ⎦λ y λ yλ y  (4.67)                               

where 2( ) | sE G⎡ ⎤⎣ ⎦λ y  can be approximated using the same approach as that used to 

approximate [ ]( ) | sE G λ y . For non-positive ( )G λ , one can follow the approach 

discussed by Tierney, Kass and Kadane (1989). We only consider the case when 

( )G λ >0. 

 As seen from Section 4.4.1, for the mixed logistic model defined by (4.1) and 

(4.2), the terms of [ ]( ) |i sbE θ y  and [ ]( ) |i sbV θ y  cannot be written as smooth 

functions of λ  analytically. However, given the posterior mode λ̂  and Σ  as defined 

in (4.64) and (4.65), we can obtain the first-order approximation to the posterior mean 

and variance of ( )ib θ following Kass and Steffey (1989): 

 [ ] 1ˆ( ) | ;( ) | , 1 ( )i s i sbE E b O mθ θ −⎡ ⎤⎡ ⎤= +⎣ ⎦ ⎣ ⎦y y λ  (4.68)                               
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[ ] 1

,

ˆ ˆ ˆ( ) | ( ) | , 1 ( ) ;i s i s jh j h
j h

bV V b O mθ θ σ δ δ −
⎧ ⎫⎪ ⎪⎡ ⎤⎡ ⎤= + +⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∑y y λ                   (4.69) 

where jhσ  is the ( , )j h component of Σ and [ ] ˆˆ ( ) | ,j i sj
E bδ θλ =

⎛ ⎞∂= ⎜ ⎟∂⎝ ⎠ λ λy λ . 

The two terms ˆ( ) | ,i sE b θ⎡ ⎤
⎣ ⎦y λ  and ˆ( ) | ,i sV b θ⎡ ⎤

⎣ ⎦y λ  can be obtained using 

exactly the same approaches as we discussed in Section 4.4.1. 

If ( )i ib θ θ= , we can obtain the posterior mean and variance of iθ  using 

results (4.68) and (4.69). The posterior mean and variance of the finite population 

mean iP  can also be obtained because they are functions of the posterior mean and 

variance of iθ  (see Section 3.5 of Chapter 3).  Before results of (4.68) and (4.69) can 

be applied, an essential step is to find the posterior mode λ̂ . 

  

4.5.2 Estimation of the Posterior Mode λ̂  

 
In Bayesian analysis, ( ) 1π ∝β  is often assumed. Assume 

( ) ( , ) ( ) ( )v v v vπ π σ ϕ π σ π ϕ∝ =λ . We consider the following uniform prior 

distribution for vσ  and vϕ : 

( ) (0, )v U Kπ σ ∝ , where K is a known large positive number; and 

( ) (0,1)v Uπ ϕ ∝ . 

Therefore the log-likelihood of λ  given sy  is: 
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[ ] 1
1 1

log ( | ) log( ) log( ) log ( )
m T

s v it
i t

f m c m σ ψ
= =

⎡ ⎤
∝ − + ⎢ ⎥
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∑ ∑λ y λ .               (4.70)                   

Kass and Steffey (1989) pointed out that the transformation of vσ  to exp( / 2)vτ−  is 

generally preferable in numerical work. Using that transformation for  vσ  here, we 

obtain the log-likelihood of ( , , )v vτ ϕβ  given sy  as: 

[ ]
*

1
1 1

( , , ) log ( , , | )
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where   
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x β
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x β

.                     (4.72) 

To find the posterior mode λ̂ , we need to obtain *ˆ ˆ ˆˆ( , , )v vτ ϕ=λ β  with respect 

to the log-likelihood ( , , )v vL τ ϕβ  first. To find *λ̂ , we need to solve the equation 

( , , ) 0v vDL τ ϕ =β , that is,  *λ̂  is the solution to the following set of equations: 
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                            (4.73) 

where ∂  denotes the partial derivative. Numerical methods are needed to solve the 

above equations. 

Once *λ̂  is obtained, a transformation of v̂τ  back to the original scale 

produces the posterior mode λ̂ . That is, the posterior mode of λ  is ( )ˆ ˆ ˆˆ, ,v vσ ϕ=λ β , 

where ˆ ˆexp( / 2)v vσ τ= − .   

 

4.6 Concluding Remarks   

 

We have investigated different approximate methods in making Bayesian 

inference for our proposed model as alternatives to the MCMC technique. Because 

Gauss-Hermite Quadrature method uses purely numerical approximation, we used it 

as a standard method to compare among other approximate methods. Laplace 

approximations offer simple interpretation of the proposed Bayesian methodology. 
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However, the results from the empirical study for the simple case when all the 

hyperparameters are known demonstrated that the precision of the Laplace’s method 

depends on the sample size and it does not work well for small samples.  The study 

also indicates that the MCMC is a competitive method to use for Bayesian inference. 

Since the small area sample sizes are usually small in practice, we do not recommend 

Laplace’s method for the small area estimation problem.  
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Chapter 5:  Empirical Best Prediction of Small-Area 

Proportions 

5.1 Introduction 

 
As reviewed in Chapter 1, there are primarily two different approaches for 

making inferences using mixed models: i) the classical prediction approach like the 

empirical best prediction approach; and ii) the hierarchical Bayesian approach. To 

estimate small-area proportions, we have explored the hierarchical Bayesian approach 

for inferences using the proposed Bernoulli-Logit-EP model in Chapters 3 and 4. In 

this chapter, we study the empirical best prediction approach for inference using the 

same model. 

As an alternative to the hierarchical Bayesian approach, the empirical best 

prediction approach has been frequently used for estimating small-area proportions 

based on logistic regression models with mixed effects. Several applications in this 

context were reviewed in Chapter 1 (e.g., Dempster and Tomberlin, 1980; 

MacGibbon and Tomberlin, 1989;  Farrell et al., 1997a, b; Jiang and Lahiri, 2001).  

 Jiang and Lahiri (2001) developed the Taylor linearization method for binary 

data using mixed logistic model. In this chapter, we develop the Jiang-Lahiri type 

frequentist alternative to the hierarchical Bayesian methods. Let iky  denote the 

binary characteristic of interest associated with the k-th unit in the i-th area 

( 1,..., ;ik N= 1,...,i m= ). Let 1=( ,..., ) P
i i ipx x R′∈x  be a vector of p  known auxiliary 

variables. Suppose that in  units are chosen from the iN  population units in area i . 
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The goal is to estimate the small area proportions 1 /iN
i ik ikP y N== Σ , 1,..., ,i m=  using 

the sample data. 

We organize this chapter as follows: we first represent the mixed model in 

Section 5.2. In Section 5.3, we present the best predictor (BP) and empirical best 

predictor (EBP) of the random effect iv . Section 5.4 studies the mean squared error 

(MSE) of the EBP of iv . In Section 5.5, we extend the results of Section 5.3 to 

predict iθ . Section 5.6 develops the MSE of the EBP of the mixed effect using a 

parametric Bootstrap approach. We then study the relationship between the MSE of 

EBP and HB in Section 5.7. The chapter finishes with some concluding remarks in 

Section 5.8.   

 

5.2 Small Area Model 

 
In order to estimate the finite small area proportions iP , 1,...,i m= , we 

consider the model that we studied in Chapter 3 and 4, namely Bernoulli-Logit-EP:  

Level 1: | ~ Bernoulli( ),
ind

ik i iy θ θ      1,..., ,  1,..., ;ik n i m= =                        (5.1)        

Level 2: logit( )i i ivθ ′= +x β  , where ~ (0, , )
iid

iv EP σ ϕ , 1,..., .i m=              (5.2) 

The density function of  iv  is defined as: 

 
1/

01( ) exp ,
v

i
EP i

v v

c vcf v
ϕ

σ σ

⎧ ⎫
⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

 (5.3)                               
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where v Rσ +∈ , (0,1]vϕ ∈ , 0
(3 )
( )

v

v
c ϕ

ϕ
Γ

=
Γ

,  0
1 2 ( )v v

c
c

ϕ ϕ
=

Γ
. 

As noted earlier, for the special case 0.5vϕ = , the random effects iv  are i.i.d. 

normal, and the proposed model reduces to the mixed logistic regression model, 

which has been studied in the literature (e.g., see Jiang and Lahiri, 2001). 

Based on assumption (5.2), iθ  can be expressed as: 

 
( )
( )

exp
.

1 exp
i i

i
i i

v
v

θ
′ +

=
′+ +

x β
x β

 (5.4)                               

We will show how to make inference for iv  first and then for the parameter iθ .  

 

5.3 The BP and EBP of  iv  

 
Let ( ), ,v vσ ϕ ′=λ β  denote the model parameters and ( )0 0 0 0, ,σ ϕ ′=λ β  

denote the true value of λ .  Assume that λ  is known. The posterior distribution of the 

random effects iv  can be obtained as below: 

[ ]

1

1/
01

( | ) ( | )

               ( | ) ( )

exp( )               exp .
1 exp( )
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i s i i
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ij i i
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ii i i i
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v vi i

f v f v y

f y v f v

c vy y v c

v

ϕ

σ σ

=

∝

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

⎛ ⎞′ + ⎜ ⎟= −⎜ ⎟′ ⎜ ⎟+ + ⎝ ⎠

∏

y

x β

x β

 

Therefore, the posterior mean of iv , also called the best predictor of iv , is: 
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Letting 0iv σ ξ= , where 0~ (0,  1,  )EPξ ϕ , we can rewrite ( | )i sE v y  as:  
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                (5.5) 

where [ ]0 0 0 0 0( , , ) log 1 exp( )i i i i iy y nφ σ ξ σ ξ σ ξ′= − + +β x β . 

When 0λ  is given, 0( , )i iyψ λ  can be computed using a numerical integration 

method, such as Gauss-Hermite Quadrature or a Laplace approximation. We prefer 

the GHQ method since the sample sizes in  are small. The quality 0( , )i iyψ λ  is called 

the best predictor (BP) of iv , i.e., 0ˆ ( , )BP
i i iv yψ= λ . 
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Since 0λ  is unknown in practice, 0( , )i iyψ λ  is not computable. It is 

customary to replace 0λ  by a consistent estimator λ  in 0( , )i iyψ λ . The resulting 

estimator is called empirical best predictor (EBP) of iv : 

 ˆ ( , )EBP
i i iv yψ= λ . 

The maximum likelihood (ML) approach can be used to estimate λ . 

 

5.4 The MSE of the EBP of iv   

 
To derive the MSE of the EBP of iv , we follow the approach used by Jiang 

and Lahiri (2001). 

According to the definition, the MSE of ˆEBP
iv  is:  

 
[ ]
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2 2
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i i s i s i
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 (5.6) 

The second term on the right side of (5.6) has a closed form:  
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where 
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with { }1 1( , ) ( ,..., ) {0,1} ,  ...i
i i

n
i n nS n k z z z z z z k= = ∈ = + + =i . 

For the first term on the right side of (5.6), we use a Taylor series expansion: 
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   (5.8) 

Suppose that: 

 0| | (1/ ),pO n− =λ λ  (5.9)                               

where 1
m
i in n== Σ  is the total sample size. When λ  is a ML estimator of λ , equation 

(5.9) still holds (Bradley and Gart, 1962).  It is expected that  

2
2

0 0
1 1ˆ ( | ) ( , ) ( ) .EBP

i i s i iE v E v E y n o
n n

ψ
⎧ ⎫′∂⎪ ⎪⎡ ⎤ ⎛ ⎞⎡ ⎤− = − +⎨ ⎬ ⎜ ⎟⎢ ⎥⎣ ⎦ ∂⎣ ⎦ ⎝ ⎠⎪ ⎪⎩ ⎭

y λ λ λ
λ

    (5.10) 
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Now, assume i−=λ λ , an estimator of λ  based on iy − , where iy −  denotes the 

observed data after deleting the i th area. Write ˆ ( ,  )i i i iv yψ− −= λ . Then by 

independence of iy  and iy − , we have 
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         (5.11) 

where 0 0 0( ) ( )( )i i iV nE − − ′= − −λ λ λ λ λ . 

Combing (5.6)-(5.8), (5.10) and (5.11), we obtain 

    2
0 0 0ˆ( ) ( ) (1/ ) ( ) (1/ ),EBP

i i iMSE v b n a o nσ− = − + +λ λ                                (5.12)    

where 0( )ib λ  is defined in (5.7) and 0( )ia λ  is defined in (5.11).                      

The result (5.12) is based on the assumption that i−=λ λ . Next we want to 

evaluate how close ˆ( )EBP
iMSE v −  is to ˆ( )EBP

iMSE v . 

2
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i i i i i i
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= + − −

+ −

= +

                       (5.13)  

where 2ˆ ˆ ˆ ˆ ˆ2 ( )( ) ( )EBP EBP EBP EBP EBP
i i i i i i ir E v v v v E v v− − −= − − + −  .        
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 Based on (5.9), Jiang and Lahiri (2001) showed that it is reasonable to 

assume that 

 | | (1/ ).i pO n−− =λ λ  (5.14) 

It follows from (5.9), (5.14), and the Taylor series expansion that (1/ )ir o n= . Note 

that ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )( ) ( )( )EBP EBP EBP EBP EBP EBP BP
i i i i i i i iE v v v v E v v v v− − − −− − = − − . Therefore, by (5.13) 

and (5.14), we have  

 
2
0 0 0

ˆ ˆ( ) ( ) (1/ )

                 ( ) (1/ ) ( ) (1/ ),

EBP EBP
i i

i i

MSE v MSE v o n

b n c o nσ

−= +

= − + +λ λ
 (5.15)                               

where 0( )ic λ  is the same as 0( )ia λ  except that 0( )iV λ  is replaced by  

0 0 0( ) ( )( )V nE ′= − −λ λ λ λ λ . 

 

5.5 The BP and EBP of iθ  

 
Since iθ  is a function of β  and iv  from (5.4), the development of inferences 

for iv  in Section 5.3 and 5.4 can be extended in a parallel way to make inferences for 

iθ  , and then for iP . 

Let ( , )i i ih vθ = β , where the function h  is defined by (5.4).   The best 

predictor for iθ  is: 
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 As shown in Chapter 4, the integrals involved on the right-hand side of (5.16) 

can be approximated using numerical methods or Laplace’s method, and again  

numerical methods are preferred here because of small sample sizes.  

Replace 0λ  in (5.16) by a consistent estimator λ , we get the EBP for iP , 

given by  

 ( , ).EBP
i i iyθ ψ= λ  (5.17)                               

When the MLE of λ  is used to obtain the EBP, the EBP of iθ  is very close to 

the HB of iθ  approximated using the first-order Laplace’s method (see Chapter 4).  

 

5.6 The MSE of the EBP of iθ  

 
The MSE of EBP

iθ  is:  

 2( ) ( ) ( ) .EBP BP EBP BP
i i i iMSE MSE Eθ θ θ θ= + −  (5.18)                               

The first term on the right side of (5.18) is the MSE of the BP, while the second term 

is the approximate mean squared of the EBP to the BP, which measures the 

uncertainty due to the estimation of λ . Furthermore, we have 
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where 0( , )i kψ λ  is defined in (5.16). 

If EBP EBP
i iθ θ −= , an estimator of iP  based on iy − , then 

2
0( ) (1/ ) ( ) (1/ )EBP BP

i i iE n a o nθ θ− = +λ , 

where 0( )ia λ  is 0( )ia λ  as defined in (5.11) except that 0( , )i kψ λ  in 0( )ia λ  is 

replaced by 0( , )i kψ λ .  

Thus with ( , )EBP
i i i iyθ ψ− −= λ , 

 0 0( ) ( ) ( ) / (1/ ),EBP
i i iMSE d a n o nθ − = + +λ λ  (5.20)                              

where 0( )id λ   is defined in (5.19). 

Also one may replace EBP
iθ −  by EBP

iθ , an estimator of iP  based on all the data, may 

still obtain  

 
0 0
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                   ( ) ( ) / (1/ ),
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i i
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θ θ −= +
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 (5.21)                              

where 2 2
0 0 0 0 0

0
( ) ( , ) ( , ) ( , )

in

i i i i
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d Eh k p kσ ξ ψ
=

= − ∑λ β λ λ  which is defined in (5.19); and 

0 0 0 0 0
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( ) ( , ) ( ) ( , ) ( , )
in

i i i i
k

c k V k p kψ ψ
=

′∂ ∂⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∑λ λ λ λ λ

λ λ
, where 0( )ic λ  is 0( )ia λ  

except that 0( )iV λ  in 0( )ia λ  is replaced by  0 0 0( ) ( )( ) ;V nE ′= − −λ λ λ λ λ   

5.6.1 Estimate the MSE of the EBP using Taylor Series Linearization 

The MSE of EBP
iθ  defined by (5.21) involves the true 0λ  which is unknown 

in practice. For practical applications, we need to estimate ( )EBP
iMSE θ  using an 
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estimator of 0λ . There are different approaches for estimating ( )EBP
iMSE θ .  In this 

subsection, we propose a second-order approximation of the MSE of EBP using the 

Taylor series linearization method.  

The Taylor series linearization method has been frequently used to 

approximate the MSE of an empirical best linear unbiased predictor (EBLUP) in the 

small area estimation literature. For example, Prasad and Rao (1990) proposed a 

second-order Taylor series approximation to the MSE of EBLUP for three linear 

mixed models all with the normality assumption for the distribution of the model 

effects. Other references can be seen in Kleffe and Rao (1992), Lahiri and Rao 

(1995), Datta and Lahiri (2000), and Butar and Lahiri (2002). However, the literature 

on the assessment of the uncertainty of EBP for binary data is limited. The available 

references include Jiang and Lahiri (2001, 2006b).  Jiang and Lahiri (2006a) provides 

additional references. We develop a second-order approximation approach to measure 

the uncertainty of the MSE estimate of the EBP based on the proposed model next. 

A naïve approach approximates the MSE of EBP
iθ  using only the first term 

0( )id λ  in (5.21). Replacing 0λ  by a consistent estimator λ , a naïve estimator of 

( )EBP
iMSE θ  is as follows:  

 ( ) ( ).naive EBP
i iMSE dθ = λ  (5.22) 

If n  is small, this naïve approximation could lead to serious underestimation of the 

MSE defined by (5.21) for the following two reasons:  

 i) The second term, 0( ) /ic nλ , is of order (1/ )O n . When n  is small, we 

should not ignore any term of order (1/ )O n .  
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ii) Replacing the true value 0λ  by an estimator λ̂  introduces additional bias of 

order (1/ )O n .  

An improved approach approximates the MSE of EBP
iθ  by incorporating both 

terms in (5.21) after replacing 0λ  with a consistent estimator λ . That is, an improved 

estimator of ( )EBP
iMSE θ  is given by: 

 ( ) ( ) ( ) / .IM EBP
i i iMSE d c nθ = +λ λ  (5.23) 

The estimator ( )IM EBP
iMSE θ  improves the naïve estimator ( )naive EBP

iMSE θ  

by taking account of some terms of order (1/ )O n . However, this improved MSE 

estimator still does not account for the additional bias due to the estimation of 0λ .  

Now the question is how to correct the additional bias due to the estimation of 

0λ .  To do that, we first need calculate this additional bias.  

Using (5.9), the Taylor series expansion of ( )id λ  around 0λ  gives: 

0 0 0 0 0 0
1( ) ( ) ( ) [ ( )] ( ) ( )( ) (1/ )
2i i i d pd d Dd H o n⎡ ⎤′ ′≈ + − + − − +⎣ ⎦λ λ λ λ λ λ λ λ λ λ ,  (5.24)  

where 0( )iDd λ  is the first derivative to function 0( )id λ  with respect to the vector 

0λ , and 0( )
idH λ  is the Hessian matrix of 0( )id λ  at value 0λ .  

Since ( )0 1/pO n− =λ λ , we write 0 0
1( ) ( ) (1/ )E B o n
n

− = +λ λ λ , 

where the order of 0( )B λ  is (1)O . In addition, let 0 0 0
1( )( ) ( )E V
n

′− − =λ λ λ λ λ .  

Then 
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0 0 0

0 0

1( ) ( ) ( ) [ ( )]

1                  ( ) ( ) (1/ ).
2 i

i i i

d

E d d B Dd
n

trace V H o n
n

⎡ ⎤ ′= +⎣ ⎦

⎡ ⎤+ +⎣ ⎦

λ λ λ λ

λ λ
 (5.25)                               

Therefore, the additional bias introduced by the first term of ( )id λ  due to the 

estimation of 0λ  is as follows: 

 [ ]0 0 0 0
1 1( ) ( ) [ ( )] ( ) ( )

2i i dbias d B Dd trace V H
nn

⎡ ⎤ ′≈ +⎣ ⎦λ λ λ λ λ ,              (5.26) 

which is of order (1/ )O n . 

Similarly, we can get the expectation of ( )ic λ  using Taylor series expansion 

around 0λ  as below: 

 
{ } 0 0 0

0 0

1( ) ( ) ( ) [ ( )]

1                  ( ) ( ) (1/ ),
2 i

i i i

c

E c c B Dc
n

trace V H o n
n

′= +

⎡ ⎤+ +⎣ ⎦

λ λ λ λ

λ λ
 (5.27)                              

where 0( )iDc λ  is the first derivative of the function 0( )ic λ  with respect to the vector 

0λ , and 0( )
icH λ  is the Hessian matrix of 0( )ic λ  evaluated at 0λ . It follows from 

(5.27) that the expectation of ( ) /ic nλ  is: 

 { } 0( ) / ( ) / (1/ ),i iE c n c n o n= +λ λ  (5.28) 

which indicates that ( ) /ic nλ  is approximately unbiased for 0( ) /ic nλ  up to the order 

(1/ )O n .  

Now, from (5.25) and (5.27), after correcting the bias of ( )id λ  as defined by 

(5.25), we obtain a second-order unbiased estimator of the MSE of EBP
iθ : 
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1( ) ( ) ( ) / ( ) [ ( )]

1                          ( ) ( ) ,
2 i

TS EBP
i i i i

d

MSE d c n B Dd
n

trace V H
n

θ ′= + −

⎡ ⎤− ⎣ ⎦

λ λ λ λ

λ λ
 (5.29)                              

which is of order (1/ )O n . 

 

5.6.2 Estimating the MSE of the EBP using a Parametric Bootstrap  

 
We have developed a second-order MSE approximation ( )TS EBP

iMSE θ to 

measure the uncertainty of EBP
iθ  using the Taylor series linearization method. 

However, there are a few disadvantages associated with this estimator including 1) 

The MSE estimator could be negative; and 2) the calculation of the MSE estimator 

requires high order derivatives of a complex function and variance estimation for a 

consistent estimator of λ . In order to overcome these disadvantages, we develop a 

second-order bias corrected computationally simple technique using the two-level 

parametric bootstrap method following Chatterjee and Lahiri (2008).   

Let 
111 1 1( ,..., ;...; ,..., )

m mmn n m mny y y y=y  denote all the observed data. Our 

two-level parametric bootstrap for generating resamples is given below: 

1.  Resample 
1

* * * * *
11 1 1( ,..., ;...; ,..., )

m mmn n m mny y y y=y  using the following two-level 

model: 

 Level 1: * * *| ~ Bernoulli( )
ind

ik i iy θ θ ,      1,..., , 1,..., ,ik n i m= =                   (5.30) 

 Level 2: * *logit( )i i ivθ ′= +x β  ,                                                                   (5.31)

where  * ~ (0, , )
iid

i v vv EP σ ϕ , 1,...,i m= ,                                                                 (5.32) 
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 and ( , , )v vσ ϕ=λ β  is a consistent estimator obtained using the original sample data 

mmny . The resampling requires that the *
iv  are generated first using (5.32), then the 

*
iθ  are generated using (5.31), and finally the *

iky , 1,..., , 1,...,ik n i m= = , are 

generated using (5.30). The expectation of this step, which is conditional on 
mmny , is 

denoted by *E . 

2.  Obtain ( )* * * *, ,  v vσ ϕ=λ β  based on the resamples *
mmny  using exactly the same 

approach as we obtain λ  from the original data 
mmny .  

3.  Resample 
1

** ** ** ** **
11 1 1( ,..., ;...; ,..., )

m mmn n m mny y y y=y  using the following two level 

model:  

Level 1: ** ** **| ~ Bernoulli( )
ind

ik i iy θ θ ;      1,..., ;  1,...,ik n i m= =                  (5.33) 

 Level 2: ** * **logit( )i i ivθ ′= +x β  ,                                                               (5.34) 

  where  ** * *~ (0, , )
iid

i v vv EP σ ϕ , 1,...,i m= ,                                                              (5.35) 

     and * * * *( , , )v vλ σ ϕ= β  is obtained at step 2. The resampling requires that the **
iv  

are generated first using model (5.35), then the **
iθ  are generated using model (5.34), 

and finally the **
iky , 1,..., ,  1,...,ik n i m= = , are generated using model (5.33). The 

expectation of this step, which is conditional on 
mmny  and *

mmny , is denoted by **E . 

4.  We define the following statistics: 

 ** **( )
mmn=λ λ y , the consistent estimator of λ  obtained from **

mmny ; 
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2* * * * *( , ) ,
m

EBP
i i mnM E θ θ⎡ ⎤= −⎣ ⎦y λ                                                             (5.36) 

where * *( , )
m

EBP
i mnθ y λ  denotes the EBP of iP  based on *

mmny and *λ ; 

2** * ** ** ** **( , ) ,
m

EBP
i i mnM E E θ θ⎡ ⎤= −⎣ ⎦y λ                                                   (5.37) 

where ** **( , )
m

EBP
i mnθ y λ  denotes the EBP of iP  based on **

mmny and **λ .  

Once *M  and **M  are obtained, following Chatterjee and Lahiri (2008), the 

following four parametric bootstrap estimators of ( )EBP
iMSE θ , which are all 

functions of *M  and **M ,  can be considered: 

**
*

* **
1

2

( ) (2 )BOOT EBP
i MM

MSE M M Iθ ⎛ ⎞
>⎜ ⎟⎜ ⎟

⎝ ⎠

= − ;                                          (5.38) 

( )

( )

* **

* **

* **
2

*
*

**

( ) (2 )

                                exp 1

BOOT EBP
i M M

M M

MSE M M I

MM I
M

θ
≥

<

= −

⎡ ⎤⎛ ⎞
+ −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

;                            (5.39) 

{ } ( )

( ) { } ( )

* **

* **

* 1 1 * **
3

2* * 1 1 * **

( ) tan ( )

                             tan ( ) ;

BOOT EBP
i M M

M M

MSE M n n M M I

M M n n M M I

θ − −
>

− −
<

⎡ ⎤= + −⎣ ⎦

⎡ ⎤+ + −⎣ ⎦

(5.40) 

*

4 **

*

2( )

1 exp 2 1

BOOT EBP
i

MMSE
M
M

θ =
⎡ ⎤⎛ ⎞

+ −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

;                                              (5.41) 

where ( )I i  is the indicator function which takes the value one when the condition ( )i  

is satisfied, and the value zero otherwise. 
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When * **M M≈ , all the four parametric bootstrap estimators are 

approximately equal to each other. The first estimator 1
BOOTMSE is a straightforward 

and natural choice. The second and third estimators 2
BOOTMSE  and 3

BOOTMSE  were 

originally considered by Hall and Maiti (2006) for mean-square prediction error 

calibration. Chatterjee and Lahiri (2008) showed empirically that the last estimator 

4
BOOTMSE  performs marginally better than 2

BOOTMSE  and 3
BOOTMSE  and it is 

reasonably close to the intuitive formula 1
BOOTMSE .  A desirable property of 

4
BOOTMSE  is that it is always positive. Furthermore, it has the following nice second 

order accuracy properties (Chatterjee and Lahiri, 2008): 

 ( ) ( ) 2 1
4 ( ),BOOT EBP EBP

i iE MSE MSE o d nθ θ −⎡ ⎤ = +⎢ ⎥⎣ ⎦
 (5.42)                              

and 

 ( ) ( ) 2 2 1
4 ( ),BOOT EBP EBP

i iE MSE MSE O d nθ θ −⎡ ⎤− =⎢ ⎥⎣ ⎦
 (5.43)                              

where d  is the dimension of the hyperparameter λ  and n  is the total sample size.  

Formula (5.42) shows that the bootstrap estimator is approximately unbiased for the 

true ( )EBP
iMSE θ , and formula (5.43) gives the magnitude of the variability of this 

estimator. Similar properties hold when the other three bootstrap estimators are used. 

The implementation of the proposed parametric bootstrap method to estimate 

( )EBP
iMSE θ  is very simple in practice if we know how to estimate a consistent 

estimator λ  for one dataset. To estimate *M  and **M , all we need to do is to repeat 
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the first three resampling steps R  times, and compute the statistics *
iθ ,   

* *( , )
m

EBP
i mnθ y λ , **

iθ and ** **( , )
m

EBP
i mnθ y λ  each time.   

Let ( ) ( ){ }*( ) **( ) *( ) **( )*( ) **( ),  ,  , ,  , ,  r 1,...,
m m

r r r rEBP r EBP r
i ii i mn mn Rθ θ θ θ =y λ y λ  

denote all the statistics obtaining from the R  resampling processes. If R  is large 

enough, we can estimate  *M  and **M  using the following formulas: 

 ( ) 2
*( ) *( )* *( )

1
1 ,  ;

m

R r rEBP r
ii mnrM

R
θ θ=
⎡ ⎤= −⎢ ⎥⎣ ⎦∑ y λ  (5.44) 

 ( ) 2**( ) **( )** **( )
1

1 ,  .
m

R r rEBP r
ii mnrM

R
θ θ=
⎡ ⎤= −⎢ ⎥⎣ ⎦∑ y λ  (5.45)                               

Once *M  and **M  are obtained, the four parametric bootstrap MSE 

estimators can be computed easily.  

 

5.7 Estimating the MSE for an HB Estimator 

 
In the EBP approach, MSE criteria have been widely used to measure the 

uncertainty of the EBP of a parameter of interest. However, in the HB approach, the 

parameters of interest are estimated by the posterior means, and the posterior 

variances are used as a measure of precision of the estimator, provided they are finite.  

However, the MSE of EBP and the posterior variance of HB are not comparable. A 

natural question is: Can we estimate the MSE of the HB estimator? To answer this 

question, in this section, we study the relationship between ( )HB
iMSE θ  and 
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( )EBP
iMSE θ  for the same parameter of interest iθ  based on the same observed data 

and same model, and then show how to estimate ( )HB
iMSE θ . 

When the hyperparameter λ  is assumed known, both the HB estimator and 

the EBP estimator of iθ  reduce to the BP of iθ  , that is, ( | , )i sE θ y λ , which can be 

expressed as (4.17) in Chapter 4 or (5.16) in this chapter.  

When the hyperparameter λ  is unknown, the EBP estimator of iθ  is  

 ( | , ) ( , ),EBP
i i s i iE yθ θ ψ= =y λ λ  (5.46) 

where λ  is a consistent estimator of λ . As pointed out earlier, ML approach can be 

used to estimate λ , and  the ML estimator of  λ  is the estimator which maximizes the 

following likelihood (denoted as EBPL ): 

 
1 1

( ; ) ( ; ) ( | , ) ( | ) .
m m

EBP s i i i i i
i i

L f f y f y v f v dv
= =

= ∝ =∏ ∏∫y λ λ λ λ                  (5.47) 

Turning to the HB approach, following Kass and Steffey (1989), HB
iθ  can be 

approximated using the first-order Laplace’s method as below: 

 1ˆ( | ) ( | , ) 1 ( ) ,HB
i i s i sE E O mθ θ θ −⎡ ⎤= = +⎣ ⎦y y λ  (5.48)                               

where λ̂  is the posterior mode. According to the definition, λ̂  is the estimator which 

maximizes the following function (denoted as HBL ): 

1 1
( ; ) ( ; ) ( | , ) ( | ) ( ) ,

m m

HB s i i i i i
i i

L f f y f y v f v dvπ
= =

= ∝ =∏ ∏∫y λ λ λ λ λ             (5.49) 

where ( )π λ  is the subjective prior distribution of λ . 
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Assume ( ) cπ ∝λ , where c  is some constant, then the two functions defined 

by (5.47) and (5.49) are proportional to each other, that is HB EBPL L∝ .  As a result, 

the MLE estimator λ  for the EBP approach is equal to the posterior mode λ̂  for the 

HB approach, that is, ˆ =λ λ . Combining this result with (5.46) and (5.48), we obtain 

the following result: 

 11 ( ) .HB EBP
i i O mθ θ −⎡ ⎤= +⎣ ⎦                                                                         (5.50) 

Thus,  

 
( ) { }

( )

1

2

1 ( )

                 1 ( ) .

HB EBP
i i

EBP
i

MSE MSE O m

MSE O m

θ θ

θ

−

−

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +⎣ ⎦

 (5.51)                               

Therefore, when ( ) cπ λ ∝  is assumed for the HB, ( )HB
iMSE θ  can be approximated 

by ( )EBP
iMSE θ  within order 2( )pO m− , where  ML approach is used to estimate λ  

for the EBP.  

5.8 Concluding Remarks 

 
We have studied how to make inferences using the EBP approach for our 

proposed Bernoulli-Logit-EP model. Both the BP and the EBP for the random effect 

iv  and the mixed effect iθ  have been presented. We have also developed a 

methodology for estimating the MSE of the EBP using a Taylor series linearization 

approach and a double parametric bootstrap approach. Finally we have shown how to 

estimate the MSE of the HB estimation under certain conditions. We have not 

attempted to provide a rigorous proof of the exact order the remainder terms. The 
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advantages of the proposed double parametric bootstrap approach include simplicity 

of implementation and guarantee that the estimator will be positive.  
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Chapter 6:  Adaptive Hierarchical Bayes Estimation of 

Small-Area Proportions under Two-stage Sampling 

6.1 Introduction 

 
In the previous chapters, we have considered various methodologies for 

estimating small area proportions when the samples are drawn from a single stage 

design. In this chapter, we extend the ideas by estimating the small-area proportions 

when samples are drawn using a two-stage sample design.  

This chapter proposes a generalized linear mixed model that is suitable for 

binary data collected from a two-stage sample design. Like the previous chapters, in 

order to allow for kurtosis in the random effects, we relax the normality assumption 

for the random effects to allow for a class of distributions.  The model and notation 

are presented in Section 6.2. In Section 6.3, we illustrate some Bayesian inferences 

based on the proposed model. In Section 6.4, we conduct a data analysis using the 

proposed model based on samples drawn from a real finite population. The chapter 

finishes with some concluding remarks in Section 6.5. 

 

6.2 Notation and Model 

 
The small areas of interest are geographic areas that contain one or more 

primary sampling units (PSUs). Suppose that the i th small area contains iC  PSUs 

and the  j th PSU in the i th area contains ijN  secondary units (elements). Let ijky  be 

the binary characteristic of interest associated with unit k in PSU j of area i 
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( 1,..., ;ijk N= 1,..., ;ij C= 1,...,i m= ). A column vector of p  known covariates, 

1( ,  ...,  )ij ij ijpx x ′=x , is assumed to be the same for each unit k  in PSU  j of area i.  

 Under the above population structure, a common practice is to employ two-

stage sample design in each small area: Assume ic  PSUs are selected from area i ; if 

the j th PSU is sampled, ijn  elements are then selected from that PSU. If we know the 

small areas of interest at the design stage, it is possible to make them into strata, in 

which case the number of sampled PSUs ic  at the first stage is fixed and positive.  

Similar designs were considered by Scott and Smith (1969), Ghosh and Lahiri (1988), 

and Stukel and Rao (1999).  

However, in many cases, the small areas of interest are not identified at the 

design stage, and therefore they may not be design strata. Also, there may be too 

many small areas to make each of them into strata. As a result, the number of sampled 

PSUs falling into a small area is random and can be zero (e.g., see Mohadjer et al., 

2007).  In this research, we focus on this type of situation.  

For simplicity, we consider a two-stage design where a  PSUs are selected 

with probabilities proportional to size measures (PPS) from the PSU frame at the first 

stage,  and then a set of elements of size b  is selected with equal probability at the 

second stage within each sampled PSU. With this design, all the sampled elements 

are selected with equal overall probability (EPSEM). We still let ic  denote the 

number of sampled PSUs falling into area i . Then 0 i ic C≤ ≤  and  ic  is random, 

1,...,i m= . 



 

 162 
 

 Inferences about the finite population small-area proportions iP  are to be 

considered, where 1 11
iji iNC C

i ijk ijj jkP y N= === Σ Σ Σ , 1,...,i m= . Bayesian inference for iP  

requires assumptions about the distribution of ijky  for 

1,..., ;  1,..., ; 1,...,i iji m j C k N= = =  and a prior distribution for the parameters of the 

sampling distribution of { }ijky . Independently for all ( ,  ,  )i j k , it is reasonable to 

assume that 

 | ~ ( ),   1,..., ;  1,..., ; 1,..., .
ind

ijk ij ij i ijy Bernoulli i m j C k Nθ θ = = =  (6.1) 

Logistic regression with mixed effects is often assumed for the prior 

distribution of { }: 1,..., ;  1,...,ij ii m j Cθ = = . That is,  

 logit( ) ,    1,..., ;  1,..., ,ij ij i ij iv u i m j Cθ ′= + + = =x β  (6.2)                              

whereas, independently for all ( ,  )i j ,  

 2~ N(0,  ),    1,..., ;  1,..., ,
iid

ij u iu i m j Cσ = =  (6.3) 

and independently for all i ,  

 2~ N(0,  ),    1,..., .
iid

i vv i mσ =  (6.4)                               

The effect iju  accounts for the sampling design and iv  accounts for the random area 

effect. We call the model defined by (6.1)~(6.4) the Bernoulli-Logit-Normal model.   

As discussed in Chapter 3, the distributions of the random effects for some 

data may depart from normality. Instead of the normality assumption, we assume a 
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class of distributions – the exponential power distributions – for the random effects 

iv  and iju .  That is, the following models are assumed for  iv  and iju :   

 ~ (0, , ),    1,..., ,
iid

i v vv EP i mσ ϕ =  (6.5)                               

and  

 ~ (0, , ),    1,..., ;  1,..., ,
iid

ij u u iu EP i m j Cσ ϕ = =  (6.6)                               

where the hyperparameters vσ , uσ , vϕ  and uϕ  are assumed unknown. We call the 

model defined by (6.1)~(6.2) & (6.5)~(6.6) the Bernoulli-Logit-EP model.  Again, the 

strength of this model is that it uses a class of probability distributions instead of a 

specific one, and the underlying model will be chosen adaptively by the data. 

 

6.3 Bayesian Inference 

 
Let is  denote the sample of PSUs and ijs  denote the sample of elements, 

1,..., ,  1,..., .ij c i m= =  Let 
111 1 1( ,..., ;...; ,..., )

ms c m mcy y y y ′=y  denote the vector of the 

PSU level sample totals, where 1
ijn

ij ijkky y==∑  and ijn  is the sample size for PSU j  

in area i .  

The Bayes estimator of iP  is the mean of the posterior distribution of iP . First, 

consider the areas that contain at least one sampled PSU, i.e., 0ic >  . We can rewrite 

iP  as 

1
1 ij

c ci ij i ij i

N
i j s k s ijk j s ijk ijkkk s j s

i
P y y y

N ∈ ∈ ∈ =∈ ∈
⎛ ⎞= Σ Σ +Σ Σ +Σ Σ⎜ ⎟
⎝ ⎠

, 
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where c
ijs  is the set of non-sampled elements in the j th sampled PSU, c

is  is the set of 

non-sampled PSUs,  and 1
iC

i ijjN N== Σ  is the area level population total.  

From the assumed Bernoulli component of the model, ( )|ijk ij ijE y θ θ=  and 

( )| (1 )ijk ij ij ijV y θ θ θ= − . Therefore,  

( ) ( )

( )1

1| , | ,

1                         | ,

1                    ( ) ,

ci ij i ij

ij
c
i

ci ij i i

i ij s j s k s ijk j s ijk ij sk s
i

N
ijk ij skj s

i

j s k s ijk j s ij ij ij ij ijj s
i

E P y E y
N

E y
N

y N n N
N

θ θ

θ

θ θ

∈ ∈ ∈ ∈

=∈

∈ ∈ ∈ ∈

⎡ ⎤= Σ Σ +Σ Σ⎢ ⎥⎣ ⎦

+ Σ Σ

⎡ ⎤= Σ Σ +Σ − +Σ⎢ ⎥⎣ ⎦

y y

y      (6.7) 

and 

( ) ( )
( )

12

12

2

1| , , ,

1                     ( | , ) | ,

1                     

ij
c ci ij i

ij
c ci ij i

N
i ij s j s ijk ij s ijk ij skk s j s

i

N
j s ijk ij s ijk ij skk s j s

i

j
i

V P V y V y
N

V y y V y y
N

N

θ θ θ

θ θ

∈ =∈ ∈

∈ =∈ ∈

∈

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞= Σ Σ + Σ Σ⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦⎩ ⎭

⎡ ⎤= Σ Σ +Σ Σ⎢ ⎥⎣ ⎦

= Σ

y y y

( ) (1 ) (1 ) .ci i
s ij ij ij ij ij ij ijj sN n Nθ θ θ θ∈

⎡ ⎤− − + Σ −⎢ ⎥⎣ ⎦

  (6.8) 

Hence, the posterior mean of iP  is: 

{ }
( | ) ( | , ) |

1              ( )          

1              ( ) ( | ) ( | ) ,

ci ij i i

ci ij i i

i s i ij s s

j s k s ijk j s ij ij ij ij ij sj s
i

j s k s ijk j s ij ij ij s ij ij sj s
i

E P E E P

E y N n N
N

y N n E N E
N

θ

θ θ

θ θ

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

⎡ ⎤= ⎣ ⎦

⎡ ⎤= Σ Σ +Σ − +Σ⎢ ⎥⎣ ⎦

⎡ ⎤= Σ Σ +Σ − +Σ⎢ ⎥⎣ ⎦

y y y

y

y y

(6.9) 

and the posterior variance of iP  is: 
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( ) ( )

{ }
{ }

2

2

( | ) | , | | , |

1              ( ) (1 ) (1 )
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where 
( )
( )

exp

1 exp
ij i ij

ij
ij i ij

v u

v u
θ

′ + +
=

′+ + +

x β

x β
. Note that the posterior mean ( | )ij sE θ y  for ij s∈  

is different from ( | )ij sE θ y  for c
ij s∈ . It is difficult to express the posterior means of 

ijθ  in a closed-form because complicated integrations are involved.  

Now, consider the areas that do not contain any sampled PSU, i.e., 0,ic =   for 

some area i . For these areas, we can rewrite iP  as ( )1 1
1 iji NC

i ijkj k
i

P y
N = == Σ Σ . Then the 

posterior mean and posterior variance of iP  become a special case of (6.9) and (6.10) 

respectively. That is:  

 1
1( | ) ( | ) ,iC

i s ij ij sj
i

E P N E
N

θ=
⎡ ⎤= Σ
⎣ ⎦

y y  (6.11)         

 ( ){ }1 12
1( | ) (1 ) .i iC C

i s ij ij ij s ij ij sj j
i

V P N E V N
N

θ θ θ= =
⎡ ⎤⎡ ⎤= Σ − + Σ⎣ ⎦ ⎢ ⎥⎣ ⎦

y y y  (6.12)           

Let 
111 1 1( ,..., ;...; ,..., )

mc m mcθ θ θ θ ′=θ  and 1( ,..., )mv v ′=v . Let 

( ), ,Norm v uσ σ ′=λ β  and ( ), , , ,EP v u v uσ σ ϕ ϕ ′=λ β  denote the hyperparameters for 
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the Bernoulli-Logit-Normal model and the Bernoulli-Logit-EP model respectively. 

Reasonable prior assumptions will be applied to all the hyperparameters Normλ  and 

EPλ .  

The joint posterior distribution of all the model parameters based on the 

Bernoulli-Logit-Normal model is: 

( )21 1
2

1 1
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2

( , , | ) ( | , , ) ( | , ) ( | ) ( )
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The joint posterior distribution of all the model parameters based on the Bernoulli-

Logit-EP model is: 
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                                                                                                                                (6.14) 

where 0 (3 ) / ( )u u uc ϕ ϕ= Γ Γ , [ ]1 0 2 ( )u u u uc c ϕ ϕ= Γ , 0 (3 ) ( )v v vc ϕ ϕ= Γ Γ ,  and 

[ ]1 0 2 ( )v v v vc c ϕ ϕ= Γ . 

Neither of the joint posterior distributions defined by (6.13) and (6.14) can be 

expressed in a closed form, and therefore approximations are needed. However, the 
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joint posterior distributions can be simulated using MCMC methods, which can be 

implemented using the Gibbs sampler or the Metropolis-Hastings algorithm. We will 

implement the HB models using the MCMC technique in this chapter.  

In order to estimate ( | )i sE P y  and  ( | )i sV P y  as defined by (6.9) and (6.10), 

one can follow the approach used by Malec et al. (1997). Let λ  denote the 

hyperparameters, where Norm=λ λ  for the Bernoulli-Logit-Normal model, and  

EP=λ λ  for the Bernoulli-Logit-EP model.  Following Malec et al. (1997), we can 

first use the Metropolis-Hastings algorithm within the Gibbs sampler to generate R 

sets of parameters  

( ) ( ){ }( ) ( ) ( ) ( )
( ): , 1,..., , : , 1,..., , , : 1,...,r r c r r

i iij ij RDj s i m j s i m r Rθ θ⎡ ⎤∈ = ∈ = =⎢ ⎥⎣ ⎦
v λ  from 

their full conditional distributions (see the Appendix for the full conditional 

distributions of all the model parameters for both models), where ( )r
ijθ  and ( )

( )
r

ij RDθ  

denote the MCMC values for the sampled PSUs and nonsampled PSUs in area i  

respectively. Note that the full conditional distributions from which ( )r
ijθ  and ( )

( )
r

ij RDθ  

were drawn are different. Then we can use the R  sets, 

{ }( );  ,  1,..., ,  1,...,r
iij j s i m r Rθ ∈ = =  and { }( )

( ) :  ,  1,..., ,  1,...,r c
iij RD j s i m r Rθ ∈ = = , to 

obtain estimates of ( )|i sE P y  and ( )|i sV P y  as follows: 

( )

{ }( ) ( )1
( )1

ˆ |

1      ( ) ;ci ij i i

HB
i i s

R r r
j s k s ijk j s ij ij ijij ij RDj sr

i

P E P

y R N n N
N

θ θ−
∈ ∈ ∈ ∈=

=

⎡ ⎤= Σ Σ + Σ − +Σ⎢ ⎥⎣ ⎦∑

y
  (6.15) 
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           (6.16) 

One disadvantage of the above approach is that it produces only posterior 

means and posterior variances. It is, for example, not possible to compute credible 

intervals. To avoid this disadvantage, we propose a fully Bayesian approach for the 

small area finite population proportion iP .  

A fully Bayesian approach is to generate MCMC values ( )( ) : 1,...,r
iP r R= for 

iP  as follows: 

( )( ) ( ) ( )
( )

1 ,ci ij i i

r r r
j s k s ijk j si ij ij RDj s

i
P y y y

N ∈ ∈ ∈ ∈= Σ Σ +Σ +Σ   1,..., ,r R=          (6.17) 

where ( )( ) ( )~ ,  r r
ij ijij ijy Bin N n θ−  for ij s∈  and ( )( ) ( )

( ) ( )~ ,  r r
ijij RD ij RDy Bin N θ  for 

( )c
ij s∈ . The values  

( ) ( ){ }( ) ( ) ( ) ( )
( ), , 1,..., , , , 1,..., , , : 1,...,r r c r r

i iij ij RDj s i m j s i m r Rθ θ⎡ ⎤∈ = ∈ = =⎢ ⎥⎣ ⎦
v λ  

are obtained from their full conditional distributions (see the Appendix) using the 

Metropolis-Hastings algorithm within the Gibbs sampler algorithm. Note that for the 

areas without any sample, ( ) ( )
1 ( )

1 iCr r
i j ij RD

i
P y

N =
⎡ ⎤= Σ
⎣ ⎦

. 

The posterior mean and variance for iP  can be estimated as follows: 
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 ( )1

1
;

R
rHB

i i
r

P R P−

=
= ∑  (6.18)                               

and 

 ( )2( )1

1
( ) .

R
rHB HB

i ii
r

V P R P P−

=
= −∑  (6.19) 

Note that the posterior mean and posterior variance of iP  estimated from 

formulas (6.18) and (6.19) should be very close to those estimated using (6.15) and 

(6.16) respectively. Using the fully Bayesian method, we can also compute the 

credible intervals for iP  using the MCMC values{ }( ) : 1,...,r
iP r R= .   

6.4 Data Analysis 

 
6.4.1 The Study Population and the Sample Design 

 
As in earlier chapters, we considered the 2002 Natality public-use data file as 

our study population. The file included all births occurring within the United States in 

2002. The objective was to draw a set of samples from the finite population using a 

two-stage sample design, where single counties were treated as PSUs. Since for 

confidentiality reason, only counties of 100,000 or more population based on the 

1990 Census could be identified in the 2002 Natality data, we restricted our study 

population to those counties. As a result, our finite study population comprised of 

3,270,509 live-birth records in the counties of 100,000 or more population based on 

the 1990 Census. The final population included live-birth records in 454 counties 

within 49 states plus the District of Columbia (Wyoming was excluded). The 



 

 170 
 

parameter of interest was the state level low birth weight rate iP , 1,...,50i = , where 

low birth weight was defined as birth weight less than 2,500 grams. The values of iP  

varied from 4.9 percent to 15.1 percent across the states in this finite population.  

To mimic a real survey design, at the first sampling stage, our objective was to 

select 80 PSUs with PPS from the PSU frame. Let jN  denote the number of live-

birth records in the population of the j th PSU. Treating jN  as the size measure for 

the PPS selection, the probability for the j th PSU to be selected would be 

454
1j j j jprob cN N== Σ , where 80c =  is the sample size for the PSU selection,  

1,..., 454.c =  The probabilities jprob  for eight PSUs exceeded 1. We therefore 

selected those eight PSUs with certainty. SAS PROC SURVEYSELECT 

(METHOD=PPS) was then used to select the remaining 72 PSUs from the remaining 

446 PSUs on the frame without replacement. The procedure of “PPS sampling 

without replacement” in SAS uses the Hanurav-Vijayan algorithm for PPS selection 

without replacement (Hanurav, 1967; Vijayan, 1968). According to the Hanurav-

Vijayan algorithm, PROC SURVEYSELECT ordered the PSUs in ascending order by 

size measure before selecting the units. For details on the selection procedure, we 

refer to the SAS support website at  

http://support.sas.com/onlinedoc/913/docMainpage.jsp.  

The first stage sampling probabilities for the sampled PSUs were: 

446
1

1,                         if PSU  is selected with certainty

72 ,  if PSU  is selected without certaintyj
j j j

j
prob

N N j=

⎧⎪= ⎨
Σ⎪⎩
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 At the second sampling stage, 30 live-birth records were selected using 

EPSEM within each of the sampled noncertainty PSUs. The second stage sampling 

probability for the elements within the noncertainty PSU j  is therefore 

30 / jprob Nβ = . As a result, the unconditional probability for the elements selected 

in the noncertainty PSUs was: 446
1

72 30
u

jj

prob
N=

×
=
∑

.  For the certainty PSUs, the first 

stage sampling probability was truncated from some numbers larger than 1 to 1, 

therefore the second stage sampling probability should be increased to retain the 

original conditional probability. In order to retain an EPSEM design, the sampling 

rate within each certainty PSU α′  was set to uprob . SAS PROC SURVEYSELECT 

(METHOD=SRS) was used to select the second stage samples. The resulting 

unconditional probability for elements selected in the certainty PSUs was equal 

to uprob .  

The final samples were from 80 sampled PSUs within 32 states. The number 

of selected PSUs within each of the 32 states varied from 1 to 12. Among those states, 

15 states contained at least two sampled PSUs including the certainties, and the other 

17 states contained only one sampled PSU. The state level sample sizes in  varied 

from 30 to 476, and the PSU level sample sizes ijn  varied from 30 to 129.  The other 

18 states did not contain any samples.  

 Our objective was to estimate the state level low birthweight rate iP , 

1,...,50i = .  Based on the samples selected using the design described in section 
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6.4.1, we can only compute the direct point estimate of iP  for the 32 states with 

samples as follows: 

 1 1

1

,    1,...,32.
i ij

i

c n
ijkj k

iw c
ijj

y
p i

n
= =

=

= =
∑ ∑
∑

 (6.20) 

Note that we do not need the survey weights in the computation of iwp  

because the two-stage design employed is EPSEM. For the states containing at least 

one non-certainty PSU, the denominator of (6.20) is random because ic  is random, 

therefore iwp  defined by (6.20) are actually ratio estimators.  For the states 

containing only certainty PSUs, the denominator of (6.20) is fixed, therefore iwp  are 

sample means. The values of iwp  varied from zero percent to 23.3 percent. Two of 

the 32 states had zero point estimates. Variance estimation for iwp  using design-

based approach was not conducted due to too few selected PSUs within most of the 

states.  

To obtain estimates of iP  for the states that had no samples, synthetic 

estimators or model based/assisted estimators could be considered. To improve the 

direct estimates for the 32 states that had samples and to predict the estimates for the 

18 states that had no samples, HB approach described in Section 6.3 was 

implemented.   

6.4.2 HB Modeling Implementation 

 
Based on the proposed Bernoulli-Logit-EP model, we obtained the HB 

estimates for the finite population proportion iP  using the fully Bayesian approach. 
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For comparison purpose, we also obtained the HB estimates using the Bernoulli-

Logit-Normal model. We incorporated two covariates at the PSU level (percentage of 

births with mothers of age less than 15 and percentage of births that are the first child 

in the family) in the HB models. These two covariates are the same as the ones used 

in Chapter 3, except that they are computed at the PSU level instead of the state level. 

In addition, the following prior distributions were assumed for the hyperparameters:  

1)   Flat prior for β : ( ) 1f ∝β ; 

2) Uniform prior for the variance components: ~ (0,  )v Unif Lσ  and 

~ (0,  )u Unif Lσ , where L  is a large positive number;  

3) Uniform prior for the kurtosis parameters: ~ (0,  1)v Unifϕ  and 

~ (0,  1)u Unifϕ . 

The HB models were implemented using WinBUGS. For each model, three 

independent chains were used. For each chain, burn-ins of 20,000 samples were 

produced, with 20,000 samples after burn-in. The samples after burn-in were thinned 

by a factor of two to reduce auto-correlation of the MCMC results. The resultant 

30,000 MCMC samples after burn-in were then used to compute the posterior mean, 

variance, and percentiles for each HB model. The potential scale reduction factor R̂  

was used as the primary measure for convergence (see Gelman and Rubin, 1992). 

 

6.4.3 Comparison of Different Estimation Methods 

 
This subsection compares the results from different estimation methods for the 

states with and without samples separately. Figures 6-1 to 6-3 present the different 
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point estimates, associated square root of the posterior variance, and the 95% credible 

intervals from the Bernoulli-Logit-EP model for the 32 states with sampled births, 

while Figures 6-4 to 6-6 present the same statistics for the 18 states that had no 

sampled births. In Figures 6-1 to 6-3, the data are sorted in the increasing order of the 

state level sample size first, and then by the true iP . In Figures 6-4 to 6-5, the data are 

sorted by the increasing order of the true iP . 

In Figure 6-1a, we plot three point estimates of the state level low birthweight 

rates along with the true iP  (true.P) for the 32 states that contained sample births. The 

three point estimates include: the direct estimates (direct.P), the HB estimates using 

the Bernoulli-Logit-Normal model (HBNorm), and the HB estimates using the 

Bernoulli-Logit-EP model (HBEP). The first 17 states (in the first panel) on the graph 

had sample sizes 30in = , 1,...,17i = . The next five states (in the second panel) on the 

graph had sample sizes 60in = , 18,..., 22i = . The remaining 10 states (in the last 

panel) had sample sizes in  varying from 79 to 476, 23,...,32i = . We also computed 

the residuals of each of the point estimates which are defined as the differences 

between the estimates and the corresponding true values, i.e.,  ( )i i ires estimate P P= − . 

Figure 6-1b presents the plots of these residuals. The graphs clearly show that the 

direct estimate performs much worse than the two HB estimates for the states with 

small sample sizes. The direct estimates do not perform well for many of the states in 

the first two panels of the graph, where the state sample sizes are relatively small 

( 30in =  or 60). The performance improves for the states in the last panel of the 

graph, where the state sample sizes are all not smaller than 79. It is hard to distinguish 
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any differences between the two HB estimates from this graph. Further analysis using 

measure of absolute relative deviation was conducted. We present the results at the 

later part of this subsection.  

Figure 6-2 exhibits the posterior standard errors associated with the two HB 

estimates.  Again, the plot shows that the two HB estimators perform very similarly. 

Figure 6-3 displays the 95% credible intervals based on the Bernoulli-Logit-

EP model. The widths of the credible intervals are smallest in the last panel of the 

graph. Several states in the middle of the graph (e.g., states 13, 14, 15, 17 and 19) 

have largest credible interval widths. Many of the credible intervals seem right 

skewed with respect to the location of the true iP . This is partly due to the fact of 

small sample sizes. All the 32 credible intervals cover the true iP . Note that the 

credible interval for one state (state 31st) in the last panel covers the true value at the 

left bound.  The credible intervals based on the Bernoulli-Logit-Normal model look 

similar to those displayed in Figure 6-3; we do not display them here. 

We did not detect any evidence from Figures 6-1 to 6-3 which could explain 

the relationship between the different estimates and the true iP . 
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Figure 6-1a:  Comparison of different point estimates for the low birthweight rates (in 
percentages) for the 32 states with sampled births, where states are sorted by the sample sizes 
and true proportions iP . 
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Figure 6-1b:  Residual plots of different point estimates for low birthweight rates (in 
percentags) for the 32 states with sampled births, where the residuals were defined by 

( )i iestimate P P−  , and states were sorted by the sample sizes and true proportions iP . 
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Figure 6-2:  Posterior standard errors for the HB estimates of low birthweight rates (in 
percentage) for the 32 states with samples, where states were sorted by the sample sizes and 
true proportions iP . 
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Figure 6-3:  95% credible intervals of the HB estimates of low brithweight rates (in 
percentages) based on the EP model for the 32 states with samples, where states were sorted 
by the sample sizes and true proportions iP  (the red dot points are the true iP ). 
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                In order to estimate the iP  for the states without sampled births, we tried the 

following two approaches:  

1) Synthetic approach:  using the overall mean to predict for the states without 

sampled births:  

1 1 1

1 1

ˆ ,  1,...,18.= = =

= =

= =
∑ ∑ ∑
∑ ∑

i ij

i

m c n
ijki j kSyn

i m c
iji j

y
P i

n
 

The associated standard errors can be estimated using Taylor series 

linearization method. SUDAAN PROC DESCRIPT was used to obtain both 

the point estimates and the standard errors. The certainty PSUs were treated as 

strata instead of PSUs for the variance computation. Note that this synthetic is 

very simplistic. We consider it here just for comparison purpose. In practice, 

more complex synthetic approaches are usually preferred. For example, one 

can group states by geography, urbanicity, etc., and then use group means 

and/or use some control variables such as race distributions to adjust the 

overall estimates by those variables. 

2) HB approach: using the fully Bayesian approach described in Section 6.3 to 

predict for states without sampled births.   

Figure 6-4a presents the predicted values of the state level low birthweight 

rates for the 18 states without sampled births based on the two HB models and the 

synthetic method.  For facilitate comparisons, we plot the residuals of the point 

estimates from the true values in Figure 6-4b. For further analysis, we computed the 

average of the residuals (AR) of each estimate over the 18 states which was defined 
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as [ ]18
1

1 ( )
18 i iiAR estimate P P== −∑ .  The results of AR for HBNorm.P, HBEP.P, and 

Syn.P are 0.56%, 0.57%, 0.01% respectively, which are all positive, but pretty close 

to zero.  

Figure 6-5 presents the associated standard errors or posterior standard errors 

of these point estimates. The graphs indicate that both HB models perform better than 

the synthetic method in predicting iP  for the states with no sampled births. There is 

again little difference between the estimates produced by the two HB methods. 

Figure 6-6 displays the 95% prediction credible intervals based on the 

Bernoulli-Logit-EP model.   The performance of the credible intervals looks similar to 

those in the middle panel of Figure 6-3. 
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Figure 6-4a:  Point estimates for predicting the low birthweight rates (in percentages) for the 
18 states with no sampled births, where states were sorted by the true proportions iP .  
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Figure 6-4b:  Residual plots for the point estimates for predicting the low birthweight rates (in 
percentages) for the 18 states with no sampled births, where the residuals were defined by 

( )i iestimate P P−  , and states were sorted by the true proportions iP . 
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Figure 6-5:  Standard errors or posterior standard errors of different point estimates for 
predicting the low birthweight rates (in percentages) for the 18 states without samples, where 
states were sorted by the true proportions iP . 
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Figure 6-6:  95% credible intervals of the HB estimates based on the EP model for predicting 
the low birthweight rates (in percentages) for the 18 states with no sampled births, where 
states were sorted by the true proportions iP . 
 

It is hard to distinguish the performances between the two HB estimators from 

the above figures.  For further evaluation, we computed the absolute relative 

deviation ˆ100%i i i iARD P P P= × −  for the point estimates, where îP  is a point 

estimate of iP , 1,...,50i = . We then took average of the iARD  overall and by three 

group of states: 1) states with 30in = ;  2) states with 60in ≥ ; and 3) states with no 

sampled births. The average absolute relative deviations are presented in Table 6-1. 

The first column in the table is for the direct estimates and the second and third 

columns are for the HB estimates. From the table, we can see that HB estimates 

perform much better than the direct estimates in terms of ARD. There is no 

meaningful difference between the two HB models.  
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Table 6-1:  Average absolute relative deviations of the point estimates in estimating 

iP  (in percentages)  

 

State group  Direct estimate

HB estimate 
using the 

Normal Model 

HB estimate 
using the EP 

Model 
Overall — 15.9 15.9 

Small in  ( 30in = ) 57.6 15.6 15.7 
Medium to large in  ( 60in ≥ ) 41.8 22.6 22.3 
Zero in  ( 0in = ) — 10.7 10.7 

 
 

We present the posterior means and associated posterior standard errors for 

the hyperparameters of the two HB models in Table 6-2 below.  The estimates for the 

common hyperparameters 0 1 2( , , )β β β ′=β , uσ  and vσ  based on the Bernoulli-Logit-

Normal model are very close to those based on the Bernoulli-Logit-EP model. The 

posterior means of the two kurtosis parameters ( uϕ  and vϕ ) of Bernoulli-Logit-EP 

model are very close to 0.5, i.e., the normal case. This explains why we can not detect 

much difference between the two HB models. 

Table 6-2:  Posterior means and standard deviations of the hyperparameters in the HB 

models 

 

 
HB estimate using the Normal 

Model 
HB estimate using the EP 

Model 
hyperparameters Posterior mean sd Posterior mean sd 

0β  -3.76 1.38 -3.97 1.24 
1β  108.30 67.65 112.40 67.10 
2β  3.06 3.36 3.56 3.02 
uσ  0.292 0.150 0.316 0.142 
vσ  0.313 0.159 0.305 0.165 
uϕ  — — 0.466 0.294 
vϕ  — — 0.499 0.289 
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6.5 Concluding Remarks 

 
In this Chapter, we have extended the Bernoulli-Logit-EP model developed in 

Chapter 3 to a more general model which is suitable for binary data collected through 

a two-stage sample design. The data analysis showed clear superiority of the 

hierarchical Bayesian estimates over the direct estimates for estimating small area 

proportions. However, we did not detect strong evidence showing that the Bernoulli-

Logit-EP model performs better than the Bernoulli-Logit-Normal model for the 

sample dataset being considered. We need conduct further investigation to find out 

the reason.  

We note that all the credible intervals of the HB estimates cover the true 

values, which is too conservative comparing with the nominal 5 percent noncoverage. 

However, we cannot draw a firm conclusion about the coverage because the data 

analysis was based only on one sample. We might expect the credible intervals of 2 

states out the 50 states to fail to cover the true iP . 

For simplicity, the data was assumed free of nonsampling errors. However, 

this assumption can be easily violated for real surveys due to nonresponse. Further, 

all the sampled births were drawn independent within PSU based on our design. In 

practice, over-sampling for minority groups, clustering by minority and 

socioeconomic status within county, etc. are often used in a complex multistage 

survey. A more complex model and further research are needed to account for such 

situations. 
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Appendix for Chapter 6 

Appendix A:  Full conditional distributions for the two HB models 

A.1 Bernoulli-Logit-Normal model 

 
Assume the following prior assumptions for the hyperparameters:                  

( ) 1f ∝β  ;     ~ (0,  )u Uniform Lσ ;    ~ (0,  )v Uniform Lσ                          (A.1) 

The full conditional distributions for all the model parameters of the HB 

version of the Bernoulli-Logit-Normal model are as follows: 
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for (0, )u Lσ ∈ ; 

2 2 2
1
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2 2
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∑y θ v β , for (0, )v Lσ ∈ . 

 

A.2 Bernoulli-Logit-EP model 

 
In addition to the prior assumptions (A.1) used for the Bernoulli-Logit-Normal  

model, we assume the following prior assumptions for the hyperparameters uϕ  and 

vϕ : 

~ (0,  1)u Uniformϕ ;      ~ (0,  1)v Uniformϕ                                                (A.2) 

 
The full conditional distributions for all the model parameters of the HB 

version of the Bernoulli-Logit-EP model are as follows: 
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Appendix B:  WinBUGS Code for the two HB models 

B.1 For the Bernoulli-Logit-Normal model 

model  
{     
#L1 number of sampled PSUs 
for (i in 1:L1)  
{        
yobs[i] ~ dbin(theta[i], n[i])  
logit(theta[i])<- inprod(beta[], Xs[i,])+v[stateID[i]]+u[i]  
y2[i]~ dbin(theta[i], N2[i])   
} 
#L3 number of nonsampled PSUs 
for (i in 1:L3) {        
logit(theta3[i])<-inprod(beta[], Xns[i,])+v[stateID3[i]]+u3[i] 
y3[i] ~ dbin(theta3[i], N3[i])        
} 
#m states  
for (j in 1:m) 
{ 
v[j]~dnorm(0, precisonv) 
} 
for (i in 1:L1) 
{ 
u[i]~dnorm(0, precisonu) 
} 
for (i in 1:L3) 
{ 
u3[i]~dnorm(0, precisonu) 
} 
for ( i in 1:p)   
{ 
beta[i]~dflat() 
} 
precisonu<-1/sig2u 
precisonv<-1/sig2v  
sig2v<-pow(sigmav, 2) 
sig2u<-pow(sigmau, 2) 
sigmav~dunif(0, 100) 
sigmau~dunif(0, 100) 
} 
 

B.2 For the Bernoulli-Logit-EP model 

model  
{     
#L1 number of sampled PSUs 
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for (i in 1:L1)  
{       
yobs[i] ~ dbin(theta[i], n[i])  
logit(theta[i])<- inprod(beta[], Xs[i,])+v[stateID[i]]+u[i] 
y2[i]~ dbin(theta[i], N2[i])  
} 
#L3 number of nonsampled PSUs 
for (i in 1:L3)  
{        
logit(theta3[i])<-inprod(beta[], Xns[i,])+v[stateID3[i]]+u3[i] 
y3[i] ~ dbin(theta3[i], N3[i])        
} 
#m states 
#trick for specifying EP priors for v[j] 
C<-10000 
for (j in 1:m) 
{ 
zerov[j]<-0 
v[j]~dunif(-10000,10000) 
phiv[j]<- -(log(c1v)-log(sigmav)-
pow(abs(sqrt(c0v)*v[j]/sigmav),1/psiv))+C 
zerov[j]~dpois(phiv[j]) 
} 
c0v<-exp(loggam(3*psiv))/exp(loggam(psiv)) 
c1v<-sqrt(c0v)/(2*psiv*exp(loggam(psiv))) 
#trick for specifying EP priors for u[i] 
for (i in 1:L1) 
{ 
zerou[i]<-0 
u[i]~dunif(-10000,10000) 
phiu[i]<- -(log(c1u)-log(sigmau)-
pow(abs(sqrt(c0u)*u[i]/sigmau),1/psiu))+C 
zerou[i]~dpois(phiu[i]) 
} 
c0u<-exp(loggam(3*psiu))/exp(loggam(psiu)) 
c1u<-sqrt(c0u)/(2*psiu*exp(loggam(psiu))) 
#trick for specifying EP priors for u[i] 
for (i in 1:L3) 
{ 
zerou3[i]<-0 
u3[i]~dunif(-10000,10000) 
phiu3[i]<- -(log(c1u)-log(sigmau)-
pow(abs(sqrt(c0u)*u3[i]/sigmau),1/psiu))+C 
zerou3[i]~dpois(phiu3[i]) 
} 
# end of trick 
for ( i in 1:p)   
{ 
beta[i]~dflat() 
} 
psiv~dunif(0,1) 
psiu~dunif(0,1) 
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sigmav~dunif(0, 100) 
sigmau~dunif(0, 100) 
sig2v<-pow(sigmav, 2) 
sig2u<-pow(sigmau, 2) 
} 
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Chapter 7:  Summary and Future Research  

 
In this dissertation, we have developed new statistical methods that are useful 

for estimating small area proportions using survey data. Throughout the dissertation, 

our main goal has been to develop new small area models that incorporate non-

normality and non-linearity for dichotomous variables under different complex 

sampling designs, and to demonstrate how to make inferences using the new models. 

We have considered both area level and unit level models for an unclustered 

population, and also considered unit level models for a clustered population under a 

two-stage sample design. 

We first explored alternatives to the well-known Fay-Herriot model. The 

proposed beta-logistic model has three advantages over the Fay-Herriot model to deal 

with survey-weighted proportions: 1) it assumes a beta distribution instead of a 

normal distribution for the sampling model to deal with potential asymmetry or 

skewness of the sampling distribution; 2) it utilizes a logit link at the linking model to 

take care of nonlinear cases and to guarantee the estimates fall in the (0, 1) range; and 

3) it assumes the sampling variances are unknown and can be estimated 

simultaneously through the HB estimation process. The simulation results indicated 

that the beta-logistic model has fair coverage properties though with large simulation 

error.  

However, zero survey-weighted proportions frequently occurred in the 

repeatedly simulated sample data, especially in areas with small sample sizes. We 

discovered that the weakness of the proposed beta-logistic model was its inherent 

incapability to deal with zero direct estimates. The zero direct estimates were 
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converted to very small positive numbers in that study in order to obtain results. 

Nevertheless, the conversion may introduce addition bias and lead to invalid 

inferences. Consequently, we may fix the zero problems by improving the original 

model. One approach is to develop a two-part model, which assumes two modeling 

stages for the direct survey estimates: one determining whether the direct estimate is 

zero and the other determining the actual measure of parameters of interest if it is 

non-zero.   

In the second part of the dissertation research, we proposed robust unit level 

mixed models by assuming a class of distributions which includes normality for the 

random effects as a special case. These models were developed under a single stage 

sample design and a two-stage sample design. We explored hierarchical Bayesian 

inferences using different approximate methods including MCMC, first- and second-

order Laplace approximation, Gauss-Hermite Quadrature integration, and Monte 

Carlo integration methods, and demonstrated the advantages of MCMC especially 

under non-normal cases.  We have also studied the empirical best prediction approach 

for the model developed under a single stage sample design. We prefer the 

hierarchical Bayesian approach since it is more flexible and performs well compared 

to EBP. 

The class of distributions considered can capture kurtosis in the distribution of 

the random effects. However, other nonnormality phenomena such as skewness have 

not been studied. We will study a more general class of distributions which can 

capture both skewness and kurtosis and incorporate it in our robust unit level mixed 

models. In addition, in practice, large-scale national surveys often employ complex 
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multi-stage survey designs involving several layers of stratification and clustering. 

We plan to generalize our proposed unit level models to incorporate complex multi-

stage designs. 
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