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CONVENIENT TOTAL VARIATION DIMINISHING CONDITIONS FOR
NONLINEAR DIFFERENCE SCHEMES*

EITAN TADMORTY

Abstract. Convenient conditions for nonlinear difference schemes to be total variation diminishing
(TVD) are derived. It is shown that such schemes share the TVD property, provided their numerical fluxes
meet a certain positivity condition at local extreme values but can be arbitrary otherwise. Local TVD
conditions are invariant under different incremental representations of the nonlinear schemes, and thus
provide a simplified generalization of the global TVD conditions established by previous work.
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1. Introduction. We consider discrete approximations to the scalar conservation
law

(1.1) ;—t[u(x, t)]+£[f(u(x, M1=0,  (x t)e Rx[0,0).

Let v(¢) ={v,(#)} be the approximate solution, and denote by
(1'2) TV[v(t)]=Z |AUV+1/2|) AUV+1/2EUV+1(I)_DV(t)9

its total variation at time level t. A desirable property for such an approximate solution
to share with the exact one, is that its total-variation should decrease in time."' Difference
schemes which give rise to such total variation diminishing solutions—called TVD
schemes after Harten [3]—are the subject of this paper.

TVD schemes prevent spurious oscillations in their solutions, and unlike monotone
schemes, they can still allow for high accuracy in most of the computational domain.
Consequently, the TVD schemes can offer a substantial gain in computational efficiency
as indeed was verified in a wide range of applications (e.g., [12], [13] and the references
therein).

Sufficient TVD criteria for explicit and implicit fully discrete schemes were given
by Harten in [3], [4], and analogously for semidiscrete schemes in [14], [8]. Necessity
for three-point schemes was proved in [16, Lemma 2.2] and a general TVD characteri-
zation for multipoint stencils was provided in [5], [10]. Roughly speaking, these criteria
assert that a given scheme has the TVD property, provided it can be written in an
appropriate incremental form which meets a certain positivity condition, augmented
with a CFL restriction in the explicit case. A difference approximation of (1.1) can be
equally represented by a variety of different incremental forms, yet the positivity

* Received by the editors December 1, 1986; accepted for publication July 27, 1987. This research was
supported in part by the National Aeronautics and Space Administration under contract NAS1-18107 during
the author’s residence at the Institute for Computer Applications in Science and Engineering. Additional
support was provided by U.S.-Israel BSF grant 85-00346, by National Science Foundation grant DMS85-
03294, and by Army Research Office grant DAAG-85-K-0190 during the author’s residence at the University
of California, Los Angeles, California. The author is a Bat-Sheva Foundation Fellow.

+ School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel and Institute for Computer
Applications in Science and Engineering, NASA Langley Research Center, Hampton, Virginia 23665.

! We use the notion of order in its weak sense; thus, decrease means nonincrease, positive refers to
nonnegative, etc.
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CONVENIENT TOTAL DIMINISHING CONDITIONS 1003

condition mentioned above is not invariant under such different representations. Hence,
the key step in seeking the TVD property according to the above criteria, requires us
to find a particular incremental in which this positivity condition holds (e.g., [10,
Part I]).

In this paper, we provide alternative, more convenient TVD characterizations, in
the sense that they are uniformly valid for the various different incremental representa-
tions of a given scheme. To this end, we first note that the total variation of a grid
function depends solely on its extreme values (see (1.2)). It is therefore plausible to
assert that in order for a difference scheme to share the TVD property, its incremental
coefficients should be controlled only at critical neighborhoods where the approximate
grid solution attains extreme values. Indeed, our sufficient TVD conditions have the
flavor of this assertion, namely, they place a positivity restriction only on those
incremental coefficients which are associated with such critical neighborhoods.
Moreover, we are also able to express these local TVD conditions solely in terms of
the numerical fluxes of the nonlinear schemes, rather than invoking any of their special
incremental decompositions. Putting it in different words, we show that the TVD
property holds for difference schemes whose numerical viscosity corresponds to upwind
differencing at extreme values but can be arbitrary otherwise. Thus, in contrast to the
more restrictive global positivity conditions mentioned earlier, our TVD criteria are
localized to extreme values, and consequently can be equally applied to different
incremental representations. In fact, the essentially local nature of our criteria enables
one to achieve the TVD property, by a simple local modification of quite arbitrary
schemes whether stable or not; in Examples 2.7 and 2.8 below, this point is demonstrated
with central differencing of arbitrary order of accuracy.

We begin by discussing the semidiscrete case in § 2. Fully discrete implicit and
explicit schemes are treated in § 3. To utilize our TVD criteria in the latter cases, the
extreme values at the next time level are to be known in advance. This necessitates
additional ingredients in the fully discrete case, whose purpose is to provide us with
such a priori control on the behavior of extreme values at the next time level. In
particular, standard recipes of constructing TVD schemes, which make use of anti-
diffusive correctors and limiters, are all shown to naturally follow in light of our above
arguments.

2. Semidiscrete schemes. We consider semidiscrete schemes in the conservative
form
d 1
2.1 —uv,(t)=———1h, —h,_1/],
2.1) a1 0=~ Do hoyy]
with Ax, =3(x,.,—x,_,) being the variable meshsize and h,.,/> denotes the Lipschitz
continuous numerical flux which is consistent with the differential one

(2'2) hv+1/2=h(vvfp+la' t ,vv+p), h(ua ua' te ,u):f(u)
To study the TVD property of these schemes, we forward difference (2.1),
d 1 1
(233) E AUv+1/2 = _Zx—w: [hu+3/2 - hv+1/2] +R [hv+1/2 - hV*l/Z]a

multiply by $,.+1/2= S,+1,2(t) =sgn [Av,.,,,(¢)], and sum by parts, obtaining

d 1
(24) E TV[U(t)] =§—A7V [Su+1/2_su—l/2] : [h,,+1/2_h,,71/2].
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The only contributions to the sum on the right came from extreme values where
S,+1/27 S,—1/2, and the requirement of these contributions to be negative yields
the following result.

LEmMMA 2.1. The semidiscrete scheme (2.1) is TVD, if we have

(2.5a) hyv12Zh,_y/» at maximum values v,(t),
(2.5b) hy2=h,_, at minimum values v,(t).

In other words, Lemma 2.1 requires maximum values to decrease in time and
minimum values to increase in time. Moreover, if the distance between such extreme
values exceeds the stencil width of 2p+1 cells, then the corresponding terms inside
the summation on the right of (2.4) are independent and consequently (2.5) is also
necessary for TVD in this case.

We now turn to discuss the relation between the TVD criteria in Lemma 2.1 and
a different kind of TVD conditions due to Harten [3], [4] and Osher [8]; see also [5],
[14]. In order to implement the latter, we should start with nonlinear semidiscrete
schemes which assume the incremental form

d _
(2~6) E v,(t)= C:+1/2Avv+1/z_Cu—l/zAUu—l/z, AUu+1/25 vv+1(t)_vv(t)'
The nonlinearity is reflected here by the possible dependence of the coefficients C7.,,,
on v,_,41,° *°, U4,. Forward differencing of (2.6) gives

d _ _
(2-7) E AUu+1/2 = (Cj+3/2AUu+3/2 - C:+l/2Avu+l/2) - (Cu+1/2AUu+1/2 - Cu—l/_zAvuq/z)-

Multiplying (2.7) by s,.,,, and summing by parts we find

d d
-2 |AUV+1/2| =3 Sv+1/2° 7, AUu+1/z
dat’; ” dt

(2.8) _
= ‘“Z [(SIH—I/Z_SV—I/Z) : C:+1/2+(Su+1/z_5u+3/2) : Cu+l/2]AUV+1/29

and using the fact that® Av, .12 = S,412 - |Av,+1/2| where s2.,,,=1, we end up with

d _
(2-9) E TV[U(I)] = _Z [(1 —SV—I/ZSIH-I/Z) : C:+1/2+(1 _sv+1/2su+3/2)cv+l/2] : |AUu+1/2|-

The quantities inside the two round brackets on the right are equal either to 0 or 2.
Hence, the summation on the right is positive and consequently the scheme (2.6) is
TVD, provided the incremental coefficients, C.,,,, are positive

(2-10) C:+1/2§05 C:+1/2§0-

The positivity requirement (2.10) is the usual condition which characterizes the TVD
schemes (2.6), e.g., [3], [5], [8], [14]. Given a semidiscrete conservative approximation
of (1.1), it can be equally represented in a variety of different incremental forms. The
positivity condition is not invariant, however, under such different representations.
Thus, a key step in seeking the TVD property for a given scheme requires us to find
a particular incremental form in which this positivity condition, (2.10), holds (e.g., [11]).

2 The signum function at zero is defined to be +1, so that its square equals 1.
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Lemma 2.1 provides us with a local TVD criterion which makes no reference to
the incremental representation of the scheme (2.1). How does this compare with the
global positivity condition placed on the incremental coefficients in (2.10)? A second
glance at (2.9) shows that whenever the grid values v, and v,,, are located in a
monotone profile, i.e., when both 1—s5,_,/28,+1/> and 1—s5,.,,55,+3/> vanish, then the
corresponding term in the summation on the right of (2.9) also vanishes independently
of the incremental coefficients Cy.,,. This tells us, therefore, that the positivity
condition (2.10) can be localized to extreme values, bearing a close similarity to the
local nature of the TVD criterion (2.5). To be more precise, let us abbreviate

(2.11) Xo =18, 1/28+1/2;
then (2.9) reads

d _
(2.12) E TV[v(t)]=-X [XVCJ;+1/2+XV+1CV+1/2] : |AUV+1/2|,
and we are led to the following.

LEMMA 2.2. The semidiscrete scheme (2.6) is TVD, if we have

(2.13) cht+1/2+Xv+1C;+1/2§O~

For smooth grid functions, we have almost everywhere (i.e., with the exception
of critical neighborhoods), X» = X»+1 =0; hence the TVD condition (2.13) is automati-
cally fulfilled in these cases.

Once the positivity condition (2.10) is localized to those incremental coefficients
associated with extreme values (2.13), we can go one step further and complete the
comparison with Lemma 2.1, dealing with the numerical fluxes instead.

To this end, the scheme (2.1) is rewritten in its canonical incremental representation
(2.6) where (see [16, § 2])

1 .f(vv)—hv+l/2 - 1 f(v,)—hyp2

214)Clyyp=— o 2 oo e 2 Ay 50,
( ) +1/2 Ax, AUV+1/2 1/2 Ax, AUV—1/2 +1/2

Applying Lemma 2.2 to these coefficients, then (2.13) reads

(2.15a) L.f(vv)—hvi—l/Z_l_ Xv+1 _f(vu+1)_hv+1/2

=0,
Ax, Av,iq)2 Ax,iq Av, 12

or, equivalently,

v XV
(2.15b) i Soera(henr = f )+ L2 ol =S (0,2) Z0.

Hence, in case of an isolated extrema value where x, =2, x,., =0, the inequality
(2.15) is fulfilled if and only if

(2.16a) SV+1/2(hv+1/2 'f(%))éO,
(2.16b) Sv—l/Z(hV71/2 —f(‘vv))§0~

In fact, (2.16) covers the general case of extreme values whether isolated or not.
For, if x, = Xx,+1 = 2, then, since v, is also an extreme value, we have in view of (2.16b)

(217) Sv+1/2(hv+l/2—f(vv+l))éo;
and a weighted average of (2.16a), (2.17) yields (2.15).
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We summarize this by stating the following corollary.
COROLLARY 2.3. The semidiscrete scheme (2.1) is TVD, if we have

(2.18a) hyv122f(v,)Z h,_,/» at maximum values v,(t),
(2.18b) hyv12=f(v,)=h,_/», at minimum values v,(t).

The TVD condition (2.18), which was derived on the basis of the incremental
decomposition (2.14), is somewhat more stringent than our TVD criterion (2.5) in that
the former requires f(v,) to separate between the numerical fluxes on both sides of
extreme values. Incremental decompositions of (2.1) other than (2.14) may lead to
slightly different local TVD conditions; yet, they all share a similar kind of a separation
requirement at extreme values, which in view of the consistency relation (2.2) is a
generic property of the TVD numerical fluxes.

Lemma 2.1 and Corollary 2.3 enable one to verify the TVD property of first as
well as higher order accurate semidiscrete schemes, without making reference to any
of their special incremental representations. To demonstrate this point, we turn to our

first example.
Example 2.4. Consider the class of generalized MUSCL schemes [9], where

A A
(219) h,,+1/2=hE(U,,+—2§d,,, vu+1_7xdv+l)'
Here, Ax, = Ax is the uniform mesh spacing, h®(-, -) stands for any E-flux [8],
satisfying
(2'20) Sgn(wu+1~wu) : (hE(wu’ wu+1)~f(w))§o

for all w between w, and w,,,, and d, is an approximate derivative at x, which
guarantees second-order accuracy if chosen so that

1
(2.21) Ad,.1/n ~Ax [AV, 412~ Av,_1/5]+ O(AX)%.

In [9, Lemma 2.3], Osher introduces a special incremental decomposition of these
schemes in order to show that they meet the positivity condition (2.10) and hence
share the TVD property, provided for each v we have

Ax

AvV:t:l/Z

(2.22) 0= -d,=1.

Note that in the particular case of v, being an extreme value, (2.22) implies that
d, must vanish and, consequently, that accuracy degenerates to first order at these
points.

In contrast to the special positivity arguments made above, Lemma 2.1 suggests
astraightforward TVD derivation in this case. Localized at extreme values, we set d, =0,
so that in view of the E-condition (2.20), TVD is guaranteed if in addition we have

A

(2.23a) sgn (v,+;—0v,) =sgn (vyﬂ -v, —7x dm),
A

(2.23b) sgn (v, —v,_,) =sgn (U,,—v,,ﬁl—yxd,,ﬂ),

i.e., if the neighboring discrete derivatives of extreme values satisfy

1 Ax 1 Ax

(2.24) - =1, -
2 |Av,_) 2 |Av, 412

=1

dV+1

v—1
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One possible choice for such discrete derivatives, d,, could be

1
(225) dv= V—1/2|, |Avv+l/2|]a SVEE[SV—1/2+SV+1/2]‘

Sy
Ax

The above TVD analysis relies on the conservative form of nonlinear difference
schemes. We now turn to another representation which is useful for utilizing TVD
criteria for such schemes, making use of this viscosity form. To this end, recall the
definition of the incremental coefficients, C;.,,,, in (2.14). The identity

Afv+l/2

(2.26) Ax, 1 Chip—Ax Cv+l/2_A
Uy+1/2

k) Af‘lo'—}-l/ZEf‘(vv—*-l) _f(vv)9

shows that between these two incremental coefficients, C3.,,,,, there is only one degree
of freedom, which could be expressed in terms of Q,.,,

(2.27) Qui12= Axv+lcv+1/2+A'x Cv+1/2

Eliminating C7.,/, from (2.26) and (2.27) we find

1 Afv+l/2> + (Q
2Ax,,+1 ) v+1/2 = 2A v+1/27

Our scheme (2.1) is then recast into the viscosity form [17]

Af‘u-|>1/2)

228)C )2 = .
(2:28) s v

(Qv+1/2+

Al’u+1/2

d
2.29) —uo, ()=
(2.29) 20 (1)
thus revealing the role Q plays as the numerical viscosity coefficient. Applying (2.13)
to C,.,/, given in (2.28), Lemma 2.2 gives us the following lemma.
LEMMA 2.5. The scheme (2.29) is TVD, if its viscosity satisfies

1) —f (0, 1)+ [Qu+1/2AUu+1/2 QV71/2AUV—1/2]9

fv+1/2

(2.30) (Xquu+1+Xu+1Axu)Qu+1/2—(XquuH Xo+18x,) ——= A
Uu+1/2

In the case of equally spaced meshpoints, Ax, = Ax, we conclude that the scheme

d 1
(2'31) _vv(t)z_m[f(vv—%l) f(vv 1)]+ [Qv+1/2Avv+1/2 QV*]/ZAUV—I/Z]’

dt

is TVD, provided the following simple inequality is fulfilled at the neighborhood of
extreme values

fv+l/2

(2-32) (XV+XV+1)QV+1/2—(XV Xv+1)A
Uv+1/2

Example 2.6. Consider a first-order accurate TVD scheme of the form

d 1
P v,(t)= _Ax,, [hysrj2—huv)2]
(2.33)

1) —f (0, 1)]Jr Ax, [Qv+l/2Avv+l/2 QV*]/ZAUV—I/Z]-

In order to convert it into a second-order accurate TVD scheme, we add to it an
antidiffusive conservative difference

1 -~ o
(2.34a) _U W(1) = [hv+1/2 yﬂ/z]_g[hyﬂ/z_hu—l/z]-
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~

The numerical flux correction, h, ./, is chosen to be of the form [10, Cor. 4.9]
(2.34b) ﬁu+1/2=%[§u+g~u+1_Su+1/2|§u+1_g~v|],
where the so-called modified flux correction, g,, should satisfy

(i) sgn(g,)=S,-1/2=58,+12 at nonextreme values v,(?),

(ii) g,=0 at extreme values v,(t).

Now, if v,(t) or v,,() is an extreme value, then by (ii) we have that §,=0or g,,, =0,
and consequently h,.,,, vanishes in both cases since by (i)

hu+l/2=%[§v+l_Su+l/2|§u+l|]=0 or hu+1/2=%[g~u—su+l/2|g~v|]=0'

Hence, ﬁ,,+1/2=};y_1/2=0 at extreme values v,(t), and in view of Lemma 2.1, the
modified scheme (2.34) inherits the TVD property of (2.33). Next we observe that the
modification of (2.33) into (2.34) has the net effect of decreasing the original first-order
viscosity, Q,.+1/2, into Q,,+,/2—2(5V+1/2/Av,,+1/2); for second-order accuracy [18,
Lemma 4.4], the latter should be a Lipschitz continuous grid function of order
O(IAvv+l/2|)a ie.,

o 1 2
hv+1/2 = EQu+1/zAUu+1/2+ O(Avv+1/2) .

To this end, one could choose the modified flux correction, g,, as
~ Sl/ . 1
(2.34c) g, =5 - Min [|Qu+1/2Avu+1/2|, IQV——I/ZAUV~1/2|]5 Sy EE [Su—1/2+ Sv+1/2]'

In this way, second-order accuracy is achieved away from extreme values, noting that

~

h,.1/2 takes the value g, or g,., whose modulo quadratic error terms are equal to
%Qv+1/2Avu+l/2'

Example 2.7. A simple recipe suggested by (2.32), for constructing a TVD scheme
with second-order accuracy away from extreme values, is to set the numerical viscosity
Q to be

Af‘u-f-l/z

(2'35) QV+1/2=(XV_XV+1)A
Uy+1/2

The resulting scheme (2.31), (2.35), amounts to the usual second-order central differ-
encing augmented with first-order conservative correction at extreme values

4
dt

The last two examples dealt with TVD schemes which are second-order accurate
away from extreme values. In our final example for this section, we demonstrate a
simple recipe of enforcing the TVD property on arbitrary conservative schemes while
maintaining their high accuracy away from extreme values (see also [10]).

Example 2.8. Let h,.,,, be any highly accurate consistent flux. For example, the
2pth order accurate central differencing is identified with the numerical flux (e.g., [19])

(236) 400 = == [ (00) =0~ Ao a= A1/, 1)

hysr)o= z A (W)+ -+ F(0rssn)],

where

S

=1 =2 =—
dyy=3 dp=35 dn=
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for second- and fourth-order accuracy, or

(=D Ax 27

dy=—— 22X A= ST
N T sin (kAx/2) YTON+

for spectral accuracy occupying periodic stencils of 2N +1 meshpoints.
Next, we denote by

(2-37) hlllj+1/2 = %[f(vv) +f(Uu+1) —Sy+1/2 " |f(Uv+1) —f(Uv)l]

the usual first-order accurate upwind numerical flux, and let us consider the semidiscrete
conservative scheme

d 1
(2.38a) o v,(t)= TAx, [Hys12— H,—q)2],

where H,..,/, is defined as follows:
(2.38b) H, )= |SVSV+1| : hv+1/2+ (1- |svsv+1|)hllzj+1/2a
Sy E%(SV—1/2+ Sv+1/2)-

Away from extreme values |s,|=|s,.,|=1, and the original high accuracy of H,,,,,=
h,.., is retained in those regions. At extreme values s, =0, hence H,.,,, coincides
with the upwind flux h,l,JH/z, satisfying

hrl/j+l/2_ hlej—l/Z = Max [f(vv)af(vv+1)] - Min [f(vv-—l),f(vv)] 20,
at maximum values, and the inverse inequality
hf,jﬂ/z_ h:e]—l/z = Min [f(vv)af(vv+1)] —Max [f(vv~1)af(vu)] =0,

at minimum values. Consequently, the scheme (2.38) is TVD by Lemma 2.1.

We note that the numerical flux H,.,,, in (2.38b) is in general not smooth, except
for the second-order case, p =1, where the scheme (2.38) coincides with the previous
example (2.36) and its global second-order accuracy is maintained (e.g., [3], [4], [10]).
The highly accurate stencils, p > 1, require further numerical and analytical investiga-
tion with regard to their accumulated accuracy in extrema free regions.

Remarks. (i) It is instructive to see why the necessary and sufficient conservative
TVD criterion in Lemma 2.1 is reduced to the sufficient incremental TVD conditions
derived from (2.12). To this end, let us insert the incremental coefficients (2.14) into
(2.12) obtaining

4 Vio(i)]= -3

—h —h
dt [l”_.f(v”) ,,+1/2+ Xv+1 .f(vu-'}—l) V+1/2:| . |AU,,+1/2|-

Ax, Av,11/2 Ax, iy Av,4y/2
Now, Lemma 2.2 and Corollary 2.3 were derived by requiring a termwise positivity of

the brackets inside the summation on the right (see (2.15)). Instead, if we first reindex
this summation writing it as

Xv
-2 E (84120 (0,) = huirj2) + 5012(f(0,) — By 1/2)],
we then end up with the necessary and sufficient TVD criterion (2.5). This makes

apparent the difference between the two derivations due to the nonlinearity of the
schemes.
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(ii) The inequality (2.32) shows that the scheme (2.31) has the TVD property with
an arbitrary amount of viscosity, except for intervals containing isolated extreme values
where we need at least

Afv+l/2
AUy+1/z

(2~39) Qv+1/2i‘

The quantity on the right corresponds to upwind differencing, and is responsible for
the familiar first-order ““clipping” phenomenon at the extreme of TVD schemes (e.g.,
[3], [8], [11]).

(iii) A classical argument which involves Helly’s theorem, Lipschitz continuity of
|v(-, t)|11, and the diagonal process implies the convergence of TVD schemes to a
weak solution of (1.1) (e.g., [4]). In particular, this is true for central differencing,
Q,+1/2=0, augmented with extreme upwind differencing (2.36). However, the limit
solution may still be a physically irrelevant one (e.g., [9]). To avoid the latter, say in
the convex case where f"(u)>0, it is enough to have viscosity at the amount which
exceeds [18]

(2.40) Q»+1/2§% 'f"(UV+1) : Av:—+l/2a Al’jﬂ/z = %(Avv+l/2+ |AUV+1/2|)-

Thus, central differencing will do along the monotone decreasing profiles, and an
additional O(|AvV+1 /2|) amount of viscosity is required along the monotone increasing
ones.

3. Fully discrete schemes. We consider two-level fully discrete explicit or implicit
schemes in the conservative form
(3~1) Uv(t"'At):Uv(t)_)‘v[huﬂ/z_hv—l/zl
Here, Ax, =3(x,+;—X,_;) and At are the variable meshsize and timestep such that
A, =At/Ax,, and h,.,,, is the consistent Lipschitz continuous numerical flux which
depends on 2p +1 neighboring gridvalues from both time-levels, t and ¢+ At.

To study the TVD properties of these schemes, we forward difference (3.1)

(3.2)  Avyypo(t+ A1) =A0,115(8) = Aii[Boisso— Hurr2] H A Buir)2— By o],
multiply by s,.,/,(t+At)=sgn [Av,.,/,»(t+At)] and sum by parts, obtaining

TV[v(t+A0)]=Y s,41/2(t + A1) - Av,1y/0(2)

(3.3)
FX A (oot +A) = 5,10t +AD] - [hysr)—hoy ).

The first summation on the right does not exceed TV[v(t)], and the requirement for
the second one to be negative yields the following result.

LemMMA 3.1. The fully discrete scheme (3.1) is TVD, if we have
(3.4a) hy12Zhy_y/n  at maximum values v,(t+At),

(3.4b) hys12=h,_ at minimum values v, (t +At).

Lemma 3.1 is a manifestation of our previous assertion, namely, that the TVD
properties of conservative schemes are determined solely by the behavior of their
numerical fluxes at extreme values. Yet, unlike the semidiscrete case we had previously,
here there is the additional difficulty of tracing these unknown extreme values at the

next time-level, ¢+ At.
A similar situation occurs with the incremental representations of fully discrete

nonlinear schemes. Consider, for example, two-level explicit schemes in the incremental
form
(3'5) U,,(t + At) = U,,(t) + C:—+1/2AU,,+1/2(t) - C;~1/2AvV71/2(I)9
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with C71y/2=C7r1/2(v,—pta(t), - -, v,4,(2)). To study the TVD properties of such
schemes, we forward difference (3.5), multiply by s,.,,,(¢+At), and sum by parts,
obtaining

TV[v(t+ A=Y sp412(t+AL) - Avyyq5(2)
(3.6) . _
=2 Sus12(tF A S, (D[ X (EHAD Cri ot X (EH A CLiy)2] |AUV+1/2(t)|‘

Since the first summation on the right does not exceed TV[v(t)], we arrive at the
following sufficient TVD condition.
LEMMA 3.2. The explicit scheme (3.5) is TVD, if we have

(3.72) x,(t+ADC L1t Xoar(tF A Cy1 2 =0 when s,41)2(1+ A1) = 5,.1/2(1),
(3.75) x,(t+ADC 1 F X (EFA)Criyn =2 when 5,41 (1+AL) # 5,41)2(1).
Applying the last result to the incremental coefficients (compare (2.28)),

A.f1/+1/2

1
(3.8) Cf+1/2=5(QV+1/2:E’\aV+1/2)’ a”ﬂ/zEAqu/z,

we find that for equally spaced explicit schemes given in the viscosity form

(39 0.(1+80 = 0,00 =310 = [0, )] +3 [ Queshbusr/2= Qurryahtural,
A=A,

the following TVD characterization holds.
LEMMA 3.3. The explicit scheme (3.9) is TVD if its viscosity coefficient satisfies

(3.10a) [Xu(t'l'At) +X,,+1(t+At)] : Qu+1/2§ [Xv(t+ At) —Xv+1(t+At)] : )\au+1/z,
and the following CFL-like condition is fulfilled
(3.10b) Max [Qy41/2, M@yl IS 1.

Thus, we conclude that the TVD property of either scheme, (3.5) or (3.9), is
determined by the behavior of their incremental and viscosity coefficients at extreme
values, but, as before, the difficulty lies in obtaining a priori knowledge about these
values at time level ¢+ At.

The inequality 0= y =2 suggests one way of avoiding this difficulty, namely, to
replace (3.7) by the simpler positivity condition

(3.11a) Cj+1/2§0, Cli1/220,
together with a CFL restriction
(3.11b) Cri2t Corp=1.

Yet, the simplicity of this sufficient TVD condition, which is originally due to Harten
[31, [5]1, [9], [15], is obtained at the expense of its global dependence on the special
incremental form being used.

Another attractive approach to circumvent the difficulty of tracing the next time-
level extreme values is to view the scheme (3.1) just as a first predictor step. Then, the
resulting spatial variation at time-level ¢+ At can be made the basis for an augmenting
corrector step which will preserve the monotonicity of the predictor step and which
will comply with (3.4). Such an argument was used in connection with the FCT
algorithm [1] and the ACM method [2]. In the following example, borrowed from
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[11, Cor. 4.9], we work out another corrective-type recipe of this kind, which highlights
the essential features distinguishing the fully discrete explicit case from the semidiscrete

one.
Example 3.4. Consider an explicit first-order accurate TVD scheme of the form

vi(t+A) =0,(t) = A[hyirya—hyoy)o]
(3.12a)

1
=v,(t) _% [f(v,41) —f(v,21)] +5 [Qv+1/2Avv+1/2 - Qv—l/zAvuﬂ/zl

The asterisk indicates the predicted values at time-level ¢+ At. In order to convert this
scheme into a second-value accurate TVD one, these values are corrected to second-
order accuracy, by augmenting an antidiffusive corrector step of the form

(3.12b) 0, (t+At) = vE(t+At) ~[hyrrjn—hy_y ).
The numerical flux correction, ﬁvﬂ /2, 1s chosen to be (compare Example 2.6),

(3120 =3 (8 + B sEalfon—&IL  sTaa=sen [Avkya(i+AD)],
where g, should satisfy the two properties
(i) sgn(g,)=s¥_,,=s%,/> at nonextremum values v}(t+At),

(ii) &,=0 at extremum values v¥(t+At).
In addition, we require that the predicted monotonicity should be preserved, i.e.,

(iii) $,41/2(t+A7) =55, 5(t+AL),
so that by the usual summation by parts we have

TV[o(t+At)] =) sk (et +A)AvEL, (1 +AL)

+Y [skp(t+ A — sk, (1 +A)] - [ﬁv+1/2—};v-1/2]'

Since the first summation on the right equals TV[v*(¢+At)]=TV[v(¢)], while the
second is nonnegative, consult Example 2.6, the scheme (3.12) is TVD. Next, its
second-order accuracy is achieved if

ﬁv+1/2:%[Qv—kl/z_Azai—i-l/Z] “AvEH(t+ AN+ O[Avf+1/2(1+At)]2-

To satisfy this (away from extreme values), and the first two properties listed above,
we choose

*
- Sy
(3.12d) g, = 2 B[(QV+1/2_)\2ai+1/2) : IAUfH/zL (Qv—1/2_/\2ai—1/2) : IAUfﬂ/zH

where the Lipschitz continuous form, B[ -, -], is yet to be determined so that the third
property of monotonicity preserving will be satisfied. To this end, we note that

|ﬁv+1/2| é Min [|g~v|’ |§V+1|]
and therefore, since ﬁyﬂ /2 and ﬁy_l ,» must agree in sign,
|AUV+1/2(H'A1) —Av¥, (1 +At)| = |ﬁv+3/z —25,,+1/2+ ﬁv—1/2| = |gvl + |g~v+1|-

Hence, the sum on the right does not exceed |Av’,',‘+,/2(t+At)|, and consequently the
monotonicity preserving property holds, provided B[-, -] is chosen as the bilinear
limiter form

(3.12¢) B[w,, wo] = Min [|w,], [w,[].
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The last example demonstrates the typical situation with explicit schemes, where
the TVD property necessitates one kind or another of a Minmod limiter in order to
prevent new extrema values other than those which propagate from time-level t.

An implicit version of the above corrective procedure is given in the following

example.
Example 3.5. Consider an implicit first-order accurate TVD scheme of the form

(3.13a) vi(t +At)+% [f(vfﬂ) —f(v?f—l)] +% [Qu+1/2AU:'f+1/2_ Qu—l/zAUf—l/z] =1v,(1).

We augment it with an antidiffusive fully implicit corrector step of the form

(3.13b) 0, (t+At)+[hy s o= hy_y 2] = vE(t+Al),
where
(313C) I’Iv+l/2=%[g~:u+g~v+l_sv+l/2(t+At) : |§v+1_§v|]'

Then (3.13b) serves as a second-order accurate solvable correction, if we set
(3.13d) g, =3"s,(t+Atf) - Min [(Qvil/2+A2aiil/2(t+At)) : |Av,i1/2(t+At)|].
The resulting scheme (3.13) is TVD under the original (possibly unlimited) CFL
condition. Indeed, we have
TV[o(t+A)]=Y s,401/2(t + At)AvY,5(t +AtL)

+ Y [Sr1y2(t+AL) =5,y 5(t +AD)] - [ﬁyﬂ/z_ﬁuﬂ/z];

the first summation on the right does not exceed TV[v*(¢+At)]=TV[v(?)], while the
second vanishes since ., ,2 do at extreme values where s,.,/5(t+At) # 5, /5(t + At).

Other recipes for constructing implicit TVD schemes which are second-order
accurate away from extreme values are suggested by the following analogue of Lemma

3.3.
LEMMA 3.6. The implicit scheme given in the viscosity form

(1% A0+ [0 (1+A0) = (0,1 (1+ 1))
(3.14)
2 [Quira A a1+ A0) = Qu oo, a1+ 80T =0,(0)

is TVD, if we have
(3.15) [x,(t+AD)+ xou1(t+AD)]Qur12Z X (1 +AL) — x,1a (2 +AD)] - Aa,+1/2(t+At).
We omit the proof and turn to our final example.

Example 3.7. The viscosity of the second-order accurate implicit Lax-Wendroff
scheme is modified at extreme values, by setting

1
(3.16) Qv+l/2 = "/\zaiﬂ/z +E (Xu +Xu+1) : [A|au+l/2| +A2ai+1/2],

where the quantities on the right are evaluated at time level ¢ + At. The resulting scheme
(3.14), (3.16) can be easily checked to satisfy (3.15) and hence is TVD. However, the
linearized implicit LW scheme is unconditionally unstable—the amplification factors
of its nonconstant modes all lie outside the unit disc [7]. Consequently, the TVD
property of (3.16) is achieved by switching to upwind differencing at the extreme of
these unstable oscillatory modes, at the expense of lowering the effective overall
accuracy.
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Remarks. We note that the TVD characterization in Lemma 3.1 does not assume
the CFL condition; it enters, indirectly, through the requirement of controlling extrema
values at the next time-level. Substitution of the canonical incremental decomposition
(2.14) into (3.7) reveals that the same is true with respect to the TVD conditions in
Lemma 3.2 and 3.3, where the CFL limitation is implicitly contained already in (3.7a)
and (3.10a).

Acknowledgment. The author thanks Ami Harten for his constructive remarks
concerning this work.
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