Collaborative Multimedia Documents: Authoring and
Presentation®

Kasim S. Candan' B. Prabhakaran? V.S. Subrahmanian®

Abstract

Multimedia documents are composed of different data types such as video, audio, text and
images. Authoring a multimedia document is a creative exercise. Unlike traditional computer
supported collaborative work where documents are composed of static objects, multimedia docu-
ments have temporal, spatial and quality of service (QoS) requirements that must be supported
by any collaborative multimedia platform. In this paper, we show that most requirements
(including temporal, spatial, and QoS requirements) for collaborative multimedia systems can
be expressed in terms of a highly-structured class of linear constraints called difference con-
straints that have been well-studied in the operations research literature. As a consequence,
well known algorithms for solving difference constraints may be used as a starting point for
creating multimedia documents. Based on our difference-constraint based characterization, we
develop efficient, incremental algorithms for creating and modifying multimedia documents so
as to satisfy the required temporal, spatial and QoS constraints. We further develop methods to
identify inconsistent requirements, and show how such inconsistencies may be removed through
constraint relaxation techniques.

1 Introduction

A multimedia document typically consists of a number of media objects that must be presented
to a person “reading” (or “viewing”) the document in a coherent, synchronized manner. For
example, a multimedia document on conservation of crocodiles in the Everglades may consist of an
introductory audio-video 3 minute presentation laying out the background of the Everglades, a 1
minute automatically scrolling text window describing various affiliated projects, and a 5 minute

*This research was supported by the Army Research Office under grant DAAH-04-95-10174, by the Air Force
Office of Scientific Research under grant F49620-93-1-0065, by ARPA/Rome Labs contract Nr. F30602-93-C-0241
(Order Nr. A716), and by an NSF Young Investigator award IRI-93-57756. Proofs of all results are contained in the
appendix.

"Department of Computer Science, University of Maryland, College Park, Maryland 20742. Email:
candan®@cs.umd.edu.

‘Department of Computer Science, University of Maryland, College Park, Maryland 20742. Email:
prabha®@cs.umd.edu.

SDepartment of Computer Science, Institute for Advanced Computer Studies & Institute for Systems Research,
University of Maryland, College Park, Maryland 20742. Email: vs@cs.umd.edu.

video clip of the animals themselves, accompanied synchronously by a voice recording describing
the animals seen in the video-clip.

In general, a multimedia document is composed of a set of media objects, along with an as-
sociated set of presentation requirements, These requirements could include temporal and spatial
requirements that have to be satisfied during the presentation. Furthermore, in the case of dis-
tributed multimedia document presentations, the network has to guarantee a minimum Quality
of Service (QoS) for retrieving the required media objects from the appropriate document servers.
These requirements, temporal, spatial and QoS, have to be described for a multimedia document.

The primary aim of this paper is to develop a mathematical framework that supports the
creation and incremental modification of multimedia documents. We show that spatial, temporal,
and QoS constraints can all be uniformly described within a small class of the language of real
valued linear constraints. This class of constraints are referred to in the Operations Research
literature as difference constraints. While generalized linear constraints [9] have the form

az; +agre+ -+ apz, < b (1)

where aq, ..., a,,b are rational numbers (positive and negative), and 21, ..., 2, range over the real
numbers (positive and negative), difference constraints have the form

1 — T3 S b. (2)

Thus, difference constraints are a special case of linear constraints where:

1. There are only two variables (i.e. n = 2 in Equation 1), and

2. One variable has coefficient 1 (i.e. a; = 1) while the other has coefficient —1 (i.e. ag = —1).

Due to the fact that difference constraints have a very tightly restricted syntactic form, it turns out
that they are very easy to solve. As space, time, and QoS constraints can all be described within the
framework of difference constraints, this means that a constraint solver for difference constraints
may be used to handle space, time and QoS constraints within a single unified implementation.
Using difference constraints, we will show how it is possible to determine if a given set of media
objects can be scheduled in a way that satisfies the desired constraints — if no such schedule
exists, then this means that the performance criteria demanded by the authors of the document
are inconsistent. Our algorithms will check for such inconsistencies. We will further show how
an inconsistent set of constraints may be relaxzed so as to restore consistency. We develop three
different notions of relazations and show that one is NP-complete, while the others are solvable in
polynomial-time (and hence are perhaps more suitable for real world use).

Finally, any framework that supports collaborative multimedia authoring must be incremental
as media objects may be modified dynamically by the author (or authors) of the media document.
For example, during the development of a multimedia document, one of the collaborators may
“check out” a video-clip and edit it. The result of this edit operation may increase the length of
the video clip, thus invalidating a previous solution of the constraints governing this multimedia
presentation. The revised set of constraints must be re-computed. We will develop an incremental
algorithm for this purpose.

This paper is part of a long term project on developing support for collaborative multimedia
systems, jointly between University of Maryland and University of California, San Diego. In our
first paper on this topic [2], we developed techniques whereby objects could be routed across a
network (and possibly transformed along the way) in such a way that the person (i.e. author)
requesting the object received it at the lowest possible cost and at the desired quality. However,
no issues regarding the presentation or editing of objects was considered there, just routing and
communication. In this effort, we assume that network servers can route the object to the author
in the form and within the quality desired; instead, we concentrate on how such a set of objects
must be presented within a multimedia presentation with space, time, and QoS constraints.

2 Collaborative Multimedia Systems (COMS): Desiderata

In any collaborative multimedia system, four fundamental questions need to be addressed:

(Problem 1) Who may access a given media-object ?

(Problem 2) If collaborator (' is allowed to access a given media-object, then what operations
may he perform on it ?

(Problem 3) If collaborator C' is allowed to access a given media-object, how should that object
be routed to him across the network so as to ensure that: a) he can perform the operations
he needs to perform, b) the cost of sending the object to him is minimized, and c) the object
has the desired quality ?

(Problem 4) How should the collaborative multimedia system (COMS, for short) modify the
overall document structure in the face of changes made to a media-object by a collaborator
who is given write-access to that object? How should the COMS present only relevant parts of
a multimedia document when a reader is only interested in certain portions of the document?

Questions (1) and (2) above have been studied intensely in the (distributed) operating systems
arena where access methods and protocols for sharing files and file systems are well developed.
Question (3) above was recently studied in detail by Candan, Subrahmanian and Venkat Rangan
[2]. The primary aim of this paper is to study question (4) above.

In order to have a solution to this problem, the properties and the structure of the COMS
environment needs to be identified. Unlike text based collaborative environments, in a multimedia
environment, the authors work on a common document which consists of a variety of objects. There
are temporal objects, such as video clips, that must be presented over a period of time, and there
are static objects that do not have any temporal dimension. Similarly, there are objects that are
visible, i.e. that should be displayed on the screen and hence have spatial attributes, and there are
objects that are not visible on the screen (e.g. sound) that have no spatial attributes. Each of
these different forms of data has very different characteristics, and different 1/0O requirements. It
is the responsibility of the designer of the collaborative multimedia system to guarantee that such
different forms of data are appropriately handled.

Furthermore, the multimedia objects constituting a multimedia document may be distributed
over a computer network. This distributed aspect of the multimedia document poses some prob-
lems to a collaborative multimedia system. First, each user (or multimedia author) on the network
may have different viewing and editing capabilities. Second, the network may not be homogeneous,
and this heterogeneity may cause differences in communication requirements. Third, it is entirely
possible that the temporal constraints (likewise spatial and QoS) associated with objects are mu-
tually inconsistent. It is the job of the collaborative multimedia system to identify these conflicts
and suggest techniques to resolve these conflicts.

Finally, when a document is being collaboratively authored, the communication facilities and
the QoS offered by the network may lead to multiple alternative presentations of the document.
Furthermore, both the authors editing the document as well as users viewing the document, may
decide that they are only interested in a partial view of the document (e.g. only the portions that
are modified by them in the case of authors, or in the case of users, the specific portions of direct
interest to them). Similarly, an individual viewing the document may wish to skip viewing certain
parts of the document. Hence, the author(s) and viewer(s) may share the same document and at
the same time might see different presentations of it. The precise form of each presentation is based
on the following factors:

o User access rights
e User projection of the document

¢ Communication and QoS requirements

Local capabilities

Authors editing the document.

Figure 1 shows, in detail, the structure of such presentations. In particular, the document shown
at the top of Figure 1 may be presented in two different ways to two different users, depending
upon the interests of those users, their access rights, the communication and QoS requirements
based on the locations of those users, and the capabilities and facilities available at their local host.
The following example demonstrates this.

Example 2.1 Figure 2 shows a very simple multimedia document which consists of three multime-
dia objects: ol, 02 and 03. The multimedia author(s) state the following presentation constraints:

e 02 should appear on the screen only after the presentation of ol is completed.

e 03 must start at the same time as 02.
Now consider three users ul, 42, and u3 with the following facts and requirements:

o [t takes 3 seconds for ul to get ol across the network, and it takes 5 seconds for ul to get 02
and o03.

Objects

(removes object
and constraints)

(removes object
and constraints)

(adds constraints)
,,,,,,, adQos T
X Local capabilities
Filterd (Hardware and software) (adds constr.)
Filter5 | Local editing (adds, and deletes
objects and constr.)

Objects

User 1 User2

Figure 1: Multimedia system structure

o)y ——(s9) w0
‘ o2 ‘ (at site2) \
‘ 03 ‘ (at site2)
I I I I U1
0 7 10 11

Figure 2: Duration of Objects in Example Multimedia Document

02
ul ol
03
02
u2 ol
o3
ol
u3
03
123 4586 7 8 910 15 20 25

Figure 3: Different presentations of the same document.

e 42 has immediate access to objects 02 and 03, but it takes 1 second for him to get ol.
Moreover, the user u2 wishes to start the presentation of object 03 within 8 seconds of the
beginning of the presentation.

e u3 also has immediate access to the objects 02 and 03, and it takes 1 second to get ol.
However, u3 does not want to see 02.

Figure 3 shows some possible realizations of this multimedia document for users ul,u2 and
u3, respectively. It is easy to see that when object 02 is omitted from the presentation by u3,
all related constraints are suppressed, thus leading to alternative renderings of the multimedia
document. Hence, the display of 03 can overlap with the display of ol. a

2.1 Collaborative Authoring

In the distributed multimedia environment described above, there are two ways an author can edit
a document. The first way is to edit the local view of the document. This is the copy of the
presentation downloaded on the author’s local site. In particular, this copy may differ from the
“overall” document because the author’s local presentation may differ from the overall document
(cf. Example 2.1 above). The changes made on the local view will not be observed by the other
readers of the document. Such local editing is useful in setting up one’s own work space, and in
adding tools and objects for local use. Note however that, such modifications on the local view of
the document may be in conflict with the specifications of the original document. In some cases
the user may want to adhere to the specifications of the original document, while in others, the
user may wish to relax the specifications of the document in favor of his own modifications. Hence,
there are two types of editing an author can perform on the local view of the document:

e cautious edit: make the change in the document unless the change conflicts with the docu-
ment specifications,

Stream 1

Stream 2

Ts STRY)

Time

t 3 ty
Figure 4: An Example Multimedia Document Structure

e overwrite edit: discard the specifications of the original document, if necessary, and perform
the changes to the document.

The second way is to edit the original multimedia document itself. In order to edit the original
document, the author must have the necessary access rights. Fach author may have different
access rights to different portions of the multimedia document. Furthermore, the authors may
have priorities to resolve conflicts generated by the simultaneous editing of shared objects. The
modifications performed on the original copy is immediately available to all users. Methods to study
concurrent read-write accesses have been extensively studied in the operating systems community
and database community[11], and hence we do not address these issues within the framework of
this paper.

3 Multimedia Objects: Formal Definition

A multimedia document comprises of objects of different types such as video, audio, image and
text. Fach media object is presented in accordance with certain spatial and temporal constraints.
The spatial constraints govern the presentation of media objects on the user’s screen. The tem-
poral constraints specify the time and duration of presentation of a media object, as well as the
synchronization of presentation of with that of other media objects. Figure 4 shows a possible
temporal structure of a multimedia document and Figure 5 shows an example spatial organization
of the document. In this example, the document has four streams of information during the period
< Ts,tqy > :video, audio, image and text (7T denotes the presentation start time). The spatial
structure shown in Figure 5 maps each stream onto independent output devices (e.g. windows,
speakers). However, in some instances, more than one stream may be mapped onto a window when
object presentations are to be superimposed.

In many instances, the media objects composing the document can be distributed over a set

"
T Text
window Video
window
Stream 4
Stream 2
N
/
~
Speaker

Figure 5: Spatial Structure of the Multimedia Document

of multimedia document servers. Hence, the media objects might have to be retrieved over a
computer network during the presentation of a multimedia document. The necessity for retrieving
the information imposes a Quality of Service (QoS) constraint that is to be satisfied by the network
service provider. This QoS constraint depends on the structure of the multimedia document, the
size of the objects composing the document and the associated temporal constraints.

A multimedia object O is a quadruple O =< Nameg, Typeo, DispTypeo, Ao > where:

1. Namep: astring specifying the name of the object — we will assume without loss of generality
that Namep and O are the same.

2. Typep: each object must be declared as either a static, quasi-static, or temporal
object. These are described in detail below.

3. DispTypeo: each object must be declared to have a specific display type (e.g. monitor,
speaker, etc.) specifying how the object is to be displayed. Note that display types can
have sub-types as well. For instance, an object’s display type may be monitor:xv specifying
that the document is to be displayed on the monitor using xv. Similarly, monitor :mpegplay
specifies that the object may be displayed on the monitor using the utility mpegplay.

4. Ao : This is a list of attributes of the object (e.g. size, quality/resolution, length, etc.) that
may be of interest in an application.

Object type : Every multimedia object has one (and only one) associated type:

e Static objects : Static objects like text objects usually consist of one atomic component.
There is no temporal dimension associated with such objects. A gif file is an example of a
static object. Note that although there is no temporal aspect associated with a gif file, its

presentation on the screen associates a temporal dimension to the object. In other words,
static objects inherit the temporal dimension of the multimedia document to which they
belong. The key aspect of static objects is that their display can not be divided into parts.

¢ Quasi-static objects : Some static objects consist of multiple pages (like postscript files).
Each page can be considered as an atomic sub-object. However, the pages of a postscript
document are linked with a strict before-after relationship. In fact, this relationship can be
considered as a temporal dimension. However, the temporal dimension of a quasi-static object
is stretchable, i.e. the display length of each sub-object may only be determined at run-time.
This is because different readers may take different amounts of time scrolling through the
pages of a postscript document. Variable-rate video objects may also be viewed as quasi-
static objects. If O is any quasi-static object, we use the notation len(O) to denote the
number of atomic sub-objects that O has.

e Temporal objects : Some objects contain a predetermined number of atomic components,
and a predetermined frequency for the display of these components. Audio objects and
fized-rate video objects are such objects.

Now that we have formally defined multimedia objects, we observe that a multimedia docu-
ment D consists of:

1. A set, Objp, of objects,

2. For each object O € Objp, a triple (Tp, So,Q0) where Tp is a set of temporal constraints
associated with object O, Sp is a set of spatial constraints associated with O, and Qo is a
set of QoS constraints associated with O.

3. A set of Inter-Linking Constraints governing the relationships between the presentations of
different objects.

In the next few sections, we will study the precise structure of these constraints.

4 Specification of Temporal Constraints

Associated with each object O in a multimedia document D, we associate a set, Ty, of temporal
constraints. As is customary in operations research[9], constraints are constructed from variables.
In the case of multimedia documents, we associate, with each multimedia object O in the document,
the following temporal variables:

e ST(O) : Denotes the start time of the display of the object O

e FT(O): Denotes the end time of the display of the object O

e ST;(O): Denotes the start of the i¥" component of object O (if O is a quasi-static or temporal
object).

e FTi(O): Denotes the end of the it" component of object O (if O is a quasi-static or temporal
object).

Temporal constraints are defined for all objects, including static objects. There are four types of
temporal constraints:

o T(o)—t <ét o T(o)—t>dt
o t—T(o)<ét ot —T(0o)> 0t

where:

L. 7(0) € {5T(0), 5Tx(0), ET2(0), ..., STien(0)(0)s ETiep(o)(0), ET(0)} and
2. t € U;{5T (o)), STo0;), ETz(0j), . . .,STlen(O)(Oj), ETlen(O)(Oj), ET(0;)} \U{ST,, ET,} and

3. ST, and ET, denote the start and end of the presentation respectively.

Recall that when O is a quasi-static object, len(O) denotes the number of sub-objects of O.

Example 4.1 Let us assume that there exist two objects oy and 0y that we want to display
simultaneously, i.e. we want them to start and finish simultaneously. This requirement can be
described using the following constraints:

ST(01)— ST(02) <0
ST(o3) — ST(01) <0
ET(Ol) - ET(OQ) S 0
ET(OQ) - ET(Ol) S 0

Note that using these constraints, not only we can specify Allen’s 13 temporal relationships[1]
between events (cf. Figure 6), but also specify more complex quantitative relationships that cannot
be expressed in Allen’s framework. For instance, in Allen’s approach, it is possible to state that
event A occurs before event B. However, it is not possible to say, for instance, that the completion
of event A must precede the start of event B by at most 10 seconds and at least 5 seconds. In our
framework, we can easily specify the temporal distance between two events.

Example 4.2 Let us reconsider the previous example, and suppose we also want the 5" component

of 0, to be displayed at least 10 milliseconds after the 12t component of oy is displayed. This
requirement can be achieved by the addition of the following constraint to the above set:

10

| | Multimedia Constraint | Specification |
1 | a before b ET(a)— ST(b) < ¢
a equal b ST(b) — ST(a) < 0
ST(a) — ST(b) < 0
ET(®) — ET(a) < 0
ET(a) — ET(b) <0
3 | a meets b ET(a) — ST(b) < 0
ST(b)— ET(a) <0
4 | a overlaps b ST(a) — ST(b) < ¢
ST(b) — ET(a) < ¢
ET(a)— ET(b) <e
5 | a during b ST(b) — ST(a) < ¢
ET(a)— ET(b) <e
6 | a starts b ST(a) — ST(b) < 0
ST(b) — ST(a) < 0
ET(a)— ET() <e
7 | a finishes b ST(b) — ST(a) < ¢
ET(a) — ET(b) < 0
ET(h)— ET(a) <0

Figure 6: Allen’s temporal relations (¢ is a very small negative number)

| Multimedia Constraint

Specification

1 | a should start when b starts ST(a) — ST(b) < 0
ST(b)y — ST(a) <0
2 | a should start 2 sec after b ends ET(h) — ST(a) < 2
ST(a) — ET(b) < -2
3 | a should start 2 sec before the end of the | BT, — ST(a) < 2
presentation ST(a) — ET, < -2
4 | a should start within 3 seconds after the start of | ST(a) — ST7(b) < 3
the 7' frame of the object b ST7(b) — ST(a) <0
5 | a should end within 2 seconds of the start of the | ST(a) — ST7(b) < 2
Tth frame of the object b ST7(b) — ST(a) <2
6 | a should be presented for 7 seconds ET(a) — ST(a) < 7
ST(a) — ET(a) <0
7 | The second frame of a should start when the fifth | STy(a) — ET5(b) < 0
frame of b ends ET:(b) — STz(a) <0

11

Figure 7: Some multimedia constraints and the corresponding specifications

ST5(01) - ET12(02) Z 10

Figure 7 lists some examples of multimedia synchronization constraints that are difficult to express
in Allen’s framework, and shows how these may be easily represented in our approach.

In the 6" row of figure 7, the second constraint, i.e. S7(a)— ET(a) < 0, obviously holds for
each object in the multimedia document. Such constraints do not require explicit specification by
the authors. A COMS system should automatically enforce the following constraints implicitly.

Implicit Temporal Constraints: For each multimedia object a, we have the constraint:
ST(a)— ET(a) < 0. (3)

For each temporal or quasi-static multimedia object a, we have the following four constraints:

ET(a) = ETjepay(a) < 0 (4)
ETyenay(a) = ET(a) < 0. (5)
ST(a)— STy(a) < 0. (6)
STy(a) — ST(a) < 0 (7)

These constraints merely specifying that the presentation of a quasi-static or temporal object
begins (resp. ends) when its first (resp. last) atomic sub-object’s display starts (resp. ends). In
addition, for each temporal object a with fixed rate 6t we have the following constraints:

ET(a)— ST(a) < len(a) x 6t. (8)
ST(a)— ET(a) < —len(a) x 6t. (9)

In our framework, all the above constraints are enforced automatically without requiring an
explicit specification by the user.

5 Specification of Spatial Constraints

Spatial constraints are defined for all objects in a multimedia presentation whose display types are
set to monitor. In order to specify spatial constraints, we use the following spatial variables:
e W(m) and H(m) denote the width and the height, respectively, of the multimedia document.

e X(m)and Y(m) denote the coordinates of the lower left corner of the multimedia document
on the screen.

e 2,.(0) and z;(0) denote the positions of the right and left borders of the multimedia object
with respect to X (m).

12

e y5(0) and y,(o) denote the positions of the bottom and top borders of the multimedia object
with respect to Y (m).

There are eight types of spatial constraints:

e X(o)—a < bz e X(o)—a > dx
o v — X(o) < dx oz — X(o) > bx
o V(o)—y<dy o V(o) —y=dy
o y—Y(o)< by o y—Y(o)=dy

where:

1. X(0) € {2,(0),21(0)} and
2. x € Uj{ar(0j), wi(oj)} U{W(m)}, and
3. V(o) € {ys(0), yi(0)} and

4.y € Udws(0)), miloj)} ULH (m)}.

The following example shows the use of the above constraints.

Example 5.1 Suppose a multimedia document contains two objects 0y and 0,. Suppose we want
the left border of 0y to be 100 pixels from the left border of the multimedia document, and we want
the left border of the oy be at most 10 pixels right to the right border of o;. This arrangement can
be described using the following constraints:

z1(01) —100 <0

100 — 24(01) <0
zp(01) —x1(02) <0
z1(0z) — x.(01) < 10

Implicit Spatial Constraints: As in the case of temporal constraints, there are certain im-
plicit spatial constraints that must always be honored by a COMS system. In particular, for all
multimedia documents m and for all objects o the following constraints must be implicitly satisfied:

zi(0) —x.(0) < 0 (10)
()~ (o) < 0 (11)
z.(0)— X(m) < W(m) (12)
ylo)=Y(m) < H(m) (13)

In our framework, these constraints will be automatically satisfied.

13

Stream| O
Server | |

Server 2 —
Server 3 | |

Time

Figure 8: Network Sessions to Different Servers

6 Specification of QoS Constraints

The QoS required for an application is specified by a set of parameters such as throughput, delay,
delay jitter and packet (or cell) loss probabilities. The QoS required for viewing (or editing) a
multimedia document depends on the size of the various media objects and the time available for
retrieving the objects i.e., their temporal constraints. Methodologies have been proposed in [17, 19]
to identify the QoS requirements of a multimedia document. For a typical stream 7in a multimedia
document, the objects may be stored in different servers. In this case, the QoS requirements of the
stream ¢ has to be mapped onto the network requirements for connections to the different servers.
Figure 8 shows an example where objects for a stream ¢ are to be retrieved from three different
servers.

Throughput Constraints Specification: In a distributed multimedia document presenta-
tion, the desired objects are retrieved from servers and then presented to the user. In such stored
presentations, reliable existing network protocols may be employed for transferring the objects.
Hence, the specification of throughputs is sufficient for describing the QoS requirements of a mul-
timedia document system. In this section, we show how throughput requirements may be specified
as constraints. It should be noted that the same methodology can be adopted for describing other
QoS parameters such as delay, delay jitter and packet (or cell) loss probabilities.

Let us consider the throughput requirements for presenting the multimedia document. [17, 18,
19] presents methodologies to identify the throughput requirements for an orchestrated presentation.
A similar methodology can be used to derive the throughput requirement of a multimedia document
presentation. In order to describe the throughput constraints, we utilize the following throughput
variables:

o T'H,(t;): Denotes the throughput required for retrieving the multimedia object o, at time ¢;

o TH,,, : Denotes the average throughput required for a multimedia stream.
Here, the time instant #; may be either:

14

e 1, : Denotes the start time of retrieval of the object. The retrieval time precedes the pre-
sentation time ST(O), since the object is needed at the client side prior to its presentation,
or

e 1. : Denotes the end time of retrieval of the object.

Using this definition, the throughput constraint for a multimedia document presentation may be
defined as follows:

TH,(ty) — THeyyy > 6h
TH,(te) — THeyyy > 6h

The above constraints describe the variations in the instantaneous throughput requirements for
retrieving an object, from the average throughput required for the multimedia stream. These two
constraints help in specifying the throughput requirements for retrieving a multimedia object o. By
concatenating the throughput requirements of individual objects, we can identify the throughput
requirements of a stream composing the multimedia document. The solution of these constraints
gives the instantaneous throughput that must be guaranteed by the network service provider. This
solution can be used for QoS negotiation with the network service provider.

Delay Constraints We now show how delay requirements may be modeled within our framework.
Since the objects that are used in the multimedia document are not replicated at each node on
the network, they need to be sent to the nodes when a user wants to use them. However, the
communication between the nodes of the network imposes some delay, and this delay must be
taken into account while scheduling the presentation of these objects. The following constraints
represent the delay criteria:

Tstartdelivery(a) - Tenddelivery(o) S —o6.
Tenddelivery(o) - ST(O) < 0.

Suppose object o is needed by the node n and suppose the shortest delay that can be guaranteed
by the network for the delivery of the object o to the node n is §. This fact associated with node n
is represented by the first constraint above. The second constraint above represents the fact that
object o can not be presented before it is delivered.

These two constraints together specify the relationship between the start of the presentation of
the object o and the start of the delivery of the object o.

Delay Jitter Constraints: Delay jitter constraints are specified as the maximum tolerable
variations in the delay suffered by an object or a network packet [4, 5]. In order to specify the delay
jitter constraints, we need to introduce the following variables:

15

e D(o) : Denotes the average delay suffered by an object on its transfer over the computer
network.

¢ D, a.(0) @ Denotes the maximum delay that is permissible for the object transfer.

The delay jitter constraint may now be specified as follows:

Dinas(0) — D(0) < 8

which is easily seen to be a difference constraint.

Cell Loss Probability Constraints: The cell loss probability constraints describe the maximum
percentage of cells (or the network packets) that can be lost during an object transfer [4, 5]. In
order to specify the cell loss probability constraints, we need to introduce the following variables :

e C(0) : Denotes the number of network cells that an object o is composed of.

e [(0): Denotes the number of network cells that were transferred to the client.
The cell loss probability constraint may now be specified as :
C(o)— L(o) < 6 x 100

where 6 is a constant specifying the maximum tolerable percentage of cell loss. It is easy to see
that the above constraint is also a difference constraint.

Prior to completing this section, we observe that a vast number of important specialized QoS
methodologies have been reported in the literature. Though such QoS constraints can be easily
represented in our framework, they are not necessarily representable as difference constraints. Such
complicated constraints, however, can be processed with suitable constraint solvers, and the result
can be piped into our framework. The communication and cooperation between different constraint
solvers is a difficult problem, and we do not address it in this paper.

7 Solving The Difference Constraints

By now, the reader would have noticed that each and every temporal, spatial and QoS constraint
associated with a multimedia document is a difference constraint (cf. Sections 4, 5 and 6). Con-
sequently, we may implement a single algorithm for solving difference constraints and call it with
different inputs (corresponding, respectively, to the temporal, spatial, and QoS constraints associ-
ated with a multimedia document).

Before proceeding any further, we need to formally define a solution to a set of constraints.
Though this definition is quite “obvious” it is needed for the proofs of the main results.

16

Definition 7.1 (Solution to a set of Constraints) Suppose C is a set of constraints C', and

V1, ..., Uy are all the variables in C'. A solution for C'is a set 0 = {vy = ¥1,..., 0 = Y} such
that if we replace all occurrences of v; in ' with v for all ¢ = 1,...,m, then all the constraints in
C evaluate to true. a

Handling Unsolvable Sets of Constraints: When a multimedia document is created by many
different collaborators, each of whom may associate some presentation constraints with one or more
objects, it is very likely that conflicts may arise. For instance, author A may have assumed that a
given media object oy is of duration 5, but author B might edit 0o; and extend its duration to 8,
thus leading to a violation of temporal constraints. In such cases, a COMS system must not only
detect violation of the constraints, but it must also suggest ways of relaxing it. Consequently, we
require a conflict handler to resolve the conflicts that might exist in (or that might arise during the
course of refinement of) a specification of a multimedia document. Such a conflict handler should
have the following properties.

¢ Minimal discard: The conflict handler should chose a minimal set of specifications to
remove.

Example 7.1 Assume the following set of specifications:

(la)a—0<0
(2a)b—a < -1
(3a)c—a <0
(4a)b—c < —1

Here, (la)-(2a), and (la)-(3a)-(4a) are in conflict. The best way to handle this problem is
to remove (la), because both conflicts will be resolved by the deletion of a single constraint.
However, any other solution would include at least two deletions, such as the removal of (2a)
and (3a), which is undesirable.]

¢ Specification reuse: The removed specifications must be retained by the COMS for possible
future use, unless specified otherwise. For example, a COMS may have temporarily discarded
constraint C'. However, if the multimedia document is subsequently edited by the authors,
then some of the conflicting constraints that caused C' to be removed may themselves have
been suppressed or modified, thus (possibly) allowing C to be consistent with the new set of
constraints. The COMS should be capable of finding and reinserting the specifications which
become realizable after such changes in the multimedia document.

Example 7.2 Assume again the above set of specifications where (1a) is removed for keeping
the set conflict free':

*(la)a—b<0

(2a)b—a < -1

1the mark * denotes removal from the set of specifications.

17

(3a)c—a <0
(4a)b—c < —1

Now assume that, the multimedia author deleted the specifications (2a) and (3a). The con-
straint (1la) is now satisfiable along with the remaining constraint (4a). Hence, (1a) should
be reinserted to the specification list:

(la)a—0<0

(4a)b—c < —1]

The specification reuse strategy is useful especially when there are conflicts between the
document/system specifications and the user specifications, as well as when the user chooses to
eliminate conflicts by deleting user specifications. The reason is that it is usually not desirable
to omit conflicting user specifications, because they reflect how the user wants to view the
document. Instead, the conflict handler should mark them as “currently” unsatisfiable, and
retain them for possible reuse. If in the future, the document/system specifications change,
then some of the user specifications may become satisfiable.

In the rest of this section, we will first (Section 7.1) define a data structure to store a set of
difference constraints. As temporal, spatial and QoS specifications can all be captured by difference
constraints, this data structure is adequate for reasoning about all these different forms of data.
Later (Section 7.2), we will develop algorithms that check for solvability of these constraints, that
automatically find ways of discarding minimal sets of constraints when constraints are unsolvable
(i.e. when there is a conflict), and that automatically re-solve the constraint set when a new
constraint is added/deleted (e.g. when a user edits a document).

In this paper, we will show that difference constraints associated with temporal, spatial and QoS
constraints on presentation of a document, may naturally be represented as a weighted, directed
graph in such a way that solutions of the constraints (which correspond to how the document must
be presented in space, time, and quality) correspond to shortest paths in the graph.

7.1 Data Structure For Difference Constraints

Suppose D is any document and Tp, Sp, @ p are the sets of temporal, spatial, and QoS constraints,
respectively, that are associated with D. With each of these sets of difference constraints, we may
associate a graph GG = (V, I) defined as follows:

1. Vertices: For each constraint variable 7; occurring in the set of difference constraints (e.g.Tp, Sp,@p),
V' contains a vertex v; representing that variable. In addition, V' contains two special vertices
vs (document “start” node) and v, (document “end” node).

2. Edges: If 7; —7; < ¢t is a constraint in the set of difference constraints being considered, then
E contains an edge from v; to v; and the weight associated with this edge is ¢¢. Furthermore,
for each node w;, there is an edge from v; to v, with weight 0 and an edge from v. to v; with
weight 0.

18

Thus, given any document D, we have one graph each associated with its temporal, spatial and QoS
constraints. Suppose C is any cycle in graph G. C is said to be a negative cycle iff the sum of the
weights of the edges in C is a negative number. The following result is an immediate consequence
of the well known result ([3]) stating that a set of difference constraints is solvable iff the graph
associated with it is free of negative cycles.

Theorem 7.1 Suppose D is any multimedia document and Gy, G, G, denote the graphs associated
with D and the constraint sets Tp,Ts,Tq respectively. Then: Tp (resp. T's,Tq) is solvable iff Gy
(resp. G, (Gy) contains no negative cycle. O

Consequently, our framework for synchronized document authoring in COMS allows us to check
for coherence/consistency of a multimedia document by merely checking whether a graph has a
negative cycle. Optimal algorithms for this purpose were developed by Bellman and Ford [3].

We may use a single unified data structure for difference constraints to handle temporal, spatial
and QoS constraints. This data structure is shown in Figure 9. We now describe the basic intuition
underlying this data structure:

1. First, we have an array of object identifiers associated with objects occurring in the multi-
media document.

2. Fach entry (associated, say with object 0) in the above array points to a node having three

fields:

a) the first and second fields, S and F., are pointers that point to nodes N1 that refer to
s s P P
the “start” and “end” of presentation of the object.

(b) The third field is a NIL pointer if object o is a static object. Otherwise, the third field
points to a list of nodes of the form: (s;,e;, Next) where each of s;,e; are similar to
S and F above and refer to the start and end of the 2’th component of the object in
question and Nezt points to the next element (if any) in the list.

(¢) Nodes of the form N1 above have a record structure containing five fields: nodeid, count,
value, inarcs, outarcs. The nodeid field specifies a node in the graph associated with
the multimedia document and a set of difference constraints (spatial, temporal or QoS).
The value field specifies a time-instant at which the object (or a part of it) is displayed.
The count field specifies how many sub-objects of the object must be displayed, starting
from the aforementioned time instant. This field is always 1 if the object in question is
static.

(d) inares and outarcs specify the incoming edges to the node and the outgoing edges
(w.r.t. the graph associated with the multimedia document and the associated difference
constraints) from the node respectively. These arcs are defined as follows: at any given
point in time ¢, the algorithm that we will define in Section 7.2, will associate with
each node with node-id N, a set of edges, inarcs and (another set of edges outarcs)
specifying the edges incident on (outgoing from) this node w.r.t. the edge relation in the
graph associated with the multimedia document. Fach such arc falls into one of three
categories:

19

Object Array :

‘S‘EHSi ei
OD1

Node Id Node Id Node Id oID 2

—

<—— Node Ild Node Id L 0 Count Count
~<—— Node Id Nodeld <.~ | Y Value Value

~—— Nodeld Node Id Type Type
| MNodeld | -
- Node Id Node Id [0 In Arcs In Arcs

—~— | Nodeld Node Id L U Out Arcs Out Arcs

.

:

‘S‘EHSi1Ei‘ oDn

\

Node Id Node Id Node Id Node Id
Count Count Count Count
Value Value Value Value
Type Type Type Type

In Arcs In Arcs In Arcs In Arcs

Out Arcs Out Arcs Out Arcs Out Arcs

EAENCERER

L

Node Id Node Id
Count Count
Value Value
Type Type

In Arcs In Arcs

Out Arcs Out Arcs

Figure 9: Difference Constraint Specification Data Structure

20

i. Node N has a list called T (strictly speaking we should write T, but will not
do so when N is clear from context) that contains at most one arc from inares —
intuitively, this arc represents the last segment of the “cheapest known path” from
the start node to N found until now.

ii. Node N has alist called O — this is a list of “other” nodes in inarecs that do not occur
in the shortest path known thus far; however if an update occurs (e.g. an author of
the document modifies the document, thus increasing an edge weight/cost), then a
node from the list O may be moved into 7.

iii. Node N also has a list called I containing “inconsistent” edges. As stated in theo-
rem 7.1, the existence of a negative cycle means that the constraints are unsolvable.
To restore solvability, negative cycles must be “broken” by discarding a minimal
number of constraints (policies that perform such “discards” will be discussed in
detail in Section 7.2. For now, it suffices to know that all edges in inarcs that
are associated with constraints? discarded in this way, are placed in I. The reason
for their retention is the principle of Specification Reuse articulated earlier; later
updates may very well make these discarded constraints satisfiable.

Example 7.3 (Difference Constraints Data Structure) Figure 10 shows a portion of the
temporal constraint data structure for the objects X1, X2,Y1,Y2, Y3 and Y4 composing the mul-
timedia document shown in Figure 4 earlier on in the paper. Fach object has a start and an end
node. The value associated with each of the nodes denotes the actual time of start or the end of
presentation of the object. The count field specifies the number of sub-atomic objects composing
the object.

For example, consider the object X 1: the node id of the constraint variable ST(X1)is 1, while
the node id of the constraint variable E7T(X1)is 2. The count fields are 1 as X1 is an unbreakable
image (hence, non quasi-static).

On the other hand, the object Y2 is a quasi-static video object (variable-rate video). This
object has a total of 8 blocks of video — the first chunk shows 5 blocks, while the second consists of
3. The first chunk is shown starting at time ¢1, while the second chunk is shown starting at time
t12. The display of the first chunk ends at time ¢11 while the display of the second ends at time ¢2.

7.2 Efficient Algorithms for Solving Difference Constraints

In this section, we are interested in the following problem: given a set of difference constraints
(temporal, spatial, or QoS) associated with a multimedia document, attempt to solve this set of
difference constraints. If no solution exists, then find a way of relaxing these constraints minimally
so as to make the original unsolvable set of constraints solvable.

It is well known that solving a set of difference constraints is equivalent to finding the shortest
path in the graph associated with those constraints [3] in the manner described earlier on. Note that

?Recall that by the construction of the graph associated with a multimedia document, there is a one-one corre-
spondence between those edges not involving v, v. in the graph and constraints.

21

Document

Start
Node

Node Id=1 Node Id = 2
Count=1 Count =1
Value = Ts Value = 12
o
/

/
/

Node Id =3 Node Id =4
Count=1 Count=1
Value =t2 Value = t4
Node Id =5 Node Id = 6
Count=10 Count =10
Value = Ts) Value = t1

Figure 10: Example Temporal Constraint Data Structure

22

, (SlE A0 o= s
/ —
/
Node Id =7 Node Id =8 Node Id =9 Node Id =10
Count=5 Count=5 Count=3 Count=3
Value = t1) Value = t11 Value = t12 Value = t2
e -7 ~s~
y, E
/
/

Node Id = 11 Node Id =12

Count =10 Count =10

Value = t2 Value = t3

— -
e
/

/

Node Id = 13 Node Id = 14

Count=10 Count =10

Value =t3) Value =t4 o

Object Array :

X1

X2

Y1

Y2

Y3

Y4

End
Document
Node

-1
Figure 11: A constraint graph with negative cycles

constraint graphs can contain edges with negative weights. As proved in Theorem 7.1, conflicting
constraints are captured by the existence of negative cycles in the constraint graph. For instance,
the set of specifications in Example 7.1 corresponds to the graph in figure 11. Note that, the
negative cycles in the graph correspond to the set of conflicts given in example 7.1.

Though most graph algorithms for computing shortest paths cannot handle negative cycles,
the well known Bellman-Ford shortest path algorithm can deal with negative cycles in the graph
[3]. This algorithm also detects the presence of a negative cycle that is reachable from the start of
multimedia document presentation. If there is no cycle, the algorithm produces the shortest paths
and their weights. The shortest path along with the associated weights in effect specify the time
instances and durations of presentations of the objects composing the multimedia document. If
there is such a cycle, the algorithm terminates indicating that there does not exist a solution. The
presence of a negative cycle indicates conflicting constraints.

However, the Bellman Ford algorithm cannot relax constraints so as to restore solvability, nor
can it even make suggestions to the authors of the multimedia document on how these constraints
may be relaxed. The primary aim of this section is to present an algorithm that will take as input,
a set of (temporal/spatial/QoS) constraints, and return as output, a schedule that satisfies as many
of the constraints as possible. Before proceeding any further, we first define constraint relaxation.

Definition 7.2 (Constraint Relaxation) Suppose C' is a set of difference constraints. A relaz-
ation of C'is any subset C’ C C such that C’ is solvable. O

The above definition allows any subset of (' to be considered a relaxation. Thus, if ¢,c¢y are
constraints in €', and if (C'—{¢;1}) is solvable then it must necessarily be the case that (C'—{¢y,¢2})
is solvable. However, the latter relaxation of (' eliminates “more constraints” than strictly needed.
Below, we present three alternative definitions of optimal constraint relaxations. The third definition
assumes that each constraint has an associated priority — a number greater than or equal to 1. The
higher the priority, the more important the constraint.

Definition 7.3 (Optimal Constraint Relaxation) Suppose C is a set of difference constraints.

23

1. a card-optimal relaxation of C' is any subset €/ C C such that C’ is solvable, and there
is no other relaxation C” such that card(C"”) > card(C’). Here card(C') is the number of
constraints in C.

2. a pre-set-optimal relaxation of C' is any subset C" C C such that C’ is solvable, and there is
no other relaxation C'” such that C” > C’. A set-optimal relazation of C is a pre-set-optimal
relaxation C’, and there is no other pre-set-optimal relazation C” such that card(C") >

card(C").

3. a priority-optimal relazation of C'is a set-optimal relaxation C' of C such there is no other
set-optimal relazation C” which satisfies (3 .con p(c)) > (3 .cor 9(€)) where p(c) denotes the
priority of constraint €. We assume that p(c) > 1 for all constraints c.

As we will show below, finding card-optimal relaxations of C' is an NP-complete problem ., while
finding a set-optimal relaxation is solvable in polynomial time. Similarly, finding Priority Optimal
Relaxations is solvable in polynomial time.

Theorem 7.2 Card-optimal removal of negative cycles is NP-hard.

We now present an algorithm for finding solutions of both a priority-optimal relaxation of C' and
a set-optimal relaxation of a set €' of constraints. In other words, the problem we address is the
following:

Priority (resp. Set) Optimal Relaxable Constraint Problem:

e INPUT: A set C of difference constraints (temporal,
spatial or QoS) associated with a multimedia docu-
ment.

e OUTPUT: A solution o to a priority-optimal (resp.
set-optimal)relaxation of C'.

7.3 Algorithms for Solving Optimal Relaxable Constraint Problem

Let G = (V, F) be a weighted, directed graph associated with a set of difference constraints. Let
the end document node v, behave as the source with weight function w : £ — R. For each vertex
v € V, we maintain a variable, d[v], representing an upper bound on the weight of a shortest path
from source s, to v, i.e., d[v] is a shortest path estimate. We also maintain the predecessor, 7[v], of
each node v. The predecessor of a vertex is either another vertex or NIL. shortest path and their
associated weights. When our algorithm is finishes its computations, d[5] where S is the start node
will be a negative number. We will obtain a solution to a priority-optimal or set-optimal relaxation
of the constraints being considered as follows:

24

SOL = {v = d[v] 4+ d[S]| v is a vertex in the graph G that is neither the start nor the
end node}.

We now present a sequence of sub-routines (A1)—(A5),(A8). (A6) and (AT) are the final al-
gorithm that compute a solution to the optimal relaxable constraint problem. (A6) is used initially
when a presentation of the document is being created for the first time. However, once a document
presentation has been created, the more efficient algorithm, (A7), may be used subsequently.

In the following algorithm, the shortest path estimates and the predecessors of each vertex are
initialized first by the procedure Initialize-single-source. This procedure basically assigns NIL to
7[v], for all v € V', d[v] = 0 for v = v,, and d[v] = 0o for v € V — {w,}.

A1 : Initialize-single-source (G, v,)
1. for each vertex v € V[G]
2 do d[v] — x
3. o] — NIL
4. d[s] <0
5. all_cycles =

The identification of the shortest path is by using the relazation routine, RELAX, where a test
is carried out to check whether the shortest “current” path to a vertex » can be improved by an
edge (u,v); if so, we update d[v] and 7[v]. Hence, a relaxation step might both decrease the value
of the current shortest-path estimate d[v] and simultaneously modify the predecessor «[v].

A2 : RELAX (u,v,w)
1. if d[v] > d[u] + w(u,v)
2. then d[v] — d[u] + w(u,v)

3. m[v] — u

Besides the RFELAX routine described above, we need a similar routine which will detect the
existence of a negative cycle while modifying d[v].

A3 : RELAX and MARK_CYCLE (u,v,w)
1. relaxed = 0
2. if d[v] > d[u] + w(u,v)
3. then if NOT_CYCLE (u,v)
4. then d[v] — d[u] + w(u,v)
5. m[v] — u
6. relaxed = 1;
7. return(relaxed)

The above algorithm (A3) relaxes an edge unless performing the relaxation leads to the creation
of a negative cycle in the graph. The NOT_C'YCLFE routine checks if the relaxation of the edge will
cause a negative cycle, and if there is a negative cycle, it marks the cycle for later processing.

25

A4 : NOT_CYCLE (u,v)
1. cycle = PATH (u,v)
2. if cycle # L

3. then cycle = cycle — v

4. all_cycles = all_cycles U {cycle}
5. return(0)

6. else return(1)

The PATH algorithm returns the shortest path from » to u found so far. If there is no such a
path, then the algorithm returns L.

A5 : PATH (u,v)
1.ifrfu] = L
then return(Ll)
if rfu] = v
then return(v — u)
else
temp_path = PATH (7[u],)
if temp_path = L
return(L)
else return(temp_path— u)

WO 0 =~ O O k= W N

The algorithm for determining the shortest-path uses the Initialize-single-source routine for
initializing the shortest-path estimates and the predecessor for each vertex and then uses the algo-
rithms given below to solve the constraints:

A6 : SOLVE_DIFFERENCE_CONSTRAINT and MARK_CYCLE (G, w, s)
1. Initialize-single-source (G, s)
2. fori=1to |V[G] -1

3. do for each edge (u,v) € E[G]

4. do RELAX_and MARK_CYCLE (u,v,w)

5. if all_cycles # ()

6. then ¢’ = REMOVE_CYCLES (G, all_cycles)

7. SOLVE_DIFFERENCE_CONSTRAINT _without_ CYCLE_CHECK(G', w, s)

Theorem 7.3 If there are no negative cycles in the input constraint graph, then the algorithm

SOLVE_DIFFERENCE_CONSTRAINT _and_ MARK_CYCLE works in time O(V2.E).

A7 : SOLVE_DIFFERENCE_CONSTRAINT without CYCLE_CHECK (G, w,s)
1. Initialize-single-source (G, s)
2. fori=1to |V[G] -1
3. do for each edge (u,v) € E[G]
4. do RELAX(u, v, w)

26

The SOLVE_DIFFERENCE_CONSTRAINT and_MARK_CYCLE algorithm first finds the neg-
ative cycles in the constraint graph. If no negative cycle exists, then the result is the shortest path.
If, however, there are negative cycles in the graph, then the algorithm calls the REMOVE_CYCLES
routine to get rid of the negative cycles, and then it calls

SOLVE_DIFFERENCE_CONSTRAINT _without_CYCLE_CHECK to find the shortest path.

Theorem 7.4 SOLVE_DIFFERENCE_CONSTRAINT _without _ CYCLE_CHECK works in time
O(V.E).

The REMOVE_CYCLES algorithm given below eliminates cycles using a notion of priority.
Suppose each edge in a constraint graph has a priority — the higher the priority, the more important
the edge.

The elimination of a negative cycle requires the omission of at least one edge (constraint) from
the negative cycle. The omission of a constraint can occur in two ways:

¢ deletion of a constraint : In this case, the constraint is permanently deleted from the
constraint set.

¢ marking of a constraint : In this case, however, the constraint is kept within the constraint
set, but marked as unsatisfiable. If, in the future, the inclusion of this constraint becomes
safe (due to deletion of a conflicting constraint), then it can be unmarked.

In procedure (A8) below, all negative cycles are categorized by the system into two types —
sys_cycles that the system will eliminate by itself, and auth_cycles that the system will present to
the author(s) for their recommendations.

A8 : REMOVE_CYCLES (G, cycles)
Let cycles be (auth_cycles U sys_cycles)
< deleted_constraints,marked _constraints > = CONSULT_AUTHORS (auth_cycles)
delete the constraints in deleted _constraints from the graph
mark the constraints in marked _constraints as unsatisfiable
{ At this point all the negative cycles in auth_cycles are removed }

e N

5. let I be the set of edges in sys_cycles, and let p(e) be the priority of the edge e
6. sort F/ with respect to the priorities in ascending order

7. remove duplicate negative cycles from sys_cycles

8. en=1

9. while sys_cycles #

10. for each unmarked edge e € F (starting from edge 1)

11. do c[e] = COUNT of CYCLES(sys_cycles, ¢)

12. if c[e] > cle,,]

13. then e, = ¢

13. remove all the negative cycles containing e,, from sys_cycles
14. mark e,, as unsatisfiable

27

In the above algorithm the COUNT _of CYCLES routine counts the number (c[e]) of negative
cycles an edge e is involved. Note that, these counts must be recalculated during each iteration of
the while loop.

Theorem 7.5 REMOVE_CYCLES works in time O(E.V.C,% + C,.log(C,).V + E.log(E) + C,),

where (5 is t he number of negative cycles in sys_cycles.

Theorem 7.6 If there are negative cycles in the input constraint graph, the algorithm SOLVE_
TEMPORAL_CONSTRAINT and MARK_CYCLE works in time O(VZ.E + E.V.C,2 + C,. log(C;).V
+ Elog(E) + C,).

The REMOVE_CYCLES algorithm consults the multimedia authors for their preference about
the negative cycles because these negative cycles embody constraints inserted by the authors of the
multimedia document. For the negative cycles which contain system parameters, on the other hand,
it may automatically decide which constraint to remove. The algorithm uses a greedy approach
for removing the negative cycles. The main idea is to first remove edges involved in the highest
number of negative cycles. In addition, it also tries to delay the removal of high priority edges as

much as possible. The REMOVE_CYCLES algorithm is guaranteed to:

o always compute a shortest path in the constraint graph associated with a priority-optimal
relaxation of C'; and

e as a consequence, when the REMOVE_CYCLES terminates, SOL = {v = d[v] + d[S]| v is a
node in the constraint graph and v is not the start or end node} is a solution to a priority
optimal relaxation of C (resp. set-optimal relaxation of C' if all priorities are set to 1).

We view the multimedia document as a dynamic entity which dynamically changes with the
addition and deletion of objects and constraints by the authors of the document. The changes to
the document may be initiated by the multimedia authors or by changes in the system parameters
and the resource availability (e.g. changes in the expected throughput).

When changes occur due to the addition/deletion of objects, these are captured within the ex-
isting presentation schedule for the multimedia document as changes to the constraints governing
the presentation of those objects. For example, when a new object o is added to a presentation and
we want to “present” o immediately after an existing object 07 and immediately before another
existing object oy, then this affects the existing presentation by the addition of new constraints
involving this object. It is therefore easy to see that the insertion/deletion of objects into/from an
existing presentation is captured by the addition/deletion of constraints. In the next two subsec-
tions, we present techniques from incremental updates of presentations based on the introduction
of new constraints and/or the deletion of existing constraints.

28

7.4 Incremental Addition of Difference Constraints

The easiest way of handling the addition of a new constraint would be to use the shortest path
algorithm described above. However, in a multimedia system where there are many dynamic
changes, or in a system where there are hard deadlines for the presentation, this may not be the
best approach. Hence, in this chapter we present an algorithm which dynamically computes the
new presentation schedule given an existing solved set of constraints, and a new constraint to be
added. Recall that the insertion of a constraint into a constraint set is equivalent to the insertion
of an edge into the graph associated with that constraint set.

INSERT _CONSTRAINT (e)

1. let e be from u to v with weight w

2. insertion = normal

3. relaxed = RELAX_and_FIND_CYCLE (u, v, w)

4. if all_cycles # ()

5. then ¢’ = REMOVE_CYCLES (G, all_cycles)

7. if only e is marked/deleted

8. then insertion = marked (or deleted)

9. if there is an edge f (other than e) which is marked/deleted
10. then DELETE_CONSTRAINT(/)

11. insertion = normal

12. if insertion# deleted

13. then if relaxed = false

14. then insert ¢ as a normal/marked non-tree edge to the graph
15. else mod = {v}

16. while mod # ()

17. do let ¢ be a node in mod

18. mod = mod — {i}

19. for each edge k = (1, j, w2)

20. relaxed; = RELAX (4,7, ws)
21. if relaxeds = true

22. then mod = mod U {j}

7.5 Deleting Difference Constraints

When there are no marked constraints waiting to be reinserted, the deletion of a constraint is easy
to handle: a solution to the original set of constraints is a solution to the modified set of constraints.
Hence, in this case, a constraint can be deleted from the graph in O(1) time.

However, the existence of marked constraints makes the problem much harder. These are
constraints that were previously deleted (perhaps due to some negative cycles that caused an
inconsistent set of constraints), but were saved just in case future changes invalidated the cause
of the inconsistency. In order to reinsert marked constraints, we first need to first incorporate

29

the effects of the deleted constraint from the document. Only after that can one safely reinsert a
constraint to the graph. We have developed two algorithms, DELETE_CONSTRAINT; and
DELETE_CONSTRAINT, that handle such constraint deletions. They are described below:

The first algorithm is quite simple — it merely deletes the edge in the constraint graph associated
with the constraint being deleted and re-applies the algorithm for computing priority optimal
relaxations of the graph.

DELETE_CONSTRAINT; (e¢)
1. G' = (V,E - {e})
2. SOLVE_DIFFERENCE_CONSTRAINT .and MARK_CYCLE (G',w, s)

Theorem 7.7 The running time of the DELETE_CONSTRAINT; algorithm is O(VZ.(E-1) + (E-
1).V.C; 4+ Cylog(Cy).V), where Cy is the number of negative cycles in sys_cycles in the graph.

The second algorithm, on the other hand, takes a “bottom-up” approach. It first eliminates
from the graph G the edge associated with the constraint being deleted as well as all marked edges.
It then attempts to use the “Incremental Addition” algorithm INSERT_CONSTRAINT, to

re-insert the marked edges in order of priority.

DELETE_CONSTRAINT; (¢)
. G = (V,E —{e}—all the marked edges)
. SOLVE_DIFFERENCE_CONSTRAINT _without_ CYCLE_CHECK (G’, w, s)
. E" = SORT(all the marked edges, p)
while F' # |
¢ = head(FE’)
E' = tail(E')
INSERT_CONSTRAINT (¢')

-1 O O = W N =

Theorem 7.8 The running time of the DELETE_CONSTRAINT; algorithm is O(V2.(E-C,,-1) +
Cplog(Cp,) + Cp.E), where C,,, is the number of marked edges in the graph.

As can be seen from the complexity results, which of these two algorithms will perform better
depends on the specific constraint graph being considered and the edge being deleted. A hybrid
deletion algorithm would first evaluate the two quantities:

e QTY1=V2(E-1) + (E-1).V.Cs + C,log(Cs).V
o QTY2 = V2(E-Cp-1) + Cp.log(Cp) + Cpp . E

It would then use DELETE_CONSTRAINT, if QTY 1 < QTY2 and DELETE_CONSTRAINT,
otherwise.

30

8 Related Work

In this paper, we have given a formal definition of a multimedia document, and presented a single
difference constraint-based model using which, temporal, spatial, and QoS constraints may all be
expressed within a unified framework. The advantage of this is that a “core” set of algorithms,
such as those provided in Section 7.2, may be used to create, and maintain, the presentations of
multimedia documents, as changes are made to the document by its authors. Furthermore, these
algorithms are provably correct and their complexity has been analyzed and proved to be always
polynomial-time.

Ahuja’s group at AT&T [7] also has had significant contributions in collaborative services. They
propose a method for generating visual representations of recorded histories of distributed collab-
orations, so that remote collaborators can easily access information that will let them understand
how the collaborative environment evolved to a particular state. In [10], Imai et al. show how to
record the artifacts of a realtime collaboration so that when the collaboration is concluded, the
collaborators have access not only to the final document, but also to the artifacts (handwritten
notes, voice annotations etc.) that led them to this document. Using our work in conjunction with
these two works to maintain versions of documents as they are altered over a period of time.

Gong [8] studies some of the important issues in multimedia conferencing over packet switched
networks, and provides solutions to the problems that arise in multipoint audio and video control.
The Argo system [6] on the other hand, is built to let users collaborate remotely using video,
audio, shared applications, and whiteboards. Wolf et al [24] show how an application can be
shared among heterogeneous systems. They compare two methods for heterogeneous sharing: one
optimizes transmission in the system and other optimizes conversions between objects. Candan et.
al. [2] develop a formal framework within which objects may be routed and transformed from one
network node to the site of an author in such a way that the desired quality is maintained and
the author’s host machine capabilities are adequate to process the object. All these efforts target
one or more aspects of Problem (3) specified in Section 2. In contrast, in this paper, we address
the complementary problem (Problem 4 of Section 2) — here we try to develop optimal ways of
presenting documents to users in the face of constantly changing specifications. Furthermore, we
develop techniques that will optimally relax the presentation constraints in the event that these
constraints are inconsistent. Finally, our framework applies uniformly not just to temporal aspects
of multimedia systems, but to spatial and QoS as well.

Little [23] has presented an elegant document management system for shared data and provided
a data model (POM) which permits dynamic compositions of mixed-media documents. Wray et
al. [25] have built an experimental collaborative environment called Medusa which integrates data
from heterogeneous hardware devices. Medusa provides an environment which facilitates rapid pro-
totyping of new applications. Rajan, Vin et al. [20] started some work on formalizing the notion
of multimedia collaboration. They provide a basis which can support a wide spectrum of struc-
tured multimedia collaborations. Their formalization captures the requirements of various types of
interactive and non-interactive collaborations. They also implemented a prototype collaboration
management system based on their formalism.

Significant contributions have been made in the area of temporal specification of multimedia

31

presentations. Petri nets based models have been suggested in [13, 16, 19, 17] for specifying the tem-
poral and synchronization characteristics of a multimedia presentation. Concurrent programming
language based approach has been suggested in [21]. A Context Free Grammar based approach
has been proposed in [19] for describing the synchronization characteristics of an orchestrated pre-
sentation and for translating the characteristics into the network traffic that might be generated
by an orchestrated presentation. In [15] user views of a document are represented by means of
attribute based selection of a Petri nets based specification. However, these works do not address
the issues that arise in an collaborative environment. Also, the specifications of the requirements
are fized in nature. Synchronization has also been studied by Manohar [14]. They study methods
to enable the faithful replay of multimedia objects under varying system parameters. To accom-
plish synchronization of different session objects, they provide an adaptive scheduling algorithm.
In [12], a Time-flow Graph (TFG) model has been proposed to represent “fuzzy” or imprecise
temporal relationships. Multimedia objects are described by their presentation intervals. Given
any two time intervals, there are thirteen ways in which they can be related. In the TFG model,
temporal relationships can be specified in terms of temporal durations despite the lack of duration
information about the involved intervals. In contrast to these efforts, we have provided a unified
treatment of different types of constraints governing multimedia documents. We have developed,
for the first time, optimal ways of presenting documents to users in the face of constantly changing
specifications and techniques that will optimally relax the presentation constraints in the event
that these constraints are inconsistent.

9 Conclusions

A collaborative multimedia system (COMS) must support a wide range of functionalities so as to
enable a set of cooperating authors to jointly create a multimedia document. In order to support the
construction of COMS systems, we have provided a formal, mathematical definition of a multimedia
document as a set of media objects that are constrained to be presented according to certain spatial,
temporal and QoS criteria. We have shown that all these criteria may be expressed mathematically
using a small class of constraints well known in operations research called difference constraints.
Thus, difference constraints provide a unifying framework within which different aspects of creating
multimedia presentations may be studied.

As multimedia documents are typically constructed over a period of time, and as the objects
constituting such a document are edited by different people over time, both the set of objects in
a document, and the set of constraints linking these objects together, will change with time. We
have developed incremental algorithms that will:

1. determine if such constraints are solvable, and

2. incrementally find a new solution to a set of constraints when some new constraints are added,
and

3. incrementally find a new solution to a set of constraints when some old constraints are deleted,
and

32

4. develop algorithms that will compute optimal relazations of a set of constraints (according to
different notions of optimality) when a set of constraints is not solvable.

Furthermore, these algorithms work independently of whether temporal constraints, spatial con-
straints, or QoS constraints are being considered.

This paper is part of a joint effort between the University of California, San Diego. In our first
paper on this topic [2], we developed techniques whereby objects could be routed across a network
(and possibly transformed along the way) in such a way that the person (I.e. author) requesting
the object received it at the lowest possible cost and at the desired quality. In future work, we will
study the interactions between spatial constraints, QoS constraints and temporal constraints — in
particular, we will study the problem of how spatial temporal constraints are affected by changes
in the QoS constraints and vice versa.

Acknowledgements. We are grateful to Sibel Adali, Eenjun Hwang, and Charlie Ward for making
useful comments on the paper, and to Venkat Rangan for conversations on the topic of this paper.

References

[1] J.F. Allen. (1984) Towards a General Theory of Time and Action, Artificial Intelligence, 23,
pps 123-154.

[2] K.S. Candan, V.S. Subrahmanian, and P. Venkat Rangan. (1995) Collaborative Multimedia
Systems: Synthesis of Media Objects, Submitted for publication, Nov. 1995.

[3] T.H. Cormen, C.E. Leiserson and R.L. Rivest, "Introduction to Algorithms”, McGraw Hill
Publishers.

[4] D. Ferrari, ‘Client Requirements For Real-Time Communication Services’, IEEE Communi-
cation Magazine, Vol. 28, No. 11, Nov. 90, pp. 65-72.

[6] D. Ferrari, J. Ramaekers and G. Ventre, ‘Client-Network Interactions in Quality of Service
Communication Environments’, Proc. of High Performance Networking, 4th IFIP Conf. on
High Performance Networking, Liege, Belgium, 14-18, December ’92.

[6] H. Gajewska, “Argo: A System for Distributed Collaboration”, ACM Multimedia 94, Pages
433-440.

[7] A. Ginsberg and S. Ahuja, “Automating envisionment of virtual meeting room histories”,
ACM Multimedia 95, Pages 65-76.

[8] F. Gong, “Multipoint Audio and Video Control for Packet-Based Multimedia Conferencing”,
ACM Multimedia 94, Pages 425-432.

[9] F. Hillier and G. Lieberman. (1974) Operations Research, Holden-Day.

33

[10] T. Imai, K. Yamaguchi, T. Muranaga, “Hypermedia Conversation Recording to Preserve
Informal Artifacts in Realtime”, ACM Multimedia 94, Pages 417-424.

[11] H. Korth and A. Silberschatz. (1986) “Database System Concepts”, McGraw Hill.

[12] L. Li, A. Karmouch and N.D. Georganas, “Multimedia Teleorchestra With Independent
Sources : Part 1 and Part 2”7, ACM/Springer-Verlag Journal of Multimedia Systems, vol.
1, no. 4, February 1994, pp.143-165.

[13] T.D.C. Little and A Ghafoor, ‘Synchronization and Storage Models for Multimedia Objects’,
IEEE J. on Selected Areas of Communication, vol. 8, no. 3, April 1990, pp. 413-427.

[14] N.R. Manohar and A. Prakash, “Dealing with synchronization and timing variability in the
playback of interactive session recordings”, ACM Multimedia 95, Pages 45-56.

[15] N. Pahuja, B.N. Jain and G.M. Shroff, ‘Multimedia Information Objects: A Conceptual
Model for Representing Synchronization’, to appear in International Conference on Computer
Networks, Networks’96, Bombay, India, January 1996.

[16] B. Prabhakaran and S.V. Raghavan, ‘Synchronization Models For Multimedia Presentation
With User Participation’, ACM /Springer-Verlag Journal of Multimedia Systems, vol.2, no. 2,
August 1994, pp. 53-62. Also in the Proceedings of the First ACM Conference on MultiMedia
Systems, Anaheim, California, August 1993, pp.157-166.

[17] S.V. Raghavan, B. Prabhakaran and Satish K. Tripathi - ‘Synchronization Representation
and Traffic Source Modeling in Orchestrated Presentation’, to appear in the special issue on
Multimedia Synchronization, IEEE Journal on Selected Areas in Communication.

[18] S.V. Raghavan, B. Prabhakaran and Satish K. Tripathi - ‘Quality of Service Considerations
For Distributed, Orchestrated Multimedia Presentation’, Proceedings of High Performance
Networking 94 (HPN’94), Paris, France, July 1994, pp. 217-238. Also available as Technical
Report : CS-TR-3167, UMIACS-TR-93-113, University of Maryland, College Park, Computer
Science Technical Report Series, October 1993.

[19] S.V. Raghavan, B. Prabhakaran and Satish K. Tripathi - ‘Handling QoS Negotiations in
Distributed Orchestrated Presentation’, to be published in Journal of High Speed Networking.

[20] S. Rajan, P.V. Rangan, and H.M. Vin, “A Formal Basis for Structured Multimedia Collabo-
rations”, IEEE Intl. Conf. on Multimedia Computing and Systems, 1995.

[21] R. Steinmetz, ‘Synchronization Properties in Multimedia Systems’, IEEE J. on Selected Areas
of Communication, vol. 8, no. 3, April 1990, pp. 401-412.

[22] P.D. Stotts and R. Furuta, ‘Temporal Hyperprogramming’, Journal of Visual Languages and
Computing, Sept. 1990, pp. 237-253.

[23] T.M. Wittenburg and T.D.C. Little, “An Adaptive Document Management System for Shared
Multimedia Data”, IEEE Intl. Conf. on Multimedia Computing and Systems, 1994, Pages
245-254.

34

[24] K.H. Wolf, K. Froitzheim and P. Schulthess, “Multimedia Application Sharing in a Hetero-
geneous Environment”, ACM Multimedia 95, Pages 57-64.

[25] S. Wray, T. Glauert, and A. Hopper, “The Medusa Applications Environment”, IEEE Intl.
Conf. on Multimedia Computing and Systems, 1994, Pages 265-274.

35

10 Appendix: Proofs of Results

Proof of Theorem 7.2. Suppose NC' = {ncy,...nc;} denote the negative cycles in the constraint
graph G. Suppose also that each negative cycle n¢; has the form ne; =< ey,ep) >, where ¢;
denotes an edge, and k(7) denotes the number of edges involved in negative cycle nc;. We will prove
that card-optimal removal of negative cycles is NP-hard by reducing the vertex-cover problem to
the card-optimal removal of negative cycles problem.

A vertex cover of an undirected graph Gy, = (Vi,, iy) is aset V! C Vi, such that if (u,v) € Eyp,
then u € V' or v € V' or both. The vertex-cover problem is to find a vertex cover of minimum
cardinality in a given graph Gj,.

Reduction of vertex-cover problem into card-optimal removal of negative cycles
problem: We are going to create, in polynomial time, a constraint graph G from G, such that, if
we can find a card-optimal relaxation of the difference constraints associated with the edges of G,
then we can also find a minimal cover of GG;;, in polynomial time.

Let card(Vi,) be CV and let card(FE;,) be CE. Furthermore, let the vertices in G, be
{v1,...,vcv} and let the edges in G;, be enumerated as {e; =< fi.1, fiz >, €2 =< fau1, forr >
yeoneor =< fopa, fope >}, where fiq and f;.o are vertices in V;,. The reduction works as fol-
lows:

1.V=0E=0

2. for z =1to C'V do

3. create two vertices v%,, and v,

4. create an edge e/, =< v', : 1,v], > with 0 weight

5. V=Vu{v,v.,}

6. E=FEu{}

7. for y=1to CF do

8. [* let e, be < v, v; > */

9. create a directed edge €°, =< v},, v}, > with 0 weight
10. create a directed edge €%, =< v} 4, v}, > with —1 weight
11. E=FEu{e, e}

The result of the algorithm is a weighted directed graph G' = (V,). Note that, the algorithm
works in polynomial time.

Claim 1: If (G;, has a minimal cover of size s, then G has a card-optimal relaxation of size s:
Each vertex v in G, corresponds to an edge in G, and each edge in (G}, corresponds to a negative
cycle in G. Furthermore, if two edges €1 and ey in G, share a vertex v», then the corresponding
negative cycles on G share the corresponding edge. Hence, if there are s vertices that cover the
edges in Gy, then there are s edges that cover the negative cycles in . If these negative edges are
deleted from the graph G, then GG will be negative-cycle free.

36

Gin

Vertex cover = b,c

Figure 12: An example reduction from G;;, to G.

Claim 2: If G can be card-optimally relaxed by the removal of s edges, then G}, has a minimal
vertex cover of size s: The removed edges will not contain any edge marked with superscript © or
¢, because these edges cannot be shared among two negative cycles, hence it is advantageous to
remove these edges (the only exception is when the negative cycle does not share an edge with
any other negative cycle, and hence the edges marked with © or ® can also be chosen for removal.
However, since in this case the negative cycle is independent of the other negative cycles, we can
assume that the corresponding non-superscripted edge will be chosen for removal.) If it is possible
to remove all the negative cycles, by removing s edges from the graph G, then it is possible to cover
all the edges in G, by s vertices, because each vertex v in G, corresponds to an edge in G, and
each edge in G}, corresponds to a negative cycle in (.

Using the above claims and the polynomiality of the reduction algorithm, we can conclude
that the card-optimal relaxation problem is NP-hard. To see how the reduction works, consider
figure 12. a

Proof of Theorem 7.3. If there are no negative cycles, then all_cycles will be (), and the RE-

MOVE_CYCLES and SOLVE_DIFFERENCE_CONSTRAINT _without CYCLE_CHECK routines
will not be called.

Initialize-single-source works in O(V). The routine RELAX _and_ MARK_CYCLE is called V.E
times. The worst case running time of RELAX_and_MARK_CYCLE is V (because it may need
to check all vertices to see if it is on the path). Hence, if there is no negative cycle, then the
running time of the SOLVE_DIFFERENCE_CONSTRAINT .and MARK_CYCLE O(V2E + V) =
O(V2.E). m

37

Proof of Theorem 7.4. The routine RELAX is called V.E times, and RELAX runs in O(1).
Hence the running time of SOLVE_DIFFERENCE_CONSTRAINT _without_ CYCLE_CHECK is
O(V.E).]

Proof of Theorem 7.5.

The cycles in auth_cycles can be removed in C, time where C, is the number of negative cycles
in auth_cycles.

The sorting of the edges with respect to the priorities can be done in O(E.log(E)) time. Finding
and removing the duplicate negative cycles in the list requires O(Cs.log(C,).V) time: there are
Cs.log(Cy) comparisons each requiring O(V) time for checking the identicality.

The last while loop removes the cycles, and it will take at most C; iterations where C; is the
number of negative cycles in sys_cycles. Each iteration of the loop is O(E.V.Cy): there are E
edges, and counting the number of negative cycles for an edge requires V.C; comparisons. Hence,
the overall running time of the last while loop is O(E.V.C,?).

Therefore, REMOVE_CYCLES works in O(E.V.C,% + C,.log(C,).V + E.dog(E) + C,). 0

Proof of Theorem 7.6. If there are negative cycles, then the running time of SOLVE_TEMPORAL_
CONSTRAINT and MARK_CYCLE is the some of the running times in theorems 7.3,7.4, and 7.5
which is equal to O(V2.E + E.V.C,2 4+ C;log(Cs).V + Elog(E) + C,). 0

Proof of Theorem 7.7. The running time of this algorithm is equivalent to the running time
of the SOLVE_DIFFERENCE_CONSTRAINT .and_MARK_CYCLE algorithm except that there is

one less constraint in the graph.

Proof of Theorem 7.8. This algorithm consists of three parts. First part involves the com-
putation of the shortest path tree using the constraints that are known to be negative cycle free.
Hence for this part we use the SOLVE_DIFFERENCE_CONSTRAINT _without CYCLE_CHECK
algorithm which runs in O(V2.(E-C,,-1)). In the second part of the algorithm, the edges that are
omited from the first part are sorted in descending order of priority. the running time of the sort
routine is O(C,.log(Cy)). In the last part of the algorithm, we try to insert the marked constraints
into the graph one by one. Note that, since the constraints that are being inserted are already
marked, if they result in conflict, they can be omited without any further investigation. Since
checking of the conflicts can be done in O(1) time, and since each edge in the graph can be relaxed
only once for each new constraint, the running time of this part of the algorithm is O(C,,.E).
Hence, the overall running time of the DELETE_CONSTRAINT; algorithm is O(V2.(E-C,,-1) +
Cplog(Cp) + Cp.E).

38

