
Collaborative Multimedia Documents: Authoring andPresentation�Kas�m S. Candany B. Prabhakaranz V.S. SubrahmanianxAbstractMultimedia documents are composed of di�erent data types such as video, audio, text andimages. Authoring a multimedia document is a creative exercise. Unlike traditional computersupported collaborative work where documents are composed of static objects, multimedia docu-ments have temporal, spatial and quality of service (QoS) requirements that must be supportedby any collaborative multimedia platform. In this paper, we show that most requirements(including temporal, spatial, and QoS requirements) for collaborative multimedia systems canbe expressed in terms of a highly-structured class of linear constraints called di�erence con-straints that have been well-studied in the operations research literature. As a consequence,well known algorithms for solving di�erence constraints may be used as a starting point forcreating multimedia documents. Based on our di�erence-constraint based characterization, wedevelop e�cient, incremental algorithms for creating and modifying multimedia documents soas to satisfy the required temporal, spatial and QoS constraints. We further develop methods toidentify inconsistent requirements, and show how such inconsistencies may be removed throughconstraint relaxation techniques.1 IntroductionA multimedia document typically consists of a number of media objects that must be presentedto a person \reading" (or \viewing") the document in a coherent, synchronized manner. Forexample, a multimedia document on conservation of crocodiles in the Everglades may consist of anintroductory audio-video 3 minute presentation laying out the background of the Everglades, a 1minute automatically scrolling text window describing various a�liated projects, and a 5 minute�This research was supported by the Army Research O�ce under grant DAAH-04-95-10174, by the Air ForceO�ce of Scienti�c Research under grant F49620-93-1-0065, by ARPA/Rome Labs contract Nr. F30602-93-C-0241(Order Nr. A716), and by an NSF Young Investigator award IRI-93-57756. Proofs of all results are contained in theappendix.yDepartment of Computer Science, University of Maryland, College Park, Maryland 20742. Email:candan@cs.umd.edu.zDepartment of Computer Science, University of Maryland, College Park, Maryland 20742. Email:prabha@cs.umd.edu.xDepartment of Computer Science, Institute for Advanced Computer Studies & Institute for Systems Research,University of Maryland, College Park, Maryland 20742. Email: vs@cs.umd.edu.1



video clip of the animals themselves, accompanied synchronously by a voice recording describingthe animals seen in the video-clip.In general, a multimedia document is composed of a set of media objects, along with an as-sociated set of presentation requirements, These requirements could include temporal and spatialrequirements that have to be satis�ed during the presentation. Furthermore, in the case of dis-tributed multimedia document presentations, the network has to guarantee a minimum Qualityof Service (QoS) for retrieving the required media objects from the appropriate document servers.These requirements, temporal, spatial and QoS, have to be described for a multimedia document.The primary aim of this paper is to develop a mathematical framework that supports thecreation and incremental modi�cation of multimedia documents. We show that spatial, temporal,and QoS constraints can all be uniformly described within a small class of the language of realvalued linear constraints. This class of constraints are referred to in the Operations Researchliterature as di�erence constraints. While generalized linear constraints [9] have the forma1x1 + a2x2 + � � �+ anxn � b (1)where a1; : : : ; an; b are rational numbers (positive and negative), and x1; : : : ; xn range over the realnumbers (positive and negative), di�erence constraints have the formx1 � x2 � b: (2)Thus, di�erence constraints are a special case of linear constraints where:1. There are only two variables (i.e. n = 2 in Equation 1), and2. One variable has coe�cient 1 (i.e. a1 = 1) while the other has coe�cient �1 (i.e. a2 = �1).Due to the fact that di�erence constraints have a very tightly restricted syntactic form, it turns outthat they are very easy to solve. As space, time, and QoS constraints can all be described within theframework of di�erence constraints, this means that a constraint solver for di�erence constraintsmay be used to handle space, time and QoS constraints within a single uni�ed implementation.Using di�erence constraints, we will show how it is possible to determine if a given set of mediaobjects can be scheduled in a way that satis�es the desired constraints { if no such scheduleexists, then this means that the performance criteria demanded by the authors of the documentare inconsistent. Our algorithms will check for such inconsistencies. We will further show howan inconsistent set of constraints may be relaxed so as to restore consistency. We develop threedi�erent notions of relaxations and show that one is NP-complete, while the others are solvable inpolynomial-time (and hence are perhaps more suitable for real world use).Finally, any framework that supports collaborative multimedia authoring must be incrementalas media objects may be modi�ed dynamically by the author (or authors) of the media document.For example, during the development of a multimedia document, one of the collaborators may\check out" a video-clip and edit it. The result of this edit operation may increase the length ofthe video clip, thus invalidating a previous solution of the constraints governing this multimediapresentation. The revised set of constraints must be re-computed. We will develop an incrementalalgorithm for this purpose. 2



This paper is part of a long term project on developing support for collaborative multimediasystems, jointly between University of Maryland and University of California, San Diego. In our�rst paper on this topic [2], we developed techniques whereby objects could be routed across anetwork (and possibly transformed along the way) in such a way that the person (i.e. author)requesting the object received it at the lowest possible cost and at the desired quality. However,no issues regarding the presentation or editing of objects was considered there, just routing andcommunication. In this e�ort, we assume that network servers can route the object to the authorin the form and within the quality desired; instead, we concentrate on how such a set of objectsmust be presented within a multimedia presentation with space, time, and QoS constraints.2 Collaborative Multimedia Systems (COMS): DesiderataIn any collaborative multimedia system, four fundamental questions need to be addressed:(Problem 1) Who may access a given media-object ?(Problem 2) If collaborator C is allowed to access a given media-object, then what operationsmay he perform on it ?(Problem 3) If collaborator C is allowed to access a given media-object, how should that objectbe routed to him across the network so as to ensure that: a) he can perform the operationshe needs to perform, b) the cost of sending the object to him is minimized, and c) the objecthas the desired quality ?(Problem 4) How should the collaborative multimedia system (COMS, for short) modify theoverall document structure in the face of changes made to a media-object by a collaboratorwho is given write-access to that object? How should the COMS present only relevant parts ofa multimedia document when a reader is only interested in certain portions of the document?Questions (1) and (2) above have been studied intensely in the (distributed) operating systemsarena where access methods and protocols for sharing �les and �le systems are well developed.Question (3) above was recently studied in detail by Candan, Subrahmanian and Venkat Rangan[2]. The primary aim of this paper is to study question (4) above.In order to have a solution to this problem, the properties and the structure of the COMSenvironment needs to be identi�ed. Unlike text based collaborative environments, in a multimediaenvironment, the authors work on a common document which consists of a variety of objects. Thereare temporal objects, such as video clips, that must be presented over a period of time, and thereare static objects that do not have any temporal dimension. Similarly, there are objects that arevisible, i.e. that should be displayed on the screen and hence have spatial attributes, and there areobjects that are not visible on the screen (e.g. sound) that have no spatial attributes. Each ofthese di�erent forms of data has very di�erent characteristics, and di�erent I/O requirements. Itis the responsibility of the designer of the collaborative multimedia system to guarantee that suchdi�erent forms of data are appropriately handled.3



Furthermore, the multimedia objects constituting a multimedia document may be distributedover a computer network. This distributed aspect of the multimedia document poses some prob-lems to a collaborative multimedia system. First, each user (or multimedia author) on the networkmay have di�erent viewing and editing capabilities. Second, the network may not be homogeneous,and this heterogeneity may cause di�erences in communication requirements. Third, it is entirelypossible that the temporal constraints (likewise spatial and QoS) associated with objects are mu-tually inconsistent. It is the job of the collaborative multimedia system to identify these conictsand suggest techniques to resolve these conicts.Finally, when a document is being collaboratively authored, the communication facilities andthe QoS o�ered by the network may lead to multiple alternative presentations of the document.Furthermore, both the authors editing the document as well as users viewing the document, maydecide that they are only interested in a partial view of the document (e.g. only the portions thatare modi�ed by them in the case of authors, or in the case of users, the speci�c portions of directinterest to them). Similarly, an individual viewing the document may wish to skip viewing certainparts of the document. Hence, the author(s) and viewer(s) may share the same document and atthe same time might see di�erent presentations of it. The precise form of each presentation is basedon the following factors:� User access rights� User projection of the document� Communication and QoS requirements� Local capabilities� Authors editing the document.Figure 1 shows, in detail, the structure of such presentations. In particular, the document shownat the top of Figure 1 may be presented in two di�erent ways to two di�erent users, dependingupon the interests of those users, their access rights, the communication and QoS requirementsbased on the locations of those users, and the capabilities and facilities available at their local host.The following example demonstrates this.Example 2.1 Figure 2 shows a very simple multimedia document which consists of three multime-dia objects: o1, o2 and o3. The multimedia author(s) state the following presentation constraints:� o2 should appear on the screen only after the presentation of o1 is completed.� o3 must start at the same time as o2.Now consider three users u1, u2, and u3 with the following facts and requirements:� It takes 3 seconds for u1 to get o1 across the network, and it takes 5 seconds for u1 to get o2and o3. 4
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11 12Figure 4: An Example Multimedia Document Structure� overwrite edit: discard the speci�cations of the original document, if necessary, and performthe changes to the document.The second way is to edit the original multimedia document itself. In order to edit the originaldocument, the author must have the necessary access rights. Each author may have di�erentaccess rights to di�erent portions of the multimedia document. Furthermore, the authors mayhave priorities to resolve conicts generated by the simultaneous editing of shared objects. Themodi�cations performed on the original copy is immediately available to all users. Methods to studyconcurrent read-write accesses have been extensively studied in the operating systems communityand database community[11], and hence we do not address these issues within the framework ofthis paper.3 Multimedia Objects: Formal De�nitionA multimedia document comprises of objects of di�erent types such as video, audio, image andtext. Each media object is presented in accordance with certain spatial and temporal constraints.The spatial constraints govern the presentation of media objects on the user's screen. The tem-poral constraints specify the time and duration of presentation of a media object, as well as thesynchronization of presentation of with that of other media objects. Figure 4 shows a possibletemporal structure of a multimedia document and Figure 5 shows an example spatial organizationof the document. In this example, the document has four streams of information during the period< Ts; t4 > :video, audio, image and text (Ts denotes the presentation start time). The spatialstructure shown in Figure 5 maps each stream onto independent output devices (e.g. windows,speakers). However, in some instances, more than one stream may be mapped onto a window whenobject presentations are to be superimposed.In many instances, the media objects composing the document can be distributed over a set7
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presentation on the screen associates a temporal dimension to the object. In other words,static objects inherit the temporal dimension of the multimedia document to which theybelong. The key aspect of static objects is that their display can not be divided into parts.� Quasi-static objects : Some static objects consist of multiple pages (like postscript �les).Each page can be considered as an atomic sub-object. However, the pages of a postscriptdocument are linked with a strict before-after relationship. In fact, this relationship can beconsidered as a temporal dimension. However, the temporal dimension of a quasi-static objectis stretchable, i.e. the display length of each sub-object may only be determined at run-time.This is because di�erent readers may take di�erent amounts of time scrolling through thepages of a postscript document. Variable-rate video objects may also be viewed as quasi-static objects. If O is any quasi-static object, we use the notation len(O) to denote thenumber of atomic sub-objects that O has.� Temporal objects : Some objects contain a predetermined number of atomic components,and a predetermined frequency for the display of these components. Audio objects andfixed-rate video objects are such objects.Now that we have formally de�ned multimedia objects, we observe that a multimedia docu-ment D consists of:1. A set, ObjD, of objects,2. For each object O 2 ObjD, a triple (TO; SO; QO) where TO is a set of temporal constraintsassociated with object O, SO is a set of spatial constraints associated with O, and QO is aset of QoS constraints associated with O.3. A set of Inter-Linking Constraints governing the relationships between the presentations ofdi�erent objects.In the next few sections, we will study the precise structure of these constraints.4 Speci�cation of Temporal ConstraintsAssociated with each object O in a multimedia document D, we associate a set, TO, of temporalconstraints. As is customary in operations research[9], constraints are constructed from variables.In the case of multimedia documents, we associate, with each multimedia object O in the document,the following temporal variables:� ST (O) : Denotes the start time of the display of the object O� ET (O) : Denotes the end time of the display of the object O9



� STi(O) : Denotes the start of the ith component of object O (if O is a quasi-static or temporalobject).� ETi(O) : Denotes the end of the ith component of object O (if O is a quasi-static or temporalobject).Temporal constraints are de�ned for all objects, including static objects. There are four types oftemporal constraints:� T (o)� t � �t � T (o)� t � �t� t� T (o) � �t � t � T (o) � �twhere:1. T (o) 2 fST (o); ST2(o); ET2(o); : : : ; STlen(o)(o); ETlen(o)(o); ET (o)g and2. t 2 SjfST (oj); ST2(oj); ET2(oj); : : : ; STlen(o)(oj); ETlen(o)(oj); ET (oj)gSfSTp; ETpg and3. STp and ETp denote the start and end of the presentation respectively.Recall that when O is a quasi-static object, len(O) denotes the number of sub-objects of O.Example 4.1 Let us assume that there exist two objects o1 and o2 that we want to displaysimultaneously, i.e. we want them to start and �nish simultaneously. This requirement can bedescribed using the following constraints:ST (o1)� ST (o2) � 0ST (o2)� ST (o1) � 0ET (o1)�ET (o2) � 0ET (o2)�ET (o1) � 0Note that using these constraints, not only we can specify Allen's 13 temporal relationships[1]between events (cf. Figure 6), but also specify more complex quantitative relationships that cannotbe expressed in Allen's framework. For instance, in Allen's approach, it is possible to state thatevent A occurs before event B. However, it is not possible to say, for instance, that the completionof event A must precede the start of event B by at most 10 seconds and at least 5 seconds. In ourframework, we can easily specify the temporal distance between two events.Example 4.2 Let us reconsider the previous example, and suppose we also want the 5th componentof o1 to be displayed at least 10 milliseconds after the 12th component of o2 is displayed. Thisrequirement can be achieved by the addition of the following constraint to the above set:10



Multimedia Constraint Speci�cation1 a before b ET (a)� ST (b) � �2 a equal b ST (b) � ST (a) � 0ST (a) � ST (b) � 0ET (b) � ET (a) � 0ET (a)� ET (b) � 03 a meets b ET (a) � ST (b) � 0ST (b) � ET (a) � 04 a overlaps b ST (a) � ST (b) � �ST (b) � ET (a) � �ET (a)� ET (b) � �5 a during b ST (b) � ST (a) � �ET (a)� ET (b) � �6 a starts b ST (a) � ST (b) � 0ST (b) � ST (a) � 0ET (a)� ET (b) � �7 a �nishes b ST (b) � ST (a) � �ET (a) � ET (b) � 0ET (b)� ET (a) � 0Figure 6: Allen's temporal relations (� is a very small negative number)Multimedia Constraint Speci�cation1 a should start when b starts ST (a) � ST (b) � 0ST (b) � ST (a) � 02 a should start 2 sec after b ends ET (b) � ST (a) � 2ST (a) � ET (b) � �23 a should start 2 sec before the end of thepresentation ETp � ST (a) � 2ST (a) � ETp � �24 a should start within 3 seconds after the start ofthe 7th frame of the object b ST (a) � ST7(b) � 3ST7(b)� ST (a) � 05 a should end within 2 seconds of the start of the7th frame of the object b ST (a) � ST7(b) � 2ST7(b)� ST (a) � 26 a should be presented for 7 seconds ET (a) � ST (a) � 7ST (a) � ET (a) � 07 The second frame of a should start when the �fthframe of b ends ST2(a) � ET5(b) � 0ET7(b)� ST2(a) � 0Figure 7: Some multimedia constraints and the corresponding speci�cations11



ST5(o1)�ET12(o2) � 10Figure 7 lists some examples of multimedia synchronization constraints that are di�cult to expressin Allen's framework, and shows how these may be easily represented in our approach.In the 6th row of �gure 7, the second constraint, i.e. ST (a)� ET (a) � 0, obviously holds foreach object in the multimedia document. Such constraints do not require explicit speci�cation bythe authors. A COMS system should automatically enforce the following constraints implicitly.Implicit Temporal Constraints: For each multimedia object a, we have the constraint:ST (a)�ET (a) � 0: (3)For each temporal or quasi-static multimedia object a, we have the following four constraints:ET (a)� ETlen(a)(a) � 0: (4)ETlen(a)(a)�ET (a) � 0: (5)ST (a)� ST1(a) � 0: (6)ST1(a)� ST (a) � 0: (7)These constraints merely specifying that the presentation of a quasi-static or temporal objectbegins (resp. ends) when its �rst (resp. last) atomic sub-object's display starts (resp. ends). Inaddition, for each temporal object a with �xed rate �t we have the following constraints:ET (a)� ST (a) � len(a)� �t: (8)ST (a)�ET (a) � �len(a)� �t: (9)In our framework, all the above constraints are enforced automatically without requiring anexplicit speci�cation by the user.5 Speci�cation of Spatial ConstraintsSpatial constraints are de�ned for all objects in a multimedia presentation whose display types areset to monitor. In order to specify spatial constraints, we use the following spatial variables:� W (m) and H(m) denote the width and the height, respectively, of the multimedia document.� X(m) and Y (m) denote the coordinates of the lower left corner of the multimedia documenton the screen.� xr(o) and xl(o) denote the positions of the right and left borders of the multimedia objectwith respect to X(m). 12



� yb(o) and yt(o) denote the positions of the bottom and top borders of the multimedia objectwith respect to Y (m).There are eight types of spatial constraints:� X (o)� x � �x � X (o)� x � �x� x�X (o) � �x � x �X (o) � �x� Y(o)� y � �y � Y(o)� y � �y� y � Y(o) � �y � y � Y(o) � �ywhere:1. X (o) 2 fxr(o); xl(o)g and2. x 2 Sjfxr(oj); xl(oj)gSfW (m)g, and3. Y(o) 2 fyb(o); yl(o)g and4. y 2 Sjfyb(oj); yl(oj)gSfH(m)g.The following example shows the use of the above constraints.Example 5.1 Suppose a multimedia document contains two objects o1 and o2. Suppose we wantthe left border of o1 to be 100 pixels from the left border of the multimedia document, and we wantthe left border of the o2 be at most 10 pixels right to the right border of o1. This arrangement canbe described using the following constraints:xl(o1)� 100 � 0100� xl(o1) � 0xr(o1)� xl(o2) � 0xl(o2)� xr(o1) � 10 2Implicit Spatial Constraints: As in the case of temporal constraints, there are certain im-plicit spatial constraints that must always be honored by a COMS system. In particular, for allmultimedia documents m and for all objects o the following constraints must be implicitly satis�ed:xl(o)� xr(o) � 0 (10)yb(o)� yt(o) � 0 (11)xr(o)�X(m) � W (m) (12)yt(o)� Y (m) � H(m) (13)In our framework, these constraints will be automatically satis�ed.13
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� ts : Denotes the start time of retrieval of the object. The retrieval time precedes the pre-sentation time ST (O), since the object is needed at the client side prior to its presentation,or� te : Denotes the end time of retrieval of the object.Using this de�nition, the throughput constraint for a multimedia document presentation may bede�ned as follows: THo(ts)� THavg � �hTHo(te)� THavg � �hThe above constraints describe the variations in the instantaneous throughput requirements forretrieving an object, from the average throughput required for the multimedia stream. These twoconstraints help in specifying the throughput requirements for retrieving a multimedia object o. Byconcatenating the throughput requirements of individual objects, we can identify the throughputrequirements of a stream composing the multimedia document. The solution of these constraintsgives the instantaneous throughput that must be guaranteed by the network service provider. Thissolution can be used for QoS negotiation with the network service provider.Delay Constraints We now show how delay requirements may be modeled within our framework.Since the objects that are used in the multimedia document are not replicated at each node onthe network, they need to be sent to the nodes when a user wants to use them. However, thecommunication between the nodes of the network imposes some delay, and this delay must betaken into account while scheduling the presentation of these objects. The following constraintsrepresent the delay criteria: Tstartdelivery(o)� Tenddelivery(o) � ��:Tenddelivery(o)� ST (o) � 0:Suppose object o is needed by the node n and suppose the shortest delay that can be guaranteedby the network for the delivery of the object o to the node n is �. This fact associated with node nis represented by the �rst constraint above. The second constraint above represents the fact thatobject o can not be presented before it is delivered.These two constraints together specify the relationship between the start of the presentation ofthe object o and the start of the delivery of the object o.Delay Jitter Constraints: Delay jitter constraints are speci�ed as the maximum tolerablevariations in the delay su�ered by an object or a network packet [4, 5]. In order to specify the delayjitter constraints, we need to introduce the following variables:15



� D(o) : Denotes the average delay su�ered by an object on its transfer over the computernetwork.� Dmax(o) : Denotes the maximum delay that is permissible for the object transfer.The delay jitter constraint may now be speci�ed as follows:Dmax(o)�D(o) � �which is easily seen to be a di�erence constraint.Cell Loss Probability Constraints: The cell loss probability constraints describe the maximumpercentage of cells (or the network packets) that can be lost during an object transfer [4, 5]. Inorder to specify the cell loss probability constraints, we need to introduce the following variables :� C(o) : Denotes the number of network cells that an object o is composed of.� L(o) : Denotes the number of network cells that were transferred to the client.The cell loss probability constraint may now be speci�ed as :C(o)� L(o) � � � 100where � is a constant specifying the maximum tolerable percentage of cell loss. It is easy to seethat the above constraint is also a di�erence constraint.Prior to completing this section, we observe that a vast number of important specialized QoSmethodologies have been reported in the literature. Though such QoS constraints can be easilyrepresented in our framework, they are not necessarily representable as di�erence constraints. Suchcomplicated constraints, however, can be processed with suitable constraint solvers, and the resultcan be piped into our framework. The communication and cooperation between di�erent constraintsolvers is a di�cult problem, and we do not address it in this paper.7 Solving The Di�erence ConstraintsBy now, the reader would have noticed that each and every temporal, spatial and QoS constraintassociated with a multimedia document is a di�erence constraint (cf. Sections 4, 5 and 6). Con-sequently, we may implement a single algorithm for solving di�erence constraints and call it withdi�erent inputs (corresponding, respectively, to the temporal, spatial, and QoS constraints associ-ated with a multimedia document).Before proceeding any further, we need to formally de�ne a solution to a set of constraints.Though this de�nition is quite \obvious" it is needed for the proofs of the main results.16



De�nition 7.1 (Solution to a set of Constraints) Suppose C is a set of constraints C, andv1, : : : , vm are all the variables in C. A solution for C is a set � = fv1 = 1; : : : ; vm = mg suchthat if we replace all occurrences of vi in C with 1 for all i = 1; : : : ; m, then all the constraints inC evaluate to true. 2Handling Unsolvable Sets of Constraints: When a multimedia document is created by manydi�erent collaborators, each of whom may associate some presentation constraints with one or moreobjects, it is very likely that conicts may arise. For instance, author A may have assumed that agiven media object o1 is of duration 5, but author B might edit o1 and extend its duration to 8,thus leading to a violation of temporal constraints. In such cases, a COMS system must not onlydetect violation of the constraints, but it must also suggest ways of relaxing it. Consequently, werequire a conict handler to resolve the conicts that might exist in (or that might arise during thecourse of re�nement of) a speci�cation of a multimedia document. Such a conict handler shouldhave the following properties.� Minimal discard: The conict handler should chose a minimal set of speci�cations toremove.Example 7.1 Assume the following set of speci�cations:(1a) a� b � 0(2a) b� a � �1(3a) c� a � 0(4a) b� c � �1Here, (1a)-(2a), and (1a)-(3a)-(4a) are in conict. The best way to handle this problem isto remove (1a), because both conicts will be resolved by the deletion of a single constraint.However, any other solution would include at least two deletions, such as the removal of (2a)and (3a), which is undesirable. 2� Speci�cation reuse: The removed speci�cations must be retained by the COMS for possiblefuture use, unless speci�ed otherwise. For example, a COMS may have temporarily discardedconstraint C. However, if the multimedia document is subsequently edited by the authors,then some of the conicting constraints that caused C to be removed may themselves havebeen suppressed or modi�ed, thus (possibly) allowing C to be consistent with the new set ofconstraints. The COMS should be capable of �nding and reinserting the speci�cations whichbecome realizable after such changes in the multimedia document.Example 7.2 Assume again the above set of speci�cations where (1a) is removed for keepingthe set conict free1:�(1a) a� b � 0(2a) b� a � �11the mark * denotes removal from the set of speci�cations.17



(3a) c� a � 0(4a) b� c � �1Now assume that, the multimedia author deleted the speci�cations (2a) and (3a). The con-straint (1a) is now satis�able along with the remaining constraint (4a). Hence, (1a) shouldbe reinserted to the speci�cation list:(1a) a� b � 0(4a) b� c � �1 2The speci�cation reuse strategy is useful especially when there are conicts between thedocument/system speci�cations and the user speci�cations, as well as when the user chooses toeliminate conicts by deleting user speci�cations. The reason is that it is usually not desirableto omit conicting user speci�cations, because they reect how the user wants to view thedocument. Instead, the conict handler should mark them as \currently" unsatis�able, andretain them for possible reuse. If in the future, the document/system speci�cations change,then some of the user speci�cations may become satis�able.In the rest of this section, we will �rst (Section 7.1) de�ne a data structure to store a set ofdi�erence constraints. As temporal, spatial and QoS speci�cations can all be captured by di�erenceconstraints, this data structure is adequate for reasoning about all these di�erent forms of data.Later (Section 7.2), we will develop algorithms that check for solvability of these constraints, thatautomatically �nd ways of discarding minimal sets of constraints when constraints are unsolvable(i.e. when there is a conict), and that automatically re-solve the constraint set when a newconstraint is added/deleted (e.g. when a user edits a document).In this paper, we will show that di�erence constraints associated with temporal, spatial and QoSconstraints on presentation of a document, may naturally be represented as a weighted, directedgraph in such a way that solutions of the constraints (which correspond to how the document mustbe presented in space, time, and quality) correspond to shortest paths in the graph.7.1 Data Structure For Di�erence ConstraintsSuppose D is any document and TD; SD; QD are the sets of temporal, spatial, and QoS constraints,respectively, that are associated with D. With each of these sets of di�erence constraints, we mayassociate a graph G = (V;E) de�ned as follows:1. Vertices: For each constraint variable �i occurring in the set of di�erence constraints (e.g.TD; SD; QD),V contains a vertex vi representing that variable. In addition, V contains two special verticesvs (document \start" node) and ve (document \end" node).2. Edges: If �j��i � �t is a constraint in the set of di�erence constraints being considered, thenE contains an edge from vi to vj and the weight associated with this edge is �t. Furthermore,for each node vi, there is an edge from vi to vs with weight 0 and an edge from ve to vi withweight 0. 18



Thus, given any document D, we have one graph each associated with its temporal, spatial and QoSconstraints. Suppose C is any cycle in graph G. C is said to be a negative cycle i� the sum of theweights of the edges in C is a negative number. The following result is an immediate consequenceof the well known result ([3]) stating that a set of di�erence constraints is solvable i� the graphassociated with it is free of negative cycles.Theorem 7.1 SupposeD is any multimedia document andGt; Gs; Gq denote the graphs associatedwith D and the constraint sets TD; TS; TQ respectively. Then: TD (resp. TS ; TQ) is solvable i� Gt(resp. Gs; Gq) contains no negative cycle. 2Consequently, our framework for synchronized document authoring in COMS allows us to checkfor coherence/consistency of a multimedia document by merely checking whether a graph has anegative cycle. Optimal algorithms for this purpose were developed by Bellman and Ford [3].We may use a single uni�ed data structure for di�erence constraints to handle temporal, spatialand QoS constraints. This data structure is shown in Figure 9. We now describe the basic intuitionunderlying this data structure:1. First, we have an array of object identi�ers associated with objects occurring in the multi-media document.2. Each entry (associated, say with object o) in the above array points to a node having three�elds:(a) the �rst and second �elds, S and E, are pointers that point to nodes N1 that refer tothe \start" and \end" of presentation of the object.(b) The third �eld is a NIL pointer if object o is a static object. Otherwise, the third �eldpoints to a list of nodes of the form: (si; ei; Next) where each of si; ei are similar toS and E above and refer to the start and end of the i'th component of the object inquestion and Next points to the next element (if any) in the list.(c) Nodes of the formN1 above have a record structure containing �ve �elds: nodeid, count,value, inarcs, outarcs. The nodeid �eld speci�es a node in the graph associated withthe multimedia document and a set of di�erence constraints (spatial, temporal or QoS).The value �eld speci�es a time-instant at which the object (or a part of it) is displayed.The count �eld speci�es how many sub-objects of the object must be displayed, startingfrom the aforementioned time instant. This �eld is always 1 if the object in question isstatic.(d) inarcs and outarcs specify the incoming edges to the node and the outgoing edges(w.r.t. the graph associated with the multimedia document and the associated di�erenceconstraints) from the node respectively. These arcs are de�ned as follows: at any givenpoint in time t, the algorithm that we will de�ne in Section 7.2, will associate witheach node with node-id N , a set of edges, inarcs and (another set of edges outarcs)specifying the edges incident on (outgoing from) this node w.r.t. the edge relation in thegraph associated with the multimedia document. Each such arc falls into one of threecategories: 19
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Figure 9: Di�erence Constraint Speci�cation Data Structure20



i. Node N has a list called T (strictly speaking we should write TN , but will notdo so when N is clear from context) that contains at most one arc from inarcs {intuitively, this arc represents the last segment of the \cheapest known path" fromthe start node to N found until now.ii. Node N has a list called O { this is a list of \other" nodes in inarcs that do not occurin the shortest path known thus far; however if an update occurs (e.g. an author ofthe document modi�es the document, thus increasing an edge weight/cost), then anode from the list O may be moved into T .iii. Node N also has a list called I containing \inconsistent" edges. As stated in theo-rem 7.1, the existence of a negative cycle means that the constraints are unsolvable.To restore solvability, negative cycles must be \broken" by discarding a minimalnumber of constraints (policies that perform such \discards" will be discussed indetail in Section 7.2. For now, it su�ces to know that all edges in inarcs thatare associated with constraints2 discarded in this way, are placed in I . The reasonfor their retention is the principle of Speci�cation Reuse articulated earlier; laterupdates may very well make these discarded constraints satis�able.Example 7.3 (Di�erence Constraints Data Structure) Figure 10 shows a portion of thetemporal constraint data structure for the objects X1; X2; Y 1; Y 2; Y 3 and Y 4 composing the mul-timedia document shown in Figure 4 earlier on in the paper. Each object has a start and an endnode. The value associated with each of the nodes denotes the actual time of start or the end ofpresentation of the object. The count �eld speci�es the number of sub-atomic objects composingthe object.For example, consider the object X1: the node id of the constraint variable ST (X1) is 1, whilethe node id of the constraint variable ET (X1) is 2. The count �elds are 1 as X1 is an unbreakableimage (hence, non quasi-static).On the other hand, the object Y 2 is a quasi-static video object (variable-rate video). Thisobject has a total of 8 blocks of video { the �rst chunk shows 5 blocks, while the second consists of3. The �rst chunk is shown starting at time t1, while the second chunk is shown starting at timet12. The display of the �rst chunk ends at time t11 while the display of the second ends at time t2.7.2 E�cient Algorithms for Solving Di�erence ConstraintsIn this section, we are interested in the following problem: given a set of di�erence constraints(temporal, spatial, or QoS) associated with a multimedia document, attempt to solve this set ofdi�erence constraints. If no solution exists, then �nd a way of relaxing these constraints minimallyso as to make the original unsolvable set of constraints solvable.It is well known that solving a set of di�erence constraints is equivalent to �nding the shortestpath in the graph associated with those constraints [3] in the manner described earlier on. Note that2Recall that by the construction of the graph associated with a multimedia document, there is a one-one corre-spondence between those edges not involving vs; ve in the graph and constraints.21
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-1Figure 11: A constraint graph with negative cyclesconstraint graphs can contain edges with negative weights. As proved in Theorem 7.1, conictingconstraints are captured by the existence of negative cycles in the constraint graph. For instance,the set of speci�cations in Example 7.1 corresponds to the graph in �gure 11. Note that, thenegative cycles in the graph correspond to the set of conicts given in example 7.1.Though most graph algorithms for computing shortest paths cannot handle negative cycles,the well known Bellman-Ford shortest path algorithm can deal with negative cycles in the graph[3]. This algorithm also detects the presence of a negative cycle that is reachable from the start ofmultimedia document presentation. If there is no cycle, the algorithm produces the shortest pathsand their weights. The shortest path along with the associated weights in e�ect specify the timeinstances and durations of presentations of the objects composing the multimedia document. Ifthere is such a cycle, the algorithm terminates indicating that there does not exist a solution. Thepresence of a negative cycle indicates conicting constraints.However, the Bellman Ford algorithm cannot relax constraints so as to restore solvability, norcan it even make suggestions to the authors of the multimedia document on how these constraintsmay be relaxed. The primary aim of this section is to present an algorithm that will take as input,a set of (temporal/spatial/QoS) constraints, and return as output, a schedule that satis�es as manyof the constraints as possible. Before proceeding any further, we �rst de�ne constraint relaxation.De�nition 7.2 (Constraint Relaxation) Suppose C is a set of di�erence constraints. A relax-ation of C is any subset C0 � C such that C0 is solvable. 2The above de�nition allows any subset of C to be considered a relaxation. Thus, if c1; c2 areconstraints in C, and if (C�fc1g) is solvable then it must necessarily be the case that (C�fc1; c2g)is solvable. However, the latter relaxation of C eliminates \more constraints" than strictly needed.Below, we present three alternative de�nitions of optimal constraint relaxations. The third de�nitionassumes that each constraint has an associated priority { a number greater than or equal to 1. Thehigher the priority, the more important the constraint.De�nition 7.3 (Optimal Constraint Relaxation) Suppose C is a set of di�erence constraints.23



1. a card-optimal relaxation of C is any subset C0 � C such that C0 is solvable, and thereis no other relaxation C00 such that card(C00) > card(C0). Here card(C) is the number ofconstraints in C.2. a pre-set-optimal relaxation of C is any subset C0 � C such that C0 is solvable, and there isno other relaxation C 00 such that C00 � C 0. A set-optimal relaxation of C is a pre-set-optimalrelaxation C', and there is no other pre-set-optimal relaxation C" such that card(C 00) >card(C 0).3. a priority-optimal relaxation of C is a set-optimal relaxation C0 of C such there is no otherset-optimal relaxation C 00 which satis�es (Pc2C00 }(c)) > (Pc2C0 }(c)) where }(c) denotes thepriority of constraint C. We assume that }(c) � 1 for all constraints c. 2As we will show below, �nding card-optimal relaxations of C is an NP-complete problem , while�nding a set-optimal relaxation is solvable in polynomial time. Similarly, �nding Priority OptimalRelaxations is solvable in polynomial time.Theorem 7.2 Card-optimal removal of negative cycles is NP-hard.We now present an algorithm for �nding solutions of both a priority-optimal relaxation of C anda set-optimal relaxation of a set C of constraints. In other words, the problem we address is thefollowing:Priority ( resp. Set) Optimal Relaxable Constraint Problem:� INPUT: A set C of di�erence constraints (temporal,spatial or QoS) associated with a multimedia docu-ment.� OUTPUT: A solution � to a priority-optimal (resp.set-optimal)relaxation of C.7.3 Algorithms for Solving Optimal Relaxable Constraint ProblemLet G = (V;E) be a weighted, directed graph associated with a set of di�erence constraints. Letthe end document node ve behave as the source with weight function w : E ! R. For each vertexv 2 V , we maintain a variable, d[v], representing an upper bound on the weight of a shortest pathfrom source sv to v, i.e., d[v] is a shortest path estimate. We also maintain the predecessor, �[v], ofeach node v. The predecessor of a vertex is either another vertex or NIL. shortest path and theirassociated weights. When our algorithm is �nishes its computations, d[S] where S is the start nodewill be a negative number. We will obtain a solution to a priority-optimal or set-optimal relaxationof the constraints being considered as follows: 24



SOL = fv = d[v] + d[S] j v is a vertex in the graph G that is neither the start nor theend nodeg:We now present a sequence of sub-routines (A1){(A5),(A8). (A6) and (A7) are the �nal al-gorithm that compute a solution to the optimal relaxable constraint problem. (A6) is used initiallywhen a presentation of the document is being created for the �rst time. However, once a documentpresentation has been created, the more e�cient algorithm, (A7), may be used subsequently.In the following algorithm, the shortest path estimates and the predecessors of each vertex areinitialized �rst by the procedure Initialize-single-source. This procedure basically assigns NIL to�[v], for all v 2 V , d[v] = 0 for v = vs, and d[v] =1 for v 2 V � fvsg.A1 : Initialize-single-source (G; vs)1. for each vertex v 2 V [G]2. do d[v] 13. �[v] NIL4. d[s] 05. all cycles = ;The identi�cation of the shortest path is by using the relaxation routine, RELAX, where a testis carried out to check whether the shortest \current" path to a vertex v can be improved by anedge (u; v); if so, we update d[v] and �[v]. Hence, a relaxation step might both decrease the valueof the current shortest-path estimate d[v] and simultaneously modify the predecessor �[v].A2 : RELAX (u; v; w)1. if d[v] > d[u] + w(u; v)2. then d[v] d[u] + w(u; v)3. �[v] uBesides the RELAX routine described above, we need a similar routine which will detect theexistence of a negative cycle while modifying d[v].A3 : RELAX and MARK CYCLE (u; v; w)1. relaxed = 02. if d[v] > d[u] + w(u; v)3. then if NOT CYCLE (u; v)4. then d[v] d[u] + w(u; v)5. �[v] u6. relaxed = 1;7. return(relaxed)The above algorithm (A3) relaxes an edge unless performing the relaxation leads to the creationof a negative cycle in the graph. The NOT CYCLE routine checks if the relaxation of the edge willcause a negative cycle, and if there is a negative cycle, it marks the cycle for later processing.25



A4 : NOT CYCLE (u; v)1. cycle = PATH (u; v)2. if cycle 6= ?3. then cycle = cycle! v4. all cycles = all cycles [ fcycleg5. return(0)6. else return(1)The PATH algorithm returns the shortest path from v to u found so far. If there is no such apath, then the algorithm returns ?.A5 : PATH (u; v)1. if �[u] = ?2. then return(?)3. if �[u] = v4. then return(v ! u)5. else6. temp path = PATH (�[u]; v)7. if temp path = ?8. return(?)9. else return(temp path! u)The algorithm for determining the shortest-path uses the Initialize-single-source routine forinitializing the shortest-path estimates and the predecessor for each vertex and then uses the algo-rithms given below to solve the constraints:A6 : SOLVE DIFFERENCE CONSTRAINT and MARK CYCLE (G;w; s)1. Initialize-single-source (G; s)2. for i = 1 to jV [G]j � 13. do for each edge (u; v) 2 E[G]4. do RELAX and MARK CYCLE (u; v; w)5. if all cycles 6= ;6. then G0 = REMOVE CYCLES (G; all cycles)7. SOLVE DIFFERENCE CONSTRAINT without CYCLE CHECK(G0; w; s)Theorem 7.3 If there are no negative cycles in the input constraint graph, then the algorithmSOLVE DIFFERENCE CONSTRAINT and MARK CYCLE works in time O(V2.E).A7 : SOLVE DIFFERENCE CONSTRAINT without CYCLE CHECK (G;w; s)1. Initialize-single-source (G; s)2. for i = 1 to jV [G]j � 13. do for each edge (u; v) 2 E[G]4. do RELAX(u; v; w) 26



The SOLVE DIFFERENCE CONSTRAINT and MARK CYCLE algorithm �rst �nds the neg-ative cycles in the constraint graph. If no negative cycle exists, then the result is the shortest path.If, however, there are negative cycles in the graph, then the algorithm calls the REMOVE CYCLESroutine to get rid of the negative cycles, and then it callsSOLVE DIFFERENCE CONSTRAINT without CYCLE CHECK to �nd the shortest path.Theorem 7.4 SOLVE DIFFERENCE CONSTRAINT without CYCLE CHECK works in timeO(V.E).The REMOVE CYCLES algorithm given below eliminates cycles using a notion of priority.Suppose each edge in a constraint graph has a priority { the higher the priority, the more importantthe edge.The elimination of a negative cycle requires the omission of at least one edge (constraint) fromthe negative cycle. The omission of a constraint can occur in two ways:� deletion of a constraint : In this case, the constraint is permanently deleted from theconstraint set.� marking of a constraint : In this case, however, the constraint is kept within the constraintset, but marked as unsatis�able. If, in the future, the inclusion of this constraint becomessafe (due to deletion of a conicting constraint), then it can be unmarked.In procedure (A8) below, all negative cycles are categorized by the system into two types {sys cycles that the system will eliminate by itself, and auth cycles that the system will present tothe author(s) for their recommendations.A8 : REMOVE CYCLES (G; cycles)1. Let cycles be ( auth cycles [ sys cycles )2. < deleted constraints; marked constraints > = CONSULT AUTHORS (auth cycles)3. delete the constraints in deleted constraints from the graph4. mark the constraints in marked constraints as unsatis�ablef At this point all the negative cycles in auth cycles are removed g5. let E be the set of edges in sys cycles, and let p(e) be the priority of the edge e6. sort E with respect to the priorities in ascending order7. remove duplicate negative cycles from sys cycles8. em = 19. while sys cycles 6= ;10. for each unmarked edge e 2 E (starting from edge 1)11. do c[e] = COUNT of CYCLES(sys cycles; e)12. if c[e] > c[em]13. then em = e13. remove all the negative cycles containing em from sys cycles14. mark em as unsatis�able 27



In the above algorithm the COUNT of CYCLES routine counts the number (c[e]) of negativecycles an edge e is involved. Note that, these counts must be recalculated during each iteration ofthe while loop.Theorem 7.5 REMOVE CYCLES works in time O(E.V.Cs2 + Cs.log(Cs).V + E.log(E) + Ca),where Cs is t he number of negative cycles in sys cycles.Theorem 7.6 If there are negative cycles in the input constraint graph, the algorithm SOLVETEMPORAL CONSTRAINT and MARK CYCLE works in time O(V2.E + E.V.Cs2 + Cs. log(Cs).V+ E.log(E) + Ca).The REMOVE CYCLES algorithm consults the multimedia authors for their preference aboutthe negative cycles because these negative cycles embody constraints inserted by the authors of themultimedia document. For the negative cycles which contain system parameters, on the other hand,it may automatically decide which constraint to remove. The algorithm uses a greedy approachfor removing the negative cycles. The main idea is to �rst remove edges involved in the highestnumber of negative cycles. In addition, it also tries to delay the removal of high priority edges asmuch as possible. The REMOVE CYCLES algorithm is guaranteed to:� always compute a shortest path in the constraint graph associated with a priority-optimalrelaxation of C; and� as a consequence, when the REMOVE CYCLES terminates, SOL = fv = d[v] + d[S] j v is anode in the constraint graph and v is not the start or end nodeg is a solution to a priorityoptimal relaxation of C (resp. set-optimal relaxation of C if all priorities are set to 1).We view the multimedia document as a dynamic entity which dynamically changes with theaddition and deletion of objects and constraints by the authors of the document. The changes tothe document may be initiated by the multimedia authors or by changes in the system parametersand the resource availability (e.g. changes in the expected throughput).When changes occur due to the addition/deletion of objects, these are captured within the ex-isting presentation schedule for the multimedia document as changes to the constraints governingthe presentation of those objects. For example, when a new object o is added to a presentation andwe want to \present" o immediately after an existing object o1 and immediately before anotherexisting object o2, then this a�ects the existing presentation by the addition of new constraintsinvolving this object. It is therefore easy to see that the insertion/deletion of objects into/from anexisting presentation is captured by the addition/deletion of constraints. In the next two subsec-tions, we present techniques from incremental updates of presentations based on the introductionof new constraints and/or the deletion of existing constraints.28



7.4 Incremental Addition of Di�erence ConstraintsThe easiest way of handling the addition of a new constraint would be to use the shortest pathalgorithm described above. However, in a multimedia system where there are many dynamicchanges, or in a system where there are hard deadlines for the presentation, this may not be thebest approach. Hence, in this chapter we present an algorithm which dynamically computes thenew presentation schedule given an existing solved set of constraints, and a new constraint to beadded. Recall that the insertion of a constraint into a constraint set is equivalent to the insertionof an edge into the graph associated with that constraint set.INSERT CONSTRAINT (e)1. let e be from u to v with weight w2. insertion = normal3. relaxed = RELAX and FIND CYCLE (u; v; w)4. if all cycles 6= ;5. then G0 = REMOVE CYCLES (G; all cycles)7. if only e is marked/deleted8. then insertion = marked (or deleted)9. if there is an edge f (other than e) which is marked/deleted10. then DELETE CONSTRAINT(f)11. insertion = normal12. if insertion6= deleted13. then if relaxed = false14. then insert e as a normal/marked non-tree edge to the graph15. else mod = fvg16. while mod 6= ;17. do let i be a node in mod18. mod = mod� fig19. for each edge k = (i; j; w2)20. relaxed2 = RELAX (i; j; w2)21. if relaxed2 = true22. then mod = mod [ fjg7.5 Deleting Di�erence ConstraintsWhen there are no marked constraints waiting to be reinserted, the deletion of a constraint is easyto handle: a solution to the original set of constraints is a solution to the modi�ed set of constraints.Hence, in this case, a constraint can be deleted from the graph in O(1) time.However, the existence of marked constraints makes the problem much harder. These areconstraints that were previously deleted (perhaps due to some negative cycles that caused aninconsistent set of constraints), but were saved just in case future changes invalidated the causeof the inconsistency. In order to reinsert marked constraints, we �rst need to �rst incorporate29



the e�ects of the deleted constraint from the document. Only after that can one safely reinsert aconstraint to the graph. We have developed two algorithms, DELETE CONSTRAINT1 andDELETE CONSTRAINT2 that handle such constraint deletions. They are described below:The �rst algorithm is quite simple { it merely deletes the edge in the constraint graph associatedwith the constraint being deleted and re-applies the algorithm for computing priority optimalrelaxations of the graph.DELETE CONSTRAINT1 (e)1. G0 = (V;E� feg)2. SOLVE DIFFERENCE CONSTRAINT and MARK CYCLE (G0; w; s)Theorem 7.7 The running time of the DELETE CONSTRAINT1 algorithm is O(V2.(E-1) + (E-1).V.Cs + Cs.log(Cs).V), where Cs is the number of negative cycles in sys cycles in the graph.The second algorithm, on the other hand, takes a \bottom-up" approach. It �rst eliminatesfrom the graph G the edge associated with the constraint being deleted as well as all marked edges.It then attempts to use the \Incremental Addition" algorithm INSERT CONSTRAINT, tore-insert the marked edges in order of priority.DELETE CONSTRAINT2 (e)1. G0 = (V;E� feg�all the marked edges)2. SOLVE DIFFERENCE CONSTRAINT without CYCLE CHECK (G0; w; s)3. E 0 = SORT(all the marked edges; p)4. while E 0 6= ?5. e0 = head(E 0)6. E 0 = tail(E 0)7. INSERT CONSTRAINT (e0)Theorem 7.8 The running time of the DELETE CONSTRAINT2 algorithm is O(V2.(E-Cm-1) +Cm.log(Cm) + Cm.E ), where Cm is the number of marked edges in the graph.As can be seen from the complexity results, which of these two algorithms will perform betterdepends on the speci�c constraint graph being considered and the edge being deleted. A hybriddeletion algorithm would �rst evaluate the two quantities:� QTY 1 = V2.(E-1) + (E-1).V.Cs + Cs.log(Cs).V� QTY 2 = V2.(E-Cm-1) + Cm.log(Cm) + Cm.EIt would then useDELETE CONSTRAINT1 ifQTY 1 < QTY 2 andDELETE CONSTRAINT2otherwise. 30



8 Related WorkIn this paper, we have given a formal de�nition of a multimedia document, and presented a singledi�erence constraint-based model using which, temporal, spatial, and QoS constraints may all beexpressed within a uni�ed framework. The advantage of this is that a \core" set of algorithms,such as those provided in Section 7.2, may be used to create, and maintain, the presentations ofmultimedia documents, as changes are made to the document by its authors. Furthermore, thesealgorithms are provably correct and their complexity has been analyzed and proved to be alwayspolynomial-time.Ahuja's group at AT&T [7] also has had signi�cant contributions in collaborative services. Theypropose a method for generating visual representations of recorded histories of distributed collab-orations, so that remote collaborators can easily access information that will let them understandhow the collaborative environment evolved to a particular state. In [10], Imai et al. show how torecord the artifacts of a realtime collaboration so that when the collaboration is concluded, thecollaborators have access not only to the �nal document, but also to the artifacts (handwrittennotes, voice annotations etc.) that led them to this document. Using our work in conjunction withthese two works to maintain versions of documents as they are altered over a period of time.Gong [8] studies some of the important issues in multimedia conferencing over packet switchednetworks, and provides solutions to the problems that arise in multipoint audio and video control.The Argo system [6] on the other hand, is built to let users collaborate remotely using video,audio, shared applications, and whiteboards. Wolf et al [24] show how an application can beshared among heterogeneous systems. They compare two methods for heterogeneous sharing: oneoptimizes transmission in the system and other optimizes conversions between objects. Candan et.al. [2] develop a formal framework within which objects may be routed and transformed from onenetwork node to the site of an author in such a way that the desired quality is maintained andthe author's host machine capabilities are adequate to process the object. All these e�orts targetone or more aspects of Problem (3) speci�ed in Section 2. In contrast, in this paper, we addressthe complementary problem (Problem 4 of Section 2) { here we try to develop optimal ways ofpresenting documents to users in the face of constantly changing speci�cations. Furthermore, wedevelop techniques that will optimally relax the presentation constraints in the event that theseconstraints are inconsistent. Finally, our framework applies uniformly not just to temporal aspectsof multimedia systems, but to spatial and QoS as well.Little [23] has presented an elegant document management system for shared data and provideda data model (POM) which permits dynamic compositions of mixed-media documents. Wray etal. [25] have built an experimental collaborative environment called Medusa which integrates datafrom heterogeneous hardware devices. Medusa provides an environment which facilitates rapid pro-totyping of new applications. Rajan, Vin et al. [20] started some work on formalizing the notionof multimedia collaboration. They provide a basis which can support a wide spectrum of struc-tured multimedia collaborations. Their formalization captures the requirements of various types ofinteractive and non-interactive collaborations. They also implemented a prototype collaborationmanagement system based on their formalism.Signi�cant contributions have been made in the area of temporal speci�cation of multimedia31



presentations. Petri nets based models have been suggested in [13, 16, 19, 17] for specifying the tem-poral and synchronization characteristics of a multimedia presentation. Concurrent programminglanguage based approach has been suggested in [21]. A Context Free Grammar based approachhas been proposed in [19] for describing the synchronization characteristics of an orchestrated pre-sentation and for translating the characteristics into the network tra�c that might be generatedby an orchestrated presentation. In [15] user views of a document are represented by means ofattribute based selection of a Petri nets based speci�cation. However, these works do not addressthe issues that arise in an collaborative environment. Also, the speci�cations of the requirementsare �xed in nature. Synchronization has also been studied by Manohar [14]. They study methodsto enable the faithful replay of multimedia objects under varying system parameters. To accom-plish synchronization of di�erent session objects, they provide an adaptive scheduling algorithm.In [12], a Time-ow Graph (TFG) model has been proposed to represent \fuzzy" or imprecisetemporal relationships. Multimedia objects are described by their presentation intervals. Givenany two time intervals, there are thirteen ways in which they can be related. In the TFG model,temporal relationships can be speci�ed in terms of temporal durations despite the lack of durationinformation about the involved intervals. In contrast to these e�orts, we have provided a uni�edtreatment of di�erent types of constraints governing multimedia documents. We have developed,for the �rst time, optimal ways of presenting documents to users in the face of constantly changingspeci�cations and techniques that will optimally relax the presentation constraints in the eventthat these constraints are inconsistent.9 ConclusionsA collaborative multimedia system (COMS) must support a wide range of functionalities so as toenable a set of cooperating authors to jointly create a multimedia document. In order to support theconstruction of COMS systems, we have provided a formal, mathematical de�nition of a multimediadocument as a set of media objects that are constrained to be presented according to certain spatial,temporal and QoS criteria. We have shown that all these criteria may be expressed mathematicallyusing a small class of constraints well known in operations research called di�erence constraints.Thus, di�erence constraints provide a unifying framework within which di�erent aspects of creatingmultimedia presentations may be studied.As multimedia documents are typically constructed over a period of time, and as the objectsconstituting such a document are edited by di�erent people over time, both the set of objects ina document, and the set of constraints linking these objects together, will change with time. Wehave developed incremental algorithms that will:1. determine if such constraints are solvable, and2. incrementally �nd a new solution to a set of constraints when some new constraints are added,and3. incrementally �nd a new solution to a set of constraints when some old constraints are deleted,and 32
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10 Appendix: Proofs of ResultsProof of Theorem 7.2. Suppose NC = fnc1; : : :nckg denote the negative cycles in the constraintgraph G. Suppose also that each negative cycle nci has the form nci =< e1; ::::ek(i) >, where ejdenotes an edge, and k(i) denotes the number of edges involved in negative cycle nci. We will provethat card-optimal removal of negative cycles is NP-hard by reducing the vertex-cover problem tothe card-optimal removal of negative cycles problem.A vertex cover of an undirected graph Gin = (Vin; Ein) is a set V 0 � Vin such that if (u; v) 2 Ein,then u 2 V 0 or v 2 V 0 or both. The vertex-cover problem is to �nd a vertex cover of minimumcardinality in a given graph Gin.Reduction of vertex-cover problem into card-optimal removal of negative cyclesproblem: We are going to create, in polynomial time, a constraint graph G from Gin such that, ifwe can �nd a card-optimal relaxation of the di�erence constraints associated with the edges of G,then we can also �nd a minimal cover of Gin in polynomial time.Let card(Vin) be CV and let card(Ein) be CE. Furthermore, let the vertices in Gin befv1; : : : ; vCV g and let the edges in Gin be enumerated as fe1 =< f1:1; f1:2 >; e2 =< f2:1; f2:2 >; : : : ; eCE =< fCE:1; fCE:2 >g, where fi:1 and fi:2 are vertices in Vin. The reduction works as fol-lows:1. V = ;; E = ;2. for z = 1 to CV do3. create two vertices v0z:1 and v0z:24. create an edge e0z =< v0z : 1; v0z:2 > with 0 weight5. V = V [ fv0z:1; v0z:2g6. E = E [ fe0zg7. for y = 1 to CE do8. /* let ey be < vi; vj > */9. create a directed edge e�y =< v0i:2; v0j:1 > with 0 weight10. create a directed edge e�y =< v0j:2; v0i:1 > with �1 weight11. E = E [ fe�y; e�ygThe result of the algorithm is a weighted directed graph G = (V;E). Note that, the algorithmworks in polynomial time.Claim 1: If Gin has a minimal cover of size s, then G has a card-optimal relaxation of size s:Each vertex v in Gin corresponds to an edge in G, and each edge in Gin corresponds to a negativecycle in G. Furthermore, if two edges e1 and e2 in Gin share a vertex v, then the correspondingnegative cycles on G share the corresponding edge. Hence, if there are s vertices that cover theedges in Gin, then there are s edges that cover the negative cycles in G. If these negative edges aredeleted from the graph G, then G will be negative-cycle free.36
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G in Figure 12: An example reduction from Gin to G.Claim 2: If G can be card-optimally relaxed by the removal of s edges, then Gin has a minimalvertex cover of size s: The removed edges will not contain any edge marked with superscript � or�, because these edges cannot be shared among two negative cycles, hence it is advantageous toremove these edges (the only exception is when the negative cycle does not share an edge withany other negative cycle, and hence the edges marked with � or � can also be chosen for removal.However, since in this case the negative cycle is independent of the other negative cycles, we canassume that the corresponding non-superscripted edge will be chosen for removal.) If it is possibleto remove all the negative cycles, by removing s edges from the graph G, then it is possible to coverall the edges in Gin by s vertices, because each vertex v in Gin corresponds to an edge in G, andeach edge in Gin corresponds to a negative cycle in G.Using the above claims and the polynomiality of the reduction algorithm, we can concludethat the card-optimal relaxation problem is NP-hard. To see how the reduction works, consider�gure 12. 2Proof of Theorem 7.3. If there are no negative cycles, then all cycles will be ;, and the RE-MOVE CYCLES and SOLVE DIFFERENCE CONSTRAINT without CYCLE CHECK routineswill not be called.Initialize-single-source works in O(V). The routine RELAX and MARK CYCLE is called V.Etimes. The worst case running time of RELAX and MARK CYCLE is V (because it may needto check all vertices to see if it is on the path). Hence, if there is no negative cycle, then therunning time of the SOLVE DIFFERENCE CONSTRAINT and MARK CYCLE O(V2.E + V) =O(V2.E). 237



Proof of Theorem 7.4. The routine RELAX is called V.E times, and RELAX runs in O(1).Hence the running time of SOLVE DIFFERENCE CONSTRAINT without CYCLE CHECK isO(V.E). 2Proof of Theorem 7.5.The cycles in auth cycles can be removed in Ca time where Ca is the number of negative cyclesin auth cycles.The sorting of the edges with respect to the priorities can be done in O(E.log(E)) time. Findingand removing the duplicate negative cycles in the list requires O(Cs.log(Cs).V) time: there areCs.log(Cs) comparisons each requiring O(V) time for checking the identicality.The last while loop removes the cycles, and it will take at most Cs iterations where Cs is thenumber of negative cycles in sys cycles. Each iteration of the loop is O(E.V.Cs): there are Eedges, and counting the number of negative cycles for an edge requires V.Cs comparisons. Hence,the overall running time of the last while loop is O(E.V.Cs2).Therefore, REMOVE CYCLES works in O(E.V.Cs2 + Cs.log(Cs).V + E.log(E) + Ca). 2Proof of Theorem 7.6. If there are negative cycles, then the running time of SOLVE TEMPORALCONSTRAINT and MARK CYCLE is the some of the running times in theorems 7.3,7.4, and 7.5which is equal to O(V2.E + E.V.Cs2 + Cs.log(Cs).V + E.log(E) + Ca). 2Proof of Theorem 7.7. The running time of this algorithm is equivalent to the running timeof the SOLVE DIFFERENCE CONSTRAINT and MARK CYCLE algorithm except that there isone less constraint in the graph.Proof of Theorem 7.8. This algorithm consists of three parts. First part involves the com-putation of the shortest path tree using the constraints that are known to be negative cycle free.Hence for this part we use the SOLVE DIFFERENCE CONSTRAINT without CYCLE CHECKalgorithm which runs in O(V2.(E-Cm-1)). In the second part of the algorithm, the edges that areomited from the �rst part are sorted in descending order of priority. the running time of the sortroutine is O(Cs.log(Cs)). In the last part of the algorithm, we try to insert the marked constraintsinto the graph one by one. Note that, since the constraints that are being inserted are alreadymarked, if they result in conict, they can be omited without any further investigation. Sincechecking of the conicts can be done in O(1) time, and since each edge in the graph can be relaxedonly once for each new constraint, the running time of this part of the algorithm is O(Cm.E).Hence, the overall running time of the DELETE CONSTRAINT2 algorithm is O(V2.(E-Cm-1) +Cm.log(Cm) + Cm.E). 38


