CS-TR-3594 January 1996
UMIACS-TR-9613

Extracting Reusable Functions by Program Slicing

Filippo Lanubile
Computer Science Department
University of Maryland
Institute for Advanced Computer Studies
College Park, Maryland 20742
lanubile@cs.umd.edu

Giuseppe Visaggio
Dipartimento di Informatica
University of Bari
Via Orabona 4, 70126 Batri, Italy
visaggio@seldi.uniba.it

ABSTRACT!?

An alternativeapproacho developingreusablecomponentsrom scratchis to recoverthem
from existing systems.n this paper,we apply programslicing, introducedby Weiser,to the
problemof extractingreusabldunctionsfrom ill-structuredprograms We extendthe definition
of programslice to a transformslice, onethatincludesstatementsvhich contributedirectly or
indirectly to transforma setof input variablesinto a setof outputvariables.Unlike conventional
programslicing, thesestatementslo not include neitherthe statementsiecessaryo getinput
data nor the statementswvhich test the binding conditionsof the function. Transformslicing
presupposethe knowledgethata functionis performedin the codeandits partial specification,
only in termsof input and outputdata.Using domainknowledgewe discusshow to formulate
expectations of the functions implemented in the codadtitionto the input/outputparameters
of the function, the slicing criterion dependson aninitial statementhich is difficult to obtain
for large programs.Using the notions of decompositionslice and concept validation we
demonstrate howo producea setof candidatdunctions,which areindependenof line numbers
but must be evaluatedwith respectto the expectedbehavior. Although humaninteractionis
required,the limited size of candidatgunctionsmakesthis task easierthanlooking for the last

function instruction in the original source code.

1This work is supported in part by the National Science Foundation under grant 01-5-24845 and the Italian
M.U.R.S.T. under the 40% projet¥&V in software engineeriny

1. Introduction

Althoughreusabilityis widely acceptedasthe key for improving productivity and quality, in
the softwarefield real practiceis still far behind other engineeringdisciplines. One of the
obstaclego a massiveapplicationof softwarereusein industrialenvironmentss thatthe initial
building of reusablesoftware is more costly. An experimentconductedin the Software
EngineeringLaboratory over a 6-year period, comparing Fortran and Ada projects[5], has
shown that creating reusable software components requires a huge initial investment mdtich is
rapidly amortized.This explainsthe reluctanceof companiesto adopt softwarereuseas an
established practice in developing software.

An alternativeapproachto developingnew reusablecomponentds to recoverthem from
existing software systems. There is great potential in this last approach because billionodf lines
code havealreadybeenwritten by programmersSoftware managersdo not expectthe past
knowledge and experience embodied in their software portfolio to be thrown away.

Although informal software scavengingis a popular practice among programmersit is
performedusing informal abstractionsvhich exist only in the memoryof the developerq29].

To befeasibleon alarge-scalethe codescavengingpproachshouldbe supportedoy automatic
tools based on formal models of extraction.

Any approachrelatedto software reuseinvolves some form of abstractionfor software
artifacts.Extractingreusablecomponentsrom existing softwaresystemsmeansocatingin the
code those parts which implementthe data or functional abstractionsOur work focuseson
locating functional abstractionsbut dataabstractionsan be producedthroughthe aggregation
of data structures and recovered functional components around more general abstract data types.

New programs, when well designed, have functional abstractions represented by
subprogramsHowever,manylegacyprogramg 7] havean inadequatelesignor onewhich has
beencorruptedby enhancementand patchesntroducedduring their operationalife. Theresult
is that old programssuffer from interleaving,which expresseshe merging of two or more
distinct plans within some contiguoustextual area of the program[41]. Plans,the abstract
structureswhich model the programmergoals, are delocalized[31] and so it is difficult to

recognize,maintain,and reusethem in other contexts.To extractreusablefunctionsfrom ill-

structuredprogramswe needa decompositionmethodwhich is able to group generallynon
sequential sets of statements.

Program slicing is a family of program decompositiontechniquesbased on selecting
statements relevant to a computation, even if they are scattered throughout the program. Program
slicing, as originally definedby Weiser[43], is basedon static dataflow analysison the flow
graphof the program.A programslice canalsobe foundin lineartime asthe transitiveclosure
of a dependencyraph[20]. Programslicing hasbeenappliedin programdebugging parallel
processing, program testing, program integration, program understandingand software
maintenancehoth usingthe basicdefinition and developingvariants,including programdicing
[36], dynamicslicing [3, 27], decompositiorslicing [22], relevantslicing [4], interfaceslicing
[6], conditionedslicing [12], and variableslicing [25]. Conventionalprogramslicing hasbeen
also advocatedor the purposeof softwarereuse[6, 33]. However, programslices are often
impreciseasreusablefunctionsbecauseghey containunnecessargtatementgor the function to
recover.Hencethis proposalof a new slicing approachgalledtransformslicing, which is more
effective in extracting functional components from old programs.

Transformslicing presupposethe knowledgethata functionis performedn a systemandits
partial specification,only in terms of input and output data. The aim is to take only those
statements which yield the output ddiathdirectly andindirectly, startingfrom the giveninput
data. These statements,unlike conventional program slicing, do not include neither the
statementsiecessaryo get input datanor the branchand loop conditionswhich are usedto
control the activationof the function. In additionto the input/outputparametersf the function,
the slicing criterion dependson an initial statementThis statementwhich is usually the last
instructionof the functionto be recoveredis difficult to identify becauseequiresreadinga lot
of code. We overcomethis problem by providing a scavengingalgorithm which invokes
transformslicing but doesnot dependon statementhumbers A setof candidatefunctionsare
produced and evaluated with respect to their expected behavior. Alttiosighnceptvalidation
stepis not automatic the limited size of candidatdunctionsmakesthis taskeasierthanlooking
for the last function instruction in the original source code.

Since legacy systemsdo not always have accurate or up-to-date documentation,the

applicationof transformslicing to the creationof reusableassetss partof a reverseengineering

process, which has been designed mainly for data-strong applicatohsesinformationfrom
data model representatiorto drive the recoveryof functional components.The data model
allowsthe expectedunctionsto be specifiedin termsof their input andoutputdata.Oncethese
parameterfiave beemmappedonto variablesin the sourcecode,slicing criteria are formulated
andtransformslicing extractsa setof cohesivefunctions,which implementconceptuallysimple
tasks.

This paperis a revisedand extendedversionof [30] andtakesadvantageof lessondearned
from previousapplicationsof the function extractionto legacysystemg1, 17, 21]. However,
transform slicing definitions are language-independerdand could also be applied using a
different process model.

Therestof the paperis organizedasfollows. Section2 definessomenecessaryerminology
andintroducedransformslicing at the proceduralevel. Section3 extendsboth basicdefinitions
and transformslicing for dealingwith proceduralprograms.In Section4, we describehow to
elicit the specificationsof the functional abstractionso be searchedor and how transform
slicing can be realistically appliedto legacy systemsfor producinga setof cohesivereusable
functions.In Section5, relatedwork on componenextractionis surveyedand comparedo our
approach.Finally, Section 6 presentsa summary and discussespossible future research
directions.

2. Intraprocedural Extraction Criteria

This sectiondealswith dataflow equationsappliedto a programprocedureThe definitions
are language-independeand include unstructuredorogramstoo. In the following subsections

we give basic definitions and our equations for extracting transform slices.

2.1 Background

The definitions below are used to establisfommonterminologyto be usedin the dataflow
equationsWe presentcontrol flow graphsand def/usegraphs,asdefinedin [38], but we take
only thosedominancerelationswhich are useful for the extractioncriteria. Weiser'sequations

for programslicing are also presentedo emphasizehe differencesfrom our slicing equations.

Here,programslicing is definedin termsof def/usegraphsbut somedefinitionsappeadifferent
in style as respect to [43].

Definition 1: A digraphG is a pair , E), whereN is a finite, nonemptget,andE is a subset
of NX N— {(n,n)|né& N}. Theelementof N arecallednodesandthe elementsof E are
callededges Given an edge(n;, nj) € E, nj is saidto be predecessoof nj, and nj is saidto be
successorof nj. PREDN) and SUCQnN) are the set of the predecessorsand the set of the
successorsf a noden respectively.The indegreeof a noden, denotedin(n), is the numberof
predecessorsf n, while the outdegreeof n, denotedout(n), is the numberof successorsf n. A
walk W in a digraphG is a sequencedf nodesn;n,- - -n, suchthatk > 0 and (nj, nj+q) for
i=1,2,---,k— 1, wherekisthelengthof W. If W is nonempty(the lengthis zero)thenit is
called anqy—ny walk

Definition 2: A hammock grapl® is a digraphwith two distinguishechodestheinitial node
n, andthefinal nodeng, satisfyingthe following conditions:(1) in(n;) = 0 andout(ng) = 0; (2)
each nod& € G occurs in ay—ng walk.

Definition 3: Let G beahammockgraph,andm andn two nodesin G, m forward dominates
n iff everyn—ng walk in G containsm; m properly forward dominatesn iff m # n and m
forward dominatesn; m is the immediateforward dominatorof n iff mis the first nodewhich
properly forward dominatason everyn—ng walk. The set of forward dominatoo$ a noden is
denotedFD(n), the setof properly forward dominatorsPFD(n), while the immediateforward
dominator igfd(n).

Definition 4: A control flow graph G is a hammockgraphwhich is interpretedasa program
procedureWe usethe term procedurdo includealsothe main programand programfunctions.
In the latter case the procedure has an extra output parameter corresponding to tieéuvakc
by the function.

The nodes of a control flow graph representelementaryprogram statementssuch as
assignmentsnput/outputinstructions branchandloop conditions,unconditionalbranchesand
procedurecalls. The initial and the final nodesrepresentthe entry and exit points of the
proceduraespectivelyThe edgesepresentontrol flow transfersbetweenstatementsWe give
a wider interpretationthanin [38], becauseave represenunconditionalGOTOsas control flow

graphnodesto dealwith unstructuregorogramsWe canalsorepresenprogramswith multiple

entry andexit points. In this casetherewill be two kinds of specialnodes:startnodesNg and
halt nodesNy to representhe multiple entry points and exit points, respectively. Thesenodes
must satisfy the following conditions:

(i) for eachs € Ng: PREI(s) = {n}

(i) for eachh € Ny : SUCQh) = {ng}

A controlflow graphstill hasa ingle initial nodewhich is connectedo startnodesby edges
of the form @, s). Analogously the unique final node is linked to halt nodesbgH) edges.

Definition5: Let G bea controlflow graphandn a nodein G. A statemenm is conditioned
by n iff moccursin an—ifd(n) walk, excludingthe endpointsn andifd(n). The setof statements
conditioned byn is denotedNFL(n). Fromthis definition we caninfer thatINFL(n) is emptyiff
out(n) < 1. Thenn for a nonemptyINFL(n) represents condition branchor a conditionloop
statement.

Definition 6: A def/usegraphis a quadrupleG = (G, >, D, U), whereG is the control flow
graphrepresentinga programprocedure,>. is a finite setof symbolsnamingvariablesin the
programprocedurepD : Ng — P(X), andU : Ng — P(X) arefunctionsmappingthe nodesof G
in the set of variables which are defined or used in the statements corresponding to nodes.

A variablex is definedin a statement if an executionof s assignsa value to x, while a
variablex is usedin a statemens if an executionof s requiresthe value of x to be evaluated.
Assignment statements have defined variables in the left-part and used variables in the right-part;
input statementhiaveonly definedvariableswhile outputstatementfiaveonly usedvariables;
variables in branch and loop conditions andy used while unconditionabranchesaveneither
used nor defined variables.

Examplel: Let us considera program,alreadyappearedas examplein [43]. The def/use
graphis shownin Figure 1. The numbersof the initial andfinal nodesrepresentrespectively,
theinitial andfinal programstatementsyhile the othernodesare numberedaccordingwith the

positions of the executable statements.

1. begin

2. read (x,y);

3. total := 0.0;

4. sum := 0.0;

5. ifx<=1

6. then sum =y

7. else begin

8. read (z);
9. total := x *y;
10. end,;

11. write (total, sum);

12. end.

D(2) ={x, y}

D(3) = {total}

D(4) ={sum}

(o (o (o (0

u(s) ={x}
N\
. u(6) ={y}
D(8) ={z} ° @ D(6) = {sum}
U(9) ={x, y} @
D(9) = {total}

U(11) ={totd, sum]

©

Fig. 1. Def/Use graph for examples 1, 2, 3

The computationalmodel we adoptincludesonly scalarvariablesbut can be extendedto

includeotherconstructsuchasstructuresarraysandpointers.A structurevariableor “record

in other programminglanguagescan be seenas the union of its componentvariables.Thus,
defining or using a structure variable implies that all its component variables are defused,
respectivelyln the sameway, definingor usinga componentariableimpliesthatthe including
structure variable is defined or used, respectivelgafbut conservativeapproachn staticdata
flow analysis treats athe elementof anarrayor specifiedby a pointerasa singleobject.More
refined approaches valid for arrays and pointers in C programs are defined in|[24, 37

In the definitionsbelowwe assumeave havea def/usegraphG = (G, X, D, U) anda program

procedureP represented b.

Definition 7: A slicing criterion is a pair C = (i, V), wherei € Ng andV < 3. In the

program procedurB, a slicing criterion is made up of one statement and a subset of variables.

Definition 8: A slice Son aslicing criterionC = (i, V), denotedS, is an executablesubset

of P containingall the statementsvhich contributeto the valuesof V just beforestatement is

executed.

Definition 9: Let C = (i, V) beaslicing criterion. The setof variablesrelevantto C, when

program execution is at statementlenotedR:2(n), is defined as follows:
ROnN)={veV|n=i}U
{U(n) | D(n) N RA(SUCAN) # & } U
[RO(SUCGn)) - D(n) }
R:O(n) includesthe variableswhich have potentialeffectson the def-usechain endingin V.
Searchstartsfrom nodei and goesbackward.The first subsetexpresseshe basecase.The
secondictatesthat variableswhich areusedto assignvaluesto othervariables alreadymarked

as relevant,becomerelevant. The third caseexcludesa relevant variablevhen it has been

modified.

Definition 10: Let C = { i, V) be a slicing criterion. The setof statementselevantto C,
denoted3:Y, is defined as follows:
SP={ne G| DMn NnRISUCGNn) # D }
SV includesthe statementsvhose executioncan directly influence the valuesof relevant

variables.

Definition 11: Let C = (i, V) beaslicing criterion. The setof conditionalstatementsvhich

control the execution of the statement&ifl, denotedB0, is defined as follows:
BL={beG|INFL(b) N SP# D }
In the following, the building of & is defined recursively on the set of variablesand
statementswhich have either director indirect influence on V. Starting from zero, the

superscripts represent the level of recursion.

R =Rdm U Ry um o) (1)
be B/

&*l={ne G| D(n) nRIYSUCC() z T } U B (2)

Bd*l={be G|INFL(b) N I*1z D } (3)

The full definition includesthe conditionalstatementsvith anindirect influenceon a slice,
the control variableswhich are evaluatedin the logical expressionand the statementswvhich
influence the control variables. The iteration continues nntilewvariablesarerelevantandso
no new statementsnay be included.In otherwordsS; = Scf+1 wheref is aniterationstepsuch
thatV n € N: R t1(n) = Rf(n) = Re(n).

Example2: Let us considerthe programin the Example 1. Given the slicing criterion

C=(11, { total}), for each executable statement we have the following sets:

R:O(11) = {total} RO(9) =1{x, y} RO(8) = 1{x, y}

R:O(6) = {total} RIO(5) = {total, x, } RO(4) = {total, X, y}

ROA) = {x, y} RO(2) =T

&°=12,3,9 B = {5}

R, {x})O(S) = {x} R (s, {x})o(4) ={x} R {5, {x})o(3) ={x} R {5, {x})o(z) =
Rc1(11) = {total} R:H(9) =1{x, y} R:1(8) =1{x, y}

R:1(6) = {total} R:1(5) = {total, x, } R:1(4) = {total, X, y}

RI(3) = {x, y} Rl(2) =0

S=%1=12,3,59

Unconditionalbranchesannotbe caughtby thesedefinitionsbecauséhe statementfiaveno

definedor usedvariables However,their omissioncanbiasthe behaviorof the slice resultingin

an incorrect projection of the program. Although restricted to C language, iarfafjorithmis
presentedo collect goto statement&nd a setof rulesare given to pick up break and continue
statementsThesealgorithmscan easily be extendedto otherlanguagedor dealingwith other
kinds of branchesAlthoughwe usethemwhenslicing, the scopeof this paperdoesnot include

slicing extensions for unconditional branches.

2.2 Transform Slice

Let G = (G, 2, D, U) bea def/lusegraph,andP a programprocedurerepresentethy G. The

following definitions are given to extract the implementation of functional abstractions.

Definition 12 A transformslicing criterionis a tripleC = (i, Vinp » Vout),» Wherei € Ng and

Vinp: Voutare both subsets af.

Definition 13: A transformslice on a transformslicing criterion C = (i, Vinp , Vout>,
denotedlrS; , is anexecutablesubsef P containingall the statementsvhich contributeeither
directly or indirectlyto the valuesof Vgt startingfrom the valuesof Vjnp, just beforestatement

i is executed.

Definition 14: Let C = (i, Vinp - Vout) be a transformslicing criterion. The setof variables

relevant toC, when program execution is at statemerdenoted'rR:0(n), is defined as follows:
TrRO(N) ={ve VoytI n=i}t u
{ U(n) — Vinp | D(n) N TrRA(SUCAN)) # & } U
[TrRO(SUCQN)) — D(n) }
TrR9(n) includesthe variableswhich havepotentialeffectson Vgt , with the exclusionof
variablescomingbeforeVjpp in the use-definitionchain. Like in definition 9, the searchstarts
from nodei and goesbackward,but this time it stopswhenthe variablesin Vjn, havebeen

found (second subset in the definition).

Definition 15 Let C = (i, Vinp » Vout, be a transform slicingriterion. The setof statements

relevant toC, denotedrS:9, is defined as follows:
TrISP={ne G| D(n) N TrRAYSUCGn)) # D }

This definition is substantially equal to definition 10.

10

Definition 16: Let C = (i, Vinp » Vout) be a transform slicing criterion. Tisetof conditional

statementsvhich control the executionof the statementén TrS:0, denotedTrBc0, is definedas

follows:

TrBL2={be G| INFL(b) N Trs0# & andi ¢ INFL(b) }

TrB.O restrictsdefinition 11 becauset includesthe conditional statementsvhich influence
the statementin TrSP0, only if they do not conditionthe statement too. In fact, a conditional
statemeninfluencing the slicing criterion statemeni meansthat the overall executionof the
sliced componentcould be excludedas a result of the evaluationof the condition. Thus, the
conditionalinstructionshouldremainoutsideaspart of the programmanagemhich invokesthe
slicedcomponentTherearethreemain casesvherethe exclusionof a conditionalstatements
useful when isolating a functional component:

a) A programprocedurgerformsmultiple differentfunctionswhich areactivatedby a function
tag

b) A program procedure contains the pre-conditions for the function

c) A program procedure performs the function iteratively

As an effectof definition 16, branchconditions(casesa andb) andloop conditions(casec) will

not be part of the transform slice.

Like Weiser's slice, the transform slice is built recursively. Starting from zero, the

superscripts represent the level of recursion.

TrRJ+1(n) = TrR: (n) U mr (B, Vinp » UB)~ Ving y2(n) (4)
be TrB/

Tr$d*1={ne G| D(n) N TrIRJ+LSUCC() # & } U TrBd (5)

TrBd*1={ b€ G| INFL(b) N Tr&i*1 2 & andi ¢ INFL(b) } (6)

The iterationis similar to thatfor conventionalslicing, with the exceptionthat equation(4)
excludesinput variablesfrom becomingoutput variableswhen slicing startsfrom conditional
statementsand equation(6) is modified accordingto definition 16. The rule for stopping
iterationremainsunchangedlnput/outputstatementsvhich dealwith variablesof the transform

slicing criterion arenot includedbecausen our definition the transformslice is input-restricted

11

asregardsvariablesin the transformslicing criterionandoutput-restrictedecausell the output
statements are removed.

The transformslice is also a def/lusegraphwhich can be packagedas a distinct module. A
complement of the direct sliceay be derived,working asa callerwhich activateghe transform
module.However,the complementomputationwill not be shownhere,becauses beyondthe
scope of this paper.

Example3: Let us considerthe programexamplein the Example 1. Given the transform

slicing criterionC = { 11, {x, y}, {total}), for eachexecutablestatementve havethe following

sets:
TrRO(11) = {total} TrRO(9) =T TrRO(8) =T
TrR9(6) = {total} TrRO(5) = {total} TrR9(4) = {total}
TrRO3) =T TrRO(2) =T
Tr%= {3, 9 TrBO = {5}

TR (5, {x, y1, @)0(5) =0 TrR (5, ix, y1, ®>0(4) =0

TrR (5, {x, y}, @)0(3) =0 TrR (5, {x, y}, @)O(Z) =0

TrR:1(11) = {total} TrR:1(9) =T TrRA(8) =T
TrR:1(6) = {total} TrR:1(5) = {total} TrR:1(4) = {total}
TrRA(3) =T TrRA(2) =0

Tr=Trl=13,59

In this example,the only effect of applying transformslicing with respectto conventional
slicing wasthatthe input statemen® wasexcludedbecausehe two variablesx andy havebeen
declaredas input variablesin the transformslicing criterion and hencethey are consideredas
input parametergo the extractedfunction. On the contrary, the conditional statement have
beenincluded becauset doesnot control the initial statementll in the transform slicing
criterion and so it is considered part of the function to be recovered.

After havingconsideredhis baseexample we will showothernew examplescorresponding

to the three cases for which the exclusion of a conditional statement is advocated.

12

Example 4casea): Let us consider a prograwhich computeghe sumandproductof first n
numbersuysinga singleloop. The def/usegraphis shownin Figure2. Nodesarenumberedasin
the first example.

1. begin

2 read (n);

3 ifn>0

4 then begin

5. i:=1;

6 sum :=0;

7 prod :=1;

8 while i <=ndo

9. begin

10. read (k);

11. sum :=sum +k;;
12. prod := prod * k;
13. i=i+1;

14. end;

15. write (sum);

16. write (prod);

17. end;

18. end.

Given the slicing criterion C = { 15, {sum}), for eachexecutablestatementve have the

following sets:

RO(15) = {sum} RO(13) = {sum} R(12) = {sum}
RO(11) = {k, sum} R:9(10) = {sum} R:O(8) = {sum}
RO(7) = {sum} RO(6) =0 RIO(5) =0
RO(3) =0 RO(2) =T

SO= {6, 10, 13 BL = {3, 8

Rys, i, n)28) =1i, n} Ryg, i, n)2(L3) ={i, n} Ryg, (i, n})2(12) ={i, n}
R (g, (i, ny2(11) ={i, n} Ryg (i ny(10) =i, n} Ryg, {i, npyo7) = i, n}
Ryg, (i, ny26) =i, n} Ryg (i n)25) =1{n} Ryg 1i n)9(3) = {n}
R(s, fi,n))°(2) =@

R, 3 ={n} R %) =0

Rc1(15) = {sum} R:1(13) ={i, n, sum R:1(12) ={i, n, sun
Re1(11) ={i, k, n, sumt R:L(10) ={i, n, sum RL(8) ={i, n, sun
R.1(7) =1i, n, sumt R:1(6) = 1i, n} R:L(5) = {n}

R1(3) = {n} R(2) =0

13

sl=12,3,5,6,8, 10,11, 13 Bcl=13, 8

Shortly,V n € N : Re2(n) = R:1(n)
%=S2=12 3,5,6,8, 10,11, 13

@ D(2) = {n}

U@ = ()
?} D(5) = {i}
@ D(6) = {sum}
@ D(7) = {prod}
G u8) = {i, n}
D(10) = {k}

o
©

U(11) = {sum, k}
D(11) = {sum}

U(12) = {prod, k}
D(12) = { prod}

u(13) = {i}
D(13) = {i}

@ U(15) = {sum}
U(16) = { prod}

Fig. 2. Def/Use graph for example 4

Let us consider now, the results from applying transform slicing. The summation furarion

be modeledassum= f (n) andso the transformslicing criterionis C = { 15, {n}, {sum}). For

each executable statement we have the following sets:

TrR9(15) = {sum}
TrR9(11) = {k, sum
TrRO(7) = {sum}
TrRI3) =T

Trs0 = {6, 10, 13
TrR g, {i})0(8) ={i}
TrR¢g, {i}>0(11) ={i}

TrR (8, {i}>o(6) ={i}

TrRO(13) = {sum}
TrR9(10) = {sum}
TrRO(6) =T
TrRO(2) =T

TrB O = {8}

TrR (g, {i}>0(13) ={i}
TrR (g, {i}>0(10) ={i}

TR (g (i5) =@

TrR9(12) = {sum}
TrR9(8) = {sum}
TrRIO(5) =T

TrR¢g, {i}>o(12) ={i}
TrR (s, {i}>o(7) ={i}

TrR (g (in%3) =@

TrR¢g, {i}>o(2) =0
TrR:1(15) = {sum}
TrR.L(11) =1i, k, sumt

TrR.1(13) ={i, sum}
TrR.1(10) ={i, sum}

TrR.1(12) ={i, sum}
TrR.L(8) = {i, sum}

TrRL(7) = {i, sum} TrR.L(6) = {i} TrRL(5) =@
TrR1(3) =@ TrR1(2) =@
Trsl=1{5, 6,8, 10, 11, 18 TrB.l = {8}

Shortly,V n € N : TrR:2(n) = TrR.1(n)

Tre=Tr2=1{5, 6, 8, 10, 11, 13

With respecto the conventionaklice,the transformslice doesnot include statemen® which
readsthe input variable of the function, and statement3 which containsthe predicatewhich
implements the precondition of the summation function.

Example5 (caseb): Let us considera programwhich computeghe sumor productof first n
numbersaccordingto the value of a flag. Thereis no control for the preconditionsof the two
functions. The def/usegraphis shownin Figure 3. Nodesare numberedas in the previous

examples.

15

NGO ALNE

9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.

begin

k);

sum := sum +k;;

1;

k)

prod := prod * k;

1;

read (n);
read (flag);
i:=1;
if flag =1
then begin
sum :=0;
while i <= n do
begin
read (
=i+
end;
write (sum);
end
else begin
prod :=1;
while i <=ndo
begin
read (
=i+
end;
write (prod);
end;
end.

Given the slicing criterion C = { 14, {sum}), for eachexecutablestatementve have the

following sets:

RO(14) = {sum}
R:9(10) = {sum}

RO(5) =@

Y =17, 10, 13

Rs, (i, n})(8) =i, n}
Ry, (i, ny(10) = {i, n}
Rg, (i, n})2(4) = {n}

R (5, {flag})(5) = {flag}
R (s, {flag})%(2) =T
Rc1(14) = {sum}
Rc1(10) ={i, n, sum
R(5) = {flag, i, n}

RO(12) = {sum}

RO(8) = {sum}

RO(4) =@

B =15, 8

Rs, {i, n})2(12) =1i, n}
Rs, i, np)A7) ={i, n}
Rg, (i, n})(3) = {n}

R (5, flag})2(4) = {flag}

R:1(12) ={i, n, sunt
Rc1(8) = {i, n, sum
Rcl(4) = {flag, n}

&1=12,3,4,5,78,10,11, 12

16

RO(11) = {k, sum}
R(7) =T
RO(3) =T

Rs, {i, np)2(11) =1i, n}
R, (i, n})2(5) = {i, n}
R, 1i,n)%2) =0

R (5, {flag))’(3) =

Rel(11) = {i, k, n, sum
R:(7) = {i, n}

R:1(3) = {n}

B = {5, 8

RO(2) =2

RO(2) =@

Shortly,V n € N : R2(n) = Rc1(n)
$=%%=12,3,4,5,7,8,10, 11, 12

D(2) ={n}
D(3) ={flag}

D(4) ={i}

ONOJOIO

U(5) ={flag}
D(17) ={prod D(7) = {sum}

u(18) ={i, n} u@8) ={i, n}

D(20) = {k} / D(10 ={k}
U(21) ={prod k} @ @ U1l ={sum, k}
D(21) ={prod D(11 {sum}
U2 ={i} \@ U(12 ={i}
D(22) ={i} D(12) ={i}
U(24) = {prod U(14) = {sum}

Fig. 3. Def/Use graph for example 5

17

Let us considernow, the resultsfrom applying transformslicing to extractthe summation

function. The transform slicing criterion is C = (14, {n}, {sum}). For each executable

statement we have the following sets:
TrRO(14) = {sum} TrRO(12) ={sum} TrRO(11) = {k, sum

TrR9(10) = {sum} TrR9(8) = {sum} TIRO(7) =T
TrRIO(5) =T TrRO(4) =T TrRO3) =T TrRO(2) =T
Trs0 = {7, 10, 13 TrBO = {8}

TrR (g, (i1)(8) =i} TrR (g (in2(12) ={i} TrR(g (iH%11) ={i}

TrR (8,{i})0(10) ={i} TrR (8,{i}>0(7) ={i} TrR (8,{i}>0(5) ={i}

TR (in4) =D TR i1)%B) =T TrRyg (1©%2) =

TrR.1(14) = {sum} TrRc1(12) ={i, sum} TrR.1(11) ={i, k, sum

TrR.L(10) ={i, sumt TrR:1(8) = {i, sum} TrRL(7) = {i}

TrRL(5) = {i} TrRL(4) =@ TrRL(3) =@ TrR1(2) =@

Trl=1{4,7,8, 10,11, 12 TrB.l = {8}

Shortly,V n € N : TrR:2(n) = TrR.1(n)

Tr=Tr2=1{4,7,8, 10,11, 12

With respecto the conventionaklice,the transformslice doesnot include statemeng which
readsthe input variable of the function, and statements3 and 5 which read and control,
respectively, the function code which is used to dynamically choose the function to be executed.

Example §case c): Let us consider a program fragment, already appeared as ardrijle
which computesuniversity taxesand room feesfrom the studentrequestsof enroliment.The
applicationis typical of batchprogramswhereeachinput recordis processedhsidea loop until
endof file is reached.The def/lusegraphis shownin Figure 4. Nodesare numberedasin the

previous examples.

18

1. read (tax_enr);

2. read (tax_fix);

3. read (tax_ex);

4. read (tax_oc);

5. read (room_max);

6. while not eof (f_req) do

7. begin

8. read (f_req, stud);

9. if stud.year = 1 then

10. begin

11. tax := tax_enr + tax_fix + tax_ex;
12. room_fee := 3 * room_max / 4;
13. end

14. else if stud.year >= 2 and stud.year <=5 then
15. begin

16. tax := tax_fix + tax_oc;

17. room_fee := 2 * room_max / 3;
18. end

19. else begin

20. tax := tax_fix + tax_oc;
21. room_fee := room_max;
22. end;

23. writeln (“Name: “, stud_name);

24. writeln (“Mat: “, stud.mat);

25. writeln ("Tax: “, tax);

26. writeln (“Room fee: “, room_fee);

27. end;

Let ussupposewe areinterestedn how the universitytaxesare computed Giventhe slicing

criterion C = { 25, {tax}), we havethe following setsof relevantstatementgfor the sakeof

brevity, we omit the sets of variables relevantjo
S°=1{1,2,3,4,11, 16, 20 BL=16,9, 14
S1=11,2,3,4,6,8,09, 11, 14, 16,120 Bcl=16,9, 14
S=52=11,2,3,4,6,8,9, 11, 14, 16,120
Let us considenow, theresultsfrom applyingtransformslicing to extractthe functionwhich
computes the university tax of a student. According to the alternative ways of mabelmgut

of the function, there will be different transform slices.

If the transform slicing criterion i§1 = (25, {tax_enr tax_fix, tax_ex, tax_ocstud}, {tax})

, we have the following sets of relevant statements:
Tre,0 = {11, 16, 20 TrBe,0 = {9, 14
Trsg,t = {9, 11, 14, 16, 2D TrBe,! = {9, 14
TrSg, = Tr, 2= 19, 11, 14, 16, 2D

19

D(1)={tax_enr}

D(2)={ tax_fix}

D(3)={tax_ex}

D(4)={tax_oc}

D(5)={room_max}

O
®
®
®
®

U(6)={f_req}

D(8)=<{ stud}

()

U(9)={stud.yea}

U(11)={tax_enr,

U(14)={stud.year} tax_fix, tax_ex}
D(11)={tax}

U(16)={tax_fix, tax_oc}
e D(16)={ tax} U{12)={ room_max}
D(12)={room_fee}
U(21)={room_max}
D(21={room_fee} U(17)={room_max}
D(17)={room_fee}

U(23)={stud.name}
U(24)={ stud.mat}
U(25)={tax}

U(26)={room_fee}

o

Fig. 4. Def/Use graph for example 6

20

If thetransformslicing criterionis C, = {(25, {tax_enr tax_{fix, tax_ex,tax_og, {tax}), we

have the following sets of relevant statements:
TrSCZO ={11, 16, 20 TrBCZO =19, 14
TrS(:Zl =18,9, 11, 14, 16, 20 TrBCZ1 =19, 14
TrSs, = Trse,2 = {8, 9, 11, 14, 16, 20

Finally, if thetransformslicing criterionis C3 = (25, {stud}, {tax}), we havethe following

sets of relevant statements:

TrSC3O ={11, 16, 20 TrBC3O =19, 14

Tr8031 =1{1, 2, 3,4,9, 11, 14, 16, 20 TrBC31 =19, 14

rSey = TrSe,2 = 11,2, 3, 4,9, 11, 14, 16, 20

Thesethree transformslices differ for the reading statementswhich are included in the
recoveredfunction, dependingon what input variablesare consideredn the transformslicing
criteria. However,all the transformsliceshavein commonthe exclusionof the loop statement
which controls the processing of the entire student file.

In all the examplesabove,the exclusionof the conditional statementslependsfrom the
positionof the outputstatementsvhich have beerselectedasinitial statementsn the transform
slicing criteria. However,in the caseit would be not possibleto find an outputstatementn the
proper place, and the last program statementwas instead selectedas initial statementof a

transform slicing criterion, then the extraneous conditional statements could not be eliminated.

3. Interprocedural Extraction Criteria

In this sectionthe definitionsgivenin Section2 are extendedo cover proceduralprograms
whereslicescancrossthe boundarie®of procedurecalls. We assumea languagemodelin which
parametersare passedoy value-resultand by reference proceduresan be nestedand global
variables are visible in the nested procedufés.modelis sufficiently generalto be usablewith
many programminglanguagesy applying or restricting the assumptionsin the subsections

below we give basic definitions and our rules for extracting functional components correctly.

21

3.1 Background

The following basicdefinitionsare givento providea commonframeworkfor the rulesfor
interprocedural slicing. Interprocedural control flow graphs, interprocedural walks and
interprocedural def/use graphs are defined as in [35] but we gliVieigentinterpretatiorfor the
variablesdefined and used by procedurecalls. Weiser'sextensionto interproceduralslicing
completes the basic definitions.

Definition 17: An interprocedural control flow graph G for a program is a tuple
(CTT. , Gy, CALL, RET) whereGq, , G arecontrol flow graphsrepresentingorogram
proceduresCALL is asetof call edgesandRET s a setof returnedgessatisfyingthe following
conditions:(1) a call edgefrom a caller Gj to a caIIeeGj is of the form (n, n;) wheren is a
procedurecall of someNg,, andn, is the initial node of someNGj; (2) areturn edgefrom a
calleeGj to a callerG;j is of the form (ng, n) whereng is the final nodeof someNGj andnis a
procedurecall of someNGi; (3) for eachcall edge(n, n) thereis areturnedge(ng, n) suchthat
n, and ng are the initial and final nodesof the sameprocedurej(4) thereis a main procedure
Gmain Whose two distinguished nodes are the distinguished nodgsngf andngg .

Definition 18: An interproceduralwalk W in aninterproceduratontrolflow graph
G = (G ... , Gy, CALL RET) is a sequence of nodes nin,---n, where
nj € (NG1 U---U NGk) fori=1,..1, (nj, nj+1) € (EG1 U---U EGk U CALL U RET),
satisfying the following conditions:

(1) W contains the sequenaogg Vnggv whereG € G andu = v iff ung < V;

this conditionguaranteeshat control flow from a procedurecall will returnonly to it, i.e.
calling context is saved.
(2) W does not contain a sequemggsvng whereG € G andv € (NG1 U---U NGk);

this condition guarantees that control flow does not come ibalea procedurgust after
leaving it.

(3) W contains the sequenaewvwhereG € G, (v, nig) € CALL, andu # ngg iff w = nig;

this condition guaranteeghat control flow goesinside a procedureunlessit has just
returned from it.

22

Definition 19: An interproceduraldef/usegraphis a quadruple® = (G, 2, D, U), where
G=Gy, ,G, CALL, RET) is the interprocedural control flow graph representing a program,
2 is afinite setof symbolsnamingvariablesin the program,D : (NG1 U---uU NGk) - P (),
and U : (NG1 U- U Ng,) — P (X) arefunctions mappingthe nodesof G in the set of
variables which are defined or used in the statements corresponding to nodes.

With respecto definition 6, definedandusedvariablesfor procedurecall statementsnustbe
added. Let, be a procedure call statemamtoking aprocedureGj. A variablex is definedin
Nca if the executionof Gj assignsavalueto x, while a variablex is usedin a statementy if
the execution oGj requires the value ofto be evaluatedAn interproceduratiataflow analysis
is required to obtain the necessary summary information.

In [23], potentialdataflows amongproceduresre computedaccordingto the visibility rules
of thelanguagemodel.The resultingsetsof variablesreflectthe possibility that two procedures
communicatethrough a variable which is locatedin their scope.To achievea more precise
definition from static analysisof sourcecode anotherapproachcan be adopted,where actual
data flowsare derived, also in the presence of global variables and aliasing [11].

Herewe assumave canobtainU (n.g), the setof variablesusedin a calling procedureand
definedin the calledprocedureandD (nqg), the setof variablesdefinedin a calling procedure
and usedin the called procedure.In this way, global variablescan be treatedas additional
parametersvhereformal andactualarethe samething. So, from now on, we will only discuss
parameters.

Definition 20 Let®© = (G, X, D, U) be aninterproceduratief/usegraph,whereG = (G4,
, Gy, CALL, RET). SCOPE: {Gq,....,G¢} — P () is afunctionmappinga programprocedure
in the set of variables which can be accessed from it.

Definition 21: Let © = (G, X, D, U) be aninterprocedurablef/usegraph,whereG = (G,
..... , Gy, CALL, RET), n acall to someprocedures;, andFNV : (NG1 U---u NGk) - P(2),a
function mapping the nodes Gfin the set of variable&ENV (n) g _. o meanghe substitutionof
formal for actualparametersn FNV (n). FNV (njg,) A —. meansthe substitutionof actualfor
formal parameters iRNV (n|Gi).

We assumeve havea proceduraprogramP representetdy aninterproceduratief/usegraph

©=(G, 2, D, U) whereG = (Gq, , Gk, CALL, RET). Weiser'snterproceduraslicing occurs

23

in two steps.The former works as describedn the previoussectionwith only intraprocedural
equationsand summarydataflow informationfor procedurecalls. In the latter step,calledand

calling proceduresreslicedwith a new criterion. The two stepsarerepeatedintil thereareno

new procedures to be sliced.

Theslicing criteriageneratedor encounteregroceduresliffer accordingto whetherthe new
procedurds a calleeor a caller. In the former case the newslicing criterion enables desceirt
the called procedurewhile in the latter, a set of slicing criteria is generatedo ascendto all
callers.

Definition 22 Let G; ande be two control flow graphs i§ such that therexistsa call edge
(n, anj) anda return edge(n,:Gj, n) wheren € Ng; is a procedurecall. If Gj is beingsliceda

descending slicing criteriofor Gj is defined as

C= (nrg; , R(SUCAN))E . p N SCOPEG)))
Definition 23 Let G; ande be two control flow graphs i§ such that therexistsa call edge
(n, anj) anda returnedge(n,:Gj, n) wheren € Ng; is a procedurecall. If Gj is beingslicedan

ascending slicing criterioffior G;j is defined as

C= < n, RC(n|Gj) A—-F N SCOPEGI) >

3.2 Interprocedural Extension for Transform Slicing

Let © = (G, 2, D, U) be aninterproceduratief/lusegraphwhereG = (G, , Gy, CALL,

RET), andP is a proceduraprogramrepresentetdy ©. Interproceduraslicing rulesgivenin the
previous subsectionto generateascendingand descendingslicing criteria are adopted for
transform slicing with one amendment which we discuss below.

The problemto be solvedis an imprecisionof the Weiser'smethoddue to the lack of a
mechanisnto accountfor the calling contextof a called procedureln [23], the calling-context
problem is solved but the approach differs from ours because interprocedural slicing is dealt with
asareachabilityproblemon a dependencgraph.Sincewe usea data-flow equationapproach,
we use the definition of interproceduralwalk given in [35], which is compatiblewith our

representation of a program.

24

Amendmentfor called proceduresvhen transformslicing): Let Gy, Gj and Gj be three
controlflow graphsin G suchthatthereexisttwo call edgeqn, n|Gj), (m, anj) andtwo return
edges IQFGJ., n), (nFGJ., m) wheren € Ng, , m € Ng, areprocedurecalls.If Gj is beingslicedthe
procedurecall n causeghe slice to descendnto Gj; whentheslice reachesn|Gj it ascendnly

following a valid interprocedural walk, i.e. it returnsG@pand not tdGp,.

4. Using Transform Slicing for Building Reusable Assets

In order to be applied, transform slicing requires ghatrrectslicing criterionbe formulated.
The following problemshaveto be answeredhow to get a list of expectedfunctionsto be
recoverediogetherwith a partial specificationin termsof input/outputdata,and how to cope
with the difficulty in finding the last statemenof an expectedfunction, correspondingo the

initial statement in the slicing criterion from which going backward in the source code.

4.1 Expected functionselicitation

Transform slicing requires the availability of knowledge about the application and
programmingdomain. Domain knowledge suggestshat some conceptuallysimple tasks are
performedin the systemandthat thesetasksare clearly definedat leastin termsof their input
and output data. Information can come from both static sourcesand dynamic sources.Static
sourcesinclude the source code, the available documentsrelated to the application, and
standardsDynamicsourcednclude domainexperts,developersmaintainersend usersandthe
direct interaction with the system itself.

In [2], the authorsintroducethe idea that, for data-orientedapplicationssuch as business
applications,the reverseengineeringprocessshould include a data recovery phasebefore
proceedingwith the function recoveryphase.The purposeof this datarecoveryphaseis to
produce a data model of the application system expressedusing a hierarchical Entity-
Relationship diagram and a data dictionary.

A method for data model constructionwas provided, basedupon the use of a domain
representationand the classification of source code variables. The domain representation

containsdomainentities,entity hierarchiesassociativeelationshipsandentity attributeswhich

25

definethe applicationdomainfor a whole classof problems.The formalismusedfor this model
is the sameasthe applicationdatamodel,which is the end-producbf the datarecoveryphase.
Theydiffer with respecto thelevel of abstractiorusedto describethe problem[9]. Thedomain
representatioms expressedt the conceptualevel, which describegshe problemin termsof a
classof applicationsbelongingto a certain domain, for examplethe banking domain. The
applicationdatamodelis expressedt the requirementevel which provide greaterdetailsof a
specific userproblembelongingto a certainclassof application,for examplethe XYZ Bank
information system. The application data model is produced by extending the domain
representationfrom the conceptualto the requirementlevel. As in [18], the domain
representatiomctsas a schemefor driving the reverseengineeringprocessand a templatefor

organizing its results. Variable classificaticanmakea distinctionbetweenvariableswhich can
be mappedo someobjectin the domainrepresentatiomnd variableswhich cannot,so that this

mapping can be annotated in the data dictionary.

In [1], the authorsproposefive variable classification categories:basic conceptualdata,
derivedconceptuablata,control data,structuredataandredundantdata.Both basicandderived
conceptual data cdre mappedo anentity attributein the applicationdomain.They differ since
conceptual derived data can be calculated from basic conceptual ddtarconceptuatierived
data. This is an important distinction becauseptiesencef deriveddatagenerategxpectations
on the existenceof transformfunctions. Thesefunctionswill have conceptualderiveddataas
output, and basicor derived conceptualdataas input. Recordingthis information in the data
dictionary providesthe specificationof the expectedfunctionsto be extracted.Control data
recorda pasteventandareusedto control the logic of a program.Also control datacanhelp to
specifythe interfaceof expectedunctions,for examplea cancellationflag could be considered
the outputof a function which logically deletesa record.Structuredataare usedto build more
complexdatastructuresThey canhelpto identify relationshipsetweenrentities,asfor example
the presenceof pointerto anotherdata structure.Redundantdata are aliaseswhich must be
reconnected to the original name.

Another useful classification[25] provideseight classificationvariables.Among these,the
most important categoriesfor deriving expectedfunctions are domain variables, program

variables,input variablesand output variables.Domain variables,like conceptualdatain the

26

previous classification,can be mappedto objectsin the application domain while program
variablescannotbecause¢hey implementconceptsan the programmingdomain.Input variables
are involved in input eventssuch as readingfrom files or from the keyboard,while output

variables are involved in output events such as writing to a file or to the screen.The

classificationof domain versusprogram variablescombinedwith the classificationof input

versus output variables supplies a number of expectedfunctions formulated in terms of

input/outputwhich could be extractedirom the sourcecode.For example,meaningfulbusiness
functionsproducingexternalresultsfrom externalinputs canbe characterizedy domaininput

variablesand domainoutputvariables.On the contrary,functionsin the programmingdomain
could be characterized by program input variables and output program variables.

During the classification activity, new entities, relationships,entity attributes and data
dictionaryentriesareaddedto the initial domainrepresentationvhich evolvesto an application
data model. At the end of the data recovery phase,the data dictionary will contain the
descriptionof the variablesandthe mappingbetweenthe modelandthe sourcecode.A further
step, combining information containedin the datadictionary with the functionsfound in the
static sourcesor suggestedby dynamic sources, provides a list of expected functions
specifications with the following information:

» afunction name
» adescription of the function in free text format
* input parameter list (variables in the source code)

* output parameter list (variables in the source code)

4.2 Concept validation of transform slices

Transform slicing is a useful techniquefor extracting piecesof code which implement
functionalabstractionsbutin additionto the input/outputinterfaceof the function,oneneedso
know the last statemenof a function. This last statementmust be specifiedin the transform
slicing criterion as the statement from which slicing begigabackwardn the sourcecode.As
programsbecomeargerandlarger,this statemenbecomesnoredifficult to identify, requiring

to read a lot of code.

27

To be realistically applicablewith large programs,we needa techniquewhich does not
dependon statemennumbers.Decompositionslice [22] satisfiesthis requirementbecausat
dependdrom avariablebut notfrom a statementumber.A decompositiorslice correspondso
the setsof all the instructionswhich contributeto the value of a variablev at all the pointsin a
programwherethe variable becomesvisible outsidethe program.The decompositiorslice is
defined as the union of all the programslices with the output statementsof v and the last
programstatemenspecifiedin the slicing criterion. The last statemenbf a programis included
to specifyvariableswhich do not comparein outputstatementandto captureany computation
of a variable performed after its last output.

However, this approachcannot be totally acceptedfor recovering reusable functions.
Extractingtheimplementatiorof a functionalabstractiorby makingthe union of a collectionof
transformsliceshavethreeweak points. First, we might obtaina functional componentwhich
computesmore times the sameresult becausell-structured programsoften containduplicated
code and even differemhplementation®f a samefunction. Secondwe loosethe confidenceof
obtainingcohesivefunctionswhich implementa singletaskbecausef an outputvariablename
is usedfor more different purposeghis canleadto extractall the functionssharingthis same
variable name.Third, as an effect of the inclusion rule for conditional statementstransform
slicing from the last statementprogram usually includes more conditional statementsthan
transformslicing from outputstatementsAs a result,the union of transformsliceswill contain
more conditionalstatementshannecessaryo the implementationof the functional abstraction
becauset throws away information relatedto the program position of the slicing criterion
statement.

Althoughit is not possibleto obtainreusablecomponentsimply asthe union of transform
slices,we can incorporatethe approachbehind decompositiorslicing by providing a process
which requirea uservalidationof the extractedfunctions.The procesdor extractingfunctional
componentss shownin Figure5. The procesgeceivesn inputa programanda list of expected
functions specifications, including a meaningful name, a function description and their
input/output data. The processproducesin output a list of functional componentswhich
implementthe expectedfunctionsand have beerelectedto be reused.The descriptionof the

process uses the following functions:

28

* name(fn) returns the name for function fn

» description(fn) returns the textual description for function fn
* input-to(fn) returns the input parameters for function fn

» output-from(fn) returns the output parameters for function fn
* output(v) returns the set of statements that output variable v

» transform-slice(statementjnput variables,output variables)returnsa transformslice using

the transform slicing criterion < statement, input variables, output variables >

* remove-duplicategslices) returns a set of distinct slices

 validate-conceptslice, concept) returns true if the slice implements the given concept

This last function requiresthe userinteractionto electthe transformslice which implements
the functional abstractiommongthe candidate®btainedwith a differentstatementn theslicing
criterion. While conceptassignmenf8] consistdn trying to associate human-orientea¢oncept
to unknowncodesegmentsthis is a conceptvalidationtask becauseodesegmentsre filtered
througha given human-oriented¢oncept.Although the procesgequiresa frequentvalidationto
choose the right slice among the candidates, the user is asked to read small similaf pasees

compared to the amount of code necessary to identify the last statement of the expected function.

for each fn in expected-functions
reuse-candidates @
name —name(fn)
concept description(fn)
inpvars =input-to (fn)
outvars =output-from(fn)
for each stmt imutput(outvars)u {last-stmt}
reuse-candidates = reuse-candidate¢sansform-slicgstmt, inpvars, outvars
reuse-candidatesremove-duplicate§euse-candidates)
for each slice in reuse-candidates
if validate-conceptslice, conceptihen
reuse-elected = reuse-electedname, concept, inpvars, outvars, slice)
return reuse-elected

Fig. 5. Extraction of reusable functions

28

5. Related Work

The productionof reusablecomponentdrom legacy systemsis not unique to slicing. A
pioneeringwork in this field was Care [10], a tool basedon a metric model of reusability.
Looking at the sourcecode, Careidentifies routinesor units which satisfy the metric values
typical of componentswith a high frequency of reuse. However, componentswith these
characteristicshouldhavea high cohesionanda low coupling, which is seldomthe casewith
legacy systems.

A greatdealof researchasfocusedon recognizingdataabstractiondy meansof staticcode
analysis Componentsvhich implementdataabstractionsretypically recoveredoy aggregating
existing routines around a group of data without modifying the statementsnside of those
routines [13, 14, 19, 32, 34]. Although this list is not exhaustive, the approachessiiffigards
the aggregatiorcriteria. However,in this casetoo, if the original applicationwasnot structured
accordingto functionaldecompositionthe functional abstractionsare not recognizableand the
success of the modularization approach can be compromised.

Aggregationmethodsbasedon call graph analysishave beerappliedto cluster existing
routinesto form functionsat a higherlevel of abstractio15, 16]. The extractedclustersmust
be carefully read by domain-expert software engingeidentify whatfunctiontheyimplement.
However, when applied to large systemswith many candidateclusters,the task of concept
assignmen{8] is difficult and time-consuming.On the contrary, the conceptvalidation of
transformslices,usedin our method,requiresan extractedcomponents readonly to confirm
that it is the implementation of a given expected function.

Conditionedslicing have beerproposedto decomposemoduleswhich perform multiple
unrelatedfunctionsor to isolate subfunctionsexecutedunderdifferent condition brancheq12,
26]. However, conditionedslicing requiresthe additional knowledgeof a preconditionor a
triggering condition of the functional abstractionis searchedor. If sucha knowledgeis not
readily available, imight requireto reada lot of code.On the contrary,transformslicing is able
to decomposeunrelated functions which are activated by a function code or to discard
preconditiontestswithout the needto specify the binding condition but simply analyzingthe

dependencies between any conditional statement and the statement in the slicing criterion.

30

The identification of functional abstractionsn the sourcecode can be seenas a particular
problem of program segmentation. Segmenting a prograensreakingit into chunksof code
which are easier to manage. When the chunks relaeniquefunctionalbehavior theyarethe
manifestation of programming plans [42]. While plans are abstract structures which
programmers use as a programming temptatamanifestatiorof plansin the programss often
delocalized[31] becausethey are realized by statementswhich are non-sequential.The
usefulnes®f a segmentatiortechniqueincreaseshe morethe plansare scatteredn the text of
the program.In [39], plansare recoveredin the form of clichés, by analyzinga flow graph
which storesprograminformation. Programsegmentsanothernamefor the manifestationof
plans,arerecoveredn [28] by meansof conceptrecognition.Both approachesrebasedon the
assumptiorthat plansareimplementedasstereotypicatoding patterns.The searchis driven by
a prescriptive specification of the plan to be recovered,stating how the plan could be
implementedOn the contrary,our slicing approachor the recoveryof reusablecomponentss
descriptive,becausethe searchis guided by a partial specificationof what the function is
supposedo do, in termsof its input/outputinterface.This specificationis usedfor identifying
those parts of the program which use input data to produce output data.

While the methodgdiscussedboveusestaticcodeanalysisdynamicmethodshavealsobeen
applied to identify reusable functions [3, 40, 44]. Dynamic methods are based on instrumenting a
systemand executingit with a baselineof testcasesAlthough thereis no guaranteghat each
test case drives a single functionalityaegesetof testcasesmprovesthe precision.Our slicing
techniquecould be usedin a complementaryay, to achievecorrectidentification of functions

after dynamic slicing.

6. Conclusions and Future Directions

We defined a slicingechniquecalledtransformslicing, which is differentfrom conventional
Weiser'sslicing. While conventionalslicing was proposedfor program understandingand
debuggingpurposesthesenewtechniques designedo extractreusablefunctionsfrom existing
ill-structuredprogramsThis differentgoal requiresa redefinitionof the notion of programslice

SO as to obtain code segments which actually implement the specified functional abstractions.

31

Transformslicing is language-independebut its applicationto realistic programsrequires
further research to solve language-specific problems, for example aliagjng

A weaknes®f the methodpresenteds the efficiency of the algorithm. Sincethe transform
slicing algorithmis basedon def/usegraphsthe worst caserunningtimesare O(n e log(e)) for
producing a single transform slice, and O(n? e log(e)) for obtaining the candidatesof an
expectedfunction. Other slicing algorithms, basedon program dependencegraphs[20] or
system dependence gragB8] can obtain slices in linear time. However, these kofggogram
representatiomequirethat slicing startswherethe slice variableis definedor used,while our
method for obtaining candidatefunctions requiresthat slicing startsfrom the last program
statementtoo. Further researchis neededimprove the efficiency of our algorithm without
burdening the human intervention.

Currently, we are developingan interactive prototype systemaccordingto the extraction
methodpresentedn this paper.Thetool is goingto analyzeCOBOL programsbut we intendto
extend its scope to other imperative languages like C and Pascal.

Theunderlyingmethodandthetool basedon it needto be empirically evaluated\We haveto
assesshe completenesandthe accuracyof the extractedslices.Completenesss the propertyof
a slice of including all the statementsieededto implementthe relatedfunctional abstraction.
Accuracyis the property of a slice of not including statementsvhich are extraneoudo the
relatedfunctional abstractionFor the purposeof understandingthe extractedfunctionsshould
be characterizedincluding metrics such as the size of slices, the percentageof the original
modulesize,thelengthof contiguousstatementsandthe numberof contiguouscodefragments.
Finally, a controlledexperimentmight be designedto comparethe approachbasedon finding
the laststatemenof anexpectedunctiondirectly in the sourcecode,andthe approactbasedon

the the concept validation of the automatically extracted candidate functions.

Acknowledgements

We would like to thankVictor R. Basili, Gianluigi Caldiera,andKoji Torii for their helpful

comments and suggestions on a previous version of this paper.

32

Refer ences

[1] F. Abbattista, G. M. G. Fatone, F. Lanubile, and G. Visaddinalyzing theapplicationof
a reverseengineeringprocessto a real situatiori, Proceedingsf the 3rd Workshopon
Program Comprehension, Washington D.C., November 1994, pp.62-71.

[2] F. Abbattista, F. Lanubile, and G. Visagdi®ecoveringconceptuatlatamodelsis human-
intensivé, Proceeding®f the Fifth InternationalConferenceon SoftwareEngineeringand
Knowledge Engineeringsan Francisco, California, 1993, pp.534-543.

[3] H. Agrawal, and J. R. Horgan, “Dynamic program slicing’, Proceedingsof the ACM
SIGPLAN’90 Conferenceon ProgrammingLanguageDesign and Implementation June
1990, pp.246-256.

[4] H. Agrawal, J. R. Horgan,E. W. Krauser,and S. A. London, “Incrementalregression
testing, Proceedingsof the Conferenceon Software Maintenance Montreal, Quebec,
Canada, September 1993, pp.348-357.

[5] V. R. Basili, G. Caldiera, F. McGarry, R. Pajerski,G. Page,and S. Waligora, “The
Software Engineering Laboratory: an operational software experience factory’,
Proceedingsof the 14th International Conferenceon Software Engineering Australia,
1992, pp.370-381.

[6] J. Beck, and D. Eichmann, “Program and interface slicing for reverseengineering,
Proceedingsof the 15th International Conferenceon Software Engineering Baltimore,
MD, 1993, pp.54-63.

[7] K. Bennett,“Legacysystemscopingwith success IEEE Software vol.12, no.1, January
1995, pp.19-23.

[8] T. J.Biggerstaff,B. G. Mitbander,and D. E. Webster,“Programunderstandingand the
concept assignment problen€ommunications of the ACMol.37, no.5, 1994, pp.72-83.

[9] E. J. Byrne, “A conceptualfoundationfor softwarereengineering Proceedingsof the
Conference on Software Maintenan@elando, Florida, 1992, pp.226-235.

[10] G. Caldiera,andV. R. Basili, “Identifying and qualifying reusablesoftwarecomponents
IEEE ComputerFebruary 1991, pp.61-70.

[11] G. Canfora,andA. Cimitile, Reveseengineeringandintermodulardataflow: atheoretical
approach, Software Maintenance: Research and Pragtic#.4, 1992, pp.37-59.

[12] G. Canfora,A. Cimitile, A. De Lucia, andG. A. Di Lucca,"Softwaresalvagingbasedon
conditions, Proceedingsof International Conferenceon SoftwareMaintenance Victoria,
Canada, September 1994, pp.424-433.

[13] G. Canfora,A. Cimitile, and M. Munro, “A reverseengineeringmethodfor identifying
reusable abstract data types, Proceedingsof the Working Conferenceon Reverse
Engineering Baltimore, MD, 1993, pp.73-82.

[14] G. Canfora,A. Cimitile, M. Tortorella,andM. Munro, “A precisemethodfor identifying
reusableabstracdatatypein cod€, Proceeding®f International Conferenceon Software
MaintenanceVictoria, Canada, 1994, pp.404-413.

[15] S. C. Choi, and W. Scacchi,”Extracting and restructuringthe designof large systems,
IEEE SoftwareJanuary 1990, pp.66-71.

[16] A. Cimitile, and G. Visaggio, “ Softwaresalvagingand call dominancetre€’, unpublished
DIS internal report, 1992. To appearTihe Journal of Systems and Software

33

[17] F. Cuitillo, F. Lanubile, and G. VisaggitExtracting application domain functiofrem old
code:a real experiencg, Proceedingsof the 2nd Workshopon Program Comprehensian
Capri, Italy, July 1993, pp.186-191.

[18] J. M. DeBaud,B. Moopen,and S. Rugaber,”Domain analysisand reverseengineering,
Proceedingsof International Conferenceon Software Maintenance Victoria, Canada,
1994, pp.326-335.

[19] M. F. Dunn, and J. C. Knight, “Automating the detectionof reusablepartsin existing
softwaré, Proceedingsof the 15th International Conferenceon Software Engineering
Baltimore, MD, 1993, pp.381-390.

[20] J. Ferrante K. OttensteinandJ. Warren,“The programdependencgraphandits usein
optimizatiori, ACM Transactionson ProgrammingLanguagesand Systemsvol.9, no.3,
July 1987, pp.319-349.

[21] P. Fiore, F. Lanubile, and G. Visaggio, “Analyzing empirical data from a reverse
engineeringproject, Proceeding®f the 2nd Working Conferenceon ReverseEngineering
Toronto, Ontario, Canada, July 1995.

[22] K. B. Gallagherand J. R. Lyle, “Using programslicing in softwaremaintenancg IEEE
Transactions on Software Engineeringl.17, no.8, August 1991, pp.751-761.

[23] S. Horwitz, T. Reps,and D. Binkley, “Interproceduraklicing using dependencgraphs,
ACM Transactionson ProgrammingLanguagesand Systems vol.12, no.1, January1990,
pp.26-60.

[24] J. Jiang, X. Zhou, and D. J. Robson, “Program slicing for C - the problens in
implementation, Proceedingsof Conferenceon Software Maintenance Sorrento,Italy,
1991, pp.182-190.

[29] J. K. Joiner, W. T. Tsai, and X. P. Chen, “Data-centeredprogram understandint
Proceedingsof International Conferenceon Software Maintenance Victoria, Canada,
1994, pp.272-281.

[26] H. S. Kim, Y. R. Kwon, and I. S. Chung, “Restructuringprogramsthrough program
slicing’, International Journabf SoftwareEngineeringand KnowledgeEngineering vol.4,
no.3, 1994, pp.349-368.

[27] B. Korel,andJ. Laski, “Dynamicprogramslicing’, InformationProcessing-etters vol.29,
no.3, October 1988, pp.155-163.

[28] W. Kozaczynski, J. Ning, and A. Engberts, “Program concept recognition and
transformation, IEEE Transactionson Software Engineering vol.18, no.12, December
1992, pp.1065-1075.

[29] C. W. Krueger, “Softwarereusé, ACM Computing Surveys,vol.24, no.2, June 1992,
pp.131-183.

[30] F. Lanubile,andG. Visaggio,"Functionrecoverybasedon programslicing’, Proceedings
of Conference on Software Maintenangntreal, Quebec, Canada, 1993, pp.396-404.

[31] S. Letovski, and E. Soloway, “Delocalized plans and program comprehensioh IEEE
Software May 1986, pp.198-204.

[32] S. Liu, and N. Wilde, “Identifying objectsin a conventionalprocedurallanguage:an
exampleof datadesignrecovery, Proceedingsof Conferenceon SoftwareMaintenance
San Diego, CA, 1990, pp.266-271.

[33] P.E. Livadas,andS. D. Alden, “A toolsetfor programunderstandiny Proceedingof the
2nd Workshop on Program ComprehensiGapri, Italy, 1993, pp.110-118.

34

[34] P.E. Livadas,andP. K. Roy, “Programdependencynalysi§, Proceedingf Conference
on Software Maintenan¢®rlando, FL, 1992, pp.356-365.

[35]J. P. Loyall, “Using dependencanalysisto supportthe software maintenanceprocess,
Proceedingsof Conferenceon SoftwareMaintenance Montreal, Quebec,Canada, 1993,
pp.282-291.

[36] J.R. Lyle, and M. D. Weiser,"Automatic programbug location by programslicing’, in
Proceedingof the 2nd International Conferenceon Computersand Applications Peking,
China, June 1987, pp.877-882.

[37] H. D. Pande W. A. Landi, andB. G. Ryder, “Interprocedurablef-useassociationgor C
systemswith single level pointers, IEEE Transactionson SoftwareEngineering vol.20,
no.5, May 1994, pp.385-403.

[38] A. Podgurski,and L. A. Clarke, “A formal model of program dependencesnd its
implications for softwaretesting, debugging,and maintenancg |EEE Transactionson
Software Engineeringsol.16, no.9, September 1990, pp.965-979.

[39] C. Rich,andL. Wills, “Recognizinga program'sdesign:A graphparsingapproach, IEEE
Software January 1990, pp.82-89.

[40] H. Ritsch, and H. M. Sneed,"“Reverseengineeringprogram via dynamic analysi$,
Proceedingsof the Working Conferenceon ReverseEngineering Baltimore, MD, 1993,
pp.192-201.

[41] S. Rugaber,K. Stirewalt, and L. M. Wills, “The interleaving problem in program
understanding Proceedingf the SecondWorking Conferenceon ReverseEngineering,
Toronto, Canada, 1995, pp.166-175.

[42] E. Soloway, and K. Ehrlich, “Empirical studies of programming knowledgé, IEEE
Transactions on Software Engineerjngl.SE-10, no.5, 1984, pp.595-609.

[43]M. Weiser,“Programslicing’, IEEE Transactionson SoftwareEngineering vol.SE-10,
no.4, July 1984, pp.352-357.

[44]N. Wilde, J. A. Gomez,T. Gust,and D. Strasburg,"Locating user functionality in old
code",Proceeding®f Conferenceon SoftwareMaintenance Orlando,FL, IEEE Computer
Society Press, 1992, pp.200-205.

35

