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ABSTRACT1 

An alternative approach to developing reusable components from scratch is to recover them

from existing systems. In this paper, we apply program slicing, introduced by Weiser, to the

problem of extracting reusable functions from ill-structured programs. We extend the definition

of program slice to a transform slice, one that includes statements which contribute directly or

indirectly to transform a set of input variables into a set of output variables. Unlike conventional

program slicing, these statements do not include neither the statements necessary to get input

data nor the statements which test the binding conditions of the function. Transform slicing

presupposes the knowledge that a function is performed in the code and its partial specification,

only in terms of input and output data. Using domain knowledge we discuss how to formulate

expectations of the functions implemented in the code. In addition to the input/output parameters

of the function, the slicing criterion depends on an initial statement which is difficult to obtain

for large programs. Using the notions of decomposition slice and concept validation we

demonstrate how to produce a set of candidate functions, which are independent of line numbers

but must be evaluated with respect to the expected behavior. Although human interaction is

required, the limited size of candidate functions makes this task easier than looking for the last

function instruction in the original source code.

                                                       
1 This work is supported in part by the National Science Foundation under grant 01-5-24845 and the Italian
M.U.R.S.T. under the 40% project “V&V in software engineering” .
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1. Introduction

Although reusability is widely accepted as the key for improving productivity and quality, in

the software field real practice is still far behind other engineering disciplines. One of the

obstacles to a massive application of software reuse in industrial environments is that the initial

building of reusable software is more costly. An experiment conducted in the Software

Engineering Laboratory over a 6-year period, comparing Fortran and Ada projects [5], has

shown that creating reusable software components requires a huge initial investment which is not

rapidly amortized. This explains the reluctance of companies to adopt software reuse as an

established practice in developing software.

An alternative approach to developing new reusable components is to recover them from

existing software systems. There is great potential in this last approach because billion of lines of

code have already been written by programmers. Software managers do not expect the past

knowledge and experience embodied in their software portfolio to be thrown away.

Although informal software scavenging is a popular practice among programmers, it is

performed using informal abstractions which exist only in the memory of the developers [29].

To be feasible on a large-scale, the code scavenging approach should be supported by automatic

tools based on formal models of extraction.

Any approach related to software reuse involves some form of abstraction for software

artifacts. Extracting reusable components from existing software systems means locating in the

code those parts which implement the data or functional abstractions. Our work focuses on

locating functional abstractions, but data abstractions can be produced through the aggregation

of data structures and recovered functional components around more general abstract data types.

New programs, when well designed, have functional abstractions represented by

subprograms. However, many legacy programs [7] have an inadequate design or one which has

been corrupted by enhancements and patches introduced during their operational life. The result

is that old programs suffer from interleaving, which expresses the merging of two or more

distinct plans within some contiguous textual area of the program [41]. Plans, the abstract

structures which model the programmer goals, are delocalized [31] and so it is difficult to

recognize, maintain, and reuse them in other contexts. To extract reusable functions from ill-
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structured programs we need a decomposition method which is able to group generally non

sequential sets of statements.

Program slicing is a family of program decomposition techniques based on selecting

statements relevant to a computation, even if they are scattered throughout the program. Program

slicing, as originally defined by Weiser [43], is based on static dataflow analysis on the flow

graph of the program. A program slice can also be found in linear time as the transitive closure

of a dependency graph [20]. Program slicing has been applied in program debugging, parallel

processing, program testing, program integration, program understanding and software

maintenance, both using the basic definition and developing variants, including program dicing

[36], dynamic slicing [3, 27], decomposition slicing [22], relevant slicing [4], interface slicing

[6], conditioned slicing [12], and variable slicing [25]. Conventional program slicing has been

also advocated for the purpose of software reuse [6, 33]. However, program slices are often

imprecise as reusable functions because they contain unnecessary statements for the function to

recover. Hence this proposal of a new slicing approach, called transform slicing, which is more

effective in extracting functional components from old programs.

Transform slicing presupposes the knowledge that a function is performed in a system and its

partial specification, only in terms of input and output data. The aim is to take only those

statements which yield the output data, both directly and indirectly, starting from the given input

data. These statements, unlike conventional program slicing, do not include neither the

statements necessary to get input data nor the branch and loop conditions which are used to

control the activation of the function. In addition to the input/output parameters of the function,

the slicing criterion depends on an initial statement. This statement, which is usually the last

instruction of the function to be recovered, is difficult to identify because requires reading a lot

of code. We overcome this problem by providing a scavenging algorithm which invokes

transform slicing but does not depend on statement numbers. A set of candidate functions are

produced and evaluated with respect to their expected behavior. Although this concept validation

step is not automatic, the limited size of candidate functions makes this task easier than looking

for the last function instruction in the original source code.

Since legacy systems do not always have accurate or up-to-date documentation, the

application of transform slicing to the creation of reusable assets is part of a reverse engineering
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process, which has been designed mainly for data-strong applications, and uses information from

data model representation to drive the recovery of functional components. The data model

allows the expected functions to be specified in terms of their input and output data. Once these

parameters have been mapped onto variables in the source code, slicing criteria are formulated

and transform slicing extracts a set of cohesive functions, which implement conceptually simple

tasks.

This paper is a revised and extended version of [30] and takes advantage of lessons learned

from previous applications of the function extraction to legacy systems [1, 17, 21]. However,

transform slicing definitions are language-independent and could also be applied using a

different process model.

The rest of the paper is organized as follows. Section 2 defines some necessary terminology

and introduces transform slicing at the procedural level. Section 3 extends both basic definitions

and transform slicing for dealing with procedural programs. In Section 4, we describe how to

elicit the specifications of the functional abstractions to be searched for and how transform

slicing can be realistically applied to legacy systems for producing a set of cohesive reusable

functions. In Section 5, related work on component extraction is surveyed and compared to our

approach. Finally, Section 6 presents a summary and discusses possible future research

directions.

2. Intraprocedural Extraction Criteria

 This section deals with data flow equations applied to a program procedure. The definitions

are language-independent and include unstructured programs too. In the following subsections

we give basic definitions and our equations for extracting transform slices.

2.1 Background

The definitions below are used to establish a common terminology to be used in the data flow

equations. We present control flow graphs and def/use graphs, as defined in [38], but we take

only those dominance relations which are useful for the extraction criteria. Weiser's equations

for program slicing are also presented to emphasize the differences from our slicing equations.
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Here, program slicing is defined in terms of def/use graphs but some definitions appear different

in style as respect to [43].

Definition 1: A digraph G is a pair (N, E), where N is a finite, nonempty set, and E is a subset

of  N % N # � (n, n) � n U N �. The elements of N are called nodes and the elements of E are

called edges. Given an edge (ni, nj) U E, ni is said to be predecessor of nj, and nj is said to be

successor of ni. PRED(n) and SUCC(n) are the set of the predecessors and the set of the

successors of a node n respectively. The indegree of a node n, denoted in(n), is the number of

predecessors of n, while the outdegree of n, denoted out(n), is the number of successors of n. A

walk W in a digraph G is a sequence of nodes n1n2$$$nk such that k 8 0 and (ni, ni+1) for

i = 1, 2, $$$, k # 1, where k is the length of W. If W is nonempty (the length is zero) then it is

called a n1#nk walk.

Definition 2:  A hammock graph G is a digraph with two distinguished nodes: the initial node

nI and the final node nF, satisfying the following conditions: (1) in(nI) = 0 and out(nF) = 0; (2)

each node n U G occurs in a nI#nF walk.

Definition 3:  Let G be a hammock graph, and m and n two nodes in G, m forward dominates

n iff every n#nF walk  in G contains m; m properly forward dominates n iff m ≠ n and m

forward dominates n; m is the immediate forward dominator of n iff m is the first node which

properly forward dominates n on every n#nF walk. The set of forward dominators of a node n is

denoted FD(n), the set of properly forward dominators PFD(n), while the immediate forward

dominator is ifd(n).

Definition 4: A control flow graph G is a hammock graph which is interpreted as a program

procedure. We use the term procedure to include also the main program and program functions.

In the latter case the procedure has an extra output parameter corresponding to the value returned

by the function.

The nodes of a control flow graph represent elementary program statements such as

assignments, input/output instructions, branch and loop conditions, unconditional branches, and

procedure calls. The initial and the final nodes represent the entry and exit points of the

procedure respectively. The edges represent control flow transfers between statements. We give

a wider interpretation than in [38], because we represent unconditional GOTOs as control flow

graph nodes to deal with unstructured programs. We can also represent programs with multiple
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entry and exit points. In this case there will be two kinds of special nodes: start nodes NS and

halt nodes NH to represent the multiple entry points and exit points, respectively. These nodes

must satisfy the following conditions:

(i) for each s U NS : PRED( s ) = �nI�
(ii) for each h U NH : SUCC(h) = �nF�

A control flow graph still has a ingle initial node which is connected to start nodes by edges

of the form (nI, s). Analogously the unique final node is linked to halt nodes by (h, nF) edges.

Definition 5:  Let G be a control flow graph and n a node in G. A statement m is conditioned

by n iff m occurs in a n#ifd(n) walk, excluding the endpoints n and ifd(n). The set of statements

conditioned by n is denoted INFL(n). From this definition we can infer that INFL(n) is empty iff

out(n) 7 1. Then n for a nonempty INFL(n) represents a condition branch or a condition loop

statement.

Definition 6: A def/use graph is a quadruple G = (G, ª, D, U), where G is the control flow

graph representing a program procedure, ª is a finite set of symbols naming variables in the

program procedure, D : NG D Ã(ª), and U : NG D Ã(ª) are functions mapping the nodes of G

in the set of variables which are defined or used in the statements corresponding to nodes.

A variable x is defined in a statement s if an execution of s assigns a value to x, while a

variable x is used in a statement s if an execution of s requires the value of x to be evaluated.

Assignment statements have defined variables in the left-part and used variables in the right-part;

input statements have only defined variables while output statements have only used variables;

variables in branch and loop conditions are only used, while unconditional branches have neither

used nor defined variables.

Example 1: Let us consider a program, already appeared as example in [43]. The def/use

graph is shown in Figure 1. The numbers of the initial and final nodes represent, respectively,

the initial and final program statements, while the other nodes are numbered according with the

positions of the executable statements.
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1. begin
2. read ( x, y );
3. total := 0.0;
4. sum := 0.0;
5. if x <= 1
6. then sum := y
7. else begin
8. read (z);
9. total := x * y;
10. end;
11. write (total, sum);
12. end.

2

3

4

12

D(2) = {x, y}

D(3) = {total} 

D(4) = {sum}

U(5) = {x}

U(6) = {y}
D(6) = {sum}

D(8) = {z}

U(9) = {x, y}
D(9) = {total}

U(11) = { total, sum}

1

5

8

9

6

11

Fig. 1. Def/Use graph for examples 1, 2, 3

The computational model we adopt includes only scalar variables but can be extended to

include other constructs such as structures, arrays and pointers. A structure variable or “ record”
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in other programming languages can be seen as the union of its component variables. Thus,

defining or using a structure variable implies that all its component variables are defined or used,

respectively. In the same way, defining or using a component variable implies that the including

structure variable is defined or used, respectively. A safe but conservative approach in static data

flow analysis treats all the elements of an array or specified by a pointer as a single object. More

refined approaches valid for arrays and pointers in C programs are defined in [24, 37].

In the definitions below we assume we have a def/use graph G = (G, ª, D, U) and a program

procedure P represented by G.

Definition 7: A slicing criterion is a pair C = + i, V ,, where i U NG and V 5 ª. In the

program procedure P, a slicing criterion is made up of one statement and a subset of variables.

Definition 8: A slice S on a slicing criterion C = + i, V ,, denoted Sc, is an executable subset

of P containing all the statements which contribute to the values of V just before statement i is

executed.

Definition 9: Let C = + i, V , be a slicing criterion. The set of variables relevant to C, when

program execution is at statement n, denoted Rc0(n), is defined as follows:

Rc0(n) = � v U V � n = i � ~
� U(n) � D(n) � Rc0(SUCC(n)) ≠ ^ � ~
� Rc0(SUCC(n)) # D(n) �

Rc0(n) includes the variables which have potential effects on the def-use chain ending in V.

Search starts from node i and goes backward. The first subset expresses the base case. The

second dictates that variables which are used to assign values to other variables, already marked

as relevant, become relevant. The third case excludes a relevant variable when it has been

modified.

Definition 10: Let C = + i, V , be a slicing criterion. The set of statements relevant to C,

denoted Sc0, is defined as follows:

Sc0 = � n U G � D(n) � Rc0(SUCC(n)) ≠ ^ �
Sc0 includes the statements whose execution can directly influence the values of relevant

variables.
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Definition 11: Let C = + i, V , be a slicing criterion. The set of conditional statements which

control the execution of the statements in Sc0, denoted Bc0, is defined as follows:

Bc0 = � b U G � INFL(b) � Sc0 ≠ ^ �
In the following, the building of Sc is defined recursively on the set of variables and

statements which have either direct or indirect influence on V. Starting from zero, the

superscripts represent the level of recursion.

Rci+1(n) = Rci(n) |    R +b, U(b),0(n) (1)

b U Bc
i

Sci+1 = � n U G � D(n) � Rci+1(SUCC (n)) ≠ ^ � ~ Bci (2)

Bci+1 = � b U G � INFL(b) � Sci+1 ≠ ^ � (3)

The full definition includes the conditional statements with an indirect influence on a slice,

the control variables which are evaluated in the logical expression, and the statements which

influence the control variables. The iteration continues until no new variables are relevant and so

no new statements may be included. In other words Sc = Scf+1 where f is an iteration step such

that [ n U N : Rcf+1(n) = Rcf(n) = Rc(n).

Example 2: Let us consider the program in the Example 1. Given the slicing criterion

C = + 11, � total�,, for each executable statement we have the following sets:

Rc0(11) = �total� Rc0(9) = �x, y� Rc0(8) = �x, y�
Rc0(6) = �total� Rc0(5) = �total, x, y� Rc0(4) = �total, x, y�
Rc0(3) = �x, y� Rc0(2) = ̂

Sc0 = �2, 3, 9� Bc0 = �5�
R +5, �x�,0(5) = �x� R +5, �x�,0(4) = �x� R +5, �x�,0(3) = �x� R +5, �x�,0(2) =  ̂

Rc1(11) = �total� Rc1(9) = �x, y� Rc1(8) = �x, y�
Rc1(6) = �total� Rc1(5) = �total, x, y� Rc1(4) = �total, x, y�
Rc1(3) = �x, y� Rc1(2) = ̂

Sc = Sc1 = �2, 3, 5, 9�
Unconditional branches cannot be caught by these definitions because the statements have no

defined or used variables. However, their omission can bias the behavior of the slice resulting in
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an incorrect projection of the program. Although restricted to C language, in [24] an algorithm is

presented to collect goto statements and a set of rules are given to pick up break and continue

statements. These algorithms can easily be extended to other languages for dealing with other

kinds of branches. Although we use them when slicing, the scope of this paper does not include

slicing extensions for unconditional branches.

2.2 Transform Slice

Let G = (G, ª, D, U) be a def/use graph, and P a program procedure represented by G. The

following definitions are given to extract the implementation of functional abstractions.

Definition 12: A transform slicing criterion is a triple C = + i, Vinp , Vout,, where i U NG and

Vinp, Vout are both subsets of ª.

Definition 13: A transform slice on a transform slicing criterion C = + i, Vinp , Vout,,
denoted TrSc , is an executable subset of P containing all the statements which contribute either

directly or indirectly to the values of Vout starting from the values of Vinp, just before statement

i is executed.

Definition 14: Let C = + i, Vinp , Vout, be a transform slicing criterion. The set of variables

relevant to C, when program execution is at statement n, denoted TrRc0(n), is defined as follows:

TrRc0(n) = � v U Vout � n = i � ~
� U(n) # Vinp � D(n) � TrRc0(SUCC(n)) ≠ ^ � ~
� TrRc0(SUCC(n)) # D(n) �

TrRc0(n) includes the variables which have potential effects on Vout , with the exclusion of

variables coming before Vinp in the use-definition chain. Like in definition 9, the search starts

from node i and goes backward, but this time it stops when the variables in Vinp have been

found (second subset in the definition).

Definition 15: Let C = + i, Vinp , Vout , be a transform slicing criterion. The set of statements

relevant to C, denoted TrSc0, is defined as follows:

TrSc0 = � n U G � D(n) � TrRc0(SUCC(n)) ≠ ^ �
This definition is substantially equal to definition 10.
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Definition 16: Let C = + i, Vinp , Vout, be a transform slicing criterion. The set of conditional

statements which control the execution of the statements in TrSc0, denoted TrBc0, is defined as

follows:

TrBc0 = � b U G � INFL(b) � TrSc0 ≠ ^ and i è INFL(b) �
TrBc0 restricts definition 11 because it includes the conditional statements which influence

the  statements in TrSc0, only if they do not condition the statement i too. In fact, a conditional

statement influencing the slicing criterion statement i means that the overall execution of the

sliced component could be excluded as a result of the evaluation of the condition. Thus, the

conditional instruction should remain outside as part of the program manager which invokes the

sliced component. There are three main cases where the exclusion of a conditional statement is

useful when isolating a functional component:

a) A program procedure performs multiple different functions which are activated by a function

tag

b) A program procedure contains the pre-conditions for the function

c) A program procedure performs the function iteratively

As an effect of definition 16, branch conditions (cases a and b) and loop conditions (case c) will

not be part of the transform slice. 

Like Weiser's slice, the transform slice is built recursively. Starting from zero, the

superscripts represent the level of recursion.

TrRci+1(n) = TrRci(n)    |    TrR +b, Vinp , U(b)# Vinp ,0(n) (4)

    b U TrBc
i

TrSci+1 = � n U G � D(n) � TrRci+1(SUCC (n)) ≠ ^ � ~ TrBci (5)

TrBci+1 = � b U G � INFL(b) � TrSci+1 ≠ ^ and i è INFL(b) � (6)

The iteration is similar to that for conventional slicing, with the exception that equation (4)

excludes input variables from becoming output variables when slicing starts from conditional

statements, and equation (6) is modified according to definition 16. The rule for stopping

iteration remains unchanged. Input/output statements which deal with variables of the transform

slicing criterion are not included because in our definition the transform slice is input-restricted
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as regards variables in the transform slicing criterion and output-restricted because all the output

statements are removed.

The transform slice is also a def/use graph which can be packaged as a distinct module. A

complement of the direct slice may be derived, working as a caller which activates the transform

module. However, the complement computation will not be shown here, because is beyond the

scope of this paper.

Example 3: Let us consider the program example in the Example 1. Given the transform

slicing criterion C = + 11, �x, y�, �total�,, for each executable statement we have the following

sets:

TrRc0(11) = �total� TrRc0(9) = ̂ TrRc0(8) = ̂

TrRc0(6) = �total� TrRc0(5) = �total� TrRc0(4) = �total�
TrRc0(3) = ̂ TrRc0(2) = ̂

TrSc0 = �3, 9� TrBc0 = �5�
TrR +5, �x, y�, ̂ ,0(5) = ̂ TrR +5, �x, y�, ̂ ,0(4) = ̂

TrR +5, �x, y�, ̂ ,0(3) = ̂ TrR +5, �x, y�, ̂ ,0(2) = ̂

TrRc1(11) = �total� TrRc1(9) = ̂ TrRc1(8) = ̂

TrRc1(6) = �total� TrRc1(5) = �total� TrRc1(4) = �total�
TrRc1(3) = ̂ TrRc1(2) = ̂

TrSc = TrSc1 = �3, 5, 9�
In this example, the only effect of applying transform slicing with respect to conventional

slicing was that the input statement 2 was excluded because the two variables x and y have been

declared as input variables in the transform slicing criterion and hence they are considered as

input parameters to the extracted function. On the contrary, the conditional statement 5 have

been included because it does not control the initial statement 11 in the transform slicing

criterion and so it is considered part of the function to be recovered.

After having considered this base example, we will show other new examples corresponding

to the three cases for which the exclusion of a conditional statement is advocated.
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Example 4 (case a): Let us consider a program which computes the sum and product of first n

numbers, using a single loop. The def/use graph is shown in Figure 2. Nodes are numbered as in

the first example.

1. begin
2. read ( n );
3. if n > 0
4. then begin
5. i := 1;
6. sum := 0;
7. prod := 1;
8. while i <= n do
9. begin
10. read ( k );
11. sum := sum +k;;
12. prod := prod * k;
13. i := i + 1;
14. end;
15. write ( sum );
16. write ( prod );
17. end;
18. end.

Given the slicing criterion C = + 15, �sum�,, for each executable statement we have the

following sets:

Rc0(15) = �sum� Rc0(13) = �sum� Rc0(12) = �sum�
Rc0(11) = �k, sum� Rc0(10) = �sum� Rc0(8) = �sum�
Rc0(7) = �sum� Rc0(6) = ̂ Rc0(5) = ̂

Rc0(3) = ̂ Rc0(2) = ̂

Sc0 = �6, 10, 11� Bc0 = �3, 8�
R +8, �i, n�,0(8) = �i, n� R +8, �i, n�,0(13) = �i, n� R +8, �i, n�,0(12) = �i, n�
R +8, �i, n�,0(11) = �i, n� R +8, �i, n�,0(10) = �i, n� R +8, �i, n�,0(7) = �i, n�
R +8, �i, n�,0(6) = �i, n� R +8, �i, n�,0(5) = �n� R +8, �i, n�,0(3) = �n�
R +8, �i, n�,0(2) = ̂

R +3, �n�,0(3) = �n� R +3, �n�,0(2) = ̂

Rc1(15) = �sum� Rc1(13) = �i, n, sum� Rc1(12) = �i, n, sum�
Rc1(11) = �i, k, n, sum� Rc1(10) = �i, n, sum� Rc1(8) = �i, n, sum�
Rc1(7) = �i, n, sum� Rc1(6) = �i, n� Rc1(5) = �n�
Rc1(3) = �n� Rc1(2) = ̂
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Sc1 = �2, 3, 5, 6, 8, 10, 11, 13� Bc1 = �3, 8�
Shortly, [ n U N : Rc2(n) = Rc1(n)

Sc = Sc2 = �2, 3, 5, 6, 8, 10, 11, 13�

13

1

2

5

3

6

7

8

10

11

12

16

18

15

D(2) = { n}

U(3) = { n}

D(5) = { i}

D(6) = { sum}

D(7) = { prod}

U(8) = { i , n}

D(10) = { k}

U(11) = { sum, k}
D(11) = { sum}

U(12) = { prod, k}
D(12) = { prod}

U(13) = { i}
D(13) = { i}

U(15) = { sum}

U(16) = { prod}

Fig. 2. Def/Use graph for example 4
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Let us consider now, the results from applying transform slicing. The summation function can

be modeled as sum = f (n) and so the transform slicing criterion is C = + 15, �n�, �sum�,. For

each executable statement we have the following sets:

TrRc0(15) = �sum� TrRc0(13) = �sum� TrRc0(12) = �sum�
TrRc0(11) = �k, sum� TrRc0(10) = �sum� TrRc0(8) = �sum�
TrRc0(7) = �sum� TrRc0(6) = ̂ TrRc0(5) = ̂

TrRc0(3) = ̂ TrRc0(2) = ̂

TrSc0 = �6, 10, 11� TrBc0 = �8�
TrR +8, �i�,0(8) = �i� TrR +8, �i�,0(13) = �i� TrR +8, �i�,0(12) = �i�
TrR +8, �i�,0(11) = �i� TrR +8, �i�,0(10) = �i� TrR +8, �i�,0(7) = �i�
TrR +8, �i�,0(6) = �i� TrR +8, �i�,0(5) = ̂ TrR +8, �i�,0(3) = ̂

TrR +8, �i�,0(2) = ̂

TrRc1(15) = �sum� TrRc1(13) = �i, sum� TrRc1(12) = �i, sum�
TrRc1(11) = �i, k, sum� TrRc1(10) = �i, sum� TrRc1(8) = �i, sum�
TrRc1(7) = �i, sum� TrRc1(6) = �i� TrRc1(5) = ̂

TrRc1(3) = ̂ TrRc1(2) = ̂

TrSc1 = �5, 6, 8, 10, 11, 13� TrBc1 = �8�
Shortly, [ n U N : TrRc2(n) = TrRc1(n)

TrSc = TrSc2 = �5, 6, 8, 10, 11, 13�
With respect to the conventional slice, the transform slice does not include statement 2 which

reads the input variable of the function, and statement 3 which contains the predicate which

implements the precondition of the summation function.

Example 5 (case b): Let us consider a program which computes the sum or product of first n

numbers, according to the value of a flag. There is no control for the preconditions of the two

functions. The def/use graph is shown in Figure 3. Nodes are numbered as in the previous

examples.
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1. begin
2. read ( n );
3. read ( flag );
4. i :=1;
5. if flag = 1
6. then begin
7. sum := 0;
8. while i <= n do
9. begin
10. read ( k );
11. sum := sum +k;;
12. i := i + 1;
13. end;
14. write ( sum );
15. end
16. else begin
17. prod := 1;
18. while i <= n do
19. begin
20. read ( k );
21. prod := prod * k;
22. i := i + 1;
23. end;
24. write ( prod );
25. end;
26. end.

Given the slicing criterion C = + 14, �sum�,, for each executable statement we have the

following sets:

Rc0(14) = �sum� Rc0(12) = �sum� Rc0(11) = �k, sum�
Rc0(10) = �sum� Rc0(8) = �sum� Rc0(7) = ̂

Rc0(5) = ̂ Rc0(4) = ̂ Rc0(3) = ̂ Rc0(2) = ̂

Sc0 = �7, 10, 11� Bc0 = �5, 8�
R +8, �i, n�,0(8) = �i, n� R +8, �i, n�,0(12) = �i, n� R +8, �i, n�,0(11) = �i, n�
R +8, �i, n�,0(10) = �i, n� R +8, �i, n�,0(7) = �i, n� R +8, �i, n�,0(5) = �i, n�
R +8, �i, n�,0(4) = �n� R +8, �i, n�,0(3) = �n� R +8, �i, n�,0(2) = ̂

R +5, �flag�,0(5) = �flag� R +5, �flag�,0(4) = �flag� R +5, �flag�,0(3) = ̂

R +5, �flag�,0(2) = ̂

Rc1(14) = �sum� Rc1(12) = �i, n, sum� Rc1(11) = �i, k, n, sum�
Rc1(10) = �i, n, sum� Rc1(8) = �i, n, sum� Rc1(7) = �i, n�
Rc1(5) = �flag, i, n� Rc1(4) = �flag, n� Rc1(3) = �n� Rc0(2) = ̂

Sc1 = �2, 3, 4, 5, 7, 8, 10, 11, 12� Bc0 = �5, 8�
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Shortly, [ n U N : Rc2(n) = Rc1(n)

Sc = Sc2 = �2, 3, 4, 5, 7, 8, 10, 11, 12�
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11
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17

24

26

21

22

D(2) = {n}

D(3) = {flag}

D(4) = {i}

U(5) = {flag}

18

20 10

8

7 D(7) = {sum}

U(8) = {i, n}

D(10) = { k}

U(11) = { sum, k}
D(11) {sum}

U(12) = { i}
D(12) = { i}

U(14) = { sum}14

D(17) = {prod}

U(18) = { i, n}

D(20) = { k}

U(21) = {prod, k}
D(21) = {prod}

U(22) = { i}
D(22) = { i}

U(24) = {prod}

Fig. 3. Def/Use graph for example 5
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Let us consider now, the results from applying transform slicing to extract the summation

function. The transform slicing criterion is C = + 14, �n�, �sum�,. For each executable

statement we have the following sets:

TrRc0(14) = �sum� TrRc0(12) = �sum� TrRc0(11) = �k, sum�
TrRc0(10) = �sum� TrRc0(8) = �sum� TrRc0(7) = ̂

TrRc0(5) = ̂ TrRc0(4) = ̂ TrRc0(3) = ̂ TrRc0(2) = ̂

TrSc0 = �7, 10, 11� TrBc0 = �8�
TrR +8, �i�,0(8) = �i� TrR +8, �i�,0(12) = �i� TrR +8, �i�,0(11) = �i�
TrR +8, �i�,0(10) = �i� TrR +8, �i�,0(7) = �i� TrR +8, �i�,0(5) = �i�
TrR +8, �i�,0(4) = ̂ TrR +8, �i�,0(3) = ̂  TrR +8, �i�,0(2) = ̂

TrRc1(14) = �sum� TrRc1(12) = �i, sum� TrRc1(11) = �i, k, sum�
TrRc1(10) = �i, sum� TrRc1(8) = �i, sum� TrRc1(7) = �i�
TrRc1(5) = �i� TrRc1(4) = ̂ TrRc1(3) = ̂ TrRc1(2) = ̂

TrSc1 = �4, 7, 8, 10, 11, 12� TrBc1 = �8�
Shortly, [ n U N : TrRc2(n) = TrRc1(n)

TrSc = TrSc2 = �4, 7, 8, 10, 11, 12�
With respect to the conventional slice, the transform slice does not include statement 2 which

reads the input variable of the function, and statements 3 and 5 which read and control,

respectively, the function code which is used to dynamically choose the function to be executed.

Example 6 (case c): Let us consider a program fragment, already appeared as example in [12],

which computes university taxes and room fees from the student requests of enrollment. The

application is typical of batch programs, where each input record is processed inside a loop until

end of file is reached. The def/use graph is shown in Figure 4. Nodes are numbered as in the

previous examples.
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..........
1. read (tax_enr);
2. read (tax_fix);
3. read (tax_ex);
4. read (tax_oc);
5. read (room_max);
6. while not eof (f_req) do
7. begin
8. read (f_req, stud);
9. if stud.year = 1 then
10. begin
11. tax := tax_enr + tax_fix + tax_ex;
12. room_fee := 3 * room_max / 4;
13. end
14. else if stud.year >= 2 and stud.year <= 5 then
15. begin
16. tax := tax_fix + tax_oc;
17. room_fee := 2 * room_max / 3;
18. end
19. else begin
20. tax := tax_fix + tax_oc;
21. room_fee := room_max;
22. end;
23. writeln (“Name: “, stud_name);
24. writeln (“Mat: “, stud.mat);
25. writeln (“Tax: “, tax);
26. writeln (“Room fee: “, room_fee);
27. end;

.............
Let us suppose, we are interested in how the university taxes are computed. Given the slicing

criterion C = + 25, �tax�,, we have the following sets of relevant statements (for the sake of

brevity, we omit the sets of variables relevant to C):

Sc0 = �1, 2, 3, 4, 11, 16, 20� Bc0 = �6, 9, 14�
Sc1 = �1, 2, 3, 4, 6, 8, 9, 11, 14, 16, 20� Bc1 = �6, 9, 14�
Sc = Sc2 = �1, 2, 3, 4, 6, 8, 9, 11, 14, 16, 20�
Let us consider now, the results from applying transform slicing to extract the function which

computes the university tax of a student. According to the alternative ways of modeling the input

of the function, there will be different transform slices.

If the transform slicing criterion is C1 = + 25, �tax_enr, tax_fix, tax_ex, tax_oc, stud�, �tax�,
, we have the following sets of relevant statements:

TrSc1
0 = �11, 16, 20� TrBc1

0 = �9, 14�
TrSc1

1 = �9, 11, 14, 16, 20� TrBc1
1 = �9, 14�

TrSc1
 = TrSc1

2 = �9, 11, 14, 16, 20�
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1

2

3

4

5

6

8

9

11

12

14

1620

21

22

23

24

25

26

27

D(1)={ tax_enr}

D(2)={ tax_fi x}

D(4)={ tax_oc}

D(3)={ tax_ex}

D(5)={ room_max}

U(6)={ f_req}

D(8)={ stud}

U(9)={ stud.year}

U(11)={ tax_enr, 
   tax_fi x, tax_ex}
D(11)={ tax}

U(12)={ room_max}
D(12)={ room_fee}

U(14)={ stud.year}

U(20)={ tax_fi x, tax_oc}
D(20)={ tax}

U(21)={ room_max}
D(21 ={ room_fee}

U(16)={ tax_fi x, tax_oc}
D(16)={ tax}

U(17)={ room_max}
D(17)={ room_fee}

17

U(23)={ stud.name}

U(24)={ stud.mat}

U(25)={ tax}

U(26)={ room_fee}

Fig. 4. Def/Use graph for example 6
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If the transform slicing criterion is C2 = + 25, �tax_enr, tax_fix, tax_ex, tax_oc�, �tax�,, we

have the following sets of relevant statements:

TrSc2
0 = �11, 16, 20� TrBc2

0 = �9, 14�
TrSc2

1 = �8, 9, 11, 14, 16, 20� TrBc2
1 = �9, 14�

TrSc2
 = TrSc2

2 = �8, 9, 11, 14, 16, 20�
Finally, if the transform slicing criterion is C3 = + 25, �stud�, �tax�,, we have the following

sets of relevant statements:

TrSc3
0 = �11, 16, 20� TrBc3

0 = �9, 14�
TrSc3

1 = �1, 2, 3, 4, 9, 11, 14, 16, 20� TrBc3
1 = �9, 14�

rSc3
 = TrSc3

2 = �1, 2, 3, 4, 9, 11, 14, 16, 20�
These three transform slices differ for the reading statements which are included in the

recovered function, depending on what input variables are considered in the transform slicing

criteria. However, all the transform slices have in common the exclusion of the loop statement

which controls the processing of the entire student file.

 In all the examples above, the exclusion of the conditional statements depends from the

position of the output statements which have been selected as initial statements in the transform

slicing criteria. However, in the case it would be not possible to find an output statement in the

proper place, and the last program statement was instead selected as initial statement of a

transform slicing criterion, then the extraneous conditional statements could not be eliminated.

3. Interprocedural Extraction Criteria

In this section the definitions given in Section 2 are extended to cover procedural programs

where slices can cross the boundaries of procedure calls. We assume a language model in which

parameters are passed by value-result and by reference, procedures can be nested and global

variables are visible in the nested procedures. The model is sufficiently general to be usable with

many programming languages by applying or restricting the assumptions. In the subsections

below we give basic definitions and our rules for extracting functional components correctly.
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3.1 Background

 The following basic definitions are given to provide a common framework for the rules for

interprocedural slicing. Interprocedural control flow graphs, interprocedural walks and

interprocedural def/use graphs are defined as in [35] but we give a different interpretation for the

variables defined and used by procedure calls. Weiser's extension to interprocedural slicing

completes the basic definitions.

Definition 17: An interprocedural control flow graph j for a program is a tuple

(G1, ..... , Gk, CALL, RET) where G1, ..... , Gk are control flow graphs representing program

procedures, CALL is a set of call edges, and RET is a set of return edges satisfying the following

conditions: (1) a call edge from a caller Gi to a callee Gj is of the form (n, nI) where n is a

procedure call of some NGi
, and nI is the initial node of some NGj

; (2) a return edge from a

callee Gj to a caller Gi is of the form (nF, n) where nF is the final node of some NGj
 and n is a

procedure call of some NGi
; (3) for each call edge (n, nI) there is a return edge (nF, n) such that

nI and nF are the initial and final nodes of the same procedure; (4) there is a main procedure

Gmain whose two distinguished nodes are the distinguished nodes of j: nIj and nFj .

Definition 18: An interprocedural walk W in an interprocedural control flow graph               

j = (G1, ....., Gk, CALL, RET) is a sequence of nodes n1n2$$$nl, where

ni § (NG1 ~$$$~ NGk
) for i = 1, ..., l , (nj, nj+1) § (EG1 ~$$$~ EGk ~ CALL ~ RET),

satisfying the following conditions:

(1) W contains the sequence unIGynFGv where G § j and u ¬ v iff unIG 5 y;

this condition guarantees that control flow from a procedure call will return only to it, i.e.

calling context is saved.

(2) W does not contain a sequence nFGvnIG where G § j and v § (NG1 ~$$$~ NGk
);

this condition guarantees that control flow does not come back inside a procedure just after

leaving it.

(3) W contains the sequence uwv where G § j, (v, nIG) § CALL, and u ¬ nFG iff w = nIG;

this condition guarantees that control flow goes inside a procedure unless it has just

returned from it.
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Definition 19: An interprocedural def/use graph is a quadruple Θ = (j, ª, D, U ), where      

j = (G1, ..... , Gk, CALL, RET) is the interprocedural control flow graph representing a program, 

ª is a finite set of symbols naming variables in the program, D : (NG1
 ~$$$~ NGk

 ) D Ã (ª),

and U : (NG1
 ~$$$~ NGk

 ) D Ã (ª) are functions mapping the nodes of j in the set of

variables which are defined or used in the statements corresponding to nodes.

With respect to definition 6, defined and used variables for procedure call statements must be

added. Let ncall be a procedure call statement invoking a procedure Gj. A variable x is defined in

ncall if the execution of Gj assigns a value to x, while a variable x is used in a statement ncall if

the execution of Gj requires the value of x to be evaluated. An interprocedural data flow analysis

is required to obtain the necessary summary information.

In [23], potential data flows among procedures are computed according to the visibility rules

of the language model. The resulting sets of variables reflect the possibility that two procedures

communicate through a variable which is located in their scope. To achieve a more precise

definition from static analysis of source code another approach can be adopted, where actual

data flows are derived, also in the presence of global variables and aliasing [11].

Here we assume we can obtain U (ncall), the set of variables used in a calling procedure and

defined in the called procedure, and D (ncall), the set of variables defined in a calling procedure

and used in the called procedure. In this way, global variables can be treated as additional

parameters where formal and actual are the same thing. So, from now on, we will only discuss

parameters.

Definition 20: Let Θ = (j, ª, D, U ) be an interprocedural def/use graph, where j = (G1, .....

, Gk, CALL, RET). SCOPE : �G1,...., Gk� D Ã (ª) is a function mapping a program procedure

in the set of variables which can be accessed from it.

Definition 21: Let Θ = (j, ª, D, U ) be an interprocedural def/use graph, where j = (G1,

....., Gk, CALL, RET), n a call to some procedure Gi, and FNV : (NG1
 ~$$$~ NGk

) D Ã (ª), a

function mapping the nodes of j in the set of variables. FNV (n) F D A means the substitution of

formal for actual parameters in FNV (n). FNV (nIGi
) A D F means the substitution of actual for

formal parameters in FNV (nIGi
).

We assume we have a procedural program P represented by an interprocedural def/use graph 

Θ = (j, ª, D, U) where j = (G1, ..... , Gk, CALL, RET). Weiser's interprocedural slicing occurs
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in two steps. The former works as described in the previous section with only intraprocedural

equations and summary data flow information for procedure calls. In the latter step, called and

calling procedures are sliced with a new criterion. The two steps are repeated until there are no

new procedures to be sliced.

The slicing criteria generated for encountered procedures differ according to whether the new

procedure is a callee or a caller. In the former case, the new slicing criterion enables descent in

the called procedure, while in the latter, a set of slicing criteria is generated to ascend to all

callers.

Definition 22: Let Gi and Gj be two control flow graphs in j such that there exists a call edge

(n, nIGj
) and a return edge (nFGj

, n) where n § NGi
 is a procedure call. If Gi is being sliced a

descending slicing criterion for Gj is defined as

C =  + nFGj
 , Rc(SUCC(n))F D A � SCOPE(Gj) ,

Definition 23: Let Gi and Gj be two control flow graphs in j such that there exists a call edge

(n, nIGj
) and a return edge (nFGj

, n) where n § NGi
 is a procedure call. If Gj is being sliced an

ascending slicing criterion for Gi is defined as

C =  + n, Rc(nIGj
) A D F � SCOPE(Gi) ,

3.2 Interprocedural Extension for Transform Slicing

Let Θ = (j, ª, D, U) be an interprocedural def/use graph where j = (G1, ..... , Gk, CALL,

RET), and P is a procedural program represented by Θ. Interprocedural slicing rules given in the

previous subsection to generate ascending and descending slicing criteria are adopted for

transform slicing with one amendment which we discuss below.

The problem to be solved is an imprecision of the Weiser's method due to the lack of a

mechanism to account for the calling context of a called procedure. In [23], the calling-context

problem is solved but the approach differs from ours because interprocedural slicing is dealt with

as a reachability problem on a dependence graph. Since we use a data-flow equation approach,

we use the definition of interprocedural walk given in [35], which is compatible with our

representation of a program.
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Amendment (for called procedures when transform slicing):  Let Gh, Gi and Gj be three

control flow graphs in j such that there exist two call edges (n, nIGj
), ( m, nIGj

) and two return

edges (nFGj
, n), (nFGj

, m) where n § NGi
 , m § NGh

 are procedure calls. If Gi is being sliced the

procedure call n causes the slice to descend into Gj; when the slice reaches nIGj
 it ascends only

following a valid interprocedural walk, i.e. it returns to Gi and not to Gh.

4. Using Transform Slicing for Building Reusable Assets

In order to be applied, transform slicing requires that a correct slicing criterion be formulated.

The following problems have to be answered: how to get a list of expected functions to be

recovered together with a partial specification in terms of input/output data, and how to cope

with the difficulty in finding the last statement of an expected function, corresponding to the

initial statement in the slicing criterion from which going backward in the source code.

4.1 Expected functions elicitation

Transform slicing requires the availability of knowledge about the application and

programming domain. Domain knowledge suggests that some conceptually simple tasks are

performed in the system and that these tasks are clearly defined at least in terms of their input

and output data. Information can come from both static sources and dynamic sources. Static

sources include the source code, the available documents related to the application, and

standards. Dynamic sources include domain experts, developers, maintainers, end users and the

direct interaction with the system itself.

In [2], the authors introduce the idea that, for data-oriented applications such as business

applications, the reverse engineering process should include a data recovery phase before

proceeding with the function recovery phase. The purpose of this data recovery phase is to

produce a data model of the application system expressed using a hierarchical Entity-

Relationship diagram and a data dictionary.

A method for data model construction was provided, based upon the use of a domain

representation and the classification of source code variables. The domain representation

contains domain entities, entity hierarchies, associative relationships, and entity attributes which
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define the application domain for a whole class of problems. The formalism used for this model

is the same as the application data model, which is the end-product of the data recovery phase.

They differ with respect to the level of abstraction used to describe the problem [9]. The domain

representation is expressed at the conceptual level, which describes the problem in terms of a

class of applications belonging to a certain domain, for example the banking domain. The

application data model is expressed at the requirement level which provide greater details of a

specific user problem belonging to a certain class of application, for example the XYZ Bank

information system. The application data model is produced by extending the domain

representation from the conceptual to the requirement level. As in [18], the domain

representation acts as a scheme for driving the reverse engineering process and a template for

organizing its results. Variable classification can make a distinction between variables which can

be mapped to some object in the domain representation and variables which cannot, so that this

mapping can be annotated in the data dictionary.

In [1], the authors propose five variable classification categories: basic conceptual data,

derived conceptual data, control data, structure data and redundant data. Both basic and derived

conceptual data can be mapped to an entity attribute in the application domain. They differ since

conceptual derived data can be calculated from basic conceptual data or other conceptual derived

data. This is an important distinction because the presence of derived data generates expectations

on the existence of transform functions. These functions will have conceptual derived data as

output, and basic or derived conceptual data as input. Recording this information in the data

dictionary provides the specification of the expected functions to be extracted. Control data

record a past event and are used to control the logic of a program. Also control data can help to

specify the interface of expected functions, for example a cancellation flag could be considered

the output of a function which logically deletes a record. Structure data are used to build more

complex data structures. They can help to identify relationships between entities, as for example

the presence of pointer to another data structure. Redundant data are aliases which must be

reconnected to the original name.

Another useful classification [25] provides eight classification variables. Among these, the

most important categories for deriving expected functions are domain variables, program

variables, input variables and output variables. Domain variables, like conceptual data in the
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previous classification, can be mapped to objects in the application domain while program

variables cannot because they implement concepts in the programming domain. Input variables

are involved in input events such as reading from files or from the keyboard, while output

variables are involved in output events such as writing to a file or to the screen. The

classification of domain versus program variables combined with the classification of input

versus output variables supplies a number of expected functions formulated in terms of

input/output which could be extracted from the source code. For example, meaningful business

functions producing external results from external inputs can be characterized by domain input

variables and domain output variables. On the contrary, functions in the programming domain

could be characterized by program input variables and output program variables.

During the classification activity, new entities, relationships, entity attributes and data

dictionary entries are added to the initial domain representation which evolves to an application

data model. At the end of the data recovery phase, the data dictionary will contain the

description of the variables and the mapping between the model and the source code. A further

step, combining information contained in the data dictionary with the functions found in the

static sources or suggested by dynamic sources, provides a list of expected functions

specifications with the following information:

• a function name

• a description of the function in free text format

• input parameter list (variables in the source code)

• output parameter list (variables in the source code)

4.2 Concept validation of transform slices

Transform slicing is a useful technique for extracting pieces of code which implement

functional abstractions, but in addition to the input/output interface of the function, one needs to

know the last statement of a function. This last statement must be specified in the transform

slicing criterion as the statement from which slicing begin to go backward in the source code. As

programs become larger and larger, this statement becomes more difficult to identify, requiring

to read a lot of code.
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To be realistically applicable with large programs, we need a technique which does not

depend on statement numbers. Decomposition slice [22] satisfies this requirement because it

depends from a variable but not from a statement number. A decomposition slice corresponds to

the sets of all the instructions which contribute to the value of a variable v at all the points in a

program where the variable becomes visible outside the program. The decomposition slice is

defined as the union of all the program slices with the output statements of v and the last

program statement specified in the slicing criterion. The last statement of a program is included

to specify variables which do not compare in output statements and to capture any computation

of a variable performed after its last output.

However, this approach cannot be totally accepted for recovering reusable functions.

Extracting the implementation of a functional abstraction by making the union of a collection of

transform slices have three weak points. First, we might obtain a functional component which

computes more times the same result because ill-structured programs often contain duplicated

code and even different implementations of a same function. Second, we loose the confidence of

obtaining cohesive functions which implement a single task because if an output variable name

is used for more different purposes this can lead to extract all the functions sharing this same

variable name. Third, as an effect of the inclusion rule for conditional statements, transform

slicing from the last statement program usually includes more conditional statements than

transform slicing from output statements. As a result, the union of transform slices will contain

more conditional statements than necessary to the implementation of the functional abstraction

because it throws away information related to the program position of the slicing criterion

statement.

Although it is not possible to obtain reusable components simply as the union of transform

slices, we can incorporate the approach behind decomposition slicing by providing a process

which require a user validation of the extracted functions. The process for extracting functional

components is shown in Figure 5. The process receives in input a program and a list of expected

functions specifications, including a meaningful name, a function description and their

input/output data. The process produces in output a list of functional components which

implement the expected functions and have been elected to be reused. The description of the

process uses the following functions:
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• name (fn) returns the name for function fn

• description (fn) returns the textual description for function fn

• input-to (fn) returns the input parameters for function fn

• output-from (fn) returns the output parameters for function fn

• output (v) returns the set of statements that output variable v

• transform-slice (statement, input variables, output variables) returns a transform slice using

the transform slicing criterion < statement, input variables, output variables >

• remove-duplicates (slices) returns a set of distinct slices

• validate-concept (slice, concept) returns true if the slice implements the given concept

This last function requires the user interaction to elect the transform slice which implements

the functional abstraction among the candidates obtained with a different statement in the slicing

criterion. While concept assignment [8] consists in trying to associate a human-oriented concept

to unknown code segments, this is a concept validation task because code segments are filtered

through a given human-oriented concept. Although the process requires a frequent validation to

choose the right slice among the candidates, the user is asked to read small similar pieces of code

compared to the amount of code necessary to identify the last statement of the expected function.

for each fn in expected-functions
reuse-candidates = ̂
name = name (fn)
concept = description (fn)
inpvars = input-to (fn)
outvars = output-from (fn)
for each stmt in output (outvars) ~ {last-stmt}

reuse-candidates = reuse-candidates ~ transform-slice (stmt, inpvars, outvars)
reuse-candidates = remove-duplicates (reuse-candidates)
for each slice in reuse-candidates

if validate-concept (slice, concept) then
reuse-elected = reuse-elected ~ (name, concept, inpvars, outvars, slice)

return reuse-elected

Fig. 5. Extraction of reusable functions
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5. Related Work

The production of reusable components from legacy systems is not unique to slicing. A

pioneering work in this field was Care [10], a tool based on a metric model of reusability.

Looking at the source code, Care identifies routines or units which satisfy the metric values

typical of components with a high frequency of reuse. However, components with these

characteristics should have a high cohesion and a low coupling, which is seldom the case with

legacy systems.

A great deal of research has focused on recognizing data abstractions by means of static code

analysis. Components which implement data abstractions are typically recovered by aggregating

existing routines around a group of data without modifying the statements inside of those

routines [13, 14, 19, 32, 34]. Although this list is not exhaustive, the approaches differ as regards

the aggregation criteria. However, in this case too, if the original application was not structured

according to functional decomposition, the functional abstractions are not recognizable and the

success of the modularization approach can be compromised.

Aggregation methods based on call graph analysis have been applied to cluster existing

routines to form functions at a higher level of abstraction [15, 16]. The extracted clusters must

be carefully read by domain-expert software engineers to identify what function they implement.

However, when applied to large systems with many candidate clusters, the task of concept

assignment [8] is difficult and time-consuming. On the contrary, the concept validation of

transform slices, used in our method, requires an extracted component is read only to confirm

that it is the implementation of a given expected function.

Conditioned slicing have been proposed to decompose modules which perform multiple

unrelated functions or to isolate subfunctions executed under different condition branches [12,

26]. However, conditioned slicing requires the additional knowledge of a precondition or a

triggering condition of the functional abstraction is searched for. If such a knowledge is not

readily available, it might require to read a lot of code. On the contrary, transform slicing is able

to decompose unrelated functions which are activated by a function code or to discard

precondition tests without the need to specify the binding condition but simply analyzing the

dependencies between any conditional statement and the statement in the slicing criterion.
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The identification of functional abstractions in the source code can be seen as a particular

problem of program segmentation. Segmenting a program means breaking it into chunks of code

which are easier to manage. When the chunks relate to a unique functional behavior, they are the

manifestation of programming plans [42]. While plans are abstract structures which

programmers use as a programming template, the manifestation of plans in the programs is often

delocalized [31] because they are realized by statements which are non-sequential. The

usefulness of a segmentation technique increases the more the plans are scattered in the text of

the program. In [39], plans are recovered in the form of clichés, by analyzing a flow graph

which stores program information. Program segments, another name for the manifestation of

plans, are recovered in [28] by means of concept recognition. Both approaches are based on the

assumption that plans are implemented as stereotypical coding patterns. The search is driven by

a prescriptive specification of the plan to be recovered, stating how the plan could be

implemented. On the contrary, our slicing approach for the recovery of reusable components is

descriptive, because the search is guided by a partial specification of what the function is

supposed to do, in terms of its input/output interface. This specification is used for identifying

those parts of the program which use input data to produce output data.

While the methods discussed above use static code analysis, dynamic methods have also been

applied to identify reusable functions [3, 40, 44]. Dynamic methods are based on instrumenting a

system and executing it with a baseline of test cases. Although there is no guarantee that each

test case drives a single functionality, a large set of test cases improves the precision. Our slicing

technique could be used in a complementary way, to achieve correct identification of functions

after dynamic slicing.

6. Conclusions and Future Directions

We defined a slicing technique, called transform slicing, which is different from conventional

Weiser's slicing. While conventional slicing was proposed for program understanding and

debugging purposes, these new technique is designed to extract reusable functions from existing

ill-structured programs. This different goal requires a redefinition of the notion of program slice

so as to obtain code segments which actually implement the specified functional abstractions.
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Transform slicing is language-independent but its application to realistic programs requires

further research to solve language-specific problems, for example aliasing [37].

A weakness of the method presented is the efficiency of the algorithm. Since the transform

slicing algorithm is based on def/use graphs, the worst case running times are O(n e log(e)) for

producing a single transform slice, and O(n2 e log(e)) for obtaining the candidates of an

expected function. Other slicing algorithms, based on program dependence graphs [20] or

system dependence graphs [23] can obtain slices in linear time. However, these kinds of program

representation require that slicing starts where the slice variable is defined or used, while our

method for obtaining candidate functions requires that slicing starts from the last program

statement too. Further research is needed improve the efficiency of our algorithm without

burdening the human intervention.

Currently, we are developing an interactive prototype system according to the extraction

method presented in this paper. The tool is going to analyze COBOL programs but we intend to

extend its scope to other imperative languages like C and Pascal.

The underlying method and the tool based on it need to be empirically evaluated. We have to

assess the completeness and the accuracy of the extracted slices. Completeness is the property of

a slice of including all the statements needed to implement the related functional abstraction.

Accuracy is the property of a slice of not including statements which are extraneous to the

related functional abstraction. For the purpose of understanding, the extracted functions should

be characterized, including metrics such as the size of slices, the percentage of the original

module size, the length of contiguous statements, and the number of contiguous code fragments.

Finally, a controlled experiment might be designed to compare the approach based on finding

the last statement of an expected function directly in the source code, and the approach based on

the the concept validation of the automatically extracted candidate functions.
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