
  

ABSTRACT 
 
Title of Document: MY MOBILE MUSIC:  

AN ADAPTIVE PERSONALIZATION 
SYSTEM FOR DIGITAL AUDIO PLAYERS 

  
 Tuck Siong Chung, Ph.D., 2007 
  
Directed By: Professor Roland T. Rust,  

Department of Marketing 
 
Professor Michel Wedel, 
Department of Marketing 

 

This paper develops a music recommendation system that automates the 

downloading of songs into a mobile digital audio device.  The system tailors the 

compositions of the songs to the preferences of individuals based on past behaviors.  

We describe and predict individual listening behaviors using a lognormal hazard 

function.  Our recommendation system is the first to accomplish this and there is as of 

this moment no existing alternative.  Our proposed approach provides an 

improvement over alternative methods that could be used for product 

recommendations.  Our system has a number of distinct features.  First, we use a 

Sequential Monte Carlo algorithm that enables the system to deal with massive 

historical datasets containing listening behavior of individuals.  Second, we apply a 

variable selection procedure that helps to reduce the dimensionality of the problem, 

because in many applications the collection of songs needs to be described by a very 

large number of explanatory variables.  Third, our system recommends a batch of 

products rather than a single product, taking into account the predicted utility and the 

uncertainty in the parameter estimates, and applying experimental design methods.  
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Chapter 1: Introduction 

 Mobile digital audio devices have become so common that in 2005 about 

eleven percent of the American adult population have an iPod or MP3 player (Pew 

Internet & American Life survey).  Concurrent with the increasing penetration of 

these devices is the growing adoption of digital music in 2006 (US Music Consumer 

Survey, 2006).  The use of music play-lists has steadily increased as consumers look 

for a more personalized digital music collection to suit their individual tastes.  Despite 

the growing importance of the issue of music recommendation for mobile devices, as 

far as we know there is yet to be published any article that develops a music 

recommendation system for mobile music devices.   

The objective of this paper is to fill this gap and to develop such a music 

recommendation system.  This paper will also provide a validation of the proposed 

recommendation system through an actual implementation of the system on Personal 

Digital Assistants (PDAs), and data collected through an recommendation 

experiment.  The target audiences for this paper are researchers who are involved in 

the research in recommendation systems, and practitioners who are looking for a 

better recommendation system for their music products.  Our recommendation system 

is directly implementable and provides useful new features that will benefit 

recommendation practice as it resolves a number of the challenges of a real life 

recommendation system.  

 A choice of music is highly dynamic.  An individual music choice may 

change due to the individual’s emotions, listening context and contacts with the other 

media.  This calls for a system that is able to make real time recommendations.  One 
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of the challenges of making music recommendations arises from the heterogeneity of 

individual music preferences.  Music preferences are highly personal as they relate to 

specific personality characteristics, cognitive ability and emotions (Rentfrow and 

Gosling, 2003).  An effective music recommendation system therefore is one that 

provides individual customization.   

In order to carry out the customization, information on individual music 

preferences is necessary.  The problem of explicitly asking individuals for their music 

preferences is that they are reluctant to actively provide personal information due to 

the efforts involved, and the fear of the invasion of privacy.  Explicit inputs of 

individual preferences in recommendation systems are sparse because only a small 

proportion of them are willing to provide the inputs (see Konstan et al. 1997) and as a 

consequence, most of the information in the systems based on these data is missing 

(Ying, Feinberg and Wedel, 2006).  In addition, when asked about their product 

preferences, individuals may not be able to fully or accurately express them.  For 

example, one problem with the use of genre to classify music type is that a system’s 

categorization of genres may not map to an individual’s mental model of music.  Yet 

all studies published in the marketing literature on recommendation systems depend 

on such input elicited from respondents.  The use of explicit preference data that 

comes in the form of product ratings creates another problem.  Individuals don’t 

always response to rating scale in accordance to their preferences.  They commonly 

indicate their preferences by choosing the middle, or the extreme of the rating scales, 

(Rossi, Gilula and Allenby, 2001).   
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An alternative to explicit inputs from the individuals is to infer their 

preferences from their demographic profiles.  However, due to the less than perfect 

match between demographic profiles and personality traits, recommendation systems 

that utilize only demographic profiles for recommendations are inherently inaccurate.  

A more effective music recommendation system will be one that infers music 

preferences based on the individuals’ past choice behaviors, as well as the choice 

behaviors of other similar individuals.  Recommendation systems generally fall into 

two categories -- content filtering and collaborative filtering.  Simply stated, content 

filtering makes recommendations based on an individual’s past preferences for 

product attributes.  Other the other hand, collaborative filtering predicts an 

individual’s preferences using a weighted sum of other individual’s preferences.  The 

weights are reflection of how closely one individual’s preferences are to the others.  

Our recommendation system falls into the category of a hybrid system since it utilizes 

both content and collaborative filtering.  Recommendation systems that also use a 

hybrid approach can be found in the marketing literature (e.g. Ansari, Essegaier and 

Kohli, 2000).   

An additional challenge for music recommendation arises from the problem of 

massive datasets created as a result of the number of songs and individuals involved, 

and the potentially large number of explanatory variables.  A massive dataset is an 

issue when the algorithm is computationally intensive, as with the Markov Chain 

Monte Carlo (MCMC) procedure that involves more than a single pass through the 

data.  A large number of explanatory variables can thus, results in an unreasonable 

time lag for product customization.  The last challenge results from the demands on 
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the system for individualized customization.  This means that the system developed 

needs to sequentially update individual level estimates to refine the coefficient 

estimates and to adapt to the changes in individual music preferences. 

There are a number features in our recommendation system that resolve the 

above mentioned challenges of a recommendation system.  First, the Sequential 

Monte Carlo algorithm that we use updates the parameter estimates as new data come 

in.  The Sequential Monte Carlo algorithm is ideal for the implementation of real-time 

customization not only because of the sequential way in which it updates parameter 

estimates, but also because of the speed with which the estimation is done.  

 Second, our music recommendation system removes the need for individuals 

to explicitly provide inputs on their song preferences.  Music preferences are learned 

based on the history of how long a song is listened to, with the assumption that 

individuals will listen to songs that provide higher utilities.   

Third, our recommendation system addresses the problem of massive data.  

The ability to handle large datasets comes partly from the processing of data in 

blocks, and partly from the incorporation of a variable selection step into our 

algorithm.  The variable selection step removes redundant or irrelevant variables that 

unnecessarily complicate the analysis, therefore reducing the system’s computational 

burden. 

 Fourth, the use of Bayesian methods in our system ties in with the need for 

sequential updating of individual level estimates.  As more and more blocks of data 

come in, our estimates of individual preferences improve.  Our system also adapts the 

customization process to the changes in tastes and preferences.  This is because, as 
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new information is obtained on the individuals, this information is used to 

dynamically update the system’s estimation of preferences.   

 Fifth, our recommendation system automates the downloading of songs to a 

mobile audio device, and as a result removes the need for individual intervention.  

When the system removes the need for individual inputs, and also adapts to individual 

changes in preferences, it enables the music downloading process to be fully 

automated. 

 We reviewed some of the existing music recommendation system in practice 

and the systems that have been developed in the academic literature.  In practice no 

mobile audio device recommendation system based on past behavior is available.  

Some of the existing music recommendation systems, such as CDNow, 

MediaUnbound and MoodLogic just to name a few, ultimately allow the website 

users to download the recommended music into mobile music audio devices.  

However, they based their recommendations on music data groupings and the website 

users’ interests.  These systems take inputs from the users on their music preferences 

using general questions on their music preferences and tastes, ratings on a sample of 

music objects, and open ended questions on favorite types of music.  Other music 

recommendation systems like the Pandora.com and last.fm broadcast music tracks to 

their internet radio station listeners, and modify their future broadcasts based on the 

user indication of which artists are and are not acceptable.  However, such systems 

are not specifically design to help the website users download music into their mobile 

audio devices, and are based on simple similarity measures of user mentioned 

preferences to general song characteristics (music genomes).     
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In the academic literature recommendation systems are static, and their 

performances are validated through the use of secondary data collected for other 

purposes (e.g. Ansari and Mela, 2003; Montgomery et al., 2004) or through simulated 

data (e.g. Raghu et al., 2001; Ariely, Lynch and Aparicio, 2004).   Some of these 

papers (e.g. Ansari, Essegaier and Kohli, 2000) use rating data and therefore 

encounter the problem of rating scale response biases mentioned in Rossi, Gilula and 

Allenby (2001).   In addition, unlike our recommendation system that recommends a 

play-list (i.e. a set of products) these recommendation systems make product 

prediction to an individual one product at a time.    

This paper is divided into five chapters.  Chapter one provides an introduction, 

background and motivations for the paper.  Chapter two provides a description of the 

model used to estimate subject preferences and a description of the play-list 

customization procedures.  Chapter three describes the simulation study conducted as 

an initial test of our model.  The experimental study is discussed in chapter four, 

along with results.  Finally, our paper ends with chapter five that provides a 

discussion and conclusions.    



 

 7 
 

Chapter 2: The Model 

 This section describes the model used to estimate subject preferences and the 

customization of individualized music play-lists to suit these preferences. The model 

has the following features: (1) it uses a hazard model to estimate subject’s utility from 

the time a subject spent listening to a song, (2) it uses a Bayesian variable selection 

procedure to select relevant song characteristic in the hazard model for each subject, 

(3) it uses a particle filter for estimating the models in real time, allowing for 

sequential updating of the parameters as new data come in, and accommodating the 

massive data accumulated on song listening behavior, and (4) it uses a model 

averaging procedure for collaborative filtering to generate recommendations.  To 

achieve this, models of different subjects are averaged based on their similarity.  The 

model averaging also allows us to deal with idiosyncratic song effects not captured by 

the song descriptor variables, through a pooled model with song-specific constants. 

Finally, (5) it uses optimal sequential experimental design methods to generate the 

utility maximizing play-lists across a sequence of batch recommendations, based on 

the model-averaged estimates. 

This section starts by describing the hazard function.  The hazard function is 

used to link a subject’s utility for a song to how long this subject listens to the song.  

A hazard model predicts duration and the probability of termination for an event.  In 

our case, the event corresponds to the act of listening.   

The Bayesian Variable Selection procedure is described next.  This procedure 

is used to deal with the situation in which the number of explanatory variables is 

large.  It reduces the number of variables to a more manageable size and removes the 



 

 8 
 

variables which are redundant from the model, at the individual level.  The variable 

selection simplifies and improves the parameter estimations and model predictions.  

We illustrate the Bayesian Variable Selection, and demonstrate that for some subjects 

some of the variables can be removed from the model.   

The next subsection describes the Sequential Monte Carlo procedure, based 

on particle filtering.  This procedure is used to deal with a massive dataset and for 

sequential updating of the parameters estimates as new data are obtained.  First, we 

describe how the particles are generated.  Second, we describe the updating of 

particle weights, which dictates how much of the parameters in each particle are to be 

used for prediction.  Third, we describe the particle rejuvenation or re-sampling, an 

important step in particle filtering.  This step is used when the effectiveness of the 

particles drops below a tolerance level. 

 We move on to the description of the Model Averaging next.  Model 

averaging is used because we believe that the prediction of a subject’s song 

preferences can be improved by borrowing the information from other similar 

subjects who have listened to the same song.  In addition, model averaging also 

allows us to introduce song-specific constants into the prediction.  The song-specific 

constants are important because they are used to incorporate characteristics of songs 

that are not otherwise captured by the prediction variables. 

 Lastly, we discussed how the individualize play-list is designed using an 

Experimental Design approach.  In our model, we derive the optimal play-list by 

maximizing a function consisting of the proxy of song’s utility (i.e. the predicted 

listening duration), and an information criterion that accounts for parameter 



 

 9 
 

uncertainty, enabling the listening data to be used to update the individual hazard 

model parameters efficiently.   

Section 1: The Lognormal Hazard Function 

 We make the assumption that we can infer song preferences based on the time 

a subject spends listening to a particular song.  The assumption that a subject will 

listen to songs they like longer than to songs they don’t like is not an unreasonable 

one.  It is a commonly observed phenomenon that an individual will prolong 

pleasurable experiences and shorten painful ones.  Specifically, Holbrook and 

Gardner (1993) shows that pleasure has a positive effect on music listening duration.  

We model listening behavior using a commonly-used parametric survival model - the 

lognormal hazard model. The basic input for our model is the amount of time a 

subject has listened to a particular song.  Individual models and an aggregate model 

are estimated using the available data.  Our models are fully individualized and 

estimated separately for each subject, which enables real-time processing of the data, 

individual level variable selection and individual level recommendations. The 

estimates are obtained using song attributes and genre as predictors.  The aggregate 

model on the other hand, predicts all subjects’ listening durations based purely on 

song-specific constants.  This is done by using a dummy variable in the log-normal 

hazard model for each song across all subjects.  The aggregate model is used to 

capture the impact of an individual song’s unique characteristics, which are not 

otherwise reflected in the prediction by the individual level models. 

 Equation 1, 2 and 3 below describes the aggregate model, where ky  represents 

an observation describing the log listening duration of a subject for the song k.  For 
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simplicity in notation, we have omitted the individual level subscript.  If ky has a 

lognormal distribution with a mean of µ and variance of 2σ , then the probability 

density function is 

{ }2212/1 ))(log(2/1exp)()2(),|( µσσπσµ −−= −−
kkk yyyf   (1) 

   The survival function is given by 

]/})[{log(1),|( σµσµ −Φ−= kk yyS      (2) 

We can thus write the likelihood function of ),( σµ as 

∏
=

−=
N

k

kk
kk uySyfL

1

)1(),|(),|(),( δδ σσµσµ     (3) 

There are N observations in the aggregate dataset, which is formed by 

stacking the data of every subject’s listening duration to every song.  The number of 

observations per subject need not be the same.  In the aggregate model, we introduce 

covariates through µ , and write ααααzzzz '=kµ  for observation k.  'zzzz  is vector consisting 

of a binary dummy variable for every song, and αααα  is the vector of coefficients for the 

aggregate model.  The data are censored as we are only able to observe the listening 

duration up to the length of a particular song.  Whether there is censoring in a 

particular observation is indicated using a censoring indicator kδ . 

In the individual model, the probability density, survival and likelihood 

function have a similar form as the aggregate model.  However, model estimation is 

done subject by subject using only the subject’s data, for reasons that will become 

apparent below.  The likelihood of the individual model takes the form 

∏
=

−=
i

kk

n

k

iiikiiikii uySyfL
1

)1(),|(),|(),( δδ σσµσµ    (4) 
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The term in above represents the number of observations for subject i .  The 

covariates in the individual model are introduced through iµ , and we write 

iik 'ββββxxxx=µ for observation k.  'xxxx represents song attributes and genre variables and 

iββββ is the subject specific coefficients.  In both the aggregate and the individual-level 

models we assume that the error terms are independent and identically distributed 

(iid) random variables.  In addition, the variance term iσ in the models act as the 

shape parameter that will determine the shape of the log normal hazard functions. 

We utilize the lognormal hazard function because it is flexible and represents the 

type of non-monotone hazard that we expect for songs, that is, unimodal.  Other 

hazard functions like the log-logistic or the expo-power hazards (Saha and Hilton, 

1997) represent these shapes as well, but the lognormal has the additional, and for our 

study crucial, characteristic that the mean is available in closed form, and that it 

facilitates computation for massive data set in real time.  

The hazard function is defined as the ratio of the probability that subject i will 

stop listening to song j  to the probability that subject i is still listening to song j at a 

particular time.  The shape of this hazard function is plotted in figure 1 using different 

values of σ .   
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Figure 1  Plot of the lognormal hazard function 

As shown in the figure, the hazard function is downward sloping when σ  is at a 

higher value (e.g. a value of 2).  This describes a listening behavior in which a subject 

has a higher tendency to stop listening to a song (i.e. a higher hazard rate) at the 

beginning.  The tendency to continue listening increases (i.e. the hazard rate drops) as 

the subject listens longer. This reflects a case of increasing interest/attractiveness of 

the song.   When σ  is at a lower value such as 0.5, the hazard function describes a 

different listening behavior.  The hazard rate increases from zero to a maximum and 

then tapers off when the duration increases.  This would imply the case when a 

subject needs certain duration of listening before s/he can decide whether the song is 

preferable.  At the beginning of the curve, the hazard rate increases with the listening 

duration, possible due to the subject’s better understanding of the song’s attributes or 

appeal as time passes.  Tendency to make a decision on whether to reject a song 

increases with a better understanding.  If the subject decides to listen to a song longer 
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than the duration in which the hazard curve inflects, the tendency to stop listening to 

the song reduces with the listening duration.   

The closed form for the posterior distribution of our model parameters is not 

available.  To resolve this issue, we use Markov Chain Monte Carlo (MCMC) and 

Metropolis Hasting algorithm to sample from the posterior distribution.   For the 

individual models, the first block of data on a subject that comes in is used to 

generate the initial particles used for the Sequential Monte Carlo procedure.  Each 

particle represents a Metropolis-within-Gibbs sample of the subject’s coefficients 

after a burn-in period.  The procedure updates subject’s parameters using importance 

sampling.  (The details of the Sequential Monte Carlo procedure are given in a 

subsequent section of this paper.)  The MCMC sampler requires one complete pass 

through the first block of data.  We use a variable selection step into our MCMC 

procedure.  If the variable selection step is not applied, the MCMC sampling will 

involve simply the successive simulation of ),|( 2
iii i

p yyyy,,,,ΩΩΩΩββββ ββββσ , )|( ii
p ββββΩΩΩΩ ββββ and 

),|( 2
iiip yyyyββββσ , where 

iββββΩΩΩΩ represents the variance-covariance matrix of subject i ’s 

coefficients.  (The details of the MCMC sampling with the variable selection step are 

explained in the next section.)  For the individual models, estimation of subjects’ 

parameters is done with the Sequential Monte Carlo procedure on the second block of 

data onwards. 

For the aggregate model, we do not include a variable selection step since we 

need the coefficient for each variable.  Each variable in the aggregate model is a 

song-specific dummy, and the parameters estimated using this model provide a song-

specific constant for every song.  We will only be able to generate a constant for a 
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particular song when at least one subject has listened to the song.  This means that we 

need to generate new song-specific constants as new data come in, because some 

subjects have now listened to new songs.  Consequently, the Sequential Monte Carlo 

procedure is not used for the aggregate model because we will always require new 

MCMC estimations to generate new song-specific constants.  To keep the size of the 

dataset manageable for the MCMC estimation, only the most recent listening duration 

of a subject for a particular song is used.  In other words, if subject i has listened to a 

song j in the most recent block of data and also in a different block of data in the 

past, we will only use the information from the last data block.  An additional benefit 

of this approach is that the song-specific constants are estimated using only the most 

current data.  When there is a change in music tastes, this change is reflected in the 

song constants. 

Section 2: Bayesian Variable Selection 

 Typical applications of our music recommendation system have a huge 

number of explanatory variables.   This is especially the case when the system 

includes variables describing the song attributes and granularly defined genres.  In a 

situation where the number of explanatory variables is large, the vector of 

explanatory variables could contain many redundant or irrelevant variables that 

unnecessarily complicate the analysis.  In our recommendation system, variable 

selection is applied to the individual models but not to the aggregate model, because 

we desire estimates of all song-specific constants.   



 

 15 
 

 The goal of variable selection is to ignore a variable jpx  (i.e. the p-th attribute 

variable for song j ) if ipβ (i.e. subject i ’s p-th coefficient) is  equal to zero (Chipman, 

George and McCulloch, 2001).  This involves selecting a sub-model, the likelihood of 

which has the form  

  ),(),|( 22 IIIIββββxxxxββββyyyy ψψψψψψψψψψψψ iiii iiiiiii ii
N,p σψσ =     (5) 

where ),|( 2
iiii ,p

i
ψψψψββββyyyy ψψψψ σ is the likelihood of iyyyy given the parameters. This is 

similar to the likelihood shown in equation 4, but with some of the coefficients set to 

a value of zero.  We indicate if the value of ipβ is set to zero using ),,( 1 iPii ψψ L=ψψψψ .   

When ipβ  is not equal to zero ipψ has the value of one, otherwise ipψ has a value of 

zero.  The vector iψψψψ is updated via a Metropolis search during the estimation process.   

A different set of values of iψψψψ  represents a different set of coefficients remaining in 

the model after the variable selection.  
iiψψψψββββ and iiiiψψψψxxxx i are the vector of regression 

coefficients and the x matrix corresponding to a particular iψψψψ .   

We apply a Metropolis-Hastings Algorithm for variable selection that involves the 

successive simulation of         

),,|( 2
iiiii ,p yyyyψψψψββββψψψψ oldoldoldoldψψψψnewnewnewnew iiii σ       (6) 

),,|( 2
iiii

iii
p yyyyψψψψ,,,,ΩΩΩΩββββ ψψψψββββψψψψ σ  

),|( ii iii
p ψψψψββββΩΩΩΩ ψψψψββββ ψψψψ  

),,|( 2
iiiip yyyyψψψψββββ iiiiψψψψσ  
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 After a burn-in period, the Metropolis-within-Gibbs sample draws for the 

values of ii andψψψψββββ iiiiiiiiψψψψ σ, are saved as initial particles used for the Sequential Monte 

Carlo procedure described in the next section. 

We use the following priors for 
iiψψψψββββ , 

iiψψψψββββΩΩΩΩ and 2
iσ  

  ( )
iiiii

Np iiii ψψψψψψψψ ββββββββψψψψ ΩΩΩΩyyyyψψψψΩΩΩΩββββ ,),,,|( 2 0000=σ     (7) 

  )2/,2/(),|( x

ii vvIGp
iii

λλλλψψψψββββΩΩΩΩ ψψψψββββ ψψψψ =  

)2/,2/(),,|( 2 y

iiii vvIGp λσ =yyyyψψψψββββ iiiiγγγγ      

 The use of a prior mean of 0 for 
iiψψψψββββ is a neutral choice reflecting the 

indifference between positive and negative values for the coefficients.  These 

coefficients are normally distributed with an diagonal variance-covariance matrix 

iiψψψψββββΩΩΩΩ .  We draw the values of the variance vector 
iiψψψψββββΩΩΩΩ using a prior of 

)2/,2/( xvvIG λλλλ .   We chose a small value v  = 5 for a diffuse prior, and equate xxxxλλλλ to 

the sample variance of ixxxx .  The value of 2
iσ is drawn similarly with a prior of 

)2/,2/( yvvIG λ , while equating yλ to the sample variance of iyyyy . 

 The proposed new

iψψψψ is accepted with the probability: 

  












))))yyyyββββψψψψ
yyyyββββψψψψ oldoldoldoldnewnewnewnewψψψψψψψψ iii

old

i

iii

new

i

,f

,f

i

i

,|(

),|(
,1min 2

2

σ

σ
     (8) 

Where ),,|(),|(,|( 222
iiiiiiiiiii ,p,f),f yyyyψψψψββββψψψψψψψψββββyyyyyyyyββββψψψψ oldoldoldoldψψψψnewnewnewnewiiiiψψψψψψψψiiii iiiiiiiiiiii σσσ ∝  

A symmetric transition kernel is used for our Metropolis algorithm.  This is 

based on the assumption that every variable has the same probability of being in the 

model.  It is also assumed that all variables have the same probability of switching 
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from a non-zero coefficient to a zero coefficient as it is vice versa.  In other words, 

we assume that  

  1||1),,|(
1

2 =−= ∑
=

old

ip

P

p

new

ipiiiii and
P

,p ψψσ yyyyγγγγββββγγγγ oldoldoldoldγγγγnewnewnewnew iiii   (9) 

These are realistic assumptions as they reflect a belief that all variables have 

the same prior probability of being in the model.  They are also convenient 

assumptions because they simplify the probability of acceptance for new

iψψψψ to 
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2

σ

σ
               (10) 

 The variable selection step is implemented as a part of the MCMC sampling 

for the individual models on the first block of data.  A set of initial particles is 

generated and is used for the Sequential Monte Carlo procedure.   

Section 3: Sequential Monte Carlo Estimation 

 One of the challenges of analyzing online consumer behavior is the sheer 

mass of the data available.  A standard Markov Chain Monte Carlo method generally 

requires a complete scan of the dataset and also a large number of iterations to 

estimate the model parameters.  This makes Bayesian analysis of massive datasets 

using Markov Chain Monte Carlo methods infeasible. 

 In this paper, we use the Sequential Monte Carlo Method to estimate the 

model parameters in the individual models (Ridgeway and Madigan, 2003).  Not only 

does this procedure allows us to analyze large datasets, it also enables us to analyze 

the data in blocks.  In other words, we could estimate a subject’s parameters using the 

data available in one time period, and improve the estimate as new blocks of data 
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becomes available later. This type of sequential updating of individual level 

parameters as new data come in is crucial for mobile recommendation systems. 

 A typical Monte Carlo method samples from the posterior, )|( ii yf Θ for 

subject i , where iΘ  refers to subject i ’s parameters (i.e ii andψψψψββββ iiiiiiiiψψψψ σ, ) and iy refers 

to the data.  The method then estimates )|)(( ii yhE Θ  as ∑ =

M

m

m

ihM
1

)()/1( Θ .  Here M 

refers to the number of draws from the posterior used to estimate iΘ and h  is a 

transformation.  In our procedure, we estimate subject parameters using Markov 

Chain Monte Carlo Methods on the first block of data.  We retain the estimates 

obtained in the different iterations as “particles” after a burn-in period.  Each particle 

is a vector containing the current estimated values of the parameters ii andψψψψββββ iiiiiiiiψψψψ σ,  

obtained from the Metropolis-within-Gibbs sample draw procedure described in the 

previous section.   

 When a second block of data arrives, our estimates of the subjects’ parameters 

are updated using importance sampling.  We represent the first block of data as iy
1  

and the second block of data as 
i

y
2 .  If M

ii ΘΘ ,,1
L are drawn from )|( 1

iyf iiiiΘ  we can 

estimate the posterior expectation of any function )( ih Θ  as 

( )∑ ∑= =
=

M

m

M

m im

m

iimiii whwyyhE
1 1

21 /)(),)|((ˆ ΘΘ   (11) 

where iw ’s are the importance sampling weights for subject i . The value of 

imw for particle m is given by: 

  )|)((/),|)(( 121
i

m

ii

m

im yfyyfw iiiiiiii ΘΘ=     (12) 

This greatly simplifies (Ridgeway and Madigan, 2003) to: 
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=

LiiiiΘ       (13) 

 where iKi yy ,,1 L are the observations in the iy
2 data block.   

The posterior variance of the parameter estimates conditioned on iy
1 and 

iy
2 will be smaller than those conditioned on iy

1 alone.  This means that 

),|( 21
iii yyf Θ  has a narrower distribution than )|( 1

ii yf Θ .  The narrower 

),|( 21
iii yyf Θ  is, as compared to )|( 1

ii yf Θ , the larger is the proportion of draws from 

)|( 1
ii yf Θ  that has zero importance weights.  This reduces the efficiency of the 

importance step. 

 We mitigate the loss of efficiency by the incorporation of a rejuvenation step.  

The rejuvenation step is used when the effective sample size (ESS) of the importance 

sampling fall below a tolerance level.  We use the tolerance level of 0.1, which means 

that the rejuvenation step is invoked when the ESS falls below 10% of the sample 

size used for the Sequential Monte Carlo procedure (Ridgeway and Madigan, 2003).  

The ESS is the number of observations from a simple random sample needed to 

obtain an estimate with Monte Carlo variation equal to that obtained with a weighted 

draw of M particles.  Kong, Liu and Wong (1994) shows that the ESS can be 

approximated by: 

∑∑
==

=
M

m

im

M

m

im wwESS
1

22

1

)(/)(     (14)  

We carry out the rejuvenation step using a systematic re-sampling procedure 

(Arulampalam et al., 2002).  The basic idea is to reduce the number of particles with 

small sampling weights and increase the number of particles with large weights.  The 
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procedure involves uniform sampling of the particles with replacement using the 

probabilities derived from the particle weights; particles with higher weights will be 

selected more often.  The sampling is done M times if we need to generate a new set 

of M particles.  After the re-sampling is done, the new particles are each given the 

new weights of 1/M.   

The particles and the importance sampling weights generated with the 

Sequential Monte Carlo procedure are used to predict the listening duration.  Without 

model averaging, the predicted mean listening duration of subject i for song j , that is 

in using model i , is given by the weighted average: 

( )∑ ∑= =
+=

M

m

M

m im

m

i

m

ijimij wwyE
i1 1

2 /)2/)('()(ˆ σψψψψββββXXXX    (15) 

Where imw is the m-th particle sampling weight for subject i , '

jXXXX  represents a 

p-vector of attributes for song j , m

i iψψψψββββ is the m-th particle’s values for subject i , and 

2)( m

iσ  is the m-th particle’s residual variance for subject i .   Model averaging is used 

in our system because averaging the prediction over different models will improve 

our predictions of a subject’s listening duration, in particular for songs that the subject 

has not listened to.  The model averaging is similar in spirit to collaborative filtering 

and is described in the next section. 

Section 4: Model Averaging 

 Typically Model Averaging is used to deal with the problem of model 

uncertainty.  For example, a researcher may have several believable models, each 

with its own sets of parameters, but is not sure which one is correct.  Alternatively, 
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the researcher may not believe that any of the models is actually correct, but uses 

them as proxies for some unknown underlying model. 

 Our motivation for using Model Averaging is closer to the latter since we 

believe that averaging over the different models will improve our predictions of a 

subject’s listening duration, or stated differently, we use model averaging as our 

procedure for collaborative filtering.  This is especially useful in the case where we 

have to predict the listening duration of a song that a subject has not listened to 

before, in generating the play-lists.  In such instances, we have to rely on the listening 

behavior of the other subjects who have similar preferences to make a prediction.  It 

is the essence of collaborative filtering applied to subjects’ models rather than the 

conventional method of applying on subjects’ data.  Whereas existing 

recommendation systems define recommendations based on how close the data of 

person j is to that of person i, we combine individuals’ models based on how well 

they predict the target individuals’ data.  That is, we borrow strengths across models 

of different individuals, by combining the predictions/recommendations based on 

them.  In our Model Averaging, similarity between subjects is based on how well one 

subject’s parameters predicts the listening duration of another subject.  Even for the 

case of predicting the listening duration of a song that a subject has listened before, 

the averaging will give a more accurate prediction because we incorporate the 

prediction from an aggregate model.  The impact of individual song constants is 

incorporated in the prediction by using the aggregate model as a part of the Model 

Averaging.  Note that the song-specific constants would not be estimable in the 

individual models, due to the severe lack of data, even using Bayesian shrinkage. 
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Let 1Model , 2Model , …, IModel  be the models estimated for subjects 1,…,I, 

where I represents the total number of subjects.  We also define 1+IModel to be the 

model that contains the particles of the aggregate model’s parameters.  In addition, 

we define ξξξξ  to be a I+1 by J matrix of indicator variables.  ),,( ,1 jIij += ξξ Ljjjjξξξξ  and 

ijξ = 1 if subject i  has ever listened to song j , ijξ = 0 otherwise.  In addition, jI ,1+ξ = 

1 if at least one subject has ever listened to song j , jI ,1+ξ = 0 otherwise. 

The subject weights are calculated using the posterior odds as in a typical 

model averaging approach.  For example, to calculate the weights that should be 

applied to subject 2’s (i.e. 2Model ’s)  prediction of expected listening duration for 

subject 1 (i.e. 21φ ), we use (Hoeting et al. 1999):  

)(

)(
*

)|(

)|(

)|(
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1
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1
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==φ  (16) 

Here, ( )iji y=yyyy  represents the vector of log observed listening duration for 

subject 1.  )( 1ModelP  … )( 1+IModelP  represent the prior probabilities for model 1 to 

I+1.  We use a uniform prior for the models due to the absence of any reason favoring 

one model to another, therefore the probabilities for all the models are the same and 

are all equal to  

  )1/(1)( += IModelp i       (17) 

This simplifies the posterior odds above to the form of a Bayes factor: 
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Thus the weight that we should place on a model in the prediction of another 

subject’s data is based on the ratio of the likelihood of that model over the likelihood 
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of the subject’s own model.  The ratio is based on the likelihood calculated from one 

model’s particles divided by the likelihood calculated using the particles form another 

model.  The same observations are used for the calculation of both likelihoods.  We 

calculate the between-subject weights for all combinations of subjects, while treating 

the aggregate model as one of the candidate models.  We thus obtain values 11φ to 

1,1 ++ IIφ .  

The model-averaged prediction of the expected log-listening duration of 

subject 1 for song 1 is given by the expression: 

  ∑∑
+

=

+

=

1

1 111

1

1 11 */)(ˆ**
I

i iii

I

i ii yE φξφξ     (19) 

In this equation 1iξ has the value of one, that is, the target individuals’ 

indicator is always set to one so that the targets individuals’ data are always used in 

the prediction.  The predictions of the expected log listening duration for the subjects 

are used in the experimental design stage to generate the play-list as described in the 

next section.  In the experimental design stage customized individualized music play-

list are created for all the subjects.  

Section 5: Bayesian Experimental Design 

The optimal music play-list that we create determines the songs that are 

downloaded into the mobile audio devices.  The term optimal needs some 

clarification.  Fully optimal designs for nonlinear models with unknown parameters 

are not obtainable in practice.  We define a design to be optimal in the Bayesian sense 

and given a specific prior, if there is no better design to be found under our multi-

criteria objective unless the parameters are known exactly in advance.   
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When deriving the optimal music play-list for our subjects, we face a 

sequential decision problem that seeks a balance between immediate payoff on one 

hand and immediate information that might lead to increased future payoff on the 

other hand.  Immediate payoff is maximized when we maximize a subject’s predicted 

utilities, while immediate information is maximized when we maximize the 

efficiency in estimating a subject’s parameters.  Maximizing immediate payoff, that is 

expected utility, has the disadvantage that the design converges to the same set of 

songs on all future recommendations. That, in turn makes some parameters 

inestimable, because subsets of songs that enable the identification of such parameters 

(i.e. genres) no longer appear in the design.  For example, a subject may show a 

strong preference for Jazz music from the past estimates.  We maximize immediate 

payoff by recommending only Jazz songs to this subject.  However, this makes it 

impossible to estimate the other parameters because songs of the other genres are no 

longer in the play-list.  Instead of using the immediate payoff maximizing approach, 

we generate a sequence of play-lists that dynamically optimizes both expected utility 

and parameter efficiency over a finite time horizon. 

A multi-criteria experimental design problem that optimizes a combination of 

an outcome and an information criterion is discussed in Verdinelli and Kadane 

(1992).  The objective function takes the form of 

[ ]2/)(|log σϖ RE d

'

d

'

d ++ xxxxxxxx1111yyyy       (20) 

Where 1111yyyy '

d represents the predicted outcome as result of the experiment 

design, '

dxxxx is the design matrix, 2/σR is the prior precision matrix, and ϖ is a weight 

reflecting the relative emphasis that are placed on the outcome versus the Shannon 
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Information, or  Bayes D-optimality, criterion 2/)( σRd

'

d +xxxxxxxx .  What is different 

between the design of Verdinelli and Kadane (1992) and our design is that unlike 

ours, their design is not sequential.  Even in a case of static multi-criteria design, 

balancing between the gains in information against current yield is difficult.  Often, 

good performance with respect to one criterion works against the performance of 

others.  The challenge then is to understand how the performance of the design 

changes when we trade off one criterion for another, as reflected in the weight ϖ .  

There is no hard and fast rule on what the value of ϖ should be, and in many cases it 

is determined subjectively, by the end user of the objective function or through some 

experimentation (Verdinelli, 1992; Verdinelli and Kadane, 1992).  We derive it for a 

batch sequential design problem.      

We extend the work of Verdinelli and Kadane (1992) to a batch sequential 

experimental design, because of the way our data are collected and the way we 

customize the play-list.  Each time we customize the play-list for a subject, we obtain 

new data on the subjects’ music preferences, and based on the data we have received 

so far we customize a play-list for the next round of listening.   It is batch sequential 

design rather than a fully sequential design because our play-list involves designing a 

set of songs (a batch of design points) rather than just a single song (a single design 

point).  Whether the use of a sequential design gives a better estimation than a static 

design depends on how good the initial estimate of the parameters is.  When the 

initial estimates are poor, sequential design provides an advantage over static designs, 

however when the initial design yields estimates that are very close to the real 
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parameter values sequential design may lead to a lower estimation efficiency (see 

Ford, Titterington and Kitsos, 1989 for a discussion).   

In our model, we derive the optimal play-list for subject i by maximizing the 

function 

|/|log}]1*)[log{()( 22

1 idddd

Q

q iq
iii

RQkNyE σψψψψψψψψψψψψ xxxxx'x'x'x' ++−+∑ =
 (21) 

In the equation above, Q  is the number of songs in our optimal play-list, which is 

defined a-priori.  )( iqyE is the prediction of the expected log listening duration for 

song q based on the model averaging we described in the previous section, given that 

song q  is one of the songs in the optimal play-list.    The iψψψψ subscript in the design 

matrix 
i

dψψψψxxxx and the prior precision matrix 2/ i
i

R σψψψψ  indicates that the variables that are 

taken out of the model during the variable selection process are not used for designing 

the optimal play-list.   The static weight ϖ in equation 20 is replaced by the 

expression 2}]1*)[log{( +− QkN dd , here dk is a count variable that keeps track of 

how many play-lists we have generated for the subject so far, and dN is the number of 

designs that will be created before the weight drops to zero.  In other words, dN is the 

finite time horizon over which the design is optimized.  The “+1” is added to the 

expression so that when dk = dN , the weightϖ  has a value of zero, and the optimal 

play-list is derived by solely maximizing )( iqyE .  Pronzato and Thierry (2003) prove 

that designs generated based on the criteria in the form of equation (21) yields both 

approximately unbiased estimates of the coefficients and optimal designs. 
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In deriving the optimal play-list, we use a design procedure that maximizes the 

outcome and the design efficiency criterion simultaneously.  The outcome component 

of the criterion )( iqyE maximizes the subject’s expected utility.  The design criterion 

improves our future inference of the subject’s model parameters.  That is, it increases 

the “spread” of the design to continue to provide information on the individuals 

attribute coefficients, even as the play-lists are successively zoomed in on the 

subjects’ preferences as data accumulate.   The objective of formulating the weight as 

we do above is to ensure that a greater importance is placed on getting a more 

accurate estimate of the parameters in the initial designs.  As the estimates improve in 

subsequent designs, we place greater emphasis on increasing the utility that the songs 

provide.  The value of dN , although any reasonable time horizon may be chosen, is 

calibrated in the simulation done in the next section.  It is desirable for the value of 

dN to be somewhat large so that the songs in the play-list do not converge quickly to 

a very similar type of songs.  However, a larger value of dN means a lower overall 

utility of the songs in the initial design and if the subjects’ parameters change the later 

designs may not be attuned to the individual estimates well. We choose a reasonable 

value of dN through our simulation study such that the initial design will not perform 

worse than an ad-hoc design, while we ensure that not an excessive number of play-

lists are generated based on the same parameter values.  Providing utilities that are 

too low in the initial design will greatly discourage the subject from using our 

recommendation system, and we would like the expected utilities of the play-lists to 

gradually increase over the finite time horizon dN .  
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Using the expression in equation 21, the optimal design is derived using a 

modified Fedorov method (Cook and Nachtsheim, 1980) and is implemented in a 

program written in R.  The method we implement involves choosing an initial design, 

which we derive using a “Greedy” criterion of maximum design utility.  At each 

iteration, the algorithm will exchange each song in the design with a song chosen 

from the song database, so as to optimize the design according to the multi-criteria.  If 

an improvement is achieved, the new design is adopted.  This iterative replacement 

method is carried out until there is no further improvement even after a complete 

sweep of all the songs available.  

We evaluate how well our model and recommendation system perform using both 

simulation studies and an experiment.  The details of the simulation studies are 

described in the next section.  After the section on simulation, the experimental study 

is detailed next.   

Chapter 3: Simulation Study 

As an initial test of our model, we ran two simple simulation studies using 

five artificial subjects.  The first simulation study is used to test how well the 

sequential Monte Carlo procedure is able to recover the parameters from a simulated 

dataset.  In addition, the study tests the effectiveness of the variable selection step.  

This is to see if the variable selection really does remove redundant variables from the 

model.  

In the second simulation study, song-specific constants were used to simulate 

the data.  The objective of the study is to find out if the model averaging will improve 

the prediction of a subject’s listening duration for the songs.  In addition, we compare 
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the performance of the play-list design of four different design approaches.  These 

four approaches are: (1) a maximum utility design (2) an optimal design (3) a 

minimum dissimilarity design (4) a random design. The weight used for balancing the 

outcome and information criterion was also calibrated from the simulation results of 

the sequential effect of the weight on the designs. 
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Section 1: Simulated Data 

 The data for the first simulation study were created using the parameter values 

shown in table 1 below.  

Table 1 Parameter used to generate simulated data 
Variables Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Constant 0.00  0.00  0.00  0.00  0.00 
Volume 0.00  0.00  0.35  0.25  0.35 

Tempo 0.00  0.35  0.35  0.00  0.00 
Voice 0.50  0.45  0.00  0.35  0.35 

Size 0.00  0.00  0.00  0.55  0.05 

Purpose 0.00  0.00  0.35  0.00  0.00 
Mood 0.50  0.00  0.00  0.00  0.30 

Alternate 1.00  0.00  0.00  0.00  0.00 
Dance 0.00  0.35  0.00  0.00  0.00 
Jazz 0.00  0.00  1.00  0.00  0.00 
Latin 0.00  0.00  0.00  0.00  0.00 
Metal 0.00  0.00  0.00  0.00  0.00 
Pop 0.00  0.00  0.00  0.00  0.00 
Hip_Hop 0.00  0.00  0.00  0.00  0.00 
Reggae 0.00  0.00  0.00  0.00  0.00 
Rock 0.00  0.00  0.00  0.25  0.00 
Soul 0.00  0.00  0.00  0.00  0.00 
Vocals 0.00  0.00  0.00  0.00  0.20 

Std Dev 0.50  0.50  0.50  0.50  0.50 

 
 The values of the standard deviation (i.e. σ) for all the subjects were set at 0.5.  

This gives a hazard functional curve in which the subjects need some listening 

duration before making a decision on whether to accept or reject the songs.  The song 

attributes used in the simulated datasets consists of variables that describe the genre 

that a song belongs to in addition to the characteristics of the songs.  The genre used 

for our model indicates if a song is: Alternative/Indies, Electronic/Dance, Jazz, Metal, 

Pop, Rap/Hip Hop, Reggae/Ska, Rock , Soul/R&B or Vocal.  The variables that 

describes a songs musical context include: the perceived loudness of the song, the 

song’s tempo, whether the voice of the song is more instrumental or vocal, whether 

the song is more of a solo or a more orchestra performance, the purpose of the song 

be it for plain listening or dancing, and finally whether the mood of the song is happy 
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or angry.  We obtained these song attributes for 400 of the actual songs that will be 

used for an experiment.  The attributes of each of the 400 actual songs were obtained 

using the information extracted from the www.musiclens.de music recommendation 

site.   

 Two blocks of data were generated for each subject in both of the two 

simulation studies.  Each block of data was generated by randomly assigning 50 

songs to each subject.  To ensure that we have a dataset that is of a reasonable size, 

we assumed that the subject listening to the each assigned song for ten times and 

therefore giving 500 observations in each block of data.  The censoring of the data is 

kept at a level roughly between 25-35%.  For the first study the data were simulated 

using the parameter values in table 1.  For the second study the data were simulated 

with an additional song-specific constant for each song at a value between 0.00 and 

0.25.  

Section 2: Estimation 

 In both studies, the first block of data was used to generate the initial particles 

using a Metropolis-within-Gibbs sample draw for the individual model.  2500 

iterations were used for the MCMC procedure and a burn-in of 2000 iterations was 

used.  This provides us with 500 particles.  The variable selection step was applied on 

the individual models.  The variable selection indicator vector iψψψψ  was updated via a 

Metropolis search by randomly changing one of the P indices in old

iψψψψ  (e.g. old

ipψ ).  

When the existing value of the index old

ipψ was one, we set the new value new

ipψ to zero.  

This is equivalent to setting the corresponding value new

ipβ to zero if old

ipβ is not zero.  If 
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the existing value of the index old

ipψ was zero, we set the new value new

ipψ to one by 

assigning the value of new

ipβ  to a non- zero coefficient taken from the old

iβ vector.  A 

variable which had a non-zero coefficient was then chosen randomly and was given a 

coefficient of zero.  This procedure is similar to the one used in Sha, Tadesse and 

Vannucci (2006).  

In the aggregate model, a Gibbs sample draw was done only for the 

coefficients of the songs heard by at least one of the subjects.  This keeps the 

coefficients of the unheard songs, and therefore the song-specific constants, at zero.  

No variable selection and Sequential Monte Carlo procedure was used on the 

aggregate model.  The Metropolis-within-Gibbs sampling was applied only after the 

second block of data and, only the most recent listening duration of a subject for a 

particular song was used in the aggregate model. The composition of the songs heard 

in the two data blocks are different, which means that running the MCMC sampling 

after the second data blocks would result in a higher number of song-specific 

constants.  2500 iterations were used for the MCMC procedure and a burn-in of 2000 

iterations was used generating 500 particles.  With no Sequential Monte Carlo 

procedure applied, we assigned an equal importance sampling weight to the particles 

in the aggregate model.  

In the first study, the simulation ends at the Sequential Monte Carlo step.  The 

predicted listening durations for the subjects for all 400 songs using the estimated 

parameters are compared to the predicted value using the initial simulated parameters. 

In the second study, the model averaging and experimental design stage are 
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implemented after the Sequential Monte Carlo procedure. The results of the 

simulations are shown in the next section. 
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Section 3: Simulation results 

The estimation of the subjects’ parameters in the first study is shown in table 2 

below.  An additional table (i.e. table 3) shows the estimates when there is no variable 

selection applied.  The values are obtained after using two blocks of data and after 

applying the Sequential Monte Carlo procedure.   

Table 2 Parameter estimates in the first simulation study (with variable selection)  
Variables Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Constant 0.00 0.00 0.00 0.00 0.00 
Volume 0.00 0.00 0.34 0.19 0.44 

Tempo 0.00 0.42 0.42 0.00 0.00 
Voice 0.52 0.47 0.00 0.52 0.46 

Size 0.00 0.00 0.00 0.81 0.00 
Purpose 0.00 0.00 0.38 0.00 0.00 
Mood 0.57 0.00 0.00 0.00 0.38 

Alternate 0.88 0.00 0.00 0.00 0.00 
Dance 0.00 0.50 0.00 0.00 0.00 
Jazz 0.00 0.00 0.48 0.00 0.00 
Latin 0.00 0.00 0.00 0.00 0.00 
Metal 0.00 0.00 0.00 0.00 0.00 
Pop 0.00 0.00 0.00 0.00 0.00 
Hip_Hop 0.00 0.00 0.00 0.00 0.00 
Reggae 0.00 0.00 0.00 0.00 0.00 
Rock 0.00 0.00 0.00 0.00 0.00 
Soul 0.00 0.00 0.00 0.00 0.00 
Vocals 0.00 0.00 0.00 0.00 0.03 

Std Dev 0.69 0.67 0.51 0.83 0.63 

 
Table 3 Parameter estimates in the first simulation study (without variable selection) 

Variables Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Constant 0.00 0.00 0.00 0.00 0.00 
Volume 0.04 -0.04 0.38 0.23 0.44 

Tempo -0.04 0.51 0.40 -0.04 0.06 

Voice 0.59 0.52 0.01 0.57 0.52 

Size -0.01 -0.01 0.03 0.79 0.04 

Purpose -0.06 -0.01 0.41 -0.01 -0.03 

Mood 0.60 0.03 -0.01 -0.02 0.35 

Alternate 0.98 -0.11 -0.03 -0.08 -0.16 

Dance -0.07 0.41 0.00 -0.09 -0.31 

Jazz -0.05 -0.18 0.63 -0.23 -0.13 

Latin -0.02 -0.05 -0.05 -0.03 -0.01 

Metal -0.01 -0.07 0.02 -0.09 -0.03 

Pop -0.01 -0.01 -0.07 -0.05 -0.13 

Hip_Hop -0.03 0.06 -0.08 -0.06 0.01 

Reggae 0.00 -0.01 0.00 0.00 0.00 
Rock -0.05 -0.15 -0.11 0.24 -0.17 

Soul -0.11 -0.04 -0.07 0.02 -0.03 

Vocals -0.13 0.01 0.01 0.00 -0.02 

Std Dev 0.75 0.67 0.44 0.78 0.57 

 
Comparing the values in table 1, 2 and 3, the variable selection seems to work 

well. It effectively forced the non significant parameters to a value of zero.  In the 
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case of subject 4 the genre parameter is set to 0 even when it was given a positive 

value during the data simulation.  We attribute this to the fact that the song 

characteristics have captured enough of the variability to make the genre variable 

redundant.  This is consistent with our argument that variable selection helps to deal 

with non essential and potentially numerous genre variables.  Without using the 

variable selection step in our MCMC procedure, the parameters are more spread out 

and non essential variables are given non zero coefficients.  The parameter recovery 

is also reasonable, with the credible intervals that are tightly bounded.  Table 4 shows 

the statistics of the posterior distribution of the parameter.  At the interest of space, 

only the minimum, maximum, mean and median values of subject 1 are shown. The 

posterior distributions of the other four subjects have the same pattern as that of 

subject 1. 

Table 4 Credible intervals of parameter estimates in the first simulation study 
Variables Min Mean Median Max 
Constant 0.00 0.00 0.00 0.00 
Volume 0.00 0.00 0.00 0.00 
Tempo 0.00 0.00 0.00 0.00 
Voice 0.47 0.52 0.51 0.57 

Size 0.00 0.00 0.00 0.00 
Purpose 0.00 0.00 0.00 0.00 
Mood 0.49 0.57 0.58 0.64 

Alternate 0.74 0.88 0.84 1.06 

Dance 0.00 0.00 0.00 0.00 
Jazz 0.00 0.00 0.00 0.00 
Latin 0.00 0.00 0.00 0.00 
Metal 0.00 0.00 0.00 0.00 
Pop 0.00 0.00 0.00 0.00 
Hip_Hop 0.00 0.00 0.00 0.00 
Reggae 0.00 0.00 0.00 0.00 
Rock 0.00 0.00 0.00 0.00 
Soul 0.00 0.00 0.00 0.00 
Vocals 0.00 0.00 0.00 0.00 
Std Dev 0.69 0.69 0.69 0.69 

In the second simulation study, we look at the performance of the model 

averaging in our algorithm.  The Mean Squared Errors (MSE) of the predicted 

listening duration for all the 400 songs are used to compare the prediction based on 

model average against the prediction using only subject’s own particles.  The Mean 
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Squared Errors are calculated using the predicted listening duration minus the 

“actual” listening duration of the 400 songs.  The listening durations before there is 

any censoring are compared.  The “actual” duration is calculated using the original 

parameter values that we have used to simulate the data.  The calculation is 

deterministic.  As shown in table 5, compared to the model calibrated on the data 

itself, the improvement from the model averaging is substantial. The MSEs under 

model averaging are close to half of those without model averaging. 

Table 5 Comparison of Mean Squared Errors (MSE) of predictions with and without model 

averaging 
 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

MSE 
(with Model Averging ) 

3.30 2.78 6.60 16.76 3.66 

MSE  
(Without Model 
Averging) 

6.34 3.46 11.10 43.29 4.71 

t-value for difference in 
means 

-3.420*** -1.824* -4.79*** -7.36*** -2.145** 

Note: * reflects < 0.1 significance, ** reflects < 0.05 significance, *** reflects < 0.01 
significance,  
We compare the performance of the optimal design, a design generated using 

our model, against three other designs generated using: (1) maximum predicted utility 

(2) minimum dissimilarity and (3) random approach.  The maximum utility design 

creates the play-list that gives the highest predicted listening duration derived from 

the model averaging.  This design maximizes immediate payoff without any 

consideration for immediate information.  Comparing this design to the optimal 

design will give an indication of how our model tradeoff immediate payoff for 

immediate information.   

The minimum dissimilarity design is derived by minimizing the average 

Gower distances of the songs in the play-list from the songs that a subject prefer in 

the subject last run of listening.  We infer that a subject prefers a song when the 

subject finishes listening to the song - in other words the duration is censored.  The 
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minimum dissimilarity design uses a clustering algorithm similar to the one used by 

Pandora.com.  Pandora.com, an existing commercial music website, recommends 

new songs to an individual by looking for songs that have attributes closest to the 

songs the individual indicated as desirable.  The minimum dissimilarity design 

enables us to compare our model with a commercially available recommendation 

system.   

The random design creates a play-list by choosing songs randomly for each 

subject.  This is the design we use when we do not have any preference data, and the 

design is used to generate our initial play-lists in our experimental study.  With the 

incorporation of preference data, the three other designs should provide higher 

utilities than the random design.  In other words, the random design helps to detect 

any error in the algorithms of the three other designs. 

The performances of the four designs in terms of total utilities and posterior 

precisions are shown in table 6. 

Table 6 Comparison of design performances 

   Subj 1   Subj 2   Subj 3   Subj 4   Subj 5  
Maximum utility 
design           
Total utility 458.33 318.22 400.09 484.31 361.87 
Posterior Precision 31.01 24.81 26.02 25.51 27.67 
       

Optimal design      
Total utility 416.29 318.22 400.09 465.89 357.98 
Posterior Precision 30.98 24.81 26.02 25.45 27.60 
       

Minimum 
dissimilarity design      
Total utility 306.10 281.49 267.63 289.73 271.20 
Posterior Precision 31.26 24.88 26.24 25.62 27.58 
       

Random design      
Total utility 229.09 153.25 173.62 214.88 187.22 
Posterior Precision 30.96 24.54 26.04 25.29 27.37 

 Note: The optimal design refers to the design generated using our model. 

Table 6 shows the performance of the optimal design when we set the value of 

dN in equation 21 to ten.  In other words, ten designs are created before the weight 
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applied on the Shannon information drops to zero.  Operationally this implies that we 

re-estimate a subject’s preferences after we have created ten music play-lists for the 

subject.  Over the duration in which we create the ten music play-lists, we assume 

that the subjects’ preference parameters are constant.  After the tenth design, the 

estimation process starts from the MCMC procedure again which generates a new set 

of initial particles to be used in the Sequential Monte Carlo estimations that follow.   

Looking at table 6, the random design always gives the lowest utility.  This is 

reasonable since the random design does not incorporate any preference data.  Since it 

is a random design, the posterior precisions of the parameters estimates may or may 

not be higher than the maximum utility design depending on the random design 

composition.  The optimal design, created using our model, is obtained from the 

maximum utility design by trading off utility for D-optimality.  This means that in 

most cases, the utility of the optimal design is lower than the maximum utility design.   

The minimum dissimilarity design gives a lower utility but higher posterior 

precision than the optimal design.  On the other hand, the minimum dissimilarity 

design does not predict subjects’ preferences as well as the optimal design.   

We simulate the changes in the actual utility of the optimal design from design 

one to ten for subject five to see if design utilities do improve through sequential 

design generation.   The transition of the actual utilities for the optimal design for this 

subject is shown in figure 2.  The first design is created randomly rather than using 

the multi-criteria objective, the ten other designs that follows are the ones created 

optimally.  Actual utility of the design is calculated from the true parameters of this 

subject.  Notice that the actual utility increases with each subsequent design.  This is a 
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result of an improvement in the estimation of the parameters with more data, and a 

result of a lower emphasis placed on the Shannon information criterion. 

Figure 2  Transition in actual utilities for the optimal designs during sequential design 

generation 

 

The changes in song compositions in each design created sequentially are shown 

in figure 3.  Using the value of one to indicate that a song is chosen to be in the 

design and a zero otherwise, we can calculate a correlation value between one design 

and the design that precedes it.  A correlation value of one indicates that a design has 

not changed since the previous design, while a correlation value of zero indicates that 

the composition of songs has changed completely.  As it is shown in figure 3, the 

correlation value varies between 0.80 and 1.00.   The figure shows that the 

improvement in utilities from the sequential generation of the optimal design is a 

result of a change in song compositions over and above the change in the weight 

applied on the Shannon information.  
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Figure 3 Change in song compositions during the sequential generation of the optimal design 

 

Our recommendation system appears to perform the way that it should based 

on the results of the simulation study.  The optimal designs created based on our 

model provide higher utilities compared to the random and the minimum dissimilarity 

design.  The minimum dissimilarity design, a clustering algorithm used in 

Pandora.com, will be used as the benchmark to compare our model in the 

experimental study.  In addition, the utilities of the optimal design converge towards 

the maximum over the duration in which the 10 different sequential designs are 

created.   

As a further proof of our concept we ran an experiment involving real subjects 

and a working music recommendation system.  The details of the experiment are 

described in the next section. 
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Chapter 4: Experimental Study 

Section 1: Data collection 

The experiment was run using an actual implementation of the 

recommendation system.  The experiment required the subjects to listen to the songs 

played from a Palm TX PDA for two waves of listening.  In each wave songs were 

played by the PDAs from the individual play-lists that were downloaded.  The play-

lists used for the first wave were generated randomly, while the play-lists in the 

second wave were generated using either the customization procedure described in 

our model, or a heuristic customization procedure we used as a benchmark.  

We developed our recommendation system from scratch and two programs 

were written for this experiment.   The first program was written for the PDAs to 

allow them to play Mp3 songs according to a play-list, and also to act as data 

collection instruments.  The programming of the PDAs was done using the Handheld 

Basic Software developed by Peter Holmes Consulting. The screen shots of the PDAs 

program is shown in figure 4. 
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Figure 4  Screen shot of PDA software 

 
The second program was written in R for a desktop computer.  The R program 

implements the estimation and customization procedures using ours, and the 

benchmark customization procedures.  Estimations of subjects’ parameters were 

made using the data downloaded from the PDAs to the desktop computer.  Finally, 

the individually customized play-lists generated in the desktop computer were 

downloaded into the PDAs to determine the actual songs the PDAs play. 

Subjects in the experiment are undergraduates and graduate students from an 

eastern United States university who volunteered to participate in the experiment in 

the period of April and May 2007.  Subjects who finished the whole experiments 

were given monetary rewards in addition to the chance of winning a Palm TX PDA.  

The 86 subjects who participated in the experiment were solicited using emails 

without any screening based on demographic criteria.  Of the subjects 77% were aged 

between 18 to 21 years old, 20%  were aged 22 to 29 years old, while the rest were 30 
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years old and above.  In addition, 37% of the subjects are male, while 63% of the 

subjects are female. 

Subjects who signed up for the experiment knew that the experiment involved 

understanding music preferences.  They were informed that the experiment involved 

two waves of listening, and that their listening behaviors were recorded.  About one-

third of the subjects were randomly chosen to be in the control group.  The subjects in 

the control group were subjected to the same procedures as the experimental group 

except that their play-lists are customized using a clustering procedure.  For the 

subjects in the experimental group, their play-lists were customized using the 

procedures described in our model. 

The data captured in the experiment are records of subjects’ listening duration 

for the songs played from the PDAs.  16,835 data points are collected, where each 

data point represents an instance in which a particular subject had listened to a 

particular song.  To collect the data while the subjects were in their “natural” 

situations, the PDAs were issued out to the subjects during the duration of the 

experiment.  After the subjects had collected the PDAs, they had the liberty to decide 

when and where to listen to the songs.  There were two waves of listening for each 

subject, with each wave lasting five days each.  There was a gap of two days in 

between the two waves so as to allow the researchers to retrieve the data from the 

PDA from the first wave, analyze the first wave data, and finally customized the play-

lists for the second wave.  Due to the limitation on the number of PDAs available, the 

subjects were broken up into three different batches.  The running of the experiment 

for these three batches was completed in one and a half months.   To supplement the 
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data collected through the PDAs, subjects were asked to complete up a short survey, 

shown in the appendix, after the whole experiment was over to rate the quality of 

songs in the play-lists both in wave one and two.  

Play-lists were used to determine which songs to play in the PDAs.  Each 

play-list holds the name of 50 different Mp3 songs out of the universal set of 400 

unique Mp3 songs used for the experiment.  At the first wave of listening, randomly 

generated initial play-lists were used to determine which songs to play to the subjects.  

These initial play-lists were generated randomly and were not customized to the 

preference of the subjects due to the lack of prior preference data.   

  The songs were played sequentially in the PDAs, and the subjects had the 

option of skipping over the song if they disliked them.  In addition, the participants 

also had the options of pausing the current song played, resuming the playing of the 

paused song, and stopping the song altogether.  The subjects however, were not given 

the option of deciding which song should be played next, to prevent order effects.  

The duration data captured indicate how long a song is listened to until the subject 

consciously chose to skip or stop the song that is presently playing.  Five days after 

the PDAs were issued to the subjects for the first wave of listening, the PDAs were 

returned for data download.    The duration data from the mobile music devices was 

downloaded into the desktop computer for preference estimation and play-list 

customization.  Customized play-lists were generated for the second wave.  These 

play-lists were generated using either our customization procedure or a benchmark 

customization procedure.  The benchmark procedure used a clustering algorithm and 

is described in more details in the next sub-section.  Two days after the PDA were 
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returned from the first wave, the subjects collect the PDAs again for the second wave 

of listening. 

Section 2: Estimation and customization procedures 

The estimation and customization procedures based on our model were used 

to create the second wave play-lists for the subjects in the experimental group.  For 

those subjects in the control group a clustering procedure was used.  The estimation 

and customization procedures based on our model were carried out in the following 

steps:  (1) 500 particles using the first wave’s data for each subject were generated, 

where each particle was a vector containing the estimated values of a subject’s 

parameters.  These particles were generated using the data on listening duration and 

song attributes similar to the ones we used in the simulation section.  These song 

attributes consist of variables that described the genre that a song belongs to in 

addition to the characteristics of the songs.  2500 iterations were used for the MCMC 

procedure with a burn-in of 2000.  The variable selection step was also applied to the 

MCMC procedure.  (2) An aggregate model was estimated to generate song-specific 

constants.  500 particles were generated for the aggregate model.  In the context of 

the aggregate model, each particle corresponds to a vector containing an estimate of 

the different song constants.  (3) After the individual and aggregate models’ particles 

were estimated, the model averaging step was used to predict the listening duration of 

each subject for the 400 different songs.  In the process, subject weights were 

generated. These weights were used to determine how much of one subject’s 

parameter should be used to predict another target subject’s listening duration.  (4) 

The Bayesian Experimental Design procedure was used to customize the play-list for 
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the individual subjects.  Similar to the simulation, the weights used in the 

optimization criteria were such that the system converges to a maximum utility design 

after ten customizations. 

 We used a heuristic clustering algorithm as the benchmark to compare our 

model against.  Such a heuristic procedure is conceptually similar to the one used by 

for example Pandora.com, an existing internet radio recommendation system.  For the 

purpose of the benchmark algorithm we inferred that a subject likes a particular song 

if the subject finished listening to it during the first wave of listening.  The clustering 

procedure generated a play-list for this subject in the second wave by choosing the 

songs that were most similar to the preferred songs.  Similarity was measured using 

the Gower distances between one song from the next in the song attribute space.  The 

clustering procedure minimizes the total Gower distances of the 50 songs in the play-

lists.   

Section 3: Results of the experiment 

The lognormal hazard function is used in this paper to model subjects’ 

listening behavior.  For the lognormal hazard function, the standard deviation of the 

distribution determines the function’s shape.  A small sigma value (e.g. 0.5) describes 

a non-monotone hazard function, and as the value of sigma increases (e.g. around 2.0) 

the hazard function adopts a shape closer to a downward sloping curve ( Figure 1).    

The distribution of 86 subjects’ sigmas based on the first wave (i.e. standard 

deviations of the estimated parameters) is shown in figure 5.    



 

 47 
 

Figure 5 Sigma values of the estimated experiment subject’s parameters 

 

Given that the sigma values of in figure 5 is closer to 2.0 then 0.5, a 

downward sloping hazard function generally describes the subject’s listening 

behavior.  This implies that the subjects’ do not need to listen to the songs for long 

before they could decide whether a song is preferable.  In addition, the tendency to 

continue listening to a song increases as the listening duration increases.  Figure 6 and 

7 gives an indication on how the subjects chose which songs to listen to.  Figure 6 

shows how long in milliseconds that the songs are listened to by the subjects.  Figure 

7 show the ratio between listening duration and the length of the songs.  Both figures 

show that apart from the songs which the subjects chose to finish, the portion of songs 

that was skipped early was higher than the portion of songs that are skipped later into 

the song.  These two figures show further that the subjects make a quick decision on 

which songs to finish listening to.  
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Figure 6 Percentage distribution of songs heard by the duration heard in milliseconds 

 

Figure 7 Percentage distribution of songs by the ratio of listening duration to song length.. 
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Figure 8 and 9 demonstrate the effectiveness of the variable selection 

procedure.  They show the distribution of the subjects by the number of parameter 

estimates which are set to zero by the variable selection procedure.  Figure 8 shows 

the distribution for the six variables that describe the song characteristics (e.g. 

perceived loudness of the song, song tempo, etc).  Figure 9 shows the distribution for 

the eleven variables that describe the song genres (e.g. Jazz, pop, etc.) 

Figure 8 Distribution of experimental subjects by the number of non-zero song characteristic  

               coefficients. 
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Figure 9 The distribution of experimental subjects by the number of non-zero coefficients for

 describing song genres. 

 
From figure 8 and 9 we can see that the preferences of about 14% of the 

subjects can be described using only half of the song characteristics variables (figure 

8) , and the preferences of about 20% of the subjects can be described using only half 

of the variables describing genres (figure 9).  For these subjects, the variable selection 

eliminates the variables that are redundant and therefore simplifies the parameter 

estimation and predictions.   

 The Sequential Monte Carlo estimation procedure is used to deal with the 

challenges of analyzing big dataset.  In our experiment, the computation time using 

Sequential Monte Carlo methods is about 15% of the MCMC methods when the same 

dataset is used.   A standard Markov Chain Monte Carlo method requires a complete 

scan of the dataset and also a large number of iterations to estimate the model 

parameters.  Computational time for the MCMC method increases greatly with the 
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size of the dataset.  The ability to break datasets into blocks helps to keep the 

computational time of the Sequential Monte Carlo method short.  Therefore, the 

benefit of the Sequential Monte Carlo Method is more pronounced when the size of 

the dataset is greater than the dataset we have in our experiment. 

We used the aggregate model to capture the impact of individual song’s 

unique characteristics which are not otherwise reflected in the prediction by the 

individual level models.  This aggregate model uses a dummy variable for each song 

across all subjects.  The coefficients of the aggregate model therefore represent the 

song-specific constants.  The distribution of the song-specific constants is shown in 

table 7 and in figure 10.  The song-specific constants follow a normal distribution 

with a high variance.  The normal distribution is a result of the use of a normal prior 

when we estimated the constants.  We infer that the 400 songs that we used for our 

experiment represents a diverse collection of songs with very different characteristics.  

We have deliberately chosen the songs to be greatly different in order to better cater 

to the diverse taste in music among the experiment subjects. 

Table 7  Distribution of the song-specific constants.. 
Mean Median Min Max 25

th
 

Percentile  

50
th
 

Percentile 

75
th
 

Percentile 

Standard  

Deviation 

-0.11 -0.12 -1.50 1.82 -0.42 -0.12 0.20 0.46 
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Figure 10 Distribution plot of the song-specific constants. 

  

Our motivation for using model averaging is to improve our predictions of a 

subject’s listening duration.  We combine individual models (i.e. sets of parameter 

estimates) based on how well they predict the target individual’s data.  The weight 

that we place on a model in the prediction of another subject’s data is based on the 

ratio of the likelihood of that model over the subjects’ own model.  We calculate the 

between-subject weights for all combination of subject while treating the aggregate 

model as one of the candidate models.  Table 8 below shows the distribution of 

subject weights. 

Table 8 Distribution of subject weights. 
Mean Median Minimum Maximum Standard 

Deviation 

0.87 0.91 0.05 1.35 0.19 

On average a weight of about 0.87 is applied to other subject’s parameters to 

predict the target subject listening duration.  There are instances where one subject’s 
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parameters are poor predictor of another subject’s listening duration (i.e. when the 

weight is at 0.05), but in other instances another’s subject’s parameters maybe a 

better predictor for the target’s subject preferences.  It is in the instances when the 

weights are above 1.00 that the model averaging approach helps to improve the 

predictions of the subjects’ listening duration substantially. This happens in about 

16% of the cases.  The distribution of the subject weights is shown in figure 11.    

Figure 11 Distribution of subject weights. 

 

In table 9, we compare the performance of the play-lists in terms of how well 

they recommend songs to subjects.  The performances of the random play-lists, and 

also the play-lists generated using of our model and the benchmark model are shown.  

The comparisons are done using two criteria: (1) the percentage in which the subjects 

listened to each of the songs presented to them.  (2) The proportion of all the songs 

presented to the subjects which they finished listening.   
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Table 9 Comparison of play-lists’ performance  in terms of how well they recommend songs. 

 

Mean percentage of each song 
that the subjects have listened to  
 

Mean proportion of the songs that the 
subjects have finished  

Listening to  

 (1) (2) (3) (4) (5) (6) 

Play-lists 
generated by our 

model 
55.00% 55.00%  0.46 0.46 

 
 

Play-lists 
generated by 
benchmark 

model 

44.79%  44.79% 0.36  0.36 

Random play-
lists 

 44.09% 40.57%  0.34 0.30 

Difference in 
mean 

10.21%* 10.91%* 4.22%* 0.10* 0.12* 0.06* 

Percent 
improvement 

22.78% 24.74% 10.41% 27.78% 35.29% 20.00% 

Note: * reflects < 0.01 significance 
Based on the results shown, our model performs 23% better than the 

benchmark model in terms of percentage of each song listened to (Column 1, table 9) 

,and 28% better for the proportion of songs that the subjects have finished listening 

(Column 4, table 9).  This comparison is done using the data in the second wave of 

listening because it is the data based on customized play-lists.  

When we compare the listening behavior of the subjects before and after we 

have customized the play-lists (i.e. comparison of wave one and wave two data), the 

play-lists customized using our model results in a 25% (column 2, table 9) 

improvement in the percentage of each song listened to, and a 35% improvement in 

the proportion of songs that the subjects finished (column 5, table 9).   

Comparatively, the play-list customized using the benchmark model results in 

a 10% improvement in the percentage of each song listened to (column 3, table 9), 

and a 20% improvement in proportion of songs that the subjects finished (column 6, 

table 9).   

Looking at the relative ratios of improvement, our model is 2.59 (i.e. 10.91% / 

4.22%) times better than the benchmark model in increasing the percentage of each 

song listened to, and is 2.00 times (i.e. 0.12 / 0.06) better than the benchmark model 
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in increasing the number of songs that the subjects finished.  These results show that 

our model is indeed better than the benchmark model.  

To provide an indication of the best case and worst scenarios for the 

performance of our and the benchmark recommendation system we analyze the 

recommendation performances on an individual basis.  For our model the changes in 

the percentage of each song listened to before and after the play-lists are customized 

range between -42.41% to 184.14% and have a median of 8.85%.  Comparatively, the 

range for the benchmark model is between -64.40% and 124.32% with a median of 

3.29%.  In terms of the changes in the proportions of songs that the subjects finished 

our model has a range between -50.98% and 373.12% with a median at 13.08%.  The 

respective percent changes for the benchmark model are -66.94% and 239.85% 

respectively.  The median for the changes in proportion for the benchmark model is 

8.32%.  This means that our model has a less severe worst case scenario and a better 

best case scenario compared to the benchmark model both for the percentages of each 

song listened to and the proportions of songs that the subjects finished.  By using the 

median and as a result reducing the effect of outliers, our model still performs better 

than the benchmark model.    

When we asked the subjects to indicate how well the play-lists perform using 

a post experiment survey, we are not able to see any significant difference in the way 

the subjects rate our model and the benchmark model, and in the way the subject rate 

the play-lists before and after they are customized.  The actual survey used is shown 

in the appendix, and the results of the survey are shown in table 10.  For the rating on 

subjects’ song satisfaction, a value of 1 reflects that the subjects are very satisfied, 
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and a value of 7 reflects that they are very unsatisfied.  The values in table 10 are 

around 3.0, which corresponds to the average rating of “somewhat satisfying”.  For 

the rating on the proportion of songs the subjects liked, a rating of 1 reflects that 

subjects like all the songs, and a rating of 5 reflects that subjects like none of the 

songs. A value close to 3.0 as shown in table 10 indicates that the subjects like only 

some of the songs in the play-lists.  None of the differences in ratings are significant.  

The problem of using rating data in making recommendations is discussed in Rossi, 

Gilula and Allenby (2001).  In this paper the authors show that rating data do not 

always indicate the true preferences.  In our case, subjects reported ratings are not 

useful in making any preference predictions. 

Table 10 Subjects’ ratings of the play-lists’ performance obtained from post experiment  

survey  

 Satisfaction with the songs Proportion of songs liked 

 (1) (2) (3) (4) (5) (6) 

Play-lists 
generated by our 

model 
3.63 3.63  3.11 3.11  

Play-lists 
generated by 
benchmark 

model 

3.59  3.59 3.14  3.14 

Random play-
lists 

 3.86 3.55  3.26 3.17 

difference in 
mean 

0.04 -0.23 0.04 -0.03 -0.15 -0.03 

Note: For satisfaction, a rating of 1 reflects very satisfied and a rating of 7 reflects very 

unsatisfied.  For the proportion of songs liked, a rating of 1 reflects that subjects like all the 

songs, and a rating of 5 reflects that subjects like none of the songs. None of the differences in 

ratings is significant.  

We investigate further into the results of our satisfaction measure by 

correlating the actual listening behaviors of the subjects with their responses in the 

post experiment survey.  The satisfaction levels with the songs generated by the 

customized play-lists indicated in the survey correlate significantly with the actual 
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listening behavior when we combine the survey results of the subjects in the control 

and the experiment group.  The correlation between the satisfaction levels and the 

percentages of each song listened to in the second wave is at -0.31, and the 

correlation between satisfaction levels and the proportions of songs that the subjects 

finished in the second wave is at -0.30.  The correlations are negative because smaller 

values for the satisfaction measure indicate higher levels of satisfaction.   Both of the 

correlations are significant at the 0.01 level.  The results are different when we 

correlate the satisfaction levels with the songs in the second wave and the actual 

listening behaviors separately for the play-lists generated using our method and the 

play-lists generated by the benchmark model.  For the benchmark model the 

correlations are significant at the 0.01 level.  The correlations are -0.40 between 

satisfaction level and the percentages of each song listened to, and -0.39 between 

satisfaction level and the proportions of songs that the subjects finished in the second 

wave.  The corresponding correlations for our model is at -0.11 and -0.15 

respectively.  Not only are the correlations smaller for the play-lists generated using 

our model, the correlations are also not significant.  The performance of our model is 

shown to be better than the benchmark model.  The fact that correlation between 

satisfaction level and actual listening behavior is significant for the benchmark model 

and not our model indicates that the subjects are stricter in indicating their satisfaction 

level when a recommendation system is performing better in contrast to a 

recommendation system that is performing poorer.   This provides some explanations 

as to why our model does not result in a higher satisfaction level when compared to 

the benchmark model.  This is inline with Gilula and Allenby (2001) observation that 
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rating data do not always indicate the true preferences.  We run into the same problem 

when we look at the correlation between the proportions of songs that subjects like 

indicated in the survey and the actual listening behaviors.  The correlations are 

significant at the 0.01 level for the play-lists generated using our model and are non 

significant for the play-lists generated using the benchmark model.   

 The subjects indicated that they are wiling to pay about $6.65 on average for 

the recommendation system.  This is lower compared to the $9.99 that Rhapsody 

offers for the song download.  The lower willingness to pay for our system is 

explained partly by the fact that subjects do not always indicate their true preferences 

in a survey.  For example, we did not find any significant results between willingness 

to pay and satisfaction level, and between willingness to pay and actual listening 

behaviors.  A spontaneous remark on the willingness to pay was given by a subject in 

the survey form.  She remarked: “Free as a first time product trial.  Maybe later if I 

like the service, I would consider upgrading my subscription for $5.00 extra a 

month”.  This provide a possible explanation that apart from the problem of the 

subjects not indicating their true preferences in the survey, another possible reason for 

the lower willingness to pay is that the subjects may not see the recommendation 

system as a separate product but as a possible value add to existing system.  In 

addition, subjects may want a trial period to further evaluate the performance of our 

recommendation system before they can provide a more accurate indication of their 

willingness to pay.   
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     We move on to discuss our results in the next section and also provide a 

conclusion to this paper.  

Chapter 5: Discussion and conclusion 

The main objective of this paper is to develop a music recommendation 

system that automates the downloading of songs into a mobile digital audio device.  

We have taken the approach that involves as little effort as possible from the 

consumers’ end.  This provides some challenges to our recommendation system.  

First, we cannot use consumer demographic profiles or prior music preference 

questions to help in the generation of the initial play-list.  Our use of a randomly 

generated initial play-list is due to the belief that asking for personal information may 

be considered an invasion of privacy, and may discourage the adoption of the 

recommendation system.  However, we could in principle use such information to 

initialize our recommendation system.  Second, we choose not to involve individuals 

when they visit the music downloading website, for example by asking them to 

indicate which songs they prefer after listening to a collection of music snippets.  We 

have not incorporated this feature due to our desire to minimize the effort required 

from individuals during the process of music recommendation and downloading.  

Nevertheless, this could in principle be incorporated in an extension of our system.  

Third, we have also kept our Mp3 software interface simple to reduce the effort 

needed to operate the mobile music playing device.  On the reverse side, subjects do 

not have the option to choose which songs they want to listen to.   

The simulation section of this paper demonstrated that our model does achieve 

it objectives in handling massive data and improving predictions through model 
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averaging.  The speed comparison between MCMC and Sequential Monte Carlo was 

shown to be substantial.  By using simulated data in the simulation, and thus knowing 

the true parameters, the Sequential Monte Carlo and variable selection procedures 

were shown to provide good estimates of an individual’s preferences.  Experimental 

results show that variable selection does simplify estimation and prediction as 

different individuals differ in the number of variables need to definite their listening 

behaviors.  The results also show that for some individuals, model averaging does in 

fact help to improve predictions.   

Looking at the results of the experiment, our model provides 23 – 35% 

improvement in recommendations.  This improvement is achieved in a single wave 

and in a natural experimental setting in which the subjects have a choice or when, 

where and how they want to listen to the songs.   Running the experiment in a natural 

setting brings with it a set of new challenges.  First, unlike recommendation systems 

based on secondary data we did not have the options of fine tuning our model in the 

midst of our experiment.  Second, the listening context in which the subjects are in 

can be very different when they listening to the songs in the first wave versus the 

context they are in for the second wave.  For example, a subject could be listening to 

the songs mostly when they are working out in a gym in the first wave, but chose to 

listen to the songs mostly when the subject is driving in the second wave.  Preferences 

may change with the listening context and thus reducing the effectiveness of our 

recommendations.  We expect such changes to diminish over time as 

recommendations are made in multiple waves.  Future extension for our model could 

potentially address the issue of context effect on listening preferences.  Our 
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experiment results show that individuals make their choices on which songs they 

prefer quickly.  In addition, given the great speed in which the Sequential Monte 

Carlo procedure updates parameter estimates, it can be programmed into the mobile 

music playing device itself.  The system then becomes a distributed computing 

system incorporating parallel computation on the PDAs for individual subjects.  After 

an individual’s particles is downloaded from the website into the music device, the 

device can effectively chose which of the potential multiple play-lists to use after 

observing several of the individual choices.  Third, we have less data points per 

subject per wave of listening compared to the 500 data points per subjects used in our 

simulation.  Instead of the 500 data points, we have on average only 98 data points 

per subject per wave of listening, which translates to about 3 hours of listening on 

average.  This resulted from the fact that we did not impose any total listening 

duration requirement on our subjects.  The lower number of data points affects the 

accuracy of our recommendation system.  We have also not utilized a maximum 

utility design when we recommend our songs, but one in which utility and precision 

are traded off in a single recommendation wave.  We have deliberately incorporated 

precision into the criteria used to recommend a composition of songs because this is 

how the system operates in real-life conditions.  Even in the simulation, the use of 

precision in this way reduces our design utility by about 3%.   

In conclusion, we believe that have achieve our objectives for developing a 

full working and directly implementable recommendation system.  The system 

achieves dramatic improvements over a realistic and heuristic one, that itself has not 

yet been implemented as far as we are aware of.  This system is one that automates 
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the downloading of songs into a mobile digital audio device based just on past 

listening behavior.  One immediate refinement that can be done to our model is to 

improve the attributes used to differentiate one song from the next.  The music 

genome project which characterizes different music with a different music “DNA” is 

an natural direction to take in achieving this goal.  Possible immediate application of 

our recommendation system is to incorporate it into the itune website, in which ipods 

are used as the music playing and data collection devices, but we envision many other 

useful applications.    
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Appendix: Survey on Music Preference Study 

To help us better understand your listening experience during the study please take a 

few minutes to complete this survey. 

 
Question 1 and 2 applies to your listening experience in the last five days. Please 

place a check in the circle that best describes your listening experience.  
 

Question 1: 
 What proportion of the sings do you like? 

ο All  ο Most ο Some ο Not many ο None 
 
Question 2: 
 How satisfied are you with the songs? 

ο Very Satisfied ο Satisfied ο Somewhat satisfied   

ο Neither Satisfied or disatisfied ο Somewhat dissatified  

ο Dissatified  ο Very dissatified 
 

Question 3 and 4 applies to your listening experience in the first five days. Please 
place a check in the circle that best describes your listening experience.  

 
Question 3: 
 What proportion of the sings do you like? 

ο All  ο Most ο Some ο Not many ο None 
 
Question 4: 
 How satisfied are you with the songs? 

ο Very Satisfied ο Satisfied ο Somewhat satisfied   

ο Neither Satisfied or disatisfied ο Somewhat dissatified  

ο Dissatified  ο Very dissatified 
 
Question 5:  

  If the online music company decides to launch the website, it plans to provide its 
services through a monthly subscription plan. Consumers who subscribe to the service will 
have unlimited song downloads. As a comparision, Rhapsody (an existing music website) 
offers unlimited song download at a fee of $9.99 a month. 
 
 How much would you be willing to pay for the monthly subscription to the website 
that offers automatic download of music?  
 
  US$ _______________________ 
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