
Constructing Deterministic Finite-State Automatain Recurrent Neural NetworksChristian W. Omlin a, C. Lee Giles a;ba NEC Research Institute, 4 Independence Way, Princeton, NJ 08540b UMIACS, U. of Maryland, College Park, MD 20742fomlinc, gilesg@research.nj.nec.comU. of Maryland TR UMIACS-TR-95-50 and CS-TR-3460Revised February, 1996AbstractRecurrent neural networks that are trained to behave like deterministic �nite-state automata (DFAs)can show deteriorating performance when tested on long strings. This deteriorating performance canbe attributed to the instability of the internal representation of the learned DFA states. The use ofa sigmoidal discriminant function together with the recurrent structure contribute to this instability.We prove that a simple algorithm can construct second-order recurrent neural networks with a sparseinterconnection topology and sigmoidal discriminant function such that the internal DFA state repre-sentations are stable, i.e. the constructed network correctly classi�es strings of arbitrary length. Thealgorithm is based on encoding strengths of weights directly into the neural network. We derive a rela-tionship between the weight strength and the number of DFA states for robust string classi�cation. For aDFA with n states and m input alphabet symbols, the constructive algorithm generates a \programmed"neural network with O(n) neurons and O(mn) weights. We compare our algorithm to other methodsproposed in the literature.1 INTRODUCTION1.1 MotivationRecurrent neural networks are neural network models which have feedback in the network architecture and,thus, have the power to represent and learn state processes. This feedback property enables such neural nets1

to be used in problems and applications which require state representation: speech processing, plant control,adaptive signal processing, time series prediction, engine diagnostics etc. (for example see the recent specialissue on dynamically-driven recurrent neural networks [10]). For enhanced performance, some of these neuralnetwork algorithms are mapped directly into VLSI designs [20, 28].Neural networks readily enhance their performance by having a priori knowledge about the problem tobe solved encoded or used in the neural network [8, 27]. This work discusses how a priori �nite state au-tomata rules can be encoded into a recurrent neural network with sigmoid activation neurons in such a waythat arbitrary long string sequences are always correctly recognized - a stable encoding of rules. Such ruleencoding has been shown to speed up convergence time and to permit rule re�nement i.e., correction ofincorrect rules through later training. Thus, this encoding methodology would permit rules to be mappedinto neural network VLSI chips, o�ering the potential of greatly increasing the versatility of neural networkimplementations.1.2 BackgroundRecurrent neural networks can be trained to behave like deterministic �nite-state automata (DFAs) [4, 6, 9,11, 25, 26, 31]. The dynamical nature of recurrent networks can cause the internal representation of learnedDFA states to deteriorate for long strings [32]; therefore, it can be di�cult to make predictions about thegeneralization performance of trained recurrent networks. Recently, we have developed a simple method forencoding partial DFAs (state transitions) into recurrent neural networks [12, 24]. The goal was to demon-strate that prior knowledge can decrease the learning time signi�cantly compared to learning without anyprior knowledge. The training time improvement was `proportional' to the amount of prior knowledge withwhich a network was initialized. Important features of the encoding algorithm are the use of second-orderweights, and the small number of weights that are programmed to achieve the desired network dynamics.When partial symbolic knowledge is encoded into a network in order to improve training, programming asfew weights as possible is desirable because it leaves the network with many unbiased adaptable weights.This is important when a network is used for domain theory revision [19, 27, 30], where the prior knowledgeis not only incomplete, but may also be incorrect [13, 22].Methods for constructing DFAs in recurrent networks where neurons have hard-limiting discriminant func-tions have been proposed [1, 18, 21]. This paper is concerned with neural network implementations of DFAswhere continuous sigmoidal discriminant functions are used.Stability of an internal DFA state representation implies that the output of the sigmoidal state neuronsassigned to DFA states saturate at high gain; a constructed discrete-time network thus has stable periodic2

orbits. A saturation result has previously been proven for continuous-time networks [14]; for su�ciently highgain, the output along a stable limit cycle is saturated almost all the time. There is no known analog of thisfor stable periodic orbits of discrete-time networks. The only known stability result asserts that for a broadclass of discrete-time networks where all output neurons are either self-inhibiting or self-exciting, outputs atstable �xed points saturate at high gain [15]. Our proof of stability of an internal DFA state representationestablishes such a result for a special case of discrete-time recurrent networks.Our method is an alternative to an algorithm for constructing DFAs in recurrent networks with �rst-orderweights proposed by Frasconi et al. [6, 7]. A short introduction to �nite-state automata will be followed bya review of the method by Frasconi et al. We will prove that our method can implement any deterministic�nite-state automaton in second-order recurrent neural networks such that the behavior of the DFA and theconstructed network are identical. Finally, we will compare DFA encoding algorithm with other methodsproposed in the literature.2 FINITE STATE AUTOMATARegular languages represent the smallest class of formal languages in the Chomsky hierarchy [16]. Regularlanguages are generated by regular grammars. A regular grammarG is a quadruple G =< S;N; T; P > whereS is the start symbol, N and T are non-terminal and terminal symbols, respectively, and P are productions ofthe formA! a or A! aB where A;B �N and a � T . The regular language generated by G is denoted L(G).Associated with each regular language L is a deterministic �nite-state automaton (DFA) M which is anacceptor for the language L(G), i.e. L(G) = L(M). DFA M accepts only strings which are a member of theregular language L(G). Formally, a DFA M is a 5-tuple M =< �; Q;R; F; � > where � = fa1; : : : ; amg isthe alphabet of the language L, Q = fq1; : : : ; qng is a set of states, R�Q is the start state, F � Q is a setof accepting states and � : Q��! Q de�nes state transitions in M . A string x is accepted by the DFA Mand hence is a member of the regular language L(M) if an accepting state is reached after the string x hasbeen read by M . Alternatively, a DFA M can also be considered a generator which generates the regularlanguage L(M).3 FIRST-ORDER NETWORKSThis section summarizes work done by Frasconi et al. on implementing DFAs in recurrent neural networks.For details of the algorithms and the proofs see [6, 7]. The work in [7] is an extension of [6] which restrictedthe class of automata that could be encoded into recurrent networks to DFAs without cycles (except self-3

loops). The authors were focusing on automatic speech recognition as an application of implementing DFAsin recurrent neural networks. The constructed recurrent network becomes part of a K-L(priori-Knowledgeand Learning) architecture consisting of two cooperating subnets devoted to explicit and learned rule repre-sentation, respectively, and whose outputs feed into a third subnet that computes the external output.Each neuron in the �rst-order network computes the following function:S(t+1)i = �(�i(t)) = tanh(�i(t)2); �i(t) =Xj VijS(t)j +Xk WikI(t)k ; (1)where S(t)j and I(t)k represent the output of other state neurons and input neurons, respectively, and Vij andWik are their corresponding weights. For convenience of implementing a DFA in a recurrent network, a unaryencoding is used to represent both inputs and DFA states; the state vectors representing successive DFAstates q(t) and q(t+1) have a Hamming distance of 1. This requires a transformation of the original DFA intoan equivalent DFA with more states which is suitable for the neural network implementation. In addition tothe recurrent state neurons, there are three feed-forward layers of continuous state neurons that are used toconstruct the DFA state transitions. These continuous neurons implement boolean-like AND and OR func-tions by constraining the incoming weights. When a DFA state transition �(qj; ak) = qi is performed, theneuron corresponding to DFA state qj switches from a high positive to a low negative output signal and theneuron corresponding to DFA state qi changes its output signal from a low negative to a high positive value.An example of a DFA and its implementation in a recurrent network are shown in �gures 1 and 2, respec-tively. The DFA in �gure 1a is modi�ed such that the state vectors of adjacent DFA states have Hammingdistance 1. This can be achieved by introducing a temporary state between any two states whose Hammingdistance is larger than 1; the code of that temporary state becomes the logical OR of the two original DFAstates. Further modi�cations to the original DFA may be necessary prior to constructing a recurrent net-work: Consider two mutually consecutive DFA states qi and qj with �(qi; ak) = qj and �(qj; ak) = qi; thenthe introduction of temporary states leads to ambiguity. This ambiguity can be resolved by augmentingthe number of DFA states. Applying these modi�cations to the DFA shown in �gure 1a results in the DFAshown in �gure 1b.The recurrent network implementation of that DFA is shown in �gure 2. The main characteristic of theconstructed neural networks is the variable duration of the switching of state neurons, which is controlled bythe self-recurrent weights Wii and the input from other neurons. This is a desired property for the intendedapplication. The authors prove that their proposed network construction algorithm can implement any DFAwith n states and m input symbols using a network with no more than 2mn �m + 3n continuous neuronsand no more than m(n2 +m + 5n� 5) + 6n weights.4

1

2

3

1

2

3

4

5

6

(a) (b)Figure 1: Example of DFA Modi�cation: (a) A DFA with 3 input symbols; state 1 is the start state,state 3 is the only accepting state. (b) The original DFA (a) has been modi�ed such that the codes ofadjacent DFA states have Hamming distance 1 and any ambiguities due to mutually consecutive states havebeen removed.
a

2
a

3
a1

external input neurons

state neurons

neural AND function

neural AND function

neural OR function

unit delay

Figure 2: Example of First-Order Network Construction: The non-recurrent neurons computeboolean-like AND and OR functions. Signals along recurrent feedback connections are delayed by one timestep. The weights are computed by solving linear constraints whose solutions guarantee that the neuronscompute boolean-like AND- and OR-functions and desired state changes of the recurrent neurons.5

I
t
k

W
ijk

Si
t+1

S0
t+1

unit delay

Figure 3: Second-Order Network: The external inputs are encoded across the input neurons Itk. Thevalues of the state neurons Stj are fed back in parallel through a unit delay prior to the presentation ofthe next input symbol. The weighted sums of products StjItk (denoted by
), are fed through a sigmoidaldiscriminant function � () to compute the next network state St+1i .4 SECOND-ORDER NETWORKSThe algorithm used here to construct DFAs in networks with second-order weights has also been used toencode partial prior knowledge to improve convergence time [12, 24], and to perform rule correction [13, 22].4.1 Network ConstructionWe use discrete-time, recurrent networks with weights Wijk to implement DFAs. A network accepts atime-ordered sequence of inputs and evolves with dynamics de�ned by the following equations:S(t+1)i = � (�i(t)) = 11 + e��i(t) ; �i(t) = bi +Xj;k WijkS(t)j I(t)k ; (2)where bi is the bias associated with hidden recurrent state neurons Si; Ik denotes the input neuron for symbolak and Wijk is the corresponding weight (�gure 3). The product S(t)j I(t)k directly corresponds to the statetransition �(qj ; ak) = qi. The goal is to achieve a nearly orthonormal internal representation of the DFAstates with the desired network dynamics. For the purpose of illustration, we assume that a unary encodingis used for the input symbols. A special neuron S0 represents the output (accept/reject) of the network afteran input string has been processed. Given a DFA with n states and m input symbols, a network with n+1recurrent state neurons and m input neurons is constructed. The algorithm consists of two parts (�gure4): Programming weights of a network to re
ect DFA state transitions �(qj ; ak) = qi and programming the6

output of the response neuron for each DFA state. Neurons Sj and Si correspond to DFA states qj and qi,respectively. The weightsWjjk,Wijk,W0jk, and biases bi are programmedwith weight strength H as follows:Wijk = +H if �(qj; ak) = qi (3)Wjjk = 8<: +H if �(qj ; ak) = qj�H otherwise (4)W0jk = 8<: +H if �(qj; ak) � F�H otherwise (5)bi = �H=2 for all state neurons Si (6)For each DFA state transition, at most three weights of the network have to be programmed. The initialstate S0 of the network is S0 = (S00 ; 1; 0; 0; : : : ; 0)The initial value of the response neuron S00 is 1 if the DFA's initial state q0 is an accepting state and 0otherwise. The network rejects a given string if the value of the output neuron St0 at the end of the stringis less or equal 0.5; otherwise, the network accepts the string.With the above DFA encoding algorithm, equation (2) governing the dynamics of a constructed recurrentneural network takes on the special formSti = h(xi;H) = 11 + eH(1�2�i(t�1))=2 (7)where �i(t � 1) is the net input to state neuron Si. For the analysis, it will be convenient to use the samenotation h(:) for sigmoidal discriminants with di�erent arguments, i.e. we will use h(:) to stand for thegeneric sigmoidal discriminant function h(x;H) = 11 + eH(1�2x)=2 (8)We will explicitly state what the arguments in various sections of this paper.4.2 Internal State Representation and Network PerformanceWhen a recurrent network is trained to correctly classify a set of example strings, it can be observed thatthe networks' generalization performance on long strings which the network was not explicitly trained ondeteriorates with increasing string length. This deteriorating performance can be explained by observing7

a
k q

i
q

j

(a)

b = − H / 2
j

b = − H / 2
i

W ijk
= + H W = − H

jjk

b = − H / 20

W =−H
0ik

W =+H
0ik

or

a
k

(b)

I
k
t

S
0
t+1

S
0
t Si

t Sj
t

Sj
t+1Si

t+1 I
k
t

Figure 4: Encoding of Rules in Second-Order Networks: (a) A known DFA transition �(qj; ak) = qiis programmed into a network. (b) Recurrent network unfolded over two time steps t and t + 1, i.e. theduration of the state transition �(qj; ak) = qi. The insertion algorithm consists of two parts: Programmingthe network state transition and programming the output of the response neuron. Neurons Si and Sjcorrespond to DFA states qi and qj, respectively; Ik denotes the input neuron for symbol ak. Programmingthe weights Wijk;Wjjk and biases bi and bj as shown in the �gure ensures a nearly orthonormal internalrepresentation of DFA states qi and qj (active/inactive neurons are illustrated by shaded/white circles).The value of the weight W0jk connected to the response neuron S0 depends on whether DFA state qi is anaccepting or rejecting state. H denotes the rule strength. The operation Si � Ik is shown as
.that the internal DFAstate representation becomes unstable with increasing string length due to the net-work's dynamical nature and the sigmoidal discriminant function. This phenomenon has also been observedby others [3, 29, 32].We encoded a randomly generated, minimized 100-state DFA with alphabet � = f0; 1g into a recurrentnetwork with 101 state neurons. The graph in �gure 5 shows the generalization performance of the networkconstructed with varying rule strength H = f0:0; 0:1; 0:2; : : :; 7:0g on randomly chosen 1000 strings each oflength 1000. At the end of each string, the network's classi�cation was '1' (member of the regular language)if S10000 > 0:5, and '0' (not a member of the regular language) otherwise. We observe that the network per-formance monotonically improves with increasing value of H and that the network makes no classi�cationerrors for H > 6:3. The following analysis will show why this is the case.5 ANALYSISWhether or not a constructed second-order recurrent network implements a desired DFA, i.e. whether theoutput of the the network and the DFA are identical for all input strings, depends on the value of H. Thenetwork dynamics preserves the internal nearly orthonormal DFA state representation only if the weights8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7

m
is

cl
as

si
fie

d
st

rin
gs

 (
x

10
0%

)

HFigure 5: Network Classi�cation Performance: The network classi�cation performance on a data setas a function of the rule strength H (in 0.1 increments) is shown. The data set consisted of 1000 randomlychosen strings of length 1000; their labels were assigned by a randomly generated 100-state DFA. Theclassi�cation performance is poor for small values of the rule strength H. The network's performancedramatically improves for 5 < H < 6 to perfect classi�cation for H > 6:3.are programmed such that the outputs of all state neurons are close to 0 and 1, respectively. This calls forlarge values of the rule strength H. Our experiment has shown that H > 6:3 was su�cient for a particularlarge network to classify long strings, i.e. the �nite-state dynamics remained su�ciently stable and allowedthe network to correctly classify strings based on its state after 1,000 time steps. The goal of this analysis isto demonstrate that a network's �nite-state dynamics can be made stable with �nite weight strength H forstrings of arbitrary length and arbitrary DFAs.5.1 OverviewWhat follows is a description of the analysis and proofs in this section.There exist two kinds of signals in a network that implements a given DFA: At any given time step, exactlyone recurrent neuron which represents the current DFA state has a high output signal; that high signal drivesthe output state change of itself and at most one other recurrent neuron at the next time step. Low outputsignals of all other recurrent neurons act as perturbations on the �nite-state dynamics, i.e. on the intendedorthonormal internal DFA representation. Thus, we can view the state changes that neurons undergo whilea network is processing a string as component-wise iterations of the discriminant function (section 5.2). Thekey to our DFA encoding algorithm is the use of the sigmoidal discriminant function, in particular its con-9

vergence toward stable �xed points under iteration. Thus, we discuss in section 5.3 some relevant propertiesof the sigmoidal discriminant function.In order to quantitatively assess the perturbation caused by the low signals, we analyze in section 5.4 allpossible neuron state changes, i.e. neuron state changes from low output to high output, high output to highoutput, high output to low output, and low output to high output. Two of these transition types further sub-divide into separate cases for total of six types of neuron state changes. For a worst case analysis, it will su�ceto consider only two of the six cases, by observing that stability of the internal DFA state representation forthese two cases implies stability of low and high signals for all types of neuron state transitions (section 5.5).In section 5.6, we derive upper and lower bounds for low and high signals, respectively, for arbitrary stringlengths. These bounds are obtained by assuming the worst case of maximal perturbation of the desired�nite-state dynamics, i.e. all neurons receive low signals as inputs from all other neurons. The bounds arethe two stable �xed points of the sigmoidal discriminant function. The weight strength H must be chosensuch that low signals converge toward the low �xed point and high signals converge toward the high �xedpoint. They represent the worst cases, i.e. low and high signals are usually less and greater than the lowand high �xed points, respectively.In order for a network to implement the desired �nite-state dynamics, it will su�ce to require that thetotal neuron input never exceed or fall below a certain threshold for low and high signals, respectively. Insection 5.7, we derive conditions in the form of upper and lower bounds for the values of low and high �xedpoints, respectively, of the discriminant function which guarantee stable �nite-state dynamics for arbitrarystring length; the former will depend on the network size, whereas the latter is independent of the networksize.In general, the conditions of section 5.7 are too strict, i.e. a network will correctly classify strings of arbitrarylength for a much smaller value of the weight strength H. In section 5.8, we relax the worst case conditionwhere each neuron receives inputs from all other neurons by limiting the number of neurons from which allneurons receive inputs. The proof will proceed as in the worst case analysis.Finally in section 5.9, we discuss the case of fully recurrent networks where only a small subset of weightsare programmed to +H or �H and all other second-order weights are initialized to random values drawnfrom an interval [�W;W] with arbitrary distribution. We give implicit bounds on the size of W for givenweight strength H and network size that guarantee correct string classi�cation. A comparison of our DFAencoding algorithm with other methods that have been proposed in the literature and open problems for10

further research conclude this section.5.2 Network Dynamics as Iterated FunctionsWhen a network processes a string, the state neurons go through a sequence of state changes. The networkstate at time t is computed from the network state at time t � 1, the current input and the weights. Sincethe discriminant function h(:) is �xed, these network state changes can be represented as iterations of h(:)for each state neuron: Sti = ht(xti;H) = 8<: S0i t = 0h(ht�1(xt�1i ;H);H) t > 0 (9)A network will only correctly classify strings of arbitrary length if its internal DFA state representationremains su�ciently stable. Stability can only be guaranteed if the neurons are shown to operate near theirsaturation regions for su�ciently high gain of the sigmoidal discriminant function h(:). One way to achievestability is thus to show that the iteration of the discriminant function h(:) converges toward its �xed pointsin these regions, i.e. points for which we have i.e. h(x;H) = x. This observation will be the basis fora quantitative analysis which establishes bounds on the network size and the weight strength H whichguarantee stable internal representation for arbitrary DFAs.5.3 Properties of Sigmoidal DiscriminantsWe present some useful properties of the sigmoidal discriminant function h(x;H) = h(x;H) = 11+eH(1�2nx)=2since this special form of the discriminant will occur throughout the remainder of this paper.First, we de�ne the concept of �xed points of a function [2]:De�nition 5.3.1 Let f : X ! X be a mapping on a metric space (X, d). A point xf 2 X such thatf(xf) = xf is called a �xed point of the mapping.We are interested in a particular kind of �xed point:De�nition 5.3.2 A �xed point xf is called stable if there exists an interval I =]a; b[2 X with xf 2 I suchthat the iteration of f converges toward xf for any start value x0 2 I.Continuous functions f : X ! X have the following useful property:Theorem 5.3.1 (Brouwer's Fixed Point Theorem) : Under a continuous mapping f : X ! X, thereexists at least one �xed point.Thus, the function h(:) has the following property: 11

Corollary 5.3.1 The sigmoidal function h(:) has at least one �xed point.The following lemma describes further useful properties of the function h(:):Lemma 5.3.1 (1) h(x;H) is monotonically increasing(2) limx!�1h(x;H) = 0 and limx!1h(x;H) = 1(3) h0(12n;H) = Hn4(4) h0(x;H) < h0(12n;H) for x 6= 12nProof:(1) We have h0(x;H) = nHeH(1�2x)=2(1 + eH(1�2x)=2)2 which is positive for any choice of x.(2) The term eH(1�2x)=2 goes to 0 as x goes to 1. Thus, h(x;H) asymptotically approaches 1. Simi-larly, eH(1�2x)=2 goes to 1 as x goes to �1. Thus, h(x;H) asymptotically approaches 0.(3) Substituting 12n for x, it follows that h0(12n;H) = Hn4 .(4) We compute h00(z;H) by computing the derivative of h0(x;H). For reasons of simplicity, we setz = H(1� 2nx)=2 and obtain h00(z;H) = nH(ez � e3z)(1 + e2z)2In order to �nd the maximum of h0(z;H), we set h00(z;H) = 0 and obtain z = 0. Solving for x we�nd a maximum of h0(x;H) for x = 12n . We will prove the following conjecture in section 5.6:Conjecture 5.3.1 There exists a value H�0 (n) such that for any H > H�0 (n), h(:) has three �xed points0 < ��h < �0h < �+h < 1.The �xed points of h(:) have the following useful property:Lemma 5.3.2 If the function h(x;H) has three �xed points ��h < �0h < �+h , then the �xed points ��h and�+h are stable.Proof: The lemma is proven by de�ning an appropriate Lyapunov function P(.) and showing that P (:)decreases toward the minima ��h and �+h under the iteration hp(x;H) [7]:Let P (xi) = (xi � �+h)2. It follows that �P decreases only if xi approaches the �xed point �+h . To seethis, we compute�P = P (h(xi;H))� P (xi) = (h(xi;H)� �+h)2 � (xi � �+h)2 = (h(xi;H) + xi � 2�+h)(h(xi;H)� xi).12

If xi > h(xi;H) > 0, then xi > �+h . Therefore, the �rst factor is positive and consequently �P < 0.Conversely, if 0 < xi < h(xi;H) then xi < �+h and h(xi;H) < �+h . Therefore, the �rst factor is negative andwe have �P < 0 again. Hence, the stability of �+h follows for each xi 2 (�0h;1). A similar argument can bemade for the stability of the other �xed point ��h .For the remainder of this paper, we are mainly interested in the two stable �xed points. The followinglemma concerning stable �xed points will be useful:Lemma 5.3.3 A point x is a stable �xed point of a continuous function f : X ! X if and only if jf 0(x)j < 1.Proof: Let �f be a stable �xed point of some continuous function f . Choose some value x0 su�ciently closeto �f . By de�nition of the stable �xed point �f , we have limt!1 f t(x0) = �f . However, that is only possi-ble if the distance jxt � �j decreases monotonically under the iteration of f which requires jf 0(�f � ")j < 1and jf 0(�f + ")j < 1 for an arbitrary small "-neigborhood of �f . Conversely, with jf 0(�f � ")j < 1 andjf 0(�f + ")j < 1, the distance jxt � �j decreases monotonically under the iteration of f ; in the limit, the�xed point �f is reached.The above lemma has the following corollary:Corollary 5.3.2 The iteration of the function h(:) converges monotonically to one of its �xed points �h.Proof: Since ��h and �+h are stable �xed points of the function h(:), we have ��h0(��h)�� < 1 and ��h0(�+h)�� < 1.Furthermore since h(:) is a monotone continuous function, we have 0 < h0(��h) < 1 and 0 < h0(�+h) < 1.This precludes the possibility of alternating convergence toward the �xed point �h. According to lemma5.3.2, the �P (x) only decreases if the iteration h(x) approaches a �xed point �h. This concludes the proofof the corollary.The following lemma concerning convergence behavior of h(:) will be useful:Lemma 5.3.4 If the function h(:) has three �xed points, then the iteration h0; h1; h2; : : : of the function h(:)converges to the following �xed points: limt!1ht = 8>>><>>>: ��h h0 < �0h�0hh0 = �0h�+h h0 > �0h (10)Proof: We assume that h(:) has three �xed points. Convergence toward �0h for h0 = �0h is trivial since �0h isa �xed point of h(:). Since h(:) is a bounded function with limx!�1 h(:) = 0 and limx!1 h(:) = 1 (lemma5.3.1), it follows that x > h(x;H) for x 2] � 1; ��h][]�0h; �+h [and x < h(x;H) for x 2]��h ; �0h[[]�+h ;1[.13

According to corollary 5.3.2,, iteration of h(:) converges monotonically to one of its �xed points. Thus, theiteration h0; h1; h2; : : : of h(:) has to converge toward ��h and �+h for h0 < �0h and h0 > �0h, respectively.5.4 Quantitative Analysis of Network DynamicsFor the remainder of this discussion, we will use Si and Sti to denote the neuron corresponding to DFA stateqi and the output value (or signal) of neuron Si, respectively. Under the assumption that all neurons operatenear their saturated regions, each neuron can send two kinds of signals to other neurons:(1) High signals: If neuron Sti represents the current DFA state qi, then Sti will be high (St: : high).(2) Low signals; Neurons Stj which do not represent the current DFA state have a low output (St: :low).Recall that the arguments of the discriminant function h(x;H) were the sum of unweighted signals x andthe weight strength H. We now expand the term x to account for the di�erent kinds of signals that arepresent in a neural DFA.We now de�ne a new function h�(xi;H) which takes the residual inputs into consideration. let �xi denotethe residual neuron inputs to neuron Sti . Then, the function h�(xi;H) is recursively de�ned asht�(xti;H) = 8<: 0 t = 0h(ht�1� (xt�1i ;H) + �xti;H) t > 0 (11)The initial values for low and high signals are xi = 0 and xi = 1, respectively.The magnitude of the residual inputs �xi depend on the coupling between recurrent state neurons. Neuronswhich are connected to a large number of other neurons will receive a larger residual input than neuronswhich are connected to only a few other neurons. Consider the neuron Sm which receives a residual input�xm from the most number r of neurons, i.e. �xi � �xm. In order to show network stability, it su�ces toassume the worst case where all neurons receive the same amount of residual input for given time index t,i.e. �xtm. This assumption is valid since the initial value for all neurons except the neuron correspondingto a DFA's start state is 0.Consider the DFA state transition �(qj; ak) = qi; let neurons Si and Sj correspond to DFA states qi and qj,respectively, and assume that �(qi; ak) 6= qi. There may be other states ql 2 fql1 ; : : : ; qlmg which have qi astheir successor state (�gure 8a): �(ql; ak) = qi. Thus, neurons Sl are connected to neuron Si via weightsWilk = H and neuron Si is connected to itself via weight Wiik = �H. Since all network signals Sti lie in theinterval]0; 1[, neuron Si receives input not only from neuron Sj , but also small, but not negligible inputs14

from neurons Sl at the time the network executes the DFA state transition �(qj; ak) = qi. Signals Sti and Stjare low and high, respectively, prior to executing �(qj; ak) = qi; after execution, St+1i will be a high signal,whereas St+1j will be a low signal. Thus, the equation governing the neuron state change low Sti ! high St+1ican be expressed as: St+1i = h(Stj + XSl2Ci;k Stl � Sti ;H) (Stj : high; Stl ; Sti : low) (12)where Ci;k = fSl j Wilk = H; l 6= i; l 6= jg (13)Notice the term �Sti which weakens the high signal St+1i . At the same time, the terms Stl strengthen the highsignal if there exist DFA state transitions �(ql; ak) = qi. For reasons of clarity, we simpli�ed the productsStj � Itk to Stj since we have Itx = �xk where � denotes the Kronecker delta.For the case shown in �gure 8b where there exists a DFA transition �(qi; ak) = qi (self-loop) which isnot the DFA state transition that the network currently executes, everything remains the same as aboveexcept that neuron Si is connected to itself via weight Wiik = H. This leads to a slightly di�erent form ofthe equation governing the neuron state change low Sti ! high St+1i :St+1i = h(Stj + XSl2Ci;k Stl + Sti ;H) (Stj : high;Sti ; Stl : low) (14)For the case where the current DFA state transition is �(qi; ak) = qi (self-loop, �gure 8c), the output ofneuron Si remains high; the equation governing the neuron state change high Sti ! high St+1i becomesSt+1i = h(Sti + XSl2Ci;k Stl ;H) (Sti : high; Stl : low) (15)The neuron Sj will change from a high signal Stj to a low signal St+1j when the network executes the DFAstate transition �(qj; ak) = qi with qj 6= qi (�gure 8d). Thus, neuron Sj has necessarily a self-connectingweight Wjjk = �H. The equation governing the neuron state change high Stj ! low St+1j then becomesSt+1j = h(�Stj + XSl2Ci;k Stl ;H) (Stj : high; Stl : low) (16)Under the assumption of a nearly orthonormal internal DFA state representation, the neurons Sl withl 6= i; l 6= j will undergo state changes low Stl ! low St+1l . These neurons may also receive residualinputs from other neurons with low output signals. According to whether neurons Sl have self-connectionsprogrammed to H or �H, the equations governing neuron state changes low Stl ! low St+1l becomeSt+1l = h(Stl + XSl02Ci;k Stl0 ;H) (Stl ; Stl0 : low) (17)St+1l = h(�Stl + XSl02Ci;k Stl0 ;H) (Stl ; Stl0 : low) (18)The above equations account for all possible contributions to the net input of all state neurons.15

iq

j
q

q
lm

1
q

l

a k

a k

a k

a kiq

j
q

q
lm

1
q

l

a k

a k

a k

a k q
k

t

t+1
t+1

t

q
lm

a k

a k

1
q

l a k t

t+1

q

q
lm

a k

a k q

t

t+1

q

q
lm

a k

a k

1
q

l a k

q

q
lm

a k

a k q
k

t

t+1

a k
t

t+1

a k

(a) (b)

(c) (d)

(e) (f)

l
l

q i

q i
q i

j
q j

q

j

1
q

l a k

i

1
q

l a k

Figure 6: Neuron State Changes and Corresponding DFA State Transitions: The �gure (a)-(f)illustrate the DFA state transitions corresponding to all possible state changes of neuron Si; the DFA state(s)participating in the current transitions are marked with t and t+ 1. (a) low ! high (no self-loop on qi) (b)low ! high (with self-loop on qi) (c) high! high (necessarily a self-loop on qi) (d) high! low (necessarilyno self-loop on qi) (e) low ! low (with self-loop on ql) (f) low ! low (no self-loop on ql). Notice that, eventhough state qi is neither the source nor the target of the current state transition in cases (e) and (f), thecorresponding state neuron Si still receives residual inputs from state neurons Sl1 ; : : : ; Slm .16

5.5 Simplifying ObservationsWe will make some observations regarding the equations (12)-(18) which will simplify the stability analysisfor recurrent networks.For the remainder of this discussion, it will be convenient to use the terms principal and residual inputs:De�nition 5.5.1 Let Si be a neuron with low output signal Sti and Sj be a neuron with high output signalStj . Furthermore, let fSlg and fSl0g be sets of neurons with output signals fStl g and fStl0g, respectively, forwhich Wilk 6= 0 and Wil0k 6= 0 for some input symbol ak and assume Sj 2 fSlg. Then, neurons Si and Sjreceive principal inputs of opposite signs from neuron Sj and residual inputs from all other neurons Sl andSl0 , respectively, when the network executes the state transition �(qj; ak) = qi.Notice that neuron Si may receive a residual input signal Sti if there exists a DFA state transition �(qi; ak) = qiwhich is not the currently executed transition. Equations (12)-(18) clearly show that principal inputs arethe high signals that drive network state changes whereas residual inputs are the low signals that perturbthese ideal network state changes and can lead to the instability of DFA encodings.Consider equations (12) and (14) governing neuron state changes low Sti ! high St+1i . In both equa-tions, the principal inputs and the terms and the number of terms in the two sums are identical. They onlydi�er with respect to the sign of the residual input Sti . Thus, the high signal St+1i in equation (12) will beweaker than St+1i in equation (14). Hence, if neurons can uphold the condition for stable DFA encodingsunder state change equation (12), they can certainly also satisfy that condition under state change equation(14) and no separate analysis is necessary.Now consider the case where neurons undergo state changes high Sti ! high St+1i (equation (15)). Un-der the stated assumptions, that equation is identical with equation (14) except for the index of the highsignal. Thus, the above argument also applies to equation (15).Now consider the case where neurons undergo state changes high Sti ! low; St+1i (equation (16)). Thatequation is identical with equation (18) except that Sti is smaller than Stl (they are both negative) and thusresults in a stronger low signal St+1i than in equation (18). Thus, stability of low signals for state changeequation (18) implies stability of low signals for equation (16)).Consider equations (18) and (17). In both equations, the terms and the number of terms in the two sumsare again identical, but the residual inputs Sti have opposite signs. Since the residual input Sti is negativein equation (18), the low signal St+1i will be stronger than the low signal St+1i in equation (17). Hence,17

if neurons can uphold the condition for stable DFA encodings under state change equation (17), they cancertainly also satisfy that condition under state change equation (18) and no separate analysis is necessary.Thus, the stability analysis for all possible neuron state changes reduces to analyzing stability under neuronstate changes governed by the following two equations:low Sti ! low St+1i : St+1i = h(Sti + XSl2Ci;k Stl ;H) (Sti ; Stl : low) (19)low Sti ! high St+1i : St+1i = h(Stj + XSl2Ci;k Stl � Sti ;H) (Stj : high; Stl ; Sti : low) (20)5.6 Worst Case AnalysisIn order to show network stability, it su�ces to assume the worst case where all neurons receive the sameamount of residual input for given time index t, i.e. �xt.We can quantify �xt for the case of low signals as follows:Lemma 5.6.1 The low signals are bounded from above by the �xed point ��f of the function f8<: f0 = 0f t+1 = h(n � f t) (21)i.e. we have �xt+1i = n � f t since x0i = 0 for low signals in equation (13).Proof: We prove the lemma by induction on t. For t = 1, we have h0�(x0i ;H) = 0 = f0 since the ini-tial output of all neurons except the neuron corresponding to the initial DFA state is equal to 0. Thisestablishes the basis of the induction.Assume the hypothesis is correct for t > 1, i.e. all neurons with low outputs have value f t. To see that thehypothesis holds for t+ 1, we observe that the input to all neurons which execute a state transition of typelow ! low during time step t + 1 is in the worst case equal to n times the values of the low signals at thecurrent time step t which is f t. Hence the output of all neurons which do not correspond to the target DFAstate of the DFA state transition at time t+ 1 is equal toht+1� = h(ht�(xti;H) + �xti;H) = h(n � ht�(x;H);H) = h(n � f t)18

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

x

n=1

n=2

n=4

n=10

u=0.0

u=0.1

u=0.4

u=0.9Figure 7: Fixed Points of the Sigmoidal Discriminant Function: Shown are the graphs of thefunction f(x; n) = 11+eH(1�2nx)=2 (dashed graphs) for H = 8 and n = f1; 2; 4; 10g and the functionp(x; u) = 11+eH(1�2(x�u))=2 (dotted graphs) for H = 8 and u = f0:0; 0:1; 0:4;0:9g. Their intersection withthe function y = x shows the existence and location of �xed points. In this example, f(x; n) has three�xed points for n = f1; 2g, but only one �xed point for n = f4; 10g and p(x; u) has three �xed points foru = f0:0; 0:1g, but only one �xed point for u = f0:6; 0:9g.since the principal input ht�(xti;H) to neurons whose output remains low is equal to zero. This concludesthe proof of the lemma.It remains to be shown that, for given n, there exists a value H > H�0 (n) which makes �x su�cientlysmall such that f t(x;H) converges toward its �xed points ��f . If we choose H < H�0 (n), then f t(x;H) con-verges toward its only �xed point �+f ; in this case, the nearly orthonormal internal DFA state representationis no longer maintained and, as a consequence, such a network will generally misclassify strings.It is easy to see that the function to be iterated in equation (20) is f(x; n) = 11 + e(H=2)(1�2nx) . Thegraphs of the function are shown in �gure 7 for di�erent values of the parameter r. With these properties,we can quantify the value H�0 (n) such that for any H > H�0 (n), f(x; n) has two stable �xed points. The lowand high �xed points ��f and �+f will be the bounds for low and high signals, respectively. The larger n, thelarger H must be chosen in order to guarantee the existence of two stable �xed points. If H is not chosensu�ciently large, then f t converges to a unique �xed point 0:5 < �f < 1. The following lemma expresses aquantitative condition which guarantees the existence of two stable �xed points:Lemma 5.6.2 The function f(x; n) = 11 + e(H=2)(1�2nx) has two stable �xed points 0 < ��f < �+f < 1 if His chosen such that H > H�0 (n) = 2(1 + (1� x) log(1�xx))1� xwhere x satis�es the equation 19

n = 12x(1 + (1� x) log(1�xx))The contour plots in �gure 7 show the relationship between H and x for various values of n. If H is cho-sen such that H > H0(n), then two stable �xed points exist; otherwise, only a single stable �xed point exists.Proof: Fixed points of the function f(x; n) satisfy the equation 11+e(H=2)(1�2nx) = x. Given the parame-ter n, we must �nd a minimum value H�0 (n) such that f(x; n) has three �xed points. We can think of x; n,and H as coordinates in a three-dimensional Euclidean space. Then the locus of points (x; n;H) satisfyingthe relation f(x; n) = 11 + e(H=2)(1�2nx) (22)is a curved surface. What we are interested in is the number of points where a line parallel to the x-axisintersects this surface.Unfortunately, equation (21) cannot be solved explicitly for x as a function of n and H. However, itcan be solved for either one of the other parameters, giving the intersections with lines parallel to the n-axisor the H-axis: n = n(x;H) = 12x � log(1�xx)Hx (23)H = H(n; x) = 2 log(1�xx)1� 2nx (24)The contours of these functions show the relationship between H and x when n is �xed (�gure 7). Weneed to �nd the point on each contour where the tangent is parallel to the x-axis, which will indicate wherethe transition occurs between one and three solutions for f(n; x) = x. Solving @n(x;H)@x = 0, we obtain theconditions of the lemma.The number and the location of �xed points depends on the values of n and H. Thus, we write ��f (n;H),�0f (n;H), and �+f (n;H), to denote the stable low, the unstable, and the stable high �xed point, respectively.Similarly, we can quantify high signals in a constructed network:Lemma 5.6.3 The high signals are bounded from below by the �xed point �+g of the function8<: g0 = 1gt+1 = h(gt � f t) (25)Proof: For the basis of the induction proof, we note that the only neuron which has a high signal at timet = 0 is the neuron corresponding to the DFA's start state; its value is initialized to g0 = 1.20

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

H

x

n=1

n=1

n=1.05

n=1.05

n=1.5

n=1.5

n=0.95

n=0.95

n=0.9

n=0.9

n=0.8

n=0.8

n=0.7

n=0.7

n=2

n=2

n=3

n=3

n=5

n=5

n=10

n=10

H (n)0

Figure 8: Existence of Fixed Points: The contour plots of the function f(x; n) = x (dotted graphs)show the relationship between H and x for various values of n. If H is chosen such that H > H0(n) (solidgraph), then a line parallel to the x-axis intersects the surface satisfying f(x; n) = x in three points whichare the �xed points of h(x; n). For illustration purposes, contour plots for positive fractions are also showneven though n can only assume positive integer values in the context of DFA encoding in recurrent neuralnetworks.
21

Assuming the high signal at time step t is equal to gt, we observe that the neuron whose output is tobe driven high on the next time step t + 1 receives in the worst case a high input signal Stj weighted by+H and and a low signal Sti weighted by �H. Thus, the input to a neuron undergoing a state transitionlow ! high receives at time t+1 in the worst case the input gt�f t. Since the iteration f t converges towarda �xed point �f , the sequence g0 > g1 > g2 > : : : corresponding to the high signals at subsequent time stepsconverges monotonically toward a �xed point �g. This concludes the proof of this lemma.Notice that the above recurrence relation couples f t and gt which makes it di�cult if not impossible to�nd a function g(x, n) which when iterated gives the same values as gt. However, we can bound the sequenceg0; g1; g2; : : : from below by a recursively de�ned function ~gt - i.e. 8t : ~gt � gt - which decouples gt from f t.Lemma 5.6.4 Let �f denote the �xed point of the recursive function f , i.e. limt!1 f t = �f . Then therecursively de�ned function ~g 8<: ~g0 = 1~gt+1 = h(~gt � �f) (26)has the property that 8t : ~gt � gt.It is obvious that the function ~g(x; u) = 11 + eH(1�2(x�u))=2 is being iterated in equation (25). The graph ofthe function ~g(x; u) for some values of u are shown in �gure 7. The lemmas and corollaries of section 5.3also apply to the function ~g(x; u).Proof: We prove this lemma by induction on t. For t = 0, we have ~g0 = g0. Let the induction hypothesis betrue for t, i.e. 8ti � t : ~gt � gt. By the induction hypothesis, we have1� 2(~gt � �f) � 1� 2(gt � �f) (27)However, f t � �f since the sequence f0; f1; f2; : : : is monotonically increasing (corollary 5.3.2) . Thus, weobserve that 1� 2(gt � �f) � 1� 2(gt � f t) (28)It thus follows that ~gt+1 � gt+1. By the induction principle, we thus have 8t : ~gt � gt.The following corollary to lemma 5.3.2 becomes useful:Corollary 5.6.1 The function h(x;H) = 11 + eH(1�2x)=2 has three �xed points for H > 4.Proof: This represent the special case for n = 1. From lemma 5.3.1, it follows that h0(0:5;H) = H4 > 1 forH > 4. Thus, h(:) crosses the function y = x three times and thus as three �xed points two of which arestable (lemma 5.3.2). 22

The following lemma establishes a useful relationship between the functions g(x; n) and ~g(x; u):Lemma 5.6.5 Let the function ~g(x; u) have two stable �xed points and let 8t : ~gt � gt. Then the functiong(x; n) has also two stable �xed points.Proof: We have established in lemma 5.6.4 that ~gt � gt. Because the sigmoidal function h is monotonicallyincreasing and bounded, it also follows that gt � h(:). Thus we have ~gt � gt � h(:), i.e. the function g()is bounded from below and above by ~g and h(:), respectively. Since h(:) has two stable �xed points for anyH > 4, it follows that g(:) also has two stable �xed points if ~g has two stable �xed points.Since we have decoupled the iterated function gt from the iterated function f t by introducing the iter-ated function ~gt, we can apply the same technique for �nding conditions for the existence of �xed points of~g(x; u) as in the case of f t. In fact, the function that when iterated generates the sequence ~g0; ~g1; ~g2; : : : isde�ned by ~g(x; u) = ~g(x; ��f) = 11 + e(H=2)(1�2(x���f)) = 11 + e(H0=2)(1�2n0x)) (29)with H0 = H(1 + 2��f); n0 = 11 + 2��f (30)Since we can iteratively compute the value of �f for given parameters H and r, we can repeat the originalargument with H 0 and n0 in place of H and r to �nd the conditions under which ~g(n; x) and thus g(n; x)have two stable �xed points. This results in the following lemma:Lemma 5.6.6 The function ~g(x; ��f) = 11 + e(H=2)(1�2(x���f)) has three �xed points 0 < ��~g < �0~g < �+~g < 1if H is chosen such that H > H+0 (n) = 2(1 + (1� x) log(1�xx))(1 + 2��f)(1 � x)where x satis�es the equation 11 + 2��f = 12x(1 + (1 � x) log(1�xx))In practice, only few neurons ever exceed or fall below the �xed points �� and �+, respectively. Fur-thermore, the network has a built-in reset mechanism which allows low and high signals to be strengthened.Low signals Stj are strengthened to g(�H=2) when there exists no state transition �(:; ak) = qj. In thatcase, the neuron Stj receives no inputs from any of the other neurons; its output becomes less than �� sinceg(�H=2) = h(0;H) < ��. Similarly, high signals Sti get strengthened if either low signals feeding into neuronSi on a current state transition �(fqjg; ak) = qi have been strengthened during the previous time step orwhen the number of positive residual inputs to neuron Si compensates for a weak high signal from neurons23

fqjg. Thus only a small number of neurons will have Stj > �� or Stj < �+. For the majority of neurons wehave Stj � �� and Sti � �+ for low and high signals, respectively. Since constructed networks are able toregenerate their internal signals and since typical DFAs do not have the worst case properties assumed inthis analysis, the conditions guaranteeing stable low and high signals are generally much too strong for somegiven DFA.5.7 Network StabilityWe now de�ne stability of recurrent networks constructed from DFAs:De�nition 5.7.1 An encoding of DFA states in a second-order recurrent neural network is called stable ifall the low signals are less than �0f (n;H), and all the high signals are greater than �0g(n;H).We have established in the previous section that the �xed points ��f and �+g are the upper and lower boundsof low and highs signals, respectively. However, the bounds only hold if each neuron receives total inputwhich does not exceed or falls below the values �0f and �0g, respectively (lemma 5.3.4).Consider equation (18). In order for the low signal to remain less than �0f , the argument of h(:) mustbe less than �0f for all values of t. Thus, we require the following invariant property of the residual inputsfor state transitions of the type low ! low:� H2 +H n��f < �0f (31)where we assumed that all low signals have the same value and that their maximum values is the �xed point��f . This assumption is justi�ed since the output of all state neurons with low values are initialized to zero.A similar analysis can be carried out for state transitions of equation (19). The following inequality mustbe satis�ed for : � H2 +H�+g �H��f > �0g (32)where we assumed that there is only one DFA transition �(qj; ak) = qi for chosen qi and ak, and thusPSl2Ci;k = 0.Solving inequalities (30) and (31) for ��f and �+g , respectively, we obtain conditions under which a constructedrecurrent network implements a given DFA. These conditions are expressed in the following theorem:Theorem 5.7.1 For some given DFA M with n states and m input symbols, a sparse recurrent neuralnetwork with n+ 1 sigmoidal state neurons and m input neurons can be constructed from M such that theinternal state representation remains stable if the following three conditions are satis�ed:24

(1) ��f (n;H) < 1n (12 + �0f (n;H)H)(2) �+g (n;H) > 12 + ��f (n;H) + �0g(n;H)H(3) H > max(H�0 (n);H+0 (n))Furthermore, the constructed network has at most 3mn second-order weights with alphabet �w = f�H; 0;+Hg,n+ 1 biases with alphabet �b = f�H=2g, and maximum fan-out 3m.The number of weights and the maximum fan-out follow directly from the DFA encoding algorithm.Stable encoding of DFA state is a necessary condition for a neural network to implement a given DFA.The network must also correctly classify all strings. The conditions for correct string classi�cation areexpressed in the following corollary:Corollary 5.7.1 Let L(MDFA) denote the regular language accepted by a DFA M with n states and letL(MRNN) be the language accepted by the recurrent network constructed fromM . Then, we have L(MRNN) =L(MDFA) if (1) �+g (n;H) > 12(1 + 1n + 2�0g(n;H)H)(2) H > max(H�0 (n);H+0 (n))Proof: For the case of an ungrammatical strings, the input to the response neuron S0 must satisfy thefollowing condition: � H2 �H�+g + (n � 1)H��f < 12 (33)where we have made the usual simpli�cation about the convergence of the outputs to the �xed points ��f and�+g . Furthermore, we assume that the state qi of the state transition �(qj; ak) = qi is the only rejecting state;then the output neuron's residual inputs from all other state neurons is positive, weakening the intendedlow signal for the network's output neuron. Notice that the output neuron is the only neuron which can beforced toward a low signal by neurons other than itself.A similar condition can be formulated for grammatical strings:� H2 +H�+g � (n � 1)H��f > 12 (34)The above two inequalities can be simpli�ed into a single inequality:� 2H�+g + 2(n� 1)H��f < 0 (35)25

Observing that ��f + �+g < 2 and solving for ��f , we get the following condition for the correct output of anetwork: ��f < 2n (36)Thus we have the following conditions for stable low signals and correct string classi�cation:��f < 8>>>><>>>>: 1n (12 + �0f (n;H)H) (dynamics)2n (classi�cation) (37)We observe that 1n (12 + �0fH) > 12nChoosing ��f < 12n thus implies the condition for stable low signals. Substituting 12n for ��f in inequality(36) yields condition (1) of the corollary.5.8 Analysis for Partially Recurrent NetworksAlthough the DFA encoding algorithm constructs a recurrent network with sparse interconnections, theabove analysis was carried out for a fully interconnected network where each neuron receives residual inputsfrom all other neurons, causing maximal perturbation to the stability of the internal DFA representation. Asa result, the condition for stable low signals is rather strict, i.e. we may empirically �nd that a constructednetwork remains stable for values of the weight strength H which is considerably smaller than the valuepredicted by the theory. The question of how H scales with network size is important. The empirical resultsin [23] indicate that H � 6 for randomly generated DFAs independent of the size of the DFA. However, forDFAs where there exists one or several states qi with a large number of states qj for which �(qj ; ak) = qi forsome ak, the value of H scales with the size of the DFA.We will now show how the results of the above stability analysis can be improved by considering the stabilityof networks with sparse interconnections. While the results for stable �nite-state dynamics of the constructednetworks are similar, the result for correct classi�cation of strings becomes independent of the weight valueH.Before we analyze the conditions for stable low and high signals, we introduce the following notations:Let Dik denote the number of states qj that make transitions to state qi for input symbol ak. We furtherde�ne Di = maxfDikg (maximum number of transitions to qi over all input symbols) and D = maxfDig(maximumnumber of transitions to any state over all input symbols). Then, � = D=n denotes the maximumfraction of all states qj for which �(fqjg; ak) = qi. 26

The analysis of the existence of �xed points of section 5.6 obviously also applies to the case of partiallyrecurrent networks with D = �n instead of n as the parameter of the sigmoidal function h(:).Thus, for the case of partially recurrent neural networks, we have the following conditions for stable �nite-state dynamics:Theorem 5.8.1 For some given DFA M with n states and m input symbols, let D denote the maximumnumber of transitions to any state over all input symbols of M , and let � = D=n. Then, a sparse recurrentneural network with n + 1 sigmoidal state neurons and m input neurons can be constructed from M suchthat the internal state representation remains stable if the following conditions are satis�ed:(1) ��f (�n;H) < 1n (12 + �0f (�n;H)H)(2) �+g (�n;H) > 12 + ��f (�n;H) + �0g(�n;H)H(3) H > max(H�0 (�n);H+0 (�n))Furthermore, the constructed network has at most 3mn second-order weights with alphabet �w = f�H; 0;+Hg(H > 4), n+ 1 biases bi = �H=2, and maximum fan-out 3m.Stable encoding of DFA state is a necessary condition for a neural network to implement a given DFA. Thenetwork must also correctly classify all strings. The conditions for correct string classi�cation are expressedin the following corollary:Corollary 5.8.1 For some given DFA M with n states, let D denote the maximum number of transitionsto any state voer all input symbols of M , and let � = D=n. Let L(MDFA) and L(MRNN) denote the reg-ular languages accepted by DFA M and a recurrent neural network constructed from M . Then, we haveL(MRNN) = L(MDFA) if (1) �+g (�n;H) > 12(1 + 1n + 2�0g(�n;H)H)(2) H > max(H�0 (�n);H+0 (�n))Proof: As in the worst case analysis, we obtain the following conditions for stable dynamics and correctstring classi�cation: ��f < 8>>>><>>>>: 1�n (12 + �0f (�n;H)H) (dynamics)2n (classi�cation) (38)27

0
St StSt

j
St

i p
St

q

+W +W +H +W+H +H +W

3 neurons

.

k
I

t

S
t+1
l

D−1 neurons n−(D−1)−2 neuronsFigure 9: Preservation of Low Signals: The �gure shows the input fed into neuron St+1l from all otherneurons for a chosen input symbol. For clarity, the operation Sj � Ik is omitted.We observe that 1�n (12 + �0fH) > 12�n > 12nChoosing ��f < 12n thus implies the condition for stable low signals in partially recurrent networks. Substi-tuting 12n for ��f in inequality (37) yields condition (1) of the corollary.5.9 Analysis for Fully Recurrent NetworksWhen recurrent networks are used for domain theory revision, fully recurrent networks are initialized with theavailable prior symbolic knowledge; partial or complete knowledge can be encoded. In the case of encoding acomplete DFA, a small number of weights are programmed to values +H and �H according to the encodingalgorithm. All other weights are usually initialized to small random values; these weights can be interpretedas noise on the neural DFA encoding. The following de�nition of noisy recurrent networks will be convenient:De�nition 5.9.1 A noisy fully recurrent, second-order recurrent network (or just noisy network) is a con-structed network where all weights wijk that are not programmed to either +H or �H are initialized torandom values drawn from an interval [�W;W] according to some distribtion.Notice that the above de�nition leaves open the possibility that the network is much larger than requiredfor the implementation of a particular DFA. For the remainder of this section, we assume that the smallestpossible network is to be constructed, i.e. there are no neurons which are not needed for the DFA encoding.Furthermore, we make the technical assumption that H > W ; this is reasonable since the neural DFA en-coding algorithms uses the weight strength H to achieve the encoding.An analyis similiar to that of sections 5.6 and 5.7 will examine conditions under which a noisy recurrent net-work can implement a given DFA. Unlike in the case of sparse network, the special response neuron S0 alsodrives the output of other neurons and every recurrent neuron receives residual inputs from all other neurons.28

We will now derive conditions for the preservation of low and high signals in fully recurrent networks.Consider a DFA transition �(qj; ak) = qi. All state neurons Sl which do not correspond to DFA stateqi should be low signals (�gure 9). Assuming the current state is an accepting state, neuron S0 has a highoutput signal and is weighted by +W . Neuron Sj has a high output since it corresponds to the current DFAstate qj; it is also weighted by +W . Neuron Si is low since we are dealing with state transitions of typelow Sti ! low St+1l only; it has a weight +H. There are D � 1 neurons with low outputs and weights +H.The remaining n � (D � 1) � 2 neurons also have low outputs and are weighted by +W . Thus, the worstcase expression for the net input to neuron Sl becomes:�H=2 +WSt0 +WStj +HSti +H(D � 1)Stp +W (n� (D � 1)� 2)Stq (39)We assume that all neurons which are a�ected by a transition of type low! low in receive in the worst casethe same residual input and thus will have equal output signals f tW for all t. Similiarly, we will assume thatthe high output signals of the neuron corresponding to the current DFA state and the signal of a network'soutput neuron are identical and equal to gtW . We can then rewrite equation (38) as�H=2 +WgtW +WgtW +Hf tW +H(D � 1)f tW +W (n� (D � 1) � 2)f tW : (40)Similiarly, we express the worst case for a state transition of type low ! high: For a DFA state transition�(qj; ak) = qi, state neuron Sj has a high output signal Stj and Si should change its output from a low signalSti to a high signa St+1i . In the worst case, neuron Si receives the following net input:�H=2�WSt0 +HStj �WSti +H(D � 1)Stp �W (n� (D � 1)� 2)Stq (41)With the same assumption as above where high signals of the neuron corresponding to the current targetstate and the network's output neuron have the same value gtW , we can rewrite the above equation as�H=2�WgtW +HgtW �Hf tW +H(D � 1)f tW �W (n � (D � 1)� 2)f tW (42)Since network state changes can be interpreted as iterated functions (section 5.2), we can give upper andlower bounds on the low and high signals, respectively, in a noisy fully recurrent network as follows:Lemma 5.9.1 The low and high signals f tW and gtw, respectively, in a noisy neural network are boundedfrom below and above, respectively, by the �xed points of the recursively de�ned functions:8<: f0W = 0f t+1W = h(�H=2 + 2WgtW +HDf tW +W (n�D � 1)f tW)) (43)8<: g0W = 1gt+1W = h(�H=2 + (H �W)gtW +H(D � 2)f tW �W (n�D � 1)f tW) (44)29

The induction proof of the above lemma is similar to the proof of lemmas 5.6.1 and 5.6.2, i.e. we as-sume the worst case where all neurons receive identical residual inputs. As in section 5.2, the existence ofthree �xed points for the functions f tW and gtw are a necessary condition for the stability of DFA encodingsin noisy recurrent networks. However, the above equations couple the low and high signals f tW and gtW ,respectively. This makes a �xed point analysis of these two functions impossible. Therefore, we will makeuse of the following lemma which will allow us to decouple the iterations of low and high signals and thuscarry out the analysis:Lemma 5.9.2 Consider the recursively de�ned function ~f tW :8<: ~f0W = 0~f t+1W = h(�H=2 + 2W +HDf tW +W (n�D � 1)f tW)) (45)If the function ~f tW has two stable �xed points, then so does the function f tW .Proof: The proof is the same as in lemma 5.6.3 and we will not repeat it here. We use the notation~fW (x; n;D;W;H) to denote the function being iterated in this lemma. We note the relationshiph(x;H) = 11 + eH(1�2x)=2) � fW () � ~fW () (46)where equality holds for D = 1 and W = 0. Since h(:) has two stable �xed points for H > 4 (see 5.6.1), itthus follows that fw() has two stable �xed points if ~fW has two stable �xed points.Thus, we can analyze the existence of �xed points of the function f tW indirectly by examining the exis-tence of �xed points of the function ~f tW which is independent of the function gtW . Notice that we use thefunction ~f tW to examine the existence of �xed points of f tW ; for the analysis of network stability, we refer tothe �xed point f tW .Fixed points of the function ~fW (x; n;D;W;H) satisfy the equation~fW (x; n;D;W;H) = 11 + e�(�H=2+2W+(D(H�W)+W (n�1)))x = x (47)Solving the above equation for H, we obtainH(x; n;D;W) = 2 log(1�xx) + xW (n�D) +W (2� x)1� 2xD (48)Solving @H@x) = 0 for n and substituting in the above equation, we have proven the following lemma:30

k
I

t
0

St StSt
j

St
i p

St
q

+H +H

3 neurons

−W +H −H −W −W

.

S
t+1
i

D−1 neurons n−(D−1)−2 neuronsFigure 10: Preservation of High Signals: The �gure shows the input fed into neuron St+1i from all otherneurons for a chosen input symbol. For clarity, the operation Sj � Ik is not shown.Lemma 5.9.3 The function ~fW (x; n;D;W;H) = 11 + e�(�H=2+2W+(D(H�W)+W (n�1))x) has three �xed points0 < ��fW < �0fW < �+fW < 1 if H is chosen such thatH > H�W (n) = 2(1 +W � 2x(1� x) log(1�xx))1� xwhere x satis�es the equationn = 1 +Wx(3D(x� 1)� x)� 2xD(1 + (1� x)log(1�xx)Wx(1� x)We perform a similiar analysis for high signals in noisy recurrent networks. Recall that the high signalsin a noisy recurrent network are bounded from below by the �xed points of the recursively de�ned function8<: g0W = 1gt+1W = h(�H=2 + (H �W)gtW +H(D � 2)f tW �W (n�D � 1)f tW) (49)We decouple gt+1W from f tW by introducing a new function ~gW :Lemma 5.9.4 Consider the recursively de�ned function ~gW :8<: ~g0W = 1~gt+1W = h(�H=2 + (H �W)~gtW + (H(D � 2)�W (n �D � 1))�+~ftW)) (50)where �+~ftW is the �xed point of the function ~fW . If the function ~gtW has three �xed points, then so does thefunction gtW .Proof: An argument similar to that in the proof of lemma 5.6.3 can be given. The only di�erence is that h()and ~gW may both assume the roles of either lower or upper bound for gW depending on the value of D.31

In order to obtain conditions under which gW has three �xed points, we examine the existence of �xedpoints of ~gW .Fixed points of the function ~gW (x; n;D;W;H) satisfy the equation~gW (x; n;D;W;H) = 11 + e�(�H=2+(H�W)x+(H(D�2)�W (n�D�1))�+gW) = x (51)Solving the above equation for H, we obtainH(x; n;D;W) = 2 log(1�xx)�W (�+~gW (n�D � 1) + x) +~gW (n�D))1� 2(x+ 2�+~gW (D � 2)) (52)Solving @H@x) = 0 for n and substituting in the above equation, we have proven the following lemma:Lemma 5.9.5 The function ~gW (x; n;D;W;H) = 11 + e�(�H=2+(H�W)x+(D(H�W)+W (n�1))�+~gW) has three�xed points 0 < ��~gW < �0~gW < �+~gW < 1 if H is chosen such thatH > H+W (n) = 1 +W (x(1� x))x(1� x)where x satis�es the equationn = 1 + 2D�+~gW + x(W (2�+~gW (1� x)� x)� 2)� 2x(1� x)log(1�xx)2Wx(1� x)�+~gW5.10 Network StabilityWe now turn to the analysis of stable DFA encodings for noisy recurrent networks:De�nition 5.10.1 An encoding of DFA states in a noisy, second-order recurrent neural network is calledstable if all the low signals are less than �0fW (n;D;W;H), and all the high signals are greater than �0gW (n;D;W;H).Assuming that all signals converge toward their respective �xed points, we get the following inequalities forstable low and high signals, respectively:�H=2 +W�+gW +W�+gW +H��fW +H(Dn � 1)��fW +W (n� (Dn � 1)� 2)��fW < �0fW (53)�H=2�W�+gW +H�+gW �H��fW +W (Dn � 1)��fW �W (n� (Dn � 1)� 2)��fW > �0gW (54)Solving the above inequalities for ��fW and �+gW , respectively, we obtain the following result:32

Theorem 5.10.1 A noisy, fully recurrent neural network RNN with n+ 1 sigmoidal state neurons, m in-put neurons, at most 3mn second-order weights with alphabet �w = f�H; 0;+Hg, n+ 1 biases bi = �H=2,maximum fan-out 3m, and random initial weights drawn from an arbitrary distribution in [-W, W] withW < H can be constructed from a DFA M with n states and m input symbols such that the internal staterepresentation remains stable if(1) ��fW < 2(H �W)�0fW � 4W�0gW +H(H � 3W)2n((1� 3D)W 2 +H((1� 2D)W +HD)) +W (H +W)(2) �+gW > 2(H + n(W (1� 4D)�0fW + (2W (n(1�D)� 1) + nDH)�0gW +H(H(1 +Dn) +W (n(2 � 3D)� 1))2n((1� 3D)W 2 +H((1� 2D)W +HD)) +W (H +W)(3) H > max(H�W (D);H+W (D))Stability of the internal DFA state encoding in noisy recurrent networks for the correct classi�cation ofstrings of arbitrary length. We also need to examine the conditions under which the output of the networkis correct. However, correct labeling of rejecting and accepting network states in noisy recurrent networksis no di�erent from the case of fully recurrent networks. The following inequalities which represent a worstcase must be satis�ed for correct classi�cation of grammatical and ungrammatical strings, respectively:� H2 +H�+gW � (n� 1)H��fW > 12 (55)� H2 �H�+gW + (n� 1)H��fW < 12 (56)These two equations can be simpli�ed which yields the condition ��fW < 2n for correct string classi�cation.Thus, we have the following corollary for noisy recurrent networks:Corollary 5.10.1 For some given DFA M with n states, let D denote the maximum number of transitionsto any state voer all input symbols of M , and let � = D=n. Let L(MDFA) and L(MRNN) denote the regularlanguages accepted by DFA M and a noisy recurrent neural network constructed from M . Then, we haveL(MRNN) = L(MDFA) if(1) ��fW < 2(H �W)�0fW � 4W�0gW +H(H � 3W)2n((1� 3D)W 2 +H((1� 2D)W +HD)) +W (H +W) (network dynamics)(2) �+gW > 2(H + n(W (1 � 4D)�0fW + (2W (n(1�D)� 1) + nDH)�0gW +H(H(1 +Dn) +W (n(2 � 3D) � 1))2n((1� 3D)W 2 +H((1� 2D)W +HD)) +W (H +W) (net-work dynamics)(3) ��fW < 2n (string classi�cation)(4) H > max(H�W (D);H+W (D)) (existence of �xed points)33

0

0.5

1

1.5

2

2.5

3

3.5

4

6 8 10 12 14 16 18 20 22 24

M
ax

im
al

 W
ei

gh
t I

ni
tia

liz
at

io
n

In
te

rv
al

 -
[W

,W
]

Weight Strength H

n=10
n=100
n=1000
n=10000

Figure 11: Maximal Random Weight Initialization Interval:The curves show for di�erent network sizes n the maximal allowable interval [�W;W] from which val-ues of the randomly initialized weights can be drawn as a function of H and �. The values for �nwere �10 = f0:1; 0:2; 0:3; 0:4;0:5g; �100 = f0:01; 0:02;0:03;0:04g; �1000 = f0:001; 0:002;0:003;0:004g, and�10000 = f0:0001; 0:0002; 0:0003; 0:0004g.The graphs in �gure 11 show for di�erent network sizes n the maximal allowable interval [�W;W] fromwhich values of the randomly initialized weights can be drawn as a function of H such that the internalDFA representation of constructed recurrent networks remains stable for strings of arbitrary length. Thevalues of �n for networks of size n were �10 = f0:1; 0:2; 0:3;0:4; 0:5g; �100 = f0:01; 0:02;0:03; 0:04g; �1000 =f0:001; 0:002; 0:003; 0:004g, and �10000 = f0:0001; 0:0002;0:0003;0:0004g. The conditions of theorem 5.9.1where no longer satis�ed for larger values of �n. As expected, the size of the interval [�W;W] increases withincreasing value of the weight strength H for given network size n, i.e. the network tolerates more noisefrom the randomly initialized weights with increasing H. That interval becomes independent of the valuesof � and H for increasing network size. For �xed values of H, that interval becomes smaller with increasingnetwork size, since the number of random weights which interfere with the internal DFA state representationalso increases.We have shown that a fully recurrent network can be constructed from a DFA such that the languagesaccepted by the network and the DFA are identical independent of the distribution of the randomly initial-ized weights. The value W depends on the network size n, the value of �, and the magnitude of H.One can view fully recurrent networks as sparse networks with noise in the programmed weights. From34

that point of view, the encoding algorithm constructs sparse networks which are to some extent tolerant tonoise in the weights.All conditions in theorem 5.9.1 must be satis�ed for a stable internal DFA representation. We cannotguarantee that a network constructed from a given DFA accepts the same language as the DFA if any oneof the conditions is violated. In fact, we believe that the following conjecture holds true:Conjecture 5.10.1 If any one of the conditions is violated, then the languages accepted by the constructednetwork and the given DFA are not identical for an arbitrary distribution of the randomly initialized weightsin the interval [�W;W].5.11 Comparison with other MethodsDi�erent methods [1, 7, 5, 18, 21] for encoding DFAs with n states andm input symbols in recurrent networksare summarized in table 1. The methods di�er in the choice of the discriminant function (hard-limiting,sigmoidal, radial basis function), the size of the constructed network and the restrictions that are imposedon the weight alphabet, the neuron fan-in and fan-out. The results in [18] improve the upper and lowerbounds reported in [1] for DFAs with only two input symbols. Those bounds can be generalized to DFAswith m input symbols [17]. Among the methods which use continuous discriminant functions, our algorithmuses no more neurons than the best of all methods, and consistently uses fewer weights and smaller fan-outsize than all methods.5.12 Open ProblemsOne of the theoretical results in [1] gives a lower bound of
(pnlogn) on the number of hard-limiting neuronsneeded to implement a DFA with n states when the weight alphabet and the neuron fan-in are limited. Ourencoding algorithm establishes without optimization an upper bound of O(n) for sigmoidal neurons withlimited fan-out. It would be interesting to investigate whether there is a lower bound and whether the upperbound can be made tighter. While n states can be encoded in only logn neurons using a binary encodingscheme, our encoding algorithm cannot encode arbitrary DFAs with only logn neurons; this can be shownon small example DFAs.
35

author(s) nonlinearity order # neurons # weights weight alphabet fan-in limit fan-out limitMinsky (1967) hard �rst O(mn) O(mn) �W = f1; 2g none noneAlon et al. (1991)1 hard �rst O(n3=4) - no restriction none noneAlon et al. (1991)1 hard �rst O(n) - any restriction none yesFrasconi et al. (1993) sigmoid �rst O(mn) O(n2) no restriction none noneHorne (1996)2 hard �rst O(q mn lognlogm+log n) - no restriction none noneHorne (1996)2 hard �rst O(pmn logn) O(mn logn) �W = f�1; 1g none noneHorne (1996)2 hard �rst O(mn lognlogm+log n) O(n) �W = f�1; 1; 2g 2 noneFrasconi et al. (1996)3 sigmoid/radial �rst O(n) O(n2) no restriction none noneOmlin & Giles4 sigmoid second O(n) O(mn) �W = f�H;�H=2;+Hg none 3mTable 1: Comparison of di�erent DFA Encoding Methods: The di�erent methods use di�erentamounts and types of resources to implement a given DFA with n states and m input symbols. 1;2 There alsoexist lower bounds for the number of neurons necessary to implement any DFA. 2 The bounds for � = f0; 1ghave been generalized to arbitrary alphabet size m. 3 The authors use their network with sigmoidal andradial basis functions in multiple layers to train recurrent networks; however, their architecture could beused to directly encode a DFA in a network. 4 The rule strength H can be chosen according to the resultsin this paper.
1

36

6 CONCLUSIONWe compared two di�erent methods for encoding deterministic �nite-state automata (DFAs) into recurrentneural networks with sigmoidal discriminant functions. The method proposed in [7] implements DFAs usinglinear programming and explicit implementation of state transitions implementing boolean-like functionswith sigmoidal neurons. The authors give rigorous proofs about their neural network implementation ofDFAs. An interesting characteristic of their approach is that state transitions usually take several time stepsto complete.We have proven that our encoding algorithm can implement any DFA with n states and m input sym-bols in a sparse recurrent network with O(n) state neurons, O(mn) weights and limited fan-out of size O(m)such that the DFA and the constructed network accept the same regular language. The desired networkdynamics is achieved by programming some of the weights to values +H or �H. A worst case analysis hasrevealed a quantitative relationship between the rule strength H with which some weights are initialized andthe maximumnetwork size such that the network dynamics remains robust for arbitrary string length. Thisis only a proof of existence, i.e. we do not make any claims that such a solution can be learned. For anychosen value H > 4, there exists an upper bound on the network size which guarantees that the constructednetwork implements a given DFA; the value Hmin is independent of the DFA to be implemented and H canbe computed for a given DFA.Our algorithm for constructing DFAs in recurrent neural networks is more straightforward compared tothe method proposed in [7]. By using second-order weights, we have adjusted the network architecture sothat DFA state transitions are naturally mapped into network state transitions. Our networks need fewernodes and weights than the implementation reported in [7]. The network model has not lost any of itscomputational capabilities by the introduction of second-order weights.We are currently investigating how other kinds of knowledge which may be useful in building hybrid systemscan be represented in second-order recurrent neural networks.7 ACKNOWLEDGMENTWe would like to acknowledge useful discussions with D. Handscomb (Oxford University Computing Labo-ratory), and J.A. Giordmaine and B.G. Horne (NEC Research Institute).37

References[1] N. Alon, A. Dewdney, and T. Ott, \E�cient simulation of �nite automata by neural nets," Journal ofthe Association for Computing Machinery, vol. 38, no. 2, pp. 495{514, April 1991.[2] M. Barnsley, Fractals Everywhere. San Diego, CA: Academic Press, 1988.[3] M. Casey, \The dynamics of discrete-time computation, with application to recurrent neural networksand �nite state machine extraction," Neural Computation, vol. 8, no. 6, 1996. In Press.[4] J. Elman, \Finding structure in time," Cognitive Science, vol. 14, pp. 179{211, 1990.[5] P. Frasconi, M. Gori, M. Maggini, and G. Soda, \Representation of �nite state automata in recurrentradial basis function networks," Machine Learning, 1996. In press.[6] P. Frasconi, M. Gori, M. Maggini, and G. Soda, \A uni�ed approach for integrating explicit knowledgeand learning by example in recurrent networks," in Proceedings of the International Joint Conferenceon Neural Networks, vol. 1, p. 811, IEEE 91CH3049-4, 1991.[7] P. Frasconi, M. Gori, and G. Soda, \Injecting nondeterministic �nite state automata into recurrentnetworks," tech. rep., Dipartimento di Sistemi e Informatica, Universit�a di Firenze, Italy, Florence,Italy, 1993.[8] S. Geman, E. Bienenstock, and R. Dourstat, \Neural networks and the bias/variance dilemma," NeuralComputation, vol. 4, no. 1, pp. 1{58, 1992.[9] C. Giles, D. Chen, C. Miller, H. Chen, G. Sun, and Y. Lee, \Second-order recurrent neural networks forgrammatical inference," in Proceedings of the International Joint Conference on Neural Networks 1991,vol. II, pp. 273{281, July 1991.[10] C. Giles, G. Kuhn, and R. Williams, \Dynamic recurrent neural networks: Theory and applications,"IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 153{156, 1994.[11] C. Giles, C. Miller, D. Chen, H. Chen, G. Sun, and Y. Lee, \Learning and extracting �nite stateautomata with second-order recurrent neural networks," Neural Computation, vol. 4, no. 3, p. 380,1992.[12] C. Giles and C. Omlin, \Inserting rules into recurrent neural networks," in Neural Networks for SignalProcessing II, Proceedings of The 1992 IEEE Workshop (S. Kung, F. Fallside, J. A. Sorenson, andC. Kamm, eds.), pp. 13{22, IEEE Press, 1992.[13] C. Giles and C. Omlin, \Rule re�nement with recurrent neural networks," in Proceedings IEEE Inter-national Conference on Neural Networks (ICNN'93), vol. II, pp. 801{806, 1993.38

[14] M. Hirsch, \Convergent activation dynamics in continuous-time neural networks," Neural Networks,vol. 2, pp. 331{351, 1989.[15] M. Hirsch, \Saturation at high gain in discrete time recurrent networks," Neural Networks, vol. 7, no. 3,pp. 449{453, 1994.[16] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation. Reading,MA: Addison-Wesley Publishing Company, Inc., 1979.[17] B. Horne. Personal Communication.[18] B. Horne and D. Hush, \Bounds on the complexity of recurrent neural network implementations of�nite state machines," Neural Networks, vol. 9, no. 2, pp. 243{252, 1996.[19] R. Maclin and J. Shavlik, \Using knowledge-based neural networks to improve algorithms: Re�ning theChou-Fasman Algorithm for Protein Folding," Machine Learning, vol. 11, pp. 195{215, 1993.[20] C. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley, 1989.[21] M. Minsky, Computation: Finite and In�nite Machines, ch. 3, pp. 32{66. Englewood Cli�s, NJ: Prentice-Hall, Inc., 1967.[22] C. Omlin and C. Giles, \Rule revision with recurrent neural networks," IEEE Transactions on Knowl-edge and Data Engineering, vol. 8, no. 1, pp. 183{188, 1996.[23] C. Omlin and C. Giles, \Stable encoding of large �nite-state automata in recurrent neural networkswith sigmoid discriminants," Neural Computation, vol. 8, no. 4, 1996. In Press.[24] C. Omlin and C. Giles, \Training second-order recurrent neural networks using hints," in Proceedingsof the Ninth International Conference on Machine Learning (D. Sleeman and P. Edwards, eds.), (SanMateo, CA), pp. 363{368, Morgan Kaufmann Publishers, 1992.[25] J. Pollack, \The induction of dynamical recognizers," Machine Learning, vol. 7, pp. 227{252, 1991.[26] D. Servan-Schreiber, A. Cleeremans, and J. McClelland, \Graded state machine: The representation oftemporal contingencies in simple recurrent networks," Machine Learning, vol. 7, p. 161, 1991.[27] J. Shavlik, \Combining symbolic and neural learning," Machine Learning, vol. 14, no. 3, pp. 321{331,1994.[28] B. J. Sheu, Neural Information Processing and VLSI. Boston, MA: Kluwer Academic Publishers, 1995.[29] P. Tino, B. Horne, and C. Giles, \Fixed points in two{neuron discrete time recurrent networks: Stabil-ity and bifurcation considerations," Tech. Rep. UMIACS-TR-95-51, Institute for Advanced ComputerStudies, University of Maryland, College Park, MD 20742, 1995.39

[30] G. Towell, J. Shavlik, and M. Noordewier, \Re�nement of approximately correct domain theories byknowledge-based neural networks," in Proceedings of the Eighth National Conference on Arti�cial In-telligence, (San Mateo, CA), p. 861, Morgan Kaufmann Publishers, 1990.[31] R. Watrous and G. Kuhn, \Induction of �nite-state languages using second-order recurrent networks,"Neural Computation, vol. 4, no. 3, p. 406, 1992.[32] Z. Zeng, R. Goodman, and P. Smyth, \Learning �nite state machines with self-clustering recurrentnetworks," Neural Computation, vol. 5, no. 6, pp. 976{990, 1993.

40

