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Abstract

In this work we apply the moving systems approach developed by Marsden, Montgomery, and Ratiu

to a free-floating, equal-sided, spring-jointed, four-bar mechanism that is being slowly rotated about its

central axis and derive a formula for the induced geometric phase. We investigate the phase for a few

specific systems using both analytic analysis and simulation.

1 Introduction

In this report we apply the moving systems approach developed by Marsden, Montgomery, and Ratiu [6]
to an equal-sided, spring-jointed, four-bar mechanism, find a general formula for the Berry-Hannay phase
in action-angle coordinates, and investigate the detailed form of the phase for particular spring potentials
through analytic calculation and simulation. This work builds upon earlier work by Krishnaprasad and Yang
on free-floating four-bar mechanisms [13].

It is hoped that this effort will prove useful in its own right and also serve as a stepping stone to the
analysis of an equal-sided n-bar mechanism and from there to a new approach to the rotating,vibrating
ring. The ring system, originally analyzed by G.H. Bryan in 1890 [3], has been used successfully in several
gyroscope designs (e.g. [5] and [9]). It is to be expected that a deeper understanding will emerge by appealing
to a non-linear, geometric approach directed at more accurate constitutive models. This work is a first step
in that direction.

Here we consider an equal-sided, spring-jointed, four-bar mechanism. The mechanism is being adiabati-
cally (slowly) rotated about its central axis at rate Ω. We assume the spring potentials are such that there
exists a stable equilibrium shape and a stable periodic solution near that shape. The rest of this report is
organized as follows. In Section 2 we present a brief description of the moving systems approach. In Section
3 we describe the four-bar mechanism and define the configuration and ambient spaces. In Section 4 the
Lagrangian is derived and in Section 5 the Hamiltonian and the Berry-Hannay phase formula are calculated.
In Section 6 we investigate the phase formula in detail and present some simulation results. We conclude in
7 with a few remarks about future work.
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2 The Moving Systems Approach

The approach developed by Marsden, Montgomery, and Ratiu uses modern geometric tools to define the
Berry-Hannay phase as the holonomy of the Cartan-Hannay-Berry connection. For background and details
on the method please see [6]. Here we provide a brief description of the approach as given in [7].

Let S be a Riemannian manifold referred to as the ambient space. Let Q ⊂ S be the configuration space
for some system. Let M be the space of embeddings of Q into S. Consider a curve mt in M . If a particle
in Q follows a path q(t) and Q moves along the curve mt then the particle in S follows the path mt(q(t)).
The velocity in S is given by

Tq(t)mt · v + Zt(mt(q(t)))

where v
�
= q̇ and Zt(mt(q(t))) is the velocity vector dmt

dt . Let V (q(t)) be a potential on Q and U(mt(q(t)))
be a potential on S. The usual Lagrangian is given by

L(q, v) =
1
2
‖Tq(t)mt · v + Zt(mt(q(t)))‖2 − V (q(t)) − U(mt(q(t))) (1)

where the norm is given by the Riemannian metric on S. To compute the fiber derivative of L along Tq(t)Q

we take the derivative of L with respect to v in the direction w for w ∈ Tq(t)Q.

∂L

∂v
· w �

= p · w =< Tq(t)mt · v + ZT
t (mt(q(t))), Tq(t)mt · w >mt(q(t)) (2)

where p · w is the natural pairing of the covector p ∈ T ∗
q(t)Q with w, < ·, · >mt(q(t)) is the metric on S at

the point mt(q(t)) and T denotes the orthogonal projection onto Tq(t)Q under the metric of S. Q inherits a
metric from S under which mt is an isometry. Using this metric we have

p · w = < v +
(
Tq(t)mt

)−1 ZT
t (mt(q(t))), w >q(t) (3)

⇒ p =
(
v +

(
Tq(t)mt

)−1 ZT
t (mt(q(t)))

)�

(4)

where � is the map

(·)� : TqQ → T ∗
q Q

z �→ z�

defined by

z� · w =< z,w >q ∀w ∈ TqQ (5)

The Hamiltonian is given by

H(q, p) = p · v − L(q, v)

=
1
2
‖p‖2 − P(Zt) − 1

2
‖Z⊥‖2 + V (q) + U(mt(q)) (6)
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where
P(Zt)

�
= p · (Tq(t)mt

)−1 [Zt(mt(q))]
T (7)

Define the nominal Hamiltonian by setting Z and U to zero. Let G be a Lie group that acts on T ∗Q and
leaves the nominal Hamiltonian invariant. Assuming G has an invariant measure with respect to which we
can average, we replace the Hamiltonian by its G-average

< H > (q, p) =
1
2
‖p‖2− < P(Zt) > −1

2
< ‖Z⊥

t ‖2 > +V (q) + U(mt(q)) (8)

Under the assumption of a slowly moving system we discard < ‖Z⊥
t ‖2 > as small. Let X<P(Zt)> be the

Hamiltonian vector field associated to the extra term in the Hamiltonian coming from the imposed motion.
Then −X<P(Zt)> can be interpreted as coming from the horizontal lift of Zt relative to a connection on
T ∗Q × M known as the Cartan-Hannay-Berry connection. The holonomy of this connection, given by the
integral of the lifted vector field around the closed loop in the base space, is known as the Berry-Hannay
phase and is calculated from

Hmt
= −

∮
mt

X<P(Zt)>dt (9)

3 The Equal-Sided Four-Bar Mechanism: Ambient and Configu-

ration Spaces

In this section we describe the four-bar system and place it in the moving systems framework. We follow the
approach of Yang and Krishnaprasad in [13]. The structure of an equal-sided four-bar mechanism is shown
in figure 1. By a ’bar’ we mean a planar rigid body on which the center of mass and pin joints are arbitrarily
located. The bars are labeled sequentially from 0 to 3 and on each a body-fixed frame is defined such that
its origin is at the body center of mass and the x-axis is parallel to the line connecting the pin joints. The
positive direction of the x-axis of the ith bar is defined to be towards the (i + 1)th bar for i = 0, 1, 2, 3 (mod
4). We define the following:

d+ the vector from the body center of mass of the ith bar to the pin joint with the (i + 1)th bar
d− the vector from the body center of mass of the ith bar to the pin joint with the (i − 1)th bar
l the length of each bar, given by ‖d+ - d−‖
rc

i the vector from the system center of mass to the ith body center of mass
rc the vector from the inertial system to the system center of mass
θi the angle between the ith bar frame and the inertial frame
θij the angle between the ith and jth bars given by θi − θj

I the moment of inertia of each bar
m the mass of each bar

The loop closure constraints are
rc
i+1 = rc

i + R(θi)d+ − R(θi+1)d− (10)
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Figure 1: Equal-Sided Four-Bar Mechanism

We can manipulate these equations as follows

rc
1 = rc

0 + R(θ0)d+ − R(θ1)d−
= rc

3 + R(θ3)d+ − R(θ0)d− + R(θ0)d+ − R(θ1)d−
= rc

1 + R(θ1)d+ − R(θ2)d− + R(θ3)d+ − R(θ0)d− + R(θ0)d+ − R(θ1)d−

⇒
3∑

i=0

R(θi)(d+ − d−) = 0 (11)

From [10] we know the configuration space for a free-floating four-link open chain is R = IR2×S1×S1×S1×S1.
The configuration space for a general four-bar mechanism is then S = {r ∈ R|F (r) = 0} where F (r) is the
loop closure constraint, equation (11). In [13] it is shown that S is a manifold under certain conditions on
the parameters of the mechanism. While those conditions are not met here, by explicitly requiring that
the mechanism not pass through any singularities (joint angles of 0 or π) we can ensure S is a smooth
submanifold of R. This is shown in the following lemma.

Lemma 3.1 If li = l ∀i and the mechanism is restricted from achieving any singular configuration then S
is a smooth submanifold of M.
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Proof Under the given assumptions we need only show that 0 is a regular value of F since then S is a
smooth submanifold of M. This proof follows that of Theorem 3.2.1 in [12]. We have:

∂F

∂m
=

(
∂F

∂x

∂F

∂y

∂F

∂θ0

∂F

∂θ1

∂F

∂θ2

∂F

∂θ3

)
(12)

Since di,i+1 − di,i−1 is the vector connecting the pin joints on the ith bar we can write

R(θi)(di,i+1 − di,i−1) = l

(
cos(θi)
sin(θi)

)
Then

∂F

∂m
=

(
0 0 −lsin(θ0) −lsin(θ1) −lsin(θ2) −lsin(θ3)
0 0 lcos(θ0) lcos(θ1) lcos(θ2) lcos(θ3)

)
(13)

The nontrivial 2 × 2 subdeterminants are:

−l2sin(θ0)cos(θ1) + l2cos(θ0)sin(θ1) = l2sin(θ1 − θ0)
�
= g1(m)

−l2sin(θ0)cos(θ2) + l2cos(θ0)sin(θ2) = l2sin(θ2 − θ0)
�
= g2(m)

−l2sin(θ0)cos(θ3) + l2cos(θ0)sin(θ3) = l2sin(θ3 − θ0)
�
= g3(m)

−l2sin(θ1)cos(θ2) + l2cos(θ1)sin(θ2) = l2sin(θ2 − θ1)
�
= g4(m)

−l2sin(θ1)cos(θ3) + l2cos(θ1)sin(θ3) = l2sin(θ3 − θ1)
�
= g5(m)

−l2sin(θ2)cos(θ3) + l2cos(θ2)sin(θ3) = l2sin(θ3 − θ2)
�
= g6(m)

To ensure that 0 is a regular value of F we must simply ensure that for all possible values of θi at least one
gi(m) �= 0. To have gi(m) = 0 ∀i we must have

θ1 − θ0 = 0 or π

and

θ2 − θ1 = 0 or π

and

θ3 − θ2 = 0 or π

and

θ0 − θ3 = 0 or π

However θi+1 − θi = 0 or π is expressly forbidden by the restriction that the mechanism may not achieve
any singular configuration.

While in the general four-bar mechanism the relations between the global angles can be quite complicated
(see, for example, [12] or [2]) they have a particularly simple form for the equal-sided case.
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Lemma 3.2 θ2 = θ0 + π and θ3 = θ1 − π

Proof In figure 2 we show the four pin joints, the connecting lines defining the local x-axis directions, and
the angles θi. The positive direction of each θi is defined to be in the counter-clockwise direction from the
inertial frame x-axis. From the figure we immediately have

θ2 + (−θ0) = π ⇒ θ2 = π + θ0

θ1 + (−θ3) = π ⇒ θ3 = θ1 − π

Figure 2: Relation between the θi

From this lemma we have the following set of equalities

θ32 = θ10

θ21 = θ03 = π − θ10

θ13 = θ20 = π

(14)

As in Yang and Krishnaprasad [13] we assume the inertial observer is placed at the system center of mass.
(We can do this because the kinetic energy of the system is invariant under translations in inertial space
and the configuration space can then be symplectically reduced by the translation group IR2 as in Sreenath
[10].) We take as the ambient space the manifold

S = S1 × S1 (15)

and choose as coordinates (θ0, θ10).
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Again from [13] we know that this system is a simple mechanical system with symmetry and thus reduction
to the shape space is possible. We take as the configuration space

Q = S1 (16)

and choose as a coordinate (θ10).
The embedding is given by

mt(θ10) =
(

Ωt + θ0(0)
θ10(t)

)
(17)

where θ0(0) is simply the initial angle.

4 The Lagrangian

4.1 Kinetic Energy

From classical mechanics the total kinetic energy of the system in the center of mass frame is given by

T =
1
2
I

3∑
i=0

ω2
i +

1
2
m

3∑
i=0

‖ṙc
i ‖2 (18)

Following [13] we can write this as

T =
1
2

< ω̃, M̃ω̃ > (19)

where ω̃ = (ω0, ω1, ω2, ω3) and M̃ is a 4x4 symmetric matrix whose elements for the equal-sided four-bar are
given as

M̃ii = I +
3m

8
(‖d+‖2 + ‖d−‖2

)
(20)

M̃i,i+1 =
m

8
(< d−, Ri+1,id+ > −3 < d+, Ri+1,id− >) (21)

M̃i,i+2 = −m

8
(< d+, Ri+2,id+ > + < d−, Ri+2,id− >) (22)

For the equal-sided four-bar we have (
ω2

ω3

)
= 1I

(
ω0

ω1

)
(23)

where 1I is the identity matrix. Defining

M = (1I 1I) M̃

(
1I
1I

)
(24)

we have

T =
1
2

<

(
ω0

ω1

)
,M

(
ω0

ω1

)
> (25)
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M is symmetric and depends only on the joint angles. Given the relations (14), M depends only on θ10. Now
we want to write the kinetic energy in terms of (ω0, ω10) where ω0 = Ω from the embedding. Expanding
equation (25) yields

T =
1
2
(ω2

0M00 + 2ω0ω1M10 + ω2
1M11) (26)

=
1
2
(ω2

0M00 + 2ω0(ω1 − ω0 + ω0)M10 + (ω1 − ω0 + ω0)2M11) (27)

=
1
2
(ω2

0M00 + 2ω0(ω10 + ω0)M10 + (ω10 + ω0)2M11) (28)

=
1
2
(ω2

0M00 + 2(ω0ω10 + ω2
0)M10 + (ω2

10 + 2ω0ω10 + ω2
0)M11) (29)

=
1
2

<

(
ω0

ω10

)
,

(
M00 + 2M10 + M11 M11 + M10)

M11 + M10 M11

)(
ω0

ω10

)
> (30)

�
=

1
2

< ω̂, M̂(θ10)ω̂ > (31)

This defines a Riemannian metric K on S given by

K(mt(q))(vmt(q), wmt(q)) =< vmt(q), M̂(q)wmt(q) > (32)

for vmt(q), wmt(q) ∈ Tmt(q)mt(Q).

4.2 Potential Energy

Each joint is equipped with an identical spring. Let the spring potential for each be given by Vs(θi+1,i),
i = 0, 1, 2, 3 mod(4) with Vs twice continuously differentiable. The total potential energy is then

V (θ0, θ1, θ2, θ3) =
3∑

i=0

Vs(θi+1,i) (33)

= Vs(θ10) + Vs(θ21) + Vs(θ32) + Vs(θ03) (34)

= Vs(θ10) + Vs(π − θ10) + Vs(θ10) + Vs(π − θ10) (35)

= 2(Vs(θ10) + Vs(π − θ10)) (36)

= V (θ10) (37)

Then since Vs ∈ C2 we have V ∈ C2. We assume the potential energy is such that ∃ α ∈ S1 such that

∂V

∂θ10

∣∣∣∣
α

= 0 (38)

∂2V

∂θ2
10

∣∣∣∣
α

> 0 (39)
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The Lagrangian is given by

L(θ10, ω10) =
1
2

< ω̂, M̂(θ10)ω̂ > −V (θ10) (40)

=
1
2

<

(
Ω

ω10

)
, M̂(θ10)

(
Ω

ω10

)
> −V (θ10) (41)

where in the last step we have used the embedding, equation (17). We can now easily put this in the standard
moving systems form

L(θ10, ω10) =
1
2

<

[(
0

ω10

)
+

(
Ω
0

)]
, M̂(θ10)

[(
0

ω10

)
+

(
Ω
0

)]
> −V (θ10) (42)

Thus

Tq(t)mt · v =
(

0
ω10

)
(43)

Zt(mt(q(t))) =
(

Ω
0

)
(44)

5 The Hamiltonian and the Berry-Hannay Phase Formula

We first need to find Zt(mt(q(t)))T . Write

Zt = ZT
t + Z⊥

t =
(

0
v

)
+

(
v⊥1

v⊥2

)
(45)

for some v ∈ Tmt(q)mt(Q) with Z⊥ such that

(0 w)M̂Z⊥
t = 0 ∀ w ∈ Tmt(q)mt(Q) (46)

From equation (46) we have

w[(M11 + M10)v⊥1 + M11v
⊥2] = 0 ∀ w ∈ Tmt(q)mt(Q) (47)

⇒ v⊥2 = −
[
M10 + M11

M11

]
v⊥1 (48)

Now

Zt =
(

Ω
0

)
=

(
0
v

)
+

(
v⊥1

v⊥2

)
(49)

⇒ v⊥1 = Ω v = −v⊥2 (50)

⇒ v =
[
M10 + M11

M11

]
Ω (51)
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Now consider the point (mt(q(t)), v) ∈ Tmt(Q). We have

(Tmt)−1(mt(q(t)), v) = (q(t), v) (52)

Thus
(Tq(t)mt)−1ZT

t = ZT
t (53)

From equations (7), (51), and (53) we have

P(Zt) =
[
M10 + M11

M11

]
Ωp10 (54)

Now from equations (45) and (48) we have

Z⊥ =

(
Ω

− M̂10

M̂11

)
(55)

Then

‖Z⊥‖2 = Ω2

(
1 − M̂10

M̂11

) (
M̂00 M̂10

M̂10 M̂11

) (
1

− M̂10

M̂11

)
(56)

= Ω2

(
M̂00 − M̂2

10

M̂11

)
(57)

= Ω2

(
M̂00M̂11 − M̂2

10

M̂11

)
(58)

= Ω2

(
(M00 + 2M10 + M11)(M00) − (M00 + M10)2

M11

)
(59)

= Ω2

(
M00M11 − M2

10

M11

)
(60)

The restriction of the metric on S to Q is simply M11. Thus from equations (6), (54), and (60) we have the
Hamiltonian

H(θ10, p10) =
1

2M11
p2
10 + V (θ10) −

[
M10 + M11

M11

]
Ωp10 − Ω2

2

(
M00M11 − M2

10

M11

)
(61)

Due to the adiabatic assumption, we can drop the ‖Z⊥
t ‖2 term to get

H(θ10, p10) =
1

2M11
p2
10 + V (θ10) −

[
M10 + M11

M11

]
Ωp10 (62)

We see that the Hamiltonian of the nominal system is given by

Hnom(θ10, p10) =
1

2M11
p2
10 + V (θ10) (63)
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5.1 The Nominal System

5.1.1 Periodic solutions

Recall that we assumed the nominal system had an equilibrium shape and a periodic solution around that
equilibrium. Here we discuss under what conditions this assumption holds. The nominal Hamiltonian vector
field is

XHnom
=

(
p10

M11

∂

∂θ10
, − ∂V

∂θ10

∂

∂p10

)
(64)

From equation (38) we know there is an equilibrium point at (θ10 = α, p10 = 0). To ensure the existence of
a periodic solution we appeal to the following theorem by Weinstein [11], paraphrased from [8].

Theorem 5.1 (A. Weinstein) Consider H : IR2n → IR. If H ∈ C2 near an equilibrium point z and the
Hessian matrix at the equilibrium point is positive definite then for sufficiently small ε any energy surface
H(z) = H(0) + ε2 contains at least n periodic orbits of the associated Hamiltonian system.

The Hessian matrix of the Hamiltonian for the nominal system is

Hess =

(
∂2H
∂θ2

10
0

0 ∂2H
∂p2

10

)
=

(
∂2V
∂θ2

10
0

0 M−1
11

)
(65)

Since M is positive definite by its construction, M11 > 0. By assumption (equation (39)) the Hessian of V

at α is positive definite. Therefore by theorem (5.1) there is a periodic solution around the equilibrium if
the energy is sufficiently small.

5.1.2 Action-angle coordinates

Since this is a one-dimensional system it is integrable and thus there exist action-angle coordinates (I, φ)
[1]. Let M(h) be the trajectory in phase space corresponding to the energy h. Then

I =
1
2π

∮
M(h)

p10dθ10 (66)

The trajectory M(h) and thus the action depends on the form of V (θ10). We can write in general

I = g1(θ10, p10) θ10 = f1(I, φ)
⇔

φ = g2(θ10, p10) p10 = f2(I, φ)
(67)

The action is a constant of the motion in the nominal system and thus Hnom(θ10, p10) = Hnom(I). We are
assuming the excursions are adiabatic and thus I remains conserved in the moving system. We can rewrite
the Hamiltonian in terms of (I, φ)

H(I, φ) = Hnom(I) −
[
M01(f1(I, φ)) + M11

M11

]
Ωf2(I, φ) (68)
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where we have explicitly shown the dependence on the coordinates. We take the average of the Hamiltonian
over one cycle in φ to get

< H > (I, φ) = Hnom(I)− < P(Zt) > (69)

where

< P(Zt) > =
1
2π

∫ 2π

0

(
M01(f1(I, φ)) + M11

M11

)
Ωf2(I, φ)dφ (70)

=
Ω

2πM11

∫ 2π

0

(1 + M01(f1(I, φ))) f2(I, φ)dφ (71)

=
Ω

2πM11
f3(I) (72)

for some f3(I). The horizontal lift of Zt with respect to the Cartan-Hannay-Berry connection is then

−X<P(Zt)> = − Ω
2πM11

∂f3(I)
∂I

∂

∂φ
(73)

and the Berry-Hannay phase is

∆φ = − 1
2πM11

∫ 2π

0

∂f3(I)
∂I

dθ0 = − 1
M11

∂f3(I)
∂I

(74)

6 Detailed Calculations of the Berry-Hannay Phase

From equations (24), (20),(22), and (14) we have

M00 = M̃00 + M̃02 + M̃20 + M̃22 (75)

= 2(M̃00 + M̃02) (76)

= 2(I +
3m

8
(‖d+‖2 + ‖d−‖2) − m

8
(< d+, R20d+ > + < d−, R20d− >)) (77)

= 2(I +
3m

8
(‖d+‖2 + ‖d−‖2) − m

8
(< d+, Rπd+ > + < d−, Rπd− >)) (78)

= 2(I +
3m

8
(‖d+‖2 + ‖d−‖2) +

m

8
(‖d+‖2 + ‖d−‖2)) (79)

= 2I + m(‖d+‖2 + ‖d−‖2) (80)

M11 = M̃11 + M̃13 + M̃31 + M̃33 (81)

= 2(M̃11 + M̃13) (82)

= 2(M̃00 + M̃02) (83)

= M00 (84)

From equations (24), (21), and (14) we have

M01 = M̃10 + M̃12 + M̃30 + M̃32 (85)
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= 2(M̃10 + M̃12) (86)

= 2
m

8
(< d−, R10d+ > −3 < d+, R10d− > + < d−, R21d+ > −3 < d+, R21d− >) (87)

=
m

4
(< d−, R10d+ > −3 < d+, R10d− > + < d−, Rπ−θ10d+ > −3 < d+, Rπ−θ10d− >) (88)

Now

Rπ−θ10 =
(

cos(π − θ10) −sin(π − θ10)
sin(π − θ10) cos(π − θ10)

)
(89)

=
(

cos(π)cos(θ10) + sin(π)sin(θ10) −(sin(π)cos(θ10) − sin(θ10)cos(π))
sin(π)cos(θ10) − sin(θ10)cos(π) cos(π)cos(θ10) + sin(π)sin(θ10)

)
(90)

=
( −cos(θ10) −sin(θ10)

sin(θ10) −cos(θ10)

)
(91)

=
( −cos(θ01) sin(θ01)

−sin(θ01) −cos(θ01)

)
(92)

= −R01 (93)

Plugging this result into equation (88) yields

M01 =
m

4
(< d−, R10d+ > −3 < d+, R10d− > − < d−, R01d+ > +3 < d+, R01d− >) (94)

=
m

4
(< d−, R10d+ > −3 < d+, R10d− > − < d+, R10d− > +3 < d−, R10d+ >) (95)

= m (< d−, R10d+ > − < d+, R10d− >) (96)

= m
(
[(d1

−d1
+ + d2

−d2
+)cos(θ10) + (d1

+d2
− − d2

+d1
−)sin(θ10)]

−[(d1
−d1

+ + d2
−d2

+)cos(θ10) + (d1
−d2

+ − d2
−d1

+)sin(θ10)]
)

(97)

= 2m(d1
+d2

− − d2
+d1

−)sin(θ10) (98)

Consider the diagram of a single bar in figure 3. From the figure we have

d+ =
(

l
2 + δx

δy

)
d− =

( −( l
2 − δx)
δy

)
(99)

Thus

d1
+d2

− − d2
+d1

− = (
l

2
+ δx)(δy) + (δy)(

l

2
− δx) (100)

= lδy (101)

Plugging this into equation (98) gives
M01 = 2mlδysin(θ10) (102)

By symmetry M01 = M10. We now consider particular forms of the potential function.
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Figure 3: Single bar diagram

6.1 Small oscillations (or quadratic potential)

Let us expand V (θ10) about the equilibrium point α.

V (θ10) = V̄ (α) +
1
2

∂2V

∂θ2
10

∣∣∣∣
α

(θ10 − α)2 + h.o.t. (103)

Perform a change of coordinates ψ10 = θ10 − α to get

V (ψ10) = V̄ (α) +
1
2

∂2V

∂ψ2
10

∣∣∣∣
0

ψ2
10 + h.o.t. (104)

Assume the oscillations are small enough such that we can neglect all higher order terms (or that the potential
is quadratic to begin with). The nominal Hamiltonian is then

Hnom =
p2
10

2M11
+

k

2
ψ2

10 (105)

where we have taken advantage of the fact that we can shift the energy by a constant to drop the term V (0)
and have made the obvious definition for k. This is the Hamiltonian for a harmonic oscillator. The phase
portrait for a given energy is shown in figure 4. From [1] we know that

I =
h

ω
(106)

where ω is the frequency of oscillation and h is the energy corresponding to the initial conditions. To find
the frequency ω consider the Hamiltonian vector field of the nominal system

ψ̇10 =
p10

M11
ṗ10 = −kψ10 (107)

⇒ ψ̈10 = − k

M11
ψ10 (108)
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Figure 4: Harmonic oscillator phase portrait

Let ψ10 = Acos(ωt + η). Then ψ̈10 = −ω2ψ10 and ω =
√

k
M11

. Putting this into equation (106) gives

I =
p2
10

2M11
+ k

2ψ2
10√

k
M11

(109)

=
p2
10 + kM11ψ

2
10

2
√

kM11

(110)

The angle variable is the phase of the oscillation. We thus have

ψ10 = Acos(φ) (111)

where

A =
[

2I√
kM11

] 1
2

(112)

Similarly

p10 = M11ψ̇10 (113)

= −M11Asin(φ)φ̇ (114)

= −M11Asin(φ)
√

k

M11
(115)

From these two we get
tanφ = − p10

ψ10

√
kM11

(116)

From this we can get the functions f1(I, φ), f2(I, φ)

θ10 = f1(I, φ) = α + ψ10 (117)
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= α +
[

2I√
kM11

] 1
2

cos φ (118)

p10 = f2(I, φ) (119)

= −
[
2I

√
kM11

] 1
2

sin φ (120)

Then from equations (54), (102), (118), and (120) we have

P(Zt) = −Ω

[
1 +

2mlδy

M11
sin

(
α +

[
2I√
kM11

] 1
2

cos φ

)] [
2I

√
kM11

] 1
2

sin φ (121)

The average of P(Zt) over one period of φ is then

< P(Zt) > = −Ω
[
2I

√
kM11

] 1
2

2π

∫ 2π

0

[
1 +

2mlδy

M11
sin

(
α +

[
2I√
kM11

] 1
2

cos φ

)]
sin φdφ (122)

= −Ω
[
2I

√
kM11

] 1
2

2π

[
2mlδy

M11

] ∫ 2π

0

sin

(
α +

[
2I√
kM11

] 1
2

cos φ

)
sin φdφ (123)

=
Ω

[
2I

√
kM11

] 1
2

2π

[
2mlδy

M11

]
cos

(
α +

[
2I√
kM11

] 1
2

cos φ

)∣∣∣∣∣
2π

0

(124)

= 0 (125)

Thus in the small-angle approximation (or with linear springs) we have that the Berry-Hannay phase is 0.

6.2 Simulations

Since the calculation of action-angle coordinates involves solving the dynamics of the nominal system they
cannot be found for generic spring potentials. We turn then to simulation for insight into nonlinear springs.
In this section we derive the full equations of motion for (θ10, p10), including the centrifugal terms, and then
show the results of simulations experiments using both quadratic spring potentials to validate the above
results and quartic spring potentials to investigate nonlinear effects. All simulations are done using the
generic joint shown in Figure 5 with parameters l1 = 1, β = π

4 , λ = 1. With these parameters we have

m = 2 (126)

δy = −0.4619 (127)

l = 0.3827 (128)

‖d−‖2 = ‖d+‖2 = 0.25 (129)

I = 0.2399 (130)

From these we can calculate the nominal angular frequency for the nominal solution to be ω = 1.6441 rad
s

and thus the frequency is f = 0.2617 Hz and the period is T = 3.82 s.
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Figure 5: Generic bar

6.2.1 Equations of motion

The Hamiltonian from equation (62) is

H(θ10, p10) =
1

2M11
p2
10 + V (θ10) −

[
M10 + M11

M11

]
Ωp10 − Ω2

2

(
M00M11 − M2

10

M11

)
(131)

=
1

2M11
p2
10 + V (θ10) −

[
M10 + M11

M11

]
Ωp10 − Ω2

2

(
M2

00 − M2
10

M11

)
(132)

Then from Hamilton’s equations we have

θ̇10 =
∂H

∂p10
=

p10

M11
−

[
M10 + M11

M11

]
Ω (133)

ṗ10 = − ∂H

∂θ10
=

Ωp10

M11

∂M10

∂θ10
− Ω2

2M11

(
2M10

∂M10

∂θ10

)
− ∂V (θ10)

∂θ10
(134)

Recall that

M00 = 2I + m(‖d+‖2 + ‖d−‖2) (135)

M10 = 2mlδysin(θ10) (136)

Thus
∂M10

∂θ10
= 2mlδycos(θ10) (137)

Put this all together to get

θ̇10 =
p10 − [2I + m(‖d+‖2 + ‖d−‖2) + 2mlδysin(θ10)]Ω

2I + m(‖d+‖2 + ‖d−‖2)
(138)

ṗ10 =
[

2mlδyΩcos(θ10)
2I + m(‖d+‖2 + ‖d−‖2)

]
[p10 − 2Ωmlδysin(θ10)] − ∂V

∂θ10
(139)
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6.2.2 Quadratic potential

Let
Vs(ψ) =

k1

2
(ψ − α)2 (140)

From equation (37) we have
V (θ10) = k1

[
(θ10 − α)2 + (π − θ10 − α)2

]
(141)

Then
∂V

∂θ10
= 2k1(2θ10 − π) (142)

and the equations of motion are

θ̇10 =
p10 − [2I + m(‖d+‖2 + ‖d−‖2) + 2mlδysin(θ10)]Ω

2I + m(‖d+‖2 + ‖d−‖2)
(143)

ṗ10 =
[

2mlδyΩcos(θ10)
2I + m(‖d+‖2 + ‖d−‖2)

]
[p10 − 2Ωmlδysin(θ10)] − 2k1(2θ10 − π) (144)

Consider first the simulation experiments shown in figure 6. In these experiments the initial conditions were
taken to be at θ10(0) = 3π

8 , p10(0) = 0. The first plot, with Ω = 0, is the nominal system. In the second
plot we have Ω = 0.001 rad

s . For such a small value of Ω the system is very close to the nominal. As we
continue to increase Ω the system varies significantly from the nominal. As this effect is dependent on the
rate of rotation we know it is not a geometric phase. It instead arises from the effect of the centrifugal terms
on the dynamics. These simulations, then, agree with the theoretical calculations above. Notice that the
centrifugal terms will also affect a system starting at the nominal equilibrium point (θ10(0) = pi/2, p10 = 0).
In the next simulation the system was started from that equilibrium and run for various values of Ω. In
figure 7 we see the results for Ω = 0, Ω = 0.001, and Ω = 0.1. The first plot verifies that the initial condition
is an equilibrium point for the system. The effect on the system at Ω = 0.001 is quite small (notice the scale
on the figures) while it has increased significantly at Ω = 0.1. These simulations show that the equilibrium
point of the nominal system becomes unstable and bifurcates to periodic solutions (a Hopf bifurcation) as
Ω varies from 0.

We now turn to the quartic potential.

6.2.3 Quartic potential

Let
Vs(ψ) =

k1

2
(ψ − α)2 +

k2

4
(ψ − α)4 (145)

From equation (37) we have

V (θ10) = k1

[
(θ10 − α)2 + (π − θ10 − α)2

]
+

k2

2
[
(θ10 − α)4 + (π − θ10 − α)4

]
(146)

and then
∂V

∂θ10
= 2k1(2θ10 − π) + 2k2

[
(θ10 − α)3 − (π − θ10 − α)3)

]
(147)
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leading to the equations of motion

θ̇10 =
p10 − [2I + m(‖d+‖2 + ‖d−‖2) + 2mlδysin(θ10)]Ω

2I + m(‖d+‖2 + ‖d−‖2)
(148)

ṗ10 =
[

2mlδyΩcos(θ10)
2I + m(‖d+‖2 + ‖d−‖2)

]
[p10 − 2Ωmlδysin(θ10)]

−2k1(2θ10 − π) − 2k2

[
(θ10 − α)3 − (π − θ10 − α)3)

]
(149)

Simulations were performed for the same initial conditions and values of Ω as in the quadratic potential
case. Here the spring constants were taken to be k1 = 1, k2 = 10. The plots in figure 8 show the simulations
runs for the initial conditions θ10(0) = 3π

8 , p10 = 0. The first plot in this figure shows the nominal system.
Comparing this to the first plot in figure 6 shows the effect of the nonlinear springs on the system. As in the
quadratic potential we see that there is no geometric phase effect on the system. The centrifugal terms again
affect the dynamics with significant effect when Ω is no longer small with respect to the angular frequency
in the nominal solution.

7 Conclusion

In this report we have derived a formula for the Berry-Hannay phase of the equal-sided, spring-jointed,
four-bar mechanism and shown that in the small angle approximation this geometric phase is zero.

In future work we hope to apply the moving systems method to an equal-sided, spring-jointed, n-bar
mechanism. Since it is well known that the vibrating ring exhibits nodal precession even for very small
vibration amplitudes we hope, by analogy, to find a non-trivial Berry-Hannay phase in the n-bar mechanism
and expect this phase to manifest itself as a rotating wave.
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Figure 6: Simulation run: θ10(0) = 3π
8 , p10(0) = 0
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Figure 8: Simulation run (nonlinear springs): θ10(0) = 3π
8 , p10(0) = 0




