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ABSTRACT

Detection thresholds for spectral and temporal modulations are measured using broad-
band spectra with sinusoidally rippled profiles that drift up or down the log-frequency axis
at constant velocities. Spectro-temporal Modulation Transfer Functions (MTF) are derived
as a function of ripple peak density (€2 cycles/octave) and drifting velocity (w Hz). MTFs
exhibit a lowpass function with respect to both dimensions, with 50% bandwidths of about
16 Hz and 2 cycles/octave. The data replicate (as special cases) previously measured purely
temporal MTFs (2 = 0) [Viemeister, 1979] and purely spectral MTFs (w = 0) [Green, 1986).
We present a computational auditory model that exhibits spectro-temporal MTF's consistent
with the salient trends in the data. The model is used to demonstrate the potential relevance
of these MTF's to the assessment of speech intelligibility in noise and reverberant conditions.

INTRODUCTION

The most obvious feature of a speech spectrogram is the energy modulations, both in
time in any given frequency channel, and along the spectral axis at any instant, due to
formant peaks and their transitions, spectral edges, and rapid amplitude modulations at
onsets/offsets. These modulations occur at relatively slow temporal rates (few Hz) reflect-
ing the speed of the articulatory gestures, and hence the phonetic and syllabic rates of
speech. Speech intelligibility is critically dependent on the clarity of these spectro-temporal
modulations. Thus speech reconstructed from smoothed spectrograms along either dimen-
sion suffers from progressive loss of intelligibility [Shannon et al., 1995, Arai et al., 1996,
Drullman, Festen, and Plomp, 1994].

Human sensitivity to spectral and temporal modulations has been studied extensively in
various experimental settings. In most cases, these two measurements are treated separately.
For instance, sensitivity measurements to purely temporal modulations - usually referred to as
a temporal “modulation transfer function (MTF)” are illustrated in Figure 1(a). They em-
ploy either amplitude modulated white noise [Viemeister, 1979] (Fig.1(a), left panel) or tem-
porally modulated harmonic-like spectra [Yost and Moore, 1987, van Zanten and Senten, 1983]
(Fig.1(a), right panel). While both MTFs are lowpass in character, they exhibit substan-
tially different upper cutoff rates, with flat noise being detectable to much higher rates
(exceeding 64 Hz compared to less than 10 Hz for the noise-delayed stimulus). Complemen-
tary tests of purely spectral sensitivity are shown in Figure 1(b). They employ stationary
(static) spectra with sinusoidal envelopes along the logarithmic frequency axis - also called



ripples [Hillier, 1991, Green, 1986]. This spectral MTF demonstrates that our ability to de-
tect closely spaced ripple peaks deteriorates above about 4 cycles/octave'. Spectral MTFs
in birds also exhibit similar trends and upper limits, although there is some variability across
different species [Amagai et al., 1999).

All MTFs described in Fig.1 are essentially one-dimensional in that they are measured
by varying either the spectral or temporal modulation rates while holding the other con-
stant. This is the case even for the spectrally complex stimuli in [Yost and Moore, 1987,
van Zanten and Senten, 1983| because such harmonic-like spectra preserve their shape against
the tonotopic (logarithmic frequency) axis of the auditory system regardless of the change
in their frequency spacing. Consequently, MTF's are effectively always measured with the
same spectral pattern (except for a translation to a different frequency region)?.

Modulations in speech spectrograms are usually combined spectro-temporal modulations.
Thus, speech is rarely a flat modulated spectrum nor is it a stationary peaked spectrum,
but rather it is both - a spectrum with dynamic peaks. Therefore, sensitivity to these types
of combined modulations relates directly to speech perception. But, are spectro-temporal
MTFs separable? That is, can the combined spectro-temporal MTF be derived from a
product of purely temporal and spectral MTFs?

A particularly useful and simple example of a combined spectro-temporal modulation is
the spectral ripple that drifts upwards or downwards at a constant velocity, as illustrated in
Figure 2(a). By varying the density of the peaks along the spectral axis (2, cyc/oct), and
the drifting speed (w, Hz) and directions, it is possible to measure a full combined spectro-
temporal MTF. These stimuli are also interesting from a theoretical perspective in that
they form a complete set of orthonormal basis functions for the spectrogram. Thus, any
arbitrary spectrogram can be decomposed (by a two-dimensional Fourier Transform) into
a linearly weighted sum of such drifting ripples with different spectral densities, velocities
and directions (Fig.2(b)). Because of this property, ripples have played a useful role in
characterizing the linear aspects of the spectro-temporal response fields in the auditory cortex
[Simon, Depireux, and Shamma, 1998]. Moreover, there is neurophysiological evidence that
these dynamically rippled spectra are especially effective in eliciting responses in the auditory
cortex [Kowalski, Depireux, and Shamma, 1996, deCharms, Blake, and Merzenich, 1998].

In order to characterize the role of these modulations in the perception of speech and other
complex sounds, we have measured the sensitivity of human subjects to spectro-temporal
modulations over the perceptually important range of 0.25-8 cycles/octave and 1-128 Hz.
The experimental methods and results are discussed in the next section (II). A simplified
model of early and central auditory processing that accounts for the major trends in the

Sensitivity also decreases to very low ripples (below about 1 cyc/oct) although this is probably due to
the design of the test which uses a flat spectrum as the standard.

2This is the case for one of two stimuli presented in [Yost and Moore, 1987]. In the other, the spectrum
is translated periodically at different rates along the linear frequency axis. Along the logarithmic frequency
axis, the spectral pattern periodically changes shape in a complicated manner, but thresholds are measured
only with respect to the change in temporal rates. Thus, strictly speaking this stimulus does not fit neatly
in the purely temporal vs. spectral classification.
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Figure 1: Temporal and spectral modulation transfer functions (MTF). (a) Left panel -
Temporal MTFs measured using amplitude modulated white noise [Viemeister, 1979]. Right
panel - Temporal MTF's measured using rippled noise with sinusoidally modulated delays
[van Zanten and Senten, 1983]. (b) Spectral modulation transfer functions measured using
ripples [Green, 1986).



data is presented in section III. In section IV, the utility of the model is demonstrated by a
preliminary evaluation of the intelligibility of speech in different kinds of noise. Finally, we
discuss the relevance of these results in the wider context of visual and other auditory tasks.

I: METHODS

Psychoacoustical MTFs were measured for four subjects who are graduate students fa-
miliar with this task. The results shown below followed a period of training after which
subjects’ performance stabilized with little further improvements.

A. Testing procedures

A “two-alternative two-interval” forced choice adaptive procedure was used to estimate
thresholds. Each trial consisted of two 1 second long observation intervals separated by 200
ms pause. After listener’s response, a short visual feedback was provided and a new trial
started until all 50 trials that comprise one block were presented.

The discrimination task was to distinguish between a spectrally flat standard, which did
not change over a block of trials, and the signal, which resembled the standard except for an
added modulation on the profile whose amplitude changed in steps adaptively. On the first
trial the signal was three step sizes away from the standard. On each subsequent trial the
signal was changed according to the “two down-one up” procedure in order to estimate the
level that produces 70.7% correct answers [Levitt, 1971]. The step size was halved after three
reversals and the threshold was estimated as the average of the signal across the last even
number of reversals, excluding the first three. Signal and standard occurred with equal a
priori probability in one of the two intervals. The overall presentation level was randomized
across trials and within a trial over a 20 dB range in 1 dB resolution, in order to ensure that
listeners based their judgement on a change in spectral shape rather than on absolute level
change in a particular frequency band [Green, 1986].

B. The moving ripple stimulus

In all tests, sounds were generated digitally with 16-bit resolution and 16 kHz sampling
rate. They were low-pass filtered at 8 kHz. Before presentation to listeners, sounds were
gated for a 1 sec duration, including 10 ms rise and decay ramps. Sounds were delivered
inside an acoustic chamber through a loudspeaker (ADS L470).

The broadband ripple spectra consisted of 92 tones equally spaced along the logarithmic
frequency axis and spanning 5.75 octaves (0.14-7.34 kHz), as illustrated in Fig.2(a). The
spectral envelope (or profile) of the complex was modulated as a single sinusoid along the
logarithmic frequency axis on a linear amplitude scale (Fig.2(a)). The amplitude of the
ripple profile (A) is defined relative to the unit base or flat spectrum. Thus, A = 0 to 1
corresponds to 0 to 100% modulation of the flat ripple profile. The ripple density € is in
units of cycles/octave (cyc/oct). The ripple phase is given in radians or degrees relative to
a sine wave starting at the low frequency edge of the complex (Fig.2(a)). Therefore, the
profile of a stationary ripple spectrum is given by

S(z)=A-sin(2r-Q-z+ P), (1)
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Figure 2: Moving ripples: Parameters and motivations. (a) Definition of moving ripple
spectrum parameters. Left panel illustrates a ripple spectrum with an envelope of amplitude
A sinusoidally modulated along the spectral axis  with a density of 2 = 0.5 cyc/oct, and is
moving at velocity w = 4 Hz. Right panel displays the ripple spectrogram . (b) A weighted
sum of ripples can be used to construct any arbitrary spectrogram. 7Top row illustrates
spectrograms of four upward/downward moving ripples with different 2, w combinations.
Adding these ripples produces a complex spectrogram.



where z is the position on the logarithmic frequency axis (in octaves) defined as: x = logg(%)
with fy the lower edge of the spectrum (0.14 kHz), and f as frequency; ® is the phase of the
profile.

The stimuli of interest in this study, however, are also modulated in time by having the
ripple profile move up or down the spectral axis at a constant velocity. Ripple velocity (w)
is defined as the number of ripple cycles-per-second (Hz) sweeping past the low frequency

edge of the spectrum. The resulting moving ripple profile is fully characterized by:
S(z,t) =A-sin(27- (w-t+Q-x)+ D). (2)

Therefore, a positive (negative) w corresponds to a ripple envelope drifting downward (up-
ward) in frequency.

Fig.2(b) illustrates spectrograms of moving ripple profiles with different (2,w) combi-
nations. Note that the spectrograms appear as two-dimensional gratings with orientations
determined by the ratio of the spectral to temporal modulation rates (£2/w). A program to
generate these stimuli interactively is available at http://www.isr.umd.edu/CAAR /pubs.html.

II. RESULTS

Threshold measurements can be conceptually inverted and interpreted as sensitivity mea-
sures to different spectro-temporal modulations, hence reflecting the gain of the system or
its modulation transfer function, e.g., as in [Viemeister, 1979, Yost and Moore, 1987]. The
average thresholds for four subjects are presented in Figure 3 as a function of 2 and w for
upward and downward drifting ripples.

The data generally exhibit a lowpass function in both dimensions. Sensitivity slightly
peaks in a small region around 2-8 Hz. Subjects maintain high sensitivity to temporal
modulations of low  spectra up to 32 Hz; in fact, temporal MTFs at Q = 0.25 — 2 cyc/oct
are almost identical to those measured by [Viemeister, 1979] with flat spectra. The data also
suggest that, apart from an overall decrease in sensitivity, the temporal transfer functions
approximately preserve their lowpass shape at higher €. For instance, temporal MTFs at
2 =0.25, 4, and 8 cyc/oct are approximately shifted upwards relative to each other reflecting
the rising detection thresholds to high @ (Fig.3). This implies that the spectro-temporal
MTF is approximately the product of purely temporal [Viemeister, 1979] and purely spectral
[Green, 1986] MTFs, i.e., it is separable.

To confirm this impression, we have applied the Singular Value Decomposition (SVD)
method to analyze the data in Fig.3(b). Specifically, the MTF is diagonalized as A =
U-MTF -V, where A is the eigenvalue matrix, and U,V are the corresponding eigenvectors
[Haykin, 1996]. If the MTF matrix is separable, i.e., expressible as the product of two vectors
(a purely temporal and spectral MTF), then it should have only one nonzero eigenvalue;
otherwise, relatively sizable secondary eigenvalues occur. Fig.3(c) illustrates the results of
such an analysis on the MTF's shown in Fig.3(a,b). Only one significant eigenvalue is found
(i—; < 15% for i = 2...6). The corresponding purely temporal and spectral threshold functions
(or MTFSs) are shown in Fig.3(c). The spectro-temporal MTF surface reconstructed by a
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Figure 3: Detection thresholds of moving ripples as a function of ripple density (€2), velocity
(w), and direction. (a) Contour and gray scale interpolated representation of the ripple
amplitudes at threshold. (b) Same thresholds as above plotted as a function of ripple velocity,
with density as parameter. For display purpose, only the upper error bars with half the
standard deviation error ranges are shown. (c) The one-dimensional temporal (left) and
spectral (right) MTFs (or thresholds) derived by singular-value-decomposition procedure
from the combined data in (b) above (see text for details).



pure product of these two functions produces an MTF that is to within 3.4% of the original
data (in mean-square-error sense) . This error is well within the bounds of the experimental
errors indicated by the bars. These results strongly argue for the full separability of the
MTFs in Fig.3(a,b).

I1I: MODEL

A model of spectro-temporal modulation sensitivity is developed here to explain the ori-
gin of the salient trends in the data, and to serve as a computational module in applications
requiring analysis of the spectro-temporal modulations in sound spectrograms. The model is
inspired and is consistent with known biophysics of the peripheral auditory system, and with
single unit responses in the primary auditory cortex [Kowalski, Depireux, and Shamma, 1996].
It consists conceptually of two parts: (1) An early auditory portion which models the trans-
formation of the acoustic signal into an auditory spectrogram, and (2) a central portion
which further analyzes the auditory pattern into a modulation scale-rate plot using a family
of cortical-like filters.

We first describe schematically these two stages. Next, a precise mathematical formu-
lation is presented, followed by a brief illustration of the model overall MTF. All model
stages are available as a MATLAB library on hitp://www.isr.umd.edu/CAAR /pubs.html
(NSL Tools Package).

A. The early auditory spectrogram

The early stages of the auditory system transform sound into a pattern of neural activity
that represents an enhanced and noise-robust version of the acoustic spectrum, henceforth
called the auditory spectrogram. Extensive details of the biophysical basis, anatomical struc-
tures, and computational implementation of the model used here to generate the auditory
spectral profiles are available in [Yang, Wang, and Shamma, 1992, Wang and Shamma, 1994].
Figure 4 illustrates the various stages of the model. Briefly, it consists of a bank of 120 asym-
metric critical overlapping bandpass filters that are equally spaced over a 5 octave frequency
range (24 filters/octave) (see [Wang and Shamma, 1994] for details of the filter parameters
and implementations). The output of each filter is processed by a hair cell stage which
consists of a highpass filter, followed by nonlinear compression (optional), and then a low-
pass filter [Shamma et al., 1986]. The final stage mimics the action of a lateral inhibitory
network [Shamma, 1988] which sharpens the filter outputs, and hence the filter bank fre-
quency selectivity. It is implemented by a first-difference operation across the channel array,
followed by a half-wave rectifier, and a short-term integration to estimate the final output
[Yang, Wang, and Shamma, 1992]. Figure 5(a) shows the auditory spectrogram of a speech
sentence “Come home right away’. Spectrograms of other sentences and moving ripples are
illustrated in Figures 5 and 6(b,c).

B. The modulation scale-rate plot

The auditory spectrum is relayed to the primary auditory cortex (AI) through several
stages of processing [Clarey, Barone, and Imig, 1992]. AT responses integrate influences from
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Figure 4: Schematic of processing in the early auditory stages (details in
[Yang, Wang, and Shamma, 1992, Wang and Shamma, 1995]). The acoustic signal is ana-
lyzed by a bank of constant-(Q cochlear-like filters. The output of each filter is then processed
by a hair cell model, and then by a lateral inhibitory network. The output at each point is
then rectified and integrated to produce the auditory spectrogram.

preceding nuclei which likely are involved in a host of other perceptual tasks such as binaural
localization and pitch estimation.

Neural responses in Al exhibit a complex and highly varied pattern of spectro-temporal
selectivity. For instance, an Al unit is usually tuned to a range of frequencies around a
"best frequency” (BF). Within this range, responses change from excitatory to inhibitory
in a pattern that varies from one cell to another in its width and asymmetry around the
BF [Kowalski, Depireux, and Shamma, 1996]. AI units also exhibit a similar selectivity and
variability in their temporal responses [Simon, Depireux, and Shamma, 1998]. Some units
are best responsive to fast changing spectra, while others are rather sluggish. In addi-
tion, AI units often respond selectively to the direction of movement of a spectral peak
near their BF. These response properties are summarized by the so-called spectro-temporal
response field (STRF), which is a generalization of the classic response areas in auditory
physiology [Clarey, Barone, and Imig, 1992| or receptive fields in the retina and visual cor-
tex [De-Valois and De-Valois, 1990|. It represents the spectro-temporal pattern that best
excites the cell. Fig.5(a) displays two model STRFs that are sensitive to very different
spectro-temporal patterns. On top, the STRF is relatively broadly tuned (responds best to
ripples of Q = 0.5 cyc/oct), dynamically agile (responds best to ripples drifting at w = 4 Hz),
and exhibits a downward directional selectivity. In comparison, the STRF on the bottom is
spectrally narrowly tuned (best = 2 cyc/oct), temporally slow (best w = 2 Hz), and is
upwardly sensitive. STRF's in AI vary along these multiple dimensions, exhibiting spectral
bandwidths from 0.5 to 2 octaves (in ferrets and cats), temporal selectivity that ranges from
rapid (over 16 Hz) to very slow (under 2 Hz), and directional sensitivities to upwards, bi-
directional, and downwards moving spectral energy [deCharms, Blake, and Merzenich, 1998,
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Simon, Depireux, and Shamma, 1998, Kowalski, Depireux, and Shamma, 1996].

Therefore, from a functional and computational point of view, Al can be considered a
bank of modulation filters which analyzes the spectro-temporal modulation rates of its input
spectrogram. This view is illustrated in Fig.5(b) where we construct the scale-rate plot to
summarize the Al responses. The computations consist of two stages. First, the auditory
spectrum is analyzed by a bank of STRFs with varying spectro-temporal (Q-w) selectivities.
Then we estimate the total output power from the STRFs at each 2-w combination and
plot the results in a scale-rate plot as shown in Fig.5(b). For example, a downward moving
ripple (Q2=2 cyc/oct, w= 4 Hz) evokes a fairly circumscribed pattern of scale-rate activa-
tion centered around the corresponding Q-w location (Fig.5(b)). A non-stationary speech
spectrogram evokes a series of short-time scale-rate plots reflecting the changing modulation
content of the utterance (Fig.5(c)).

C. Mathematical formulation of the cortical model

The cortical response (r) produced by the STRF analysis of the auditory spectrogram
y(z,t) is defined as:
r(z,t;Q,w) =y(x,t) % . STRF (z,t;Q,w) (3)

where x,;-, denotes convolution with respect to ¢ and multiplication with respect to x. Note
that the STRF(x,t;Q),w) is parameterized by its most sensitive spectral and temporal mod-
ulations (2,w), and these in turn reflect the bandwidth, dynamics, and orientation of its
excitatory and inhibitory fields.

The scale-rate plot is derived from the cortical response by integrating the output over
the whole spectrum z (5 octaves):

SR(t:0.0) = [ (@, 9, 0) | da (4)

An intuitive interpretation of the scale-rate plot (SR) is that it displays the total amount of
modulation that y(z,t) contains at each 2, w combination regardless of its distribution along
the spectral axis (z).

We assume that each upward or downward STRF can be represented by the product of
two separate spectral and temporal functions: a response field RF(z) along the frequency
(tonotopic) axis; and a temporal impulse response hyg(t). Therefore,

STRF(z,t;Q,w) = RF (z;, ¢) - hir(t;w,6). (5)
RF(x) is defined by a symmetric seed function hy(x; Q) and its Hilbert transform
RF (z; 3¢, Q, ) = hy(z — 2;Q) cos ¢ + hy(x — z; Q) sin ¢

where z., ) and ¢ are respectively the center frequency, density and phase of the most
sensitive ripple; its Hilbert transform is
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Figure 5: Model of central auditory processing and the scale-rate plot. (a) Cortical analysis
of the auditory spectrogram. The spectrogram of the sentence ” Come home right away” is
analyzed by a bank of cortical spectro-temporal response fields (STRF). Two model STRFs
are shown; in each, black (white) color represents excitatory (inhibitory) regions of the STREF.
The panels on the right illustrate the results of processing the original auditory spectrogram
through each of the STRFs. Only downward broad spectral transitions survive in the upper
panel; the opposite spectro-temporal features are seen in the lower panel. (b) Measuring the
output of cortical STRFs. The auditory spectrogram (left) is projected to a bank of STRFs
with all , w parameters represented middle. The ripple spectrogram activates maximally
the STRF that matches its outline best (i.e., the STRF at 2 cyc/oct and 4 Hz). The output
from all STRF’s is summarized in the scale-rate plot (right), which shows a peak at 2 = 2
cyc/oct and w = 4 Hz. (c) The scale-rate plots vary as a function of time reflecting the
changing ripple content of a speech spectrogram
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Here we choose a Gabor-like function to approximate hg(-):

n

xT

he(z) = (1 —2%)e =
hs(z; Q) = Qhy(Qx)
Similarly, the temporal impulse response can be expressed as
hir(t;w,0) = hy(t; w) cos @ + hy(t;w) sin 6

where w is the most sensitive ripple velocity. h(-) is modelled by one gamma probability
density function
hy(t) = t3e™* cos(27t)

hi(t; w) = why(wt)

In many instances, we will need to consider the average scale-rate plot of a sentence or
even an entire corpus of speech. This is simply defined as

1
SFag( Q) = 7 /T ISR(t;Q,w)|dt,

where T denotes the entire interval over which SR is averaged.

D. Spectro-temporal MTF of the auditory model

The MTF of the full auditory model is shown in Figure 6(a). It is measured by pre-
senting single ripples of all €2, w combinations and noting for each output at the correspond-
ing SR(Q,w). The model responses capture the main trends seen in the threshold MTF
illustrated earlier in Fig.3. Specifically, the model exhibits lowpass MTFs with very sim-
ilar spectral and temporal rate cutoffs. The origin of these response characteristics is the
effectively narrow bandwidths used to compute the auditory spectrogram. The cochlear
filters have a typical critical-band gammatone shape; However, the lateral inhibition stage
in the model effectively narrows the filter bandwidths and slows down its dynamics (see
[Wang and Shamma, 1995] for details).

The MTF loss of sensitivity at high ripple velocities is evident in the auditory spectro-
grams (Fig.6(b)) of a 4 cyc/oct ripple at w = 4, 8, 16 and 32 Hz . In all panels, the temporal
modulations are poorly represented at the lowest BF's where the auditory filters are narrow-
est and dynamically slowest. At higher modulation rates, the disruption spreads towards
higher, hence reducing the corresponding SR outputs.

The decrease in output at high density ripples is due to the finite bandwidths of the
cochlear filters. As ripple peaks become closely spaced, they are less resolved by the cochlear
filters, and their amplitudes decrease as illustrated in Fig.6(c). Based on these arguments, it
is evident that the upper limits of the temporal and spectral modulation rates are inversely
related through the effective bandwidths of the cochlear filters.
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Finally, the model responses exhibit a slight asymmetry with respect to ripple directions
at high rates (e.g., responses at -32 Hz are smaller than at 32 Hz). Experimental data,
however, do not replicate such a preference. The model asymmetry is due to the staggered
cochlear filter group delays which give rise to a (basilar membrane) travelling wave towards
the lower frequency channels, i.e., in the downward direction. These delays disrupt the flow
of responses to upward ripple, but less so to downward ripples.

IV: APPLICATION TO SPEECH INTELLIGIBILITY

Auditory spectrograms of speech are rich in spectro-temporal modulations which are im-
portant in preserving its intelligibility. Numerous tests have estimated a critical range of tem-
poral modulations in speech at between 2 and 8 Hz [Greenberg, Hollenback, and Ellis, 1996].
In fact, filtering out temporal modulations outside of this range has proven to be an effective
strategy for combating the deleterious effects of noise and reverberations in real world speech
signals [Hermansky and Morgan, 1994, Greenberg and Kingsbury, 1997].

However, not all spectro-temporal modulations of speech (or other environmental sounds)
are equally perceived by humans. To determine the most perceptually salient range of speech
modulations, we computed the long-term average scale-rate plot of 380 spoken sentences.
These sentences were extracted from a subset of TIMIT corpus® (the training portion of
the New England dialect region) which contains a total of 24 male speakers (240 sentences)
and 14 female speakers (140 sentences). Figure 7 illustrates that spectro-temporal ripples
bounded by the range between 4-8 Hz and <4 cyc/oct are the critical perceptible modulations
in speech. It is important to note that in marking this range, we consider both the spectral
and temporal dimensions simultaneously. For instance, temporal modulations at 4-8 Hz are
not important for densely rippled spectra (e.g., > 4 cyc/oct).

Speech often suffers significant loss of intelligibility in noisy or reverberant environments.
Presumably this is partly because these conditions disrupt the modulations of normal clean
speech. Therefore, the scale-rate plot could serve as a useful indicator of this disruption
by providing a sensitive spectro-temporal representation from which an “intelligibility in-
dex” could be derived. This is analogous to the way traditional critical-band spectra and
single-tone temporal MTFs have been utilized to derive the classical articulation index
[Kryter, 1962] and speech transmission index [Houtgast, Steeneken, and Plomp, 1980).

Figures 7(b-c) illustrate the effects of noise and reverberations on the scale-rate plots of
clean speech. Fig.7(b) shows a series of average scale-rate plots (SRa., (€2, w)) for a sentence
contaminated with increasing levels of white noise (decreasing S/N). Another series of similar
plots for speech with increasing reverberation delays is shown in Fig.7(c)?. In both cases, a
suitably defined measure of the similarity between the clean and distorted plots could serve
as an indicator of the noise perceived by the listener as described next.

3A more extensive description of corpus design, collection, and transcription can be found in the printed
documentation from National Institute of Standards and Technology (NIST# PB91-100354).

4The reverberation model is an exponentially decaying function, m(F) = [1 + (27F7)?]~ /2, applied to
the envelope of each channel in the spectrogram, where F' is the temporal modulation frequency of the
envelope [Houtgast, Steeneken, and Plomp, 1980].
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Figure 6: Spectro-temporal MTFs of the full auditory model. (a) The model MTF shown
in arbitrary linear gray scale (bar on the right). The contour surfaces depict thresholds
predicted by the model; They are derived by normalizing the minimum perceptual threshold
in Fig.4 (=0.035) by the model MTF. (b) Origin of the temporal lowpass shape in the MTF.
With increasing ripple velocity, the low BF regions fail to follow rapid modulations and hence
become progressively more distorted, thus causing the decrease in the corresponding STRF
outputs. (¢) Origin of the spectral lowpass shape in the MTF. Cochlear filters gradually fail
to resolve higher density ripples causing a decrease in overall output.
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A. Deriving an intelligibility measure from the scale-rate plots

Assume that the scale-rate plots of a clean speech utterance SR.(t;2,w) and its noisy
version SR, (t;{),w) are available, then the similarity (or correlation) between any corre-
sponding (2,w) channels is defined as [Duda and Hart, 1973]:

O w) = = SR.(t;Q,w) — fsR.(t:0w), SRu(t; Q,w) — 1R (1:00) >
po(Q,w) = : — : — (6)
|| SRC(t7 Qaw) HSR.(t;Q,w) || . ” SRn(t7 Qaw) KSR (£;Q,w) ”

where pgg, is the mean of the random variable SR, and the inner product and the in-
duced norm are defined as : (Note that dependence on Q,w, and t in all quantities below is
suppressed to simplify notation)

< SR, — psg., SR, — pisr, >= /T(SRc(t) — tsgr.) - (SRn(t) — psr,)dt

and

| SR—pll= /< SR—p,SR—p>

This similarity measure py compares the SR(-) of the clean and noisy signals frame-by-
frame, and not simply through the time-averaged plot SR,,,. Consequently, such a measure
is only useful if both clean and noisy samples of the same sentence are available.

A slightly modified measure can be defined which requires only knowledge of the mean
and variance of the clean speech scale-rate plot (SR, in Fig.7(a)). It is used in situations
where only noisy speech samples are provided, or if clean and noisy samples are of different
utterances. We assume that the effect of added noise and reverberations at a given channel
can be modeled as a change in the mean and variances of the random variables SR, :

SRn(t; Q, w) = Aq, SRc(t; Q, w) + Caw (7)

where Aq, and Cq,, are measurable from the long-term average scale-rate output of the clean
and noisy speech samples as:

psr, = A- psr, +C (8)
USRn :A'O-SRC (9)

where pgg and ogg are the mean and standard deviation of the random variable SR at each

channel (Q,w).

For discrete time interpretation, substituting Eqgs. (7), (8), (9) into Eq. (6) and noting
that >, (SR.[n] — usr.) = 0, the numerator of Equation 6 can be written as :

> (SRe[n] — psr,)(SRu[n] — psr,)

n

= > _(SR[n] — psr.)(A - SR[n] — psr, + C)

= A-Y (SRc[n] — psr.)’ (10)
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and the denominator can be simplified to :

WZ(smn} — ps1)?) (S (S Rafn] — s, )?)

n n

n n

= \/(Z(SRC[H] — pisr.)?)(Q_[A - (SRe[n] — psr,) + (A — 1)usg, + C?)

- \/(Z(SRc[n] — jsr)?) (A2 S (SRuln] — psm)? + N[(A - Dpsm, + CP) (1)

n n

where N is the total number of samples along n axis. Therefore, py can be simplified to p;:

1

(Agw—1)psR.(Q,w) TC0w \ 9
\ 1+ ( AQwOSR(Q,w) )

Ps(Q>W) =

1

= - (12)
KSRy (Q,w0) "THSR(Q,w) \2

1 + ( TSRp(Q,w) )

A final indicator p of the total similarity between clean and noisy samples is derived as
the average (over all Q and w of all p,(©2, w) or ps(Q,w)):

N S Sl) (13)

p:

or
1

ey A IACRD (14)

where Nq, N, are the number of channels along ) and w axes.

The validity of the assumptions leading to the derivation of the simplified p (Eq. 14)
is demonstrated by the approximate correspondence between the two p measures (Egs. 13
and 14) for the noisy speech samples shown in Figs.7(b-c). It is important to note here
that the proposed measures are defined and computed irrespective of the nature (or model)
of the distorting process, i.e., p reflects the perceptual change the same way whether it is
caused by broadband noise, reverberations, or any other process. Therefore, p serves as a
spectro-temporal modulation index (STMI), a measure of the total change in the modulations
away from those of clean speech.

B. Assessing speech intelligibility with STMI (p)

We discuss the use of the STMI in two situations: (1) determining the quality of a trans-
mission medium (e.g. a telephone channel or an auditorium); (2) assessing the intelligibility
of a given noisy speech sample.

In the first case, clean speech is transmitted through a noisy or reverberant channel (or
recorded in an auditorium). The clean and transmitted versions of the same sentence are
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Figure 7: Spectro-temporal modulations in speech. (a) The average (mean) scale-rate plot
of modulations in speech (ugg,). On average, the strongest modulations are downward, and
in the 4-8 Hz range and under 4 cyc/oct. (b) Average scale-rate plots (SRg,) of speech

contaminated by stationary white noise at different S/N ratios.

Above each panel is a

measure of the similarity (p) between the frame-by-frame scale-rate plots of the clean and
noisy speech signals; The number in the parenthesis is a simplified version of p that uses
averaged SR only (see text for details on both measures). As the S/N ratio decreases, p
values decrease reflecting distortions due to the noise. (c¢) The effect of reverberation delays:
p decreases gradually with increasing reverberation delays (7).
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compared by computing p (Eq. 13). The resulting values predict the quality of the trans-
mission medium. Informal experiments in our laboratory indicate that p values near 0.75
reflect marginally intelligible speech, corresponding to S/N ratios of about -3 dB (Fig.7(b))
or reverberation delays of 20 ms (Fig.7(c)).

In the second situation, the goal is to estimate the intelligibility of noisy speech samples
recorded in different S/N conditions. No clean samples of the noisy speech are available.
Instead, we rely on the long-term average of the clean speech in Fig.7(a) to provide the
reference against which to measure the effects of the noise. To illustrate this procedure,
we have utilized data supplied to us by the Southwest Research Institute based on speech
intelligibility tests in different S/N conditions conducted with 5 subjects. Each test consisted
of the following conditions and test materials:

(1) A specific S/N condition.

(2) A total of eight non-sense sentences.
(3) Each sentence consisted of 5 randomly chosen monosyllabic words.

(4) Each word consisted of 3 phonemes with approximately balanced presentation of
vowels vs. consonants (typically 40% vs. 60% over the entire set of sentences). Examples of
words used are: GAB, BAR, WHET, BUG, LOT.

In a given test, each subject was presented the 5-word sentences and asked to enter the
phonemes heard in each word, including the option of “not certain” at any position in a word.
The subjects also had the option of hearing the sentences again before responding. Numerous
measures of the responses were compiled including the correct percentage of responses for
vowels and consonants combined and separately, total number of 100% correct words, and
the average correct phonemes all subjects entered correctly. For the purposes of this paper,
we focus on the correct percentage of phonemes perceived as a function of the S/N ratio
of the test. A more elaborate analysis of the data is underway in which p is computed
separately over specific phonemes (e.g., vowels, consonants, or restricted vowel types), and
compared to the corresponding identification results in the tests.

Figure 8 illustrates the correspondence between the p (Eq. 14) and the percentage of
correct phonemes at each of the 7 S/N conditions tested. The p evidently provides a fair
average measure of the integrity of the phoneme percepts.

V: Discussion

We have reported new measurements of the spectro-temporal MTF's using moving ripple
spectra. The MTF's exhibit a lowpass function with respect to both dimensions, with 50%
bandwidths of about 16 Hz and 2 cyc/oct (Fig.3). We have also formulated a computational
auditory model that exhibits spectro-temporal MTFs consistent with the salient trends in
the data. The model was used to demonstrate the potential relevance of these MTF's to the
assessment of speech intelligibility:.

A. Relation to psychoacoustic modulation transfer functions

Modulation transfer functions have been measured with different types of acoustic stim-
uli. For purely spectrally modulated spectra, two sets of largely comparable measurements
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are available [Green, 1986, Hillier, 1991], and both are in agreement with the spectral trans-
fer functions in Fig.3(a) at low temporal modulations (< 32 Hz). For temporal modulation
transfer functions, the data using modulated flat noise [Viemeister, 1979| or rippled noise
[Yost and Moore, 1987, van Zanten and Senten, 1983| give quite different results. With flat
noise, subjects detect modulation rates well over 64 Hz. By contrast, modulation of rip-
pled noise is not detectable beyond about 10 Hz. Yost and Moore [Yost and Moore, 1987
discussed and discounted several hypotheses that could account for this difference. More
recently, Yost (personal communication) suggested that a possible reason for this disparity
is that temporal modulations of a flat noise yield amplitude modulations that are in-phase
over the whole spectrum. By comparison, modulations of the linear ripple produce out-of-
phase amplitude modulations in different parts of the spectrum, and hence will cancel out if
they are centrally integrated.

Our data indicate that Viemeister’s temporal MTF's are valid not just for flat spectra,
but for any spectra composed of ripples up to 2 cyc/oct. The data also suggest that the
low pass form of the MTFs persist at higher ripple densities (> 2 cyc/oct) (Fig.3), but
with significant overall loss of sensitivity presumably due to the higher thresholds associated
with high density ripples in general [Green, 1986, Hillier, 1991]. This finding argues for
the separability of the temporal and spectral dimensions of the MTFs, a conjecture that is
strongly supported by the SVD analysis.

The stimuli of [Yost and Moore, 1987, van Zanten and Senten, 1983] are fundamentally
different in that they are not pure ripples (on the tonotopic axis), but rather a collection
of ripples of many densities. Consequently, to predict their detection thresholds, we need
to specify further detection procedures for arbitrary spectra, which are beyond the scope
of the present model formulation. However, it is intuitively possible to see that our results
are at least consistent with the notion that ripple-noise thresholds are high because they
contain high density profiles (2 > 4 cyc/oct) which are poorly perceived in the MTFs
(Fig.3). Our model further suggests that the locus of spectral integration that gives rise
to this phenomenon is not necessarily central, but is instead the limited resolution of the
cochlear filters.

B. Spectro-temporal modulations and speech intelligibility

The experiments reported in section IV illustrate the potential utility of spectro-temporal
MTFs in quantifying speech intelligibility. Their promise seems to derive from their integra-
tion of spectral and temporal factors into one measure. In this sense, they can be viewed as
closely related to, or in fact combining two widely used intelligibility measures: articulation
index [Kryter, 1962] and speech transmission index [Houtgast, Steeneken, and Plomp, 1980).
These two measures represent in some sense extreme versions of the STMI. The articula-
tion index captures effectively the distortions due to stationary broadband noise and hence
is purely spectral. The speech transmission indexr was specifically designed to deal with
problems arising from severe reverberations and is therefore mostly temporal. We have
demonstrated in Fig.7 that the scale-rate plot (and its associated measure p) are sensitive to
both kinds of distortions, and that they seem to reflect sensibly the perceptual degradation
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Figure 8: The spectro-temporal modulation index p plotted against the percentage of correct
phonemes (as reported by 5 subjects) in 7 different S/N conditions.

of the speech signal (Fig.8). Therefore, the STMI has potentially the advantage of being
useful in a wide range of noisy environments and applications. Moreover, it can be used for
frame-by-frame comparisons and with long-term averages as illustrated in section IV. Clearly,
much more experimental work is needed to “calibrate” the numerical values of STMI against
human speech perception under controlled noisy situations, and against accepted estimates
of the articulation index and the speech transmission index.

C. Relation to vision spatio-temporal MTF's

Visual spatio-temporal MTF's are usually measured with sinusoidally modulated gratings,
with various orientations and drifting velocities [Dong and Atick, 1995, Kelly, 1961]. These
measurements are analogous to our spectro-temporal MTFs if we consider the spatial axis
of the retina as analogous to the tonotopic axis of the auditory system. Visual and auditory
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MTFs are generally similar in that they both exhibit an overall lowpass function in both
dimensions. There are, however, three important details to note about the data:

(1) Both visual and auditory MTFs exhibit a small but consistent highpass edge at the
lowest modulation rates, giving the MTF more of a bandpass shape (see Fig.3(c)).

(2) Temporal cut-off rates of visual and auditory MTFs are quite comparable, contrary
to the common assumption that auditory processes are generally faster.

(3) Unlike auditory MTFs, visual MTFs seem to be inseparable, i.e., they cannot be
reduced to a product of purely temporal and spatial MTFs [Dong and Atick, 1995|. This
conclusion may be revised based on the criteria and tests one accepts for separability. To
first order, however, it is clear that our auditory spectro-temporal MTFs can be derived from
a simple product of [Viemeister, 1979] temporal MTFs and [Green, 1986] spectral MTFs
(assuming that the highpass shape of the latter curve is ignored).

D. Further refinements and considerations of the auditory model

The auditory model described here (section IIT) combines a simplified version of an early
auditory model, and a computational module that captures the main features so far observed
in auditory cortical responses. It is evident that most of the MTF features are due to
the early auditory processing stages (e.g., bandwidths of cochlear filters, and the lateral
inhibitory network). The primary purpose of the cortical module is to derive an estimate
of the distribution of power in the spectrogram modulations. A major simplification in our
analysis and displays is the integration of the spectrogram over the entire tonotopic axis x
(Eq. 4). This allows us to generate the two dimensional scale-rate plots, and to ignore the
contribution of different frequency ranges to the final displays. Clearly, this variable must
be considered in future work in ways that reflect the specific applications. For instance, the
effect of noise should be weighted more heavily in the intermediate frequency ranges (near
1 kHz) where hearing thresholds are lowest and speech spectra are concentrated. Another
useful addition to the model is a detection criteria that will enable us to predict sensitivity
to changes in arbitrary spectrograms, and to derive MTFs for arbitrarily complex spectra
and manipulations such as Yost’s ripple noise.
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