
[KL75] R.M. Karp and S.Y.R. Li. Two Special Cases of the Assignment Problem. Discrete

Mathematics, 13: 129{142, 1975.

[Kuh55] H.W. Kuhn. The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2(1): 83{97, 1955.

[Lei91] C.E. Leiserson, 1991. Second quiz in the Introduction to Algorithms course, prob-

lem Q-3.

[MC80] C. Mead and L. Conway. Introduction to VLSI systems. Addison-Wesley, Reading,

MA, 1980.

[MS91] O. Marcotte and S. Suri. Fast matching algorithms for points on a polygon. SIAM

Journal on Computing 20: 405{422, 1991.

[Vai89] P.M. Vaidya. Geometry helps in matching. SIAM Journal on Computing 18:

1201{1225, 1989.

[Won91] C.K. Wong, 1991. Personal Communication.

[WPMK86] M. Werman, S. Peleg, R. Melter, and T.Y. Kong. Bipartite graph matching for

points on a line or a circle. Journal of Algorithms, 7: 277{284, 1986.

[WPR84] M. Werman, S. Peleg, and A. Rosenfeld. A distance metric for multidimensional

histograms. Technical Report CAR-TR-90, Center for Automation Research, Univ.

of Maryland, August 1984.

26

it takes to encode this matching is simply the number of distinct demand rows and supply

columns in this diagonal. The main computational step in the divide and conquer scheme is

the algorithm to compute the separating row. Suppose that we are computing the separating

row for a matrix B (this is the \blown" up matrix) of size (b� t + 1) � (r � ` + 1). If all the

rows in B are identical (they correspond to the same demand row in the original cost matrix

A), then the min cost matching is a single diagonal, and hence the separating row will either

be t � 1 or b (all the rows will match either to a diagonal i � k, or a diagonal i > k, where

k =

j

r+`

2

k

). Recall that the diagonals form a bitonic sequence. Thus in time proportional to

the number of distinct columns in B, we can �gure out which side of k the cheapest diagonal is.

When the rows in B are not identical, we only need to compute the value of s

x

for a row that is

di�erent from its previous row. Hence the algorithm can be made to run in time proportional

to the number of distinct rows and columns in B.

Acknowledgments: We would like to thank James Park for telling us about the skiers prob-

lem, and for informing us of the paper by Karp and Li [KL75]. The authors also thank Bill

Pulleyblank for several useful discussions and for providing useful references.

References

[AHU83] A.V. Aho, J.E. Hopcroft and J.D. Ullman. Data Structures and Algorithms. Ad-

dison Wesley, 1983.

[AM86] A. Aggarwal and R.C. Melville. Fast computation of the modality of polygons.

Journal of Algorithms, 7: 369{381, 1986.

[AMO89] R.K. Ahuja, T.L. Magnanti, and J. B. Orlin. Network ows. In Optimiza-

tion, Handbooks in Operations Research and Management Science, pages 211{370.

North-Holland Publishing, 1989.

[CLR90] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to Algorithms. McGraw

Hill, 1990.

[GTT89] A.V. Goldberg,

�

E. Tardos, and R.E. Tarjan. Network ow algorithms. Paths,

Flows and VLSI-Layout, pages 101{164. Springer Verlag, New York, 1990.

[Hof63] A.J. Ho�man. On simple linear programming problems. In V. Klee, editor, Con-

vexity: Proceedings of the Seventh Symposium in Pure Mathematics of the AMS,

volume 7, pages 317{327. American Mathematical Society, Providence, RI, 1963.

[Ja92] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

25

optimal \rightmost" matching for B

i+1

that contains M

0

; that is, M

00

is the matching

that contains M

0

, and in each row s

i

< x � i + 1 the diagonal index is maximal among

all optimal matchings for B

i+1

. Consider the index of the match of row s

i

+ 1 in M

00

. If

this index is at least k + 1, then s

i+1

is a separating row, and we are done.

Suppose that this is not the case, and that the match of row s

i

+ 1 lies to the left of

diagonal D

k+1

. Let z be the diagonal index of the match of row s

i

+1. Let s

i

+1 � q � i

be the maximum index such that the match of row q in M

00

lies in diagonal D

z

. Note

that the minimum element in row q must be to the left or on D

z

. Otherwise, D

z

(q)

can be substituted by D

z+1

(q) to obtain a valid matching that is no worse than M

00

,

a contradiction to our assumption that M

00

is the \rightmost" matching. On the other

hand, because V (s

i

+ 1; s

i

+ 1) � W (s

i

+ 1; s

i

+ 1), and because the rows are bitonic, it

follows that the minimum element in row s

i

+ 1 must be to the right or on D

k+1

.

Consider the sub-array given by fD

z

(s

i

+ 1; q); : : : ;D

k+1

(s

i

+ 1; q)g. This sub-

array conforms with the conditions of Lemma 17, implying that the sequence

P

q

x=s

i

+1

D

z

(x); : : : ;

P

q

x=s

i

+1

D

k+1

(x) is bitonic. Note that V (s

i

+ 1; q) � W (s

i

+ 1; q).

From Lemma 17 we conclude that

P

q

x=s

i

+1

D

z

(x) �

P

q

x=s

i

+1

D

z+1

(x). However, in this

case the matching given by substituting D

z

(s

i

+ 1); : : : ;D

z

(q) ofM

00

by the corresponding

elements that lie on D

z+1

form a valid matching that is no worse fromM

00

, a contradiction

to our assumption that M

00

is the \rightmost" matching.

The validity proof of the base recursion is trivial. The correctness of the algorithm follows

from substituting i = n.

Theorem 19 The algorithm described in Section 4.2 �nds a minimum cost matching in a

bitonic Monge array.

4.4 The transportation problem

Suppose that we are given a transportation problem with integral supplies and demands, and

a cost array A that is bitonic Monge. A simple way to transform this problem into a matching

problem is by \blowing" the cost array into a (

P

n

i=1

d

i

) � (

P

m

j=1

s

j

) array, where the (i; j)th

entry of the original array is replicated d

i

� s

j

times. Applying our algorithm for this array

gives an O((

P

n

i=1

d

i

) log(

P

m

j=1

s

j

)) time algorithm. However, the algorithm can be modi�ed

such that the amount of work per diagonal is O(m+n), resulting in an O(m log(

P

m

j=1

s

j

)) time

algorithm.

We outline the main modi�cations that are needed to the algorithm. The base case, when

we have a single diagonal is quite easy: the matching is a single diagonal. The amount of time

24

Case 1.2: V (i+ 1; i+ 1) � W (i+ 1; i+ 1), i.e., D

k

(i+ 1) � D

k+1

(i+ 1). In this case the

algorithm sets s

i+1

= i. From the bitonicity of row i + 1 it follows that the minimum

entry in row i+ 1 lies in one of the diagonals D

k+1

; : : : ;D

m�n+1

. Hence, this minimum

element can be added to M

i

to form a matching for B

i+1

, that costs less than any other

matching containing M

i

. Since it can be shown that there exists an optimal matching for

B

i+1

that contains M

i

, s

i+1

= i is a separating row for B

i+1

.

Case 2: s

i

< i, that is, there exists an optimal matching for B

i

the �rst s

i

entries of which lie

in diagonals D

1

; : : : ;D

k

, and the last i� s

i

entries of which lie in diagonals D

k+1

; : : : ;D

m�n+1

.

Case 2.1: V (s

i

+ 1; i+ 1) < W (s

i

+ 1; i+ 1). In this case the algorithm sets s

i+1

= i + 1.

De�ne M

0

to be the optimal matching for B

i+1

for which the diagonal index of each

row is minimal among all optimal matchings for B

i+1

. We claim that such an optimal

matching always exists and call it the \leftmost" matching. Consider the index of the

match of row i+ 1 in M

0

. If this index is not greater than k, then s

i+1

= i+ 1 is indeed

a separating row.

Suppose this is not the case, and that the match of row i + 1 lies in diagonal D

z

, for

z � k + 1. Let q � i+ 1 be the minimum index such that the match of row q in M

0

lies

in diagonal D

z

. Note that the minimum element in row q must be to the right or on D

z

.

Otherwise, D

z

(q) can be substituted by D

z�1

(q) to obtain a valid matching that is no

worse than M

0

, a contradiction to our assumption that M

0

is the \leftmost" matching.

Since s

i

< i, we have V (s

i

+ 1; i) � W (s

i

+ 1; i). By the assumption V (s

i

+ 1; i+ 1) <

W (s

i

+ 1; i+ 1). Consequently, the element D

k

(i+ 1) must be less than the element

D

k+1

(i+ 1). This and the bitonicity of the rows imply that the minimum element in row

i+ 1 must be to the left or on D

k

.

Consider the sub-array given by fD

k

(q; i+ 1); : : : ;D

z

(q; i+ 1)g. This sub-array conforms

with the conditions of Lemma 17, implying that the sequence

P

i+1

x=q

D

k

(x); : : : ;

P

i+1

x=q

D

z

(x)

is bitonic. Since M

0

is the \leftmost" matching, q must be greater than s

i

. Since q

has not been chosen as a separating line, V (s

i

+ 1; q) � W (s

i

+ 1; q). It follows that

V (q; i+ 1) < W (q; i+ 1). The bitonicity of the diagonals (Lemma 17) implies that

P

i+1

x=q

D

z�1

(x) �

P

i+1

x=q

D

z

(x). However, in this case the matching given by substitut-

ing D

z

(q); : : : ;D

z

(i+ 1) of M

0

by the corresponding elements that lie on D

z�1

form a

valid matching that is no worse than M

0

, a contradiction to our assumption that M

0

is

the \leftmost" matching.

Case 2.2: V (s

i

+ 1; i+ 1) � W (s

i

+ 1; i+ 1). In this case the algorithm sets s

i+1

= s

i

. Let

M

0

be an optimal matching for B

s

i

that lies in the �rst k diagonals. Let M

00

be the

23

in row b is to the left or on D

`

(i.e., the column index of the minimum element in row b is at

most `+ b� 1). Then, the sequence U

`

; : : : ; U

r

is bitonic.

Proof: Consider three consecutive diagonals and denote their elements by x

1

; : : : ; x

c

,

y

1

; : : : ; y

c

, and z

1

; : : : ; z

c

, respectively, where c = b� t+ 1. Let X =

P

c

i=1

x

i

, Y =

P

c

i=1

y

i

, and

Z =

P

c

i=1

z

i

. We claim that Y � X � Z � Y . Consequently, the sequence of the di�erences

between the diagonals is a monotonic non-decreasing sequences and, therefore, the sequence of

diagonals is bitonic.

It remains to prove the above claim. For all i, 1 � i � c � 1, the Monge property gives:

y

i

+ y

i+1

� z

i

+ x

i+1

, or, y

i+1

� x

i+1

� z

i

� y

i

. We can write Y �X and Z � Y as follows:

Y �X = (y

1

� x

1

) + (y

2

� x

2

) + (y

3

� x

3

) + � � �+ (y

c

� x

c

)

Z � Y = (z

1

� y

1

) + (z

2

� y

2

) + � � �+ (z

c�1

� y

c�1

) + (z

c

� y

c

)

Therefore, (Y � X)� (Z � Y) � (y

1

� x

1

) � (z

c

� y

c

). Because of the bitonicity of the rows

and since the minimum in row t is to the right or on D

r

, y

1

� x

1

is negative. Similarly, z

c

� y

c

is positive. Hence, (Y �X)� (Z � Y) � 0.

Now, we prove the correctness of the recursive step. To simplify the notation, we consider

the top level of the recursion. Let B

i

be the sub-array containing the �rst i rows of B.

Lemma 18 For all 1 � i � n, row s

i

of B

i

is a separating row for the sub-array B

i

.

Proof: The proof is by induction on i. For the base case i = 1, and s

1

is either 1 or 0,

depending on the values of V (1; 1) and W (1; 1). (By comparing the two values we know where

the minimum of row 1 is.) Now, assume that row s

i

of B

i

is a separating row for B

i

, and we

show that row s

i+1

of B

i+1

is a separating row for B

i+1

.

Case 1: s

i

= i; that is, there exists an optimal matching for B

i

that lies in the �rst k =

�

m+n

2

�

diagonals. Denote this matching by M

i

.

Case 1.1: V (s

i

+ 1; i+ 1) = V (i+ 1; i+ 1) < W (s

i

+ 1; i+ 1) = W (i+ 1; i+ 1), i.e., the el-

ement D

k

(i+ 1) is less than the element D

k+1

(i+ 1). In this case, the algorithm sets

s

i+1

= i + 1. To obtain a contradiction suppose that there is no optimal matching for

B

i+1

in diagonalsD

1

; : : : ;D

k

. Consider an optimal matching for B

i+1

. By our assumption

it must be that the match in row i+1 lies in diagonal D

z

for some z > k. It can be shown

that there exists such an optimal matching M

0

that contains the matching M

i

. However,

the matching M

i

can be augmented by D

k

(i+ 1) = a[i+1; i+k], since column i+k does

not intersect the �rst i rows of diagonals D

1

; : : : ;D

k

, since row i+ 1 is bitonic and since

D

k

(i+ 1) < D

k+1

(i+ 1) and D

k

(i+ 1) < D

z

(i+ 1). Thus, the matching given by adding

D

k

(i+ 1) to M

i

is smaller than M

0

. A contradiction.

22

and let W (i

1

; i

2

) =

P

i

2

i=i

1

D

k+1

(i).

s

x

8

<

:

t� 1 + x ifV (s

x�1

+ 1; t� 1 + x) < W (s

x�1

+ 1; t� 1 + x)

s

x�1

otherwise

The justi�cation for the de�nition of s

x

is provided in Lemma 18.

We claim that each stage takes constant time. To see this, notice that if s

x�1

= t � 2 + x,

then

V (s

x�1

+ 1; t� 1 + x) = D

k

(t � 1 + x)

W (s

x�1

+ 1; t� 1 + x) = D

k+1

(t � 1 + x)

Otherwise,

V (s

x�1

+ 1; t� 1 + x) = V (s

x�1

+ 1; t� 2 + x) + D

k

(t� 1 + x)

W (s

x�1

+ 1; t� 1 + x) = W (s

x�1

+ 1; t� 2 + x) + D

k+1

(t � 1 + x):

Therefore, the separating row can be found in O(b � t) time, since it takes constant time to

compute each V (s

x�1

+ 1; t� 1 + x) and W (s

x�1

+ 1; t� 1 + x).

Starting with an array B consisting of diagonals D

1

; : : : ;D

m�n+1

, we get the following re-

currence relation for the running time of our algorithm. Let T (a; b) denote the running time of

the algorithm on a matrix with a rows and b diagonals.

T (n;m� n + 1) = T

�

s;

�

m� n

2

�

+ 1

�

+ T

�

n � s;

�

m� n

2

��

+ O(n):

It is not hard to see that T (n; 1) = O(n) since in this case the minimum cost matching is

simply the given diagonal. The solution of the recurrence implies the following theorem.

Theorem 16 (Complexity) The time complexity of the algorithm is O(n logm).

The algorithm can be parallelized [Ja92]. The parallel time complexity is O(log

2

m) time

with n= logm processors on an EREW PRAM.

4.3 Correctness

The correctness proof is based on the following lemma. For 1 � ` < r � m � n + 1, consider

the sub-array B that consists of the elements in fD

`

(t; b); : : : ;D

r

(t; b)g. Let U

j

=

P

b

i=t

D

j

(i).

Lemma 17 Suppose that the minimum element in row t is to the right or on D

r

(i.e., the

column index of the minimum element in row t is at least r) and that the minimum element

21

to be the ith element in this diagonal, i.e., D

j

(i) = a[i; j+i�1]. De�ne D

j

(t; b) to be elements of

D

j

between rows t and b, i.e.,D

j

(t; b) consists of entries a[t; j+t�1]; a[t+1; j+t]; : : : ; a[b; j+b�1].

4.2 The algorithm

Let A be a bitonic Monge array. From Lemma 15, it follows that there exists a minimum cost

matching in A that only contains elements from the set fD

1

;D

2

; : : : ;D

m�n+1

g. Consequently,

instead of considering the entire array, we may consider only the set of elements that belong to

these diagonals.

The algorithm uses the \divide and conquer" paradigm. The input to each step of the

recursion is an array B of size (b � t + 1) � (r � ` + 1) that contains elements in the set

fD

`

(t; b); : : : ;D

r

(t; b)g. De�ne k to be the index of the middle diagonal of B, k =

j

r+`

2

k

. The

output is a separating row s, t � s � b, that together with the middle diagonal of B, splits

B into four quadrants such that there exists a minimum cost matching for B that is inside

the top left quadrant and the bottom right quadrant (quadrants II and IV in Figure 4.2). In

other words, there exists a minimum cost matching for B in which rows t; : : : ; s are matched

with entries in B

0

= fD

`

(t; s); : : : ;D

k

(t; s)g, and rows s + 1; : : : ; b are matched with entries in

B

00

= fD

k+1

(s+ 1; b); : : : ;D

r

(s+ 1; b)g. Since quadrants II and IV do not share any columns

of B it follows that the minimum cost matching for B can be found by two recursive calls: one

to an array B

0

of size (s� t+ 1)� (k� `+ 1) and one to an array B

00

of size (b� s)� (r� k).

rlD

IVIII

III

k+1k DDD

s+1
s

b

t

Figure 5: Quadrant II includes row s and diagonal k;

quadrant IV includes row s+ 1 and diagonal k + 1.

The algorithm for �nding the separating row in B has (b � t + 1) stages. In stage x � 1,

we process row (t� 1 + x) to determine the separating row, s

x

, for the subarray given by rows

t; : : : ; t�1+x. Initially, s

0

= t�1 and �nally s = s

b�t+1

. In stage x � 1, the separating row s

x

is

set either to t�1+x or to s

x�1

, according to the following criterion. Let V (i

1

; i

2

) =

P

i

2

i=i

1

D

k

(i),

20

Theorem 14 The transportation problem on a line can be solved in O((m+n) log(m+n) time.

Proof: All the procedures described in this section involve operations on \entities" of length

bounded by O(m+ n). These operations require constant time except for the sorting and the

priority queue operations. However, sorting can be done in O((m+n) log(m+n) time and each

priority queue operation can be done in O(log(m+ n)) time. The theorem follows since there

are constant number of such procedures.

4 Minimum cost matching in bitonic Monge arrays

In this section we describe an O(n logm) time algorithm for �nding a minimum cost perfect

matching in bitonic Monge arrays. Recall that an n �m array A = fa[i; j]g is Monge if for all

1 � i

1

< i

2

� n and 1 � j

1

< j

2

� m, a[i

1

; j

1

] + a[i

2

; j

2

] � a[i

1

; j

2

] + a[i

2

; j

1

]. An m � n

array A = fa[i; j]g is (row) bitonic Monge if A is Monge and each row of A is bitonic. That

is, if a[i; j] is the minimal entry in row i, then a[i; 1]; : : : ; a[i; j] is a monotonic non-increasing

sequence and a[i; j]; : : : ; a[i;m] is a monotonic non-decreasing sequence.

4.1 Preliminaries and notations

A matching in an n�m array A = fa[i; j]g is a sequence of n entries, a[1; j

1

]; : : : ; a[n; j

n

], where

j

p

6= j

q

for all 1 � p < q � n. A minimum cost matching is a matching where

P

n

i=1

a[i; j

i

] is

minimized. The following lemma de�nes the structure of one of the minimum cost matchings

in a Monge array.

Lemma 15 There exists a minimum cost matching in a Monge array A, such that the entries

form a generalized diagonal; that is, for all i

1

< i

2

, if a[i

1

; j

1

] and a[i

2

; j

2

] are two entries in

the matching, then j

1

< j

2

.

Proof: Consider a minimum cost matchingM forA, and suppose thatM includes two entries

a[i

1

; j

2

] and a[i

2

; j

1

] such that i

1

< i

2

and j

1

< j

2

. By the Monge property, a[i

1

; j

1

]+a[i

2

; j

2

] �

a[i

1

; j

2

]+a[i

2

; j

1

]. Thus, the matching M

0

obtained by replacing the entries a[i

1

; j

2

] and a[i

2

; j

1

]

of M by a[i

1

; j

1

] and a[i

2

; j

2

] costs at most the same as M . If M

0

costs less than M , we have

a contradiction. Otherwise, M

0

is a di�erent minimum matching. We can continue in this

manner until the resulting matching forms a generalized diagonal.

Following Lemma 15, it is easy to see that the case n = m is solved by just taking the main

diagonal as the solution. However, the problem is not so simple when n < m. The best known

algorithm when n < m is a dynamic programming algorithm that runs in time O(mn).

Let A be an n�m bitonic Monge array. For 1 � j � m�n+1, de�ne D

j

to be the jth (full)

diagonal in A; that is, D

j

consists of the entries a[1; j]; a[2; j+1]; : : : ; a[n; j+n�1]. De�ne D

j

(i)

19

Step 1.3. Find the leftmost and rightmost bundles in NEG (operations FindLeft(NEG)

and FindRight(NEG)). Let hj; qi and hj; ri be the leftmost and rightmost points of node j

that are covered by NEG.

Step 1.4. Find the left partners of points hj; qi; : : : ; hj; ri using L. For these left partners,

delete their right-partner edges from R and then delete the left-partner edges of hj; qi; : : : ; hj; ri

from L.

Implementation of Step 2: This step consists of the following substeps.

Step 2.1. Find the leftmost point in j that has a right partner. This can be done by a binary

search in R. Let this point be hj; qi.

Step 2.2. Check if hj; qi is covered by a bundle in SET (j) (operation FindPoint(SET (j); q)).

If not, then all the chains in SET (j) end at j, and we move to Step 3. Otherwise, �nd the

rightmost point covered by a bundle in SET (j) (operation FindRight(SET (j)). Let this point

be hj; ri, where r � q.

Steps 2.3 to 2.8 are iterated.

Step 2.3. Find the right partner of hj; qi. This can be done by a binary search in R. Suppose

that this right partner is in node i. Using L �nd the rightmost point hj; q

0

i the right partner of

which is in i.

Step 2.4. Find the successor of hj; qi. This can be done by a binary search in S. Suppose that

this successor is in node j

0

. Using S �nd the rightmost point hj; q

00

i the successor of which is

in node j

0

. Let p = minfq

0

; q

00

; rg.

Step 2.5. Find the bundle B that covers hj; pi (operation FindPoint(SET (j); p)). If hj; pi is

not the rightmost point in its bundle replace B by two bundles B and B

0

where B covers all

the points up to hj; pi and B

0

covers the rest of the points in node j originally covered by B.

(This is done by Insert and Delete operations.)

Step 2.6. Split SET (j) into two at bundle B (operation Split(SET (j);B; SUCC; SET (j))).

Step 2.7. Let c be the cost of the edge from hj; qi to its right partner minus the cost of the

edge from this partner to the successor of hj; qi. Add c to all bundles in SUCC (operation

AddCost(SUCC; c)) and add SUCC to SET (j

0

). Note that all the bundles in SUCC are

to the right of the bundles currently in SET (j

0

), hence, this can be done using the operation

Union(SET (j

0

); SUCC; SET (j

0

)).

Step 2.8. If p < r, then let q = p+ 1 and repeat the iteration starting at Step 2.3.

Implementation of Step 3: The implementation is very similar to Substeps 2.3 to 2.7 where

r = d

j

and hj; qi is initialized to be the leftmost point of node j which does not have a left

partner but has a right partner, if such exists.

18

We maintain each set SET (j) in a priority queue. The ordering among the pre�x-bundles

in SET (j) is determined by the left-to-right ordering of these pre�x-bundles' roots. We know

that the ordering on the roots induces the same left-to-right ordering on the points the pre�x-

bundles cover in node j (from Lemma 12) and a decreasing ordering on the pre�x-bundles'

shifting costs (from Lemma 13). The priority queue supports the following operations:

� Insert(PQ;B): insert bundle B into PQ.

� Delete(PQ;B): delete bundle B from PQ.

� FindLeft(PQ): �nd the leftmost bundle in PQ.

� FindRight(PQ): �nd the rightmost bundle in PQ.

� FindPoint(PQ; q): �nd the bundle in PQ that covers point hj; qi. (We assume that

priority queue PQ consists of bundles of pre�xes of j.)

� FindCost(PQ; c): �nd the rightmost bundle in PQ whose shifting cost is greater or

equal c.

� AddCost(PQ; c): add c to the shifting costs of all the bundles in PQ.

� Split(PQ;B; PQ

1

; PQ

2

): split the priority queue PQ into two priority queues: PQ

1

that

stores all the bundles that are to the left of bundle B, and PQ

2

that stores the rest.

� Union(PQ

1

; PQ

2

; PQ): Union the priority queue PQ

1

with the priority queue PQ

2

and

store the union at PQ. It is assumed that both PQ

1

and PQ

2

consist of bundles of

pre�xes of j, and that all chains in PQ

1

are to the left of all chains in PQ

2

.

Several data structures can be used to implement this priority queue so that each operation

can be done in logarithmic time in the number of bundles, that is O(log(m+n)). In particular,

the augmented red-black tree described in [CLR90] (cf. Chapters 14{15) is suitable.

Initially, priority queues SET (j) for all source nodes j are set to be the empty set. We now

turn to the implementation of the Unbalanced-chains-matching algorithm.

Implementation of Step 1: This step consists of the following substeps.

Step 1.1. Find the rightmost bundle B in SET (j) with non-negative shifting cost (operation

FindCost(SET (j); 0)).

Step 1.2. Remove all bundles with negative shifting cost from SET (j) (operation

Split(SET (j);B; SET(j); NEG)).

17

As with R and L, we can show that the size of S is O(m+ n) and that it can be computed in

linear time using R and L.

Before giving the implementation details of theUnbalanced-chains-matching algorithm,

we need a few technical lemmas. As with chain-bundles, the leftmost node of each chain is called

the root of the chain. Given two chains C

1

and C

2

we say that C

1

is to the left of C

2

(and C

2

is to the right of C

1

) if the root of C

1

is to the left of the root of C

2

.

Lemma 12 Let C

1

and C

2

be two chains that visit source node j at points hj; qi and hj; pi,

respectively. If C

1

is to the left of C

2

then hj; qi is to the left of hj; pi, i.e., q < p. (See Figure 4.)

Proof: Consider a planar embedding of chains C

1

and C

2

as shown in Figure 4. The chain

C

1

partitions the line into intervals corresponding to each of its edges. There are two types of

intervals: source{sink intervals that correspond to edges from a left source node to a right sink

node, and sink{source intervals. We claim that the root of chain C

2

is in a source{sink interval

of C

1

. In other words, the closest point of chain C

1

to the right of the root of chain C

2

must be

a sink point. Otherwise, the root of chain C

2

(which is a source point) must have a left partner,

yielding a contradiction.

It follows from the de�nition of partners that the embedded chains never cross each other.

Hence, all points of chain C

2

are in source{sink intervals of C

1

. In particular, hj; pi is in such

an interval and thus must be to the right of hj; qi.

Lemma 13 Let C

1

and C

2

be two chains, where C

1

is to the left of C

2

. Suppose that (i) a

source point hj

1

; qi 2 C

1

is to the left of a source point hj

2

; ri 2 C

2

, (ii) the left partner of

hj

2

; ri (if such exists) is to the left of hj

1

; qi, and (iii) the shifting costs of Prefix(C

1

; j

0

1

) for all

source nodes j

0

1

to the left of j

1

(including j

1

itself) are non-negative. Then, the shifting cost

of Prefix(C

2

; j

2

) is less than or equal to the shifting cost of Prefix(C

1

; j

1

).

Proof: Let hj

0

1

; q

0

i be the closest point of C

1

to the left of the root of C

2

. (This point is a

source point.) We claim that the shifting cost of the sub-chain of C

1

from j

0

1

to j

1

is greater

than or equal to the shifting cost of Prefix(C

2

; j

2

). Note that by assumption (iii), the shifting

cost of Prefix(C

1

; j

0

1

) is non-negative, and thus, the lemma follows from the claim. The shifting

cost of a chain is given by the total length of its source{sink intervals minus the total length of

the its sink{source intervals. Recall that all points of chain C

2

are in source{sink intervals of

C

1

. Also, all points of chain C

1

are in sink{source intervals of C

2

. This implies that: (1) the

total length of source{sink intervals of Prefix(C

2

; j

2

) is less than or equal to the total length of

source{sink intervals of the sub-chain of C

1

from j

0

1

to j

1

; and (2) the total length of sink{source

intervals of Prefix(C

2

; j

2

) is greater than or equal to the total length of sink{source intervals

of the sub-chain of C

1

from j

0

1

to j

1

. The claim follows.

16

Step 1: If SET (j) is not empty, remove all the pre�x-bundles with negative shifting costs from

SET (j). By Lemma 11 the leftmost unmatched points of all the chains in these pre�x-

bundles are in j or to the right of j. Thus, all the sink points to the left of j in these

pre�x-bundles can be matched to the left. Consequently, for each such pre�x-bundle B

that covers points hj; qi through hj; ri we delete the edges connecting hj; qi through hj; ri

to their left partners. Once these edges are removed from B, what remains of B to the

left of (but not including) node j is simply a balanced chain-bundle (ending at the sink

node which contains the left partners of hj; qi through hj; ri). The removal of edges also

\frees up" points q through r of node j which will become the starting points of the new

unbalanced chains. (These points are processed in Step 3.)

Step 2: If SET (j) is not empty, then the remaining pre�x-bundles in the set all have non-

negative shifting costs. We \extend" each of these pre�x-bundles to the next source node

(in case such exists) as follows. Consider a pre�x-bundle B in SET (j). We break B into

sub-pre�x-bundles according to the right partners and successors of the source points in j

covered by B; that is, all the chains in B that visit the same sink node and then the same

source node after visiting node j form a sub-bundle. Suppose that the successors of the

source points in j covered by B are in nodes j

1

; : : : ; j

k

. We insert all the sub-bundles that

end at j

`

, into SET (j

`

), for 1 � ` � k, after updating their shifting costs. Speci�cally,

for such a sub-bundle B

`

, which visits i after j and then visits j

`

after i, we update the

shifting cost by adding the cost of the edge (j; i) and subtracting the cost of edge (i; j

`

).

Step 3: We create new bundles corresponding to the points in j that have no left partners but

have right partners (these include points made free in Step 1). We treat all these points

as one bundle and basically repeat Step 2 for this bundle.

Note that Steps 2 and 3 guarantee that when we reach node j the set SET (j) indeed consists

of all the bundles of the pre�xes of j. After the scan is completed we are left with some balanced

chains whose rightmost point is sink, and hence are to be matched to their left. The rest of the

chains have to be matched to their right. We can compute this matching in two more scans,

one in each direction (right-to-left and then left-to-right) similar to the way it was done for the

balanced chains.

Implementation details: In addition to R and L, we pre-compute a list of successors for all

source points. We explicitly maintain a list S which contains all those source points hj; qi and

their successors for which either (1) q = 1, i.e., it is the leftmost point in its node, or (2) q > 1

and the successor of hj; q� 1i is in a di�erent source node. We keep S sorted lexicographically.

15

� f : the total cost of the edges from sink nodes to the right of j to their right partners.

The de�nition of node j implies that b � a and b + d > a + c. Consequently, d > c. If hk; ti

is the unmatched point, the cost of matching the sink points of chain C is a + d+ f and it is

a+c+f if hj; qi is the unmatched point. Since d > c it follows that hj; qi is a better unmatched

point; a contradiction.

Using this lemma we can �nd the leftmost unmatched point of a chain C as follows. Initially,

we make the leftmost point of C a candidate for the unmatched point. We scan C from left

to right and compute the shifting cost of Prefix(C; j), for each source node j in C. Whenever

we encounter a node j such that the shifting cost of Prefix(C; j) is negative, we set hj; qi

to be the new candidate (where hj; qi is the point in j that is in C), and \cut" Prefix(C; j)

from C, i.e., consider C as if it starts at hj; qi. The candidate at the end of the scan is the

leftmost unmatched point of C. The naive implementation of this scan is not polynomial; the

Unbalanced-chains-matching algorithm gives an e�cient implementation.

De�ne pre�xes of a source node j to be the set of all pre�xes Prefix(C; j) such that the chain

C visits j. De�ne a pre�x-bundle of j to be a maximal collection of the pre�xes of j that start

at the same node and visit the same nodes up to j. Note that a pre�x-bundle of j may consist

of several chain-bundles, in the case when all these chain-bundles visit the same nodes up to j.

De�ne SET (j) to be the set of pre�x-bundles of j. We now give a high level description of the

algorithm for �nding the leftmost unmatched points of all chain-bundles; the implementation

details follow.

We scan the source nodes from left to right. When we are scanning a source node j, we know

SET (j). For each pre�x-bundle in SET (j) we maintain the following information:

1. The leftmost node of the pre�xes in the pre�x-bundle. (All of these pre�xes start at the

same node.)

2. The number of pre�xes in the pre�x-bundle.

3. The points in j covered by the pre�xes in the pre�x-bundle.

4. The shifting cost of the pre�xes in the pre�x-bundle. (All of these pre�xes have the same

shifting cost.)

Before describing the scan procedure, we need one more de�nition. De�ne the successor of a

source point hj; qi to be the source point that is the right partner of the right partner of hj; qi

(if they exist).

Unbalanced-chains-matching algorithm:

14

by B, where p < d

i

, Consider the alternating chain C that starts at hj; q � 1i. Its next point

must be hi; p+ 1i. That is, the �rst two nodes visited by C are the same as the �rst two nodes

of B. Consider the �rst node k visited by C that is not in B. Such a node must exist since

chain C is not in the chain-bundle B. We have two cases:

Case 1: k is a sink node. Let hk; ti be the point of k that is in C, and let hx; ri be the left

partner of hk; ti. Since up to node k chain-bundle B and chain C visited the same nodes,

hx; r+ 1i is covered by B. Let h`; si be the right partner of hx; r+ 1i. Since h`; s+ 1i is not

the right partner of hx; ri, we must have that s is the rightmost point of `. We charge B to this

node.

Case 2: k is a source node. Let hk; ti be the point of k that is in C, and let hx; ri be the left

partner of hk; ti. Similar to Case 1 we have that hx; r� 1i is covered by B. Since hk; t+ 1i is

not the right partner of hx; r� 1i, we must have that t is the rightmost point of k. We charge

B to this node.

Case 2 is the only one in which B is charged to an extreme point of a node that it does not

cover. This extreme point is a rightmost point of a source node. Assume that chain-bundle B

0

covers this point. Since a chain-bundle is never charged to a rightmost point of a source node

that it covers, it follows that B and B

0

are charged to di�erent extreme points. No other chain-

bundle is charged to this rightmost point by our charging process. Therefore, each extreme

point is charged at most once.

Let C be an alternating chain that visits source node j. Denote the pre�x of C that ends at

j by Prefix(C; j). The shifting cost of Prefix(C; j) is de�ned to be the total cost of the edges

from sink nodes in Prefix(C; j) to their left partners minus the total cost of the edges from

these sink nodes to their right partners.

Let j be the leftmost node of C such that the shifting cost of Prefix(C; j) is negative.

Lemma 11 The leftmost unmatched point of C is either in j or at a node to the right of j.

Proof: Let hj; qi be the point in j that is in C. To obtain a contradiction assume that the

leftmost unmatched point of C is a point hk; ti, where k < j. De�ne the following quantities

for the chain C:

� a: the total cost of the edges from sink nodes to the left of k to their left partners.

� b: the total cost of the edges from sink nodes to the left of k to their right partners.

� c: the total cost of the edges from sink nodes between k and j to their left partners.

� d: the total cost of the edges from sink nodes between k and j to their right partners.

� e: the total cost of the edges from sink nodes to the right of j to their left partners.

13

3.3 The unbalanced chains

We now consider the unbalanced alternating chains. Recall that in any solution to the trans-

portation problem each unbalanced chain consists of exactly one source point that is unmatched.

All the sink points to the left of this point (if any) are matched to their left partners and all

the sink points to its right (if any) are matched to their right partners. The computation of

the unmatched point can be done independently for each chain. Note that more than one un-

matched point may exist for a given chain; each such point de�nes a di�erent solution, each of

which has the same value. Our solution �nds the leftmost unmatched point of every chain.

We de�ne a chain-bundle B to be a maximal collection of chains that visit the same nodes

(and also start and end at the same nodes). The leftmost node of each chain-bundle is called

the root of the chain-bundle. Note that if node i is in B, then the points of i \covered" by B,

i.e., the points of i that are in chains that belong to B, are consecutive.

Example revisited: in Figure 4 we have four chain-bundles of unbalanced chains (from left

to right):

Chain-bundle 1: h1; 2 � � �3i �! h1; 9 � � �10i �! h3; 1 � � �2i

Chain-bundle 2: h1; 4 � � �6i �! h1; 6 � � �8i �! h3; 3 � � �5i �! h2; 1 � � �3i �! h4; 1 � � �3i

Chain-bundle 3: h1; 7 � � �8i �! h1; 4 � � �5i �! h4; 4 � � �5i

Chain-bundle 4: h2; 1 � � �2i �! h1; 2 � � �3i �! h4; 6 � � �7i

Consider two chains C

1

and C

2

that belong to the same chain-bundle B. Since the edge costs

of both chains are the same, the leftmost unmatched point of both chains is in the same node.

Thus, when determining the unmatched points we may consider all the chains in one chain-

bundle together. This is helpful since although the number of alternating chains is proportional

to

P

n

i=1

d

i

the number of chain-bundles is O(m+ n), as shown below.

Lemma 10 The number of chain-bundles is at most 2(m+ n).

Proof: To prove the lemma we \charge" every chain-bundle to an extreme point of a node

(either a leftmost or a rightmost point) so that no extreme point is charged more than once.

Consider a chain-bundle B. If B covers the leftmost point of its root node hj; 1i, then we charge

B to this leftmost point. Else, let node i be the sink node following the root node in B. If B

covers hi; d

i

i, the rightmost point of node i, then we charge B to this rightmost point. Suppose

that B does not cover either of these extreme points. Let hj; qi be the leftmost point of node j

that is covered by B, where q > 1, and let hi; pi be the rightmost point of node i that is covered

12

chains whose leftmost point is sink. For the balanced chains whose rightmost point is sink the

computation is similar.

We scan the sink nodes from left to right. When we reach a sink node i with demand d

i

, we

�nd the sequence X of (consecutive) points of node i that do not have left partners. To �nd X ,

we �nd element hi; 1i in L and then perform a linear scan of L until we �nd the element hi; pi

whose left partner is nil. If no such hi; pi exists, then all the points of i have a left partner; if

such an element is found, then the sequence of points X = hi; pi; : : : ; hi; d

i

i have no left partners

and they must be matched to their right partners. In the latter case, we output sink points

hi; pi and hi; d

i

i with their right partners (located by binary-search in R) along with any other

sink points hi; p

0

i (and their right partners) that appear in R between points hi; pi and hi; d

i

i.

Denote by Y the set of right partners of points in X . Once points of X are matched to points

of Y , we need to update R and L to reect the fact that points of Y are no longer \available" as

left partners. In other words, in future processing, no sink point whose left partner is a source

point in Y can match to this point. This updating is performed as follows. For every source

point q of Y , we �rst delete from R the edge from q to its right partner, denoted by point r,

and then delete from L the edge from r to its left partner (i.e. to q). We cannot a�ord to do

this deletion for every point in Y . Instead, we keep Y implicitly in the same format as R and L,

and we perform deletions of sequences of points in a manner similar to the above procedure for

�nding the right matches of X . This process matches all the sink points that are in alternating

chains whose leftmost point is sink.

Lemma 9 Matching all the sink points in balanced chains can be done in O(m+ n) time.

Proof: The time required for the scan is linear in the number of nodes and the size of R,

which is O(m+ n).

Example revisited: In the example considered earlier (Figure 4), there are no alternating

chains whose leftmost point is sink, there are four alternating chains whose rightmost point is

sink (from right to left):

1. h3; 4i; h4; 8i; h1; 1i; h2; 3i,

2. h3; 3i; h4; 9i,

3. h3; 2i; h4; 10i,

4. h3; 1i; h4; 11i.

When we scan the nodes from right to left we will �rst match all the points in node 3 to their

left and then point h1; 1i to h2; 3i.

11

We now describe how to compute R using a stack. Each item on the stack is a pair [i; x],

where 1 � i � n, and 1 � x � d

i

. Item [i; x] corresponds to the cluster of x sink points starting

at hi; 1i. We scan the sorted list of nodes from left to right. When we encounter a sink node i

with demand d

i

, we push the item [i; d

i

] onto the stack. When we encounter a source node j

with supply s

j

, we pop from the stack items that correspond to s

j

sink points (if they exist) and

match them to the source points of node j. This is done as follows. Let q denote the current

supply of node j. Initially, q = s

j

. The current q source points of node j are the rightmost

ones; that is, points s

j

� q + 1 through s

j

. Iteratively, we pop an item [i; x] from the stack.

If x � q then we match the x sink points starting at hi; 1i to the x current leftmost points of

source node j, that is, to points s

j

� q + x; : : : ; s

j

� q + 1 of node j. Consequently, we add the

sink point hi; 1i and its right partner hj; s

j

� q + xi to the list, and decrease q by x. If x > q

then we match the q rightmost sink points of node i; that is points hi; x� q + 1i; : : : ; hi; xi to

points s

j

; : : : ; (s

j

� q + 1) of source node j. Consequently, we add the sink point hi; x� q + 1i

and its right partner hj; s

j

i to the list, push [i; x� q] back on to the stack, and set q to zero.

If at any point q becomes zero or the stack becomes empty, we consider the next node on the

sorted list of nodes. To �nish the computation of R, we sort it lexicographically. A similar

process computes L.

Lemma 7 We can compute R in O((m+ n) log(m+ n)) time.

Proof: Since the number of push and pop operations is proportional to the size of R, it

follows that the computation of the unsorted list requires O(m+ n) time. The sorting is done

in O((m+ n) log(m+ n)) time.

All the procedures and proofs described in this section would hold if we augment R and L

to contain similarly selected source points and their partners. Thus, in the following sections

we will assume that R and L contain right/left partners of both sink and source points.

3.2 The balanced chains

A chain C, as before, is an alternating chain of points. Recall that the transportation problem

is equivalent to the minimum cost matching problem on the points. The following lemma is

implied by Lemmas 1 and 2.

Lemma 8 There exists a nested solution to the transportation problem in which the demand

of every sink point is supplied by either its left partner or its right partner.

If a chain's leftmost (resp. rightmost) point is a sink point, then all the red points on that

chain are supplied by their right (resp. left) partners. Below, we consider only alternating

10

We will explicitly maintain a list R that contains all those sink points hi; pi and their right

partners for which either (1) p = 1, i.e., it is the leftmost point in its node, or (2) p > 1 and

the right partner of hi; p� 1i is in a di�erent source node. We keep R sorted lexicographically.

The analogous left-partner list is L.

Lemma 6 The size of R is bounded by m+ n.

Proof: The number of sink points in R for which p = 1 is n. For each sink point in R

with p > 1, its right partner must be the rightmost point in a source node. There are only m

rightmost points in source nodes.

Figure 4 gives an example of the list.

j1 j2 j3 j4

i2i1 i3

C1

C2

Figure 4: i

k

is a sink node with the demand indicated by the number of dots. j

`

is a source node

with the supply indicated by the number of x's. The edges above the nodes connect sink nodes

to their left partners; the edges below the nodes connect sink nodes to their right partners.

Sink Point
h1; 1i h1; 6i h2; 1i h3; 1i

Right Partner
h4; 8i h3; 5i h4; 3i nil

Given R, to compute the right partner of a sink point hi; p

0

i we search for the rightmost sink

point hi; pi in R such that p � p

0

. Let hj; qi be the right partner of hi; pi. It follows that the

right partner of hi; p

0

i is hj; q � (p

0

� p)i. Since R is sorted, the search for the right partner of a

point takes time logarithmic in the size of R; that is, O(log(m+n)). An analogous result holds

for searching out the left partner of a point.

9

3 Transportation problem on a line

We now consider the transportation problem, when the sources and sinks are on a straight line

with integer supplies and demands. The algorithm for this problem runs in O((m+n) log(m+n))

time where the number of source nodes is m, and the number of sink nodes is n. We assume

that d

i

is the integer demand at the i-th sink node and s

j

is the integer supply at the j-th

source node

1

and that

P

n

i=1

d

i

�

P

m

j=1

s

j

. We describe the algorithm for the line, since it is

simpler. The algorithm for the circle is similar.

View each sink node i (resp. each source node j) as a \cluster" of d

i

sink (resp. s

j

source)

points placed in�nitesimally close to each other, and ordered from left to right. From now on,

we use the terminology node and point in accordance with this distinction. We denote the p-th

sink point in the i-th node by the pair hi; pi, for 1 � i � m and 1 � p � d

i

. source points are

denoted similarly. Note that the lexicographic order of the pairs corresponds to the left to right

ordering of the points.

It is easy to see that our transportation problem is equivalent to the problem of �nding a

minimum cost matching of the sink points. Thus, our previous algorithm can be applied to

obtain a solution for the transportation problem. However, this algorithm is not polynomial

since its running time is proportional to

P

m

j=1

s

j

. Below, we show a polynomial algorithm for

the problem.

The algorithm consists of three stages. In the �rst stage we compute left and right partners

for the sink points. In the second stage we de�ne alternating chains similar to the matching

algorithm. There are two kinds of alternating chains: balanced chains that have the same

number of sink and source points, and unbalanced chains that have an extra source point. In

the second stage we solve the problem for all the balanced chains. In the third (and most

involved) stage we deal with the unbalanced chains. Note that the number of partners and

alternating chains is proportional to

P

n

i=1

d

i

, and thus extra care has to be taken in order to

make all these stages polynomial.

3.1 Computing the partners

We de�ne left partners and right partners of the sink points exactly as before. We use the term

partner for the source points as well; for example, if sink point hi; pi has source point hj; qi as

its right partner, then the left partner of source point hj; qi is the sink point hi; pi. Note that

each source point has at most one left partner and one right partner. In the �rst stage of the

algorithm we compute the partners. To keep the running time polynomial, we compute and

maintain partners implicitly, in a way that allows e�cient retrieval.

1

In this section, i will always be associated with sink nodes and j with source nodes.

8

Note that the theorem holds when the chain is a cycle, i.e., v

0

= v

k

. In this case, the

unmatched source point in the chain is either v

0

or v

k

(which are the same).

Mincost-matching-on-a-circle algorithm:

Step 1: Sort all the source and sink points (together) in some direction around the circle, say

clockwise.

Step 2: Compute `

p

and r

p

for each sink point p. We show how to compute the r

p

's using a

stack (�nding the `

p

's is analogous). Starting with any sink point, we proceed clockwise

around the circle. Any time we encounter a sink point, we push it onto the stack. Any

time we encounter a source point q, we pop the last sink point p from the stack and set

r

p

= q. If at any point the stack becomes empty, we push the clockwise-next sink point

onto it, ignoring any source points that this action causes us to skip.

Step 3: Compute all the alternating chains. This can be done by keeping links between the

sink points and their partners. Starting with any sink point that is not already contained

in a chain, we simply trace the left and right links until we encounter the source endpoints

of the chain.

Step 4: For each alternating chain C = hv

0

; u

1

; v

1

; u

2

; v

2

; : : : ; u

k

; v

k

i, decide which source point

is unmatched as follows. We compute M

C

i

, which is the cost of the matching with the

source point v

i

being unmatched. We �rst compute M

C

0

, which is simply

P

k

i=1

d(u

i

; v

i

).

Given M

C

i

, we can compute M

C

i+1

by subtracting the cost of edge (u

i+1

; v

i+1

) from M

C

i

and adding the cost of (u

i+1

; v

i

).

It takes O(k) time to compute M

C

0

(where k is the length of the chain), and O(k) time to

compute all the otherM

C

i

s. Thus, overall time is O(k). If i

�

is the index that gives the smallest

value for M

C

i

, the points u

i

on C with i � i

�

match to their left partners, and the other sink

points match to their right partners.

The correctness of this algorithm follows from Theorem 4. As for time complexity, each step,

except for sorting the points, can be done in linear time. We obtain the following theorem.

Theorem 5 (Complexity) The algorithm runs in linear time if the points are given sorted

in some direction along the circle.

All the steps in our algorithm can be done in parallel in O(logm) time with m processors on

an EREW PRAM. We need to use pre�x computations, list ranking, and the computation of

left and right partners. All these operations can be done in the stated bounds using techniques

described in [Ja92].

7

(b)

rp
q’

p’

p q

q’

p
q

p’

(a)

pr

Figure 3: Thicker arcs between points represent the edges of the matching.

1. fu

1

; u

2

; : : : ; u

k

g � Sinks and fv

0

; v

1

; v

2

; : : : ; v

k

g � Sources;

2. the source point v

0

is the left partner of u

1

and the source point v

k

is the right partner

of u

k

;

3. the source point v

i

is the left partner of u

i+1

and the right partner of u

i

, for each

1 � i � k � 1; and

4. the chain C is maximal.

Note that since C is maximal, either v

0

is not a right partner and v

k

is not a left partner of

any sink point, or v

0

is the same as v

k

. Also note that in the case of points on a line, a chain

may not necessarily start at a source point.

Lemma 3 Each sink point belongs to a unique alternating chain, and any two chains are

disjoint.

Proof: Consider a source point v

i

. Suppose that two sink points u

a

and u

b

have v

i

as their

left partner and that we have v

i

; u

a

; u

b

in clockwise order. Between u

a

and v

i

there is an equal

number of sink and source points. If v

i

is the left partner of u

b

, then due to the presence of

u

a

(a sink point) there must be an excess source point between u

a

and u

b

. In this case, this

source point must be the left partner of u

b

, yielding a contradiction. Consequently, only one

sink point can have v

i

as its left partner. The same property is true for right partners. This

observation implies the lemma.

The following theorem is implied by Lemma 2 and Lemma 3 and is the key for our algorithm.

Theorem 4 Consider the points of a single chain in a nested minimum cost matching. There

is one unmatched source point in the chain. All the sink points to the left of this source point

are matched to their left partners, and all the sink points to the right of this source point are

matched to their right partners.

6

uncrossed (p; q) and (p

0

; q

0

) and, hence, the number of edge crossings in M

0

must be at least

one fewer that in M . The following case analysis proves the above lemma.

Case 2.1: (s; t) crosses only (p

0

; q), i.e. s; t 2 cw(p; q

0

). W.l.o.g, assume s 2 cw(p

0

; q) and

t 2 ccw(p

0

; q). If t 2 cw(p; p

0

), then (s; t) crosses (p

0

; q

0

). Otherwise, t 2 cw(q; q

0

) and (s; t)

crosses (p; q).

Case 2.2: (s; t) crosses only (p; q

0

), i.e. s; t 62 cw(p

0

; q). W.l.o.g, assume s 2 cw(p; q

0

), and

t 2 ccw(p; q

0

). If s 2 cw(p; p

0

), then (s; t) crosses (p; q). Otherwise, s 2 cw(q; q

0

) and (s; t)

crosses (p

0

; q

0

).

Case 2.3: (s; t) crosses both (p

0

; q) and (p; q

0

). W.l.o.g, assume s 2 cw(p

0

; q) \ cw(p; q

0

) =

cw(p

0

; q) and t 2 ccw(p; q

0

) \ ccw(p

0

; q) = ccw(p; q

0

). In this case (s; t) crosses both (p; q)

and (p

0

; q

0

).

For p 2 Sinks, de�ne the left partner (respectively, right partner) of p, denoted by `

p

(re-

spectively, r

p

), to be the �rst source point q counterclockwise (respectively, clockwise) from p,

such that going counterclockwise (respectively, clockwise) from p to q on the circle, there are

as many sink points as source points.

Lemma 2 In a nested minimum cost perfect matching, every sink point is matched to either

its left partner or its right partner.

Proof: (By contradiction.) W.l.o.g., suppose that (p; q) 2M , x(p; q) = cw(p; q), and q 6= r

p

.

Case 1: r

p

62 x(p; q). (See Figure 3(a).) From the de�nition of the right partner, there must

be a sink point p

0

2 x(p; q) such that (p

0

; q

0

) 2 M and q

0

62 x(p; q). Then (p; q) crosses

(p

0

; q

0

), a contradiction.

Case 2: r

p

2 x(p; q). (See Figure 3(b).) Since there is an equal number of sink and source

points in x(p; r

p

), one source point q

0

in x(p; r

p

) or r

p

itself, is either not matched or

matched with some p

0

not in x(p; r

p

). If q

0

is not in M , then M � f(p; q)g + f(p; q

0

)g

costs less than M , a contradiction. If (p

0

; q

0

) 2 M , then p

0

2 x(r

p

; q) since M is nested.

Therefore, M � f(p; q); (p

0

; q

0

)g + f(p; q

0

); (p

0

; q)g gives a cheaper matching than M , a

contradiction.

De�ne the chain C = hv

0

; u

1

; v

1

; u

2

; v

2

; : : : ; u

k

; v

k

i to be an alternating chain of points if the

following conditions hold:

5

p q

cw(p,q)

ccw(p,q)

Figure 1: In this �gure, x(p; q) = cw(p; q).

crossed edges of M to get another minimum cost perfect matching with fewer edge crossings.

Let (p; q) 2 M and (p

0

; q

0

) 2 M be some crossed pair of edges, where p; p

0

2 Sinks and

q; q

0

2 Sources. Consider a matching M

0

= M � f(p; q); (p

0

; q

0

)g + f(p; q

0

); (p

0

; q)g, which is

simply the matching M with (p; q) and (p

0

; q

0

) uncrossed. First, we show that the cost of M

0

is

less than or equal to the cost of M .

Case 1: q

0

2 x(p; q) and q 2 x(p

0

; q

0

). (See Figure 2(a).) We obtain a contradiction by showing

that M

0

costs less than M . This is because

d(p; q

0

) + d(p

0

; q) = [d(p; q)� d(q

0

; q)] + [d(p

0

; q

0

)� d(q

0

; q)] < d(p; q) + d(p

0

; q

0

).

q’

p
q

p
q’p’

p’

(b)

q

(a)

Figure 2: Thicker arcs between points represent the edges of the matching.

Case 2: p

0

2 x(p; q) and q 2 x(p

0

; q

0

). (See Figure 2(b).) Here we show that the cost of M

0

is

at most the cost of M .

d(p; q) + d(p

0

; q

0

)

= [d(p; p

0

) + d(p

0

; q)] + [d(p

0

; q) + d(q; q

0

)]

= [d(p; p

0

) + d(p

0

; q) + d(q; q

0

)] + [d(p

0

; q)]

� d(p; q

0

) + d(p

0

; q).

We now argue that whenever M

0

costs the same as M in Case 2, then M

0

has fewer edge

crossings than M . In particular, we show that if some edge (s; t) 2 M crosses either (p

0

; q) or

(p; q

0

), it must have crossed either (p; q) or (p

0

; q

0

). This completes the proof, since we have

4

skiers so that the sum of the absolute di�erences of the heights of each skier and his/her

skis is minimized. There is a fairly simply O(nm) dynamic programming algorithm for this

problem. The algorithm by Karp and Li [KL75], as well as our algorithm, solves this problem

in O(m logm) time.

All our results use the quadrangle inequality in a crucial manner. Because of the many

applications, we hope that this paper will generate more interest towards the understanding

of minimum cost bipartite matching and transportation for useful special cases. For example,

the three important problems that we were not able to solve are: (i) An e�cient computation

of the minimum cost matching when the cost array is (staircase) Monge; a special case of this

is when the sink and source points form a convex polygon. (ii) An e�cient computation of

the minimum cost matching when the sink and source points form a simple polygon. (iii) The

transportation problem when the underlying cost array is Monge and the total supply is greater

than the total demand.

2 Minimum cost matching on a circle

In this section we present our algorithm for the minimum cost perfect matching problem when

the sink points and the source points lie on a circle and the cost function is the Euclidean

distance along the arcs of the circle. For the sake of simplicity, we assume that all the points

are distinct. The algorithm and all the proofs are analogous for points on a line. Furthermore,

these results hold for points on any curve homeomorphic to a circle or a line, as long as the

cost function is the distance along the curve. The results also hold for the case where all the

points are vertices of a convex unimodal polygon and the cost is the Euclidean distance between

points.

Consider a circle with sink and source points. Any two points p and q split the circle into

two arcs (see Figure 1), one going clockwise from p to q, and one going counterclockwise from

p to q. Let cw(p; q) (respectively; ccw(p; q)) be the clockwise (respectively, counterclockwise)

arc from p to q. Let x(p; q) refer to the shorter of cw(p; q) and ccw(p; q). The distance between

p and q, d(p; q), is de�ned to be the length of x(p; q).

We say that two edges in the matching M , (p; q) 2 M and (p

0

; q

0

) 2 M , cross each other if

x(p; q)\ x(p

0

; q

0

) 6= ;, x(p; q) 6� x(p

0

; q

0

), and x(p

0

; q

0

) 6� x(p; q). We call a matching nested if no

two edges in the matching cross each other. In other words, a matching is nested if for any two

edges in the matching: (p; q) 2 M and (p

0

; q

0

) 2 M , x(p; q) \ x(p

0

; q

0

) 6= ; implies that either

x(p; q) � x(p

0

; q

0

) or x(p

0

; q

0

) � x(p; q).

Lemma 1 There exists a nested minimum cost perfect matching for points on a circle.

Proof: Let M be any minimum cost perfect matching. We show how to uncross any pair of

3

is that the total supply is greater than or equal to the total demand.

The remainder of this section lists the main results of this paper and their applications.

First we consider the case in which the sink and source points lie on a curve that is home-

omorphic to either a line or a circle and the cost function is the Euclidean distance along the

curve. For this case, we give a linear time algorithm for computing the minimum cost matching

that is simpler than the one given by Karp and Li [KL75]. Our algorithm can be extended

to the corresponding transportation problem, where each source point has integral supply and

each sink point has integral demand. For this transportation problem we develop an algorithm

with an O((m+n) log(m+n)) running time. This improves on the O((m+n)

2

) time algorithm

of Karp and Li [KL75].

Our matching algorithm for the points on the circle can also be applied to the case where the

sink and the source points form the vertices of a convex unimodal polygon [AM86]. A polygon

is unimodal if for every vertex, the distances from it to all other vertices form a sequence that is

�rst non-decreasing and then non-increasing when the polygon is traversed in clockwise order

starting at that vertex. As an application, we note that the case when the points lie on the

circle arises in pattern recognition when feature sets of di�erent objects are compared. We refer

the reader to [WPR84, WPMK86] for a detailed discussion of this application.

Next we consider the case in which the cost array forms an n �m bitonic Monge array. An

array is bitonic if the entries in every row form a monotone non-increasing sequence that is

followed by a monotone non-decreasing sequence. For the bitonic Monge array, we present an

O(n logm) time algorithm for computing a minimum cost matching. Note that the cost array

for the sorted sink and source points on a line forms a bitonic Monge array (observe that the

cost array for the points on a circle is not bitonic Monge). As a matter of fact, this is true even

for a more general case where the sink points lie on one straight line and the source points lie

on another straight line (that is not necessarily parallel to the �rst one). Hence this result can

be applied to the problem of connecting power lines (or connecting clock lines) in VLSI river

routing [MC80, Won91]. In this problem, n terminals that lie on a straight line need to be

connected to any n of the m power (or clock) terminals that lie on a parallel line, and the total

amount of wire used should be minimized.

Our results for bitonic Monge arrays can be applied to the transportation problem. We

provide a weakly polynomial algorithm for the transportation problem when the associated

cost array is a bitonic Monge array. Our algorithm for this problem runs in O(m log(

P

m

j=1

s

j

))

time.

Our interest in the matching problem was partly sparked by the following problem that

appeared on an exam for an algorithms course taught by C. E. Leiserson [Lei91]: given m

pairs of skis with heights s

1

; : : : ; s

m

and n � m skiers with heights t

1

; : : : ; t

n

, assign skis to

2

1 Introduction

Given a complete bipartite graph G = (Sinks[Sources; Sinks�Sources), where jSinksj = n,

jSourcesj = m and n � m, a perfect matching on G is a subset of the edges M � E such that

for all sink nodes p, exactly one edge of M is incident to p and for all source nodes q, at most

one edge of M is incident to q. Given a cost function de�ned on the edges of G, a minimum

cost perfect matching on G is a perfect matching on G of minimum cost.

The best known algorithm for this problem for arbitrary bipartite graphs (with m+n nodes

and mn edges) takes O(n(mn + m logm)) time. This time complexity can be achieved by

using the Hungarian method [Kuh55, AMO89, GTT89]. Since this problem has a relatively

high time complexity, researchers have investigated special cases. For example, Vaidya [Vai89]

showed that the minimum cost perfect matching among 2n points in the Euclidean plane can be

computed in O(n

5=2

log

4

n) time. For the case where n = m, the sink and source points lie on

a convex polygon (respectively, simple polygon), and the distance between two points is simply

the Euclidean distance, Marcotte and Suri [MS91] showed that a minimum cost matching can

be computed in O(n logn) time (respectively, O(n log

2

n) time). Note that these papers assume

that n = m, in spite of the fact that the situation n < m arises in many matching problems.

Karp and Li [KL75] considered the n � m case. They investigated the case where the points

lie on either a line or a circle, and the cost function is given by the Euclidean distance along

the corresponding curve. For this problem, they obtained a linear time algorithm for minimum

weight matching, assuming that the points are given in sorted order. (See also [WPMK86].)

In the transportation problem, each sink point i has demand d

i

, and each source point j has

supply s

j

, where

P

n

i=1

d

i

�

P

m

j=1

s

j

. A feasible transportation is an assignment of supplies from

source points to sink points such that all the demands are satis�ed. The cost of moving one

unit of supply from a source point to a sink point is given by the cost function de�ned on the

edges. A minimum cost transportation is a feasible one with minimum cost.

Ho�man [Hof63], following the French mathematician Gaspard Monge (1746{1818), consid-

ered a special case of the transportation problem in which the cost array forms an n�m Monge

array. (The entry a[i; j] of the cost array is the cost of the edge between sink point i and

source point j.) An n � m array A = fa[i; j]g is Monge if for all i

1

, i

2

, j

1

, and j

2

satisfying

1 � i

1

< i

2

� n and 1 � j

1

< j

2

� m,

a[i

1

; j

1

] + a[i

2

; j

2

] � a[i

1

; j

2

] + a[i

2

; j

1

] .

Ho�man [Hof63] showed that if the cost array associated with a transportation problem isMonge

and the total supply is the same as the total demand, then a simple greedy algorithm solves

the transportation problem in linear time. However, in reality, a more reasonable assumption

1

E�cient Minimum Cost Matching and Transportation

Using Quadrangle Inequality

Alok Aggarwal

�

Amotz Bar-Noy

�

Samir Khuller

y

Dina Kravets

z

Baruch Schieber

�

Abstract

We present e�cient algorithms for �nding a minimum cost perfect matching, and for

solving the transportation problem in bipartite graphs, G = (Sinks [Sources; Sinks �

Sources), where jSinksj = n, jSourcesj = m, n � m, and the cost function obeys the

quadrangle inequality. First, we assume that all the sink points and all the source points lie

on a curve that is homeomorphic to either a line or a circle and the cost function is given by

the Euclidean distance along the curve. We present a linear time algorithm for the matching

problem that is simpler than the algorithm of [KL75]. We generalize our method to solve

the corresponding transportation problem in O((m+n) log(m+n)) time, improving on the

best previously known algorithm of [KL75].

Next, we present an O(n logm)-time algorithm for minimum cost matching when the

cost array is a bitonic Monge array. An example of this is when the sink points lie on one

straight line and the source points lie on another straight line Finally, we provide a weakly

polynomial algorithm for the transportation problem in which the associated cost array is

a bitonic Monge array. Our algorithm for this problem runs in O(m log(

P

m

j=1

s

j

)) time,

where d

i

is the demand at the ith sink, s

j

is the supply available at the jth source, and

P

n

i=1

d

i

�

P

m

j=1

s

j

.

�

IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598.

Email: faggarwa,amotz,sbarg@watson.ibm.com.

y

Dept. of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College

Park, MD 20742. Email: samir@cs.umd.edu. Research supported by NSF Research Initiation Award CCR-

9307462. Part of this research was done while this author was visiting the IBM T. J. Watson Research Center

and was a�liated with UMIACS and partly supported by NSF grants CCR-8906949, CCR-9111348 and CCR-

9103135.

z

Dept. of Computer Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102.

Email: dina@cis.njit.edu. Supported by the NSF Research Initiation Award CCR-9308204 and the New Jersey

Institute of Technology SBR grant #421220. While at MIT, this research was supported by the Air Force under

Contract AFOSR-89-0271, the Defense Advanced Research Projects Agency under Contracts N00014-87-K-825

and N00014-89-J-1988.

