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bene�t from such a facility. Speci�c applications includethe following:� �nancial, marketing and production time series, suchas stock prices, sales numbers etc. In such databases,typical queries would be `�nd companies whose stockprices move similarly', or `�nd other companies thathave similar sales patterns with our company', or`�nd cases in the past that resemble last month'ssales pattern of our product'� scienti�c databases, with time series of sensordata. For example, in weather data [11], geological,environmental, astrophysics [30] databases, etc., wewant to ask queries of the form, e.g., `�nd past daysin which the solar magnetic wind showed patternssimilar to today's pattern' to help in predictions ofthe earth's magnetic �eld [30].Searching for similar patterns in such databases isessential, because it helps in predictions, hypothesistesting and, in general, in `data mining' [1, 3, 4] andrule discovery.For the rest of the paper, we shall use the followingnotational conventions: If S and Q are two sequences,then:� Len(S) denotes the length of S� S[i : j] denotes the subsequence that includes entriesin positions i through j� S[i] denotes the i-th entry of sequence S� D(S;Q) denotes the distance of the two (equallength) sequences S and Q.Similarity queries can been classi�ed into two cate-gories:� Whole Matching. Given a collection of N datasequences of real numbers S1; S2; : : : ; SN and a querysequence Q, we want to �nd those data sequencesthat are within distance � from Q. Notice that dataand query sequences must have the same length.



� Subsequence Matching. Given N data sequencesS1; S2; : : : ; SN of arbitrary lengths, a query sequenceQ and a tolerance �, we want to identify the datasequences Si (1 � i � N ) that contain matchingsubsequences (i.e. subsequences with distance � �from Q). Report those data sequences, along withthe correct o�sets within the data sequences that bestmatch the query sequence. (We assume that we aregiven a function D(S;Q), which gives the distance ofthe sequences S and Q. For example, D() can be theEuclidean distance.)The case of `whole match' queries can be handled asfollows [2]: A distance-preserving transform, such asthe Discrete Fourier transform (DFT), can be usedto extract f features from sequences (eg., the �rstf DFT coe�cients), thus mapping them into pointsin the f-dimensional feature space. Subsequently,any spatial access method (such as R*-trees) can beused to search for range/approximate queries. Thisapproach exploits the assumption that data sequencesand query sequences all have the same length. Here,we generalize the problem and present a method toanswer approximate-match queries for subsequences ofarbitrary length Len(Q) . The ideal method shouldful�ll the following requirements:� it should be fast. Sequential scanning and distancecalculation at each and every possible o�set will betoo slow for large databases.� it should be `correct'. In other words, it shouldreturn all the qualifying subsequences, withoutmissing any (i.e., no `false dismissals'). Noticethat `false alarms' are acceptable, since they can bediscarded easily through a post-processing step.� the proposed method should require a small spaceoverhead.� the method should be dynamic. It should be easy toinsert and delete sequences, as well as to append newmeasurements at the end of a given data sequence.� the method should handle data sequences of varyinglength, as well as queries of varying length.The remainder of the paper is organized as follows.Section 2 gives some background material on pastrelated work, on spatial access methods and on theDiscrete Fourier Transform. Section 3 focuses onsubsequence matching; we propose a new indexingmechanism and we show how o�-the-shelf spatial accessmethods (and speci�cally the R*-tree) can be used.Section 4 discusses performance results obtained fromexperiments on real and synthetic data, which showthe e�ectiveness of our method. Section 5 summarizes

the contributions of the present paper, giving someextensions of this technique and outlining some openproblems.2 BackgroundTo the best of the authors' knowledge, this is the �rstwork that examines indexing methods for approximatesubsequence matching in time-series databases. Thefollowing work is related, in di�erent respects:� indexing in text [13] and DNA databases [6]. Textand DNA strings can be viewed as 1-dimensionalsequences; however, they consist of discrete symbolsas opposed to continuous numbers, which makes adi�erence when we do the feature extraction.� `whole matching' approximate queries on time-sequences [2] or on color images [14, 21] or even on3-d MRI brain scans [8]. In all these methods, theidea is to use f feature extraction functions to mapa whole sequence or image into a point in the (f-dimensional) feature space [18]; then, spatial accessmethods may be used to search for similar sequencesor images. The resulting index that contains pointsin feature space is called F � index [2].The F-index works as follows: Given N sequences, allof the same length n, we apply the n-point DiscreteFourier Transform (DFT) and we keep the �rst fewcoe�cients. Let's assume that we keep f numbers -thus, each sequence is mapped into a point in an f-dimensional space. These points are organized in anR�-tree, for faster searching. In the typical query, theuser speci�es a query sequence Q (of length n again) anda tolerance �, requesting all the data sequences that arewithin distance � from Q. To resolve this query, (a) weapply the n-point DFT on the sequence Q, we keep thef features, thus mapping Q into a f-dimensional pointqf in feature space; (b) we use the F-index to retrieveall the points within distance � from qf ; (c) we discardthe false alarms (see more explanations in Lemma 1),and we return the rest to the user.Here, we generalize the `F-index' method, which wasdesigned to handle `whole matching' queries. Our goalis to handle subsequence queries, by mapping data se-quences into a few rectangles in feature space. Since werely on spatial access methods as the eventual indexingmechanism, we mention that several multidimensionalindexing methods have been proposed, forming threeclasses: R*-trees [9] and the rest of the R-tree family[15, 17, 28]; linear quadtrees [26, 24]; and grid-�les [22].To guarantee that the `F-index' method above doesnot result in any false dismissals, the distance in featurespace should match or underestimate the distancebetween two objects. Mathematically, let O1 and O2 be 2



two objects (e.g., same-length sequences) with distancefunction Dobject() (e.g., the Euclidean distance) andF (O1), F (O2) be their feature vectors (e.g., their�rst few Fourier coe�cients), with distance functionDfeature() (e.g., the Euclidean distance, again). Thenwe have:Lemma 1 To guarantee no false dismissals for rangequeries, the feature extraction function F () shouldsatisfy the following formula:Dfeature(F (O1); F (O2)) � Dobject(O1; O2) (1)Proof: Let Q be the query object, O be a qualifyingobject, and � be the tolerance. We want to prove thatif the object O quali�es for the query, then it will beretrieved when we issue a range query on the featurespace. That is, we want to prove thatDobject(Q;O) � �) Dfeature(F (Q); F (O)) � � (2)However, this is obvious, sinceDfeature(F (Q); F (O)) � Dobject(Q;O) � � (3)2Following [2], we use the Euclidean distance as thedistance function between two sequences, that is, thesum of squared di�erences. Formally, for two sequencesS and Q of the same length l, we de�ne their distanceD(S;Q) asD(S;Q) �  lXi=1(S[i] � Q[i])2!1=2 (4)As an example of feature extraction function F () wechoose the Discrete Fourier Transform (DFT), for tworeasons: (a) it has been used successfully for `wholematching' [2] and (b) it provides a good, intuitiveexample to make the presentation more clear. It shouldbe noted that our method is independent of the speci�cfeature extraction function F (), as long as F () satis�esthe condition of Lemma 1 (Eq. 1). If the distance amongobjects (data sequences) is the Euclidean distance, thecondition of Lemma 1 is satis�ed, by any orthonormaltransform, such as, the Discrete Cosine transform(DCT) [31], the wavelet transform [25] etc. Next, wegive the de�nition and some properties of the DFTtransformation.The n-point Discrete Fourier Transform [16, 23] ofa signal ~x = [xi], i = 0; : : : ; n � 1 is de�ned to be asequence ~X of n complex numbersXF , F = 0; : : : ; n�1,given byXF = 1=pnn�1Xi=0 xi exp (�j2�F i=n) F = 0; 1; : : : ; n� 1(5)

where j is the imaginary unit j = p�1. The signal ~xcan be recovered by the inverse transform:xi = 1=pn n�1XF=0XF exp (j2�F i=n) i = 0; 1; : : : ; n� 1(6)XF is a complex number (with the exception of X0,which is a real, if the signal ~x is real). The energy E(~x)of a sequence ~x is de�ned as the sum of energies (squaresof the amplitude jxij) at every point of the sequence:E(~x) �k ~x k2� n�1Xi=0 jxij2 (7)A fundamental observation for the correctness of ourmethod is Parseval's theorem [23], which states that theDFT preserves the energy of a signal:Theorem (Parseval). Let ~X be the Discrete FourierTransform of the sequence ~x. Then we have:n�1Xi=0 jxij2 = n�1XF=0 jXF j2 (8)Since the DFT is a linear transformation [23], Parseval'stheorem implies that the DFT also preserves theEuclidean distance between two signals ~x and ~y:D(~x; ~y) = D( ~X; ~Y ) (9)where ~X and ~Y are Fourier transforms of ~x and ~yrespectively.We keep the �rst few (2-3) coe�cients of the DFT asthe features, following the recommendation in [2]. This`truncation' results in under-estimating the distance oftwo sequences (because we ignore positive terms fromequation 4) and thus it introduces no false dismissals,according to Lemma 1.The truncation will introduce only false alarms,which, for practical sequences, we expect to be few. Thereason is that most real sequences fall in the class of`colored noise', which has a skewed energy spectrum,of the form O(F (�b)). This implies that the �rst fewcoe�cients contain most of the energy. Thus, the�rst few coe�cients give good estimates of the actualdistance of the two sequences. For b = 1, we have thepink noise, which, according to Birkho�'s theory [27]models signals like musical scores and other works ofart. For b = 2, we have the brown noise (also knownas random walk or brownian walk) which models stockmovements and exchange rates (eg., [10, 20]). For b > 2we have the black noise whose spectrum is even moreskewed than the spectrum of brown noise; black noisemodels successfully signals like the water level of a riveras it varies over time [20]. 3



Symbols De�nitions.N Number of data sequences.Si The i-th data sequence (1 � i � N ).Len(S) Length of sequence S.S[k] The k-the entry of sequence S.S[i : j] Subsequence of S, including entries inpositions i through j.Q A query sequence.w Minimum query sequence length.D(Q;S) (Euclidean) distance between sequencesQ and S of equal length.� Tolerance (max. acceptable distance).f Number of features.mc Marginal cost of a point.Table 1: Summary of Symbols and De�nitionsThis concludes our discussion on prior work, whichconcentrated on `whole match' queries. Next, wedescribe in detail how we handle the requests formatching subsequences.3 Proposed MethodHere, we examine the problem of subsequence matching.Speci�cally, the problem is de�ned as follows:� We are given a collection of N sequences of realnumbers S1, S2, SN , each one of potentially di�erentlength.� The user speci�es query subsequence Q of lengthLen(Q) (which may vary) and the tolerance �,that is, the maximum acceptable dis-similarity (=distance).� We want to �nd quickly all the sequences Si ( 1 �i � N ), along with the correct o�sets k, such thatthe subsequence Si[k : k+Len(Q) �1] matches thequery sequence: D(Q;Si[k : k + Len(Q) � 1]) � �.The brute-force solution is to examine sequentially everypossible subsequence of the data sequences for a match.We shall refer to this method by `SequentialScan'method. Next, we describe a method that uses asmall space overhead, to achieve order of magnitudessavings over the `SequentialScan' method. The mainsymbols used through the paper and their de�nitionsare summarized in Table 1.3.1 Sketch of the approach - `ST-index'Without loss of generality, we assume that the minimumquery length is w, where w (� 1) depends on the

application. For example, in stock price databases,analysts are interested in weekly or monthly patternsbecause shorter patterns are susceptible to noise [12].Notice that we never lose the ability to answer shorterthan w queries, because we can always resort tosequential scanning.Generalizing the reasoning of the method for `wholematching', we use a sliding window of size w and placeit at every possible position (o�set), on every datasequence. For each such placement of the window,we extract the features of the subsequence inside thewindow. Thus, a data sequence of length Len(S) ismapped to a trail in feature space, consisting ofLen(S) -w+1 points: one point for each possible o�setof the sliding window. Figure 1(a) gives an exampleof trails. Assume that we have two sequences, S1 andS2 (not shown in the �gure), and that we keep the �rstf=2 features (eg, the amplitude of the �rst and secondcoe�cient of the w-point DFT). When the window oflength w is placed at o�set=0 on S1, we obtain the �rstpoint of the trail C1; as the window slides over S1, weobtain the rest of the points of the trail C1. The trailC2 is derived by S2 in the same manner.Figure 4 gives an example of trails, using a real time-series (stock-price movements).One straightforward way to index these trails wouldbe to keep track of the individual points of each trail,storing them in a spatial access method. We callthis method `I-naive' method, where `I' stands for`Index' (as opposed to sequential scanning). Whenpresented with a query of length w and tolerance �,we could extract the features of the query and searchthe spatial access method for a range query with radius�; the retrieved points would correspond to promisingsubsequences; after discarding the false alarms (byretrieving all those subsequences and calculating theiractual distance from the query) we would have thedesired answer set. Notice that the method will notmiss any qualifying subsequence, because it satis�es thecondition of Lemma 1.However, storing the individual points of the trail inan R*-tree is ine�cient, both in terms of space as wellas search speed. The reason is that, almost every pointin a data sequence will correspond to a point in thef-dimensional feature space, leading to an index witha 1:f increase in storage requirements. Moreover, thesearch performance will also su�er because the R-treewill become tall and slow. As we shall see in the sectionwith the experiments, the `I-naive' method ended upbeing almost twice as slow as the `SequentialScan' .Thus, we want to improve the `I-naive' method, bymaking the representation of the trails more compact.The solution we propose exploits the fact thatsuccessive points of the trail will probably be similar, 4
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Figure 1: Example of (a) dividing trails into sub-trailsand MBRs, and (b) grouping of MBRs in larger ones.because the contents of the sliding window in nearbyo�sets will be similar. We propose to divide the trail ofa given data sequence into sub-trails and represent eachof them with its minimum bounding (hyper)-rectangle(MBR). Thus, instead of storing thousands of points ofa given trail, we shall store only a few MBRs. Moreimportant, at the same time we still guarantee `no falsedismissals': when a query arrives, we shall retrieve allthe MBRs that intersect the query region; thus, weshall retrieve all the qualifying sub-trails, plus some falsealarms (sub-trails that do not intersect the query region,while their MBR does).Figure 1(a) gives an illustration of the proposedapproach. Two trails are drawn; the �rst curve, labeledC1 (in the north-west side), has been divided into threesub-trails (and MBRs), whereas the second one, labeledC2 (in the south-east side), has been divided in �ve sub-

trails. Notice that it is possible that MBRs belongingto the same trail may overlap, as C2 illustrates.Thus, we propose to map a data sequence into a setof rectangles in feature space. This yields signi�cantimprovements with respect to space, as well as withrespect to response time, as we shall see in section4. Each MBR corresponds to a whole sub-trail,that is, points in feature space that correspond tosuccessive positionings of the sliding window on the datasequences. For each such MBR we have to store� tstart; tend which are the o�sets of the �rst and lastsuch positionings;� a unique identi�er for the data sequence (sequence id)and� the extent of the MBR in each dimension(F1low ; F1high; F2low; F2high; : : :).These MBRs can be subsequently stored in a spatialaccess method. We have used R*-trees [9], in whichcase these MBRs are recursively grouped into parentMBRs, grandparent MBRs etc. Figure 1(b) shows howthe eight leaf-level MBRs of Figure 1(a) will be groupedto form two MBRs at the next higher level, assuminga fanout of 4 (i.e. at most 4 items per non-leaf node).Note that the higher-level MBRs may contain leaf-levelMBRs from di�erent data sequences. For example, inFigure 1(b) we remark how the left-side MBR1 containsa part of the south-east curve C2. Figure 2 shows thestructure of a leaf node and a non-leaf node. Noticethat the non-leaf nodes do not need to carry informationabout sequence id's or o�sets (tstart and tend).
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T_start, T_end
F1_min,  F1_max
F2_min,  F2_max

F1_min,  F1_max
F2_min,  F2_max
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Leaf level

Level
above leavesFigure 2: Index node layout for the last two levels.This completes the discussion of the structure of ourproposed index. We shall refer to it by `ST-index' , for`Sub-Trail index'. There are two questions that we haveto answer, to complete the description of our method.� Insertions: when a new data sequence is inserted,what is a good way to divide its trail in feature spaceinto sub-trails. 5



� Queries: How to handle queries, and especially theones that are longer than w.These are the topics of the next two subsections,respectively.
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P8Figure 3: Packing points using (a) a �xed heuristic (sub-trail size = 3), and (b) an adaptive heuristic.3.2 Insertion - Methods to divide trails intosub-trailsAs we saw before, each data sequence is mapped intoa `trail' in feature space. Then the question arisingis: how should we optimally divide a trail in featurespace into sub-trails and eventually MBRs, so that thenumber of disk accesses is minimized? A �rst ideawould be to pack points in sub-trails according to apre-determined, �xed number (e.g., 50). However, thereis no justi�able way to decide the optimal value ofthis constant. Another idea would be to use a simplefunction of the length of the stored sequence for this sub-trail size (e.g. pLen(S) ). However, both heuristicsmay lead to poor results. Figure 3 illustrates theproblem of having a pre-determined sub-trail size. Itshows a trail with 9 points, and it assumes that the

Method Description`SequentialScan' Sequential scan of the wholedatabase.`I-naive' Search using an `ST-index' with1 point per sub-trail.`I-�xed' Search using an `ST-index' witha �xed number of points persub-trail.`I-adaptive' Search using an `ST-index' witha variable number of points persub-trail.Table 2: Summary of searching methods and descrip-tionssub-trail length is 3 (i.e., = p9). The resulting MBRs(Figure 3(a)) are not as good as the MBRs shown inFigure 3(b). We collectively refer to all the aboveheuristics as the `I-�xed' method, because they usean index, with some �xed-length sub-trails. Clearly,the `I-naive' method is a special case of the `I-�xed'method, when the sub-trail length is set to 1.Thus we are looking for a method that will be ableto adapt to the distribution of the points of the trail.We propose to group points into sub-trails by meansof an `adaptive' heuristic, which is based on a greedyalgorithm. The algorithm uses a cost function, whichtries to estimate the number of disk accesses for eachof the options. The resulting indexing method willbe called `I-adaptive'. This is the last of the fouralternatives we have introduced. Table 2 lists all ofthem, along with a brief description for each method.To complete the description of the `I-adaptive'method,we have to de�ne a cost function and the concept ofmarginal cost of a point. In [19] we developed a for-mula which, given the sides ~L = (L1; L2; : : :Ln) of then-dimensional MBR of a node in an R-tree, estimatesthe average number of disk accesses DA(~L) that thisnode will contribute for the average range query:DA(~L) = nYi=1(Li + 0:5) (10)The formula assumes that the address space has beennormalized to the unit hyper-cube ( [0; 1)n). We usethe expected number of disk accesses DA() as the costfunction. The marginal cost (mc) of a point is de�ned asfollows: Consider a sub-trail of k points with an MBR ofsizes L1; : : : ; Ln. Then the marginal cost of each pointin this sub-trail is mc = DA(~L)=k (11) 6



That is, we divide the cost of this MBR equally amongthe contained points. The algorithm is then as follows:/* Algorithm Divide-to-Subtrails */Assign the first point of the trail in a(trivial) sub-trailFOR each successive pointIF it increases the marginal cost of thecurrent sub-trailTHEN start another sub-trailELSE include it in the current sub-trail3.3 Searching - Queries longer than wIn the previous subsection we discussed how to inserta new data sequence in the `ST-index' , using an`adaptive' heuristic. Here we examine how to search forsubsequences that match the query sequence Q withintolerance �. If the query is the shortest allowable(Len(Q) = w), the searching algorithm is relativelystraightforward:Algorithm `Search Short'� the query sequence Q is mapped to a point qf infeature space; the query corresponds to a sphere infeature space with center qf and radius �;� we retrieve the sub-trails whose MBRs intersect thequery region using our index;� then, we examine the corresponding subsequences ofthe data sequences, to discard the false alarms.Notice that the retrieved MBRs of sub-trails is asuperset of the sub-trails we should actually retrieve;if a sub-trail intersects the query region, its MBR willde�nitely do so (while the reverse is not necessarilytrue). Thus the method introduces no false dismissals.Handling longer queries (Len(Q) > w) is morecomplicated. The reason is that the `ST-index' `knows'only about subsequences of length w. A straightforwardapproach would be to select a subsequence (e.g., thepre�x) of Q of length w, and use our `ST-index' tosearch for data subsequences that match the pre�x of Qwithin tolerance �. We call this method `Pre�xSearch'.This will clearly return a superset of the qualifyingsubsequences: a subsequence T that is within tolerance� of the query sequence Q (Len(Q) = Len(T )) willhave all its (sub)subsequences within tolerance � � fromthe corresponding subsequence of Q. In general we canprove the following lemma:Lemma 2 If two sequences S and Q with the samelength l agree within tolerance �, then any pair (S[i : j],Q[i : j]) of corresponding subsequences agree within thesame tolerance.

D(S;Q) � � ) D(S[i : j]; Q[i : j]) � � (1 � i � j � l)(12)Proof: Since D() is the Euclidean distance, we haveD(S;Q) � � ) lXk=1(S[k]� Q[k])2 � �2 (13)Since jXk=i(S[k] �Q[k])2 � lXk=1(S[k] �Q[k])2 (14)we haveD(S[i : j]; Q[i : j]) = jXk=i(S[k] �Q[k])2 � � (15)which completes the proof. 2Using the `Pre�xSearch' method, the query region infeature space is a sphere of radius �, and therefore, ithas volume proportional to �f . Next, we show how toreduce the volume of the query region and subsequently,the number of false alarms. Without loss of generality,we assume that Len(Q) is an integral multiple of w;if this is not the case, we use Lemma 2 and keep thelongest pre�x that is a multiple of w.Len(Q) = p w (16)Then, we propose to split the longer query into ppieces of length w each, process each sub-query andmerge the results of the sub-queries. This approachtakes full advantage of our `ST-index' . Moreover,as we show, the tolerance speci�ed for each sub-querycan be reduced to �=pp. The �nal result is thatthe total query volume in feature space is reduced.The following Lemma establishes the correctness of theproposed method. Consider two sequences Q and S ofthe same length Len(Q) = Len(S) = p �w. Considertheir p disjoint subsequences qi = Q[i�w+1 : (i+1)�w]and si = S[i �w+ 1 : (i+ 1) �w], where 0 � i < p� 1.Lemma 3 If Q and S agree within tolerance � thenat least one of the pairs (si; qi) of corresponding sub-sequences agree within tolerance �=pp:D(Q;S) � � ) _p�1i=0 (D(qi; si) � �=pp) (17)where _ indicates disjunction.Proof. By contradiction: If all the pairs of subse-quences have distance > �=pp, then, by adding all thesedistances, the distance of Q and S will be > �, which isa contradiction. More formally, since for i = 0; : : : ; p�1D2(qi; si) = (i+1)�wXj=i�w+1(qi[j]� si[j])2 (18) 7



we have that 8i (D(qi; si) > �=pp) ) (19)8i 0@ (i+1)�wXj=i�w+1(qi[j]� si[j])2 > �2=p1A ) (20)p�wXj=1(Q[j]� S[j])2 > p � t2=p = �2 (21)or D(Q;S) > � (22)which contradicts the hypothesis. 2The searching algorithm that uses Lemma 3 will becalled `MultiPiece' search. It works as follows:Algorithm `Search Long ( `MultiPiece' )'� the query sequence Q is broken in p sub-querieswhich correspond to p spheres in feature space withradius �=pp;� we use our `ST-index' to retrieve the sub-trailswhose MBRs intersect at least one the sub-queryregions;� then, we examine the corresponding subsequences ofthe data sequences, to discard the false alarms.Next, we compare the two search algorithms( `Pre�xSearch' and `MultiPiece' ) with respect to thevolume they require in feature space. The volume of anf-dimensional sphere of radius � is given byK �f (23)where K is a constant (K = � for a 2-dimensional space,etc). This is exactly the volume of the `Pre�xSearch'algorithm. The `MultiPiece' algorithm yields p spheres,each of volume proportional toK(�=pp)f (24)for a total volume ofK � p � �f=ppf = K � �f=pf=2�1 (25)This means that the proposed `MultiPiece' searchmethod is likely to produce fewer false alarms, andtherefore better response time than the `Pre�xSearch'method, whenever we have f > 2 features.4 ExperimentsWe implemented the `ST-index' method using the`adaptive' heuristic as described in section 3, and weran experiments on a stock prices database of 329,000points, obtained from sfi.santafe.edu. Each point

was a real number, having a size of 4 bytes. Figure4(a) shows a sample of 250 points of such a stock pricesequence. The system is written in `C' under AIX, onan IBM RS/6000. Based on the results of [2], we usedonly the �rst 3 frequencies of the DFT; thus our featurespace has f=6 dimensions (real and imaginary parts ofeach retained DFT coe�cient). Figure 4(b) illustratesa trail in feature space: it is a 2-dimensional `phase'plot of the amplitude of the 0-th DFT coe�cient vs.the amplitude of the 1-st DFT coe�cient. Figure 4(c)similarly plots the amplitudes of the 1-st and 2-nd DFTcoe�cients. For both �gures the window size w was 512points. The smooth evolution of both curves justi�esour method to group successive points of the featurespace in MBRs. An R*-tree [9] was used to store theMBRs of each sub-trail in feature space.We carried out experiments to measure the perfor-mance of the most promising method: `I-adaptive'.For each setting, we asked queries with variable se-lectivities, and we measured the wall-clock time ona dedicated machine. More speci�cally, query se-quences were generated by taking random o�sets intothe data sequence and obtaining subsequences of lengthLen(Q) from those o�sets. For each such query se-quence, a tolerance � was speci�ed and the query wasrun with that tolerance. This method was followed inorder to eliminate any bias in the results that may becaused by the index structure, which is not uniform atthe leaf level. Unless otherwise speci�ed, in all the ex-periments we used w = 512 and Len(Q) = w.We carried out four groups of experiments, as follows:(a) Comparison of the the proposed `I-adaptive'methodagainst the `I-naive' method (the method that hassub-trails, each one consisting of one point).(b) Experiments to compare the response time of ourmethod ( `I-adaptive') with sequential scanning forqueries of length w.(c) Experiments with queries longer than w.(d) Experiments with a larger, synthetic data set, tosee whether the superiority of our method holds forother datasets.Comparison with the `I-naive' method. Figure5 illustrates the index size as a function of the lengthof the sub-trails for the three alternatives ( `I-naive' ,`I-�xed' and `I-adaptive'). Our method requires only5Kb, while the `I-naive' method requires �24 MB. The`I-�xed' method gives varying results, according to thelength of its sub-trails.The large size of the index for the `I-naive' methodhurts its search performance as well: in our experiments, 8
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I-adaptiveFigure 5: Index space vs. the average sub-trail length(log-log scales)the `I-naive' method was approximately two timesslower than sequentially scanning the entire database.Response time - `Short' queries. We start examin-ing our method's response time using the shortest ac-ceptable queries, that is, queries of length equal to thewindow size (Len(Q) = w). We used 512 points forLen(Q) and w. Figure 6 gives the relative responsetime of the sequential scanning method (Ts) vs. our in-dex assisted method (Tr , where r stands for `R-tree'),by counting the actual wall-clock time for each method.The horizontal axis is the selectivity; both axes are inlogarithmic scales. The query selectivity varies up to10% which is fairly large in comparison with our 329,000points time-series database. We see that our methodachieves from 3 up to 100 times better response timefor selectivities in the range from 10�4 to 10%.We carried out similar experiments for Len(Q) = w= 256, 128 etc., and we observed similar behavior andsimilar savings. Thus, we omit those plots for brevity.Our conclusion is that our method consistently achieveslarge savings over the sequential scanning.
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Figure 6: Relative wall clock time vs. selectivity in log-log scale (Len(Q) =w=512 points).Response time - longer queries. Next we examinethe relative performance of the two methods for queriesthat are longer than w. As explained in the previoussection, in these cases we have to split the query andmerge the results ( `MultiPiece' method). As illustratedin Figure 7, again the proposed `I-adaptive'methodoutperforms the sequential scanning, from 2 to 40 times.Synthetic data. In Figure 8 we examine our tech-nique's performance against a time-series database con-sisting of 500,000 points produced by a random-walkmethod. These points were generated with a startingvalue of 1.5, whereas the step increment on each stepwas � .001. Again we remark that our method outper-forms sequential scanning from 100 to 10 times approx-imately for selectivities up to 10%.5 ConclusionsWe have presented the detailed design of a method thate�ciently handles approximate (and exact) queries forsubsequence matching on a stored collection of datasequences. This method generalizes the work in [2], 9
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Figure 8: Relative wall clock time vs. selectivity forrandom walk data in a log-log scale (Len(Q) =w=512points).which examined the `whole matching' case (i.e., allqueries and all the sequences in the time-series databasehad to have the same length). The idea in the proposedmethod is to map a data sequence into a set of boxes infeature space; subsequently, these can be stored in anyspatial access method, such as the R*-tree.The main contribution is that we have designed indetail the �rst, to our knowledge, indexing method forsubsequence matching. The method has the followingdesirable features:� it achieves orders of magnitude savings over the se-quential scanning, as it was showed by our experi-ments on real data,� it requires small space overhead,� it is dynamic, and
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