TecHNIcAL RESEARCH REPORT

Using POMDP as Modeling Framework for Network Fault
Management

by Qiming He, Mark A. Shayman

T.R. 99-67

INR

INSTITUTE FOR SYSTEMS RESEARCH

ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

Using POMDP as Modeling Framework for
Network Fault Management

Qiming He, Mark A. Shayman,

Dept. of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742
{qiminghe,shayman } @eng.umd.edu

Abstract

For high-speed networks, it is important that fault management be
proactive—i.e., detect, diagnose, and mitigate problems before they result
in severe degradation of network performance. Proactive fault manage-
ment depends on monitoring the network to obtain the data on which
to base manager decisions. However, monitoring introduces additional
overhead that may itself degrade network performance especially when
the network is in a stressed state. Thus, a tradeoff must be made be-
tween the amount of data collected and transferred on one hand, and the
speed and accuracy of fault detection and diagnosis on the other hand.
Such a tradeoff can be naturally formulated as a Partially Observable
Markov decision process (POMDP). Since exact solution of POMDP’s for
a realistic number of states is computationally prohibitive, we develop
a reinforcement-learning-based fast algorithm which learns the decision-
rule in an approximate network simulator and makes it fast deployable
to the real network. Simulation results are given to diagnose a switch
fault in an ATM network. This approach can be applied to centralized
fault management or to construct intelligent agents for distributed fault
management.

1 Introduction

Traditionally network fault management (NFM) has focused on event correla-
tion [17] [23]. More recently, there is increasing emphasis on proactive fault
management [8] [21]. Proactive fault management requires that the network be
monitored in order to detect and diagnose faults at an early stage. However,
monitoring itself can introduce significant communication and computational
overhead [9]. Thus, it is desirable to determine monitoring policies that rep-
resent optimal tradeoff between the amount of monitoring and the speed and
accuracy with which potential faults can be detected and diagnosed. Recently,

an approach based on using integrity constraints to model the evolution of the
network state was proposed [12].

We take a different approach in which the tradeoff problem is formulated
as a Partially Observable Markov Decision Processes (POMDP). The solution
of the POMDP is used to construct intelligent managers and agents. (We use
manager/agent to refer to either entity.) The intelligence of an manager/agent
can be defined as taking the right management actions (polling, repairing, etc.)
at the right time with minimal cost. The concept of intelligent agent plays an
important role in current network management. An intelligent agent, who either
resides in the network element (NE) or acts as a stand-alone proxy, should react
to the changing network environment intelligently instead of solely providing
device status when being polled.

When anomalies arise in the network, intelligent NFM requires both manager
and agents to take appropriate actions based on network states and alarms
which appear sequentially. For example, on the manager’s side, polling devices
randomly (or in round-robin) may mean a waste of both bandwidth and time.
On the agent’s side, sending false alarms diminishes the effectiveness of the
manager. It is desirable for the manager to choose polling sequences which
build up confidence in a fault hypothesis by focusing more on those NEs which
might be directly related to the root-cause of alarms.

The problems of choosing intelligent policies for monitoring, diagnosis, and
mitigation can be formulated as POMDP’s. Recently, there has been consider-
able interest in using Markov Decision Processes (MDP’S) for AI planning [3]
[13] [14]. MDP views the world as a controlled Markov chain. State transition
probabilities depend on control actions. For each individual transition, there
is an associated immediate reward. Costs may be treated as negative rewards.
The optimal policy is a control law that yields minimal costs in a finite or in-
finite horizon. Reinforcement learning can be used for solving MDP’s in which
the model is not accurately known [19]. In the context of NFM, MDP models
have been discussed in [10] and both MDP’s and reinforcement learning in [1].

In this paper, we suggest that the behavior of NFM manager/agent can be
modeled by a POMDP. Partial observability is a common phenomenon in many
real-word applications. It means that states cannot be completely observed
and hence must be estimated by sequential observations. For instance, if we
regard the switches up-and-down as states, they are hidden to all end-node
observers. Even if system states can be completely monitored, observations
might be missing or delayed in the communication network. POMDP may
serve as the theoretical basis of general diagnosis without exact knowledge of
states and has found many applications in recent years [6] [20].

Various exact solution algorithms for POMDP’s have been proposed [14].
The majority of them are model-based. None of them can accommodate a
realistic number of states for network fault management. In this paper, we
develop a fast reinforcement learning algorithm to obtain approximate solutions
to POMDP’s with large numbers of states. A preliminary policy is learned in
a simulator in which the states are completely observable. The learned policy
is then fine-tuned by applying an analogous learning scheme in the real world

where the states are incompletely observed.

This paper is organized in 5 sections. Section 2 is a brief introduction to
MDP, POMDP and their solutions. Section 3 presents our fast algorithm. Some
simulation examples of centralized and decentralized fault diagnosis schemes are
given in section 4. Section 5 concludes this paper.

2 Basics on MDP and POMDP

MDP is a framework for sequential decision-making under uncertainty. Fault-
management gives rise to such decision problems. For example, if a device is
polled and returns back an abnormal signal, we may not be sure if it is a real-
alarm or a false-alarm. If it is real, we may still not be sure if this device is
the root-cause of this alarm. If we then poll it repeatedly and get alarms, then
we can be pretty sure it is a real-alarm, but we still may not be sure of the
root-cause. Proceeding, we might poll its neighbor (e.g., in the same subnet). If
this yields an alarm, then we can almost rule-out the possibility of failure of the
first device being polled and we become more suspicious about the connecting
device (e.g., hub or router or the same server they both access). The decisions
that need to be made are “poll it again?” |, “when to stop?” , “which node needs
to be polled next?”, “when to take somerecovery action (e.g., reroute traffic or
replace faulty device)?” All these actions are closely related with time and cost.
The goal is to do it as quickly as possible and minimize the total cost as much
as possible.

2.1 MDP

Under MDP umbrella, control actions are assumed to be performed by an agent
placed in a stochastic environment which can be described by a 4-tuple < S, A,
T,R >. S is the finite set of state. A is the finite set of actions. 7 is a mapping
T:SxA — Pr(S). Ris areward function R : S x A — R!. Agent and
environment interacts with a sequence discrete steps ¢ = 0,1,2,3... (as shown
in Figure 1). The dynamics of the environment are stationary and Markov, i.e.
state and action at one time step s; € S, a; € A determines the distribution of
state and reward s;11 € S, 141 € R next time step.

P(s,a,s') = Pr(si11 = §'|s¢ = s,a; = a] (1)

R(s,a,s") = E[rii1|s = s,a; = a, 8441 = 8] (2)

Agent’s policy is a mapping from state to action. A deterministic policy
gives the action to be taken for each state, m; : S — A. A stochastic policy
gives the probability of choosing an action for each state, 7 : S x A — [0,1].
7¢(s,a) is the probability choosing action a; = a if s; = s. For a deterministic
policy, the agent’s objective is to choose actions to maximize subsequent reward

—ETT

St Tt at

. Tt+4+1

Environment

CSt41

Figure 1: Intelligent Agent interacts with the environment

Re =Y +*riw (3)
k=0

where 0 < 7 < 1 is a discount rate. The value of a state given a policy is
formally the expected reward starting that state

V7(s) = E[R|s; = s,7] (4)
and the state-value given by optimal policy is the one superior to all others

V7 (s) = sup V())

There always exists an optimal policy 7* that archieves this maximum [3].

If the model is known, the optimal policy can be determined from the optimal
state-value function. However, if the model is not accurately known, it is not
feasible to derive optimal policy from V*; instead we need Q*(s, a), the optimal
state-action value function. In general, state-action value function is defined as

Q" (s,a) = E[Ry|s; = s,a; = a, 7] (6)

which gives the expected reward when action a is taken in state s after which
actions are chosen according to the policy 7. Similarly,

Q*(s.0) = sup Q"(s,a) ™)
s

The optimal control performed by agent is 7*(s) = argmaz,Q*(s,a). MDP

was originally studied under the assumption that P(s,a,s’) and R(s,a,s’) are

completely known. There are various methods to determine the optimal policies

for MDP, e.g. value iteration [2]. When the system dynamics are unknown, re-

inforcement learning can be applied [19], e.g., the pioneering one-step off-policy

Q-learning algorithm [22] which iterates the Q-value based on the resulting next
state and immediate reward:

Q" (s,a) = (1 — a)Q"(st, ar) + ary + max Q" (st41, ar11)] (8)

where 0 < @ < 1 is a learning parameter. It can be proved @ under minimal
technical conditions, converges to @Q* asymptotically while ¢ — oo [22]. The
optimal policy can then be determined from Q*.

Solution algorithms for MDP’s can handle problems with thousands of states.
Unfortunately, in many real-life applications, states cannot be observed com-
pletely. In a communication network, if we denote the up-down states of NE,
the states can only be estimated by polling performance metrics of related NE.
We perform management operations based on our confidence of the states’ sta-
tus. If we are pretty sure what device is down, then we will take replace-action.
If we observe alarms indicating some kind of congestion or cell-loss, it might
be due to the nature of the statistical switching or it might be a fault. In this
case, we may have to take preventive-action such as collecting more informa-
tion of related NE’s or re-routing traffic around the suspicious NE to maintain
QoS. Such decisions are made sequentially in order to reduce long-run costs (or
equivalently, to maximize long-run rewards).

2.2 POMDP

POMDP is a framework to handle observation uncertainty in the MDP. POMDP
is a 6-tuple < S, A, 7,0, R, II > where O is the set of observations. II is an
observation function IT : S x A — Pr(O)

In MDP (or Completely Observable MDP), current action only depends on
the current state; previous states and actions are irrelevant. In POMDP, the
current action may depend on the entire sequence of past actions and resulting
observations. However, it is equivalent to have the current action depend on
a sufficient statistic called the belief state, which gives the probability for each
possible value for the current state given all the past actions and observations.
By doing such a conversion, a POMDP problem over state space S can be
treated as an MDP problem over belief space B and Markov property holds for
B which is a continuous state space. There is an additional element Z defining
the problem-specific initial belief state.

In principle, solutions to MDP can be used directly to solve POMDP assum-
ing POMDP is an MDP over belief state. Unfortunately, the infinite number
of belief states makes the direct use impractical. However, due to Sondik’s
work [18], the optimal value function for any POMDP can be approximated
arbitrarily well by piecewise-linear convex function (PWLC). Similar to MDP,
if we assign value to belief-action pair, then the solution to POMDP can be
approximated by:

Q(b,a) = maxq-b 9)

g€Lq

Where L, is a finite set of |S|-dimensional vectors [15].

Thus, many POMDP algorithms start by constructing a finite representa-
tion of PWLC function over belief state, then iteratively updating this repre-
sentation, expanding horizon and truncating it at some desired depth. Both
truncated-exact solution algorithms and approximate solution algorithms have
their different ways of finding solution vectors in (9) [14] [24].

Generally, truncated-exact solution works well for small problems with less
than 100 states. For large problems, it becomes computationally intractable
when the horizon increases. On the other hand, the approximate methods can
handle a large numbers of states but may result in a poor policy. The goal
of the following section is to develop an approximate algorithm that generally
results in policies with good performance for NFM problems with large numbers
of states.

3 Fast Algorithm for Intelligent Agent Design

In order to use POMDP as a framework for constructing intelligent managers/agents,
we need to overcome the following obstacles:

1. Solving POMDP problem without the exact model of the real world. The
dynamics of the network are hard to be obtained explicitly. A practical approach
is to build a simulator that closely resembles the real-world. The model of the
simulator is easy to identify. Then we pretend the real-world model is the same
as that of the simulator. Agent brings the policy from the simulator to the
real-world and keeps learning to handle the model inconsistency, if any.

2. Solving POMDP problem with the large number of states of communica-
tion networks.

Our on-policy linear approximate learning algorithm is derived from Sarsa(\)
[19] which is originally applied in MDP. The idea is we assign Q value to belief-
action pair instead of state-action pair and use linear function to approximate
it. Then we build a simulator of the real-world (network system) in which
we have complete observability. During the learning phase, the belief state is
the unit vector corresponding to the known current state. State-transition and
observation-function are estimated on-line during simulation. In the execution
phase where the state cannot be observed completely, the manager/agent uses
the estimated model to update its belief state and fine-tune its policy (as shown
in Figure 2). After the learning phase, we have not only identified an explicit
model (for the simulator) but also the policy for the simulator which can be used
as a jump-start to feed the next phase. In the execution phase where the state
cannot be observed completely, the manager/agent uses the estimated model to
update its belief state and fine-tune its policy (as shown in Figure 2).

The algorithm (as shown in Table 1 and Table 2) is robust with respect to
modeling error. Performance of this algorithm is reported in an accompanying

paper [7].

Real-World

|
|
Simulation Phase I Execution Phase
| [T¢ [
|
|
Rand [—\ : —
andom
Policy Agent J ' policy for simulator u%&]
|
St Tt @ :
|
|
|
Simulator to . Estimated
Real-World | Model

Figure 2: Two-phase Learning Algorithm

Initialize Q(s,a) and e(s,a) =0 Vs,a Q(b,a) = s Q(s,a)b(s)
Repeat
Select a random state s from S
Repeat
Get the exact state from the simulator Belief b = (0,0, ..1°,..0)
Choose an action a = argmaz.Q(b,a) with e-greedy.
Take action a. Simulator returns next state s’, reward r and observation o.
Estimate model P(a,s,s’) < P(a,s,s’) + 1, O(a,s,0) < O(a,s,0) + 1
Update belief state b’ = (0,0,..1° ..0)
Choose next action a’ = argmaz,Q(b ,a) with e-greedy.
Update @-function:
Compute TD error: § =r +~vQ(b',a’) — Q(b,a)
Update eligibility trace: e(s,a) < e(s,a) + b(s)
Vs,a Q(s,a) + Q(s,a) + ade(s,a), e(s,a)=vie(s,a)
s« s
Until max-step.
Until some episode.
Normalize P(a, s, s’) and O(a, s, 0)

Table 1. Linear Function Approximation Algorithm in Simulation Phase

Repeat
Start from an arbitrary initial belief state b
Repeat
Choose an action a = argmaz,Q(b, a) with e-greddy.
Take action a, receive reward r and observation o from real-world.
Update belief state:
Prediction: b(s') =) .5 P(a,s,s")b(s) Vs’
Estimation: b'(s") = nO(a, s’,0)b(s"). n is a normalization constant
Choose next action a' = argmaz,Q (b, a) with e-greedy.
Update @-function
Compute TD error: 6 =r +vQ (b, a') — Q(b, a)
Update eligibility trace: e(s,a) < e(s,a) + b(s)
Vs,a Qs,a) « Q(s,a) + ade(s,a),e(s, a) = yAe(s, a)
s+ s
Until max-step.
Until some Trials.
Table 2. Linear Function Approximation Algorithm in Execution Phase

4 Modeling and Simulation

We have used an OPNET-based [16] testbed to simulate the fault diagnosis
process in an ATM network. Our testbed (as shown in Figure 3) consists of
ATM-switches and end-nodes. Each end-node has several applications (e.g.
email, ftp, database) installed. Some applications act as clients while others act
as servers. Traffic is delivered between clients and servers. We assume a fault
occurs in an ATM-switch where it is hard to be diagnosed directly yet can be es-
timated by using polling to obtain performance data from end-nodes. We trigger
a delay-fault in one of the switches which decreases the switch processing rate.
OAM (Operation and Maintenance) cells [4] [11] are implemented to measure
end-to-end performance, e.g. delay, cell-loss-ratio. Faulty cells will be observed,
if not dropped due to enforcement of QoS violation before reaching destination.
A threshold is defined for each performance metric to convert the metric into a
binary-valued variable that takes the values normal and abnormal. We include
the possibility that the reported value of the variable is incorrect. The goal of
the manager is to find a polling sequence that accurately determines the root
cause while minimizing the amount of polling actions required.

4.1 Centralized NMS

Assuming only one switch can be in fault at any time, the system-state viewed by
central manager consists of mutually exclusive sub-state S = S°US!, 8 = {s¢},
S' = {s1,52,...sN} in which sy means all switches are normal and s; means
merely it" switch is in fault. Actions taken by manager consist of repair and
pollings, A = A" U AP, A" = {af, ..a] .ay}, AP = {af,..a}..al} in which a] is

the action to repair i*" switch, a? is the action to poll j** end-node. Observation

Figure 3: The Topology of ATM Simulation Testbed for Fault Management

at each end-node is O = {normal, abnormal}. Normal means the OAM cell is
QoS-complaint; otherwise it is abnormal. In simulator, state transition matrix

P(s' = sils = si,a = af) = du (10)
S it
P(s" = sp|s = s;,a =af) = " z#] (11)
dok, P=1]
q;. o=abnormal,i # 0

1-— qg- o=normal,i # 0

P(o|si,a:a§) = (12)

I o=abnormal,; = 0

1—p o=normali=0

in which g <« 1 is the probability of false alarm, q;: is the fraction of shortest
paths originating from j!* end-node that pass through ‘" switch. Reward
function is

C i=j,a;€ A"
R(si,aj) =.C" i#}], aj € A" (13)
c a; €A

in which C > ¢> C".

4.2 Distributed NMS

In centralized NMS, manager takes full responsibility to make decisions; agents
only supply measurements when being polled. When the network size grows
larger, increased state and observation number will slow down manager’s re-
sponse time and polling traffic will consume an undesirable amount of band-
width. An alternative is to migrate intelligence from manager to agents as in
the “management-by-delegation” paradigm [5].

POMDP framework can be easily adapted from manager to agents. Each
agent only cares about its domain where only related elements are included. For
example in Fig 3, the state set of C_rl can be reduced to {SW1,SW2,SW3}
since its traffic will only pass these switches. State of {SW4,SW5, SW6} will
not likely affect observations in this end-node.

4.3 Experiment and Simulation

Suppose we trigger a fault in SW1 to simulate extra processing delay, i.e. all
ATM cells will take much longer than usual passing this switch. Costs are
chosen as C' = 100,c = —1,C’ = —100.

4.3.1 An example in centralized NMS

Suppose the manager starts from the initial belief {0.7,0.05,0.05,0.05, 0.05,0.05,
0.05 } which means the central manager originally believe that the network is
more likely in the normal condition. One of the instance of belief updating and
actions chosen by POMDP policy is shown in Table 3.

normal | swl sw2 sw3 sw4 SwbH swb obs & actions
0.7 0.05 | 0.05 |0.05 |0.05 | 0.05 | 0.05 ay < normal

0.779 0.028 | 0.005 | 0.028 | 0.055 | 0.055 | 0.055 | ab <—abnormal
0.098 0.35 | 0.002 | 0.003 | 0.156 | 0.156 | 0.234 | ab +abnormal
0.002 0.701 | 0.002 | 0.0 0.007 | 0.157 | 0.157 | ab <—abnormal

0.0 0.89 | 0.0 0.02 | 0.02 | 0.057 | 0.0672 | af <—abnormal
0.0 0.965 | 0.0 0.0 0.005 | 0.005 | 0.0245 | af <normal
0.0 0.997 | 0.0 0.0 0.003 | 0.0 0.0013 | af

Table 3. Polling sequence determined by exact solution of POMDP

An intuitive explanation is that the manager starts by choosing an end-node
(i.e., 4t" node C_rl) to poll and gets normal observation (i.e., QoS-compliant)
which means SW2 is not likely in fault. Then it updates its belief and chooses
to poll 2" node (i.e., S_rl_em_db_ftp) and gets an abnormal observation. To
make sure it is not false alarm, multiple pollings of this node are made and belief
is updated consequently. Then it comes to poll 8" node (C_custom) and gets
normal observation. Since C_custom has to access S_em_x_ftp_custom server
via SW4 and SW5, it rules out the possibility that SW4 or SW5 are in fault
and all clients connected with SW4 or SW5 make the abnormal observations

10

in server S_ri_em_db_ftp. The final action is taken to repair SW1, the faulty
switch that has been correctly diagnosed.

4.3.2 An example in distributed NMS

As discussed in section 4.2, some of the manager’s decision role can be delegated
to agents. For example, an intelligent agent is installed on end-node c_rl. It
may take actions to poll related end-nodes such as c.em_ftp, S_rl_em_db_ftp
and S_z_rl_db_em. Following are two instances of agent’s policy obtained by
the linear-Q learning algorithm, assuming fault is still triggered in SW1 and
observations come from simulator traces. Initial belief is (0.97, 0.01, 0.01, 0.01).
(Note that different approximate solutions of the POMDP-and hence alternative
suboptimal policies-can be obtained from the learning algorithm.)

Policy-1: Choose action Polling-S_x_rl_db_em and get ABNORMAL. Update
belief to (0.43 0.44 0.11 0.004). Poll again and get ABNORMAL. Update belief
to (0.001 0.93 0.06 0.0001). Send suspicion ”SW1 in fault” to manager.

Policy-2: Choose action polling-C_em_ftp and get ABNORMAL. Update
belief to (0.328 0.202 0.33 0.135). Poll it again and get NORMAL. Update
belief to (0.66 0.165 0.007 0.165). Poll it again and get NORMAL. Update
belief to (0.037 0.555 0.037 0.37). Send suspicion "SW1 in fault” to manager.

5 Conclusion

In the networked environment, fault management needs non-trivial techniques
to deal with not only catastrophic failure but also partial failures, especially
when processors, memory, file systems, and applications tend to be distributed.
Partial failures may be difficult to detect at an early stage, yet may eventually
lead to serious degradation of network performance. Proactive diagnosis of
such faults cannot be achieved without serious consideration of the dynamics of
the network and its monitoring processes. The POMDP framework takes this
information into account and has the promise of producing effective monitoring
and control policies for intelligent managers and agents. To overcome model
uncertainty and the large number of states, we have proposed a fast algorithm,
based on reinforcement learning, for obtaining approximate solutions to the
relevant POMDP’s.

References

[1] Baras J., Li H., Mykoniatis G. (1998), Integrated, Distributed Fault Man-
agement for Commaunication Networks, ISR technical report TR, 98-21.

[2] Bellman R.E., (1957), Dynamic Programming, Princeton University Press.

[3] Bertsekas, D. P., (1995), Dynamic Programming and Optimal Control,
Athena Scientific.

11

[4] Chen T. M. et al., (1996), Monitoring and Control of ATM Network Using
Special Cells, IEEE Network September/October.

[5] Goldszmidt G., Yemini, (1995), Distributed management by delegation, 15th
International Conference on Distributed Computing.

[6] Hauskrecht M., Fraser H. (1998), Modeling Treatment of Ischemic Heart Dis-
ease with Partially Observable Markov Decision Processes, In Proceedings of
American Medical Informatics Association annual symposium on Computer
Applications in Health Care, Orlando, Florida, pp. 538-542.

[7] He Q., Shayman M. A., (1999), Solving POMDP by On-line Linear Approz-
imate Learning Algorithm, ISR Technical Report.

[8] Hood C.S., Ji Chuanyi, (1997), Automated Proactive Anomaly Detection,
Integrated Network Management V, Proceedings of the Fifth IFIP/IEEE
International Symposium on Integrated Network Management, p. 688-699.

[9] HP Solution Note (1997), Testing Operation and Maintenance Implemen-
tation for ATM, ATM/Broadband Testing seminar, Hewlett-Packard Com-

pany.
[10] Huard J. F., Lazar A. A., (1996), Fault Isolation based on Decision-

Theoretic Troubleshooting, TR442-96-08, COMET Group, Columbia Uni-
versity.

[11] ITU-T Recommendation, (1995), I.610 B-ISDN Operation and Mainte-
nance: Principles and Functions.

[12] Jiao J. et al, (1999), Minimizing the Monitoring Cost in Network Manage-
ment, Integrated Network Management VI, p. 155-169.

[13] Kaelbling L. P., Littman M. L. Moore, A. W., (1996), Reinforcement
Learning: A Survey, Journal of Artificial Intelligence Research, Volume 4.

[14] Kaelbling L. P., Littman M. L., Cassandra, A. R. (1998), Planning and
Acting in Partially Observable Stochastic Domains, Artificial Intelligence,
Vol. 101.

[15] Littman, M. L., Cassandra, A. R., Kaelbling L. P., (1998), Learning policies
for partially observable environments: Scaling up, Proceedings of the Twelfth
International Conference on Machine Learning, p362-370.

[16] MIL3 Inc. (1998) OPNET 4.0 User-Manual.

[17] Nygate Y. A., (1995), Event Correlation using Rule Based and Object
Based Techniques, Integrated Network Management IV, Proceedings o f
fourth international symposium on integrated network management, ed. by
A.S. Sethi.

12

[18] Sondik E. J. (1971), The optimal control of partially observable Markov
Processes, Ph.D. Thesis Stanford University.

[19] Sutton R. S., (1998), Reinforcement Learning: An introduction, MIT Press.

[20] Sylvie Thibaux, et al. (1996), Supply Restoration in Power Distribution
Systems(A Case Study in Integrating Model-Based Diagnosis and Repair
Planning, Proceedings of the Twelfth Annual Conference on Uncertainty in
Artificial Intelligence (UAI-96), p525-532.

[21] Thottan M., Ji Chuanyi, (1998), Proactive Anomaly Detection Using Dis-
tributed Intelligent Agents, IEEE Networks Sept/Oct p21-27.

[22] Watkins C. J. C. H., Dayan P. (1992), Technical note: Q-learning, Machine
Learning, 8(3/4) p.272-292.

[23] Yemini, A., et al. (1996) High Speed and Robust Event Correlation, IEEE
Communication Magazine, p82-90,May 1996.

[24] Zhang N., Liu W., (1997), A Model Approzimate Scheme for Planning in
Partially Observable Stochastic Domains, Journal of Artificial Intelligence,
7, p.199-230.

13

