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Abstract

This report describes a systems approach to the nonlinear �nite element analysis
of shell structures. The research objective is to understand the structure a small language
and computational environment should take so that matrix and nonlinear �nite element
computations that can interact in a seamless manner.

One four node thick shell �nite element and one eight node thick shell �nite
element is formulated and implemented in ALADDIN [1]. The �nite elements are based on
a three-dimensional continuum formulation, and are simpli�ed by assuming a 
at element
geometry. Numerical experiments are presented for in-plane displacements of a 
at plate,
and out-of-plane bending of a cantilever structure. In each case, material nonlinearities are
modeled with bi-linear and Ramberg-Osgood stress-strain curves. The report concludes
with recommendations for further work in the areas of nonlinear �nite element solution
procedures, and enhancements to ALADDIN's problem solving infrastructure.
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Chapter 1

Introduction

1.1 Problem Statement

Now that high-speed personal computers and engineering workstations with In-
ternet connectivity are readily available, many engineering companies are eager to �nds
new ways of enhancing business productivity with computer-based support for engineer-
ing and business processes. A key characteristic of this development is expectations of
computing that are much higher than just one or two decades ago. Whereas an engineer in
the late 1970's might have expected a computer program to provide numerical solutions
to an application-speci�c problem, the same engineer today might require engineering
analyses, plus computational support for design code checking, optimization, and inter-
active computer graphics for visualization. In the near future, engineers will also expect
connectivity to a wide-array of on-line information services { electronic contract negotia-
tions, management of project requirements, and availability of materials and construction
services are among the likely services. For many companies, the long-term objective of
this development pathway is seamless integration of distributed engineering and business
activities throughout the entire life cycle of a facility. The participating computer pro-
grams and networking infrastructure will need to be fast and accurate, 
exible, reliable,
and of course, easy to use.

Before this long-term objective can become a practical reality, however, some vex-
ing systems integration issues must be resolved. A crucial problem is that in the 1970's
and early 1980's, engineering software was written for problem solving on mainframe com-
puters. For the most part, the software development process did not take into account
the bene�ts of networking technology, and it did not consider how parts of a computer
program might be designed for reuse at a later date. Many of these so-called \legacy
computer programs" are written in dated languages, have poorly designed program archi-
tectures, and have functionality that has been blurred by maintenance operations [15].
They are not surprisingly, di�cult to extend in functionality, and di�cult to integrate
with other applications. We have found, for example, that the integration of optimiza-
tion and �nite element packages can be a di�cult and time consuming process, with the
resulting software having a short life-cycle [2, 3, 4]. And yet, when �nite element and
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optimization procedures are viewed simply as specialized matrix computations that could
be coded as software libraries, it is di�cult to see why these disciplines should not mesh
together in a seamless way. In our opinion, the cause of the software integration barrier
is an ad-hoc approach to software tool development in the �rst place.

The dilemma faced by companies with large economic investments in \legacy com-
puter software" is that the shortcomings in software performance and lack of 
exibility
for problem solving must be pitted against the high cost of software replacement. Natu-
rally, management would like the bene�ts of improved software communications without
having to reinvest in the basic application-speci�c software. In practice, however, making
decisions on a pathway for systems integration development is a di�cult problem because
the integration process lacks a theoretical foundation. This means that problems of meth-
ods development and systems integration must be solved on a case-by-case basis using
empirical procedures and case-study problems.

There is a strong need for a framework of empirical guidelines that will assist
engineers and management in the systems integration of computer programs. Such a
framework should help engineers and management recognize functional similarities among
software packages, and opportunities for software reuse when it exists. The framework
should help company management decide when integration of commercial software sys-
tems is plausible, and when new applications software must be developed in order to
achieve a desired level of functionality in computational assistance. A framework for two
areas of computer program integration is needed:

Problem Area [1] : Integration of Custom-Built Code : The easier of the two
problem areas is integration of code that can be designed and written from scratch (i.e.
custom-built code). In deciding what structure this code should take, the basic questions
to ask are:

� \What are the engineering/business processes that we are trying to automate ?"

� \What are the common features among these disciplines ?"

� \How do these disciplines communicate with one another ?"

� \What languages and models are needed to support these processes and their commu-
nication ?"

With the answers to these questions in hand, prototype computer programs can be de-
signed, written, and tested. The success of these prototypes will guide the formulation
of the systems integration recommendations, and the potential need for reformulation of
disciplines to improve their communication with other disciplines. The results of research
in this problem area should provide a benchmark for what can be achieved.

Problem Area [2] : Integration of Commercial Codes : The second, and much
more di�cult problem area, is integration of software packages when real world constraints
(e.g. �nancial, personnel resources, time) preclude the development of code from scratch.
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Figure 1.1: Architecture of Integrated Software Packages

Figure 1.1 shows the architecture for a family of integrated engineering/business software
packages. The heart of the integrated system is the \common software module" shown on
the right-hand side of Figure 1.1. Application speci�c software packages are shown along
the left-hand side. When the languages used by the common software and the applica-
tion package do not match, an abstract interface (or abstract interface object) is inserted
to take care of the language and model transformations/mappings, and the de�nition of
message passing protocols from one software package to another. The abstract interface
should also trace \features required by the common software" onto \features in the ap-
plications software," thereby providing a mechanism for the identi�cation of mismatches
between the common software requirements and capabilities of the applications software.
Ideally, the software component interfaces should be descriptive enough so that individ-
ual software modules can be replaced by anyone, and without loosing compatibility with
earlier versions.

A �rst step in this direction is the Object Management Group's CORBA (an
acronym for Common Object Request Broker Architecture), a standard for integrating
object applications running in heterogeneous, distributed computing environments [10].
CORBA's Interface De�nition Language (IDL) is a language-neutral way of de�ning or
specifying how programming languages should access interfaces, invoke services, and han-
dle exceptions. The IDL contains speci�cations for module, constant, and interface de�-
nitions. Client programs written in di�erent languages communicate via mappings of the
IDL interfaces to the native programming language(s).

A similar concept can also be found in Microsoft's OLE (originally an acronym
for Object Linking and Embedding) technology [11]. OLE allows for the integration of
program language-independent components through the use of an external binary stan-
dard { the standard allows legacy code components to be integrated alongside the newer
object-oriented code. OLE allows objects to communicate via levels of abstraction that
are higher than simply function interfaces, and for a client to ask an object whether or
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not it supports a particular feature before that client attempts to use that feature. This
is traceability.

1.2 Objectives and Scope

The long-term objective of this work is formulation of a framework for guiding
the systems integration of interactive computer programs and information services, as
described in Section 1.1. The framework should allow for the integration of matrix
and �nite element analysis with optimization and other engineering �elds, and for an
engineer to install new code and functional capabilities into the system on the 
y. With
this said, it is clearly unrealistic to strive for a framework that is equally suited to all
possible applications. One general purpose direction for development is to compile an all-
encompassing collection of useful concepts from diverse domains. The main shortcoming
of this approach is that the resulting software can easily become an unwieldy collection of
concepts that lack harmony. This is precisely what we are trying to avoid ! At the other
end of the development spectrum, a small number of primitive abstractions are written,
out of which it is possible to construct powerful domain-speci�c concepts. This strategy
of development has the disadvantage of requiring substantial up-front e�ort and expertise
to build up the necessary application-speci�c programs [28].

Our research objective is to design and implement a small language that strikes a
balance in these approaches. The language will support matrix and �nite element analyses,
and optimization, and allow an engineer to dynamically link user-de�ned application-
speci�c functions into the computational system. The immediate research problem is to
understand the structure the computational environment should take so that the various
disciplines can interact in a seamless manner.

1.2.1 Preliminary Work

The preliminary result of this work is ALADDIN (Version 1.0), a computational
toolkit for interactive engineering matrix and �nite element analysis [1]. We have selected
the integration of matrix and �nite element computations as a study starting point because
of the many features these disciplines share. In ALADDIN �nite element computations are
viewed as a specialized form of matrix computations. matrices are viewed as rectangular
arrays of physical quantities, and numbers are viewed as dimensionless physical quantities.
A detailed description of the representation for physical quantities, matrices of physical
quantities, and the �nite element library, may be found in Part IV of Austin, Chen, and
Lin [1].

The development of ALADDIN has been inspired in part by the systems inte-
gration methods developed for the European ESPRIT Project [18]. A key result of the
ESPRIT work is the recommendation that system speci�cations contain four components:
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Figure 1.2: High Level Components in ALADDIN (Version 1.0)

[1] A Model : The model will include data structures for the information to be stored
and manipulated.

[2] A Language : These language should be a composition of data, control structures,
and functions [27]. Two important aspects of a language are its syntax and seman-
tics:

Syntax : The syntax of a language de�nes its form. The form a language is com-
posed of the terminal symbols (i.e. the keywords that make up the language) and
the production rules (i.e how phrases are composed from terminals and subphrases).

Semantics : The semantics of a language assign meaning to its expressions and
symbols.

Together the syntax and semantics of the language provide a means for describing,
storing, and manipulating information within a problem domain.

[3] Defined Steps and Ordering of the Steps : The steps will de�ne the transfor-
mations that can be carried out on system components (e.g. nearly all engineering
processes will require iteration and branching).

[4] Guidance for Applying the Specification : Guidance includes factors such as
descriptive problem description �les and computer program documentation.

These four steps constitute the systems approach (or method) to software systems inte-
gration, and they are seen as a prerequisite to successful tool integration, and an extension
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of the software life-cycle. These bene�ts are not without precedence { for example, the
DMAP (Direct Matrix Abstraction Program) for Nastran, and MAPOL (Matrix Algebra
Problem Oriented Language) for ASTROS, have been developed along these lines. Both
developments claim among their successes, an extended software life cycle [17].

Figure 1.2 shows the three main components of ALADDIN's architecture, and
Figure 1.3 the relationship between the engineer and language, and components of the
language and the underlying model in ALADDIN. In working out the details of the lan-
guage/model interaction, and the mapping of components in Figure 1.2 onto Figure 1.3,
the main question to ask is:

� \What components of a problem description should be handled by features of the
language, and what components of a problem should be handled by ALADDIN's
kernel and the matrix/�nite element libraries ?"

This is a resource allocation problem that is complicated by trade-o�s between the speed
of interpreted ALADDIN language code, and the (relatively fast) speed of compiled C
code, and ALADDIN language 
exibility versus ease of program use. We do not want the
ALADDIN's language to be so complicated/detailed that problem description �les look
just like C code. By guiding advances in the language, model, and engineering-application
software libraries within the structure of Figure 1.3, and by using the language syntax
and semantics to control the interaction between the matrix and �nite element disciplines,
the hope is that ALADDIN will evolve into an easy to use, extensible, integrated system
that supports seamless communication among disciplines.

It is important to keep in mind that as the speed of Central Processing Units
(CPU's) increases, the time needed to prepare a problem description increases relative
to the total time needed to work through an engineering analysis. Hence, clarity of an
input �le's contents is of paramount importance, as is maximum reuse of ALADDIN
programming constructs from one problem domain to the next. To this end, we have
emphasized in the language design: (1) liberal use of comment statements, (2) use of
physical units in the problem description, (3) consistent use of function names and function
arguments, (4) consistent use of physical quantities and matrices, and (5) consistent use
of branching and looping programming constructs.

Matrix and engineering problems are solved using components of ALADDIN that
are part interpreter-based, and part compiled C code. The matrix library has functions
for matrix arithmetic, the solution of linear matrix equations, and the computation of the
generalized eigenproblem for symmetric matrices. The matrix functions and correspond-
ing language features have been used to compute the buckling loads in a slender elastic
rod, and to simulate the sti�ness method using matrix computations { for details, see
Chapter 2 of Austin, Chen, and Lin [1]. Similarly, the �nite element library has been
used for the linear static analysis of two- and three-dimensional building and bridge struc-
tures, the linear dynamic analysis of two dimensional building structures using Newmark
and Modal Analysis procedures, and the linear static analysis of various shell structures
[1, 16].
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1.2.2 Objectives and Scope of this Study

In this study we will extend ALADDIN's functionality to the solution of �nite
element problems containing material nonlinearities. We will validate ALADDIN's perfor-
mance via the formulation and testing of one four node thick shell �nite element, and one
eight node thick shell �nite element. In an e�ort to keep the formulation relatively sim-
ple, the shell �nite elements will be based on a degenerated three-dimensional continuum
formulation, and will have a 
at geometry.

A key objective of this study will be to solve the nonlinear �nite element problem
in ways that maximize the reuse of ALADDIN's framework already in place. The de�ned
steps will be speci�ed in ALADDIN's input �le, and will include numerical procedures
capable of solving coupled nonlinear �nite element equations. The preliminary work for
this report is contained in Chapter 4 of Austin et al. [1], where BFGS-type algorithms are
described and tested on ensembles of nonlinear numerical equations. The same algorithms
will be applied in this report to the solution of nonlinear equations generated by the shell
�nite elements. Readers should note that when a tentative solution has failed, BFGS
algorithms have the ability to back-step solutions, and to start forward again with a
new set of algorithm control parameters and stress/strain data saved from a previous
equilibrium state.

There are four chapters in this report. Chapter two describes the theory of the
four and eight node shell �nite elements, and numerical techniques for the plasticity
computation. Results of the numerical experiments are given in Chapter three. Chapter
4 contains conclusions and suggestions for future work.
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Chapter 2

General Shell Element

2.1 Introduction to Shell Element

Modern shell technology may be traced back to the fundamental work of Kirchho�
and Love in the second half of the nineteenth century [21]. Since then, considerable work
has been done on the theory, analysis, modeling, and construction of shells. Nowadays,
shell elements are load carrying components in a wide variety of modern engineering
systems. Their expanded use is due in part to increased knowledge about the behavior
and e�cient load-carrying capabilities of shells, and in part, to the availability of new
materials for construction [24].

Recent advances in shell technology include: (a) the development of computational
models for the mechanical, thermal, and electromagnetic behavior of shells; (b) e�cient
discretization techniques, computational strategies and numerical algorithms, and (c) ver-
satile and powerful software systems for the solution of large sets of nonlinear equations
generated by complicated shell structures [24]. A comprehensive review of shell technol-
ogy may be found in reference [22].

Many types of plate and shell �nite elements have been proposed for the linear
and nonlinear analyses of the plate, speci�c shell, and general shell structures [23]. Of
all the possible approaches, the isoparametric formulation of the plate and shell elements
for nonlinear analysis is particularly appealing because the formulation is both consistent
and general, and the elements can be e�ectively employed in a variety of the plates and
shells. To be more precise, because the shell element formulation does not depend on a
speci�c shell theory, the isoparametric approach can, in principle, be used in the analysis
of any plate/shell structure [6, 7].

The scope of this report will be restricted to the three-dimensional behavior of
general shell elements that follow the Reissner-Mindlin assumptions for the theory of
plates. The Reissner-Mindlin assumptions are [26, 20]:

[1] Particles of the plate originally on a line that is normal to the undeformed middle
surface remain on a straight line during deformation. However, this line need not
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Figure 2.1: Geometry of 4 and 8 Node Shell Elements

remain normal to the deformed middle surface.

[2] Direct stresses in the z direction (normal) are small, and hence, direct strains in the
z direction can be neglected.

These assumptions apply to thick plates and shells. The inconsistency of approximation
in the second assumption can be compensated for by assuming plane stress conditions in
each lamina. The omission of the constraint associated with the thin plate theory (i.e.
normals remaining normal to the middle plate after deformation) permits the shell to
experience shear deformation. This is an important feature in the thick shell situation
[34]. To deal with the thin shell elements, the reduced integration technique is used.

2.2 Geometry of Shell Element

The geometry of general shell element is shown in Figure 2.1, where (x,y,z) are
the global coordinates. The �nite element formulation is general in the sense that �nite
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elements can have four, eight, nine or even sixteen nodes. In each case, the formulation
of the shell �nite element is basically the same, except for details on the shape func-
tions associated with the element nodes. The scope of this study will be restricted to
four- and eight-node �nite elements, as implemented in the formulations of Weaver and
Johnston [32], Zienkiewicz and Taylor [34], and Bathe [6].

In the formulation of a typical shell element, the external surface of the shell may
be 
at or curved, sections across the thickness are generated by straight lines, and pairs
of points on top and bottom surfaces are prescribed by the shape of element.

Let the �; � be two curvelinear coordinates in the middle plane of the shell and �
a linear coordinate in the thickness direction. The �; � and � parameter vary between -1
and +1 on the respective surfaces of the element. The cartesian coordinates of any point
in the shell element can be interpolated using curvelinear coordinates in the form:

8><
>:

x
y
z

9>=
>; =

X
Ni(�; �)

1 + �

2

8><
>:

xi
yi
zi

9>=
>;

top

+
X

Ni(�; �)
1� �

2

8><
>:

xi
yi
zi

9>=
>;

bottom

(2.1)

where Ni(�; �) is a shape function at the nodes i. Equation 2.1 may be conveniently
rewritten in the form speci�ed by the vector connecting the upper and lower points and
the mid-surface coordinates, namely:

8><
>:

x
y
z

9>=
>; =

X
Ni(�; �)

8><
>:

xi
yi
zi

9>=
>;

mid

+
X

Ni(�; �) �
hi
2
v3i (2.2)

with

v3i =
1

hi

8><
>:
8><
>:

xi
yi
zi

9>=
>;

top

�
8><
>:

xi
yi
zi

9>=
>;

bottom

9>=
>; (2.3)

where v3i is the unit vector normal to the middle surface.

2.3 Displacement Field

In this formulation, displacements of the shell element at any point are described
with respect to a global coordinate system, and stresses and strains, with respect to a
local coordinate system. We use the notation u = fu,v,wg for displacements in the global
coordinate system. Nodal displacements are given by three translational components (in
global directions), and two rotations �xi and �yi about the local tangential axes x' and y,'
respectively. Hence, overall nodal displacements are given by qi = fui; vi; wi; �xi; �yig.

A consequence of the Reissner-Mindlin assumption is negligible strains in the
direction normal to the mid-surface of the shell. Moreover, displacements throughout the
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element will be uniquely de�ned by the three translation components of the mid-surface
nodal displacement and two rotations of the nodal vector v3i about orthogonal directions
normal to it. Let v1i and v2i be two orthogonal directions tangential to the plane of the

at shell element. the displacement �eld can be written in terms of nodal displacements
is

8><
>:

u
v
w

9>=
>; =

X
Ni

8><
>:

ui
vi
wi

9>=
>;+

X
Ni �

hi
2
[�v2i;v1i]

(
�xi
�yi

)
(2.4)

Here, we simplify notation by dropping the su�x mid, and employ the method described
by Belytschko et al. [9] to estimate the orientation of orthogonal base vectors v1i;v2i;v3i.
v3i is computed �rst { in the case of the eight node shell element, v3 is assumed to be
perpendicular to the vectors r75 = r7 � r5 and r86 = r8 � r6. ri is the vector from the
origin of the global coordinate frame to node i of the shell element. It follows that vector
v3 is given by

v3 =
r75 � r86
kr75 � r86k (2.5)

For four node shell elements, the r75 and r86 vectors are estimated by

r75 =
1

2
(r4 + r3)� 1

2
(r2 + r1) (2.6)

r86 =
1

2
(r4 + r1)� 1

2
(r2 + r3) (2.7)

Once the v3i is determined the vectors v1i and v2i are determined from the following
procedures. The v1i is computed by

v1i = ey � v3i (2.8)

then
v2i = v3i � v2i (2.9)

If ey is parallel to v3i then ey is replaced by ez. where ex; ey; ez are the unit vectors of
global coordinates. To simplify the following derivation, we let e1i = fl1i; m1i; n1ig and
so on. This formulation may be easily extended to curved shell elements.

2.4 Shape Functions

The displacement shape functions in Eq. (2.4) may be cast into the matrix form.

Ni = NAi + �NBi (2.10)
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where

NAi =

2
64 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

3
75Ni (2.11)

and

NBi =

2
64 1 0 0 �l2i l1i
0 1 0 �m2i m1i

0 0 1 �n2i n1i

3
75 hi
2
Ni (2.12)

The shape functions for the four-node shell element are

Ni =
1

4
(1 + �i�)(1 + �i�) (i = 1; 2; 3; 4) (2.13)

where for nodes i = 1 to 4, the values of �i are (-1, 1, 1, -1), and the values of �i are (-1,
-1, 1, 1). Similarly, for the eight node shell element the shape functions are

Ni =
1

4
(1 + �i�)(1 + �i�)(�i� + �i� � 1) (i = 1; 2; 3; 4) (2.14)

Ni =
1

2
(1� �2)(1 + �i�) (i = 5; 7) (2.15)

Ni =
1

2
(1 + �i�)(1� �2) (i = 6; 8) (2.16)

where for nodes i = 1 to 8, the values of �i are (-1, 1, 1, -1, 0, 1, 0, -1), and the values of
�i are (-1, -1, 1, 1, -1, 0, 1, 0).

2.5 Stresses and Strains

The following non-zero stresses in the directions of primed axes(Figure 2.2) will
be considered:

�0 = f�x0; �y0 ; �x0y0 ; �y0z0; �z0x0g (2.17)

and the corresponding strains are

"0 = f"x0; "y0 ; 
x0y0 ; 
y0z0; 
z0x0g: (2.18)

The relationship between strains and displacements is given as:
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Figure 2.2: The primed axes of shell element

"0 =

8>>>>>><
>>>>>>:

"x0

"y0


x0y0


y0z0


z0x0

9>>>>>>=
>>>>>>;
=

8>>>>>><
>>>>>>:

u;x0

u;y0

u;y0 + u;x0

u;z0 + u;y0

u;x0 + u;z0

9>>>>>>=
>>>>>>;

(2.19)

For linear materials, the relation between strains and stresses is expressed by the usual

elastic matrix E:

E =
E

1� �2

2
6666664

1 � 0 0 0
1 � 0 0 0
0 0 1��

2
0 0

0 0 0 1��
2k

0
0 0 0 0 1��

2k

3
7777775

(2.20)

where k = 1.2 is the ratio of relevant strain energies (k accounts for transverse shearing
stresses producing too little strain energy [30, 32]). For elastic-plastic materials, the
relation between strains and stresses is expressed by

� = E("� "p) (2.21)

or elastic-plastic material matrix Eep for the incremental stresses and strains.

�� = Eep�" (2.22)
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where "p is plastic strain, and " and � are stress and strain. �� and �" are incremental
stress and strain.

2.6 Formulation of Finite Element Analysis

The mass and sti�ness matrices for the 
at shell �nite element are derived via
the principle of virtual work. Element strains are computed from the discretization and
shape functions given in Eq. (2.4). In matrix form we have

" = [B]qe (2.23)

The strain-displacement matrix B is given by [B1; B2; � � � ; Bn] where Bi is [32, 6]:

Bi =

2
666666664

ai 0 0 �dil2i dil1i
0 bi 0 �eim2i eim1i

0 0 ci �gin2i gin1i
bi ai 0 �eil2i � dim2i eil1i + dim1i

0 ci bi �gim2i � ein2i gim1i + ein1i
ci 0 ai �din2i � gil2i din1i + gil1i

3
777777775

(2.24)

and i = 1 to 8 for the eight node shell element, and i = 1 to 4 for the four node element.
As detailed in Weaver and Johnston, and Bathe, the matrix coe�cients are given by:

ai = J�

11Ni;� + J�

12Ni;� di =
hi
2
(ai� + J�

13Ni)

bi = J�

21Ni;� + J�

22Ni;� ei =
hi
2
(bi� + J�

23Ni) (2.25)

ci = J�

31Ni;� + J�

32Ni;� gi =
hi
2
(ci� + J�

33Ni)

where J� is the inverse of Jacobian matrix. J and J� are given as:

J =

2
64 x;� y;� z;�
x;� y;� z;�
x;� y;� z;�

3
75 J�1 = J� =

2
64 �;x �;x �;x
�;y �;y �;y
�;z �;z �;z

3
75 (2.26)

The local strains in the vector "0 are related to the global strains in the vector " by using
a (6x6) strain transformation matrix T" as follows:

"0 = T"" (2.27)

Here:
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T" =

2
666666664

l21 m2
1 n21 l1m1 m1n1 n1l1

l22 m2
2 n22 l2m2 m2n2 n2l2

l23 m2
3 n23 l3m3 m3n3 n3l3

2l1l2 2m1m2 2n1n2 l1m2 + l2m1 m1n2 +m2n1 n1l2 + n2l1
2l2l3 2m2m3 2n2n3 l2m3 + l3m2 m2n3 +m3n2 n2l3 + n3l2
2l3l1 2m3m1 2n3n1 l3m1 + l1m3 m3n1 +m1n3 n3l1 + n1l3

3
777777775

(2.28)

We now observe that "0z will be zero { a consequence of the second Reissner-Mindlin
assumption { and that the third row of matrix T" must be deleted. For a general point
in the shell element, the direction cosines given by:

e1 = J1=kJ1k; e3 = (J1 � J2)=kJ1 � J2k; e2 = e3 � e1 (2.29)

where Ji is the i
th row of the Jacobian matrix. The corresponding transformation between

B matrix is:

B0 = T"B (2.30)

Let n be the number of nodes per element. B' matrix has the size of (5 x 5n), and the B
matrix, size of (6 x 5n). The sti�ness matrix is given by:

Kep =
Z 1

�1

Z 1

�1

Z 1

�1
B0TEepB

0kJkd�d�d� K =
Z 1

�1

Z 1

�1

Z 1

�s1
B0TEB0kJkd�d�d�: (2.31)

The consistent mass matrix for shell elements is

M = �
Z 1

�1

Z 1

�1

Z 1

�1
NTNkJkd�d�d�: (2.32)

For linear dynamic analysis, the �nal form of �nite element formulation of equilibrium is
expressed as:

M�q +Kq = R (2.33)

where q is the displacement vector, R is the external force,M and K are the global mass
and sti�ness matrix. For nonlinear dynamic analysis, the solution is solved incrementally.
Therefore the �nite formulation of the equilibrium of is

M��q +Kep�q = R� Fint;i �M�q(i)e (2.34)

where �q = q� q(i), q(i) is the displacement at time t = i, and Fint;i is the internal load
due to the stresses at t = i. The interested reader is referred to Bathe [8] for details on
solution procedures to nonlinear equations.
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2.7 Material Property

This study will employ three material models: linear elastic, elastic-perfectly
plastic, and elastic-plastic. However, for the purposes of brevity, discussion in this section
will be restricted to nonlinear material models.

2.7.1 Elastic-perfectly plastic and elastic-plastic materials

Within the framework of theory of plasticity, the stress strain relation of a homo-
geneous, isotropic materials may be described by the incremental theory of plasticity. The
following subsections summarize the criteria and relations used in the implementation of
this theory.

Yield Criterion: The yield criterion of ductile materials can usually be characterized
through von Mises criterion

f(�) = STS�R2 = 0: (2.35)

Here S is the deviatoric part of shifted stress � � ��, � is the total stress, and �� is the

back-stress (i.e. location of the yield surface). R =
q

2
3
Fy is the radius of the yield surface

in the �-plane. For elastic perfectly-plastic materials, R is a constant. For elastic-plastic
materials, R increases as a function of plastic strains, which are load history dependent. In
mathematical terms, if f(�) < 0, then the material is in the elastic region. The material
will yield when f(�) = 0.

Loading/Unloading Criterion: The total strain incremental is the summation of the
elastic and plastic parts of the strain incremental. The loading and unloading condition
is determined by the plastic strain incremental and incremental stress, namely:

if f = 0; d"pT � d� < 0 elastic

if f = 0; d"pT � d� = 0 plastic
(2.36)

Consistency Condition : Because the yield surface and load vector move together in
the post-elastic range, the consistency condition for a plastic processes is

f = 0 (2.37)

d f = 0 (2.38)

Flow Rule : The associated 
ow rule states that

d"p = �
@f
@S

k @f
@S
k = �N (2.39)
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where � is a constant of proportionality, and N the direction vector of plastic strain
normal to the yield surface.

Stress-Strain Relation : The stress and strain relation can be written as

d� � d�� = E(d"� d"p) (2.40)

� � �� = E("� "p) (2.41)

or in terms of deviatoric stress

dS = 2G(de� d"p) (2.42)

S = 2G(e� "p) (2.43)

where G is shear modulus and e is the deviatoric part of the total strain.

Strain Hardening Rule : The strain hardening rule for the strain hardening materials
is

R = �

s
2

3

Z
H 0("p)d"p (2.44)

dR = �

s
2

3
H 0("p)d"p (2.45)

H 0 =
d�

d"p
(2.46)

d�� =
2

3
(1� �)H 0d"p (2.47)

where � = 1 for isotropic strain hardening and � = 0 for kinematic hardening. H' is a
plastic modulus obtained from the quotient uniaxial stress/plastic strain. The parameters
� and d"p are e�ective stress and e�ective plastic strain increment, and are de�ned as:

� =
q

3
2

P
i;j SijSij

d"p =
q

2
3

P
i;j d"

p
ijd"

p
ij

(2.48)

2.7.2 Material Load Curves

The load curve of materials is the one dimensional stress strain curve. When
loadings are multi-dimensional, the material load curve represents the relation between
the e�ective stress and e�ective strain.
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Two mathematical models are commonly employed for the simulation of behavior
in engineering materials. The �rst is the so-called \Ramberg-Osgood" model, and it is
written:

"

"s
=

�

Fy
+ �

 
�

Fy

!n

(2.49)

Here n is the strain-hardening exponent and "s = Fy=E. The corresponding plastic
modulus H' is:

H 0 =
E

�n

 
�

Fy

!1�n

: (2.50)

The second model is the so-called bi-linear material model, and it assumes that strain
hardening will be linear. The stress strain relation for bi-linear model is:

� =

8><
>:

E" k"k � "s
Fy + Et("� "s) " > "s

�Fy � Et("+ "s) " < �"s
(2.51)

where Et is the slope of the curve in plastic range. The corresponding plastic modulus H'
is

H 0 =
EEt

E � Et
(2.52)

2.8 Stress Update and Integration Algorithm

The basic principle of stress update is to use the previous state (i) to estimate
next state (i+1). For static analysis, time is interpreted as a loading parameter. Over the
increment �t a load step is applied to the structure. The constitutive routine integrates
the plasticity rate equations over the time increment to determine the updated stresses
and plastic state variables.

2.8.1 Radial Return Algorithm

The radial return algorithm uses the consistency condition and hardening rule to
compute the e�ective plastic strain increment, the incremental plastic strain vector �,
and the stress increment [33]. Several variants of this algorithm are now in use, and
the following algorithm is adapted from the text of Dodds [13], and the class notes of
Lee [19].

First, the trial stress �� is computed by using the elastic stress and strain relations,
namely:
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�� = �(i) +E�" (2.53)

Then, calculate the shift stress, the corresponding deviatoric parts S�, and test if the
material has yielded

A2 = S�TS�: (2.54)

There are two cases for the stress update:

Case 1 : The material is in an elastic state if A < R. In such cases, �(i+1) = ��.

Case 2 : The material is in a plastic state if A > R. Updates are needed for the stress and
plastic strain, and for kinematic hardening, updates are also required in the back-stress.
The update equations are as follows:

�i+1 = �(i) � 2G�"p +��� (2.55)

��
i+1 = ��

(i) � 2

3
(1� �)H0�"p (2.56)

"pi+1 = "(i) +�"p (2.57)

In the following derivation we use the the trial stress �� to estimate the plastic strain
incremental vector. A prerequisite for the plastic process is satisfaction of the consistency
condition. The normal vector and the plastic strain increment are expressed with trial
stress as

N =
@f
@S

k @f
@Sk

=
S�

A
(2.58)

�"p = �N (2.59)

The normal direction of plastic strain increment N is given by the following equation:

Based on the consistency condition, the at step i+1, f(�(i+1);R(i+1)) = 0. Therefore,

S(i+1) = 2G(e� "p) = S� � 2G"p =
�
1� 2G

�

A

�
S� (2.60)

S(i+1)TS(i+1) =
�
1� 2G

�

A

�2

S�TS� =
�
R(i+1)

�2
(2.61)
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or in terms of e�ective stress, one has

�(i+1) =
�
1� 2G

�

A

�
�� =

s
3

2
R(i+1) (2.62)

To eliminate the �, the e�ective plastic strain increment is used.

(�"p)2 =
�
2

3

�2

�2
�
��

A

�2

(2.63)

� =
3A�"p

2��
=

s
3

2
�"p (2.64)

Using the result for � in equation 2.62 yields

s
3

2
R(i+1) = �� � 3G�"p (2.65)

where R(i+1) is calculated from the strain hardening rule, for su�cient small incremental
steps, H 0(i) can be considered as a constant during the step, therefore,

R(i+1) = R(i) +

s
2

3
H 0(i)�"p (2.66)

Solving for e�ective plastic strain increment, we have

�"p =
�� �

q
3
2
R(i)

H 0(i) + 3G
=

s
3

2

A�R(i)

H 0(i) + 3G
(2.67)

Once the e�ective plastic strain increment is calculated, the plastic strain increment vec-
tor, the back-stress and the stress are all calculated and updated. Then the H' can be
updated with the trial e�ective stress �� using equation 2.50.

The algorithm is computationally e�cient and accurate for single step and sub-
incremental schemes, and unconditionally stable. Moreover, it does not requires com-
putation of the contact stress or ad hoc scaling of the updated stress vector. Mixed
isotropic-kinematic hardening is easily included [13].

Direct Calculation of Elastic-Plastic Sti�ness : The elastic-plastic sti�ness may
be computed directly by evaluating equation 2.31. The heart of the computation is the
elastic-plastic material matrix Eep. Consider following product, we have
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NTdS =
Sp
STS

dS =

s
2

3
d��

=

s
2

3
H 0d �"p =

2

3
H 0� (2.68)

On the other hand, the above product can also be written as:

NTdS = NT 2G(de� dep) = NT 2G(d"� d"p)

= 2GNTd"� 2G� (2.69)

Equating these two equations, one can express the � with following expression:

� =
2GNTd"

(2G+ 2
3
H 0)

(2.70)

Substituting this � expression into incremental stress strain relation:

d� = E(d"� d"p)

=

 
E� 2G

(2G+ 2
3
H 0)

ENNT

!
d" (2.71)

One can obtain the elastic-plastic material matrix as :

Eep = E� 2G

(2G+ 2
3
H 0)

ENNT (2.72)
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2.8.2 Sub-Incrementation Scheme

A crucial factor a�ecting accuracy of radial return algorithm is selection of an
appropriate step length for return to the yield surface. Cris�eld [12] discusses several
algorithms for reducing errors with the method of sub-incrementation. With this tech-
nique, the incremental strain �" is divided into m sub-steps each of (�")=m. Nyssen [25]
estimates that the number of required substeps to give a tolerance of �1 in yield condition
f = 0 is

m =
2��

�1Fy

: (2.73)

The recommended value for �1 is 0.05. Cris�eld [12] argues that

m /
 
��

Fy

!1=2

(2.74)

is an appropriate number of substeps. In this study, we have used a modi�ed version of
Nyssen's equation, namely:

m =
2��

�1Fy
+ 1 (2.75)

with the term 1 being added to make sure m has at least one sub-step.

2.8.3 Reduced Integration

For quadratic shape functions, three-point Gaussian Integration is needed for
accurate results. Unfortunately, direct use of three-point integration in �nite element
computations leads to overly-sti� sti�ness matrices. The problem is mitigated by so-called
reduced integration techniques to relax the sti�ness matrix. In this study, we employ by
default, 2x2 integration in the surface direction, as shown in Figure 2.3, and two points
of integration through the thickness direction of the shell element. For elastic analyses
and some elastic-plastic analyses, the default points of integration are good enough to
produce adequate �nite element results. Belytschko et al. [9] point out, however, that
more integration points may be needed in some nonlinear cases. Indeed, Belytschko and
co-workers [9] report on nonlinear experiments where three and �ve points of integration
are used through the thickness of a simply supported plate under uniform pressure.

In an e�ort to overcome the abovementioned variability in performance from
problem-to-problem, we have designed the ALADDIN language so that the the engineer
can adjust the number of integration points used to compute the sti�ness of shell elements.
For elastic analyses, there is no need to specify the number of integration points in the
input �le { the default number is used. As we will see in the following chapter, the
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Figure 2.3: Gaussian Integration points in Surface of Element

nonlinear analysis of the unaxial loaded plate is calculated with two integration points
through the thickness of the plate. This is because that there are no dramatic deformation
through the thickness for plane stress problem. In the cantilever problem, at least three
integration points are needed to capture the a parabolic distribution of plasticity through
the thickness.

2.9 Solving Nonlinear Equations with BFGS algo-

rithm

Let x = (x1; x2; � � � ; xn)T be a coordinate point in n-dimensional space, and f =
(f1; f2; � � � ; fn)T be a n-dimensional (nonlinear) vector. The roots of nonlinear equations
f are given by solutions to

f(x) = 0: (2.76)

The methods of \Newton-Raphson" and \Secant Approximation" are among the most
popular for computing the roots of nonlinear equations. Let vector xo be an initial guess
at the solution to equation (2.76). The method of Newton-Raphson corresponds to a
sequence of �rst order Taylor series expansion about x(k), namely

f(x(k+1)) = f(x(k)) +rf(x(k)) � (x(k+1) � x(k)) � 0

where k = 0, 1, 2, � � �, n, and (rf(x))ij = (@fi)=(@xj). In matrix form, the gradient
approximation is
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Figure 2.4: Secant Approximation of Quasi-Newton Method

rf(x) =

2
666664

@f1(x)
@x1

@f1(x)
@x2

� � � @f1(x)
@xn

@f2(x)
@x1

@f2(x)
@x2

� � � @f2(x)
@xn

� � � � � � � � � � � �
@fn(x)
@x1

@fn(x)
@x2

� � � @fn(x)
@xn

3
777775 : (2.77)

If rf(x(k)) has an inverse, then the (full) Newton-Raphson update is:

x(k+1) = x(k) �
h
f(x(k))

i
�1 � rf(x(k)): (2.78)

The procedure is repeated until convergence criteria are satis�ed. While the method of
full Newton-Raphson can be e�cient in some speci�c nonlinear analyses, Bathe [5, 8]
reports that in general, full Newton-Raphson is not a competitive computational method
for computing the roots of a wide-range of nonlinear equations. A major limitation of full
Newton-Raphson is the need for updating and factorizing the coe�cient matrix -rf(x(k))
at each iteration. One strategy for avoiding these computationally expensive steps is
to replace -rf(x(k)) in equation (2.78) with -rf(x(0)), thereby eliminating the need to
recalculate and factorize -rf(x(k)) at each iteration. From a mathematical point of view,
this simpli�cation corresponds to a linearization of the gradient f(xo). For problems with
signi�cant nonlinearities { in particular when the system sti�ens during the response {
this linearization can lead to a very slow convergence in the iteration. Even worse, the
iteration may diverge.

The class of quasi-Newton methods are a second alternative to full Newton Raph-
son. Quasi-Newton methods update the coe�cient matrix, or it's inverse, to provide a
secant approximation to the matrix from iteration (k) to (k+1). Figure 2.4 shows, for
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example, a sequence of secant approximations one might apply during the computation
of roots in a one-dimension nonlinear equation. If a displacement increment is de�ned

�(k+1) = x(k+1) � x(k) (2.79)

an increment in the residuals de�ned as


(k+1) = f(x(k))� f(x(k+1)); (2.80)

then the updated secant sti�ness matrix, K(k+1), will satisfy the quasi-Newton equation

K(k+1)�(k+1) = 
(k+1)

.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm : Among Quasi-
Newton methods, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method appears to be
the most e�ective. Within iteration (k+1), the BFGS method employs the following
procedure to evaluate x(k+1) and K(k+1) [8]:

Step 1 : Initialization. Provide an initial value of vector x = x0, and calculate the
corresponding Ko matrix at x = xo.

Step 2 : Evaluated the x vector increment

�x = �
h
f(x(k))

i
�1 � rf(x(k)): (2.81)

This vector increment de�nes a direction for the actual increment.

Step 3 : Perform a line-search along direction �x to satisfy \equilibrium." Details of
the line-search are as follows. First, set � = 1:0 and let the x vector

x(k+1) = x(k) + ��x (2.82)

where � is a scalar multipler. The product � j �x j represents the distance between points
x(k) and x(k+1). The value of � is changed until the component of the residual in direction
�x, as de�ned by the inner product of �xTf(x(k+1)), is approximately zero. The latter
condition is satis�ed when

�xT � f(x(k+1)) � STOL ��xT � f(x(k)): (2.83)

STOL is a convergence tolerance. The distance of the line search is automatically halved
after each failure of equation (2.83) by halving �; x(i) is then recalculated with the new
�. If after �ve or ten line search attempts, equation (2.83) still isn't satis�ed, then the
direction given by the �x is probablely wrong. A new direction calculation is needed.
This procedure is summarized in four-substeps:

28



Step 3.1 : Use equation (2.81) to update x.

Step 3.2 : Begin while loop : While equation (2.83) is not satis�ed, work through
Substeps 3.3 to 3.5.

Step 3.3 : If the line search number is less than or equal to MaxLineSearchCount, then
set � = �=2:0, and use equation (2.81) to update x.

Step 3.4 : If the line search number is greater than MaxLineSearchCount, then break
the while loop. Recalculate matrix K at x = x(k+1). Go to Step 2.

Step 3.5 : End while loop : Go to Step 4 for BFGS update.

Step 4 : Use equations (2.79) and (2.80) to calculate �(k+1) and 
(k+1).

Step 5 : Use the BFGS update [8] to revise the inverse of coe�cient matrix K. The
update of K is given by

K�1
(k+1) = A(k+1)

TK�1
(k)A(k+1) (2.84)

where the matrix A(k+1) is a (n� n) matrix

A(k+1) = I + v(k+1) � w(k+1)T : (2.85)

Vectors v(k+1) and w(k+1) are given by

v(k+1) = �
"

�(k+1)
T
(k+1)

�(k+1)
T�f(x(k))

#
� � � f(x(k))� 
(k+1) (2.86)

and

w(k+1) =

"
�(k+1)

�(k+1)
T
(k+1)

#
: (2.87)

Step 6 : To avoid numerically dangerous updates, the conditional number

c(k+1) =

"
�(k+1)

T
(k+1)

�(k+1)
T�f(x(k))

#1=2
(2.88)

of the updating matrix A(k+1) must be compared to some predetermined tolerance. A
large condition number implies that the updated inverse matrix will be nearly singular.
Numerical updates are not performed if the condition number exceeds this tolerance { in
this project, we follow the recommendation of Bathe [8], and set the tolerance at 105.

Step 7 : Check convergence of force and energy equilibriums. The force convergence
criterion requires that the norm of the out-of-balance residual or force to be within a
pre-set tolerance �F of the �rst residual.
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kf(x(k+1))k2 � �F � kf(x(o))k (2.89)

A force criterion is not su�cient to ensure convergence. Consider the case of function
f(x) with small or closing to zero gradients, the out-of-balance residual or force may be
very small while the variable x or displacement may be grossly in error. Therefore, the
\energy equilibrium" condition is necessary to provide the indication that both �x(k+1),
and residual are approaching zeros. It requires computation of the work done by the force
residual moving through displacement increment �x.

�x(k+1) � f(x(k)) � �E ��x(o) � f(x(0)) (2.90)

where the �E is a preset energy tolerance.

In the following examples we will use �F = 10�4 and �E = 10�5.
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Chapter 3

Numerical Examples

Several examples have been used to demonstrate the performance and accuracy
of the general shell element. In our preliminary numerical examples, we found that the
bilinear four node shell element gives poor behavior. Therefore that only the eight-node
element is discussed further. Four examples are discussed here including two linear static
problem, one linear dynamic analysis and one nonlinear problem.

3.1 Linear Static Analysis

3.1.1 Simply supported square plate subjected to a concen-

trated load

Consider a simply supported square plate subjected a concentrated load at the
center of the plate as shown in Figure 3.1. The analytical solution of the transverse
displacement at the center, wc, is given by Timoshenko [30] as:

wc = 0:01160
PL2

D
(3.1)

D =
Eh3

12(1� �2)
(3.2)

where P is the load, L and h are the length and thickness of the plate. For P = 7500 lbf,
h = 0.5 in, the wc = 0.304 inch, and P = 75 lbf, h = 0.05 in, wc = 3.04 inch, according to
the thin shell/plate theory [30]. For �nite element meshing, only a quarter of the plate is
considered due to the symmetry. The number of elements on the quarter of plate are N
= 2x2, 4x4. The numerical results is given in the Table 3.1 and 3.2.

For elements of �nite size it is found that pure bending deformation modes are
always accompanied by some shear stresses, which in fact, do not exist in the conventional
thin plate or shell bending theory. Thus large elements deforming mainly under bending
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 nu  = 0.3

Case 1:
P = 7.5 kips
h = 0.5 in

Case 2:
P = 0.075 kips
h = 0.05 in

N = 4x4

Figure 3.1: Simple-supported square plate subjected to a concentrated load

action (as would be the case of the shell element degenerated to a 
at plate) tend to
be appreciably too sti�. In such cases, certain limits of the ratio of side of element to
its thickness have to be imposed. However, it will be found that such restrictions are
relaxed by the simple expedient of reducing the integration order [34]. In this study a 2x2
integration points are used in the surface instead of 3x3 points. Due to such relaxation,
the displacements calculated from �nite element method tend to be larger than predicted
by the analytical solution of thin plate/shell theory as reported in [34].

The results in above tables also show the same trends. For the ratio of h/L =
0.05, the convergence is quickly achieved. Yet with increase of the elements, the results
move away the solution given by thin plate/shell theory. For the ratio of h/L = 0.005,
the �nite element results quickly converge to the exact solutions of the thin plate/shell
theory.

3.1.2 Cantilever beam Subject to a Concentrated Load

Consider a cantilever beam with rectangular cross section subjected a concentrated
load at the tip of cantilever as shown in Figure 3.2. The analytical solution of the tip
displacement, �, is given by beam theory [31]as:

� =
PL3

3EI
(3.3)
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Load p = 7.5 (kips); Plate thickness h = 0.5 (in)

Mesh Size N = 2x2 N = 4x4 N = 8x8

wc (FEM) 3.15739e-01 (in) 3.18724e-01 (in) 3.20491e-01 (in)

wc (Theoretical) 3.04e-01 (in) 3.04e-01 (in) 3.04e-01 (in)

Error(%) 3.86 4.84 5.42

Table 3.1: Results for a simply supported square plate subjected a concentrated load: P
= 7.5 kips, h = 0.5 in

Load p = 0.075 (kips); Plate thickness h = 0.05 (in)

Meshes N = 2x2 N = 4x4 N = 8x8

wc (FEM) 2.86100 (in) 3.02731 (in) 3.04025 (in)

wc (Analytical) 3.04 (in) 3.04 (in) 3.04 (in)

Error(%) 5.92 0.42 8.22e-3

Table 3.2: Results for a simply supported square plate subjected a concentrated load: P
= 0.075 kips, h = 0.05 in

� =
PL2

2EI
(3.4)

where P is the load, L = 96 inch is the length and I is the moment of inertia about the
y axis, b = 12 in is the width and h = 1 in is the thickness of the plate. The cross
section is rectangular. For P = 40 lbf, the � = 0.3932 inch, � = 6.14400e-03 rad. Two
set of meshings are used. N = 1x4 and N = 1x 8. The numerical results is given in the
Table 3.3. These two examples indicate that the 8-node general shell elements give good
performance for the 
at plate/shells.

3.2 Nonlinear Static Analysis

The nonlinear feature of the element is demonstrated by the following examples.
Unlike linear analysis, the nonlinear analysis needs many times trail-and-error processes
to adequately model a problem. This is not only due to the complexity of the problem, but
also due to the numerical algorithms used for the problem. Since most of the algorithms
used for the �nite element analysis, are either Newton or Quasi-Newton based algorithms,
which are sensitive to the initial guessing value, the incremental steps chosen in the
analysis can be crucial for the convergence of the iteration. As the Bathe and Cimento
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nu = 0.25 

E  = 3E+7 psi

P   = 40 lbf

h    = 1 in
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L = 96 in

N = 1x 4
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b  = 12 in

x

yz

P/3

P/3

P/3

h

Figure 3.2: A cantilever beam subjected to a concentrated load

putted " the determination of the most e�ective approach to a general nonlinear analysis
is at present a largely a matter of experience on the part of the analyst" [8].

In this study, only the force and energy criteria (Eqs. 2.89 and 2.90) are used
for the convergence check. We use following parameters for line-search, force and energy
criteria: STOL = 0.5, "f = 1E � 1, and "e = 1E � 3, the same parameters were used in
Bathe and Cimento paper [8].

3.2.1 Rectangular Plate subjected to Uniaxial Loading

As shown in the Figure 3.3, a rectangular plate is subjected to an uniaxial. The
initial load is P0 = 1E+4*L*t. The total load is P = Factor*P0. The integration points
in the surface are 2x2 points and in the thickness are points. Two cases are examined for
the isotropic strain hardening model. The Young's modulus is E = 1E+7 and the yield
stress is 1E+4 psi, Possion ratio is 0.3.

Case 1: The �rst case is for the bi-linear stress strain curve. The tangent modulu Et

= 0.5 E. The load factors for the �rst case is Factor = [1.5, 2, 1.255, 0.01, -1.255, -2.5,
-3.0, -3.5, -4.0, -2.0, -1.0,0]. The calculated the load vs. displacement in load direction is
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Meshes N = 1x4 N = 1x8

� (FEM) 3.87927e-01 (in) 3.90385e-01 (in)

� (Analytical) 3.93216e-01 (in) 3.93216e-01 (in)

Error(%) 1.34 0.72

� (FEM) 6.07834e-03 (rad) 6.10308e-03 (rad)

� (Analytical) 6.14400e-03 (rad) 6.14400e-03 (rad)

Error(%) 1.07 0.67

Table 3.3: Results for cantilever beam subjected a concentrated load

shown in Figure 3.4.

Case 2: The second case is for the Ramberg-Osgood stress-strain model. The strain
hardening exponent, n, and the coe�cient, �, of the Ramberg-Osgood model are : 4 and
3/7, respectively. The load factor is given as: Factor = [1.0, 1.5, 2, 1.255, 0.01, -1.255].
Between every load factor and next load factors, the load steps are subdivided into eleven
sub-steps. And the load load steps are stopped at No. 63. The load steps are shown at
Figure 3.5, and the results is shown by Figure 3.6.

3.2.2 Cantilever Beam subjected to Tip Load

A cantilever beam with rectangular cross section subjected a concentrated load
at the tip of cantilever. The length of the cantilever L is 10 in, width is 1 in and thickness
is 1 in. The initial load in z direction is P = -300 lbf. Again two cases are stuied. Four
through-thickness integration points are used in both cases.

Case 1: In the �rst case, the material model is a Bi-Linear stress-strain curve with
isotropic hardening. The young's modulus is E = 2.9E+7 psi, Possion ratio is 0.2, Et =
0.1 E and the yield stress is 36 ksi. The load steps are illustrated in Figure 3.7, and the
results for the hysteresis loop is given in Figure 3.8.

Case 2: In the second case, the material model is a Ramberg-Osgood stress-strain curve
with isotropic hardening. The young's modulus is E = 2.9E+7 psi, Possion ratio is 0.2,
the Ramberg-Osgood coe�cient is � = 3/7, the strain hardening exponent is n = 6. The
yield stress is 36 ksi.

The load steps are illustrated in Figure 3.9, and the results for the hysteresis loop
is given in Figure 3.10.
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t  = 0.01
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E = 1E+7 
Et = 5E+6
nu = 0.3
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Figure 3.3: A Rectangular Plate Subjected to An Uniaxial Load
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Figure 3.4: Hysteresis Loop of a Rectangular Plate under Unixaxial Load, Case 1: Bi-
Linear Load Curve,Isotropic Hardening
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Figure 3.5: Load Steps for Case 2
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Figure 3.6: Load Displacement Curve of a Rectangular Plate under Unixaxial Load, Case
2: Ramberg Osgood Load Curve, Isotropic Hardening
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Figure 3.7: Load Steps for Cantilever Subjected To Tip Load
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Figure 3.8: Hysteresis Loop of a Cantilever beam under Tip Load
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Figure 3.9: Load Steps for Cantilever Subjected To Tip Load
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Figure 3.10: Hysteresis Loop of a Cantilever beam under Tip Load
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3.2.3 Solution Strategy for Nonlinear Finite Element Problem

The purposes of this section are two-fold. First, we provide details on the use of
BFGS in nonlinear �nite element problems. We then illustrate the procedure by working
through the details of the ALADDIN [1] input �le needed to setup, and solve, the
quasistatic nonlinear analysis of the cantilever beam structure.

Using BFGS in Nonlinear Finite Element Problem

The procedure for solving the nonlinear �nite element problem is the same as for
computing the roots of nonlinear equations, as detailed in Chapter 2. Figure 3.11 is a

ow chart of the BFGS Algorithm embedded within the �nite element mesh generation
and solution procedure.

Input File for Cantilever Beam Problem

The input �le is composed of ten sections:

Step 1 : De�ne Global Parameters for the analysis:

STOL = 0.5; /* Convergence tolerance in line search */

EPS = 1.e-5; /* Delta for convergence in line search */

IMAX = 20; /* Maximum number of iteration for BFGS */

LMAX = 50; /* Maximum number of load steps */

Ef = 1E-1; /* Convergence tolerance for force balance */

Ee = 1E-3; /* Convergence tolerance for energy balance */

Step 2 : Initializse database for �nite element mesh and input nodal coordinates and
�nite element connectivity information. The cantilever has a rectangular cross sec-
tion (width = 1, height = 1, and length = 10). It is modeled with a (5 � 2) mesh
of eight-node shell �nite elements.

Step 3 : De�ne element properties and material properties. The cantilever is modeled
with the eight-node shell �nite element described in Chapter 2. The material prop-
erties are as follows { Yield Stress = 36000, Young's Modulus E = 29 � 106, and
Tangent Modulus Et = 0:1 � E = 2:9 � 106. The material density equals 1, and
Poisson's ratio is 0.2.

The stress-strain curve is the Ramberg-Osgood relationship, as de�ned in equation
2.49, with � = 3=7, n = 6, �o = �o=E, where �o is the Yield Stress. The plastic
deformation is assumed to follow isotropic strain hardening { this is indicated by
setting � = 1.

Step 4 : Setup boundary conditions { nodes at the base of the cantilever have full �xity.

Step 5 : Compile Finite Element Mesh.
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Input   Finite   Element   Mesh

Initial   Linear   Analysis

Compute  K  and  K  inverse

Save  Response

MAIN   LOOP   FOR   LOAD   TIME   STEPS

Calculate   Residual   Forces

LOOP   FOR   CONVERGENCE   OF   NONLINEAR   EQUATIONS

Calculate  Incremental  Displacement with

delta  =  Inverse ( K ) *  [  Residual  Forces ]

Calculate  Internal  Load   with  displ  and  delta

Calculate  new  Residual   Force

CHECK    CONVERGENCE

Return  to  beginning 

of  Iteration

Restart   Procedure

Perform   Line   Search

Update  Inverse ( K )  with BFGS

Save   Response

Goto  Next  Load

Next   Iteration

Success Fail

Success

Fail

Figure 3.11: Solution Strategy for Nonlinear Finite Element Analysis

Step 6 : De�ne externally applied load versus time t.

External Load(t) = Load Factor(t) � P (3.5)

The unfactored load at the end of the cantilever, P , is 3 � Fz = 900.

Step 7 : Allocate matrix memory to store a summary of the load-displacement response
history. The �rst column of the matrix will store the step number, the second
column, the factored external load, and the third column, the computed vertical
displacement at the tip of the cantilever.

Step 8 : Compute mass matrix and initial sti�ness matrix.

Step 9 : Use BFGS method to compute nonlinear response.

Step 10 : Print a summary of the computed response.
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START OF INPUT FILE

/*

* =================================================================

* Nonlinear Analysis of Cantilever with Shell Finite Element

*

* -- Illustrate application of BFGS algorithm to solution of

* nonlinear equations.

*

* Written By : X.G. Chen July-August 1994

* =================================================================

*/

print "*** DEFINE PROBLEM SPECIFIC PARAMETERS \n\n";

NDimension = 3;

NDofPerNode = 5;

MaxNodesPerElement = 8;

ThicknessIntegPts = 4;

STOL = 0.5;

EPS = 1.e-5;

IMAX = 20; /* Maximum number of iteration for BFGS */

LMAX = 34; /* Maximum number of load steps */

Ef = 1E-1;

Ee = 1E-3;

COUNTER = 7;

restart_counter = 0;

SetUnitsOff;

StartMesh();

/* [a] : Generate Finite Element Mesh for Cantilever Beam */

L = 10.0; /* Length of Beam */

b = 1.0; /* Width of Beam */

t = 1.0; /* Thickness of Beam */

z = 0 ;

dL = 2;

n2 = L/dL + 1;

NN = n2;

n1 = 3*n2 + 2*(n2-1);

for ( i = 1; i <= n2; i = i + 1) {

for (j = 1; j <= 3; j = j + 1) {

node = j + 5*(i-1);

x = dL*(i-1);

y = (b/2)*(j-2);

AddNode(node, [x, y, z]);

}

}
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for ( i = 1; i < n2; i = i + 1) {

node = 3 + 1 + 5*(i-1);

x = (i-1)*dL + dL/2;

y = -b/2;

AddNode(node, [x, y, z]);

node = 3 + 2 + 5*(i-1);

x = (i-1)*dL + dL/2;

y = b/2;

AddNode(node, [x, y, z]);

}

/* Attach Elements to Grid of Nodes */

for ( i = 1; i < n2; i = i + 1) {

elmtno = i;

a = 1 + 5*(i-1);

b = 6 + 5*(i-1);

c = 8 + 5*(i-1);

d = 3 + 5*(i-1);

e = 4 + 5*(i-1);

f = 7 + 5*(i-1);

gg = 5 + 5*(i-1);

h = 2 + 5*(i-1);

node_connec = [a, b, c, d, e, f, gg, h];

AddElmt(elmtno, node_connec, "name_of_elmt_attr");

}

/*

* [b] : Define Element, Section and Material Properties

*

* Note : beta = 1 for Isotropic strain hardening

*/

ElementAttr("name_of_elmt_attr") { type = "SHELL_8N";

section = "rectangular";

material = "ELASTIC_PLASTIC";

}

MaterialAttr("ELASTIC_PLASTIC") { density = 1.0;

poisson = 0.2;

yield = 36000;

E = 2.9E+7;

Et = 2.9E+6;

beta = 1.0;

type = "Ramberg-Osgood";

n = 6;

alpha = 3/7;

}

SectionAttr("rectangular") { width = 1;

thickness = 1;

}
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/* [c] : Setup boundary conditions */

dx = 1; dy = 1; dz = 1;

rx = 1; ry = 1; rz = 1;

bc = [dx,dy,dz,rx,ry,rz];

FixNode(1, bc);

FixNode(2, bc);

FixNode(3, bc);

/* [d] : Add Point Nodal Loads */

Fx = 0; Fy = 0 ; Fz = 300;

Mx = 0; My = 0 ;

NodeLoad( n1-2, [ Fx, Fy, Fz, Mx, My]);

NodeLoad( n1-1, [ Fx, Fy, Fz, Mx, My]);

NodeLoad( n1, [ Fx, Fy, Fz, Mx, My]);

/* [e] : Compile and Print Finite Element Mesh */

EndMesh();

PrintMesh();

/* [f] : Generate Load Factor Matrix for Cyclic Loading */

Load_Factor = Matrix( [LMAX,1] );

Load_Factor[1][1] = 1.0;

for (k = 2; k <= LMAX; k = k +1) {

if(k <= 10) then {

Load_Factor[k][1] = 1.0 + 0.05*k;

} else {

if(k > 10 && k <= 15) then {

Load_Factor[k][1] = 1.5 - 0.5*(k-10);

} else {

if(k <= 28) then {

Load_Factor[k][1] = -1.0 - 0.05*(k-15);

} else {

Load_Factor[k][1] = -1.65 + 0.5*(k-28);

}

}

}

}

/*

* [g] : Allocate Matrix to store force-diplacement curve --

* Col 1 = step;

* Col 2 = load;

* Col 3 = displacement;

*/

response = Matrix( [ LMAX , 3] );
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/* [h] : Compute Initial Displacement */

print "*** Start Load Step 1 \n";

print "*** Compute Initial Displacement \n";

stiff = Stiff();

Dimen = Dimension(stiff);

size = Dimen[1][1];

lu = Decompose(stiff);

eload0 = ExternalLoad();

eload = eload0;

displ = Substitution(lu, eload);

iload = InternalLoad(displ);

print "*** Initial Displacement = ", displ[size-2][1], "\n";

response[1][1] = 1;

response[1][2] = Load_Factor[1][1]*3.0*Fz;

response[1][3] = displ[size-2][1];

UpdateResponse();

/*

* [i] : User BFGS Method to compute solution to next load step

*

* K(x)*delta_displ = R-F = R1

*

*/

I = Diag([size, 1]);

K_inver = Inverse(stiff);

for (jj = 2; jj <= LMAX; jj = jj + 1) {

print "*** Start Load Step ", jj , "\n";

eload = Load_Factor[jj][1]*eload0;

R2 = eload - iload;

R = R2;

R1 = R2;

Iter_no = 0;

/* [i.1] : Compute Solution to next load step K(x)*delta_displ = R-F = R1 */

for (ii = 1; ii <= IMAX; ii = ii + 1) {

print "*** Load Step ", jj ," : Iteration = ", ii, "\n";

Iter_no = Iter_no + 1;

beta = 1.0;

delta_displ = K_inver*R2;

iload = InternalLoad(displ, delta_displ); /* beta = 1 */

R2 = eload - iload;

/* [i.2] : Line Search */
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displ_temp = displ + delta_displ;

force_crt1 = L2Norm(R2); /* Force Criterion */

force_crt2 = L2Norm(R)*Ef;

temp2 = QuanCast(Trans(delta_displ)*R2);

energy_crt1 = abs(temp2); /* Energy Criterion */

if(ii == 1) {

temp1 = QuanCast(Trans(delta_displ)*R);

energy_crt2 = abs(temp1*Ee);

}

if( (force_crt1 <= force_crt2) && (energy_crt1 < energy_crt2)) then {

displ = displ_temp;

UpdateResponse();

break;

} else {

temp1 = QuanCast(Trans(delta_displ)*R1);

temp2 = QuanCast(Trans(delta_displ)*R2);

counter = 0;

while (temp2 > temp1*STOL + EPS) {

counter = counter + 1;

if(counter > COUNTER) then {

print "*** ERROR : Too many iterations in line search \n";

break;

} else {

beta = beta/2.0;

delta_displ_temp = beta*delta_displ;

displ_temp = displ + delta_displ_temp;

iload = InternalLoad(displ, delta_displ_temp);

R2 = eload - iload;

temp2 = QuanCast(Trans(delta_displ)*R2);

}

}

displ = displ_temp;

/* [i.3] : Restart for Failed Line Search */

if( counter > COUNTER ) then {

restart_counter = restart_counter + 1;

if( restart_counter > 3) {

print "ERROR >> *** Too many restarts \n";

break;

}

print "*** Restart at new Initial Value \n";

PrintMatrix(eload, iload);

ii = 1;

K = Stiff();

K_inver = Inverse(K);

R1 = R2;

} else {
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/* [i.4] : BFGS Algorithm */

gamma = R1-R2;

tem1 = QuanCast(Trans(delta_displ)*R1)*beta;

tem2 = QuanCast(Trans(delta_displ)*gamma);

COND_NO = sqrt(tem2/tem1); /* condition number */

V = COND_NO*beta*R1 - gamma;

W = delta_displ/tem2;

A = V*Trans(W);

A = I + A;

K_inver = Trans(A)*K_inver*A;

/* [i.5] : Test Convergence Criteria */

if (COND_NO > 1E+5) {

print" *** Condition number = ", COND_NO, " \n";

print" *** ERROR .. Large condition number implies that \n";

print" Jocobian matrix inverse nearly singular\n";

break;

}

R1 = R2;

}

}

UpdateResponse();

}

/* [i.6] : Save response */

response[jj][1] = jj;

response[jj][2] = Load_Factor[jj][1]*3.0*Fz;

response[jj][3] = displ[size-2][1];

}

/* [j] : Print summary of force-displacement response */

print "*** Summary of Force-Displacement Response \n";

print "*** ====================================== \n\n";

PrintMatrix ( response );

quit;

Points to note are:

[1] In part [a] we specify that this will be a two-dimensional analysis. The maximum
number of degrees of freedom per node will be three, and the maximum number
of nodes per element will be two. The parameters NDimension, NDofPerNode, and
MaxNodesPerElement are used by ALADDIN to assess memory requirements for
the problem storage and solution.
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[2] We use a nested for() loop and a single if() statement to generate the planar layout
of 24 �nite element nodes. Before the boundary conditions are applied, the structure
has 72 degrees of freedom. In Section [f] we apply full-�xity to each column at the
foundation level { this reduces degrees of freedom from 72 to 60.

[3] The nonlinear analysis is more complicated than the linear static/dynamic analyses
presented in Austin, Chen and Lin [1] because the elastic-plastic behavior of the
material is irreversible. The stresses and strains in the cantilever are not uniquely
determined by its displacements. Instead, stresses and strains are a function of the
loading path/history, and then are calculated accumulately using the plastic 
ow
rule.

Original

Strain

Stress

LOAD   STEP   [ i  ] LOAD   STEP   [ i+1 ]

Original

Stress

Strain

Copy

Stress

Strain

Iteration   Loops

Plastic   Flow   Rule

BFGS   Algorithm

Make  Copy UpdateResponse()

Figure 3.12: Stress/Strain Values in BFGS Algorithm and Plastic Flow Rule

Because the BFGS algorithms requires several iterations to satisfy the plastic 
ow
rule, and may in fact, need several trial runs to achieve convergence, a copy of the
stress and strain is used in the BFGS algorithm. Once covergence is achieved, the
copy is used to update the stress, strain, and displacement. This update process is
triggered by the UpdateResponse() function in ALADDIN.

Abbreviated Output File : The output �le contains summaries of the mass and sti�-
ness matrices for the shear building, and abbreviated details of the external loading,
"myload", and the response matrix "response".

START OF ABBREVIATED OUTPUT FILE

==========================================

Title : DESCRIPTION OF FINITE ELEMENT MESH

==========================================

=======================

Profile of Problem Size

=======================

Dimension of Problem = 3
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Number Nodes = 28

Degrees of Freedom per node = 5

Max No Nodes Per Element = 8

Number Elements = 5

Number Element Attributes = 1

Number Loaded Nodes = 3

Number Loaded Elements = 0

----------------------------------------------------------------------------------

Node# X_coord Y_coord Z_coord Dx Dy Dz Rx Ry Rz

----------------------------------------------------------------------------------

1 0.0000e+00 -5.0000e-01 0.0000e+00 -1 -2 -3 -4 -5

2 0.0000e+00 0.0000e+00 0.0000e+00 -6 -7 -8 -9 -10

3 0.0000e+00 5.0000e-01 0.0000e+00 -11 -12 -13 -14 -15

4 1.0000e+00 -5.0000e-01 0.0000e+00 1 2 3 4 5

5 1.0000e+00 5.0000e-01 0.0000e+00 6 7 8 9 10

...... details of nodal coordinates removed .....

24 9.0000e+00 -5.0000e-01 0.0000e+00 101 102 103 104 105

25 9.0000e+00 5.0000e-01 0.0000e+00 106 107 108 109 110

26 1.0000e+01 -5.0000e-01 0.0000e+00 111 112 113 114 115

27 1.0000e+01 0.0000e+00 0.0000e+00 116 117 118 119 120

28 1.0000e+01 5.0000e-01 0.0000e+00 121 122 123 124 125

------------------------------------------------------------------------------------

Element# Type node[1] [2] [3] [4] [5] [6] [7] [8] Element_Attr_Name

------------------------------------------------------------------------------------

1 SHELL_8N 1 6 8 3 4 7 5 2 name_of_elmt_attr

2 SHELL_8N 6 11 13 8 9 12 10 7 name_of_elmt_attr

3 SHELL_8N 11 16 18 13 14 17 15 12 name_of_elmt_attr

4 SHELL_8N 16 21 23 18 19 22 20 17 name_of_elmt_attr

5 SHELL_8N 21 26 28 23 24 27 25 22 name_of_elmt_attr

------------------------

Element Attribute Data :

------------------------

ELEMENT_ATTR No. 1 : name = "name_of_elmt_attr"

: section = "rectangular"

: material = "ELASTIC_PLASTIC"

: type = SHELL_8N

: Young's Modulus = E = 2.900e+07

: Yielding Stress = fy = 3.600e+04

: Poisson's ratio = nu = 2.000e-01

: Density = 1.000e+00

: Inertia Izz = 0.000e+00

: Area = 0.000e+00

EXTERNAL NODAL LOADINGS
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--------------------------------------------

Node# Fx Fy Fz Mx My

26 0.000 0.000 300.000 0.000 0.000

27 0.000 0.000 300.000 0.000 0.000

28 0.000 0.000 300.000 0.000 0.000

============= End of Finite Element Mesh Description ==============

*** Start Load Step 1

*** Compute Initial Displacement

*** Initial Displacement = 0.09833

*** Start Load Step 2

*** Load Step 2 : Iteration = 1

*** Start Load Step 3

*** Load Step 3 : Iteration = 1

*** Start Load Step 4

*** Load Step 4 : Iteration = 1

*** Start Load Step 5

*** Load Step 5 : Iteration = 1

*** Load Step 5 : Iteration = 2

*** Load Step 5 : Iteration = 3

*** Start Load Step 6

*** Load Step 6 : Iteration = 1

*** Load Step 6 : Iteration = 2

*** Load Step 6 : Iteration = 3

*** Load Step 6 : Iteration = 4

*** Load Step 6 : Iteration = 5

*** Start Load Step 7

....... details of load step and BFGS Algorithm Information removed .....

*** Start Load Step 33

*** Load Step 33 : Iteration = 1

*** Start Load Step 34

*** Load Step 34 : Iteration = 1

*** Summary of Force-Displacement Response

*** ======================================

MATRIX : "response"

row/col 1 2 3

1 1.00000e+00 9.00000e+02 9.83343e-02

2 2.00000e+00 9.90000e+02 1.08168e-01

3 3.00000e+00 1.03500e+03 1.13084e-01

4 4.00000e+00 1.08000e+03 1.18001e-01

...... details of response matrix removed .....

32 3.20000e+01 3.15000e+02 1.58910e-02

33 3.30000e+01 7.65000e+02 6.50581e-02

34 3.40000e+01 1.21500e+03 1.14225e-01
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Summary's of the applied load versus step number, and applied load versus vertical tip
diplacement of the cantilever are shown in Figures 3.9 and 3.10, respectively.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

The purpose of this study has been to extend ALADDIN's functionality to the
solution of �nite element problems containing material nonlinearities. The conclusions
and �ndings of this study are as follows:

[1] We have investigated the features needed by ALADDIN's language and kernel for
the solution of problems with material nonlinearities. The direction of research
has been motivated in part by the formulation of four- and eight-node shell �nite
elements, and validated via numerical experiments on problems having linear and
nonlinear material behavior. In our preliminary experiments on linear problems, we
observed that the four node bi-linear shell element performs poorly. Consequently,
it the was removed from further consideration in the study. We also observed that
when an assembly of interconnected shell �nite elements has reasonable �delity, the
eight node element is capable of accurately predicting behavior. A summary of
numerical results is presented in Chapter 3 { we have shown that ALADDIN can
compute nonlinear in-plane displacements of a 
at plate, and out-of-plane bending
of a cantilever structure. In both applications, material nonlinearities are modeled
with bi-linear and Ramberg-Osgood stress-strain curves.

[2] The numerical experiments have shown that the elastic-plastic rate integration al-
gorithm and the BFGS update algorithm can reproduce the hysteresis loops of
load-displacement. The basic BFGS algorithm was �rst implemented and tested
on suites of nonlinear equations by Austin and co-workers [1]. Surprisingly few
modi�cations to the basic BFGS algorithm were needed in the transformation from
numerical to �nite element equations. ALADDIN's kernel was extended so that
it could copy and save displacements, stresses and strains, and a function called
UpdateResponse() was added to ALADDIN's vocabulary. As the name suggests,
UpdateResponse() updates the system's state once equilibrium is achieved. We
note that because the source of the nonlinear equations { nonlinear constituitive
relations in the shell material { is completely decoupled from ALADDIN's kernel
and the UpdateResponse() response function, there is reason to believe that these
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program extensions are general. We would not be surprised to learn, for example,
that with suitable adjustments to the �nite element library, ALADDIN is now also
capable of solving other types of nonlinear problems (e.g. nonlinearities due to large
geometric displacements and/or contact/impact).

[3] The shell �nite elements have been formulated under the assumption that displace-
ments within an element can be represented by a linear combination of shape func-
tions and nodal displacements. The result of this formulation is an element level
sti�ness matrix. A fundamental problem with the sti�ness-based approach to mod-
eling is the di�culty in computing nonlinear behavior near an element's ultimate
resistance { this is where the element's sti�ness matrix may suddenly become singu-
lar, thereby causing a force-displacement relationship that is no longer unique. If the
global sti�ness matrix also becomes singular (or severely ill-conditioned), then an
engineer may have no choice but to terminate the computations. A second problem
with sti�ness-based methods is the di�culty in computing solutions to nonlinear
�nite element equations. Taucer et al. [29] point out that when displacements
within an element are modeled with cubic interpolation functions, the distribution
of curvature within the element will be linear. The latter may provide a poor approx-
imation to the behavior of real systems, especially within regions of a structure that
are highly nonlinear. And as such, computing solutions to the associated equations
of equilibrium may be very di�cult.

4.2 Future Work

The future work can be divided into two areas: �nite element applications, and
ALADDIN infrastructure.

Finite Element Applications : The near-term application area for ALADDIN is de-
sign and analysis of earthquake resistant buildings and highway bridge structures. The
results of this study are an intermediate step in this direction in the sense that rational
modeling of seismically resistant structures during severe ground motions often requires
nonlinear time-history analyses. There is considerable evidence, however, that engineers
will not incorporate these modeling procedures into their daily practice unless they are
clear, reliable, and robust [14, 29]. Unfortunately, we are not at that point yet. Our
recommendations for future work are:

[1] Flexibility-Based Elements : Further work is needed to mitigate the problems
listed in Item [3] of Section 4.1 since most practicing engineers will have neither
the time, nor numerical background to deal with them.

We are now implementing a three-dimensional 
exibility-based beam-column ele-
ment, formulated by Filippou and co-workers [29]. Our objective is to use this
�nite element { or a modi�ed version of it { for the modeling of nonlinear hys-
teretic behavior in base-isolation pads. Unlike sti�ness-based �nite elements, which
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employ shape functions of displacement, 
exibility-based �nite elements use distri-
bution functions of bending moment and axial force that are capable of maintaining
equilibrium and compatibility within an element, and converging to a state that
satis�es the section constituitive relations within a speci�ed tolerance. These char-
acteristics apply to both the linear and plastic regimes of an element.

The 
exibility-based elements must be accompanied by a special algorithm for state
determination for the computation of resisting forces in the elements. We are cur-
rently examining these details to see what, if any, extensions to ALADDIN will be
required.

ALADDIN Infrastructure : We have shown that even though its language is small,
ALADDIN can solve a wide range of matrix and �nite element problems in almost a
seamless manner. The future work on ALADDIN's infrastructure should focus on:

[1] User-Defined Functions : One problem with the BFGS algorithm and associated
de�nition of the �nite element problem is that the input �les are now becoming
quite long and detailed. There is a need to extend ALADDIN's language and kernel
so that user-de�ned functions are supported. With such a feature in place, BFGS-
type algorithms could be packaged as �le modules, and simply loaded into the �nite
element problem description �les. This feature would enhance the nonlinear solution
procedure(s) reliability by reducing the demands on an engineer's experience.

[2] CORBA/OLE Interfaces : In this project and our previous work [1, 16], ALADDIN
modules have been written in C, and have followed the model of custom-built de-
velopment described in Chapter 1. We are con�dent that the same pathway of
implementation would work for the extension of ALADDIN's functionality to the
solution of optimization problems.

There is, nonetheless, a strong need to explore alternative pathways of module im-
plementation, such as the feasibility of extending the the language/library interface
(see Figure 1.3) so that it can handle CORBA Interface De�nition Language speci�-
cations. Such a feature would allow engineers to program new �nite element routines
and their IDL mappings in their language of choice (e.g. Fortran, C, C++), and
then link the compiled object code into ALADDIN. IDL mappings could be added
to legacy �nite element code, and then linked into ALADDIN. In either case, the
stub routines required for the IDL/�nite element interface need to be worked out, as
do details of \modi�cations to the legacy �nite element code" for compatibility with
IDL. The implementation of optimization routines would follow a similar procedure.

Future work should explore the viability of user-de�ned functions having IDL-
compliant interfaces. Such a combination would allow engineers to de�ne an ap-
plication speci�c function within ALADDIN, and leave the details of the function
evaluation to an external module.
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