Optimal Modelsof Digunctive Logic Programs:. Semantics,
Complexity, and Computation*

NicolaLeonet Francesco Scarcellof V.S. Subrahmanian?

Abstract

Almost all semanticsfor logicprogramswith negationidentify aset, S E M (P), of models of program
P, astheintended semantics of P, and any model A/ inthisclassis considered a possible meaning of P
w.r.t. the semanticstheuser hasin mind. Thus, for example, in the case of stable models[6], choice mod-
els[24], answer sets[7], etc., different possible models correspond to different ways of “completing” the
incomplete information in the logic program. However, different end-users may have different ideas on
which of these different modelsin SEM (P) isareasonable one from their point of view. For instance,
given SEM (P), user Uy may prefer model M, € SEM(P)tomodd M, € SEM(P) based on some
evaluation criterion that she has. Inthispaper, wewill develop anotion of logic program semantics based
on the concept of an Optimal Model. This semantics doesn’t add yet another semantics to the logic pro-
gramming arena—rather, it takes asinput, an existing semantics S £ M (P) and a user-specified objective
functionObj, andyieldsanew semanticsOpt(P) C SEM (P) that realizes the objectivefunctionwithin
theframework of preferred modelsi dentified al ready by SE M (P) indifferent ways. Thus, the user who
may or may not know anything about | ogic programming has considerable flexibility in making the sys-
temreflect her own objectivesby building*ontop” of existing semantics knownto thesystem. Inaddition
to the decl arative semantics characterization, we provide a compl ete complexity analysis and a gorithms
to compute optimal models under varied conditionswhen SEM (P) is the stable model semantics, the
minimal models semantics, and the all-model s semantics.

1 Introduction

There are now a vast number of semantics for logic programs and extensions of logic programs. All these
semantics identify a set of models of logic program P as the intended semantics, S~ M (P), of P. From
the point of view of a user of alogic programming application, she is stuck with the semantics assigned by
the logic programming interpreter, but cannot specify that some of these models are “ better” from her point
of view, than others. In other words, the end-user (not the logic programmer building applications!) cannot
make the program select and answer queries w.r.t. models that she deems appropriate. Surprisingly, as we
shall show through a“cooking example’, different users may have different preferences even when the same
program and the same semantics are considered. In this paper, we shall make the following contributions:

*Due to space reasons, not all proofs are included here. Full proofs of all results may be obtained in the technical report ver-
sion of this paper[16] obtainable from www.cs.umd.edu/Library/TRYCS-TR-4298.ps.Z. Research partly funded by ARO grant
DAAD190010484, ARL grant DAAL0197K 0135, and ARL’s CTA on advanced decision architectures.

T Department of Mathematics, University of Calabria, 1-87030 Rende, Italy, | eone@ni cal . i t

{D.E.L.S,, University of Calabria, 1-87030 Rende, Italy, scar cel | o@lei s. unical . it

$ Department of Computer Science, University of Maryland, College Park, MD 29742, vs@s. und. edu

o First, we develop the notion of an Herbrand Objective Function that allows the user to specify an ex-
pression e that can be evaluated w.r.t. each model. Without loss of generality, we will always assume
the user wishestominimizee, i.e. tofind amodel M in .S E M (P),suchthat e’svalue isminimized™.

o A model M isoptimal according to a specific semantics S EM (P)if M € SEM(P) and thereisno
model M’ € SEM(P) such that the value of the expression e on M’ isstrictly less than the value e
assumeson M.

¢ Wethen consider thecaseswhen S M (P) isthe set of stablemodels, minimal models, and al models
of adisjunctivelogic program (DLP). Welook at two classes of programs— general DL Psand positive
DL Ps which have no negationsin rule bodies. Finaly, we identify two kinds of objective functions
— thosethat satisfy a“monotonic aggregation strategy” property defined later in the paper and those
that may or may not do so. Thisleads to twelve possible combinations of semantics, disjunctivelogic
program syntax, and aggregation-strategy type.

¢ For each of the above six combinations, we study the complexity of four problems.

— Checking whether a given model is optimal;

— Brave reasoning, which checksif a given atom is true in some optimal model;

— Cautious reasoning, which checksif agiven atomistruein all optimal models;

— Approximation, which checksif there existsamodel containingagiven set of ground atoms such

that the value of the Herbrand Objective Function on that model is less than or equal to a given
bound.

Thisleadsto atota of twenty-four complexity results that are neatly summarized in Tables 1 and 2.
In particular, we show that, in general, the complexity depends upon the properties of the Herbrand
Objective Functionsin question, monotonicity properties decrease the complexity.

¢ We develop a comprehensive set of algorithms that may be used to compute optimal models, both
under the monotonicity assumption, and without it, for stable models, minimal models, and all models
of digunctivelogic programs.

Therest of this paper is organized as follows. Section 2 motivatesthe paper through two examples— oneis
asimple “cooking” example, and the other is amore serious combinatorial auction (cf. Sandholm [25]) ex-
ample. Section 3 providesbasic definitionsin disjunctivelogic programming and computational complexity
— these concepts are needed in order to follow therest of the paper. In Section 4, we formally define what
it meansfor amodel M drawn from afamily of modelsto be optimal. Such families of models can include
stable models, minima models, and al models. In Section 4, we devel op the twenty four complexity results
discussed earlier. In Section 6, we devel op agorithms to compute optima models of disjunctivelogic pro-
grams under al the cases described above. In Section 7, we compare our work with existing resultsin the
research literature. In Section 8, we summarize the contributionsof this paper and provide pointersto future
research directions.

2 Motivating Examples

In this section, we present two simple examples motivating our research: planning a dinner according to
different criteria, and determining the winner of an auction.

!Note that maximizing e is the same as minimizing —e, and hence, the assumption that objective functions are used only for
minimization is not alimitation.

2.1 Planning a Dinner

Let us suppose that a chef is planning adinner for a group of people. Dinner consists of three courses— an
appetizer, an entree, and adessert. However, different guestshave different likesand dislikes. Thejab of the
chef isto devise a dinner which satisfies the tastes of the guests, while at the same time, optimizing various
criteriafor the chef (e.g. minimizing cost, minimizing preparation time, etc.).

The relation di sh isa4-ary predicate consisting of the following fields: a namne field specifying the
name of thedish, at ype field specifying whether it isan appetizer, an entree, or adessert, acost field esti-
mating the unit (i.e. per serving) cost of thedish, and at i me field estimating the time (in minutes) required
to prepare the dish. An extensional database showingthe di sh relation is contained in Appendix A.1.

Therelation di sl i kes isabinary predicate containing the name of a person and the name of a dish,
indicating whether the person dislikesthe dish. Thisinformation allowsthe chef to propose only menus that
are compatible with all guests.

M odels: For any given collection of guestsexpected at dinner and encoded through aunary relationguest ,
one or more menus may befeasible. For example, it may turn out that both Menul and Menu?2 listed below
are possibledinners:

Menul : appetizer = caprese;entree = spaghetti_alla carbonara;dessert = tiramisu

Menu2: appetizer = samosa;entree = matar_paneer;dessert = rasgulla

In this paper, we will argue that different models of a (possibly disunctive) logic program neatly cap-
ture different menusin thisexample. In general, model s represent scenarios that could be true, given certain
information about the domain of discourse. Different scenarioscould have different utilitiesto different peo-

ple.

Utilities’Costsof Models: For example, the cost of preparing Menul may be $ 6.00 per person, while the
cost of preparing Menu2 may be $ 5.00 per person. However, it may turn out that preparing Menul takes
25 minutes, while preparing Menu2 takes 60 minutes. In this case, the lazy chef who wishes to minimize
the time he spendsin the kitchen may prefer to prepare Menul. On the other hand, the chef who wishesto
minimize cost may well prefer Menu?2.

Optimal Models: Informally speaking, amodel isaway of satisfyingtherequirementsencoded inaproblem
specification. Aswe have seen above, different solutionsto the problem may have different costs/benefits
to an end-user (i.e. to the person interested in solving the problem). However, what isimportant to a person
is subjective and may vary from one individual to another. Consequently, any way of defining optimality of
amodel (or solution) must take the evaluation criterion (e.g. minimize cost of dinner, minimize preparation
time) as an input.

2.2 Determining Winnersin Combinatorial Auctions

A combinatorial auction isonewhereaset O of objectsare for sale and there isa set B of bidders. Bidders
may offer bids on a set of items. For example bidder 5; may bid $ 500 for items «, b, ¢ together and $ 200
for item « done. Formally, abid isatriple of theform (b, X, p) whereb € B isabidder, X C O isaset of
items, and p > 0 isaprice. The auctioneer receives a set bids of bids. Without loss of generality, we may

assumethat bids does not contain two triplesof theform (—, X, —). Thisisbecauseif two bidsarereceived
for the same set X of objects, the one with the lower price can be eliminated. 2

Models: Thetask of the auctioneer isto determine which bidsto “accept.” Given a set bids of bids, a po-
tential winner isasubset win C bids such that

(b1, X1,p1), (b2, X2,p2) € win — X1 N Xy = 0.

Each potentia winner set represents a possible scenario, i.e., a possible outcome of the auction.

Utilities’Costs of Models: Potential winners may be very different according to the auctioneer’s point of
view. Indeed, she clearly wants to maximize her revenue, and thus eval uates a model win according to the
following measure:

R(win) = Z .

(b,X,p)ewin

Optimal Models: The auctioneer isinterested in the potential winners win such that her revenue R(win)
ismaximized. Thewinner determination problemisto find such an optimal potential winner.

In thispaper, we will formalize theintuitive discussion given above so asto alow users to sel ect model sthat
are optimal from their point of view.

3 Preliminaries

3.1 LogicPrograms

We assumethe existenceof an arbitrary logical language I, generated by afinite set of constant, function and
predicate symbols, and an infinite set of variable symbols.

Definition 3.1 If Ay,..., A, B1,..., By, By1, . .. Biqp @eaoms, then
Ay V-V A, — Bi&...&B,¬(Byy1)& .. ¬(Byk) D

isarule. A ruleisnormal if » = 1 and positiveif £ = 0. A rulewith an empty body (i.e., m = k = 0)is
caled afact. A (normal, positive) logic programisafinite set of (normal, positive) rules.

For arule r, we denoteby H (r) (resp., B(r)) the set of literals occurring in the head (resp., body) of .

A logic program may be viewed as composed of two kind of rules: (1) facts that define the so called
extensional database predicates (EDB), and (ii) rules (typically with a non-empty body) that define other
predicates, representing the intensional database (IDB). EDB predicates are often implemented as relations
in arelationa database. We often use the workds “relation” and “predicate” interchangeably. Thus, if we
say that arelation r is an EDB relation for a program P, we mean that for each tuple (vy,...,v,) € r, a

21t is till possible that there are two bids of the form (b1, X, p1), (b2, X, p2) With p1 = p.. In such a case most auctioneers
eliminate one of the two bids using some pre-announced protocol — e.g. the bid received at alater time may be discarded.

fact 7(v1,...,v,) < belongsto P, evenif itisnot explicitly listed. These facts providethe definition of the
EDB predicate r in the program P.

Given alogic program P, the Herbrand Base Bp of P isthe set of dl ground (i.e., variable-free) atoms
that can be constructed by using the constants, predicates and function symbolsappearingin P. Given a set
X of literals, —.X denotes the set containing the negation of theliteralsin X (the negation of « is -« and
vice versa). Moreover, X denotes the set of atoms occurring as positiveliteralsin X, and X ~ the set of
atoms whose negation isthe set of negativeliteralsin X. Aninterpretation I for aprogram P isany subset
of BpU—.Bp. Interpretation I satisfiesaground rule of theform shownin (1) aboveif either I N H(r) # ()
or B(r) ¢ I. Interpretation I satisfies a (non-ground) rule r if it satisfies each ground instance of r. We
denote by 7T the set of atoms occurring in I, and by 7~ the set of atoms whose negation belongsto 7. I
is atotal interpretationif 7™ U I~ = Bp. A set M of atoms isamodel for P if the total interpretation
M U-.(Bp — M) satisfieseach rulein P. Model M isaminimal model [19] for P if thereisno model NV
for P suchthat N C M. Givenadisjunctivelogic program P, we use MM(P) and MOD(P) to denote the
set of all minimal modelsof P and the set of all models of P, respectively. M isastable model (or answer
set) [7] of P if M isaminimal mode of P where PM isdefined asfollows:

PM={ A Vv---VA, —B&..&B, :
Ay V-V A, — B & ... & B, ¬(Dq) & .. .& not(Dy) isaground instance of
arueinPand{Dy,....,Dp} N M =0 }.

We use ST(P) to denote the set of all stable models of P.

We now show how to expressthe cooking and auctionsexampl esin thisframework using the stablemodel
semantics. In order to improve the readability of programs, we will aso use rules without a head, which
represents constraintsto be satisfied in any allowed model. Thefollowing rule r

— B1&...& B, ¬(Dy)&...¬(Dy)

means that itsbody should evaluateto falsein every intended model of the program. Such constraintscan be
easily expressed under the stable model semantics[4]. In particular, r is shorthand for the following normal
rule:

no_stable — By &...& B, & not(Dq) & ... & not(Dy) & not(no_stable)

Itiseasy to seethat in any stable model of every program containing thisrule, the body of » should evaluate
tofase.

Example 3.1 Thelogic program associated with the cooking example is shown bel ow:

dinner(A, E, D) — appetizer(A) & entree(L) & dessert(D)
appetizer(A) V not_take(A) — dish(A, appetizer,C,T')
entree(A) V not_take(A) — dish(A, entree,C,T)
dessert(A) V not_take(A) — dish(A,dessert,C,T)
not_take(A) — dish(A,_,_,), guest(P), dislikes(P, A)

— appetizer(A) & appetizer(B)& A # B

— entree(A) & entree(B)& A # B

— dessert(A) & dessert(B)& A # B

chosen_dinner «— dinner(A, E, D)

— not(chosen_dinner)

Itisnot difficult to seethat each stablemodel M of this program contains exactly one appetizer, one dessert,
and one entree. Appendix A.2 shows the stable models of this program with the EDB defined in Appendix
Al

Example 3.2 Suppose bids isthe set of al bids received in a combinatoria auction. We construct a dis-
junctivelogic program P45 asfollows. Two EDB predicates bids and requires encode the input data about

the bids received by the auctioneer. In particular, for each bid (b, 2, p) € bids, Ppigs contains the fact
bids(b, x, p) —, and thefactsdescribingtheset of itemsz required by thebidder b, namely, afact requires(z,) —,
for eachitemi € «.

Moreover, an IDB predicate wins encodes the potential winner set of bids chosen by the auctioneer. Itis
defined by the following rule:
wins(B, X, P) V loses(B,X,P) — bids(B,X,P).

Finally, we have the constraint:

— wins(By, X1, P1) & win(By, X3, P2) & X1 # Xo & requires(X1, 1) & requires(Xoq, I3)

Itiseasy to seethat the stablemodelsof Py;qs COrrespond exactly to the potential winners of the auction.

3.2 Complexity Overview

In this section, we provide a brief overview of complexity classes — these classes will be used extensively
later in the paper when we derive complexity results. The reader seeking details of complexity theory is
referred to [23].

The classes =, 11" and AT of the Polynomial Hierarchy (PH) (cf. [28]) are defined as follows:
AP —xP 1P =P andfordlk>1, AP =P%-, ©F = NP¥-1, 117 = co-xF.

In particular, NP = X%, co-NP = II¥, and A = PNP, Here P¢ and NP denote the classes of problems
that are solvabl ein polynomial time on adeterministic (resp. nondeterministic) Turing machinewith an oracle
for any problem 7 intheclass C'.

Theclasses AL, k > 2, have been refined by the class AT [O(logn)], in which the number of callsto
the oracle in each computation is bounded by O(log n), where n isthe size of theinput.

Later in the paper, we will establish a number of complexity results in which known problems that are
hard for these classes are polynomially reduced to the problem we are studying. Many of these “known”
problems will relate to Quantified Boolean Formulas (QBFs) and hence we introduce them here. A QBFis
an expression of the form

Q1 X102 X2+ Qp Xy E, k> 1, ()

where F isaBoolean expressionwhoseatomsare from pairwisedisj oint nonempty setsof variables X, . . ., Xy,
and the ();’s are alternating quantifiersfrom {3, v}, forali = 1,..., k. If @, = 3 thewe say the QBF is
k-existential, otherwiseit is k-universal. Validity of QBFsisrecursively defined in the obviousway. We use
QBFy 3 (resp., QBF;, v) to denotethe set of all valid k-existential (resp., k-universal) QBFs (2).

Given a k-existential QBF @ (resp. a k-universal QBF V), deciding whether @ ¢ QOBF, 3 (resp. ¥ €
QBFy.v), isaclassical ¥’ -complete (resp. 11 -complete) problem.

6

Theclass AL" also has complete problems, for al & > 2. For example, given aformula £ on variables
Xy, .., X, Y1, ... Y, r > 0,and aquantifier pattern)1Y7, ..., @Y, let ¢ be the truth-value assignment to
X1, ..., X, thatislexicographically minimumwithrespectto (X, ...,Xn>3andsuchthatQ1Y1 QY By €
QBF_2 v (Where such a¢ isknown to exist). Then, the problem of deciding whether ¢(X,,) = true iscom-
pletefor AL (cf. [33, 12])4

The hardness of the problemsis unaffected even if the following restrictionsare required: (i) F in(2) is
in conjunctivenormal form and each clause containsthreeliterals (3CNF) when (), = 3, and (ii) £ in(2) is
in digunctivenormal form and each conjunct containsthree literals (3DNF) when @, = V [29].

4 Optimal Models

In thissection, weintroducethe notion of optimal model for logic programs. First, weformally defineweight
assignments to atoms. We then introduce aggregation strategies which provide aggregate information on a
givenmodel. Finally, we define optimal model swith respect to agiven semantics, i.e., withrespect to agiven
family of intended models.

Definition 4.1 An atomic weight assignment, ¢, for aprogram P, isamap from the Herbrand Base Bp of
PtoRT, where Rt denotesthe set of non-negative real numbers (including zero).

Example 4.1 Returning to our “Dinner” Example, the following maps g1, - are atomic weight assign-
ments:

Atom A () e
entree(E) Cif dish(E,entree,C,T) holds. T if dish(F,entree, C,T)
dessert(D) Cifdish(D,dessert,C,T)holds. | T if dish(D,dessert,C,T)
appetizer(A) | C if dish(A, appetizer,C,T)holds. | T if dish(A, appetizer,C,T)
other atoms 0 0

Intuitively, thefirst function assigns weights to entrees based on the price/cost of those entreeswhilethe
second function assigns weights based on the time taken to prepare those entrees.

Example 4.2 For the auction example, the following map g3 isan atomic weight assignment:

Atom A | p3(A)
loses(B,X,P)

other atoms 0

Weights are assigned to atoms | oses corresponding to the bids that cannot be accepted and hence yield
no revenue to the auctioneer.

Givenaset X, weuse M~ to denotethe set of all multisetswhose elementsarein X . Membership and
inclusion between multisets are defined in the standard way.

34 islexicographically greater than o wrt. (X1, ..., X, if ¢(X;) = true, ¥(X;) = false for theleast j suchthat ¢(X;) #

P(X;).
“QBFo,v = QBF, 3 isthe set of all variable-free true formulas.

7

Definition 4.2 An aggregation strategy .A isamap from MR toR.

An aggregation strategy A is said to be monotonicif, for al 5y, .55 € MET, S1 C Sy impliesthat A(51) <
A(S3). The set of aggregation strategies may be ordered asfollows: A; < A, if foral 5, A;(9) < A2(9).
We list below, some sample aggregation strategies:

1. count($5): Thisisdefined asthe number of elementsin S. Clearly, thisaggregation strategy is mono-
tonic.

2. sum(.9) : Thisaggregation strategy sumsup all elementsin 5. It isclearly monotonic.

3. prod(5) : Thisaggregation strategy takestheproduct of al elementsin S. Itismonotonicif werequire
that the numbersin S are greater than or equal to 1.

4. avg(S) : Thiscomputesthe average of all elementsin 5. Thisaggregation strategy is not monotonic.

5. min(\5), max(.9) : Thiscomputes the smallest (resp. largest) element of 5. min(.9') is not monotonic,
but max(5) is.

Definition 4.3 Suppose A is an aggregation strategy and ¢ is an atomic weight assignment. The Herbrand
Objective Function, HOF(p, .A) isamap from 257 to R defined as follows:

HOF(p, A)(M) = A({p(A)|AeM]}).

Intuitively, HOF(p, .A)(M) looksat each ground atom A € M, computes p(A), and puts p(A) inamultiset.
It then appliesthe aggregation strategy to the multiset created in thisway. Thisisillustrated by thefollowing
example.

Example 4.3 Suppose we consider the weights ¢, and - described in Example 4.1. Consider the stable
models My and M, of Appendix A.2. If we use the aggregation strategy sum, then:

HOF(p1, sum)(M;) = 6.8 HOF (1, sum)(M,) = 5.15
HOF(@Q, sum)(Ml) =60 HOF(@Q, sum)(Mg) =70

The following result says that, whenever a monotonic aggregation function g is considered, the function
HOF(g,.A) isalso monotonic.

Proposition 4.1 Suppose A isany monotonic aggregation function. Then HOF(p, .A) ismonotonic, i.e. for
all M, M’ it M C M’ thenHOF(p, A)(M) < HOF(p, A)(M').

We are now ready to define what it means for amodel of a (possibly disunctive) logic program P to be
optimal with respect to p and .4 and a selected family of models. Note that all semanticsfor logic programs
identify a“family” of models (e.g. stable semanticsidentifiesall stable models of logic programs, minimal
model semantics identifies all minimal models of alogic program, and so on).

Definition 4.4 Let P be alogic program, ¢ an atomic weight assignment, and .A an aggregation strategy.
Suppose that F isafamily of models of P. We say that M isan optimal F-model of P w.r.t. (p, A)if:

1. M e F,and

2. thereisno model M’ of P in F such that HOF(p, A)(M') < HOF(p, A)(M).

We use the notation Opt(P, F, p, A) to denote the set of all optimal F-modelsof P w.rt. (p,.A).

We will often use the expressions optimal model, optimal optimal minimal model, and optimal stable model
to denote models that are optimal w.r.t. the families MOD(P), MM(P) and ST(P), respectively.

Example 4.4 Consider again our “Dinner” example. The different possible choices for dishes lead to 16
stable modelsfor the cooking logic program P, all listedin Appendix A.2. However, if we assign weightsto
dishesaccording to ¢4, i.e. according to the price/cost of those dishes, we get aunique optimal stable model
w.rt. (sum, p;):°

Opt(P,ST(P), p1,8um) ={ {dinner(caprese,idli,rasgulla),appetizer(caprese),entree(idli),
dessert(rasgulla),...} }.
On the other hand, if we prefer to minimize cooking time, we can resort to the weight function gs. Inthis

case, we get the following optimal stable modelsw.r.t. (sum, p3).
%(P, ST(P)7 92, Sum) = {M37 M47 M57 MG} Where:

Ms = {dinner(caprese, spaghetti_carbonara,tiramisu), appetizer(caprese),
entree(spaghetti_carbonara), dessert(tiramisu), .. .}.
My = {dinner(caprese, spaghetti_carbonara, rasgulla), appetizer(caprese),

entree(spaghetti_carbonara), dessert(rasgulla), .. .}.

Ms = {dinner(caprese, matar_paneer,tiramisu), appetizer(caprese),
entree(matar_paneer), dessert(tiramisu), .. .}.

Mg = {dinner(caprese, matar_paneer, rasqulla),appetizer(caprese),
entree(matar_paneer), dessert(rasgulla), .. .}.

Example 4.5 Consider the program P45 in Example 3.2 and the weight assignment g5 in Example 4.2. If
we usethe aggregation strategy sum, the optimal models Opt(Phids, S T(Phids) 923, sum) encode the poten-
tial winnersthat minimizethe sum of the revenuesfor bidsnot accepted by the auctioneer, represented by the
atoms with predicate loses. Therefore, these model s encode the potential winners that maximize the revenue
for the auctioneer, and thus exactly represent the best sets of bidsto be accepted for the auction at hand.

5 Complexity Results

In this section we analyze the complexity of the main decision problems relating to optima models. In par-
ticular, for different families F of models, P of logic programs, and assumptionson the monotonicity of the
aggregation function used, we study the following problems:

Problem 1: (Checking) Given P, ¢, A and M asinput, decidewhether M isan optimal F-model of P w.r.t.
(9, A).

SNote that, in this example, whenever we haveto list a stable model of the program, we just list the atoms that characterize the
model, namely, the atoms with predicates dinner, appetizer, entree, and dessert (in fact, just dinner would suffice, in this case). We
do not list EDB atoms, which are true in every stable model, and auxiliary atoms, like not_take.

9

Problem 2: (Cautious reasoning) Given P, p, A and literal ¢ as input, decide whether ¢ is true in every
optimal F-model of P w.rt. (p,.4), denoted by P =7 4.

Cautiousreasoning is useful to single out the necessary consequences of the program. For example, the
atomappet i zer (capr ese) istrueinall modelsin Opt(P,ST(P), 2, sum) asis easily seen in Exam-
ple4.4. Thismeansthat aslong as the user wishesto minimizethe time she spends on cooking, sheisforced
to choose capr ese asthe appetizer. On the other hand, dessert (ti ram su) isnottrueinal models
in Opt(P, ST(P), 2, sum).

Problem 3: (Bravereasoning) Given P, o, A and aground litera ¢ asinput, decide whether there existsan
optimal F-model M of P w.rt. (p,.A) suchthat ¢ istruew.r.t. M, denoted by P =7 ¢.

Unlike cautious reasoning, brave reasoning finds out whether there exists an optimal model in which
aliteral istrue. In the Dinner example (cf. example 4.4), we see that dessert (tiram su) isabrave
consequence of P, but not a cautious consequence.

Problem 4: (Approz(P, p, A, n,5)). Given P, , A, aset of ground literals.5, and areal number n asinput,
decide whether thereexistsamodel A in F such that: (i) HOF(p, A)(M) < n, and (ii) every literal in S is
truew.r.t. M.

A successful solutionto problem (4) allows the user to approximate optimal models.

Example5.1 Problem (4) above hasinteresting consequences. Supposethe cook wishesto ask thefollowing
queries:

1. “Isthere someway for meto fix dinner at a pricelessthan or equal to £ 6.50 her head?” Thiscorre-
spondsto an instance of Problem 4 where 5 = () and »n = 6.50.

2. Suppose for some reason, the cook wants to make sanosa as the appetizer. Then she may want to
ask thequery: Istheresomeway for meto fix dinner including a samosa appetizer at a pricelessthanor
equal to £6.50 her head?” Thiscorrespondstoaninstanceof Problem4where S = {appetizer(samosa)}
andn = 6.50.

We denoteby maz_hof(p, A, P), thehighest valuethat HOF may assumeon P (given p and A), thatis,
maz_hof(p, A, P) = maz({HOF(p, A)(M)| M C Bp}). Inthecomplexity analysis, we assumethat the
atomic weight assignment is part of theinput and weightsare (non-negative) integers. Moreover, we assume
that, given p, A, P, and M, bothHOF(p, A)(M) and maxz_ho f(p, A, P) are polynomial-time computable
(note that all sample strategies shown in Section 4 satisfy these assumptions). We anayze the complexity
of the propositional case (that is, we assume that programs are ground); the results, however, can be easily
extended to data complexity [31].

5.1 Overview of Results

We give a complete overview of the complexity results for optimal models that we formally prove in the
following of the section, and we supply a brief discussion providing intuitive explainations of the results.

The complexity resultsare summarized in Table 1 and in Table 2. In particular, Table 1 shows the com-
plexity for the case of general (disjunctive) programs where negation can appear intherules’ bodies; Table 2
collectstheresultsfor positive(disjunctive) programswhere negationisdisallowed. Itsfirst column specifies

10

Models | Aggregation | Checking Brave Cautious | Approx
Strategy Reasoning | Reasoning

Stable | Monotonic 1E AP AP)Y
Stable Arbitrary 1E AP AP)Y
Minima | Monotonic | co-NP »P ny »P
Minimal | Arbitrary 1E AP AP)Y
All Monotonic | co-NP AP AP NP
All Arbitrary co-NP AP AP NP

Table 1: Disjunctive general programs

the family of models (Stable models, Minima models, or All models); the second column specifies possi-
ble restrictions on the aggregation strategy (Monotonicity, Strict Monotonicity, Arbitrary = No restriction);
the remaining columns (3 to 7) report the complexity results. Each of these columns refers to a specific task
(Checking, Brave Reasoning, Cautious Reasoning, and Approx, in the specified order). All resultswe report
are completeness results, i.e., when we say that aproblem P has complexity C', then we have proved that P
is C'-complete under polynomial-time transformations.

Consider the results displayed in Table 1. Checking is 114 -complete for stable models. Thus, checking
if aninterpretation / isan optimal stable model islocated one level higher, in the polynomia hierarchy, than
checking if it is an ordinary stable model (which is “only” co-NP-complete). Intuitively, this increase of
complexity is because of two “orthogona” sources of complexity: (i) the stability check (i.e., proving that
the interpretation is a stable model); and (ii) the optimality check (i.e., proving that the value of the objec-
tive function on I is minimum in the family of the stable models of the program). Imposing monotonicity
on the aggregation strategy does not help for stable models (the complexity remains T1%’), because there is
no rel ationships between an interpretation / being stable and HOF (¢, .A)(1) being optimal. In this respect,
the situation is different for Minimal Models. While Checking is 115 -complete (as for stable models) under
arbitrary aggregation strategies, itscomplexity decreasesto co-NP (i.e., it becomes the same as the compl ex-
ity of minimality checking) for monotonic aggregation strategies. Indeed, in this case, the two minimality
criteriato be considered for the check (the minimality of the model and the optimality of its value under the
objective function) work in paralel: if aninterpretation A issmaller than B (i.e, itispreferableto B under
the subset inclusion criterion determining minima models), then HOF (p, A)(A) < HOF(p, A)(B). Thus,
the complexity of the two sourcesisnot summed up inthiscase. For thefamily of All models, the complex-
ity of Checking remains co-NP even if the aggregation strategy is arbitrary. The reason is that, compared
to stable models or minimal model's, one source of complexity is eliminated in this case, because checking
membership in the family of all modelsispolynomial (whileit isco-NP-complete for the families of stable
model s and minima models). Thus, the only hard source of complexity isthe optimality check which causes
the co-N P-compl eteness of this problem.

Problem Approx is somehow complementary to Checking. To prove an instance of Approx, one has to
find amember A of the models' family (e.g., astable model or a minimal model), whose val ue of the objec-
tive functionislower than the given bound (and A containsthe specified literals). Similarly, to disprovean

11

instance of Checking, one hasto do something similar: find amember A of themodels' family, whose value
of the objectivefunctionislower than the value of the objectivefunction onthemodel to be checked. Accord-
ing with thisintuition, the complexity of Approx iscomplementary (IT%' /%4", co-NP /NP) to the complexity
of Checking, nearly aways. The only exception is the case of Monotonic aggregation strategy for the fam-
ily of Minima models, where Approx cannot enjoy the “parallelism” among the two sources of complexity
which mitigated the complexity of Checking for this case (see the comment above).

Reasoning (Brave and Cautious) brings an additional source of complexity, compared to the previous
problems: the (possibly) exponential number of optimal model swhich should be analyzed (intheworst case)
to decide whether the given litera istrue or not. Nevertheless, in most cases, the applicability of smart tech-
niques mitigates the complexity of these reasoning problems, allowing us to solvethem deterministically by
a polynomial number of calls to oracles solving Checking or Approx (an oracle for a problem P islikea
subroutine taking an instance of P in input and returning its yes/no solution) — see, for instance, the proof
of Theorem 5.7. Thus, compared to Checking, the complexity of Brave Reasoning and Cautious Reason-
ing increases only “mildly”, it islocated only half alevel higher in the polynomial hierarchy, stepping from
co-NP and 11} to AY and A%, respectively. Aninteresting exceptionisreasoning with thefamily of Minimal
models under monotonic aggregation strategies. In this case, the problem remains of the same complexity
as standard minimal model reasoning (X4’ and I for brave and cautious reasoning, respectively).

Models Aggregation | Checking Brave Cautious | Approx
Strategy Reasoning | Reasoning
Stable, Minimal | Monotonic | co-NP)Y 1E)Y
Stable, Minima | Arbitrary 1E AP AP)Y
All Monotonic | co-NP AP AP NP
All Arbitrary co-NP AP AP NP

Table 2: Disjunctive positive programs

Table 2 which shows complexity resultsfor positive programs contains no major surprises. Asdisunc-
tionis allowed, disallowing negation does not make any difference as far as both Minimal model semantics
and All model semantics are concerned because these semantics are syntax independent (unlike Stable model
semantics, « < not b isprecisely thesameasa Vv b for Minimal models and All models semantics). Thus,
the complexity results on positive programsfor the families of Minima modelsand All modelsis precisely
the same as for genera programs. Disallowing negation, however, makes a difference for Stable model se-
mantics and lowersthe complexity over monaotonic aggregation strategies, which becomesthe same asfor the
case of minima models (indeed, Stable model s degenerate to Minimal model s when negation is disall owed).

5.2 General reduction among problems

We first show that, for any of all, stable, minimal family of models, brave and cautious reasoning problems
have the same computational complexity, if we consider general aggregation strategies.

Theorem 5.1 (Brave Reasoning vsCautiousReasoningunder arbitraryaggregation) Let P beaprogram, F
afamily of modelsin {al, stable, minimal }, o a weight function, and .4 an aggregation strategy. Then there

12

existsa program P’, aweight function ¢’, and an arbitrary (possibly non monotonic) aggregation strategy
A’, all polynomially constructible, s.t. Bravereasoningfor P w.r.t. (p,.A) reducesto Cautious reasoning for
P"wirt. (g, A’), and viceversa.

PROOF. Let P bealogicprogram, ¢ anatomin Bp, o an atomic weight assignment, and .4 an aggregation
strategy. Moreover, let ¢’ be a fresh atom. Define a program P’, an atomic weight assignment ', and two
aggregation strategies A’ and .A” as follows.

P=PU{qg—¢;4¢ —q}

{ o'(p)=p(p) Yp#dq

o) =cy where ¢, # ¢'(p) Vp # ¢
,] AX) ifcy & X
A = { AX —{eg)+1 ifepeX

" . A(X — {Cq/}) if cqr € X
A(X)_{A(X)ﬂ if e & X

Then, it is easy to verify that the following claims hold.

CLAIM a). P =7 qwrt. (p, A)iff P! =] ¢ wrt. (¢, A").

CLAIMb). P |=F =g wrt. (p, A)iff P’ =7 ¢ wirt. (¢, A”).

CLAIM Q). P =7 qwrt. (p, A)iff P' =7 ¢ wrt. (¢, A”).

CLAIMd). P |=] —qwrt. (p, A)iff P' =7 ¢ wrt. (¢, A'). m

Note that the reduction above does not preserve the monotonicity of the aggregation strategy, i.e., even
if A isamonotonic aggregation strategy, .A" may, in general, not be monotonic. However, for stable model

semanticsand all model semantics, brave and cauti ous reasoning have the same compl exity even w.r.t. mono-
tonic aggregation strategies, as stated by the foll owing theorem.

Theorem 5.2 (Brave Reasoning vs Cautious Reasoning under monotonic aggregation) Let P be a general
program, 7 afamily of modelsin {all, stable}, o aweight function, and .4 a monotonic aggregation strategy.
Then, there exist a program P’, a weight function ¢’, and a monotonic aggregation strategy .A’, all of them
polynomially constructible, s.t. Brave reasoning for P wir.t. (¢p,.A) reduces to Cautious reasoning for P’
wr.t. (¢’, A’), and viceversa.

There existsavery natural relation between traditional —i.e., non optimal — brave reasoning and the ap-
proximation problem. Thisis stated by the following proposition, whose proof is straightforward.

Proposition 5.1 (Brave Reasoning vs Approx) Let P be a program, L aliteral, and F a family of models.
Thereexistsan 7-model M for P st. L istruewr.t. M ifandonlyif (P, pg, sum,0,{L})isayes-instance
of Approx, where o denotes the weight function which assigns 0 to each atomin Bp.

Thus, for any family of models, traditional brave reasoning reducesto Approx. Notethat the aggregation
strategy used in the above reduction is monaotonic.

13

Moreover traditional brave reasoning (without objective functions) is clearly a specia case of optimal
brave reasoning. To see this, consider any trivial aggregation strategy which assigns some fixed value to
every given set. Then the Herbrand objective function is a constant function and all the modelsin the given
family play the same role in the reasoning task, as in the case of traditional reasoning. Clearly, the same
argument appliesto the rel ationship between traditional cautious reasoning and optimal cautious reasoning.

5.3 Reaultsfor Stable Modéds

In this section, we study the complexity of checking, cautiousreasoning, brave reasoning, and approximate
reasoning problems with respect to the stable model semantics.

Checking

Theorem 5.3 (General/PositiveProgram, Arbitrary Aggregation) Given a disjunctiveprogram P, ¢, A and
M asinput, deciding whether M isan optimal stable model of P wir.t. (p,.A) is ¥ -complete. Hardness
holdseven if P isa positive programand M isa stable model of P.

PROOF. T4’ -Membership. We can verify that M is not an optimal stable model as follows. Guess M; C
Bp, and check that: either (1) [M; isastablemodel of P] and[(p, A)(M1) < HOF(p, A)(M)],or(2) M is
not astablemode of P. Since both (1) and (2) can be done by asinglecall to an NP oracle[3], thisproblem
isin ©’, and, as a consequence, Checkingisin ITZ.

I1¥-Hardness. Given adisjunctivepositiveprogram P and aliteral —¢, deciding whether —¢ isacautious
consequence of P under stable semantics (i.e., deciding whether ¢ does not belong to any stable mode!) is
1% -hard [3]. We reduce this problem to optimal stable mode! checking.

Let ¢’ be afresh atom and P’ be the (positive) program obtained from P by: (i) inserting the atom ¢’ in
the head of every ruleof P. It iseasy to seethat

MM(P') = {¢'} UMM(P)
Since both P and P’ are positive programs, ST(P) = MM(P) and ST(P’) = MM(P’). Therefore:

ST(P')={¢'}UST(P)

Let o beaone-to-onefunctionfrom Bp into[1...| Bp|] (p assignsan identifier to each atom). Define A as
follows: (i) A(K) = 0if K istheimage (under) of aset V of atomscontaining ¢, (ii) A(K) = 1 otherwise
(i.e., N doesnot contain ¢). (Notethat .4 is not monotonic.) Now, we havethat: (i) HOF(p, A)({¢'}) = 1,
and, (ii) foreach M € (ST(P') — {¢'}) st. ¢ € M, HOF(p, A)(M) = 0. Therefore, [{¢'} is an optimal
stablemodel of P’] if and only if [no stable model of P containsg]. Thatis, {¢’} isan optimal stable model
of P iff —q isacautious consequence of P. Hence, Checking is Hf -hard; moreover, hardness holds even
for positive programs, as the used program P’ is positive. Notethat {¢'} isa stable model of P’. O

Hence, optimal stablemodel checking for disjunctiveprogramsisII% -complete and the complexity of the
problem does not decrease on positive programs. The aggregation strategy used in the proof of I1£’-hardness
isarbitrary (not monotonic). One may thus wonder whether assuming the monotonicity of this strategy has
an impact on the complexity of optimal stable model checking. The following result says that the answer to
thisquestionis“no.”

14

Theorem 5.4 (General Program, Monotonic Aggregation) Given a digunctive program P, o, A and M
asinput, deciding whether M is an optimal stable model of P wirt. (p,.A) isIIf-complete even if A isa
monotonic aggregation strategy. Hardness holds even if M isa stable model of P.

PROOF. ¢From Theorem 5.3, it remains to prove only hardness. Given a (general) disjunctive program
P and an atom ¢, deciding whether ¢ is a cautious consequence of P under stable model semantics (i.e.,
deciding whether ¢ belongs to all stable model) is 114 -hard [3]. We reduce this problem to optimal stable
model checking with monotonic aggregation functions.

Let P’ be the program obtained from P by: (i) inserting the literal not(¢) in the body of every rule of
P, and, (ii) adding therule ¢ v ¢ —, where ¢’ isafresh atom. It is easy to see that

ST(P) ={q} u{M U{q'} | M € ST(P) A q ¢ M}

Let A = sum and p be the following atomic weight assignment: (i) p(¢) = 1, and (ii) p(«) = 0, for
eacha € Bp/—{q}. Now, wehavethat: (i) HOF(p, sum)({¢}) = 1,and, (ii) foreach M € (ST(P')—{q¢}),
HOF(p, A)(M) = 0. Therefore, [{¢} isan optimal stable model of P’] if and only if [it is the only stable
model of P’] if and only if [every stable model of P containsg]. That is, {¢} isan optimal stable model of
P’ iff ¢ isacautious consequence of P (we are done). Hence, Checking isIIZ -hard even if the monotonicity
of aggregation strategy isimposed (as we have used the monotonic strategy sum). O

In order to decrease the complexity of optimal stable model checking, we have to assume both that the
programs involved are positive and that the aggregation strategy involved is monotonic.

Theorem 5.5 (Positive Program, Monotonic Aggregation) Given a positive disjunctive program P, o, M,
and a monotonic aggregation strategy .4 asinput, deciding whether M isan optimal stable model of P wir.t.
(p, A)isco-NP-complete. Hardness holds even if A/ isknown to be a stable model.

Approx

We now show that the approximate reasoning problem is computationally intractable w.r.t. stable model se-
mantics.

Theorem 5.6 (General/Positive Program, Arbitrary Aggregation) Under stable model semantics, given a
digunctivegeneral program P, p, A, aset of groundliterals,S and areal number n asinput, Approz(P, p, A, n, S)
is :F-complete. Hardness holds even if P isa positive program.

PROOF. We can decide the problem as follows. Guess M C Bp, and check that: (1) M isa stable model
of P, (2) HOF(p, A)(M) < n, and (3) every literal in S istruew.rt. M. Clearly, property (2) and (3) can
be checked in polynomial time; while (1) can be decided by a single call to a NP oracle. The problemis
thereforein 2.

Hardness follows from Proposition 5.1 and from the 4’ -hardness of (traditional) brave reasoning for
disjunctive positive programs under stable model semantics[3]. O

15

Reasoning

In this section, we will study the complexity of brave and cautious reasoning under the optimal stable model
semantics. Several hardness results will be proved by reductions from QBFs into problems related to opti-
mal models; the disjunctive programs used will be appropriate adaptations and extensions of the disjunctive
program reported below (which wasfirst described in [3]).

Let ¢ beaformulaof theform VY F, where F isaBoolean expression over propositiona variablesfrom
XUuY,wheeX = {z,...,2,}adY = {y1,...,yn}. Weassumethat £ isin3DNF,i.e, ¥ = D, Vv
---vD,andesch D; = L;1 A L; o A L; 3 isaconjunction of literals L; ;. DefinethefollowingDLP L P(®):

Vol — foreachi=1,....n
Yi VY — Y, — w Y —w foreechj =1,...,m
W~y Ay foreechj=1,....m
w— o(Lri)No(Lr2) No(Lgs) foreachk=1,...,r

where o maps literalsto atoms as follows:

2. ifL =-x,forsomei=1,....n

o(L)=4 y. ifL=-y;forsomej=1,...,m
I otherwise

Intuitively, =} correspondsto —; andy’ correspondsto —y;. Itisvery importanttonotethat L P(®) isalways
positive.

Givenatruth assignment o(.X) to X' = {zy,...,2,}, wedenoteby My C By p(4) thefollowinginter-
pretation

My = {z; | p(x;) = true} U{z} | ¢(z;) = false} U{w} U {y1,. s Um ULy, - 0}
Moreover, givenaninterpretation M of L P(®), wedenoteby ¢, thetruthassignmentto X' = {z1,...,2,}:

on(ai) = true iff x; € M.

Let £ beaBoolean expressionand ¢ be atruth assignment for thevariablesinthe set X. £, x denotes
the Boolean expression £ where each variable 2 € X isreplaced by itstruth value ¢(z).

Lemmab5.1l Let & = VY F and L P(®) be the formula and the disjunctive logic program defined above.
Consider theset A of thetruthassignments¢(X) to X = {x1,...,2,} suchthat ®, = VY F, x,isavalid
formula, and let B be the set of the stable models of L P(®) which contain w. Then, there is a one-to-one
correspondence between A and B. In particular:

1 ifoy =VY Eyx) € QBF v, then M, € ST(LP(®)),and
2. if M € ST(LP(®)) containsw, then ®,,, € QBF v.

PrROOF. Followsimmediately from Theorems 3.3 and 3.5 of [3], which precisely state the correspondence
between such aformula ¢ and its associated program L P(®). a

16

Notethat L P(®) is constructible from ¢ in polynomial time and that ST(LP(®)) = MM(LP(®)), as
LP(®)isapositive program.

We are now ready to derive the complexity of Brave reasoning with optimal models.

Theorem 5.7 (General/PositiveProgram, Arbitrary Aggregation) Given a disjunctiveprogram P, ¢, A and
aground literal ¢ asinput, deciding whether ¢ istruein some optimal stablemode! of P wirt. (g, A) isAZL-
complete. Hardness holds even if P isa positive program.

PROOF. AL-Membership. We first call a 1" oracle to verify that P admits stable models (otherwise, ¢
cannot be a brave consequence). We computethen k = max _hof(p, A, P) (thisisdonein polynomial time
by assumption). After that, by binary search on [0..k], we determine the cost X of the optimal stable models,
by apolynomial number of callsto a(x{) oracle deciding approx(P, p, A, n,0) (n = k/2 on thefirst call;
thenif theoracleanswersyes’, n = k/4; otherwise, n issetto k /24 k /4, and so on, according with standard
binary search). (Observe that the number of callsto the oracleislogarithmicin &, and, as a consequence, is
polynomial in the size of the input.) Finally, acall to the oracle approz(P, p, A, ¥, {q}) verifiesthat ¢ is
truein some optimal stable model of P.

Al’-Hardness. Let (x1, ..., z,,) bein lexicographical order. Then, AZ’-hardnessis shown by areduction
from deciding whether thelexicographically minimum truth assignment ¢(X), X = {z1,...,z,}, suchthat
$, = VY Eyx) isvdid, satisfies ¢(x,,) = true (where such a ¢ isknown to exists). W.1.0.g. we assume
that £ isin 3DNF of the form defined above.

Consider the (positive) program L P(®) defined above. Let ST,,(LP(®)) denote the set of the stable
models of L P(®) which contain w. ¢From Lemma 5.1 we know that there is a one-to-one correspondence
between ST,,(L P(®)) and the set of truth assignments ¢ which make ¢, valid.

Now, let o be the atomic weight assignment such that: (i) p(z;) = 277 (1 < i < n), (i) p(w) = 27,
and (iii) p(y) = 0,ify ¢ {w} U {z1,...,2,}. Moreover, let A be the aggregation strategy defined as
follows: (i) A(X)=2"if2" ¢ X, (ii) A(X) = sum(X)—2",if 2" € X.

Then, the Herbrand objective function HOF (g, .A) assigns 2™ to the stable models which do not contain
w; whileit assigns the sum of the weights of the z;sin M to each stable model M containing w (the mod-
esinST, (L P(®)) arethusthe candidates for optimal models, astheir valuesislessthan 2™). HOF(p, A)
induces atotal order on ST,,(LP(®)). In particular, given two stablemodels M and M’ inST,,(LP(®)),
HOF(p, A)(M) > HOF(p, A)(M’) iff the truth assignment ¢y, is greater than ¢, in the lexicographi-
cally order. Therefore, L P(®) hasauniqueoptimal stablemodel M (actualy, M isinST,,(LP(®))), corre-
sponding to thelexicographically minimumtruth assignment ¢,,,;,, suchthat &, . = VY E, _ xyisvalid.
Hence, the lexicographically minimum truth assignment ¢,,;,,(X) making ®,, . vaid fulfills ¢,,,;,,(z,,) =
true if and only if «,, istruein the optimal stable model of L P(®) w.rt. (p,.A) (that is, iff «,, isabrave
consequence of L P(®) w.rt. (p,.A)). Therefore, brave reasoning is AZ'-hard. Moreover, hardness holds
even if thelogic program is positive as the utilized program L P(®) positive. O

Thefollowing result says that even if we require the aggregation strategy to be monotonic, the hardness
result presented above continuesto persist. Thus, the complexity does not decrease in the case of monotonic
aggregation strategies.

Theorem 5.8 (General Program, Arbitrary/Monotonic Aggregation) Given a disjunctive program P, o, A
and aground literal ¢ asinput, deciding whether ¢ istruein some optimal stable model of P wir.t. (p,.A)is
AL -complete even if A is a monotonic aggregation strategy.

17

Remark. Note that if the weight assignments are required to be in unary (tally) notation, then O(log n)
oracle calls suffice to determine the cost 3. of the optimal model. In this case, the problem ends up being
AF[O(log n)]-complete.

If the aggregation strategy is monotonic and the program is a disjunctive positive program, then brave
and cautious reasoning have different complexity (unless the polynomial hierarchy collapses at its second
level). Indeed the following result shows that for positive programs with monotonic aggregation strategies
the brave reasoning problem is Y.’ -compl ete and the cautious reasoning problem is 1T’ -compl ete.

Theorem 5.9 (Positive Program, Monotonic Aggregation, Reasoning) Given a disjunctivepositive program
P, aweight function p, amonotonicaggregationstrategy.A, andagroundliteral ¢ asinput, deciding whether
q istrueinsome(resp., in every) optimal stablemodel of P wr.t. (p,.A)isS¥ -complete(resp., 115 -complete).

5.4 Reaultsfor Minimal Modéds

Minimal mode semanticsis syntax independent. For any disjunctivegeneral program P, there exists a cor-
responding disjunctive positive program having the same semantics. Define the positive version PV (P) of
P asthefollowing digjunctive positive program:

PVv(Py={ AVvV---VAVB1V---VB, — Dy,...,Dy|
AV ---VA, — Dy,....Dg,not(By),...,not(B,,)isaruleof P}

Note that PV (P) is computablein linear-time from P. Clearly, P and PV (P) have the same set of mod-
els, and hence the same set of minima models. Thus, considering only disjunctive positive programsis no
longer an actual restriction, because any general program is equivaent (w.r.t. minimal model semantics) to
adisjunctive positive program. Moreover, for positive programs, stable and minimal models coincide. Asa
consequence, for any problem II, al the complexity results we are interested in can be immediately derived
from the corresponding results we proved for the problem 11 for disjunctive positive programs under stable
model semantics.

To save space and readability of the paper, we do not provideformal statements about the computational
complexity of the considered problems (Checking, Brave reasoning, Cautious reasoning, Approz) under
minima model semantics. However, Table 1 and Table 2 show the computationa complexity of these prob-
lems.

55 Reaultsfor All Models

If we consider all models, we get thelowest compl exity resultsfor al problems. First, wedefineadisjunctive
positive program Pr which can be polynomially computed from a given Boolean formula £/, and whichis
useful for al the reductions of this section.

Let 2/ bea CNF Boolean formula, i.e., £ = Cy ACy A ---CrandeachC; = Ly V---V L4, isa
digunction of literals. Moreover, let {4, ...z, } bethe set of Boolean variables occurring in F. Py isthe

18

following disjunctive positive program:

Vo —; foreechi=1,...,n
contr — x; A xl; foreachi=1,....n

contr — o(Lg1)N---No(Lgy,) foreachk=1,...,r

)

x; — contr foreachi=1,...,n
xh — contr foreechi=1,...,n

where o maps literalsto atoms as follows:

x; ifL=-x;forsomei=1,....n
o(L)= ;o .
x, ifL=ua;,forsomei=1,....n

There is a one-to-one correspondence between the truth assignmentsto X satisfying £ and the models of
Pr which do not contain the atom contr. In particular, given amodel M of Pg st. contr ¢ M, thetruth
assignment ¢y satisfies E, where ¢as(x;) = true if a; € M, and ¢pr(a;) = false if 2t € M. Viceversa,
given atruth assignment ¢ satisfying , the set of atoms /4 isamodel of Px, where

Iy = {a; € {ar.. oo} | 9(ar) = trucy U () € {},....a)} | é(a:) = falsc}

Note that contr does not belong to 7.

On the other hand, amodel for Px containing the atom contr encodes a contradictory truth assignment
for £, i.e. atruth assignment which violates some conjunct C'; or assignsthe value true to both z; and 2/
(which encodes —z;). Moreover, contr forces each atom of Bp, to betrue. Hence, any unseatisfiabletruth
assignment for &2 mapsto themodel Bp,, of Pr.

Checking

Our first result is that determining whether an arbitrary interpretation M is an optima model of a digunc-
tive logic program P is co-NP-complete. Note that in contrast, determining whether M is an optimal sta-
ble/minimal model is 114 -complete.

Theorem 5.10 (General/PositiveProgram, Arbitrary/MonotonicAggregation) Givenaprogram P, aweight
function p, an aggregation strategy .A, and a set of atoms M as input, deciding whether M is an optimal

model of P wirt. (p,.A)isco-NP-complete. Hardness holds even if P isa positiveprogram, M isa model

of P, and A is a monotonic aggregation strategy.

PROOF. co-NP-Membership. We can verify that M is not an optimal model asfollows. Guess My C Bp,
and check that: either (1) [M; isamodel of P] and [HOF(p, A)(M;1) < HOF(p, A)(M)],or (2) M isnota
model of P. Since both (1) and (2) are polynomial time tasks, thisproblemisin NP, and as a consequence,
Checkingisinco-NP.

co-NP-Hardness. Let £/ bea CNF Boolean expression, and Pr thedisjunctive positive program defined
above. Wereducethe problem of decidingwhether £ isan unsatisfiableBool ean expression to the problem of
checking whether the Herbrand base Bp,, isan optimal model for Pr; w.r.t. to (g, count), where pg(¢) = 0

19

for every atom ¢ € Bp, . Note that the aggregation strategy count, which given aset S’ returns the number
of ementsin .9, is monotonic.

Then, HOF(po, count)(Bp,) = |Bp,|. Onthe other hand, for any model M of P corresponding to a
satisfiable truth assignment to £, HOF (g, count)(M) < |Bp,| holds. Thus, Bp, isan optima model for
Pr wirt. (oo, count) iff E isnot satisfiable.]

Approx

Theorem 5.11 statesthat the Approx problemis N P-complete when all models are considered. Recall that,
incontrast, itis 25 -complete for stable and minimal models.

Reasoning

Asinthe case of the Checking and Approx problems, the complexity of reasoningwith “all” modelsis better
than with stable/minimal models.

Theorem 5.12 (Brave) (General/Positive Program, Arbitrary/Monotonic Aggregation, Reasoning) Given a
program P, aweight function ¢, an aggregationstrategy.4, and agroundliteral ¢ asinput, deciding whether
P =M g wrt. (p,.A) (brave reasoning) as well as deciding whether P =21 g wirt. (p,.A) (cautious
reasoning) are A% -complete problems. Hardness holds even if P is positive and A is monotonic.

PROOF. A%’-Membership, brave reasoning. We first compute k¥ = maz_hof(p, A, P) (thisisdonein
polynomial timeby assumption). After that, by binary searchon [0..%], wedeterminethecost X of theoptimal
models, by a polynomial number of calsto an (NP) oracle deciding approxz(P, p, A, n,0) (n = k/2 onthe
first cal; then if the oracle answers”yes’, n = k/4; otherwise, n issetto k/2 + k/4, and so on, according
with standard binary search). (Observe that the number of calls to the oracle islogarithmicin &, and, as a
consequence, is polynomial in the size of the input.) Finally, a call to the oracle approz(P, p, A, %, {q})
verifiesthat ¢ istruein some optima model of P.

AP -Hardness, brave reasoning. We show this by a polynomial time reduction of the following A -
completeproblem[8, 11]: GivenasatisfiableCNFBooleanformulaFon X = {zy,...,,}, decidewhether
thewithrespectto (z1, . . ., ,) lexicographically minimum ¢(X) satisfying £, whichwedenoteby ¢, (X),
fulfills ¢pin () = true.

Consider thedisjunctivepositiveprogram Pr correspondingto F, as defined above. Recall that thereisa
one-to-one correspondence between the truth assignmentsto X satisfying £/ and themodelsof Pz whichdo
not contain the atom contr. Now, consider the sum aggregation strategy, and the atomic weight assignment
o such that: (i) p(z;) = 277 (1 < 7 < n), (i) p(a!) = 0 (1 < < n), and (iii) p(contr) = 1. Note
that HOF(p, sum)(Bp,) = 27, because of contr. Then, Bp, isnot an optimal model. Indeed, since £ is
satisfiable, HOF(p, sum)(M) < 2™ — 1 for any other model M for Pg.

Itiseasy to seethat the Herbrand objectivefunction HOF (o, sum) inducesatotal order on theset of mod-
elsof Pg. Inparticular, given two models M and M’ of Pr, HOF(p, sum)(M) > HOF(p, sum)(M’) iff
the truth assignment ¢ isgreater than ¢, in thelexicographical order. In particular, Px hasaunique opti-
mal model M, corresponding to thelexicographically-minimumtruth assignment satisfying £ (i.e., pas(X) =
dmin(X)). Therefore, thelexicographically minimum truthassignment ¢,.,;,, (X) satisfying £ fulfills ¢y, (2,,) =

20

true if and only if z,, istruein the optimal model of P w.r.t. (g, sum) (thatis, iff z,, isabrave consequence
of Pw.rt. (p, sum)). Therefore, bravereasoningis AL’ -hard. Moreover, hardnessholdseven if the program
is positive and the aggregation strategy is monotonic, as P ispositive and sum is monotonic, resp.

CautiousReasoning. Both membership and hardnessfor AZ” can be easily derived by the same arguments
described in thefirst part of the proof for brave reasoning. O

6 Algorithmsfor Computing Optimal Models

In thissection, we present algorithmsfor computing optimal models, considering the families of stable, min-
imal, and all models.

6.1 Definitionsand Notations

We start by introducing some notation. We say that an interpretation I’ for aprogram P extendsan interpre-
tation [for P if I isconsistentand I C I’. A model M for P extendsan interpretation I (also, I isextended
to M) if there exists an interpretation I’ such that I’ extends I and M = I't.

Tp : 2BPY=Br . 9Br denotes the (skeptical version of the) immediate consequence operator. It is
defined as:

Tp(l)={a € Bp| 3r € ground(P)s.t.a € H(r), H(r)—{a} C —.I,and B(r) C I}.

$p : 2BPU=Br . 9Br denotesan extension of Fitting's operator [5] to the disjunctive case, used for
computing false atoms of P.

®p(I) = {a€ Bp|Vr€ ground(P)witha € H(r): B(r)N = # Qor (H(r)—{a})NI#0}.

Definition 6.1 Let P beaprogram and I aset of literals. A positive possibly-trueliteral of P w.r.t. I'isan
atom a such that there existsarule r € ground(P) for which al the following conditions hold:

1 aec H(r),

2. H(r)n I = (that is, the head is not true w.r.t. 7);

3. B(r) C I (that is, the body istruew.r.t. [).

A negative possibly-true literal of P w.rt. I isaliteral —a st. « ¢ (It U I7), and there exists a rule
r € ground(P) for which al the following conditions hold:

1. —a € B(r),

2. H(r)n I =0 (that is, the head is not true w.r.t. I);

3. B*(r) C I (thatis, the positive atomsin the body are true w.r.t. 7);

4. B=(r)n I # 0 (that is, no negativeliteral in thebody isfasew.r.t. 7).

The set of al possibly-trueliteralsof P w.r.t. I isdenoted by PTp(1). a

21

Example 6.1 Considertheprogram P = {a Vb «— ¢,d; eVd «—; gV h —c,~f}andlet] = {¢,d} be
aninterpretation for P. Then, we have two positive possibly-trueliteralsof P w.r.t. /7, namely, a, and b; and
the negative possibly-trueliteral - f. O

Thefollowinguseful property of the set of possibly-trueliteralscan be easily verified. Thesame property
holds for the related notion of possibly-true conjunctions[17].

Proposition 6.1 Let P beaprogramand I a consistentinterpretationfor P. Then, PT»(I) = () ifand only
if It isamodd for P.

6.2 Computingan Optimal Stable M odel of a Positive Program with a Monotonic Aggrega-
tion Strategy

Algorithm Optimal _Stable_Model shows how to compute optimal stable model of a disjunctive positive
program P with amonotonic aggregation strategy .A.

Algorithm Optimal _Stable M odél

Input: A digunctive positive program P, aweight function g,
amonotonic aggregation strategy .A.

Output: An optimal stable model of P w.rt. (p,.A).

Procedure Compute_Optimal(I : SetOfLiterals; var best_mod : SetOfLiterals);
var I’: SetOfLiterals; L: Atom;

repeat
=T
[:=TUTp(I')U~®p(I');

until 7 = I’;

ifIN=I#0 or LBp(I,p, A) > HOF(p, A)(best_mod)
then return

end_if

if PTp(I) =0 (* I isamodel *)
then if (I C best_mod) or HOF(p, A)(I*) < HOF(p,.A)(best_mod)
then best_mod := It
end._if
return
end._if
L := choose(PTp(I), p, A, P, I);
Compute_Optimal(I U {L}, best_mod);
Compute_ Optimal(I U {-L}, best_mod);
end_procedure

var best_model: SetOfLiterals;
begin (* Main*)

best_model := Bp;

Compute_Optimal((), best _model);

output best_model; (* best_model isan optima stable modd of P w.rt. (p,.A) *)
end

22

Thefunction LBp(1, p, A) isapolynomial-time function which returns alower bound for the set
{HOF(p, A)(M)| M isamodel of P, [T C M, andI~ N M = 0}

of realsnumbers. That is, no model of P extending I can get a Herbrand objectivefunction value better than
LBp(I,p,A).

Notethat, for any consistentinterpretation/, HOF (g, .A)(I ") isatrivia lower boundfor P w.rt. (1, p, A),
because A is a monotonic strategy, and every model of P including 7, will clearly be a superset of 7.
Lower bounds are used to cut the search space. Consider a cal to the procedure C'ompute_Optimal(l :
SetOfLiterals; var best_mod : SetOfLiterals), where I isaset of literals, and best_mod isamodel for the
program, representing the model with the lowest Herbrand objective function we have computed so far. In-
tuitively, we are looking for some optimal stablemodel M “extending” the set of literals 7. If P hasalower
bound of n w.rt. (1, p,.A),andn > HOF(p, A)(best_mod), it clearly does not make sense to continuethis
way, because we cannot compute amodel better than best_mod, by extending 7. Thus, we can terminate the
current call to the procedure, and go back to explore other possibilities.

Theactua agorithmto be used for the computation of alower bound for some set of literals 7 w.r.t. some
(g, .A) should be chosen depending on the particular aggregation strategy .A, on the weight function g, and,
possibly, on the particular class of programs P belongsto.

The function choose(PTp(1), ¢, A, P, I) selects a possibly-trueliteral from PTp(I). We can use dif-
ferent strategiesfor this selection, which best fit different combinations of weight functionsand aggregation
strategies. However, we consider only choices that can be done in polynomial-time. If .4 is monotonic, the
simplest strategy isagreedy choice: possibly true atoms which are assigned the lowest weightswill be cho-
sen first. However, more sophisticated methods can be easily designed. For instance, looking at the program
P, we can choose atoms whose immediate logical consequences give theleast increment, and so on.

The following example showsin detail how the a gorithm works.

Example6.2 Let P bethe following disjunctive positive program:

aVb —
d

cvVd — a

eV f «< b

We apply the algorithm Optimal _Stable_M odel to compute amodel belonging to Opt(P, ST(P), o, sum),
i.e, an optimal stable moddl of P with the sumaggregation strategy, and a weight function ¢ such that
pla) = 2,0(b) = 3,p(c) = 1, p(d) = 3, p(e) = 2,and p(f) = 2. We use the lower-bound function
L Bp that, applied to an interpretation 7, just returns the sum of the weights associated with the atomsin /+.

The procedure C'ompute_Optimal isfirst called with the empty interpretation, and best_mod isinitial-
ized withthe Herbrand base of P. Thevalueof best_modisHOF(p, sum)(best_mod) = 13. After theexecu-
tion of therepeat loop, we get theinterpretation I; = {d, ¢}, because Tp(0) = {d}, ®p({d}) = {c}, and
no further atoms can be obtained by using these deterministic operators. The evaluation of the lower-bound
functiongives L Bp(Iy, o, sum) = HOF(p, sum)(I;") = 3. Thisvalueislessthan HOF (g, sum)(best_mod),
and hence the algorithm continuesand computes the set of possibly-trueatomsw.r.t. I;. Weget PTp(11) =
{a,b}. Sincethisset isnot empty, we select from it a possibly-trueatom, by using the function choose. As-
sume we choosetheatom o, and let I, = [; U{a} = {a,d, =c}.

23

Then, the procedure C'ompute_Optimal is recursively called with the parameters I, and best_mod,
to compute possible optimal stable models starting from the interpretation /5. The repeat loop ends with
the new interpretation Is = {a,d, b, —c,—e,—f}. Thisinterpretation is consistent and the lower bound
LBp(I3, p,sum) = 5 islessthan the value 13 of best_-mod. Moreover, PTp(I3) = (. Indeed, the set
I} = {a,d} isamode of P. Since I3 isasubset of best_mod = Bp, it becomes the new best model, that
is, we set best_mod = I .

At thispoint, we come back to the previousexecution of C'ompute_Optimal, and try to compute optimal
model sassumingthe previously selected atom befalse. Therefore, wecall Compute_Optimal(1y, best_mod),
where Iy = [U{—a} = {d, —~a,~c}. Therepeat loop givestheinterpretation /5 = {b, d, -a, ~c}, because
b is now deterministically derivable from the first rule of P. We compute the lower bound for this interpre-
tation: L Bp (15, p, sum) = 6. Thisvalueiscompared with the Herbrand objective function evaluated on the
best model. Since HOF (¢, sum)(best_mod) = 5, thisexecution of C'ompute_Optimal is stopped, because
no stable model better than best_mod can be found starting from 5.

Now, the first call of C'ompute_Optimal has been completed, and thus the al gorithm stops and returns
the optimal stable model best_mod = {a,d}.

For compl eteness, notethat / 5+ isnot amodel for P, andinfact there were some possibly-trueatomsw.r.t.
I5,as PTp(1I5) = {e, f}. Indeed, P has other two stable models, namely, {6, d, e} and {b, d, f}. However,
these model s are not optimal because their Herbrand objectivefunctionisequal to 8, whilethe optimal value
is5. Therefore, thanks to the lower-bound function, the algorithm is able to cut the search space, avoiding
the generation of useless(i.e., not optimal) stable models.

Theorem 6.1 Given a digunctive positive program P, a weight function ¢, and a monotonic aggregation
strategy .A, the algorithm Optimal _Stable_M odel outputsan optimal stable model of P wirt. (p,.A).

PROOF. At each time of the computation of Optimal_Stable M odel, the variable best_model contains a
model for P. Indeed, itisinitialized with the Herbrand base Bp, whichis clearly amode for P, and during
the computation of the algorithm it can be replaced only by another model for P having a better Herbrand
objectivefunction (short: HOF) value. Itiseasy to verify that the algorithm terminates after afinite number
of steps, because at each recursive call of C'ompute_Optimal we add to the (partial) interpretation / anew
literal, and the Herbrand base of P isfinite, as no function symbol occursin P. Then, the agorithm returns
aset of atoms, say M. We claim that M isamode for P. Thisclearly holdsif M = Bp. Otherwise, by
constructionof thealgorithm, M istheset of positiveliterals It of aninterpretation 7 suchthat P7p (1) = 0.
In this case, the claim followsfrom Proposition 6.1.

Now, assume by contradictionthat thea gorithm Optimal _Stable_M odel does not output an optimal sta-
ble model for P, and let M’ be an optimal stable model for P. There are two possibilities:
1. the HOF valueof M isstrictly greater than M’, i.e., HOF(p, A)(M) > HOF(p, A)(M'); or

2. themodels M and M’ have the same HOF value, but M isnot stable and hence not minimal, as P is
positive.

If the second condition holds, we may assume without loss of generality that M’ C M, because in this
case every minimal model included in M is an optimal stable model for P. Then it is easy to see that,
for each call to Compute_Optimal(1, best_mod) during the computation of Optimal _Stable_M odel, either
HOF(p, A)(best_mod) > HOF(p, A)(M') or M’ C best_mod holds.

24

Let I bethelargest interpretationfor P that can be extended to M’ and that has been used as a parameter
for acall to the procedure C'ompute_O ptimal, during the execution of Optimal _Stable_M odel. Note that
such an interpretation must exist, because the algorithm startswith the empty interpretation, which can be ex-
tended to any model. Now, consider the evaluation of Compute_Optimal(1, best_mod). Wefirst evaluate
therepeat |oop, which extends toanew interpretation, say I. Itiseasy to verify that, for every model M for
P that extends I, M extends I, aswell. Infact, wejust add to [literalsthat are deterministic consequences
of P giventheinterpretation I. It followsthat M’ extends I. Thisin turn entailsthat I is a consistent in-

terpretation. Moreover, L Bp(!, ,.A) cannot be greater than HOF (g, A)(best_mod) because we know that
M’ isan optimal stable model and extends /.

Thus, the computation continues and we evaluate the set of possibly-trueliterals P7»(1). Assumethat
PTp(I) = (). ¢From Proposition 6.1, I+ isamodel for P. Since I can be extended to the model M’ then
PTp(I) = 0 entails I'™ = M’. Thus, from the above relationships between M’ and best_mod, it follows
that M’ (i.e., IT) should replace best_mod. However, if this happens, there is no way to replace M’ by M
during the algorithm. Thisis a contradiction, as we assumed M is the output of the computation of Opti-
mal _Stable_M odel on P.

Thus, assume PTp(1) # (§ holds. Let I, bethepossibly-trueliteral selected by choose(PTp (1), o, A, P, I).
We then call both Compute_Optimal(IU{L}, best_mod) and Compute_Optimal(IU{=L}, best_mod).
However, if I ¢ M’, then I U {L} can be extended to M’; otherwise, I U {-L} can be extended to M’. In
either case, our assumptionon I is contradicted.]

Since even computing just a minima model of a disjunctive positive program isan NP-hard task (ac-
tually, PNPLOUogn)]_hard) [1], unless the polynomial hierarchy collapses, there exists no polynomial time
algorithm which computes an optimal stable model for a digjunctive positive program. However, an opti-
mal stable model can be computed by using polynomial space and single exponentia time. Moreover, the
algorithm runs efficiently on the tractable class of normal positive programs.

Remark. Given a positive disjunctive program P, the algorithm Optimal _Stable M odel outputs a model
whichisaso optimal w.r.t. minimal model semantics. To see this, observethat for positive programs, stable
and minimal modelscoincide. Now, consider thefamily of all models. For any optimal model M, thereexists
aminima model M’ C M whichisaso an optima model. Indeed, for any monotonic aggregation strategy
A and any weight function o, HOF(p, A)(M’) = HOF(p, . A)(M) must hold because A’ isasubset of M.
Thus, every optimal minima model isa so an optimal model w.r.t. the family of all models, hence algorithm
Optimal _Stable M odel outputsan optimal model w.r.t. to the family of all models, aswell.

6.3 Computingan Optimal StableModel: General Case

Algorithm Optimal Model_General, below computes an optimal stable model of a general disunctive pro-
gram with any aggregation strategy.

The main difference with the previous case, where the program was restricted to be positive and the ag-
gregation strategy to be monotonic, isthat we now have to explicitly check that the model at hand is stable.
Thisis accomplished by the function is Stable. Stable model checking can be effectively done by looking
for some unfounded set possibly included in the model, as suggested in [17], and recently improved in [10].
We assume is Stableis implemented as described in [10].

Algorithm Optimal _Modd _General

25

Input: A disunctive program P, aweight function g, an aggregation strategy .A.
Output: An optimal stable model of P w.rt. (p,.A).

Procedure Compute_Optimal G(I : SetOfLiterals;
var best_mod : SetOfLiterals; var best_val : Real);
var I': SetOfLiterals; L: Literal;

repeat
=T
[:=TUTp(I')U~®p(I');

until 7 = I’;

if IN=.1#0 or LBp(I,p,A) > best_val
then return

end_if

if PTp(I) =0 (* I isamodel *)
then if HOF(p, A)(IT) < best_val and is_Stable(IT)
then best_mod = IT;
best_val := HOF(gp, A)(IT);
end_if
return
end_if
L := choose(PTp(I), p, A, P, I);
Compute_ Optimal _G(I U {L}, best_mod, best_val);
Compute_Optimal .G(I U {-L}, best_mod, best_val);
end_procedure

var
best_model: SetOfLiterals;
best_value: Redl;
begin (* Main*)
best_value := oo;
Compute_Optimal _G(0, best_model, best _value);
if best_value < co
then output best _model,
else output “ P does not have stable models’
end._if
end

The implementation of LBp(1, p,.A) isan important issue. While the search space can be effectively
reduced in the case of monotonic aggregations, there are general aggregation strategies where no “good”
lower bounds can be computed in reasonable time. In this case, one can just return the trivial lower bound

— 0.

Moreover, for positive programs and monotoni ¢ aggregati on strategies, we can always start with a model
for the given program, whose HOF value represents an upper bound to the optimal HOF value. Indeed, the
Herbrand base Bp isamodel for any program P, and there always existsamodel M C Bp whichisa
stablemodel for P and hasaHOF vauenot greater than Bp. Inthe general case—with negation and general
aggregation strategies—, thisinitializationwoul d be meaningless, because | ogic programs with negation may
have no stable models at al, and because larger models may have better HOF values than smaller models.
Thus, we have added the new parameter best_value to the recursive procedure. best valueisinitialized with

26

the special value oc. By inspecting the value of this variable at the end of the algorithm, we can determine
whether P has stable models or not. In the former case, P has also optimal stable models, and the variable
best_model holds an optimal stable model for P.

The correctness of Optimal_Model_General is stated by the following theorem, whose proof isvery sim-
ilar to the proof of Theorem 6.1, and will be thus omitted.

Theorem 6.2 Given a disjunctive program P, a weight function g, and an aggregation strategy .4, the al-
gorithm Optimal _Stable_.Model _General outputs an optimal stable model of P wirt. (p, A).

Eveninthegenera case, an optimal stablemodel can be computed by using polynomial space and single
exponentia time. Moreover, thea gorithm runsefficiently on thetractabl e class of normal positiveprograms.

6.4 Computingan Optimal Minimal Model

In thissection, we describe how to compute optimal minimal models. Let P beadisjunctivegeneral program
andlet PV (P) bethe positiveversion of P, defined in Section 5.4.

Recall that the set of modelsof P and PV (P) areidentical, and thus the set of minimal modelsare iden-
tical, too. Moreover, for any positive program P/, ST(P’') = MM(P’) holds. It followsthat the algorithms
devel oped for computing optimal stable models can be used for computing optimal minimal models, too.

Proposition 6.2 Let P beadisjunctive general program. Given the positiveversion PV (P) of P, aweight
function p, and an aggregation strategy .A, the algorithm Optimal _Stable_Model _General outputsan optimal
minimal model of P wirt. (p,.A).

Moreover, if A ismonotonic, then, given PV (P), p, and A, thealgorithmOptimal _Stable_Model outputs
an optimal minimal model of P wr.t. (p,.A).

Thus, given agenera program P, we can first computeits positiveversion and then compute an optimal
minima model for P by using either Optimal Stable Model or Optimal_Stable Model _General, depending
on the aggregation strategy, i.e., whether it is monotonic or not. Since PV (P) can be computed from P in
linear time, the overall cost of computing an optima minima model (by using this procedure) isthe same as
the complexity of these algorithms, stated by Theorems 8.1 and 6.2, respectively.

6.5 Computingan Optimal Model

Computing an optimal model with respect to the family of all modelsisaquite different task, because every
model is a candidate to be the best model. Thus, algorithm designed for computing just minimal and stable
models are no longer useful, in general. However, if the aggregation strategy is monotonic, for each optimal
model M, thereis an optimal minima model M’ C M having the same HOF value, and hence optimal as
well. Therefore, in this case, we can safely use the agorithm Optimal_Stable Model applied on the positive
version of the program.

Proposition 6.3 Let P’ beadisjunctive general program. Given the positiveversion PV (P) of P, aweight
function g, and a monotonic aggregation strategy .4, the algorithm Optimal _Stable_Model outputs an opti-
mal model of P wr.t. (p,.A).

27

However, if we consider aggregation strategies that are not monotonic, by using the algorithms from
previous sections, we can miss optimal models. We next describe a new agorithm for the general case.

First, we define anew operator for deriving literalsthat should befalsein every model extendingagiven
interpretation. Let P beaprogramand I aninterpretationfor P. Theoperator & p : 28pY~Br . 9BpU=Bp
is defined asfollows:

Sp(1) ={C| 3r € ground(P)with { € B(r): (B(r)—{() CTand ~.H(r)C I}.

That is, if the head of r isfaseand al theliteralsin itsbody but ¢ are true with respect to 7, then ¢ must be
falsein every model extending theinterpretation /. Notethat, if { € ®% (/) isanegativeliteral, say —p, then
we derivethat p istruein every model (if any) extending /.

Algorithm Optimal Model for the computation of an optima model of a disjunctive program P with a
general aggregation strategy .A. For an interpretation 7, we denote by 7* the set of atoms that are undefined
withrespectto /,i.e, theset Bp — (I N —.1).

Thecomputation startswith theempty interpretation. At each call of therecursive procedure Compute Optimal G,
wetry to extend apartial interpretation / toamodel of P. In particular, therepeat loop extends I by adding
theliteral s (either positive or negative) that are immediate consequences of the program P starting from the
interpretation 7. Let I’ thisnew interpretation. If I’ is consistent and, according to thelower bound estima-
tion LBp(I', p, A), can lead to some optimal model of P, then the procedure continues; otherwise, it ends
and we backtrack to apreviouscall of Compute Optimal _G. Then, if I’ isconsistentand complete, itisinfact
amodel for P (seethe proof below). In this case, we compare it with the previous best model and possibly
replace thismodel by I, if the HOF valueof I’ isbetter. Otherwise, i.e., if I’ is consistent but not complete,
we select an undefined literal I with the function choose, and then try to extend recursively first I' U { L}
andthen I’ U {=L}.

Algorithm Optimal _Modé
Input: A digunctive program P, aweight function g, an aggregation strategy .A.
Output: An optima model of P w.rt. (p,.A).

Procedure Compute_Optimal G(I : SetOfLiterals;
var best_mod : SetOfLiterals; var best_val : Real);
var I': SetOfLiterals; L: Literal;

repeat
=T
[:=TUTp(I')U-.®%(I');

until 7 = I’;

if IN=.1#0 or LBp(I,p,A) > best_val
then return

end_if

if I“ =0 (* It isamodd *)

then if HOF(p, A)(I1) < best_val

then best_mod = IT;
best_val := HOF(gp, A)(IT);

end_if

return
end_if
L := choose(T%, p, A, P, I);
Compute_ Optimal _G(I U {L}, best_mod, best_val);

28

Compute_Optimal .G(I U {-L}, best_mod, best_val);
end_procedure

var
best_model: SetOfLiterals;
best_value: Redl;
begin (* Main*)
best_value := oo;
Compute_Optimal _G(0, best_model, best _value);
output best_model,;
end

We next briefly discussthe differences of the algorithm Optimal Model with the previousa gorithmsfor
computing optima minimal and optimal stable models. For the All-models semantics, we have to consider
every modd for the program. Since the possibly-true atoms have been defined for generating only stable
models, in this case the function choose may select any undefined atom in 7, rather than restricting the
selection just to PT'p(1); otherwise, we can miss some (possibly optimal) model. Literals that should be
fasein every model extending I are computed using the operator ®%, rather than ¢ », which declare false
any atom no longer supported by therules of P. Thelatter would not be safe for the family of al models.

Theorem 6.3 Given a disjunctive program P, a weight function g, and an aggregation strategy .4, the al-
gorithm Optimal _Model -G outputs an optimal model of P w.rt. (p,.A).

PrROOF. Note that we consider logic programs without integrity constraints.® It followsthat P has always
models and hence optimal models. In fact, agorithm Optimal Model G always outputs a set of atoms, say
M. We next provethat M isan optimal model for P.

First observethat M/ ismodel. Indeed, M isthe set of positiveliterals I of atotal consistent interpre-
tation /7 computed by the repeat loop. Assume by contradictionthat M isnot amodel. Then, thereisarule
r € Psuchthat B(r) C ITand H(r)N I = or, equivalently, —.H(r) C I, because I istota. Thisen-
tailsthat, for any literal { € B(r),(€ ®%(I). Since at each step of the loop we add —.¢% (1) to the current
interpretationand weassumed ¢ € B(r)and B(r) C I, weget that both ¢ and -¢ belongto 7, acontradiction.

Now, assume by contradiction that the algorithm Optimal Model G does not output an optimal model
for P, and let M’ be an optimal model for P. This means that neither A’, nor any other optimal model
for P, is generated during the computation of Optimal _Model G, otherwise the variable best_mod should
hold such a model and the agorithm would eventually output it. Therefore, best_val > HOF(p, A)(M’)
holds at each step of the computation. Let I be the largest interpretation for P that can be extended to M’
and that has been used as a parameter for a cal to the procedure C'ompute_Optimal, during the execu-
tion of Optimal Model _G. Note that such an interpretation must exist, because the algorithm starts with the
empty interpretation, which can be extended to any model. L et usnow consider the eval uation of thefunction
Compute_Optimal(1,best_mod, best_val). Wefirst evaluatetherepeat loop, which extends / toanew in-
terpretation, say 1. Itiseasy to verify that, for every model M for P that extends I, M extends I, aswell. It
followsthat M’ extends I. Thisinturn entailsthat 7 isaconsistent interpretation. Moreover, LBp(I, g, A)
cannot be greater than best_val because we know that A1’ is an optimal model and extends I. Note that

SRecall that we used integrity constraintsin our examples as a shorthand for anormal rule that behavesas a constraint under the
stable model semantics, as described in Section 3.1.

29

I # (), otherwise from our assumption on I and henceon I, M’ = It would immediately follow. Then,
we select aliteral I by using the function choose(I%, p, A, P, I), and cal both Compute_Optimal(I U
{L}, best_mod, best val), and C ompute_Optimal(I U {~L}, best_mod, best val). However, if L € M’,
then I U {1} can be extended to M’; otherwise, I U {—~L} can be extended to M’. In either case, our as-
sumption on [is contradicted. O

Evenin the case of all models, an optimal model can be computed by using polynomial space and single
exponentia time. The proof isvery similar to the proof of Theorem 8.1 and thuswill be omitted.

Theorem 6.4 Given a digunctive program P, a weight function g, and an aggregation strategy .4, Opti-
mal _Model runsin polynomial space and in single exponential time, provided that ¢ and .A are polynomial
time computable.

7 Related Work

We split related work into two categories - work on logic numeric values are assigned to models. Thefirstis
in logic programming with uncertainty, and work on “weighted | ogic programs.”

7.1 Relationship with Logic Programs for Uncertainty

Logic programs to handle uncertainty were first introduced by Shapiro[26] and later studied by van Em-
den [32]. In both cases, the authors wrote normal, positive rules and associated a number between (0 and
1 (inclusive) with that rule. The model theory of such programs was simple. Interpretations assigned real
numbersinthe [0, 1] interval to ground atoms. Interpretation [assignsmin{/(As,...,I1(A,)} tothecon-
junction A1 & ... & A,. Agroundrule A — Ay & ...& A, with associated real number v is satisfied by
Liff [(A) > v x [(A1 & ... & A,). Later, thiswork was extended by Kifer and Subrahmanian [9] who
introduced generalized annotated programs (GAPs for short). GAPs generalized such rules to use an arbi-
trary complete lattice of truth values, and furthermore, instead of associating numberswith rules asawhole,
GAPs provided a syntax to annotate atoms with lattice val ues as well as expressions that would eva uate to
latticevalues. Theresulting syntax allowed both Shapiro’sand van Emden’ sframework to be special caseson
GAPs. Furthermore, numerous other interesting kinds of problems (such as temporal reasoning problems)
could be expressed in GAPs. Later, [20] adapted the GAP framework to handle purely probabilistic data.
Lakshmanan and his colleagues [14, 13, 15, 27] developed an elegant parametric framework to represent
varied probabilistic strategiesin logic programs and devel oped important query optimization results.

However, al these approaches are not directly related to the problem of associating weights with mod-
els. We note that, in [20, 14], a probabilistic interpretation consists of a set of (ordinary) Herbrand inter-
pretations together with a probability distribution over them. Thus, if we have a very simple probabilistic
logic program with 2 ground atoms a, b occurring in it (and no others), we would have four Herbrand mod-
els—0,{a}, {b},{a,b}. A probabilisticinterpretation may associate a probability with each of them such
as0.2,0.3,0.1,0.4, respectively. Such an association of probabilitiesmay be viewed as associating a “cost
like” value with the models.

However, there are many differences between thispaper and such approaches. First and foremost, auser
of alogic program cannot specify his own costs— they are implicitly embedded already in the probabilistic
logic program and cannot be changed. Second, the probabilistic L P approaches do not have any notion of

30

“optimality” and hence, none of the complexity results of this paper or the algorithms to compute optimal
(stable, minimal, al) models are described there.

7.2 Reationship with Weighted L ogic Programs

Marek and Trusczynski [18] have introduced a notion of “weighted logic programs” and Niemela's group
has separately introduced weighted logic programs [21, 22, 30]. These two frameworks are quite different,
even though they have the same name, so we consider them separately.

Marek and Trusczynski [18] have rulesthat are identical in syntax to the rules above of Shapiro and van
Emden with one difference — the numbers associated with rules do not have to liein the [0, 1] interval. A
paraphrased version of the informal reading of therule givenin[18, p.7] A — A & ... & A, with number
vis: If Aq,..., A, aretrue and the amount of available resources equals or exceeds v, then we can derive
a, and to do so, we must decrease the available resources by ». One can now give a straightforward fixpoint
semantics for aweighted logic program (which is a set of such rules). For instance, consider the weighted
logic program:

o R

o

d

One semanticsfor thisprogram would allow usto infer, in one step, that « and b can be established at costs 3
and 4, respectively, and in the second step, that ¢ and d can be established at costs 9 and 8, respectively. An
alternative semanticsis a so proposed by the authors. The authors note that their results are similar to those
of van Emden [32]. However, there are many differences between our work and theirs.

Niemela'sgroup hasa sointroduced anotion of aweighted logic program. In their framework, they have
rulesof theform Cy — (4, ..., C, where each C; hastheform

LS{Klzwlv"'vﬁm:wm}SU-

The ¢;’s are literals (for the sake of brevity, we will assume they are ground though thisis not required by
[21, 22, 30]). An Herbrand interpretation /' satisfies the above (ground) ruleif:

e Eachliteral ¢; € I (wesay (; istruein thiscase), and
L] LS Z[ielwi S U.

Satisfaction of non-ground rulesis defined in the usual way.

There are many differences between our work and the above two pieces of work. First, it is the logic
programmer who encodes the numbers. The end user has no say in the matter — this causes problemsin
examples like the cooking example, where different cooks may have different costs associated with plan-
ning adinner. Second, there is no notion of an optimal cost — Marek and Trusczynski [18] have an unique
least model that captures the least cost of each atom. However, there is no notion of associating costs with
models. Niemelaet. al [21] only ensure that the above constraints (expressed viatheir rules) are satisfied —
thereis no notion of amodel being optimal. Third, neither approach deal s with disjunctivelogic programs.
Niemela's work deals with normal programs, while the Marek and Truszczynski deals only with positive,

31

normal programs. Hence, the complexity resultsof thispaper and the a gorithmsto compute optimal (stable,
minimal, al) models described here are novel.

Animportant contributionthat Niemela s group makesthat we do not isthat they haveimplemented their
framework and they have devel oped product configuration applications. These are important contributions
that complement ours.

8 Conclusions

Logic programs and digjunctivelogic programs form a powerful reasoning paradigm that can be used to ele-
gantly and declaratively encode avariety of problems. Given a (possibly disjunctive) logic program P, there
has been an immense amount of work on characterizing the declarative semantics of P. Many of these se-
mantics (such as the stable model semantics[6], the minimal model semantics[19, 2], and the “al-models”
semantics) identify a class of models of the program as being epistemically acceptable.

In this paper, we take the point of view that a user of a logic program (which is presumably written by
alogic programming professional) may wish to add criteriathat she cares about, in the sel ection of a model
from the family of models identified by the semantics. We argue that once the logic programmer encodes
an application using some semantics, the user should be able to use objective functions to specify which of
the models conforming to the selected semantics should be picked. We have provided a formal definition
of optimal models and illustrated their utility through a simple “cooking” example, as well as a combina-
torial auction example. Subsequently, we have conducted a complexity-theoretic investigation of various
important problems relevant to this optimal models notion. Specifically, we have developed results on the
complexity of checking whether amodel isoptimal (w.r.t stablemodel semantics, minimal model semantics,
and all-models semantics), on determining whether aground atomistruein all or one of the optimal models
w.r.t. one of these aforementioned semantics, and on checking whether thereisamodel w.r.t one of these se-
mantics such that it contains certain ground atoms and is guaranteed to have a cost below a certain amount.
We have al so devel oped an exhaustive set of algorithmsto compute optima model sw.r.t stable, minimal and
all model semantics. Our results apply to disjunctivelogic programs with negation, not just to normal logic
programs.

Thefollowing questions still need to be studied. First, we need to devel op efficient implementations of
these algorithms, and conduct experimentsin order to determine how much they scaleto large programs and
data sets. Second, we need to develop efficient methods to answer “brave” and “cautious’ queries which
ask whether aquery istruein some/all optimal models. Third, we need to devel op methods to optimize such
gueries. Preliminary starting pointsfor these algorithmsare already contained in the proofsof the complexity
results, but extending them to algorithmsthat scale remains a challenge.

References

[1] Marco Cadoli. On the complexity of mode finding for nonmonotonic propositiona logics. In M. Ven-
turini Zilli A. Marchetti Spaccamela, P. Mentrasti, editors. In Proceedings of the 4th Italian Conference
on Theoretical Computer Science, page 125139. World Scientific, Singapore, 1992.

[2] J. Dix, F. Stolzenburg. Computation of Non-Ground Disjunctive Well-Founded Semantics with Con-
straint Logic Programming. Proceedings NMEL P 1996, pages 202-224.

32

(3]

[4]

(5]

6]

[7]

8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive Logic Programming: Propositiona
Case. Annalsof Mathematicsand Artificial Intelligence, 15(3/4):289-323, 1995.

T. Eiter, G. Gottlob, and H. Mannila. Digjunctive Datalog. ACM Transactions on Database Systems,
22(3):364-418, 1997.

M. C. Fitting. (1988) Logic Programming on a Topol ogical Bilattice, Fundamenta Informatica, 11, pps
209-218.

M. Gelfond and V. Lifschitz. The Stable Model Semanticsfor Logic Programming. In Logic Program-
ming: Proceedings Fifth Intl Conference and Symposium, pages 1070-1080, Cambridge, Mass., 1988.
MIT Press.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New
Generation Computing, 9:365—-385, 1991.

Jim Kadin. P(NPIOUogn)]) and sparse turing-complete sets for NP. Journal of Computer and System
Sciences, 39(3):282—298, 1989.

M. Kifer and V. S. Subrahmanian. (1992) Theory of Generalized Annotated L ogic Programming and
its Applications, Journal of Logic Programming, 12(4), pages 335-368, 1992.

Christoph Koch and Nicola Leone. Stable model checking made easy. In Thomas Dean, editor, Pro-
ceedings of the Sxteenth International Joint Conference on Artificial Intelligence (1JCAI’99), pages
70-75, Stockholm, Sweden, August 1999. Morgan Kaufmann Publishers.

Mark W. Krentel . The complexity of optimization problems. Journal of Computer and System Sciences,
36(3):490-509, 1988.

Mark W. Krentel. Generalizations of opt p to the polynomial hierarchy. Theoretical Computer Science,
97(2):183-198, 1992.

V.S. Lakshmanan and F. Sadri. (1994) Modeling Uncertainty in Deductive Databases, Proc. Int. Conf.
on Database Expert Systemsand Applications, (DEXA’94), September 7-9, 1994, Athens, Greece, Lec-
ture Notesin Computer Science, Vol. 856, Springer (1994), pp. 724-733.

V.S. Lakshmanan and F. Sadri. (1994) Probabilistic Deductive Databases, Proc. Int. Logic Program-
ming Symp., (ILPS 94), November 1994, Ithaca, NY, MIT Press.

V.S. Lakshmanan and N. Shiri. (1997) A Parametric Approach with Deductive Databaseswith Uncer-
tainty, accepted for publication in IEEE Transactions on Knowledge and Data Engineering.

N. Leone, F. Scarcello and V.S. Subrahmanian. (2001). Optimal Models of Disjunctive Logic Pro-
grams. Semantics, Complexity, and Computation. Univ. of Maryland Tech. Report CS-TR-4298.
www. ¢s. und. edu/ Li brary/ TRs/ CS- TR- 4298. ps. Z.

Nicola Leone, Pasquae Rullo, and Francesco Scarcello. Digjunctive stable models: Unfounded sets,
fixpoint semantics and computation. Information and Computation, 135(2):69-112, June 1997.

V.W. Marek and M. Truszczynski. (1999) Logic Programming with Costs, unpublished manuscript,
1999.

33

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Jack Minker. On Indefinite Data Bases and the Closed World Assumption. In D.W. Loveland, editor,
Proceedings 6" Conference on Automated Deduction (CADE *82), number 138 in Lecture Notesin
Computer Science, pages 292—308, New York, 1982. Springer.

R. Ng and V.S. Subrahmanian. (1993) Probabilistic Logic Programming, INFORMATION AND COM-
PUTATION, 101, 2, pps 150-201, 1993.

I. Niemela, P Simons and T. Soininen. Sable Model Semantics of Weight Constraint Rules, Proc. 5th
International Conference on Logic Programming and Nonmonotonic Reasoning, El Paso, Texas, Dec.
1999.

E. Niemelaand P. Simons. Extending the Smodel s System with Cardinality and Weight Constraints, in
“Logic-based Artificial Intelligence” (ed. J. Minker), pps 491-521, Kluwer, 2000.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Domenico Sacca and Carlo Zaniolo. Stable models and non-determinismin logic programs with nega-
tion. In Proceedings of the Ninth Symposium on Principles of Database Systems (PODS'90), pages
205-217, 1990.

T. Sandholm. Approachesto Winner Determination in Combinatorial Auctions, Decision Support Sys-
tems, 28, 1-2, pps 165-176.

E. Shapiro. (1983) Logic Programs with Uncertainties: A Tool for Implementing Expert Systems,
Proc. IJCAI ' 83, pps 529-532, William Kauffman.

N. Shiri. (1997) On a Generalized Theory of Deductive Databases, Ph.D. Dissertation, ConcordiaUni-
versity, Montreal, Canada, August 1997.

L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1-22, 1976.

L. Stockmeyer and A. Meyer. Word problems requiring exponential time. In Proceedings of the 5th
ACM Symposiumon Theory of Computing (STOC ' 73), pages 1-9. ACM Press, 1973.

T. Soininen, 1. Niemela, J. Tiihonen and R. Sulonen. Representing Configuration Knowledge with
Weight Constraint Rules, Proc. AAAI Spring Symp. on Answer Set Programming: Towards Efficient
and Scalable Knowledge, March 2001.

Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Proceedings of
the 14th ACM Symposium on Theory of Computing (STOC' 82), pages 137-146. ACM, 1982.

M.H. van Emden. (1986) Quantitative Deduction and its Fixpoint Theory, Journal of Logic Program-
ming, 4, 1, pps 37-53.

Klaus W. Wagner. Bounded query classes. SSAM Journal of Computing, 19(5):833-846, 1990.

Appendix A.1

In this appendix, we show three possible extended database relations for the predicates dish, dislikes, and
guest, respectively, in the cooking program of Example 3.1.

34

| Name | Type | Cost | Time || || Person Name of Dish ||
caprese appetizer | 0.55 5 nicola malai _kofta
samosa appetizer | 0.75 25 Vs masala dosa
spaghetti_carbonara | entree 2.75 15 francesco | masda dosa Teieg
lasagna entree 3.25 25 gb caprese II
malai_kofta entree 2.25 40 simona tiramisu vs
matar_paneer entree 240 15 simona idli FraCesco
masala_dosa entree 3.15 30 peppe rasgulla
idli entree 0.75 30 peppe lasagna
tiramisu dessert 3.00 30 tina matar_paneer
rasgulla dessert 2.00 30 tina samosa

Appendix A.2

Thelogic program in Example 3.1 has 16 stable models altogether, depending on what is chosen as an ap-
petizer (2 choices), what is chosen as an entree (4 choices) and what is chosen for dessert (2 choices). Note
that the choices are restricted according to the given group of guests; in our example, Francesco, Nicola, and
VS. We list below, for al these stable models, just the predicate dinner, which characterizes each menu:

My, = {dinner(caprese,lasagna,tiramisu), ...},
Ms = {dinner(samosa, matar_paneer,rasgulla), ...},
Ms = {dinner(caprese, spaghetti_carbonara,tiramisu), ...},
M, = {dinner(caprese, spaghetti_carbonara, rasgulla), ...},
Ms = {dinner(caprese, matar_paneer,tiramisu), ...},
Ms = {dinner(caprese, matar_paneer,rasgulla), ...},
M7 = {dinner(caprese,lasagna, rasgulla), ...},
Ms = {dinner(samosa,lasagna,rasgulla), ...},
My = {dinner(samosa, matar_paneer,tiramisu), ...},
My = {dinner(samosa,lasagna,tiramisu),. ..},
My, = {dinner(samosa, spaghetti_carbonara, rasgulla), ...},
M2 = {dinner(samosa, spaghetti_carbonara,tiramisu), ...},
Mz = {dinner(caprese,idli,rasgulla), ...},
My = {dinner(samosa,idli,rasgulla), ...},
Mys = {dinner(caprese,idli,tiramisu), ...},
Mg = {dinner(samosa,idli,tiramisu),...}.

35

Appendix A.3

In this appendix, we give some formal proofsnot included in Section 3.2 for space reasons.

Theorem 5.2 (Brave Reasoning vs Cautious Reasoning under monotonic aggregation) Let P be a general
program, 7 afamily of modelsin {all, stable}, o aweight function, and .4 a monotonic aggregation strategy.
Then, there exist a program P’, a weight function ¢’, and a monotonic aggregation strategy .A’, all of them
polynomially constructible, s.t. Brave reasoning for P wr.t. (p,.A) reduces to Cautious reasoning for P’
wr.t. (o', A’), and viceversa. PROOF. Let P beagenera program, ¢ an atomin Bp, o an atomic weight
assignment, and .A amonotonic aggregation strategy. Define aprogram P’, an atomic wei ght assignment ¢,
and two aggregation strategies. A" and .A” as follows.

Pr=PU{g—did —ad 4" —~q}
where ¢’ and ¢’ are fresh atoms.

o'(p)=pp) Vp&id.q"}
0'(q') = ¢y whereey, # o'(p) Vp # ¢
©'(¢") = cgn wherecyn # o'(p) Vp # ¢”

max_hof if {Cq/, Cq//} cX
A/(X) = A(X — {Cq/, Cq//}) if Cyit eX

A(X — {Cq/, Cq//}) +1 if Cyt cX

max_hof if {Cq/, Cq//} cX
A//(X) = A(X — {Cq/, Cq//}) +1 if Cyt cX

A(X — {Cq/,Cq//}) if Cyl c X

Notethat if .A ismonotonic, then both A’ and .A” are monotonic, aswell. It iseasy to see that the following
claims hold.

CLAIM a). P =7 gwrt. (p, A)iff P' =] ¢ wrt. (¢, A").

CLAIMb). P =7 =g wrt. (p, A)iff P’ =7 ¢" wrt. (¢, A").

CLAIM Q). P =7 qwrt. (p, A)iff P' =7 ¢ wrt. (¢, A”).

CLAIMd). P |=] =g wrt. (p, A)iff P' =7 ¢" wrt. (¢, A"). O

Theorem 5.5 (Positive Program, Monotonic Aggregation) Given a positive disjunctive program P, ¢, M,
and a monotonic aggregation strategy .4 asinput, deciding whether M isan optimal stable model of P wir.t.
(p, A) is co-NP-complete. Hardness holds even if M is known to be a stable model. PROOF. co-NP-
Membership. On positive programs, minima and stable models coincide. As a consequence, aso optimal
stablemodel sand optimal minimal modelscoincide. We can thusverify that M isnot an optimal stablemodel
by checkingthat it isnot an optimal minimal model. Thatis, guess M; C Bp, and check that: either (1) [M,
isamode of P] and [HOF(p, A)(My) < HOF(p, A)(M)], or [M; isamodel of P] and[M; C M], or
(3) M isnotamodd of P. Since (1), (2), and (3) are polynomial timetasks, thisproblemisin NP, andasa
consequence, Checking optimal stable modelsisin co-NP.

co-N P-Hardness Given adigjunctivepositiveprogram P and an atom ¢, itiswell-known and easy to see
that deciding whether P |= ¢ is co-NP-hard. We reduce this problem to optimal stable model checking.

36

Let ¢’ be afresh atom and P’ be the (positive) program obtained from P by: (i) inserting the atom ¢’ in
the head of every rule of P. It iseasy to seethat

MM(P') = {¢'} UMM(P)
Since both P and P’ are positive programs, ST(FP) = MM(P) and ST(P’) = MM(P’). Therefore:
ST(P') ={q}UST(P)

Let o be the following weight function: p(p) = 1 for any aomp € Bp st. p # ¢; p(q) = p(¢') = |Bp|.
The aggregation function .A issum. Note that sumis monotonic.

Let M beamode of P st. ¢ ¢ M. By definition of o and .A, we have that A(M) < |Bp|. Now,
consider the set {¢'}. {¢'} isastablemodel for P’ and A({¢'}) = |Bp|. Hence, {q'} isan optimal stable
model of P’ w.rt. (p,.A) iff [every model of P containsq], i.e, iff [P |= ¢]. Asaconsequence, Checking
is co-NP-hard. O

Theorem 5.8 (General Program, Arbitrary/Monotonic Aggregation) Given a disjunctive program P, o, A
and aground literal ¢ asinput, deciding whether ¢ istruein some optimal stable model of P wir.t. (p,.A)is
AF-complete even if A is a monotonic aggregation strategy. PROOF. ¢From Theorem 5.7, it remains to
prove only hardness. We provide a reduction from the same problem used in the proof of that theorem, and
show that we can impose monotonicity on the aggregation strategy if we allow negationin thelogic program.

Consider the program LP'(®) = LP(®)U {w — not(w)}. We have now that every stable model of
LP'(®) must contain w, that is, ST(LP'(®)) = ST,,(LP(®)). Therefore, there is a one-to-one correspon-
dence between ST (L P'(®)) and the set of truth assignments ¢ which make @, valid.

Now, let ¢ betheatomicweight assignment o suchthat: (i) p(=;) = 2"~ (1 <4 < »n),and, (i) p(y) = 0
ify ¢ {x4,...,2,}. Takethe monotonic aggregation strategy sum.

Then, theHerbrand objectivefunction HOF (o, sum) inducesatotal order onST(LFP/(®)). Inparticular,
given two stablemodels M and M’ inST(LP'(®)), HOF(p, A)(M) > HOF(p, A)(M’) if and only if the
truth assignment ¢, is greater than ¢y, in the lexicographically order. Therefore, L P'(®) has a unique
optimal stable model M, corresponding to the lexicographically minimum truth assignment ¢,,,;,, such that
Py, = VY Ey . (x)isvalid. Hence, thelexicographically minimum truth assignment ¢,,,;,(.X) making
®,4 . vaidfulfills ¢, (2,,) = true if and only if z,, istruein the optimal stable model of LP'(®) w.r.t.
(g, A) (that is, iff z,, is abrave consequence of LP(®) w.rt. (p,.A)). Therefore, brave reasoning is A% -
hard, evenif werequirethemonotonicity of the aggregation strategy (asthe used strategy sum ismonotonic).

a

Theorem 5.9 (Positive Program, Monotonic Aggregation, Reasoning) Given a digjunctive positive program
P, aweight function p, amonotonicaggregationstrategy.A, andagroundliteral ¢ asinput, deciding whether
q istrueinsome(resp., in every) optimal stablemodel of P wr.t. (p,.A)isS -complete(resp., 115 -complete).
PROOF. We can decide the brave reasoning problem asfollows. Guess M C Bp, and check that: (1) M is
an optimal stable model of P w.rt. (p,.A), and (2) g istruew.r.t. M. Clearly, property (2) can be checked
in polynomial time; while (1) can be decided by asingle call to a co-NP oracle, by virtue of Theorem 5.5.
The problem isthereforein X4

Hardnessfor the brave reasoning problem follows from the X4’ -hardness of (traditional) brave reasoning
for digunctivepositive programs under stable model semantics[3].

37

The computational complexity of cautiousreasoning followsimmediately because it can be regarded as
the complementary problem of brave reasoning. O

Theorem 5.11 (General/PositiveProgram, Arbitrary/Monotonic Aggregation) Supposewe consider the* all”
models semantics. Given a program P, a weight function ¢, an aggregation strategy .4, a set of ground lit-
erals S and areal number n asinput, Approz(P, p, A, n,S)is NP-complete. Hardness holds even if P is
a positive programand .A ismonotonic. PROOF. We can decide the problem asfollows. Guess M C Bp,
and check that: (1) M isamodel of P, (2) HOF(p, A)(M) < n, and (3) every literal in S istruew.r.t. M.
Clearly, (1), (2), and (3) can be checked in polynomial time, hence the problemisin NP.

Let F beaCNF formulaand Pr the corresponding disjunctive positive program. F issatisfiableif and
only if Py |=£" —contr. Hence, brave reasoning w.r.t. All modelsis NP-hard, and we conclude by virtue
of Proposition 5.1. O

Appendix A.4
In this appendix, we give some formal proofsnot included in Section 6 for space reasons.

Theorem 8.1 Given a digunctive positive program P, a weight function ¢, and a monotonic aggregation
strategy .A, Optimal _Stable_Model runsin polynomial space and in single exponential time, provided that ¢
and A are polynomial time computable.

PROOF. Since at each call of C'ompute_Optimal we add alitera to the partial interpretation 7, the max-
imum depth of the chain of recursive callsis |Bp|, in the worst case. It follows that the algorithm uses at
most polynomial space, because we assumed all the functions(gp, .A, L Bp, and choose) are polynomial time
computable, and hence they work in polynomial space, too.

For time complexity, notethat the algorithmusescallsto C ompute O ptimal to perform aguided search
of theinterpretationsfor P. Inparticular, any interpretation of P isexpected at most once. Clearly, we do not
generate every interpretation. Indeed, if wedetect that an interpretationisinconsistent, or cannot be extended
to any optimal model, therecursive call exitsand no further extension of such an interpretationistried. Since
the number of interpretations for P is single exponentia in |Bp U = Bp|, and every (non recursive) step
of Compute_Optimal isfeasiblein polynomia time, it follows that Optimal _Stable_ Model runsin single
exponentia time, in the worst case.]

Theorem 8.2 Given a normal positive program P, a weight function g, and a monotonic aggregation strat-
egy A, the AlgorithmOptimal _Stable_Model runsin polynomial time, provided that ¢ and A are polynomial
time computable.

PROOF. Let P beanormal positive program. We have to compute an optimal stable model for P w.r.t.
some (p,.A), where A ismonotonic. Let I be the interpretation computed at the end of the repeat loop of
thefirst call to the procedure Compute_Optimal. It iseasy to seethat 7+ isthe minimum model of the normal
positive program P, and hence its unigque stable model and its unique optimal stable model, too. Since the
set of possibly-true atoms PTp(1) isempty, either [T = Bp or I™ C Bp. In €either case, the procedure
ends and the al gorithm outputs the optimal stable model. Note that both the loop and the evaluation of the if

38

statement are feasible in polynomial time, since we assumed that ¢ and .4, and hence HOF, are polynomial-
time computable. O

Theorem 8.3 Given a digunctive program P, a weight function ¢, and an aggregation strategy .4, the Al-
gorithm Optimal _Stable Model_General runsin polynomial space and in single exponential time, provided
that ¢ and A are polynomial time computable.

PROOF. As abserved for the proof of Theorem 8.1, the maximum depth of the chain of recursive callsis
| Bp|, intheworst case. Moreover, the function is_Stable worksin polynomial space and single exponential
time[10]. It followsthat the algorithm uses at most polynomial space.

For the time compl exity, notethat, as for the previous algorithm, each interpretation of P isgenerated at
most once. Therefore, the number of callsto C'ompute_Optimal G issingle exponentia in|Bp U = Bp]|.
Moreover, the functionis_Stable can be evaluated in single exponential time, and the other functions (g, A,
L Bp, and choose) are polynomial time computable. It followsthat Optimal Stable Model_General runsin
single exponential time, in the worst case. O

Theorem 8.4 Given a normal positive program P, a weight function g, and an aggregation strategy .4, the
Algorithm Optimal _Stable Model _General runsin polynomial time, provided that ¢ and .A are polynomial-
time computable.

PROOF. Let P beanorma positive program. We have to compute an optimal stable model for P with
respect to (p,.A). ¢From the same reasoning as in the proof of Theorem 8.2, it follows that, at the end of
the repeat loop of thefirst call to the procedure Compute Optimal G, we get the unique stable model of P,
which is also the unique optimal stable model of P. Here we just observe that, even in this case, both the
loop and the evaluation of theif statement arefeasiblein polynomial time, sinceis Stablerunsin polynomial
time for normal logic programs [10], and we assumed that ¢ and .4, and hence HOF, are polynomial time
computable. O

39

