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Abstract

Almost all semantics for logic programs with negation identify a set, SEM (P ), of models of programP , as the intended semantics of P , and any model M in this class is considered a possible meaning of P
w.r.t. the semantics the user has in mind. Thus, for example, in the case of stable models [6], choice mod-
els [24], answer sets [7], etc., different possible models correspond to different ways of “completing” the
incomplete information in the logic program. However, different end-users may have different ideas on
which of these different models in SEM (P ) is a reasonable one from their point of view. For instance,
given SEM (P ), user U1 may prefer model M1 2 SEM (P ) to model M2 2 SEM (P ) based on some
evaluation criterion that she has. In this paper, we will develop a notion of logic program semantics based
on the concept of an Optimal Model. This semantics doesn’t add yet another semantics to the logic pro-
gramming arena – rather, it takes as input, an existing semantics SEM (P ) and a user-specified objective
functionObj, and yields a new semanticsOpt(P ) � SEM (P ) that realizes the objective function within
the framework of preferred models identified already by SEM (P ) in different ways. Thus, the user who
may or may not know anything about logic programming has considerable flexibility in making the sys-
tem reflect her own objectives by building“on top” of existing semantics known to the system. In addition
to the declarative semantics characterization, we provide a complete complexity analysis and algorithms
to compute optimal models under varied conditions when SEM (P ) is the stable model semantics, the
minimal models semantics, and the all-models semantics.

1 Introduction

There are now a vast number of semantics for logic programs and extensions of logic programs. All these
semantics identify a set of models of logic program P as the intended semantics, SEM(P ), of P . From
the point of view of a user of a logic programming application, she is stuck with the semantics assigned by
the logic programming interpreter, but cannot specify that some of these models are “better” from her point
of view, than others. In other words, the end-user (not the logic programmer building applications!) cannot
make the program select and answer queries w.r.t. models that she deems appropriate. Surprisingly, as we
shall show through a “cooking example”, different users may have different preferences even when the same
program and the same semantics are considered. In this paper, we shall make the following contributions:�Due to space reasons, not all proofs are included here. Full proofs of all results may be obtained in the technical report ver-
sion of this paper[16] obtainable from www.cs.umd.edu/Library/TRs/CS-TR-4298.ps.Z. Research partly funded by ARO grant
DAAD190010484, ARL grant DAAL0197K0135, and ARL’s CTA on advanced decision architectures.yDepartment of Mathematics, University of Calabria, I-87030 Rende, Italy, leone@unical.itzD.E.I.S., University of Calabria, I-87030 Rende, Italy, scarcello@deis.unical.itxDepartment of Computer Science, University of Maryland, College Park, MD 29742, vs@cs.umd.edu
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� First, we develop the notion of an Herbrand Objective Function that allows the user to specify an ex-
pression e that can be evaluated w.r.t. each model. Without loss of generality, we will always assume
the user wishes to minimize e, i.e. to find a model M in SEM(P ), such that e’s value is minimized1.� A model M is optimal according to a specific semantics SEM(P ) if M 2 SEM(P ) and there is no
model M 0 2 SEM(P ) such that the value of the expression e on M 0 is strictly less than the value e
assumes on M .� We then consider the cases whenSEM(P ) is the set of stable models, minimal models, and all models
of a disjunctive logic program (DLP). We look at two classes of programs — general DLPs and positive
DLPs which have no negations in rule bodies. Finally, we identify two kinds of objective functions
— those that satisfy a “monotonic aggregation strategy” property defined later in the paper and those
that may or may not do so. This leads to twelve possible combinations of semantics, disjunctive logic
program syntax, and aggregation-strategy type.� For each of the above six combinations, we study the complexity of four problems.

– Checking whether a given model is optimal;
– Brave reasoning, which checks if a given atom is true in some optimal model;
– Cautious reasoning, which checks if a given atom is true in all optimal models;
– Approximation, which checks if there exists a model containing a given set of ground atoms such

that the value of the Herbrand Objective Function on that model is less than or equal to a given
bound.

This leads to a total of twenty-four complexity results that are neatly summarized in Tables 1 and 2.
In particular, we show that, in general, the complexity depends upon the properties of the Herbrand
Objective Functions in question, monotonicity properties decrease the complexity.� We develop a comprehensive set of algorithms that may be used to compute optimal models, both
under the monotonicity assumption, and without it, for stable models, minimal models, and all models
of disjunctive logic programs.

The rest of this paper is organized as follows. Section 2 motivates the paper through two examples — one is
a simple “cooking” example, and the other is a more serious combinatorial auction (cf. Sandholm [25]) ex-
ample. Section 3 provides basic definitions in disjunctive logic programming and computational complexity
— these concepts are needed in order to follow the rest of the paper. In Section 4, we formally define what
it means for a model M drawn from a family of models to be optimal. Such families of models can include
stable models, minimal models, and all models. In Section 4, we develop the twenty four complexity results
discussed earlier. In Section 6, we develop algorithms to compute optimal models of disjunctive logic pro-
grams under all the cases described above. In Section 7, we compare our work with existing results in the
research literature. In Section 8, we summarize the contributions of this paper and provide pointers to future
research directions.

2 Motivating Examples

In this section, we present two simple examples motivating our research: planning a dinner according to
different criteria, and determining the winner of an auction.

1Note that maximizing e is the same as minimizing �e, and hence, the assumption that objective functions are used only for
minimization is not a limitation.
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2.1 Planning a Dinner

Let us suppose that a chef is planning a dinner for a group of people. Dinner consists of three courses – an
appetizer, an entree, and a dessert. However, different guests have different likes and dislikes. The job of the
chef is to devise a dinner which satisfies the tastes of the guests, while at the same time, optimizing various
criteria for the chef (e.g. minimizing cost, minimizing preparation time, etc.).

The relation dish is a 4-ary predicate consisting of the following fields: a name field specifying the
name of the dish, a type field specifying whether it is an appetizer, an entree, or a dessert, a cost field esti-
mating the unit (i.e. per serving) cost of the dish, and a time field estimating the time (in minutes) required
to prepare the dish. An extensional database showing the dish relation is contained in Appendix A.1.

The relation dislikes is a binary predicate containing the name of a person and the name of a dish,
indicating whether the person dislikes the dish. This information allows the chef to propose only menus that
are compatible with all guests.

Models: For any given collection of guests expected at dinner and encoded through a unary relationguest,
one or more menus may be feasible. For example, it may turn out that both Menu1 and Menu2 listed below
are possible dinners:Menu1 : appetizer = caprese; entree= spaghetti alla carbonara; dessert= tiramisuMenu2 : appetizer = samosa; entree= matar paneer; dessert= rasgulla

In this paper, we will argue that different models of a (possibly disjunctive) logic program neatly cap-
ture different menus in this example. In general, models represent scenarios that could be true, given certain
information about the domain of discourse. Different scenarios could have different utilities to different peo-
ple.

Utilities/Costs of Models: For example, the cost of preparing Menu1 may be $ 6.00 per person, while the
cost of preparing Menu2 may be $ 5.00 per person. However, it may turn out that preparing Menu1 takes
25 minutes, while preparing Menu2 takes 60 minutes. In this case, the lazy chef who wishes to minimize
the time he spends in the kitchen may prefer to prepare Menu1. On the other hand, the chef who wishes to
minimize cost may well prefer Menu2.

Optimal Models: Informally speaking, a model is a way of satisfying the requirements encoded in a problem
specification. As we have seen above, different solutions to the problem may have different costs/benefits
to an end-user (i.e. to the person interested in solving the problem). However, what is important to a person
is subjective and may vary from one individual to another. Consequently, any way of defining optimality of
a model (or solution) must take the evaluation criterion (e.g. minimize cost of dinner, minimize preparation
time) as an input.

2.2 Determining Winners in Combinatorial Auctions

A combinatorial auction is one where a set O of objects are for sale and there is a set B of bidders. Bidders
may offer bids on a set of items. For example bidder b1 may bid $ 500 for items a; b; c together and $ 200
for item a alone. Formally, a bid is a triple of the form (b;X; p)where b 2 B is a bidder, X � O is a set of
items, and p > 0 is a price. The auctioneer receives a set bids of bids. Without loss of generality, we may
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assume that bids does not contain two triples of the form (�; X;�). This is because if two bids are received
for the same set X of objects, the one with the lower price can be eliminated. 2

Models: The task of the auctioneer is to determine which bids to “accept.” Given a set bids of bids, a po-
tential winner is a subset win � bids such that(b1; X1; p1); (b2; X2; p2) 2 win! X1 \ X2 = ;:
Each potential winner set represents a possible scenario, i.e., a possible outcome of the auction.

Utilities/Costs of Models: Potential winners may be very different according to the auctioneer’s point of
view. Indeed, she clearly wants to maximize her revenue, and thus evaluates a model win according to the
following measure: R(win) = X(b;X;p)2winp:
Optimal Models: The auctioneer is interested in the potential winners win such that her revenue R(win)
is maximized. The winner determination problem is to find such an optimal potential winner.

In this paper, we will formalize the intuitive discussion given above so as to allow users to select models that
are optimal from their point of view.

3 Preliminaries

3.1 Logic Programs

We assume the existence of an arbitrary logical languageL generated by a finite set of constant, function and
predicate symbols, and an infinite set of variable symbols.

Definition 3.1 If A1; : : : ; An; B1; : : : ; Bm; Bm+1; : : : Bm+k are atoms, thenA1 _ � � � _ An  B1& : : :&Bm&not(Bm+1) & : : :&not(Bm+k) (1)

is a rule. A rule is normal if n = 1 and positive if k = 0. A rule with an empty body (i.e., m = k = 0) is
called a fact. A (normal, positive) logic program is a finite set of (normal, positive) rules.

For a rule r, we denote by H(r) (resp., B(r)) the set of literals occurring in the head (resp., body) of r.

A logic program may be viewed as composed of two kind of rules: (1) facts that define the so called
extensional database predicates (EDB), and (ii) rules (typically with a non-empty body) that define other
predicates, representing the intensional database (IDB). EDB predicates are often implemented as relations
in a relational database. We often use the workds “relation” and “predicate” interchangeably. Thus, if we
say that a relation r is an EDB relation for a program P , we mean that for each tuple (v1; : : : ; vn) 2 r, a

2It is still possible that there are two bids of the form (b1;X;p1); (b2;X;p2) with p1 = p2 . In such a case most auctioneers
eliminate one of the two bids using some pre-announced protocol – e.g. the bid received at a later time may be discarded.
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fact r(v1; : : : ; vn) belongs to P , even if it is not explicitly listed. These facts provide the definition of the
EDB predicate r in the program P .

Given a logic program P , the Herbrand Base BP of P is the set of all ground (i.e., variable-free) atoms
that can be constructed by using the constants, predicates and function symbols appearing in P . Given a setX of literals, ::X denotes the set containing the negation of the literals in X (the negation of a is :a and
vice versa). Moreover, X+ denotes the set of atoms occurring as positive literals in X , and X� the set of
atoms whose negation is the set of negative literals in X . An interpretation I for a program P is any subset
of BP [::BP . Interpretation I satisfies a ground rule of the form shown in (1) above if either I \H(r) 6= ;
or B(r) 6� I . Interpretation I satisfies a (non-ground) rule r if it satisfies each ground instance of r. We
denote by I+ the set of atoms occurring in I , and by I� the set of atoms whose negation belongs to I . I
is a total interpretation if I+ [ I� = BP . A set M of atoms is a model for P if the total interpretationM [ ::(BP �M) satisfies each rule in P . Model M is a minimal model [19] for P if there is no model N
for P such that N �M . Given a disjunctive logic program P , we use MM(P ) and MOD(P ) to denote the
set of all minimal models of P and the set of all models of P , respectively. M is a stable model (or answer
set) [7] of P if M is a minimal model of PM where PM is defined as follows:PM = f A1 _ � � � _ An  B1& : : :&Bm :A1 _ � � � _ An  B1& : : :&Bm&not(D1) & : : :&not(Dk) is a ground instance of

a rule in P and fD1; : : : ; Dkg \ M = ; g:
We use ST(P ) to denote the set of all stable models of P .

We now show how to express the cooking and auctions examples in this framework using the stable model
semantics. In order to improve the readability of programs, we will also use rules without a head, which
represents constraints to be satisfied in any allowed model. The following rule r B1& : : :&Bm&not(D1) & : : :&not(Dk)
means that its body should evaluate to false in every intended model of the program. Such constraints can be
easily expressed under the stable model semantics [4]. In particular, r is shorthand for the following normal
rule: no stable  B1& : : :&Bm&not(D1) & : : :&not(Dk) &not(no stable)
It is easy to see that in any stable model of every program containing this rule, the body of r should evaluate
to false.

Example 3.1 The logic program associated with the cooking example is shown below:dinner(A;E;D) appetizer(A) & entree(E) & dessert(D)appetizer(A) _ not take(A) dish(A; appetizer; C; T )entree(A) _ not take(A) dish(A; entree; C; T )dessert(A) _ not take(A) dish(A; dessert; C; T )not take(A) dish(A; ; ; ); guest(P ); dislikes(P;A) appetizer(A) & appetizer(B) &A 6= B entree(A) & entree(B) &A 6= B dessert(A) & dessert(B) &A 6= Bchosen dinner  dinner(A;E;D) not(chosen dinner)
5



It is not difficult to see that each stable model M of this program contains exactly one appetizer, one dessert,
and one entree. Appendix A.2 shows the stable models of this program with the EDB defined in Appendix
A.1.

Example 3.2 Suppose bids is the set of all bids received in a combinatorial auction. We construct a dis-
junctive logic program Pbids as follows. Two EDB predicates bids and requires encode the input data about
the bids received by the auctioneer. In particular, for each bid (b; x; p) 2 bids, Pbids contains the factbids(b; x; p) , and the facts describing the set of itemsx required by the bidder b, namely, a fact requires(x; i) ,
for each item i 2 x.

Moreover, an IDB predicate wins encodes the potential winner set of bids chosen by the auctioneer. It is
defined by the following rule:wins(B;X; P ) _ loses(B;X; P )  bids(B;X; P ):
Finally, we have the constraint: wins(B1; X1; P1) &win(B2; X2; P2) &X1 6= X2& requires(X1; I1) & requires(X2; I2)

It is easy to see that the stable models of Pbids correspond exactly to the potential winners of the auction.

3.2 Complexity Overview

In this section, we provide a brief overview of complexity classes — these classes will be used extensively
later in the paper when we derive complexity results. The reader seeking details of complexity theory is
referred to [23].

The classes �Pk ;�Pk and �Pk of the Polynomial Hierarchy (PH) (cf. [28]) are defined as follows:�P0 = �P0 = �P0 = P and for all k � 1, �Pk = P�Pk�1 ; �Pk = NP�Pk�1 ; �Pk = co-�Pk :
In particular, NP = �P1 , co-NP = �P1 , and �P2 = PNP. Here PC and NPC denote the classes of problems
that are solvable in polynomial time on a deterministic (resp. nondeterministic) Turing machine with an oracle
for any problem � in the class C.

The classes �Pk , k � 2, have been refined by the class �Pk [O(logn)], in which the number of calls to
the oracle in each computation is bounded by O(logn), where n is the size of the input.

Later in the paper, we will establish a number of complexity results in which known problems that are
hard for these classes are polynomially reduced to the problem we are studying. Many of these “known”
problems will relate to Quantified Boolean Formulas (QBFs) and hence we introduce them here. A QBF is
an expression of the form Q1X1Q2X2 � � � QkXkE; k � 1; (2)

whereE is a Boolean expression whose atoms are from pairwise disjointnonempty sets of variablesX1; : : : ; Xk,
and the Qi’s are alternating quantifiers from f9; 8g, for all i = 1; : : : ; k. If Q1 = 9 the we say the QBF isk-existential, otherwise it is k-universal. Validity of QBFs is recursively defined in the obvious way. We use
QBFk;9 (resp., QBFk;8) to denote the set of all valid k-existential (resp., k-universal) QBFs (2).

Given a k-existential QBF � (resp. a k-universal QBF 	), deciding whether � 2 QBFk;9 (resp. 	 2
QBFk;8), is a classical �Pk -complete (resp. �Pk -complete) problem.
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The class �Pk also has complete problems, for all k � 2. For example, given a formula E on variablesX1; :::; Xn; Y1; :::; Yr, r � 0, and a quantifier pattern Q1Y1; :::; QrYr, let � be the truth-value assignment toX1; : : : ; Xn that is lexicographicallyminimum with respect to hX1; :::; Xni3 and such thatQ1Y1 � � �QrYrE� 2
QBFk�2;8 (where such a � is known to exist). Then, the problem of deciding whether �(Xn) = true is com-
plete for �Pk (cf. [33, 12]).4

The hardness of the problems is unaffected even if the following restrictions are required: (i) E in (2) is
in conjunctive normal form and each clause contains three literals (3CNF) whenQk = 9, and (ii) E in (2) is
in disjunctive normal form and each conjunct contains three literals (3DNF) when Qk = 8 [29].

4 Optimal Models

In this section, we introduce the notion of optimal model for logic programs. First, we formally define weight
assignments to atoms. We then introduce aggregation strategies which provide aggregate information on a
given model. Finally, we define optimal models with respect to a given semantics, i.e., with respect to a given
family of intended models.

Definition 4.1 An atomic weight assignment, }, for a program P , is a map from the Herbrand Base BP ofP to R+, where R+ denotes the set of non-negative real numbers (including zero).

Example 4.1 Returning to our “Dinner” Example, the following maps }1; }2 are atomic weight assign-
ments:

Atom A }1(A) }2(A)
entree(E) C if dish(E; entree; C; T) holds. T if dish(E; entree; C; T )
dessert(D) C if dish(D; dessert; C; T) holds. T if dish(D; dessert; C; T)

appetizer(A) C if dish(A; appetizer; C; T ) holds. T if dish(A; appetizer; C; T )
other atoms 0 0

Intuitively, the first function assigns weights to entrees based on the price/cost of those entrees while the
second function assigns weights based on the time taken to prepare those entrees.

Example 4.2 For the auction example, the following map }3 is an atomic weight assignment:

Atom A }3(A)
loses(B,X,P) P
other atoms 0

Weights are assigned to atoms loses corresponding to the bids that cannot be accepted and hence yield
no revenue to the auctioneer.

Given a set X , we use MX to denote the set of all multisets whose elements are in X . Membership and
inclusion between multisets are defined in the standard way.

3� is lexicographically greater than  w.r.t. hX1; : : : ;Xni if �(Xj) = true,  (Xj) = false for the least j such that �(Xj) 6= (Xj).
4QBF0;8 = QBF0;9 is the set of all variable-free true formulas.
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Definition 4.2 An aggregation strategyA is a map from MR+
to R.

An aggregation strategyA is said to be monotonic if, for all S1; S2 2MR+
, S1 � S2 implies thatA(S1) �A(S2). The set of aggregation strategies may be ordered as follows: A1 � A2 if for all S,A1(S) � A2(S).

We list below, some sample aggregation strategies:

1. count(S): This is defined as the number of elements in S. Clearly, this aggregation strategy is mono-
tonic.

2. sum(S) : This aggregation strategy sums up all elements in S. It is clearly monotonic.

3. prod(S) :This aggregation strategy takes the product of all elements inS. It is monotonic if we require
that the numbers in S are greater than or equal to 1.

4. avg(S) : This computes the average of all elements in S. This aggregation strategy is not monotonic.

5. min(S); max(S) : This computes the smallest (resp. largest) element of S. min(S) is not monotonic,
but max(S) is.

Definition 4.3 SupposeA is an aggregation strategy and } is an atomic weight assignment. The Herbrand
Objective Function,HOF(};A) is a map from 2BP to R defined as follows:HOF(};A)(M) = A (f}(A) jA 2Mg) :
Intuitively,HOF(};A)(M) looks at each ground atomA 2M , computes}(A), and puts}(A) in a multiset.
It then applies the aggregation strategy to the multiset created in this way. This is illustrated by the following
example.

Example 4.3 Suppose we consider the weights }1 and }2 described in Example 4.1. Consider the stable
models M1 and M2 of Appendix A.2. If we use the aggregation strategy sum, then:HOF(}1; sum)(M1) = 6:8 HOF(}1; sum)(M2) = 5:15HOF(}2; sum)(M1) = 60 HOF(}2; sum)(M2) = 70
The following result says that, whenever a monotonic aggregation function } is considered, the functionHOF(};A) is also monotonic.

Proposition 4.1 SupposeA is any monotonic aggregation function. Then HOF(};A) is monotonic, i.e. for
all M;M 0, if M �M 0 then HOF(};A)(M) � HOF(};A)(M 0).

We are now ready to define what it means for a model of a (possibly disjunctive) logic program P to be
optimal with respect to } and A and a selected family of models. Note that all semantics for logic programs
identify a “family” of models (e.g. stable semantics identifies all stable models of logic programs, minimal
model semantics identifies all minimal models of a logic program, and so on).

Definition 4.4 Let P be a logic program, } an atomic weight assignment, and A an aggregation strategy.
Suppose that F is a family of models of P . We say that M is an optimalF -model of P w.r.t. (};A) if:

1. M 2 F , and
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2. there is no model M 0 of P in F such that HOF(};A)(M 0) < HOF(};A)(M).
We use the notationOpt(P;F ; };A) to denote the set of all optimal F -models of P w.r.t. (};A).
We will often use the expressions optimal model, optimal optimal minimal model, and optimal stable model
to denote models that are optimal w.r.t. the families MOD(P );MM(P ) and ST(P ), respectively.

Example 4.4 Consider again our “Dinner” example. The different possible choices for dishes lead to 16
stable models for the cooking logic program P , all listed in Appendix A.2. However, if we assign weights to
dishes according to }1, i.e. according to the price/cost of those dishes, we get a unique optimal stable model
w.r.t. (sum; }1):5Opt(P; ST(P ); }1; sum) = f fdinner(caprese; idli; rasgulla); appetizer(caprese); entree(idli);dessert(rasgulla); : : :g g:
On the other hand, if we prefer to minimize cooking time, we can resort to the weight function }2. In this
case, we get the following optimal stable models w.r.t. (sum; }2).Opt(P; ST(P ); }2; sum) = fM3;M4;M5;M6g where:M3 = fdinner(caprese; spaghetti carbonara; tiramisu); appetizer(caprese);entree(spaghetti carbonara); dessert(tiramisu); : : :g:M4 = fdinner(caprese; spaghetti carbonara; rasgulla); appetizer(caprese);entree(spaghetti carbonara); dessert(rasgulla); : : :g:M5 = fdinner(caprese;matar paneer; tiramisu); appetizer(caprese);entree(matar paneer); dessert(tiramisu); : : :g:M6 = fdinner(caprese;matar paneer; rasgulla); appetizer(caprese);entree(matar paneer); dessert(rasgulla); : : :g:
Example 4.5 Consider the program Pbids in Example 3.2 and the weight assignment }3 in Example 4.2. If
we use the aggregation strategy sum, the optimal models Opt(Pbids; ST(Pbids); }3; sum) encode the poten-
tial winners that minimize the sum of the revenues for bids not accepted by the auctioneer, represented by the
atoms with predicate loses. Therefore, these models encode the potential winners that maximize the revenue
for the auctioneer, and thus exactly represent the best sets of bids to be accepted for the auction at hand.

5 Complexity Results

In this section we analyze the complexity of the main decision problems relating to optimal models. In par-
ticular, for different families F of models, P of logic programs, and assumptions on the monotonicity of the
aggregation function used, we study the following problems:

Problem 1: (Checking) Given P , },A andM as input, decide whetherM is an optimalF -model of P w.r.t.(};A).
5Note that, in this example, whenever we have to list a stable model of the program, we just list the atoms that characterize the

model, namely, the atoms with predicates dinner, appetizer, entree, and dessert (in fact, just dinner would suffice, in this case). We
do not list EDB atoms, which are true in every stable model, and auxiliary atoms, like not take.
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Problem 2: (Cautious reasoning) Given P , }, A and literal q as input, decide whether q is true in every
optimal F -model of P w.r.t. (};A), denoted by P j=Fc q.

Cautious reasoning is useful to single out the necessary consequences of the program. For example, the
atom appetizer(caprese) is true in all models in Opt(P; ST(P ); }2; sum) as is easily seen in Exam-
ple 4.4. This means that as long as the user wishes to minimize the time she spends on cooking, she is forced
to choose caprese as the appetizer. On the other hand, dessert(tiramisu) is not true in all models
in Opt(P; ST(P ); }2; sum).
Problem 3: (Brave reasoning) Given P , },A and a ground literal q as input, decide whether there exists an
optimal F -model M of P w.r.t. (};A) such that q is true w.r.t. M , denoted by P j=Fb q.

Unlike cautious reasoning, brave reasoning finds out whether there exists an optimal model in which
a literal is true. In the Dinner example (cf. example 4.4), we see that dessert(tiramisu) is a brave
consequence of P , but not a cautious consequence.

Problem 4: (Approx(P; };A; n; S)). GivenP ,},A, a set of ground literalsS, and a real numbern as input,
decide whether there exists a model M in F such that: (i) HOF(};A)(M) � n, and (ii) every literal in S is
true w.r.t. M .

A successful solution to problem (4) allows the user to approximate optimal models.

Example 5.1 Problem (4) above has interesting consequences. Suppose the cook wishes to ask the following
queries:

1. “Is there some way for me to fix dinner at a price less than or equal to £ 6.50 her head?” This corre-
sponds to an instance of Problem 4 where S = ; and n = 6:50.

2. Suppose for some reason, the cook wants to make samosa as the appetizer. Then she may want to
ask the query: Is there some way for me to fix dinner including a samosa appetizer at a price less than or
equal to £ 6.50 her head?” This corresponds to an instance of Problem 4 whereS = fappetizer(samosa)g
and n = 6:50.

We denote bymax hof(};A; P ), the highest value thatHOFmay assume onP (given } andA), that is,max hof(};A; P ) = max(fHOF(};A)(M) jM � BP g). In the complexity analysis, we assume that the
atomic weight assignment is part of the input and weights are (non-negative) integers. Moreover, we assume
that, given },A, P , and M , bothHOF(};A)(M) and max hof(};A; P ) are polynomial-time computable
(note that all sample strategies shown in Section 4 satisfy these assumptions). We analyze the complexity
of the propositional case (that is, we assume that programs are ground); the results, however, can be easily
extended to data complexity [31].

5.1 Overview of Results

We give a complete overview of the complexity results for optimal models that we formally prove in the
following of the section, and we supply a brief discussion providing intuitive explainations of the results.

The complexity results are summarized in Table 1 and in Table 2. In particular, Table 1 shows the com-
plexity for the case of general (disjunctive) programs where negation can appear in the rules’ bodies; Table 2
collects the results for positive (disjunctive) programs where negation is disallowed. Its first column specifies
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Models Aggregation Checking Brave Cautious Approx

Strategy Reasoning Reasoning

Stable Monotonic �P2 �P3 �P3 �P2
Stable Arbitrary �P2 �P3 �P3 �P2

Minimal Monotonic co-NP �P2 �P2 �P2
Minimal Arbitrary �P2 �P3 �P3 �P2

All Monotonic co-NP �P2 �P2 NP
All Arbitrary co-NP �P2 �P2 NP

Table 1: Disjunctive general programs

the family of models (Stable models, Minimal models, or All models); the second column specifies possi-
ble restrictions on the aggregation strategy (Monotonicity, Strict Monotonicity, Arbitrary = No restriction);
the remaining columns (3 to 7) report the complexity results. Each of these columns refers to a specific task
(Checking, Brave Reasoning, Cautious Reasoning, and Approx, in the specified order). All results we report
are completeness results, i.e., when we say that a problem P has complexityC, then we have proved that P
is C-complete under polynomial-time transformations.

Consider the results displayed in Table 1. Checking is �P2 -complete for stable models. Thus, checking
if an interpretation I is an optimal stable model is located one level higher, in the polynomial hierarchy, than
checking if it is an ordinary stable model (which is “only” co-NP-complete). Intuitively, this increase of
complexity is because of two “orthogonal” sources of complexity: (i) the stability check (i.e., proving that
the interpretation is a stable model); and (ii) the optimality check (i.e., proving that the value of the objec-
tive function on I is minimum in the family of the stable models of the program). Imposing monotonicity
on the aggregation strategy does not help for stable models (the complexity remains �P2 ), because there is
no relationships between an interpretation I being stable and HOF(};A)(I) being optimal. In this respect,
the situation is different for Minimal Models. While Checking is �P2 -complete (as for stable models) under
arbitrary aggregation strategies, its complexity decreases to co-NP (i.e., it becomes the same as the complex-
ity of minimality checking) for monotonic aggregation strategies. Indeed, in this case, the two minimality
criteria to be considered for the check (the minimality of the model and the optimality of its value under the
objective function) work in parallel: if an interpretationA is smaller than B (i.e., it is preferable to B under
the subset inclusion criterion determining minimal models), then HOF(};A)(A) � HOF(};A)(B). Thus,
the complexity of the two sources is not summed up in this case. For the family of All models, the complex-
ity of Checking remains co-NP even if the aggregation strategy is arbitrary. The reason is that, compared
to stable models or minimal models, one source of complexity is eliminated in this case, because checking
membership in the family of all models is polynomial (while it is co-NP-complete for the families of stable
models and minimal models). Thus, the only hard source of complexity is the optimality check which causes
the co-NP-completeness of this problem.

Problem Approx is somehow complementary to Checking. To prove an instance of Approx, one has to
find a member A of the models’ family (e.g., a stable model or a minimal model), whose value of the objec-
tive function is lower than the given bound (and A contains the specified literals). Similarly, to disprove an
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instance of Checking, one has to do something similar: find a member A of the models’ family, whose value
of the objective function is lower than the value of the objective function on the model to be checked. Accord-
ing with this intuition, the complexity of Approx is complementary (�P2 =�P2 , co-NP=NP) to the complexity
of Checking, nearly always. The only exception is the case of Monotonic aggregation strategy for the fam-
ily of Minimal models, where Approx cannot enjoy the “parallelism” among the two sources of complexity
which mitigated the complexity of Checking for this case (see the comment above).

Reasoning (Brave and Cautious) brings an additional source of complexity, compared to the previous
problems: the (possibly) exponential number of optimal models which should be analyzed (in the worst case)
to decide whether the given literal is true or not. Nevertheless, in most cases, the applicability of smart tech-
niques mitigates the complexity of these reasoning problems, allowing us to solve them deterministically by
a polynomial number of calls to oracles solving Checking or Approx (an oracle for a problem P is like a
subroutine taking an instance of P in input and returning its yes/no solution) – see, for instance, the proof
of Theorem 5.7. Thus, compared to Checking, the complexity of Brave Reasoning and Cautious Reason-
ing increases only “mildly”, it is located only half a level higher in the polynomial hierarchy, stepping from
co-NP and�P2 to�P2 and�P3 , respectively. An interesting exception is reasoning with the family of Minimal
models under monotonic aggregation strategies. In this case, the problem remains of the same complexity
as standard minimal model reasoning (�P2 and �P2 for brave and cautious reasoning, respectively).

Models Aggregation Checking Brave Cautious Approx

Strategy Reasoning Reasoning

Stable, Minimal Monotonic co-NP �P2 �P2 �P2
Stable, Minimal Arbitrary �P2 �P3 �P3 �P2

All Monotonic co-NP �P2 �P2 NP
All Arbitrary co-NP �P2 �P2 NP

Table 2: Disjunctive positive programs

Table 2 which shows complexity results for positive programs contains no major surprises. As disjunc-
tion is allowed, disallowing negation does not make any difference as far as both Minimal model semantics
and All model semantics are concerned because these semantics are syntax independent (unlike Stable model
semantics, a  not b is precisely the same as a _ b for Minimal models and All models semantics). Thus,
the complexity results on positive programs for the families of Minimal models and All models is precisely
the same as for general programs. Disallowing negation, however, makes a difference for Stable model se-
mantics and lowers the complexity over monotonic aggregation strategies, which becomes the same as for the
case of minimal models (indeed, Stable models degenerate to Minimal models when negation is disallowed).

5.2 General reduction among problems

We first show that, for any of all, stable, minimal family of models, brave and cautious reasoning problems
have the same computational complexity, if we consider general aggregation strategies.

Theorem 5.1 (Brave Reasoning vs Cautious Reasoning under arbitrary aggregation)LetP be a program,F
a family of models in fall, stable, minimalg, } a weight function, andA an aggregation strategy. Then there
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exists a program P 0, a weight function }0, and an arbitrary (possibly non monotonic) aggregation strategyA0, all polynomially constructible, s.t. Brave reasoning for P w.r.t. (};A) reduces to Cautious reasoning forP 0 w.r.t. (}0;A0), and viceversa.

PROOF. Let P be a logic program, q an atom in BP , } an atomic weight assignment, andA an aggregation
strategy. Moreover, let q0 be a fresh atom. Define a program P 0, an atomic weight assignment }0, and two
aggregation strategiesA0 and A00 as follows.P 0 = P [ fq  q0; q0  qg( }0(p) = }(p) 8p 6= q0}0(q0) = cq0 where cq0 6= }0(p) 8p 6= q0A0(X) = ( A(X) if cq0 62 XA(X � fcq0g) + 1 if cq0 2 XA00(X) = ( A(X � fcq0g) if cq0 2 XA(X) + 1 if cq0 62 X

Then, it is easy to verify that the following claims hold.

CLAIM a). P j=Fc q w.r.t. (};A) iff P 0 j=Fb q0 w.r.t. (}0;A0).
CLAIM b). P j=Fc :q w.r.t. (};A) iff P 0 j=Fb :q0 w.r.t. (}0;A00).
CLAIM c). P j=Fb q w.r.t. (};A) iff P 0 j=Fc q0 w.r.t. (}0;A00).
CLAIM d). P j=Fb :q w.r.t. (};A) iff P 0 j=Fc :q0 w.r.t. (}0;A0). 2
Note that the reduction above does not preserve the monotonicity of the aggregation strategy, i.e., even

if A is a monotonic aggregation strategy,A0 may, in general, not be monotonic. However, for stable model
semantics and all model semantics, brave and cautious reasoning have the same complexity even w.r.t. mono-
tonic aggregation strategies, as stated by the following theorem.

Theorem 5.2 (Brave Reasoning vs Cautious Reasoning under monotonic aggregation) Let P be a general
program,F a family of models in fall, stableg,} a weight function, andA a monotonic aggregation strategy.
Then, there exist a program P 0, a weight function }0, and a monotonic aggregation strategyA0, all of them
polynomially constructible, s.t. Brave reasoning for P w.r.t. (};A) reduces to Cautious reasoning for P 0
w.r.t. (}0;A0), and viceversa.

There exists a very natural relation between traditional – i.e., non optimal – brave reasoning and the ap-
proximation problem. This is stated by the following proposition, whose proof is straightforward.

Proposition 5.1 (Brave Reasoning vs Approx) Let P be a program, L a literal, and F a family of models.
There exists an F -modelM for P s.t. L is true w.r.t. M if and only if (P; }0; sum; 0; fLg) is a yes-instance
of Approx, where }0 denotes the weight function which assigns 0 to each atom in BP .

Thus, for any family of models, traditional brave reasoning reduces to Approx. Note that the aggregation
strategy used in the above reduction is monotonic.
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Moreover traditional brave reasoning (without objective functions) is clearly a special case of optimal
brave reasoning. To see this, consider any trivial aggregation strategy which assigns some fixed value to
every given set. Then the Herbrand objective function is a constant function and all the models in the given
family play the same role in the reasoning task, as in the case of traditional reasoning. Clearly, the same
argument applies to the relationship between traditional cautious reasoning and optimal cautious reasoning.

5.3 Results for Stable Models

In this section, we study the complexity of checking, cautious reasoning, brave reasoning, and approximate
reasoning problems with respect to the stable model semantics.

Checking

Theorem 5.3 (General/Positive Program, Arbitrary Aggregation) Given a disjunctive programP , },A andM as input, deciding whether M is an optimal stable model of P w.r.t. (};A) is �P2 -complete. Hardness
holds even if P is a positive program and M is a stable model of P .

PROOF. �P2 -Membership. We can verify that M is not an optimal stable model as follows. Guess M1 �BP , and check that: either (1) [M1 is a stable model of P ] and [(};A)(M1) < HOF(};A)(M)], or (2)M is
not a stable model of P . Since both (1) and (2) can be done by a single call to an NP oracle [3], this problem
is in �P2 , and, as a consequence, Checking is in �P2 .�P2 -Hardness. Given a disjunctive positive programP and a literal:q, deciding whether:q is a cautious
consequence of P under stable semantics (i.e., deciding whether q does not belong to any stable model) is�P2 -hard [3]. We reduce this problem to optimal stable model checking.

Let q0 be a fresh atom and P 0 be the (positive) program obtained from P by: (i) inserting the atom q0 in
the head of every rule of P . It is easy to see thatMM(P 0) = fq0g [MM(P )
Since both P and P 0 are positive programs, ST(P ) = MM(P ) and ST(P 0) = MM(P 0). Therefore:ST(P 0) = fq0g [ ST(P )

Let} be a one-to-one function fromBP into [1:::jBP j] (} assigns an identifier to each atom). DefineA as
follows: (i)A(K) = 0 ifK is the image (under}) of a setN of atoms containing q, (ii)A(K) = 1 otherwise
(i.e., N does not contain q). (Note that A is not monotonic.) Now, we have that: (i) HOF(};A)(fq0g) = 1,
and, (ii) for each M 2 (ST(P 0) � fq0g) s.t. q 2 M , HOF(};A)(M) = 0. Therefore, [fq0g is an optimal
stable model of P 0] if and only if [no stable model of P contains q]. That is, fq0g is an optimal stable model
of P 0 iff :q is a cautious consequence of P . Hence, Checking is �P2 -hard; moreover, hardness holds even
for positive programs, as the used program P 0 is positive. Note that fq0g is a stable model of P 0. 2

Hence, optimal stable model checking for disjunctiveprograms is�P2 -complete and the complexity of the
problem does not decrease on positive programs. The aggregation strategy used in the proof of �P2 -hardness
is arbitrary (not monotonic). One may thus wonder whether assuming the monotonicity of this strategy has
an impact on the complexity of optimal stable model checking. The following result says that the answer to
this question is “no.”
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Theorem 5.4 (General Program, Monotonic Aggregation) Given a disjunctive program P , }, A and M
as input, deciding whether M is an optimal stable model of P w.r.t. (};A) is �P2 -complete even if A is a
monotonic aggregation strategy. Hardness holds even if M is a stable model of P .

PROOF. ¿From Theorem 5.3, it remains to prove only hardness. Given a (general) disjunctive programP and an atom q, deciding whether q is a cautious consequence of P under stable model semantics (i.e.,
deciding whether q belongs to all stable model) is �P2 -hard [3]. We reduce this problem to optimal stable
model checking with monotonic aggregation functions.

Let P 0 be the program obtained from P by: (i) inserting the literal not(q) in the body of every rule ofP , and, (ii) adding the rule q _ q0  , where q0 is a fresh atom. It is easy to see thatST(P 0) = fqg [ fM [ fq0g jM 2 ST(P ) ^ q =2Mg
Let A = sum and } be the following atomic weight assignment: (i) }(q) = 1, and (ii) }(x) = 0, for

each x 2 BP 0�fqg. Now, we have that: (i)HOF(}; sum)(fqg) = 1, and, (ii) for eachM 2 (ST(P 0)�fqg),HOF(};A)(M) = 0. Therefore, [fqg is an optimal stable model of P 0] if and only if [it is the only stable
model of P 0] if and only if [every stable model of P contains q]. That is, fqg is an optimal stable model ofP 0 iff q is a cautious consequence of P (we are done). Hence, Checking is �P2 -hard even if the monotonicity
of aggregation strategy is imposed (as we have used the monotonic strategy sum). 2

In order to decrease the complexity of optimal stable model checking, we have to assume both that the
programs involved are positive and that the aggregation strategy involved is monotonic.

Theorem 5.5 (Positive Program, Monotonic Aggregation) Given a positive disjunctive program P , }, M ,
and a monotonic aggregation strategyA as input, deciding whetherM is an optimal stable model of P w.r.t.(};A) is co-NP-complete. Hardness holds even if M is known to be a stable model.

Approx

We now show that the approximate reasoning problem is computationally intractable w.r.t. stable model se-
mantics.

Theorem 5.6 (General/Positive Program, Arbitrary Aggregation) Under stable model semantics, given a
disjunctive general programP ,},A, a set of ground literalsS and a real numbern as input,Approx(P; };A; n; S)
is �P2 -complete. Hardness holds even if P is a positive program.

PROOF. We can decide the problem as follows. Guess M � BP , and check that: (1) M is a stable model
of P , (2) HOF(};A)(M) � n, and (3) every literal in S is true w.r.t. M . Clearly, property (2) and (3) can
be checked in polynomial time; while (1) can be decided by a single call to a NP oracle. The problem is
therefore in �P2 .

Hardness follows from Proposition 5.1 and from the �P2 -hardness of (traditional) brave reasoning for
disjunctive positive programs under stable model semantics [3]. 2
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Reasoning

In this section, we will study the complexity of brave and cautious reasoning under the optimal stable model
semantics. Several hardness results will be proved by reductions from QBFs into problems related to opti-
mal models; the disjunctive programs used will be appropriate adaptations and extensions of the disjunctive
program reported below (which was first described in [3]).

Let � be a formula of the form 8Y E, where E is a Boolean expression over propositional variables fromX [ Y , where X = fx1; : : : ; xng and Y = fy1; : : : ; ymg. We assume that E is in 3DNF, i.e., E = D1 _� � �_Dr and each Di = Li;1^Li;2^Li;3 is a conjunction of literalsLi;j . Define the following DLP LP (�):xi _ x0i  for each i = 1; : : : ; nyj _ y0j  yj  w y0j  w for each j = 1; : : : ; mw  yj ^ y0j for each j = 1; : : : ; mw  �(Lk;1) ^ �(Lk;2) ^ �(Lk;3) for each k = 1; : : : ; r
where � maps literals to atoms as follows:�(L) = 8><>: x0i if L = :xi for some i = 1; : : : ; ny0j if L = :yj for some j = 1; : : : ; mL otherwise

Intuitively,x0i corresponds to:xi and y0j corresponds to:yj . It is very important to note thatLP (�) is always
positive.

Given a truth assignment �(X) to X = fx1; : : : ; xng, we denote by M� � BLP (�) the following inter-
pretationM� = fxi j �(xi) = trueg [ fx0i j �(xi) = falseg [ fwg [ fy1; : : : ; ymg [ fy01; : : : ; y0mg:
Moreover, given an interpretationM ofLP (�), we denote by�M the truth assignment toX = fx1; : : : ; xng:�M (xi) = true iff xi 2M:

LetE be a Boolean expression and � be a truth assignment for the variables in the setX . E�(X) denotes
the Boolean expression E where each variable x 2 X is replaced by its truth value �(x).
Lemma 5.1 Let � = 8Y E and LP (�) be the formula and the disjunctive logic program defined above.
Consider the set A of the truth assignments�(X) toX = fx1; : : : ; xng such that �� = 8Y E�(X) is a valid
formula, and let B be the set of the stable models of LP (�) which contain w. Then, there is a one-to-one

correspondence between A and B. In particular:

1. if �� = 8Y E�(X) 2 QBF1;8, then M� 2 ST(LP (�)), and

2. if M 2 ST(LP (�)) containsw, then ��M 2 QBF1;8.

PROOF. Follows immediately from Theorems 3.3 and 3.5 of [3], which precisely state the correspondence
between such a formula � and its associated program LP (�). 2
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Note that LP (�) is constructible from � in polynomial time and that ST(LP (�)) = MM(LP (�)), asLP (�) is a positive program.

We are now ready to derive the complexity of Brave reasoning with optimal models.

Theorem 5.7 (General/Positive Program, Arbitrary Aggregation) Given a disjunctive programP , },A and
a ground literal q as input, deciding whether q is true in some optimal stable model of P w.r.t. (};A) is �P3 -
complete. Hardness holds even if P is a positive program.

PROOF. �P3 -Membership. We first call a �P2 oracle to verify that P admits stable models (otherwise, q
cannot be a brave consequence). We compute then k = max hof(};A; P ) (this is done in polynomial time
by assumption). After that, by binary search on [0::k], we determine the cost � of the optimal stable models,
by a polynomial number of calls to a (�P2 ) oracle deciding approx(P; };A; n; ;) (n = k=2 on the first call;
then if the oracle answers yes”, n = k=4; otherwise, n is set to k=2+k=4, and so on, according with standard
binary search). (Observe that the number of calls to the oracle is logarithmic in k, and, as a consequence, is
polynomial in the size of the input.) Finally, a call to the oracle approx(P; };A;�; fqg) verifies that q is
true in some optimal stable model of P .�P3 -Hardness. Let hx1; :::; xni be in lexicographical order. Then, �P3 -hardness is shown by a reduction
from deciding whether the lexicographically minimum truth assignment�(X),X = fx1; : : : ; xng, such that�� = 8Y E�(X) is valid, satisfies �(xn) = true (where such a � is known to exists). W.l.o.g. we assume
that E is in 3DNF of the form defined above.

Consider the (positive) program LP (�) defined above. Let STw(LP (�)) denote the set of the stable
models of LP (�) which contain w. ¿From Lemma 5.1 we know that there is a one-to-one correspondence
between STw(LP (�)) and the set of truth assignments � which make �� valid.

Now, let } be the atomic weight assignment such that: (i) }(xi) = 2n�i (1 � i � n), (ii) }(w) = 2n,
and (iii) }(y) = 0, if y =2 fwg [ fx1; : : : ; xng. Moreover, let A be the aggregation strategy defined as
follows: (i) A(X) = 2n if 2n =2 X , (ii) A(X) = sum(X)� 2n, if 2n 2 X .

Then, the Herbrand objective functionHOF(};A) assigns 2n to the stable models which do not containw; while it assigns the sum of the weights of the xis in M to each stable model M containing w (the mod-
els in STw(LP (�)) are thus the candidates for optimal models, as their values is less than 2n). HOF(};A)
induces a total order on STw(LP (�)). In particular, given two stable models M and M 0 in STw(LP (�)),HOF(};A)(M) > HOF(};A)(M 0) iff the truth assignment �M is greater than �M 0 in the lexicographi-
cally order. Therefore, LP (�) has a unique optimal stable modelM (actually,M is in STw(LP (�))), corre-
sponding to the lexicographically minimum truth assignment�min such that��min = 8Y E�min(X) is valid.
Hence, the lexicographically minimum truth assignment �min(X) making ��min valid fulfills �min(xn) =true if and only if xn is true in the optimal stable model of LP (�) w.r.t. (};A) (that is, iff xn is a brave
consequence of LP (�) w.r.t. (};A)). Therefore, brave reasoning is �P3 -hard. Moreover, hardness holds
even if the logic program is positive as the utilized program LP (�) positive. 2

The following result says that even if we require the aggregation strategy to be monotonic, the hardness
result presented above continues to persist. Thus, the complexity does not decrease in the case of monotonic
aggregation strategies.

Theorem 5.8 (General Program, Arbitrary/Monotonic Aggregation) Given a disjunctive program P , }, A
and a ground literal q as input, deciding whether q is true in some optimal stable model of P w.r.t. (};A) is�P3 -complete even ifA is a monotonic aggregation strategy.

17



Remark. Note that if the weight assignments are required to be in unary (tally) notation, then O(log n)
oracle calls suffice to determine the cost � of the optimal model. In this case, the problem ends up being�P2 [O(logn)]-complete.

If the aggregation strategy is monotonic and the program is a disjunctive positive program, then brave
and cautious reasoning have different complexity (unless the polynomial hierarchy collapses at its second
level). Indeed the following result shows that for positive programs with monotonic aggregation strategies
the brave reasoning problem is �P2 -complete and the cautious reasoning problem is �P2 -complete.

Theorem 5.9 (Positive Program, Monotonic Aggregation, Reasoning) Given a disjunctive positive programP , a weight function}, a monotonic aggregationstrategyA, and a ground literal q as input, deciding whetherq is true in some (resp., in every) optimal stable model ofP w.r.t. (};A) is�P2 -complete (resp.,�P2 -complete).

5.4 Results for Minimal Models

Minimal model semantics is syntax independent. For any disjunctive general program P , there exists a cor-
responding disjunctive positive program having the same semantics. Define the positive version PV (P ) ofP as the following disjunctive positive program:PV (P ) = f A1 _ � � � _An _B1 _ � � � _Bm  D1; : : : ; Dk jA1 _ � � � _An  D1; : : : ; Dk;not(B1); : : : ;not(Bm) is a rule of P g
Note that PV (P ) is computable in linear-time from P . Clearly, P and PV (P ) have the same set of mod-
els, and hence the same set of minimal models. Thus, considering only disjunctive positive programs is no
longer an actual restriction, because any general program is equivalent (w.r.t. minimal model semantics) to
a disjunctive positive program. Moreover, for positive programs, stable and minimal models coincide. As a
consequence, for any problem �, all the complexity results we are interested in can be immediately derived
from the corresponding results we proved for the problem � for disjunctive positive programs under stable
model semantics.

To save space and readability of the paper, we do not provide formal statements about the computational
complexity of the considered problems (Checking, Brave reasoning, Cautious reasoning, Approx) under
minimal model semantics. However, Table 1 and Table 2 show the computational complexity of these prob-
lems.

5.5 Results for All Models

If we consider all models, we get the lowest complexity results for all problems. First, we define a disjunctive
positive program PE which can be polynomially computed from a given Boolean formula E, and which is
useful for all the reductions of this section.

Let E be a CNF Boolean formula, i.e., E = C1 ^ C2 ^ � � �Cr and each Ci = Li;1 _ � � � _ Li;ti is a
disjunction of literals. Moreover, let fx1; : : :xng be the set of Boolean variables occurring in E. PE is the
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following disjunctive positive program:xi _ x0i  ; for each i = 1; : : : ; ncontr xi ^ x0i; for each i = 1; : : : ; ncontr �(Lk;1) ^ � � � ^ �(Lk;tk) for each k = 1; : : : ; rxi  contr for each i = 1; : : : ; nx0i  contr for each i = 1; : : : ; n
where � maps literals to atoms as follows:�(L) = ( xi if L = :xi for some i = 1; : : : ; nx0i if L = xi for some i = 1; : : : ; n
There is a one-to-one correspondence between the truth assignments to X satisfying E and the models ofPE which do not contain the atom contr. In particular, given a model M of PE s.t. contr 62 M , the truth
assignment �M satisfies E, where �M (xi) = true if xi 2 M , and �M (xi) = false if x0i 2 M . Viceversa,
given a truth assignment � satisfyingE, the set of atoms I� is a model of PE , whereI� = fxi 2 fx1; : : : ; xng j �(xi) = trueg [ fx0i 2 fx01; : : : ; x0ng j �(xi) = falseg
Note that contr does not belong to I�.

On the other hand, a model for PE containing the atom contr encodes a contradictory truth assignment
for E, i.e. a truth assignment which violates some conjunct Cj or assigns the value true to both xi and x0i
(which encodes :xi). Moreover, contr forces each atom of BPE to be true. Hence, any unsatisfiable truth
assignment for E maps to the model BPE of PE .

Checking

Our first result is that determining whether an arbitrary interpretation M is an optimal model of a disjunc-
tive logic program P is co-NP-complete. Note that in contrast, determining whether M is an optimal sta-
ble/minimal model is �P2 -complete.

Theorem 5.10 (General/PositiveProgram, Arbitrary/MonotonicAggregation)Given a programP , a weight
function }, an aggregation strategy A, and a set of atoms M as input, deciding whether M is an optimal
model of P w.r.t. (};A) is co-NP-complete. Hardness holds even if P is a positive program, M is a model
of P , and A is a monotonic aggregation strategy.

PROOF. co-NP-Membership. We can verify that M is not an optimal model as follows. Guess M1 � BP ,
and check that: either (1) [M1 is a model of P ] and [HOF(};A)(M1) < HOF(};A)(M)], or (2) M is not a
model of P . Since both (1) and (2) are polynomial time tasks, this problem is in NP, and as a consequence,
Checking is in co-NP.

co-NP-Hardness. Let E be a CNF Boolean expression, and PE the disjunctive positive program defined
above. We reduce the problem of deciding whetherE is an unsatisfiable Boolean expression to the problem of
checking whether the Herbrand baseBPE is an optimal model for PE w.r.t. to (}0; count), where }0(q) = 0
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for every atom q 2 BPE . Note that the aggregation strategy count, which given a set S returns the number
of elements in S, is monotonic.

Then, HOF(}0; count)(BPE) = jBPE j. On the other hand, for any model M of PE corresponding to a
satisfiable truth assignment to E, HOF(}0; count)(M) < jBPE j holds. Thus, BPE is an optimal model forPE w.r.t. (}0; count) iff E is not satisfiable. 2
Approx

Theorem 5.11 states that the Approx problem is NP-complete when all models are considered. Recall that,
in contrast, it is �P2 -complete for stable and minimal models.

Reasoning

As in the case of the Checking and Approx problems, the complexity of reasoning with “all” models is better
than with stable/minimal models.

Theorem 5.12 (Brave) (General/Positive Program, Arbitrary/Monotonic Aggregation, Reasoning) Given a
programP , a weight function}, an aggregation strategyA, and a ground literal q as input, deciding whetherP j=Allb q w.r.t. (};A) (brave reasoning) as well as deciding whether P j=Allc q w.r.t. (};A) (cautious
reasoning) are �P2 -complete problems. Hardness holds even if P is positive and A is monotonic.

PROOF. �P2 -Membership, brave reasoning. We first compute k = max hof(};A; P ) (this is done in
polynomial time by assumption). After that, by binary search on [0::k], we determine the cost� of the optimal
models, by a polynomial number of calls to an (NP) oracle deciding approx(P; };A; n; ;) (n = k=2 on the
first call; then if the oracle answers ”yes”, n = k=4; otherwise, n is set to k=2 + k=4, and so on, according
with standard binary search). (Observe that the number of calls to the oracle is logarithmic in k, and, as a
consequence, is polynomial in the size of the input.) Finally, a call to the oracle approx(P; };A;�; fqg)
verifies that q is true in some optimal model of P .�P2 -Hardness, brave reasoning. We show this by a polynomial time reduction of the following �P2 -
complete problem [8, 11]: Given a satisfiable CNF Boolean formulaE onX = fx1; : : : ; xng, decide whether
the with respect to hx1; : : : ; xni lexicographicallyminimum�(X) satisfyingE, which we denote by�min(X),
fulfills �min(xn) = true .

Consider the disjunctive positive programPE corresponding toE, as defined above. Recall that there is a
one-to-one correspondence between the truth assignments to X satisfyingE and the models of PE which do
not contain the atom contr. Now, consider the sum aggregation strategy, and the atomic weight assignment} such that: (i) }(xi) = 2n�i (1 � i � n), (ii) }(x0i) = 0 (1 � i � n), and (iii) }(contr) = 1. Note
that HOF(}; sum)(BPE) = 2n, because of contr. Then, BPE is not an optimal model. Indeed, since E is
satisfiable, HOF(}; sum)(M) � 2n � 1 for any other model M for PE .

It is easy to see that the Herbrand objective functionHOF(}; sum) induces a total order on the set of mod-
els of PE . In particular, given two models M and M 0 of PE , HOF(}; sum)(M) > HOF(}; sum)(M 0) iff
the truth assignment �M is greater than �0M in the lexicographical order. In particular, PE has a unique opti-
mal modelM , corresponding to the lexicographically-minimumtruth assignment satisfyingE (i.e., �M(X) =�min(X)). Therefore, the lexicographicallyminimum truth assignment�min(X) satisfyingE fulfills�min(xn) =
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true if and only if xn is true in the optimal model of PE w.r.t. (}; sum) (that is, iff xn is a brave consequence
of P w.r.t. (}; sum)). Therefore, brave reasoning is�P2 -hard. Moreover, hardness holds even if the program
is positive and the aggregation strategy is monotonic, as PE is positive and sum is monotonic, resp.

Cautious Reasoning. Both membership and hardness for�P2 can be easily derived by the same arguments
described in the first part of the proof for brave reasoning. 2
6 Algorithms for Computing Optimal Models

In this section, we present algorithms for computing optimal models, considering the families of stable, min-
imal, and all models.

6.1 Definitions and Notations

We start by introducing some notation. We say that an interpretation I 0 for a program P extends an interpre-
tation I for P if I is consistent and I � I 0. A modelM for P extends an interpretation I (also, I is extended
to M ) if there exists an interpretation I 0 such that I 0 extends I and M = I 0+.TP : 2BP[::BP ! 2BP denotes the (skeptical version of the) immediate consequence operator. It is
defined as:TP (I) = fa 2 BP j 9r 2 ground(P ) s:t: a 2 H(r); H(r)� fag � ::I; and B(r) � Ig:�P : 2BP[::BP ! 2BP denotes an extension of Fitting’s operator [5] to the disjunctive case, used for
computing false atoms of P .�P (I) = fa 2 BP j8r 2 ground(P ) with a 2 H(r) : B(r) \ ::I 6= ; or (H(r)� fag) \ I 6= ;g:
Definition 6.1 Let P be a program and I a set of literals. A positive possibly-true literal of P w.r.t. I is an
atom a such that there exists a rule r 2 ground(P) for which all the following conditions hold:

1. a 2 H(r);
2. H(r)\ I = ; (that is, the head is not true w.r.t. I);

3. B(r) � I (that is, the body is true w.r.t. I).

A negative possibly-true literal of P w.r.t. I is a literal :a s.t. a 62 (I+ [ I�), and there exists a ruler 2 ground(P) for which all the following conditions hold:

1. :a 2 B(r);
2. H(r)\ I = ; (that is, the head is not true w.r.t. I);

3. B+(r) � I (that is, the positive atoms in the body are true w.r.t. I);

4. B�(r) \ I 6= ; (that is, no negative literal in the body is false w.r.t. I).

The set of all possibly-true literals of P w.r.t. I is denoted by PTP (I). 2
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Example 6.1 Consider the program P = fa _ b c; d; e _ d ; g _ h  c;:fg and let I = fc; dg be
an interpretation for P . Then, we have two positive possibly-true literals of P w.r.t. I , namely, a, and b; and
the negative possibly-true literal :f . 2

The following useful property of the set of possibly-true literals can be easily verified. The same property
holds for the related notion of possibly-true conjunctions [17].

Proposition 6.1 Let P be a program and I a consistent interpretation for P . Then, PTP (I) = ; if and only
if I+ is a model for P .

6.2 Computing an Optimal Stable Model of a Positive Program with a Monotonic Aggrega-
tion Strategy

Algorithm Optimal Stable Model shows how to compute optimal stable model of a disjunctive positive
program P with a monotonic aggregation strategyA.

Algorithm Optimal Stable Model
Input: A disjunctive positive program P , a weight function },

a monotonic aggregation strategy A.
Output: An optimal stable model of P w.r.t. (};A).
Procedure Compute Optimal(I : SetOfLiterals;var best mod : SetOfLiterals);
var I0: SetOfLiterals; L: Atom;

repeatI 0 := I;I := I 0 [ TP (I 0) [ ::�P (I0);
until I = I0;
if I \::I 6= ; or LBP (I; };A) > HOF(};A)(best mod)

then return
end if
if PTP (I) = ; (* I+ is a model *)

then if (I+ � best mod) or HOF(};A)(I+) < HOF(};A)(best mod)
then best mod := I+;

end if
return

end ifL := choose(PTP (I); };A; P; I);Compute Optimal(I [ fLg; best mod);Compute Optimal(I [ f:Lg; best mod);
end procedure

var best model: SetOfLiterals;
begin (* Main *)best model := BP ;Compute Optimal(;; best model);

output best model; (* best model is an optimal stable model of P w.r.t. (};A) *)
end
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The function LBP (I; };A) is a polynomial-time function which returns a lower bound for the setfHOF(};A)(M) jM is a model of P; I+ �M; and I� \M = ;g
of reals numbers. That is, no model of P extending I can get a Herbrand objective function value better thanLBP (I; };A).

Note that, for any consistent interpretationI ,HOF(};A)(I+) is a trivial lower bound forP w.r.t. (I; };A),
because A is a monotonic strategy, and every model of P including I , will clearly be a superset of I+.
Lower bounds are used to cut the search space. Consider a call to the procedure Compute Optimal(I :SetOfLiterals;var best mod : SetOfLiterals), where I is a set of literals, and best mod is a model for the
program, representing the model with the lowest Herbrand objective function we have computed so far. In-
tuitively, we are looking for some optimal stable model M “extending” the set of literals I . If P has a lower
bound of n w.r.t. (I; };A), and n > HOF(};A)(best mod), it clearly does not make sense to continue this
way, because we cannot compute a model better than best mod, by extending I . Thus, we can terminate the
current call to the procedure, and go back to explore other possibilities.

The actual algorithm to be used for the computation of a lower bound for some set of literals I w.r.t. some(};A) should be chosen depending on the particular aggregation strategyA, on the weight function }, and,
possibly, on the particular class of programs P belongs to.

The function choose(PTP (I); };A; P; I) selects a possibly-true literal from PTP (I). We can use dif-
ferent strategies for this selection, which best fit different combinations of weight functions and aggregation
strategies. However, we consider only choices that can be done in polynomial-time. If A is monotonic, the
simplest strategy is a greedy choice: possibly true atoms which are assigned the lowest weights will be cho-
sen first. However, more sophisticated methods can be easily designed. For instance, looking at the programP , we can choose atoms whose immediate logical consequences give the least increment, and so on.

The following example shows in detail how the algorithm works.

Example 6.2 Let P be the following disjunctive positive program:a _ b  d  c _ d  ae _ f  b
We apply the algorithm Optimal Stable Model to compute a model belonging to Opt(P; ST(P ); }; sum),
i.e., an optimal stable model of P with the sum aggregation strategy, and a weight function } such that}(a) = 2, }(b) = 3, }(c) = 1, }(d) = 3, }(e) = 2, and }(f) = 2. We use the lower-bound functionLBP that, applied to an interpretation I , just returns the sum of the weights associated with the atoms in I+.

The procedure Compute Optimal is first called with the empty interpretation, and best mod is initial-
ized with the Herbrand base of P . The value of best mod isHOF(}; sum)(best mod) = 13. After the execu-
tion of the repeat loop, we get the interpretation I1 = fd;:cg, because TP (;) = fdg, �P (fdg) = fcg, and
no further atoms can be obtained by using these deterministic operators. The evaluation of the lower-bound
function givesLBP (I1; }; sum) = HOF(}; sum)(I+1 ) = 3. This value is less thanHOF(}; sum)(best mod),
and hence the algorithm continues and computes the set of possibly-true atoms w.r.t. I1. We get PTP (I1) =fa; bg. Since this set is not empty, we select from it a possibly-true atom, by using the function choose. As-
sume we choose the atom a, and let I2 = I1 [ fag = fa; d;:cg.
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Then, the procedure Compute Optimal is recursively called with the parameters I2 and best mod,
to compute possible optimal stable models starting from the interpretation I2. The repeat loop ends with
the new interpretation I3 = fa; d;:b;:c;:e;:fg. This interpretation is consistent and the lower boundLBP (I3; }; sum) = 5 is less than the value 13 of best mod. Moreover, PTP (I3) = ;. Indeed, the setI+3 = fa; dg is a model of P . Since I+3 is a subset of best mod = BP , it becomes the new best model, that
is, we set best mod = I+3 .

At this point, we come back to the previous execution ofCompute Optimal, and try to compute optimal
models assuming the previouslyselected atom be false. Therefore, we callCompute Optimal(I4; best mod),
where I4 = I1[f:ag = fd;:a;:cg. The repeat loop gives the interpretation I5 = fb; d;:a;:cg, becauseb is now deterministically derivable from the first rule of P . We compute the lower bound for this interpre-
tation: LBP (I5; }; sum) = 6. This value is compared with the Herbrand objective function evaluated on the
best model. Since HOF(}; sum)(best mod) = 5, this execution of Compute Optimal is stopped, because
no stable model better than best mod can be found starting from I5.

Now, the first call of Compute Optimal has been completed, and thus the algorithm stops and returns
the optimal stable model best mod = fa; dg.

For completeness, note that I+5 is not a model for P , and in fact there were some possibly-true atoms w.r.t.I5, as PTP (I5) = fe; fg. Indeed, P has other two stable models, namely, fb; d; eg and fb; d; fg. However,
these models are not optimal because their Herbrand objective function is equal to 8, while the optimal value
is 5. Therefore, thanks to the lower-bound function, the algorithm is able to cut the search space, avoiding
the generation of useless (i.e., not optimal) stable models.

Theorem 6.1 Given a disjunctive positive program P , a weight function }, and a monotonic aggregation
strategyA, the algorithm Optimal Stable Model outputs an optimal stable model of P w.r.t. (};A).
PROOF. At each time of the computation of Optimal Stable Model, the variable best model contains a
model for P . Indeed, it is initialized with the Herbrand base BP , which is clearly a model for P , and during
the computation of the algorithm it can be replaced only by another model for P having a better Herbrand
objective function (short: HOF) value. It is easy to verify that the algorithm terminates after a finite number
of steps, because at each recursive call of Compute Optimal we add to the (partial) interpretation I a new
literal, and the Herbrand base of P is finite, as no function symbol occurs in P . Then, the algorithm returns
a set of atoms, say M . We claim that M is a model for P . This clearly holds if M = BP . Otherwise, by
construction of the algorithm,M is the set of positive literals I+ of an interpretation I such thatPTP (I) = ;.
In this case, the claim follows from Proposition 6.1.

Now, assume by contradiction that the algorithm Optimal Stable Model does not output an optimal sta-
ble model for P , and let M 0 be an optimal stable model for P . There are two possibilities:

1. the HOF value of M is strictly greater than M 0, i.e., HOF(};A)(M) > HOF(};A)(M 0); or

2. the models M and M 0 have the same HOF value, but M is not stable and hence not minimal, as P is
positive.

If the second condition holds, we may assume without loss of generality that M 0 � M , because in this
case every minimal model included in M is an optimal stable model for P . Then it is easy to see that,
for each call toCompute Optimal(I; best mod) during the computation of Optimal Stable Model, eitherHOF(};A)(best mod) > HOF(};A)(M 0) or M 0 � best mod holds.
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Let I be the largest interpretation for P that can be extended toM 0 and that has been used as a parameter
for a call to the procedure Compute Optimal, during the execution of Optimal Stable Model. Note that
such an interpretation must exist, because the algorithm starts with the empty interpretation, which can be ex-
tended to any model. Now, consider the evaluation of Compute Optimal(I; best mod). We first evaluate
the repeat loop, which extends I to a new interpretation, say �I . It is easy to verify that, for every model ~M forP that extends I , ~M extends �I , as well. In fact, we just add to I literals that are deterministic consequences
of P given the interpretation I . It follows that M 0 extends �I. This in turn entails that �I is a consistent in-
terpretation. Moreover, LBP (�I; };A) cannot be greater than HOF(};A)(best mod) because we know thatM 0 is an optimal stable model and extends �I .

Thus, the computation continues and we evaluate the set of possibly-true literals PTP (�I). Assume thatPTP (�I) = ;. ¿From Proposition 6.1, �I+ is a model for P . Since �I can be extended to the model M 0 thenPTP (�I) = ; entails �I+ = M 0. Thus, from the above relationships between M 0 and best mod, it follows
that M 0 (i.e., �I+) should replace best mod. However, if this happens, there is no way to replace M 0 by M
during the algorithm. This is a contradiction, as we assumed M is the output of the computation of Opti-
mal Stable Model on P .

Thus, assumePTP (�I) 6= ; holds. LetL be the possibly-trueliteral selected by choose(PTP (�I); };A; P; �I).
We then call bothCompute Optimal(�I [fLg; best mod) andCompute Optimal(�I [f:Lg; best mod).
However, if L 2M 0, then �I [ fLg can be extended to M 0; otherwise, �I [ f:Lg can be extended to M 0. In
either case, our assumption on I is contradicted. 2

Since even computing just a minimal model of a disjunctive positive program is an NP-hard task (ac-
tually, PNP[O(logn)]-hard) [1], unless the polynomial hierarchy collapses, there exists no polynomial time
algorithm which computes an optimal stable model for a disjunctive positive program. However, an opti-
mal stable model can be computed by using polynomial space and single exponential time. Moreover, the
algorithm runs efficiently on the tractable class of normal positive programs.

Remark. Given a positive disjunctive program P , the algorithm Optimal Stable Model outputs a model
which is also optimal w.r.t. minimal model semantics. To see this, observe that for positive programs, stable
and minimal models coincide. Now, consider the family of all models. For any optimal modelM , there exists
a minimal model M 0 �M which is also an optimal model. Indeed, for any monotonic aggregation strategyA and any weight function }, HOF(};A)(M 0) = HOF(};A)(M)must hold because M 0 is a subset of M .
Thus, every optimal minimal model is also an optimal model w.r.t. the family of all models, hence algorithm
Optimal Stable Model outputs an optimal model w.r.t. to the family of all models, as well.

6.3 Computing an Optimal Stable Model: General Case

Algorithm Optimal Model General, below computes an optimal stable model of a general disjunctive pro-
gram with any aggregation strategy.

The main difference with the previous case, where the program was restricted to be positive and the ag-
gregation strategy to be monotonic, is that we now have to explicitly check that the model at hand is stable.
This is accomplished by the function is Stable. Stable model checking can be effectively done by looking
for some unfounded set possibly included in the model, as suggested in [17], and recently improved in [10].
We assume is Stable is implemented as described in [10].

Algorithm Optimal Model General
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Input: A disjunctive program P , a weight function }, an aggregation strategy A.
Output: An optimal stable model of P w.r.t. (};A).
Procedure Compute Optimal G(I : SetOfLiterals;var best mod : SetOfLiterals;var best val : Real);
var I0: SetOfLiterals; L: Literal;

repeatI 0 := I;I := I 0 [ TP (I 0) [ ::�P (I0);
until I = I0;
if I \::I 6= ; or LBP (I; };A) > best val

then return
end if
if PTP (I) = ; (* I+ is a model *)

then if HOF(};A)(I+) < best val and is Stable(I+)
then best mod := I+;best val := HOF(};A)(I+);

end if
return

end ifL := choose(PTP (I); };A; P; I);Compute Optimal G(I [ fLg; best mod; best val);Compute Optimal G(I [ f:Lg; best mod; best val);
end procedure

var
best model: SetOfLiterals;
best value: Real;

begin (* Main *)best value :=1;Compute Optimal G(;; best model; best value);
if best value <1

then output best model;
else output “P does not have stable models”

end if
end

The implementation of LBP (I; };A) is an important issue. While the search space can be effectively
reduced in the case of monotonic aggregations, there are general aggregation strategies where no “good”
lower bounds can be computed in reasonable time. In this case, one can just return the trivial lower bound�1.

Moreover, for positive programs and monotonic aggregation strategies, we can always start with a model
for the given program, whose HOF value represents an upper bound to the optimal HOF value. Indeed, the
Herbrand base BP is a model for any program P , and there always exists a model M � BP which is a
stable model for P and has a HOF value not greater thanBP . In the general case – with negation and general
aggregation strategies –, this initialization would be meaningless, because logic programs with negation may
have no stable models at all, and because larger models may have better HOF values than smaller models.
Thus, we have added the new parameter best value to the recursive procedure. best value is initialized with
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the special value1. By inspecting the value of this variable at the end of the algorithm, we can determine
whether P has stable models or not. In the former case, P has also optimal stable models, and the variable
best model holds an optimal stable model for P .

The correctness of Optimal Model General is stated by the following theorem, whose proof is very sim-
ilar to the proof of Theorem 6.1, and will be thus omitted.

Theorem 6.2 Given a disjunctive program P , a weight function }, and an aggregation strategyA, the al-
gorithm Optimal Stable Model General outputs an optimal stable model of P w.r.t. (};A).

Even in the general case, an optimal stable model can be computed by using polynomial space and single
exponential time. Moreover, the algorithm runs efficiently on the tractable class of normal positive programs.

6.4 Computing an Optimal Minimal Model

In this section, we describe how to compute optimal minimal models. LetP be a disjunctive general program
and let PV (P ) be the positive version of P , defined in Section 5.4.

Recall that the set of models of P and PV (P ) are identical, and thus the set of minimal models are iden-
tical, too. Moreover, for any positive program P 0, ST(P 0) = MM(P 0) holds. It follows that the algorithms
developed for computing optimal stable models can be used for computing optimal minimal models, too.

Proposition 6.2 Let P be a disjunctive general program. Given the positive version PV (P ) of P , a weight
function}, and an aggregation strategyA, the algorithm Optimal Stable Model General outputs an optimal
minimal model of P w.r.t. (};A).

Moreover, ifA is monotonic, then, givenPV (P ),}, andA, the algorithmOptimal Stable Model outputs

an optimal minimal model of P w.r.t. (};A).
Thus, given a general program P , we can first compute its positive version and then compute an optimal

minimal model for P by using either Optimal Stable Model or Optimal Stable Model General, depending
on the aggregation strategy, i.e., whether it is monotonic or not. Since PV (P ) can be computed from P in
linear time, the overall cost of computing an optimal minimal model (by using this procedure) is the same as
the complexity of these algorithms, stated by Theorems 8.1 and 6.2, respectively.

6.5 Computing an Optimal Model

Computing an optimal model with respect to the family of all models is a quite different task, because every
model is a candidate to be the best model. Thus, algorithm designed for computing just minimal and stable
models are no longer useful, in general. However, if the aggregation strategy is monotonic, for each optimal
model M , there is an optimal minimal model M 0 � M having the same HOF value, and hence optimal as
well. Therefore, in this case, we can safely use the algorithm Optimal Stable Model applied on the positive
version of the program.

Proposition 6.3 Let P be a disjunctive general program. Given the positive version PV (P ) of P , a weight
function }, and a monotonic aggregation strategyA, the algorithm Optimal Stable Model outputs an opti-
mal model of P w.r.t. (};A).
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However, if we consider aggregation strategies that are not monotonic, by using the algorithms from
previous sections, we can miss optimal models. We next describe a new algorithm for the general case.

First, we define a new operator for deriving literals that should be false in every model extending a given
interpretation. LetP be a program and I an interpretation forP . The operator�P : 2BP[::BP ! 2BP[::BP
is defined as follows:�aP (I) = f` j 9r 2 ground(P ) with ` 2 B(r) : (B(r)� `) � I and ::H(r) � Ig:
That is, if the head of r is false and all the literals in its body but ` are true with respect to I , then ` must be
false in every model extending the interpretation I . Note that, if ` 2 �aP (I) is a negative literal, say :p, then
we derive that p is true in every model (if any) extending I .

Algorithm Optimal Model for the computation of an optimal model of a disjunctive program P with a
general aggregation strategyA. For an interpretation I , we denote by Iu the set of atoms that are undefined
with respect to I , i.e., the set BP � (I \ ::I).

The computation starts with the empty interpretation. At each call of the recursive procedure Compute Optimal G,
we try to extend a partial interpretation I to a model of P . In particular, the repeat loop extends I by adding
the literals (either positive or negative) that are immediate consequences of the program P starting from the
interpretation I . Let I 0 this new interpretation. If I 0 is consistent and, according to the lower bound estima-
tion LBP (I 0; };A), can lead to some optimal model of P , then the procedure continues; otherwise, it ends
and we backtrack to a previous call of Compute Optimal G. Then, if I 0 is consistent and complete, it is in fact
a model for P (see the proof below). In this case, we compare it with the previous best model and possibly
replace this model by I 0, if the HOF value of I 0 is better. Otherwise, i.e., if I 0 is consistent but not complete,
we select an undefined literal L with the function choose, and then try to extend recursively first I 0 [ fLg
and then I 0 [ f:Lg.
Algorithm Optimal Model
Input: A disjunctive program P , a weight function }, an aggregation strategy A.
Output: An optimal model of P w.r.t. (};A).
Procedure Compute Optimal G(I : SetOfLiterals;var best mod : SetOfLiterals;var best val : Real);
var I0: SetOfLiterals; L: Literal;

repeatI 0 := I;I := I 0 [ TP (I 0) [ ::�aP (I0);
until I = I0;
if I \::I 6= ; or LBP (I; };A) > best val

then return
end if
if Iu = ; (* I+ is a model *)

then if HOF(};A)(I+) < best val
then best mod := I+;best val := HOF(};A)(I+);

end if
return

end ifL := choose(Iu; };A; P; I);Compute Optimal G(I [ fLg; best mod; best val);
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Compute Optimal G(I [ f:Lg; best mod; best val);
end procedure

var
best model: SetOfLiterals;
best value: Real;

begin (* Main *)best value :=1;Compute Optimal G(;; best model; best value);
output best model;

end

We next briefly discuss the differences of the algorithm Optimal Model with the previous algorithms for
computing optimal minimal and optimal stable models. For the All-models semantics, we have to consider
every model for the program. Since the possibly-true atoms have been defined for generating only stable
models, in this case the function choose may select any undefined atom in Iu, rather than restricting the
selection just to PTP (I); otherwise, we can miss some (possibly optimal) model. Literals that should be
false in every model extending I are computed using the operator �aP , rather than �P , which declare false
any atom no longer supported by the rules of P . The latter would not be safe for the family of all models.

Theorem 6.3 Given a disjunctive program P , a weight function }, and an aggregation strategyA, the al-
gorithm Optimal Model G outputs an optimal model of P w.r.t. (};A).
PROOF. Note that we consider logic programs without integrity constraints.6 It follows that P has always
models and hence optimal models. In fact, algorithm Optimal Model G always outputs a set of atoms, sayM . We next prove that M is an optimal model for P .

First observe that M is model. Indeed, M is the set of positive literals I+ of a total consistent interpre-
tation I computed by the repeat loop. Assume by contradiction that M is not a model. Then, there is a ruler 2 P such that B(r) � I and H(r) \ I = ; or, equivalently, ::H(r) � I , because I is total. This en-
tails that, for any literal ` 2 B(r), ` 2 �aP (I). Since at each step of the loop we add ::�aP (I) to the current
interpretation and we assumed ` 2 B(r) andB(r) � I , we get that both ` and:` belong to I , a contradiction.

Now, assume by contradiction that the algorithm Optimal Model G does not output an optimal model
for P , and let M 0 be an optimal model for P . This means that neither M 0, nor any other optimal model
for P , is generated during the computation of Optimal Model G, otherwise the variable best mod should
hold such a model and the algorithm would eventually output it. Therefore, best val > HOF(};A)(M 0)
holds at each step of the computation. Let I be the largest interpretation for P that can be extended to M 0
and that has been used as a parameter for a call to the procedure Compute Optimal, during the execu-
tion of Optimal Model G. Note that such an interpretation must exist, because the algorithm starts with the
empty interpretation, which can be extended to any model. Let us now consider the evaluation of the functionCompute Optimal(I; best mod; best val). We first evaluate the repeat loop, which extends I to a new in-
terpretation, say �I . It is easy to verify that, for every model ~M for P that extends I , ~M extends �I , as well. It
follows thatM 0 extends �I. This in turn entails that �I is a consistent interpretation. Moreover, LBP (�I; };A)
cannot be greater than best val because we know that M 0 is an optimal model and extends �I. Note that

6Recall that we used integrity constraints in our examples as a shorthand for a normal rule that behaves as a constraint under the
stable model semantics, as described in Section 3.1.
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�Iu 6= ;, otherwise from our assumption on I and hence on �I , M 0 = �I+ would immediately follow. Then,
we select a literal L by using the function choose(�Iu; };A; P; �I), and call both Compute Optimal(�I [fLg; best mod; best val), and Compute Optimal(�I [ f:Lg; best mod; best val). However, if L 2M 0,
then �I [ fLg can be extended to M 0; otherwise, �I [ f:Lg can be extended to M 0. In either case, our as-
sumption on I is contradicted. 2

Even in the case of all models, an optimal model can be computed by using polynomial space and single
exponential time. The proof is very similar to the proof of Theorem 8.1 and thus will be omitted.

Theorem 6.4 Given a disjunctive program P , a weight function }, and an aggregation strategy A, Opti-
mal Model runs in polynomial space and in single exponential time, provided that } and A are polynomial
time computable.

7 Related Work

We split related work into two categories - work on logic numeric values are assigned to models. The first is
in logic programming with uncertainty, and work on “weighted logic programs.”

7.1 Relationship with Logic Programs for Uncertainty

Logic programs to handle uncertainty were first introduced by Shapiro[26] and later studied by van Em-
den [32]. In both cases, the authors wrote normal, positive rules and associated a number between 0 and1 (inclusive) with that rule. The model theory of such programs was simple. Interpretations assigned real
numbers in the [0; 1] interval to ground atoms. Interpretation I assigns minfI(A1; : : : ; I(An)g to the con-
junction A1& : : :&An. A ground rule A  A1& : : :&An with associated real number v is satisfied byI iff I(A) � v � I(A1& : : :&An). Later, this work was extended by Kifer and Subrahmanian [9] who
introduced generalized annotated programs (GAPs for short). GAPs generalized such rules to use an arbi-
trary complete lattice of truth values, and furthermore, instead of associating numbers with rules as a whole,
GAPs provided a syntax to annotate atoms with lattice values as well as expressions that would evaluate to
lattice values. The resulting syntax allowed both Shapiro’s and van Emden’s framework to be special cases on
GAPs. Furthermore, numerous other interesting kinds of problems (such as temporal reasoning problems)
could be expressed in GAPs. Later, [20] adapted the GAP framework to handle purely probabilistic data.
Lakshmanan and his colleagues [14, 13, 15, 27] developed an elegant parametric framework to represent
varied probabilistic strategies in logic programs and developed important query optimization results.

However, all these approaches are not directly related to the problem of associating weights with mod-
els. We note that, in [20, 14], a probabilistic interpretation consists of a set of (ordinary) Herbrand inter-
pretations together with a probability distribution over them. Thus, if we have a very simple probabilistic
logic program with 2 ground atoms a; b occurring in it (and no others), we would have four Herbrand mod-
els — ;; fag; fbg; fa; bg. A probabilistic interpretation may associate a probability with each of them such
as 0:2; 0:3; 0:1; 0:4, respectively. Such an association of probabilities may be viewed as associating a “cost
like” value with the models.

However, there are many differences between this paper and such approaches. First and foremost, a user
of a logic program cannot specify his own costs — they are implicitly embedded already in the probabilistic
logic program and cannot be changed. Second, the probabilistic LP approaches do not have any notion of
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“optimality” and hence, none of the complexity results of this paper or the algorithms to compute optimal
(stable, minimal, all) models are described there.

7.2 Relationship with Weighted Logic Programs

Marek and Trusczynski [18] have introduced a notion of “weighted logic programs” and Niemela’s group
has separately introduced weighted logic programs [21, 22, 30]. These two frameworks are quite different,
even though they have the same name, so we consider them separately.

Marek and Trusczynski [18] have rules that are identical in syntax to the rules above of Shapiro and van
Emden with one difference — the numbers associated with rules do not have to lie in the [0; 1] interval. A
paraphrased version of the informal reading of the rule given in [18, p.7] A  A1& : : :&An with numberv is: If A1; : : : ; An are true and the amount of available resources equals or exceeds v, then we can derivea, and to do so, we must decrease the available resources by v. One can now give a straightforward fixpoint
semantics for a weighted logic program (which is a set of such rules). For instance, consider the weighted
logic program: a  3b  4c  2 a& bd  5 a:
One semantics for this program would allow us to infer, in one step, that a and b can be established at costs 3
and 4, respectively, and in the second step, that c and d can be established at costs 9 and 8, respectively. An
alternative semantics is also proposed by the authors. The authors note that their results are similar to those
of van Emden [32]. However, there are many differences between our work and theirs.

Niemela’s group has also introduced a notion of a weighted logic program. In their framework, they have
rules of the form C0  C1; : : : ; Cn where each Ci has the formL � f`1 = w1; : : : ; `m = wmg � U:
The `i’s are literals (for the sake of brevity, we will assume they are ground though this is not required by
[21, 22, 30]). An Herbrand interpretation I satisfies the above (ground) rule if:� Each literal `i 2 I (we say `i is true in this case), and� L � P`i2I wi � U .

Satisfaction of non-ground rules is defined in the usual way.

There are many differences between our work and the above two pieces of work. First, it is the logic
programmer who encodes the numbers. The end user has no say in the matter — this causes problems in
examples like the cooking example, where different cooks may have different costs associated with plan-
ning a dinner. Second, there is no notion of an optimal cost — Marek and Trusczynski [18] have an unique
least model that captures the least cost of each atom. However, there is no notion of associating costs with
models. Niemela et. al [21] only ensure that the above constraints (expressed via their rules) are satisfied —
there is no notion of a model being optimal. Third, neither approach deals with disjunctive logic programs.
Niemela’s work deals with normal programs, while the Marek and Truszczynski deals only with positive,
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normal programs. Hence, the complexity results of this paper and the algorithms to compute optimal (stable,
minimal, all) models described here are novel.

An important contribution that Niemela’s group makes that we do not is that they have implemented their
framework and they have developed product configuration applications. These are important contributions
that complement ours.

8 Conclusions

Logic programs and disjunctive logic programs form a powerful reasoning paradigm that can be used to ele-
gantly and declaratively encode a variety of problems. Given a (possibly disjunctive) logic program P , there
has been an immense amount of work on characterizing the declarative semantics of P . Many of these se-
mantics (such as the stable model semantics [6], the minimal model semantics [19, 2], and the “all-models”
semantics) identify a class of models of the program as being epistemically acceptable.

In this paper, we take the point of view that a user of a logic program (which is presumably written by
a logic programming professional) may wish to add criteria that she cares about, in the selection of a model
from the family of models identified by the semantics. We argue that once the logic programmer encodes
an application using some semantics, the user should be able to use objective functions to specify which of
the models conforming to the selected semantics should be picked. We have provided a formal definition
of optimal models and illustrated their utility through a simple “cooking” example, as well as a combina-
torial auction example. Subsequently, we have conducted a complexity-theoretic investigation of various
important problems relevant to this optimal models notion. Specifically, we have developed results on the
complexity of checking whether a model is optimal (w.r.t stable model semantics, minimal model semantics,
and all-models semantics), on determining whether a ground atom is true in all or one of the optimal models
w.r.t. one of these aforementioned semantics, and on checking whether there is a model w.r.t one of these se-
mantics such that it contains certain ground atoms and is guaranteed to have a cost below a certain amount.
We have also developed an exhaustive set of algorithms to compute optimal models w.r.t stable, minimal and
all model semantics. Our results apply to disjunctive logic programs with negation, not just to normal logic
programs.

The following questions still need to be studied. First, we need to develop efficient implementations of
these algorithms, and conduct experiments in order to determine how much they scale to large programs and
data sets. Second, we need to develop efficient methods to answer “brave” and “cautious” queries which
ask whether a query is true in some/all optimal models. Third, we need to develop methods to optimize such
queries. Preliminary starting points for these algorithms are already contained in the proofs of the complexity
results, but extending them to algorithms that scale remains a challenge.
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Appendix A.1

In this appendix, we show three possible extended database relations for the predicates dish, dislikes, and
guest, respectively, in the cooking program of Example 3.1.
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Name Type Cost Time

caprese appetizer 0.55 5
samosa appetizer 0.75 25
spaghetti carbonara entree 2.75 15
lasagna entree 3.25 25
malai kofta entree 2.25 40
matar paneer entree 2.40 15
masala dosa entree 3.15 30
idli entree 0.75 30
tiramisu dessert 3.00 30
rasgulla dessert 2.00 30

Person Name of Dish

nicola malai kofta
vs masala dosa
francesco masala dosa
gb caprese
simona tiramisu
simona idli
peppe rasgulla
peppe lasagna
tina matar paneer
tina samosa

Guest

nicola
vs
francesco

Appendix A.2

The logic program in Example 3.1 has 16 stable models altogether, depending on what is chosen as an ap-
petizer (2 choices), what is chosen as an entree (4 choices) and what is chosen for dessert (2 choices). Note
that the choices are restricted according to the given group of guests; in our example, Francesco, Nicola, and
VS. We list below, for all these stable models, just the predicate dinner , which characterizes each menu:M1 = fdinner(caprese; lasagna; tiramisu); : : :g;M2 = fdinner(samosa;matar paneer; rasgulla); : : :g;M3 = fdinner(caprese; spaghetti carbonara; tiramisu); : : :g;M4 = fdinner(caprese; spaghetti carbonara; rasgulla); : : :g;M5 = fdinner(caprese;matar paneer; tiramisu); : : :g;M6 = fdinner(caprese;matar paneer; rasgulla); : : :g;M7 = fdinner(caprese; lasagna; rasgulla); : : :g;M8 = fdinner(samosa; lasagna; rasgulla); : : :g;M9 = fdinner(samosa;matar paneer; tiramisu); : : :g;M10 = fdinner(samosa; lasagna; tiramisu); : : :g;M11 = fdinner(samosa; spaghetti carbonara; rasgulla); : : :g;M12 = fdinner(samosa; spaghetti carbonara; tiramisu); : : :g;M13 = fdinner(caprese; idli; rasgulla); : : :g;M14 = fdinner(samosa; idli; rasgulla); : : :g;M15 = fdinner(caprese; idli; tiramisu); : : :g;M16 = fdinner(samosa; idli; tiramisu); : : :g:
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Appendix A.3

In this appendix, we give some formal proofs not included in Section 3.2 for space reasons.

Theorem 5.2 (Brave Reasoning vs Cautious Reasoning under monotonic aggregation) Let P be a general

program,F a family of models in fall, stableg,} a weight function, andA a monotonic aggregation strategy.
Then, there exist a program P 0, a weight function }0, and a monotonic aggregation strategyA0, all of them
polynomially constructible, s.t. Brave reasoning for P w.r.t. (};A) reduces to Cautious reasoning for P 0
w.r.t. (}0;A0), and viceversa. PROOF. Let P be a general program, q an atom in BP , } an atomic weight
assignment, andA a monotonic aggregation strategy. Define a programP 0, an atomic weight assignment}0,
and two aggregation strategiesA0 and A00 as follows.P 0 = P [ fq  q0; q0  q; q0  :q00; q00  :q0g
where q0 and q00 are fresh atoms.8><>: }0(p) = }(p) 8p 62 fq0; q00g}0(q0) = cq0 where cq0 6= }0(p) 8p 6= q0}0(q00) = cq00 where cq00 6= }0(p) 8p 6= q00A0(X) = 8><>: max hof if fcq0 ; cq00g � XA(X � fcq0; cq00g) if cq00 2 XA(X � fcq0; cq00g) + 1 if cq0 2 XA00(X) = 8><>: max hof if fcq0 ; cq00g � XA(X � fcq0 ; cq00g) + 1 if cq00 2 XA(X � fcq0 ; cq00g) if cq0 2 X
Note that if A is monotonic, then bothA0 andA00 are monotonic, as well. It is easy to see that the following
claims hold.

CLAIM a). P j=Fc q w.r.t. (};A) iff P 0 j=Fb q0 w.r.t. (}0;A0).
CLAIM b). P j=Fc :q w.r.t. (};A) iff P 0 j=Fb q00 w.r.t. (}0;A00).
CLAIM c). P j=Fb q w.r.t. (};A) iff P 0 j=Fc q0 w.r.t. (}0;A00).
CLAIM d). P j=Fb :q w.r.t. (};A) iff P 0 j=Fc q00 w.r.t. (}0;A0). 2

Theorem 5.5 (Positive Program, Monotonic Aggregation) Given a positive disjunctive program P , }, M ,
and a monotonic aggregation strategyA as input, deciding whetherM is an optimal stable model of P w.r.t.(};A) is co-NP-complete. Hardness holds even if M is known to be a stable model. PROOF. co-NP-
Membership. On positive programs, minimal and stable models coincide. As a consequence, also optimal
stable models and optimal minimal models coincide. We can thus verify thatM is not an optimal stable model
by checking that it is not an optimal minimal model. That is, guessM1 � BP , and check that: either (1) [M1
is a model of P ] and [HOF(};A)(M1) < HOF(};A)(M)], or [M1 is a model of P ] and [M1 � M ], or
(3) M is not a model of P . Since (1), (2), and (3) are polynomial time tasks, this problem is in NP, and as a
consequence, Checking optimal stable models is in co-NP.

co-NP-Hardness Given a disjunctive positive programP and an atom q, it is well-known and easy to see
that deciding whether P j= q is co-NP-hard. We reduce this problem to optimal stable model checking.
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Let q0 be a fresh atom and P 0 be the (positive) program obtained from P by: (i) inserting the atom q0 in
the head of every rule of P . It is easy to see thatMM(P 0) = fq0g [MM(P )
Since both P and P 0 are positive programs, ST(P ) = MM(P ) and ST(P 0) = MM(P 0). Therefore:ST(P 0) = fq0g [ ST(P )
Let } be the following weight function: }(p) = 1 for any atom p 2 BP s.t. p 6= q; }(q) = }(q0) = jBP j.
The aggregation functionA is sum. Note that sum is monotonic.

Let M be a model of P s.t. q 62 M . By definition of } and A, we have that A(M) < jBP j. Now,
consider the set fq0g. fq0g is a stable model for P 0 and A(fq0g) = jBP j. Hence, fq’g is an optimal stable
model of P 0 w.r.t. (};A) iff [every model of P contains q], i.e., iff [P j= q]. As a consequence, Checking
is co-NP-hard. 2
Theorem 5.8 (General Program, Arbitrary/Monotonic Aggregation) Given a disjunctive program P , }, A
and a ground literal q as input, deciding whether q is true in some optimal stable model of P w.r.t. (};A) is�P3 -complete even if A is a monotonic aggregation strategy. PROOF. ¿From Theorem 5.7, it remains to
prove only hardness. We provide a reduction from the same problem used in the proof of that theorem, and
show that we can impose monotonicity on the aggregation strategy if we allow negation in the logic program.

Consider the program LP 0(�) = LP (�) [ fw  not(w)g. We have now that every stable model ofLP 0(�) must contain w, that is, ST(LP 0(�)) = STw(LP (�)). Therefore, there is a one-to-one correspon-
dence between ST(LP 0(�)) and the set of truth assignments � which make �� valid.

Now, let} be the atomic weight assignment} such that: (i)}(xi) = 2n�i (1 � i � n), and, (ii)}(y) = 0
if y =2 fx1; : : : ; xng. Take the monotonic aggregation strategy sum.

Then, the Herbrand objective functionHOF(}; sum) induces a total order on ST(LP 0(�)). In particular,
given two stable models M and M 0 in ST(LP 0(�)),HOF(};A)(M) > HOF(};A)(M 0) if and only if the
truth assignment �M is greater than �M 0 in the lexicographically order. Therefore, LP 0(�) has a unique
optimal stable model M , corresponding to the lexicographically minimum truth assignment �min such that��min = 8Y E�min(X) is valid. Hence, the lexicographically minimum truth assignment �min(X) making��min valid fulfills �min(xn) = true if and only if xn is true in the optimal stable model of LP 0(�) w.r.t.(};A) (that is, iff xn is a brave consequence of LP (�) w.r.t. (};A)). Therefore, brave reasoning is �P3 -
hard, even if we require the monotonicity of the aggregation strategy (as the used strategy sum is monotonic).2
Theorem 5.9 (Positive Program, Monotonic Aggregation, Reasoning) Given a disjunctive positive programP , a weight function}, a monotonic aggregationstrategyA, and a ground literal q as input, deciding whetherq is true in some (resp., in every) optimal stable model ofP w.r.t. (};A) is�P2 -complete (resp.,�P2 -complete).
PROOF. We can decide the brave reasoning problem as follows. Guess M � BP , and check that: (1) M is
an optimal stable model of P w.r.t. (};A), and (2) q is true w.r.t. M . Clearly, property (2) can be checked
in polynomial time; while (1) can be decided by a single call to a co-NP oracle, by virtue of Theorem 5.5.
The problem is therefore in �P2 .

Hardness for the brave reasoning problem follows from the�P2 -hardness of (traditional) brave reasoning
for disjunctive positive programs under stable model semantics [3].
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The computational complexity of cautious reasoning follows immediately because it can be regarded as
the complementary problem of brave reasoning. 2
Theorem 5.11 (General/PositiveProgram, Arbitrary/MonotonicAggregation)Suppose we consider the “all”
models semantics. Given a program P , a weight function }, an aggregation strategyA, a set of ground lit-
erals S and a real number n as input, Approx(P; };A; n; S) is NP-complete. Hardness holds even if P is
a positive program andA is monotonic. PROOF. We can decide the problem as follows. GuessM � BP ,
and check that: (1) M is a model of P , (2) HOF(};A)(M) � n, and (3) every literal in S is true w.r.t. M .
Clearly, (1), (2), and (3) can be checked in polynomial time, hence the problem is in NP.

Let E be a CNF formula and PE the corresponding disjunctive positive program. E is satisfiable if and
only if PE j=Allb :contr. Hence, brave reasoning w.r.t. All models is NP-hard, and we conclude by virtue
of Proposition 5.1. 2
Appendix A.4

In this appendix, we give some formal proofs not included in Section 6 for space reasons.

Theorem 8.1 Given a disjunctive positive program P , a weight function }, and a monotonic aggregation

strategyA, Optimal Stable Model runs in polynomial space and in single exponential time, provided that }
and A are polynomial time computable.

PROOF. Since at each call of Compute Optimal we add a literal to the partial interpretation I , the max-
imum depth of the chain of recursive calls is jBP j, in the worst case. It follows that the algorithm uses at
most polynomial space, because we assumed all the functions (},A, LBP , and choose) are polynomial time
computable, and hence they work in polynomial space, too.

For time complexity, note that the algorithm uses calls toCompute Optimal to perform a guided search
of the interpretations forP . In particular, any interpretation ofP is expected at most once. Clearly, we do not
generate every interpretation. Indeed, if we detect that an interpretation is inconsistent, or cannot be extended
to any optimal model, the recursive call exits and no further extension of such an interpretation is tried. Since
the number of interpretations for P is single exponential in jBP [ :BP j, and every (non recursive) step
of Compute Optimal is feasible in polynomial time, it follows that Optimal Stable Model runs in single
exponential time, in the worst case. 2
Theorem 8.2 Given a normal positive programP , a weight function}, and a monotonic aggregation strat-
egyA, the Algorithm Optimal Stable Model runs in polynomial time, provided that} andA are polynomial
time computable.

PROOF. Let P be a normal positive program. We have to compute an optimal stable model for P w.r.t.
some (};A), where A is monotonic. Let I be the interpretation computed at the end of the repeat loop of
the first call to the procedure Compute Optimal. It is easy to see that I+ is the minimum model of the normal
positive program P , and hence its unique stable model and its unique optimal stable model, too. Since the
set of possibly-true atoms PTP (I) is empty, either I+ = BP or I+ � BP . In either case, the procedure
ends and the algorithm outputs the optimal stable model. Note that both the loop and the evaluation of the if
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statement are feasible in polynomial time, since we assumed that } andA, and hence HOF, are polynomial-
time computable. 2
Theorem 8.3 Given a disjunctive program P , a weight function }, and an aggregation strategyA, the Al-
gorithm Optimal Stable Model General runs in polynomial space and in single exponential time, provided

that } andA are polynomial time computable.

PROOF. As observed for the proof of Theorem 8.1, the maximum depth of the chain of recursive calls isjBP j, in the worst case. Moreover, the function is Stable works in polynomial space and single exponential
time [10]. It follows that the algorithm uses at most polynomial space.

For the time complexity, note that, as for the previous algorithm, each interpretation of P is generated at
most once. Therefore, the number of calls to Compute Optimal G is single exponential in jBP [ :BP j.
Moreover, the function is Stable can be evaluated in single exponential time, and the other functions (}, A,LBP , and choose) are polynomial time computable. It follows that Optimal Stable Model General runs in
single exponential time, in the worst case. 2
Theorem 8.4 Given a normal positive program P , a weight function }, and an aggregation strategyA, the
Algorithm Optimal Stable Model General runs in polynomial time, provided that } andA are polynomial-
time computable.

PROOF. Let P be a normal positive program. We have to compute an optimal stable model for P with
respect to (};A). ¿From the same reasoning as in the proof of Theorem 8.2, it follows that, at the end of
the repeat loop of the first call to the procedure Compute Optimal G, we get the unique stable model of P ,
which is also the unique optimal stable model of P . Here we just observe that, even in this case, both the
loop and the evaluation of the if statement are feasible in polynomial time, since is Stable runs in polynomial
time for normal logic programs [10], and we assumed that } and A, and hence HOF, are polynomial time
computable. 2
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