Manufacturing Cell Design Using Simulated
Annealing: an Industrial Application

by G. Harhalakis,]. M. Proth and X.L. Xie

TECHNICAL
RESEARCH
REPORT

S Y STEMS
RESEARCH
C E N T E R

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 90-68

Journal of Intelligent Manufacturing (1990) 1 185-191

Manufacturing cell design using simulated
annealing: an industrial application

G.HARHALAKIS,!J.M.PROTH?andX. L. XIE?

1Systems Research Center and Department of Mechanical Engineering, University of

Maryland, USA

2INRIA-Lorraine, Project SAGEP, Cescom, Technopdle Metz 2000, 4, rue Marconi, Metz,
France and Associate member of CIM-LAB of the Systems Research Center and Department of

Mechanical Engineering, University of Maryland, USA

3INRIA-Lorraine, Project SAGEP, Cescom, Technopéle Metz 2000, 4, rue Marconi, Metz,

France

Received April 1990 and accepted May 1990

In this paper, we give a brief summary of simulated annealing (SA) procedures used to solve
combinatorial optimization problems. We then present the manufacturing cell design problem
which consists of designing cells of limited size in order to minimize inter-cell traffic. We show
how to use a SA approach to obtain a good, if not optimum, solution to this problem. Finally,
we apply this approach to an industrial problem and compare the resuits to the ones obtained

using the so-called twofold heuristic algorithm.

Keywords: Group technology, clustering, simulated annealing, combinatorial problem,

manufacturing cells

1. Introduction
The problem of partitioning a manufacturing system into
cells has attracted the attention of researchers for a long
time. Various approaches, involving more or less human
expertise, are available (Askin and Subramnian, 1987;
Garcia and Proth, 1986; McAuley, 1972; Garcia and
Proth, 1985; Harhalakis, Nagi and Proth, 1990; King, 1979;
Kumar, Kusiak and Vannelli, 1986; Kusiak, 1985). At one
end of the spectrum, there are approaches which provide
only an aid to human decision and do not take quantitative
criteria into account. At the other end of the spectrum, we
have approaches which aim at optimizing quantitative
criteria. The approach presented in this paper belongs to
the latter type. It aims at partitioning a manufacturing
system into cells of limited size, the objective being to
minimize the inter-cell traffic. This problem is NP-hard.
Consequently, only heuristic or artificial intelligence based
algorithms are able to provide a good, if not optimum,
solution to this problem.

A twofold heuristic algorithm to solve this problem has
already been proposed (Harhalakis, Nagi and Proth, 1990)
and the industrial applications using this algorithm have

0953-9875/90 $03.00 + .12 © Chapman and Hall Ltd.

provided very interesting results. Nevertheless, it seems
that the well-known SA technique leads to results as good
as previous ones and offer more advantages. In particular,
SA can lead to many good solutions, i.e., to different
solutions having low inter-cell traffic. It allows the designer
to make his final choice amongst the set of good solutions
on the basis of implicit or explicit, qualitative or quantita-
tive criteria.

The paper is organized as follows. In Section 2, we
present the basicconcepts of SA andtry toexplainthe advan-
tages and the limitations of this kind of approach. Despite
the fact that SA is known as being only a heuristic way to
solve combinatorial optimization problems, it often leads
to very good solutions and is currently being revisited by
researchers (Johnson et al., 1989). Section 3 is devoted to
the application of SA to the problem on hand. The most
important part of this section is the definition of the
neighborhood of a set of manufacturing cells. Finally,
Section 4 presents an industrial application of the SA
approach and compares the results with those obtained
when using the twofold algorithm proposed in (Harhalakis,
Nagi and Proth, 1990).

186
2. Basic concepts of simulated annealing

In some sense, SA can be considered as an improvement of
local optimization. Section 2.1 is therefore devoted to the
specification of local optimization approaches. In Section
2.2, we introduce SA as an extension of local optimization
and consider its physical basis. Finally, in Section 2.3, we
provide some mathematical foundations of SA based on
Markov chains.

2.1. Local optimization

Let us consider a combinatorial optimization problem P, §
the set of its feasible solutions and an objective function f:
S— R which associates a real value to each feasible solution
s € §. Remember that a feasible solution is a solution which
verifies all the constraints of the problem. Solving P
consists of finding s* € § such that f(s*) is optimum, i.e.

f(s*) = opt f(s) (1)
SES

In Equation 1, opt represents either the maximum or the
minimum, depending on the problem.

Since P is a combinatorial problem, no exact procedure
is usually available to solve it in a reasonable amount of
time and one uses heuristic procedures to obtain a feasible
solution which is expected to be near optimum. Local
optimization procedures belong to the heuristic
approaches. Such a procedure starts from a feasible
solution s € S. It then requires the computation of the
neighborhood H(s) of s. H(s) is the set of solutions ‘close’
to 5. They are obtained by perturbing s in an adequate
manner (depending on P). If, for at least one s’ € H(s),
f(s') is better than f(s) according to Equation 1, one states
s = s and restarts the procedure with the computation of
H(s). The process goes on until no s’ € H(s) improves {(s).
The solution s is a local optimum. The problem with this
kind of procedure is when this local optimum is very poor
compared to the global optimum.

A local optimization procedure is uphill (when the goal is
to maximize f) or downhill (when the goal is to minimize f).
There is no way to avoid entrapment in the local optimum if
it is poor (i.e. if the related value of f is far from the
optimum). A way to partially overcome this difficulty is to
restart the local optimization procedure many times with
different initial feasible solutions, and to keep the best local
optimum solution. But the difficulty is in the selection of the
initial feasible solution, which, in some cases, could be very
hard. Furthermore, the whole procedure has to be re-
started for each trial, which usually leads to a result worse
than the one obtained using a SA procedure for the same
amount of computation.

2.2. Simulated annealing

In a local optimization procedure, one keeps a new solution
s' belonging to the neighborhood H(s) of s, if it improves

Harhalakis, Proth and Xie

the objective function. A SA procedure also allows one to
keep s’ with a given probability, if s' does not improve the
objective function, and this probability decreases along
with the amount of computation.

We owe this approach to Kirkpatrick er al. (Kirkpatrick,
Gelatt and Vecchi, 1983; Darema et al., 1987; Lundy and
Mees, 1986; Vecchi and Kirkpatrick, 1983) whose work is
based on the analogy of the behavior of a large number of
atoms when the temperature decreases. At a high tempera-
ture, the energy of the set of atoms is high. When the
temperature decreases, the energy of the system evolves
depending on the cooling speed. If this speed is very high,
the system reaches a ‘frozen’ state and the energy remains
high. This situation is called ‘chaos’ and corresponds to the
local optimum in a combinatorial problem. If the cooling
speed is low, atoms move increasingly slowly, but they find
their equilibrium state at each temperature and the energy
is minimal when atoms reach their ‘frozen’ state: this state
is called ‘crystal’. The way to reach this state is explained in
the SA optimization procedure introduced in this section.

The probability of the energy of the system being e at
temperature 7 in the equilibrium state is given by Equation
2:

Pr{e/T} = exp{—e/(Kg T)}/U(T))

where:

U(T) =f exp{—e/(Kg T)}de
0

U(T) is a standardization constant
Kg is Boltzmann’s constant
T is the temperature

Here is a very simple algorithm (Metropolis et al., 1953)
to find an equilibrium state when the temperature T is
known.

Algorithm 1
1. Get an initial state s, and compute its energy e,
2. Perturb s, in order to obtain s, belonging to the neighborhood
of 5o and compute the related energy e,
3. Compute A, = ¢; — ¢y
4. Test:
4.1. f A, =0, s, is accepted as a possible next state of the
system
4.2. If A, >0, then s, is accepted as a possible next state of
the system with the probability

Pr = exp{—A./(KgD)}

5. If 5y is accepted as a possible state of the system, set 5o = s;
6. Goto2

This Monte Carlo simulation provides feasible equilib-
rium states of the system for temperature T after some
computational steps. Combinational optimization uses a
similar algorithm in conjunction with a procedure to reach

Manufacturing cell design using simulated annealing

lower temperatures. In the previous explanation, let us
replace state and energy. respectively, with the terms
feasible solution and objective function value. Furth-
ermore, let us introduce r € (0, 1) which is used to lower the
temperature at each computational step. The algorithm to
find a near optimum solution in the case of the minimiza-
tion of the objective function is as follows (where € is a
small positive number provided by the user):

Algorithm 2

1. Get an initial feasible solution s, and compute the related
value of the objective function f(s,)
2. Get an initial temperature 77> 0
3. Generate a feasible solution s, in the neighborhood of s, and
compute the related value of the objective function f(s;)
. Compute A¢ = f(s,) — f(sq)
5. Test:
5.1. If Ar=0, set sy = sy
5.2, If A¢> 0, set s = 5y with the probability exp (—Ay/T)
. SetT =rT
.IfT>¢,goto3
8. Use local optimization to reach a local optimum starting from
the last s, value

=

~ A

Note that the last step is often neglected because local
optimization does not significantly improve the results
when ¢ is small. We finally keep the best solution among all
those that have been obtained. When it comes to maximiz-
ing an objective function, just change Af < 0and Af> Ointo
Af=0 and Af <0 respectively. It is easily understandable
that the difficulty in applying Algorithm 2 is usually the
definition of the initial feasible solution, the initial temper-
ature, parameter ¢ and the coefficient » € (0, 1). Note that
Algorithm 2 is derived from earlier work (Kirkpatrick,
Gelatt and Vecchi, 1983).

2.2.1. Remarks

(i) In Algorithm 2, the temperature decreases at each step
of the computation. This algorithm is said to be heter-
ogeneous by analogy with the Markov chains introduced in
the next section. Another strategy consists in lowering the
temperature every n steps of the computation. In that case,
the algorithm is said to be piecewise homogeneous because
it can be expressed as a sequence of finite homogeneous
Markov chains. (ii) As we said above, T, & and r are control
parameters which have to be defined for each problem. (iii)
The neighborhood of a given solution s, is the set of
solutions obtained by applying an elementary perturbation
to so. The concept of elementary disturbance depends on
the problem on hand. Assume, for instance, that the goal of
the combinatorial problem consists in finding an optimum
order for a set of entities. Given an order s, we can define
the neighborhood of s, as the set of orders obtained by
reversing the order of two entities of s, and/or by changing
the rank of one of the entities. Assume now that we aim to

187

find an optimum partition of a set of entities. Given a
partition s¢. an element of the neighborhood can be the
partition derived from s, by putting an element belonging
to a subset in another subset and/or by interchanging two
entities located in different subsets. (iv) In the following,
we assume that a state can be reached starting from any
other state by applying a sequence of elementary disturb-
ances. This is the case dealt with in this paper.

2.3. Mathematical foundations

2.3.1. Markov chains

A process which is evolving in time, in a manner controlled
by a probabilistic law is a stochastic process. Let E(¢) be the
state of such a process at time ¢. If the state of the process
can evolve only at discrete points in time (for instance at
timest = 0,1,2,3,. . .), the process is said to be a discrete
parameter process. If the number of possible states is finite
or countable infinite, the stochastic process is called a
chain.
Let us denote the possible states of the chainby 1,2, 3, 4,
., n, n+1, ..., A chain is a Markov chain if, the
probability that the state of the process be i at time k + 1
only depends on the state at time k (and not on the states of
the process at times 0, 1, 2, . . ., k —1). In other words:

Pr{E(k+1) = i/E(k) = j, and E(k—1)
= jr—y and . .. and E(0) = jo}
= Pr{E(k+ 1) = I/E(k) = ji} 3)

For a pair of points in time (r, k) with 0 = r= k and a pair
of states /, j, the conditional probability:

Pr{E(k) = i/E(r) = J} = Pr;;(r. k) 4)

is called a transition probability. When the transition
probabilities Pr; ; (7, k) only depend on k — r, the probabili-
ties are said to be stationary and the related Markov chain
is called homogeneous.

2.3.2. Simulated annealing

We refer to a problem P with a finite number N of states,
which is the case in the problem examined in this paper.
The SA procedure is a Markov chain since, (i) the number
of states is finite and, (ii) the probability Pr(so, s,) to reach
state s, just after s, only depends on s, (and not on the states
preceding sg). This Markov chain is non-homogeneous.
Stating A(sg, 51) = f(s;) — £(s¢), the probability Pr(sy, s,) is
given by:

0if E H(SO)
a if s; € H(sp) and A(sp, $1) =0 &)

a. exp[—A(so, 51)/To] if 51 € H(sy) and
A(sg,$1)>0

Pr(s()v Sl) =

188

where a is such that % cys,) Pr (so.51) = 1 and Ty is the
value of the temperature at state s,. We assume, of course,
that s, is chosen at random in H(sg).

As a consequence of Remark (iv) in Section 2.2 we know
that, whatever the pair (sq, ™) of states, it is always possible
to find an integer value v and a sequence sy, 53, . . ., 5, of
states such thats, € H(s;_,) fori = 1,3,. . ., v+ 1 (setting
s* = 5,40).

In the following, x + 1 is the length of the path y = (s,
515 - - -»8,,8%). yis called the elementary path if it does not
contain the same state twice. The probability of reaching s*
starting from so using a path (elementary or not) of
maximum length v + 1 is given by Equation 6:

v+1 X
Q,+1(s0,5%) = Z { z I: E Pr(si-1, Si):l} 6)

x=1 \ y&l (545,87 L i=1

where 5;,.; = s* and ', (5o, s¥) is the set of paths of
length x + 1 joining s, to s* and such that s; + s* when
i=0,1,..., x. We know, from Remark (iv) in Section
2.2, that at least one of the I's is non-empty forx €{1, 2, 3,

. ., A, .. .}. In Equation 6, if ', (5o, s*) is empty for
x=v+1,thenQ, (s, 5%) = 0. Let(st*,s3*,. . .,s£%) be
the local optima to problem P and E;, E,, . . ., Ex the sets

of feasible solutions to problem Psuch that, if s€ E,(k €11,
2, ..., K}), we reach s;* starting from s by using a local
optimization algorithm as defined in Section 2.1. We also
define FX,, (so) as the set of states s belonging to Ej,
such that I', ¢ (so,5) # ¢ (k =1, 2, ..., K). In other
words, FX, | (so) is the set of states, s*, of E, such that there
exists at least one path of length v + 1 joining s, to s* and
such that s; # s* when i = 0, 1, ..., v. According to
Algorithm 2, the length w of the path generated by the SA
algorithm when the parameters are , T and ¢ is such that
MT>e=tIT.
Thus w is the only integer verifying:

In(e/T)/Inr—1=w<In(e/T)/Inr

and the probability of reaching the local optimum s}
starting from the initial state s is:

R(st/s0) = >, Qulso. 5) (7)
SEFL

w—1

+ E Qx(s()’ s;(k*)
x=1

The first term provides the probability to reach a state of
E, with a path length of w. The second term is the
probability to reach s{* with a path length =w — 1.

We assume that a local optimization follows the state
reached using SA, i.e., that point 8 of Algorithm 2 holds, if
it does not Equation 7 becomes

R(si*/s0) = D, Quls0. 1) (7)

x=1

Harhalakis, Proth and Xie

Fig. 1. A path generated using Algorithm 2

Of course, these probabilities strongly depend on the para-
meters £, T and r. The smaller the ratio &/ T withregard tor,
the higher the value of w and, as a consequence, the higher
the probability that all the Ff, (k =1, 2, ..., K) be
non-empty. Thus, the smaller the ratio &/T with regard tor,
the higher the probability to reach the optimum value to
any problem P, by making a large number of trials, but the
larger the amount of computations for each trial. Figure 1
illustrates a SA process. In Fig. 1, s is the state reached
when T becomes <g¢. Path s to s3* is obtained by applying a
local optimization procedure. The heavy lines show the
limits of the sets E.

3. Manufacturing cell formation

The problem on hand is to group the machines into cells, in
order to minimize the inter-cell traffic, assuming that the
number of machines in each cell is limited (otherwise, the
solution consisting of grouping all the machines in the same
cell would be optimum). We state the problem in Section
3.1. In Section 3.2, we specify the neighborhood H(s) of a
partition s, of the set of machines into cells and we define
the SA approach used for solving this problem. Finally, we
present in Section 3.3 the application of this approach to an
industrial problem and compare the results to those
obtained by using the algorithm presented by Harhalakis
and colleagues (Harhalakis, Nagi and Proth, 1990).

3.1. Stating the problem

Consideraset M = {M,, M5, . . ., M,,} of m machines and
asetJ = {J,Ja, . . .,J,} of m part types. A unique routing,
also called J;, corresponds to each part type J; (i = 1, 2,

. ., n). Itidentifies both the machines that are used for the
manufacture and the sequence of operations performed.
ThusJ; = {M, 1, M;5,. .., M, }where M, ;€ Mforj = 1,
2, ..., ki. Let u; be the weight of part J;. The weight of a
part type represents the volume of production over a large
period (the same for all product types) or, similarly, the
average production per time unit. We also introduce ¢;
(i = 1.. .., n) which is the inter-cell transportation cost of

Manufacturing cell design using simulated annealing

one unit product of type J;. Note that the transportation
cost could also relate a pallet load (i.e. a set of units of
product). In this paper, ¢; refers to one unit of product J;.
For each (Ji, M;, M;) €EJ X M X M, we denote by g, the
number of times M, follows M; or M; follows M; in the
routing J,. Then, for each pair (M;, M;) EM X M, the
traffic between M; and M; is defined as follows:

L = 2 Cre U G kij (8)
k=1

t; represents the transportation cost between M; and M;.
Wealsosett; = 0fori=1,2,...,m.

Let C = {Cy, C;, . . ., C,} be a partition of M, i.e.:
CNC = ¢fori,je{l,2,...,qtandi #j

and

QQ

C,'=M

i

1

i

We denote by F(C) the total inter-cell traffic cost related
to partition C. According to Equation 8, that cost can be
expressed as follows:

F(C) = 2 t,']' (9)
HEEC)

where:

E(C) = {(i,)i€ECjEC, k,rE{1,2,. . .,q}. k #1}
Note that the number of pairs (i, j) in E(C) is:
N(C) = q(g - 1)/2

We also assume that the number of machines in a cell C;

i=1,2,..., ¢q) hasan upper limit of N (integer):
q
card(C))=Nfori=1,2,...,¢q (10)
G C C

(i) Removing a machine
from a cell and placing
it to another cell

Fig. 2. Design of an element in the neighborhood

(i1) Interchanging two machines
belonging to different cells

189
Thus, the problem to solve is the following:
find a partition C* € U of M such that:
F(C*) = M, F(C) (11)

cev

Ubeing the set of partitions of M verifying Constraint 10.

3.2, Problem solving

We first define the neighborhood of a partition. Given a
partition C of M which verifies Constraint 10, the neighbor-
hood H(C) of C is the set of partitions of U derived from C
by either:

(i) Removing a machine from one cell to another cell.

(ii) Exchanging two machines located in two different
cells.

(iii) Taking out a machine from a cell and generating a
new cell with that machine.

Figure 2 summarizes the possible transformations to
build a partition C’ belonging to the neighborhood of C. C"
belongs to the neighborhood of C if C' is obtained by
applying to C one of the transformations (i), (ii) or (iii).
The following result holds: Whatever Cy, C*€ U (i.e.
partitions of M verifying Constraint 10), it is possible to find
vand asequence Cy, C,, . . ., C, of elements of U such that
C;+1 belongs to the neighborhood of C;fori = 1,2,. . ., v
(weset C* = C,,1). In other words, it is always possible to
find a path joining C, to C*.

3.2.1. Proof

Cy to C* can be easily joined up in a twofold process: (a)
Starting from partition Cy, we first build C’ the set of m
partitions containing one machine each. That partition is
reached by passing through a sequence C,, C,, . . ., Cy_y,
C, = C',C;, beingderivedfrom C;(i = 0,1,. . .,w—1)

(iii) Generating a new cell

190

by using transformation (iii) (i.e. by generating a new cell).
(b) We then derive ¢* from C' = C,, by building a sequence
C' = Cw’ Cw+1., Cw+2w P Cv——h CV, C,,+1 = C* USing
transformation (i) to derive C;,, from C; (i = w, w+ 1,
. V).
Q.E.D.
The previous result shows that it is always possible to join
two partitions of U and the proof provides one of these
paths. But this path is usually not unique. In the example
given in the next section, we use Algorithm 2 after a slight
modification by lowering the temperature only every L
loops.

3.3. An industrial example

The example presented in this section has been solved for a
French company whose goal was to reorganize one of its
large shops. We had to handle 292 machines manufacturing
460 types of products. Parametersc;and u,; (i = 1.2, . . .,
460) were equal to unity. The results obtained were
compared to the ones obtained using the algorithm prop-
osed by Harhalakis and colleagues (Harhalakis, Nagi and
Proth, 1990). We first present that algorithm.

3.3.1. The twofold heuristic algorithm

This algorithm is a twofold algorithm composed of a
bottom-up aggregation procedure followed by a local
refinement procedure.

(i) The bottom-up aggregation procedure

This bottom-up aggregation procedure calls for the
definition of the normalized inter-cell traffic 7; between
each pair (C;, C;) of cells:

Ty = (> 2
HMEC,

tu.r) /(ni + nj)
u/M,€C,
where n; and n; are respectively the number of machines
in C; and C;. At the beginning of the algorithm, each
machine is placed in a separate cell. Then, at each step of
the aggregation procedure, we compute the normalized
inter-cell traffic between each pair of cells and aggregate
the two cells having the greatest inter-cell traffic, such
that the total number of machines in the aggregate cell is
smaller than N. The procedure is continued until it is
either not possible to form any feasible aggregate cell
due to the cell size limit constraint, or the traffic between
each of the existing classes is zero.

(ii) The local refinement procedure

The local refinement procedure starts from the set of
cells obtained at the end of the bottom-up aggregation
procedure. Then, at each step of the procedure, a
machine is considered as an external entity and the
normalized inter-cell traffic between this machine and
each of the cells is computed. The machine is assigned to

Harhalakis, Proth and Xie

the cell with which the traffic is maximal and whose size is
=N-1.

3.3.2. Numerical results

The results of the computation are summarized in Table 1
for various values of N. SA has been applied five times for
each value of N, starting from the same initial feasible
solution generated at random. The values used for the SA
algorithm are T = 500 (initial temperature), ¢ = 0.01,
r=10.95 and L = 30 (number of consecutive loops in
Algorithm 2 with the same temperature). Furthermore, we
choose element (iii) in the neighborhood (Fig. 2) with the
probability 1/(n. + 1), where n.is the number of cells in the
current state. Each of the other two elements is chosen with
probability [1 — 1/(n. + 1)]/2.

As seen above, the SA procedure provides, on average,
slightly better results than the twofold heuristic procedure
if it is applied five times.

4. Conclusion

SA has been applied to numerous examples of various
sizes. On average, it leads to better results than the ones
obtained using the twofold heuristic procedure outlined in
Section3.3.1. A veryimportantproperty of the SA approach
is that it is possible to reach various good results starting
from the same initial feasible solution. This property is of

Table 1. Numerical results.

The twofold heuristic procedure SA procedure

N Number Inter-cell Computation Number Inter-cell Computation

of cells traffic time (s) of cells traffic time (s)

559 47470 981 59 48160 386
59 48450 373

59 48829 384

59 48496 390

59 49140 370

10 30 42607 1127 30 40830 441
31 43537 402

32 40609 402

31 41707 428

31 41842 422

15 20 38345 1215 22 37591 450
21 36014 446

21 37612 443

21 36728 422

21 38011 465

20 15 36746 1193 16 33670 451
17 33561 459

16 35640 629

16 33545 444

16 33733 484

Manufacturing cell design using simulated annealing

great interest when a feasible solution is difficult to obtain.
It also enables us to propose to the designer partitions (i.e.
sets of manufacturing cells) which are totally different
but have similar inter-cell traffic values. The designer
can then choose among good solutions (i.e. solutions with a
small inter-cell traffic value), those which satisfy some
supplementary qualitative criteria resulting from his/her
expertise. There is, unfortunately, no procedure to obtain
the best values for the parameters T (initial temperature) ¢,
rand L controlling the SA procedure: the selection of these
values seem to be only a matter of experimentation.

References

Askin, R. and Subramnian, S. B. (1987) A cost-based heuristic
for group technology configuration. International Journal of
Production Research, 25 (1) 101-13.

Darema, F., Kirkpatrick, S. and Norton, V. A. (1987) Parallel
algorithms for chip placement by simulated annealing. IBM
Journal Res. Development 31, 391-402.

Garcia, H. and Proth, J. M. (1985) Group technology in
production management: the short horizon planning level.
Applied Stochastic Models and Data Analysis, 1, 25-34.

Garcia, H. and Proth, J. M. (1986) A new cross-decomposition
algorithm: the GPM. Comparison with the Bond Energy
Method. Control and Cybernetics, 15, 115-65.

Harhalakis, G., Nagi, R. and Proth, J. M. (1990} An efficient

191

heuristic in manufacturing cell formation for group technolo-
gy applications. International Journal of Production Re-
search, 28, 185-98.

Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C.
(1989) Optimization by simulated annealing: an experi-
mental evaluation; Part 1, Graph partioning. Operations
Research, 37, 865-92.

King, J. R. (1979) Machine-component group formation in group
technology. OMEGA The International Journal of Manage-
ment Science, 8 (2) 193-9.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983) Optimiza-
tion by simulated annealing. Science, 220, 13 May.

Kumar, R. K., Kusiak, A. and Vannelli, A. (1986) Grouping of
parts and components in flexible manufacturing systems.
European Journal of Operations Research, 24, 387-97.

Kusiak, A. (1985) The part families problem in flexible manufac-
turing systems. Annals of Operations Research, 3, 279-300.

Lundy, M. and Mees, A. (1986) Convergence of an annealing
algorithm. Mathematical Programming, 34 111-24.

McAuley, J. (1972) Machine grouping for efficient production.
The Production Engineer, Feb., 53-7.

McCormick, W. T., Schweitzer, P. J. and White, T. E. (1972)
Problem decomposition and data reorganization by a cluster
technique. Operations Research, 20.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and
Teller, E. (1953) Equation of state calculations by fast
computing machine. J. Chem. Phys., 21, 1087-92.

Vecchi, M. P. and Kirkpatrick, S. (1983) Global wiring by
simulated annealing. IEEFE Trans. on Computer-Aided De-
sign, CAD-2, 215-22 (October).

