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Abstract

A method for constructing observers for dynamical systems as asymptotic
limits of filters is described. The program is carried out in detail for linear
systems, and in addition an observer is obtained for a class of systems with
nonlinear dynamics and linear observations. The method is motivated by
some large deviation results of Hijab for certain conditional measures.
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1 Introduction

Our objective is to describe a method for constructing an observer for the
dynamical system

() f(z(t))+§gi(x(t))ua(t), 2(0) = o, 1)
y(t) = A=),

as the asymptotic limit of nonlinear filters associated with the “noisy” ver-

sion of (1) :

dzf(t) = f(xe(t))dt+§:gi(we(t))ui(t)+\/EN($€(t))dw(t), (2)

i=1

il

z(0) = =5,
dé(t) = h(z°(t)) dt + VeRdv(t), &(0) =0

with € — 0. Here z(t) € IR, y(t) € IR as usual. The method is motivated
by some large deviation results of Hijab [4], [5] for the conditional measures
P of (2).

In the present paper we present results of this general method as applied
to the linear case and a certain class of nonlinear systems. The general
nonlinear problem will be treated elsewhere.

2 Opbservers for Linear Systems

In this section we provide a complete description of the method as it applies
to linear systems. The results are improvements and completions of earlier
preliminary accounts provided in [1], [2].
The method constructs explicitly an observer for the linear system
z(t) = Az(t) + Bu(t), z(0) = =, (3)
y(t) = Caz(t),
as the asymptotic limit of (Kalman) filters for a family of associated filtering
problems
dzf(t) = Az‘(t)dt + Bu(t)dt + VeNdw(t), z°(0) = z§, (4)
des(t) = Czf(t)dt + eRdv(t), ¢°(0) =0.
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Such a construction is suggested by the fact that for certain choices of
@5 = cov(zf), the filters are independent of ¢, as discussed in Baras and
Krishnaprasad [1]. Also, the solutions of (4) converge in probability as
¢ — 0 to the solution of (3).

The work of Hijab [4], [5] is indispensible here in deriving a large de-
viation principle for the conditional measures Pj, (see Section 2.3), and
identifying the limit of the filters for (4) as an associated deterministic
estimator.

2.1 Observers and Filters

We assume as usual that z(t) € R", u(t) € R™, y(t) € R?, and t — u(t)
is piecewise continuous.
Recall that the observer problem consists of constructing a dynamical
system
m(t) = Em(t) + Fu(t) + Gy(t), m(0) = my, (5)

so that the error
e(t) = z(t) — Hm(t) (6)

decays exponentially fast to zero, at a rate controlled by the designer, in-
dependent from the choice of my and zo. Here the matrices F, F,G and
H are possibly time-varying and the dimension of m(t) is not necessarily
n. This of course reflects the fact that the initial condition zy is unknown,
and the best that can be done is to approximately estimate z(t) by Hm/(t)
in this way.

Solutions to this problem are well known, first given by Luenberger [8].
In particular, if the pair (C,A) is detectable, then there exists a matrix T
such that the matrix A + I'C has eigenvalues in the open left half plane.
Then set

E=A+TC, F=B, G=-T, H=1I

In this case the error (6) satisfies
e(t) = (A+TC)e(t), e(0) = zo— 20,

and the eigenvalues of 4 4+ I'C can be arbitrarily assigned by the designer
if and only if (C,A) is observable.



Consider the system (3). Define £(t) = J; y(s)ds, so that (3) becomes
&(t) = Az(t) + Bu(t), z(0) = zo, (7)
it = oolt), £0)=0.

Then associate with (7) the family of filtering problems (4), where w, v are
independent standard k-dimensional, respectively p-dimensional Brownian
motions. The initial condition zf is Gaussian, independent from w, v with
E(zf) = uf, cov(zf)=Q% , where Qf is positive definite. Note that the
(small) parameter € controls the intensity of the noise. The matrix R is
assumed positive definite.

As is well known, the minimum variance estimate z°(t) = E(z(t) |

£(s),0 < s < t) for the linear Gaussian filtering problem (4) is given by
the Kalman filter [3]

dif(t) = AZ°(t)dt + Bu(t)dt + Q*(t)C'(RR') ™! (des(t) — Cz°(t)dt),
2(0) = u, (8)
where Q¢ satisfies the Riccati equation
Q) = AQ(t) + Q(1)A' — Q()C'(RR)T'CQ(t) + NN, (9)
Q(0) = Qp/e
Note that these filters depend on € only via the matrix Qf/e. In fact, if
we choose Qf = €Qo, then all the filters are independent of € and identical
with the filter for € = 1.

Following Hijab [4], it is convenient to consider the filter (8), (9) as a
map

Fe:C([o,t}, R?) — IR",
£(s),0<s<t — Z(t).

2.2 Deterministic Estimation

Following Mortensen [9] and Hijab [4], we associate with (7) the determin-
istic (noisy) system
3(t) = Az(t) + Bu(t) + Nw(t), 2(0) = 0, (10)
¢t) = Cz(t)+ Ru(t), ¢(0)=0,



and energy cost functional

t
Tlzo,w,v) = 5 (0~ 1) Q5" (0 — ) + 5 [ (w(s)'(s) + v(s)'v(s)) s,

(11)

where t — w(t) € R*, t — v(t) € IR? are piecewise continuous, the rank of
N is n, and @ is positive definite.

A minimum energy input triple (23, w*,v*) given ¢(s), 0 < s < t, is

a triple that minimises J; subject to (10) and produces the given output

record ¢(s), 0 < s < t. The deterministic or minimum energy estimate of

2(t) given ¢(s), 0 < s <t, is the endpoint 2(t) of the trajectory 2z*(s), 0 <

s < t, of (10) corresponding to a minimum energy input triple: 2(t) = 2*(¢).

According to Krener [7], 2 is the solution of the Kalman filter equations

2(t) = A2(t)+Bu(t) + Q()C'(RR)T(E() — C&(1),  (12)
200) =

Q) = AQ(t)+ QA — Q()C'(RR)'CQ() + NN',  (13)
Q(O) = Qo.

As in the stochastic case (Section 2.1), it is convenient to consider the
deterministic filter (12), (13) as a map

7:cY(o,t],R?) — R",
¢(s), 0<s <t — 2(2).

Note that the deterministic filter coincides with the stochastic filter for
e = 1, that is, #!. Also, 2(t) is obtained from an optimal control problem,
and is determined by a Hamilton—Jacobi-Bellman equation [4], [6], [9)].

We now prove that as ¢ — 0 the stochastic filter 7€ (8), (9) converges
to the deterministic filter ¥ (12), (13).

Theorem 1 Suppose that (4) has initial conditions z§ Gaussian with mean
p¢ and covariance Qf satisfying

L1
hm"QOZQOa

e—0 ¢



lim p = p,

€—0

where Qo ts positive definite. Then
lingE | 25(¢) — 2(¢) [*=0
€—

uniformly in t € [0,T].

Proof: Now Q¢(t) — Q(t) uniformly in ¢t € [0,T]. Applying Ito’s rule to
| 2¢(t) — 2(t) |? and taking expectations, we find that, given § > 0,

E|a(t)—20) " < (| u— [ +6K (1+ | 4° |) + €K) €™,

for all € sufficiently small, where K > 0. The desired result follows from
this inequality. ///

2.3 Large Deviations

Consider the stochastic differential equation (4), with initial condition z§ =
zo for all € > 0. In this section we take u = 0. Let P be the probability
measure induced on " = C([0, T|, IR") by the diffusion z*. It is well known
from the theory of Ventcel-Friedlin (see Varadhan [10]) that the family of
measures P; satisfy a large deviation principle. Moreover, as ¢ — 0, P}
converges weakly to the degenerate measure concentrated on the unique
solution z of (3).

We now consider the observation equation in (4). Let Q. ,, be an
unnormalised conditional measure on 02" of z* given £ € O = C([0, T}, IRF)
where the diffusions are initialised as above. For a “control” ¢t — w(t),
let z, denote the unique solution to (10). The function v is defined by
R7(£(t) — Czy(t)) when € is C. Hijab [5] proved the following large
deviation result for Qil(e,zo)'

Theorem 2 For any open subset O and any closed subset C of 017,

llzrilglf dOgQil(f,m) (O) Z I (an 67 O)

limsup elogQ (¢ 50)(C) < —I(20,¢,C)
e—0



where for A C Q7
I(z0,&,A) = inf {—;— /OT (w(s)w(s) + 24(s)'C'Czy(s))ds  (14)

o) 10 ).

Proof: Define, for each £ € OF,w € OF,

d(w,€) = —¢(T)'Cw(T) +

AT(awcAway+gdwcxmay—%awcww%ran)a.

There exist constants A, B depending only on £, such that
—¢w, &) < A+ Blw|.

Then arguing as in Varadhan [11],

im limsup elog

1
! ex (—— w, )dP,::- .
R—oo  ¢0 {w: —¢(w,§)>R} P e¢( ¢) °

But this estimate is enough to prove the theorem. See Hijab [5] and Varad-
han [11] for details. ///

The minimisation in (14) is an optimal control problem similar to the
one in Section 2.2, but with fixed initial condition zo. James and Baras [6]
have made a simple generalisation of Theorem 2 in which the variational
problem arising is exactly the optimal control problem for deterministic
estimation in Section 2.2.

Assume that the initial conditions z§ of (4) have (unnormalised) density

d“(z0) = exp (5 (20— 1) Q5" (3~ 1)

Let Q{,,,)¢ be an unnormalised joint conditional measure of (z¢,z§) on
Q" x IR™ given £ € 17, The following result is quoted from [6].



Theorem 3 For any open subset O and any closed subset C of O™, and
for any open subset Oy and any closed subset Co of IR"™, we have

li161_1+i0nfelog Qlz,z0)e (O X O0) > —J (0 x 00, ¢)
limsup elog Q(, ;)¢ (C X Co) < —J(C x Co, §)
e—0

where for A x Ap; C Q" x R,

J(Ax Ao,6) = in {%(mo—p)'Qal(xo—u) + I(zo,g,ﬂ)}. (15)

f
zgE€4Ao

This theorem implies that if £ = ¢ is an actual output record of the
system (10), then as € — 0, QEMO)I ¢ converges weakly to a degenerate mea-
sure concentrated on the optimal initial condition 25 and optimal trajectory
z*(s), 0 < s < T of (10) corresponding to a minimum energy input triple.
As pointed out in Section 2.2, the deterministic estimate of the state at time
T is a functional of this optimal path, namely its value at T: 2(T) = 2*(T).

Thus in a weak sense, 2°(T') — 2(T'), and the large deviation principle
for Qimo)l ¢ characterises the limiting filter as the deterministic filter.

2.4 Observer Design

From Sections 2.2 and 2.3 it is plain that the deterministic estimator (12),
(13) is a natural candidate for an observer for the linear system (3). We
make the natural assumption that the pair (C, A) is detectable. Recall that
N has rank n and R is positive definite. The design parameters are Qo, N, R
and u.

Then from (12) we define

m(t) = Am(t) + Bu(t) + Q(t)C'(RR) " (y(t) — Cm(t)),  (16)
m(O) = Mgy = W,

where Q(t) is the solution of the Riccati equation (13). The inverse P(t) of
Q(t) is the solution of

P(t) = —P({t)A— A'P(t)— P()NN'P(t) + C'(RR)'C, (17)
P(0) = P, = Q5.



Since we are interested in the asymptotic behaviour of e(t) = z(t)—m(t),
it is important to obtain bounds for || Q(¢) ||, || P(¢) ||. To this end we
interpret Q(t), P(t) in terms of control problems. Write H = R™!C.

Consider the control problem

—p=An+ Hv, n(T)=h, (18)

where h is given and v is the control. We minimise

R(6) = n(0)Qon(0) + [ (v(t) + n(Y NN de.  (19)

Then the optimal control for (18), (19) is given by the following algorithm.
Consider the system of equations:

A = AR+ NN, 3(0) = Qoii(0), (20)
—7 = An—HHS, 4(T)=h
Then an optimal control is #(t) = —HA(t). Moreover,
min J;(v) = K'Q(T)h = K'A(T). (21)
In addition, the following relation holds:
A(t) = Q(t)A(t), for all ¢, (22)

where Q(t) is the solution of the Riccati equation (13).
Similarly, consider the control problem

A= AX+ Nv, X\T) = h. (23)
Again h is given and v is the control. We minimise
T
J2(v) = A(0)' PoA(0) + / (0()'v(t) + At H'HME) dt.  (24)
0

The system of necessary conditions is given by

>
!

AN+ NN'#, XT)=h, (25)
A'n— H'HX, #(0) = P,A(0),

|
=
I



and an optimal control is #(t) = N'#(t), with
min Jy(v) = B'P(T)h = h'7(T), (26)

and
A(t) = P(t)A(t), for all t, (27)

where P(t) is the solution of (17).
Since R is positive definite, in particular nonsingular, the pair (H, A) is
detectable. Thus there exists a matrix A such that

n"(A+AH)n < —ao|n |’ a0 >0. (28)

Also, since N has rank n, the pair (4, N) is controllable, and there exists
a matrix I’ such that

N(A+NT)X > Bo| A% Bo>0. (29)

Theorem 4 Under the above assumptions, we have:

NP+ A]?
le@ i< (1o + EEHAE) = o
0
LHI*+ 1T % _
ip@ns (1e)+ EEHED) <o
0
Proof: Consider in (18) a feedback control
v(t) = A'n(t).
The corresponding state is the solution of
—n=(A"+HAN)n, n(T)=nh. (32)

Therefore

RQU)A < n(0)Qun(0) + [ Tn) (NN + AM) n()de.  (33)

9



From (32) it follows that
o) =2 [ n(e (4 + H'N) (0}t = |

and from (28) we deduce that | n(0) | < |k |? and

[inwpea < L

Therefore from (33) it follows that

VP L),

vamn < () + L

which proves (30).
Next, consider in (23) the feedback control

v(t) = TA(2).

Then .
A=(A+ NT) A, )\(T) = h,

and we have

RP(T)h < A(0 +/ ) (D'T + H'H) A(t)dt.

Using (29) and (34) it follows that

R >12(0) [ +260 [ 120) P dt

and hence

| h|?
260

INECIEE:

This together with (35) yields (31). ///

(34)

(35)

Remark This theorem is true if rankN < n, provided that (4,N) is

controllable.
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2.5 Convergence of the Linear Observer

We now use the bounds (30), (31) to prove the following.

Theorem 5 The dynamical system (16), (13) is an observer for the
linear control system (3) provided that (C, A) is detectable and the above
assumptions hold. That is, there exists constants K > 0, v > 0 such that

|z(t) =m(t) | < K |zo—mo| e
for all t > 0.
Proof: From (30), (31) it follows that
PONER (39

and

< NP@WX < p| A2, (37)

Using (17), (36) we deduce

d !
Ze(t) P(2)e(t)

I
|
2
~
=
=
3
+
o
3
=

IAIA
|
|

o

where NN' > rol, 7o > 0. This together with (37) implies

-%e(t)'P(t)e(t) < —e(t) P()e(t).

Set v = ro/2pq®. Therefore

e(t)'P(t)e(t) < e(0) Poe(0)e™*™

11



and
| e(t) [* < qe(0) Poe(0)e™™"

from which the desired result follows. ///

Finally, we state the following result which is a consequece of standard
facts concerning the Riccati equation (13).

Theorem 6 Given the linear system (3), where (C,A) is detectable, an
n x m matriz N such that (A, N) is stabilisable, and a positive definite
matriz R, then there exists a unique non-negative definite solution Q to
the algebraic Riccati equation

AQ +QA' — QC'(RR')™'CQ + NN' = 0,
the matriz A — QC'(RR')™1C is exponentially stable, and the system

m(t) = Am(t) + Bu(t) + QC'(RR) ™ (y(t) — Cm(t)),

m(O) = My,

1s a time-invariant observer for the given system.

3 Observers for Nonlinear Systems

We consider a nonlinear dynamical system with linear observations:

zt) = f(=(t), =(0) = =0, (38)
y(t) = Cz().

We assume that f : IR® — IR" is smooth with bounded derivatives, and

write
A(z) = Df(z)

for the n X n matrix of first derivatives. Set

| Al = sup || AG2) -

12



3.1 Observer Design

Motivated by the linear design, we construct an observer for (38) as an ap-
proximation to the corresponding deterministic estimator. Associate with
(38) the system

2(t) = f(2(t) + Nw(t), 2(0) = z, (39)
¢(t) = Cz(t)+ Rv(t), ¢(0) =0,

where rank N = n, R is positive definite, and the energy functional

Tz w,v) = 2(z0—b)'Polzo— )+ [ *(w(s)w(s) + v(s)'v(s)) ds, (40)

where P, is positive definite.
According to Hijab [4], the deterministic estimate 2 is the solution of

2(t) = S(2()) +Q()C'(RR) T (§(t) ~ C2(2)) (41)
2(0) = u,
where
Q(t)_l = DZS('%(t)’t)’
and S(z,t) is the solution of the Hamilton-Jacobi- Bellman equation

3
aS(z,t)Jrlar(z,t,DS(z,t)) = 0, (42)

1
S(z,0) = E(z — u)' Po(z — p),
where

1 .
H(zt,0) = af(z) + saNN'a - %z'C'(RR')‘le + Z/C(RR) ().

In the linear case the solution of (42) is a quadratic form and Q(t) =
P(t)~! satisfies a Riccati equation. However, in the general nonlinear case,
solutions are not smooth and must be interpreted in the viscosity sense.
Thus (41) is not well defined in the large. We seek therefore to “approxi-
mate” S(z,t) by a quadratic form, and replace the Hamilton-Jacobi equa-
tion (42) by a simpler Riccati equation. In this way we will obtain a well
defined observer. Write H = R™1C.
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Suppose that S is smooth in a neighbourhood of (¢,0). Denoting com-
ponents by superscripts and partial derivatives by subscripts, and using the
summation convention, for small ¢ we have at (£(¢),1):

d_ ,. ok
asij(z(t),t) = Siyr 2 —Sujf*— 2Skif,l°

—Su(NN"®S,; + (H'H)Y,
using the fact that Si(2(t),t) = O from the definition of 2(t). If S were
quadratic, the third order terms vanish. This suggests that we replace (41)
by

m(t) = f(m(t) + QE)C'(RE)™ (y(t) — Cm(t)), (43)
m(0) = mo = g,
where now Q(t) = P(t)™', and P(t) satisfies the Riccati equation
P(t) = —P(t)A(m(t)) — A(m(t))' P(t) — P(t)NN'P(t) + H'H, (44)
Also Q(t) is the solution of
Q1) = Am())Q) + Q) A(m(t)) - QU)H'HQ(t) + NN', (45)
QD) = Q = B

Once again it is important to obtain bounds for || Q(¢) ||, || P(t) ||. To
recover estimates similar to (30), (31), we assume that the pair (H, A(z))

is uniformly detectable, that is, there exists a bounded Borel matrix valued
function A(z) such that

n' (A(z) + A(z)H)n < —ao |7 12, ap >0, (46)

for all z € IR". Since N has rank n and || A || < oo, the pair (4(z), N)
is uniformly controllable, and thus there exists a bounded Borel I'(z) such
that

N(A(z) + NT(@) A > Bo| X%, Bo>0, (47)

for all z € IR™. Set

Al = sup [[A(z) ||, IT|l= sup || T(z)].
z€lR" zER®

14



Then using the methods of Section 2.4, the following generalisation of
Theorem 4 can be proven.

Theorem 7 Under the above assumptions, we have:

lew i< (1al + LHEEIAE) = )
ipw s (1e )+ EHEE) <50 g

3.2 Asymptotic Convergence

We wish to prove that the system (43), (45) is an observer for the nonlinear
system (38). This is possible provided that we can bound the region where
the initial condition lies and provided the second derivative of f is not too
large.

Consider DA(z) = D?f(z). For any z, D*f(z) € L (R", L (R", R"))
and we denote || D*f || the suprimum over z of the norm of the linear
operator D? f(z).

Note that the numbers p and ¢ defined by (48), (49) are functions of
the design parameters Py, N, and R; and the given data f and C. The
designer is free to chose the parameters within the stated constraints. Also
NN' > rol for some ry > 0. Define

To
(P, N,R) = . 50
o) = et | 37| (50
Theorem 8 Assume that
[0 —mo | Df || < max o(Po, N, R). (51)

Then the dynamical system (43), (45) is an observer for the nonlinear
system (38) provided that (C, A(x)) is uniformly detectable and the above
assumptions hold. That 1s, there exists constants K > 0, v > 0 such that

| 2(t) —m(t) | < K |20 —mo| e

15



for all t > 0.

Proof: Now e(t) = z(t) — m(t) satisfies

et) = f(z(t)) - f(m(2)) — Q) H' He(t).

From (44) we deduce

%C(t)'l’(t)e(t) = —e(t) (2P(t)A(m(2)) + PR)NN'P(t) — H'H) e(t)
+2¢(2)'P(t) (F((t)) — f(m(2)) — Q) H He(t)) (52)
= ()(P(t)NN' ()+HH) (t)
+2e(t)' P(t) / rD*f ) + rse(t)) e(t)?drds

Seay(5;+tpm(k0|¢“nvww)4w (59)

By the assumption (51) we can find Py, N, R such that
| e(0) [ D*f || < (P, N, R),
hence

7o

| Bl I D*F I < s

or

2+ | B0) [P D ) < o,

Since PY/?(t)e(t) is continuous, there exists an interval [0,¢o) such that
—— + [ PY2(t)e(t) | p* || D*f || < O,
on [0,%). But from (53),
S IPP(e) | < 0
dt

on [0,%), and thus
| PM2(t)e(t) | < | Py/%(0) |

16



on [0,%0) . By continuity we have
| P2 (to)elto) | < | Po'?e(0) |,

and we can proceed from tg on. Therefore in fact

1 To
PY%(t)e(t) | < —————————(——6), 6 >0,
| ()()|_p‘/2IID2f|| '
for all ¢ > 0, and (53) implies
%e(t)'P(t)e(t) < —6le(t) .

But from (49),
e(t)Pt)e(t) < | P@)Ille®)[* < ple(t) [,

hence

which implies
8
e(t)P(t)e(t) < e(0)'Poe(0)e 7"
Therefore, using (48),

le(t) IF < 11 Q) Il e(t)' P(t)e(t)
ge(t)' P(t)e(?)

qe (0)'Poe(0)e_%t,

IN A IA

from which we deduce the desired result. ///

Remark By the mean value theorem,

Fe®) ~ fom(®) = [ D (sat) + (1= )m(@)) dsa(t) —m(t).
This yields the estimate
2¢(2)'P(t) (f(=(t)) = f(m(t)) < 2|l Al e(t) .

17



Using this in (52) we obtain

SANPOL) < o (-2 +a0] A1) 0

Hence if the design parameters Py, N, R were chosen so that

To
0 < 6 = ;13—4p||A||,

then the assumption (51) is unnecessary. Then (43), (45) is an observer for
(38) independent of the initial conditions. Unfortunately this inequality is
at best difficult to achieve.

References

[1] J. S. Baras and P. S. Krishnaprasad, Dynamic Observers as Asymp-
totic Limits of Recursive Filters, IEEE Proc. 21st CDC, Orlando,
Florida, Dec., 1982, pp1126-1127.

(2] J.S. Baras and M. R. James, Dynamic Observers as Asymptotic Lim-
its of Recursive Filters: Linear Case, Technical Report TR—-86-19,
Systems Research Center, University of Maryland, April 1986.

[3] M. H. A. Davis, Linear Estimation and Stochastic Control, Chapman
and Hall, London, 1977.

[4] O. Hijab, Minimum Energy Estimation, PhD Dissertation, University
of California, Berkeley, December, 1980.

[5] O. Hijab, Asymptotic Bayesian Estimation of a First Order Equation
with Small Diffusion, Annals of Probability, 12, 1984, pp890-902.

[6] M. R. James and J. S. Baras, Nonlinear Filtering and Large Devia-
tions: A PDE-Control Theoretic Approach, Technical Report TR-87-
27, Systems Research Center, University of Maryland, Feb. 1987. To
appear, Stochastics.

18



[7] A. J. Krener, Minimum Covariance, Minimax and Minimum Energy
Estimators, in Stochastic Control Theory and Stochastic Differential
systems, M. Kohlmann and W. Vogel (eds.), Berlin, Springer—Verlag,
1979, pp490-495.

[8] D. G. Luenberger, Observers for Multivariable Systems, IEEE Trans.
Aut. Control, AC-11, 1966, pp190-199.

[9] R. E. Mortensen, Maximum-Likelihood Recursive Nonlinear Filtering,
J. Opt. Theory and Appl., 2, No. 6, 1968, pp386-394.

[10] S. R. S. Varadhan, Large Deviations and Applications, CBMS-NSF
Regional Conf. Series in Appl. Math., SIAM, Philadelphia, 1984.

[11] S. R. S. Varadhan, Asymptotic Probabilities and Differential Equa-
tions, Comm. Pure and Appl. Math, 19, 1966, pp261-286.

19



