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ABSTRACT

An approximate model of coupled Markov chains is proposed and analyzed for a
slotted ALOHA system with a finite number of buffered nodes. This model differs from
earlier ones in that it attempts to capture the interdependence between the nodes.
The analytical results lead to a set of equations that, when solved numerically,
yield the average packet delay. Comparison between computational and simulation
results for a sﬁall number of nodes show excellent agreement for most throqghput
values, except for values near saturation. Numerical comparisons for a two-node
system show that a non-symmetric loading of the system provides better delay-

throughput performance than a symmetric one.

1. INTRODUCTION

Numerous papers have appeared in the literature that study and analyze the pro-
tocol of slotted ALOHA. However most of them either concentrate on capacity analysis
or assume an infinite user population that implies no queueing of packets at the ter-
minals. The case of a finite number of terminals that receive packets from exogenous
sources and that provide buffer space for queueing is of interest because it is both
ppactical and mathematically leading to a challenging problem. 1In this paper we con-
sider this problem. .,

In [1] an approximate model was introduced that proved analytically tractable

but did not lead to good agreement with éimulation results. Nevertheless it repre-
sented an attempt to capture the interdependence between the nodes, contrary to the

often assuned practice of considering them statistically independent, and formed the

basis for similar approximate analyses in related problems [2,3]. Here we propose a
1
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refinement of the model presented in [1] which tracks closer the interaction between
the nodes and thus leads to the expectation of better agreement with the actual
system. This expectation is confirmed by comparison of the analytical results to
those of a simulation that was carried out only for a small number of nodes (two and
three, respectively).

The precise modeling of the system we consider is straightforward in terms of a
finite~dimensional, infinite, discrete random walk with appropriate boundaries. It
is in fact the presence of the boundaries that causes complications and makes the
analysis difficult [1,4]. Even approximate models have proven quite difficult to
analyze [5-7]. The theoretical basis for establishing this as an interesting analy-
tical problem can be found in [8], where a closely related problem of two coupled
processors was considered and solved exactly. In [9-10] other approximate analysis
techniques were proposed and met with limited success in terms of predicting the
simulation results. In these same papers, as well as in [11], the related problem of
system stability was also considered. 1In [12] and in [13] an idea of stochastic
system domination has been introduced that provides stability bounds and approximate
derivation of the steady-state distribution of an ergodic Markov chain respectively.
There is a very rich literature on problems that stem from this central problem of
analysis of a slotted~ALOHA system with a finite number of buffered users. Thus, one
more effort in trying to "discover™ a good approximation, as this paper attempts to
do, is perhaps justified.

2. The Problem

Consider M terminals each of which receives packets from exogenous gources’
according to a Bernoulli process and lines them in a queue in a buffer of infinite
capacity., The arrival rate at the ith station is Ai and the arrival processes at
different stations are statistically independent. Time 1is slotted and it takes
exactly one slot to transmit one packet, or for a packet to arrive. Thus A, is also

i

the probability of an arrival at the ith station in any given slot.
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The ith terminal attempts with probability Py to transmit the head-of-the-line
packet in the queue (if the latter is non-empty) through a common channel to the
receiver. The usual ALOHA assumptions are made concerning success or collision,
Specifically, since we are considering discrete time, we are assuming that a packet
that arrives at time t joins the queue at the corresponding terminal and it is
possible, if the queue is empty at that instant, that it will be transmitted at that
same instant. Ternary information (success, idle, collision) becomes available to
all terminals at the next instant t+]1 and it is possible to retransmit or delete the
packet at that new time depending on whether it was involved in a collision or a suc-
cessful transmission.

To include several variants of the ALOHA protocol (such as immediate first
transmission, delayed first transmission, etc. (see [14])) we distinguish the status
of a given terminal at the beginning of a given slot into three categories, idle,
active and blocked. A terminal is idle if there were no packets in its buffer at
the end of the preceeding slot, it is blocked if its queue is not empty and the
latest attempted transmission was unsuccessful, and it is active if its queue is not

empty but its most recent attempted transmission was successful. We then let

riAi, if 1 is idle

Py = Sy {f i is active

g

qy > if 1 1s blocked

For this system which is schematically shown in Fig. 1, we wish to calculate
either the joint probability distribution of the queue sizes {Ni,i=1,...,M} at steady
state or the average values of these queue sizes (and, therefore, the average packet

delays using Little's formula).
The mathematical model for this system consists of a 2M dimensional Markov chain

the states of which are represented by



T = (sl,...,sM; Nl,...,NM)
where

S, = status of the ith terminal (ternary variable with values = idle, active, and

i
*
blocked)

and
Ni = queue size at the ith terminal

The transition prbbabilities for this chain can be obtained explicitly and so
can the stead& state equations. However their number is infinite and, owing to the
fact that the transition probabilities on the boundaries are different from the ones
in the interior of the state space, traditional analysis methods (for example, in

terms of moment generating functions) are inadequate.

3. The Proposed Approximate Model

The idea of simplifying the model without losing track of the interdependence
between the queue sizes of different terminals, that was proposed in [1], consisted
of considering the "status-state” separately from the “"queue~size™ state. Thus a
system state was defined that consisted of the triplet (I,A,B) where I denoted the
number of idle terminals, A the number of active terminals, and B\- M - (I+A) the
nunber of blocked terminals. Separately, for each terminal a node state was defined
consisting of the pair (Ni’ Si) where N, denoted the queue size of the ith term{nal
and Si its status. ”

Transitions between the states of the system state variable are not Markovian.

However, in [1] they were considered Markovian with transition probabilities equal to

* we represent -idle” by 0, "active” by 1, and "blocked” by 2.



the average probabilities of transition, where the averaging took place over all
values of the queue sizes. Similarly the transitions between the states of the node
state variable are not Markovian. Again, in [1] they were considered Markovian with
the transition probabilities calculated as averages of the true transition pfobabili—
ties over all values of the system status states. The resulting balance equations
for both systems were coupled and could be solved numerically. As mentioned earlier,
agreement with simulation results proved to be unsatisfactory and this was proved by
a simulation study done at ETH [15].

In trying to determine the reason for the limited success of the model proposed
in [1], we observed that the model failed to track the status of the M terminals one-
by~one. 1Instead it considered only the numbers of active, idle, and blocked ter-
minals respectively.

In this paper we formulate a model that again separates status—-states from queue-
size-states, in the spirit of the model in [1], but expands the state space of the
system status variables in order to track every terminal's status separately. Again,
however, the model is approximate in that the transition probabilities between the
states of each of the two chains are the averages of the true transition probabili-
ties from the original 2M-dimensional Markov chains.

Before we proceed with the mathematical details we would like to justify the
value of this approximation a priori. It is clear that in a slotted ALOHA system the
probability of success for an attempted transmission depends exclusively on the sta-

tus of the other terminals. Thus for the ith terminal the probability of success is

given by .
P(1) = p, D (1-p,) = p, I (1-r,2,) I (l-s,) I (l-q.), | (1)
e 3 Ty 34y Vg
jesI j#SA jeSB

where SI’ SA’ SB represent the sets of the idle, active, and blocked nodes respec-

tively. If the system is "symmetric”, that is the quantities r ,sj, j’}j do not
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depend on j, the success probability becomes a function only of the numbers of ter-

minals in the sets SI' S,, and SB. This observation led to the model developed in

A
[l]. However, transitions between the states of a process that consists of these
nunbers only, fails completely to "remember” the status of a given terminal in going
from slot to slot. Thus, although the success probability might still depend on the
nunbers only, the transitions "average-out™ the effect of the tendency of a given
terminal to undergo, or postpone, a change in its own status. Of course, in addition,
1f the system is not symmetric, it is necessary to track the status of each terminal
separately because each terminal contributes differently to the success probability
depending on its status.

Thus we shall consider a status variable S consisting of M ternary variables,
SI’SZ’°"’SM’ each of which indicates the status of the corresponding terminal.
Separately, we shall consider M queue length variables, each representing the status
and queue length of a given terminal independently of the status or queue lengths of
the other terminals. We shall consider these variables to evolve as independent
Markov chains (they are, in fact, neither Markov, nor independent). The transition

probabilities of each chain, we shall see, will depend on the steady-state probabili-

ties of the other chains and thus will take into account a parametric (but not statistical

coupling between them, even though the model is not exact.

3.1 The System—Status Markov Chain

Let S = (Sl"“’sM) be the M-dimensional status variable, where

4

0, if 1 1is idle
S, ={1, 1f 1 is active %

2, 1f 1 is blocked

\

Let P(S) be the joint, steady-state probability distribution of this random vec—
tor. In Fig. 2 the exact states for M=2 are shown. (Note that the state (1,1) is

not achievable since it is impossible for two nodes to have had successful
6



transmissions in the same slot). The total number of states achievable by this

vector is easily calculated to be

M M1 M
tMaeyw z MhHe Moo= 2Flw
n=0 n n=0 n n=0 n

where n indicates the number of blocked nodes, and where the fact that not more than
one node can be active 1is taken into account.

It is assumed that the evolution of S is Markovian with probabilities that are
suitably estimated. Their calculation is displayed in Appendix 1, where we assume
By =T, = 1. 1t is imbortant to note that in that calculation two quantities that

characterize the node-chain (not yet described) are required. These are calculated

in Appendix 2 and are the following:
Pi(lll) 4 Prqueue size > 1| node i is active]

and

>

*
P,(0]2) = Prlqueue size = 1| node i is blocked]

Thus the state equations for this chain (and therefore the solution P(S)) depend
on the above quantities. As we shall see, the above quantities, as obtained in
Appendix 2, depend in turn on P(S). Thus all state equations for both chains must be

solved simultaneously.

3.2 The Queue-Length Markov Chain

’
Let Ni be the total number of packets (the queue-length) at terminal i and let

Ti be the indicator of blocked or unblocked status, i.e.

* note that the queue size is considered to include the packets waiting in the queue
to be served plus the packet being served; that is, it is equal to the total number
of packets residing at the terminal.



0, if 1 is blocked

1, if 1 is unblocked (i.e. active or idle)

The pair (Ti’Ni) constitutes the state of the terminal and let I(Ti,Ni)‘denote
its steady state probability. This state is assumed to evolve as a Markov chain. Of
special interest in our calculations, as shown in Appendix 2, are the quantitiés
%(0,0), =(1,0), w(1,1) and the conditional moment generating functions G;(z) and
Gi(z), where

© Ny

i
Gy (z) = I W(Ti,Ni)z » Ty = 0,1

i Ni=0

These quantities, as well as the state transition probabilities that lead to their

determination, can be calculated in terms of the following "average” success

probabilities:
PB(i) = Pr[success|node 1 is blocked ] (2)
P,(1) = Prsuccess|noide 1 is active] (3)
P (1) = Pr[success |node is is idle] (4)

where the averaging is performed over the status of the other nodes (and for which
the state probabilities P(S) of the status states are required, thereby leading to

the coupling of the two sets of equations).

In fact it is shown in the appendix that, for the case of =8 = 1 and q; =
Py (case of immediate first transmission), we have
AP (1) :
%(0,0) = w(1,0) (5)

AiPA(i) + AiPB(i)

AP(1) = AP, (1)
%(1,0) = = 1°B 1°A 6
AP(1) = A (P (1) - P,(1))




A
n(1,1) =— n(0,0) (7)
)
i
AP ()
cé(l) = — 111 - (8)
AiPB(i) - xi(PB(i) - PA(i))

_ AP (1) - AP, (1)
Gi(l) - Ai + )‘i — i B i A (9)
A PR(1) = A (P (1) - B,(1))

where A\=1 - Aand P=1-P.
Similar expressions can be obtained for the much studied case of delayed first

transmission (i.e. r, =8 =gq = pi).

4. The Average Success Probabilities

Central to the calculations in the appendices is the knowledge of the average
success probabilities as defined above in Eqs. (2-4). These are easily expressed in
terms of the system state probabilities P(Sl""’SM) and by making use of the simple
ALOHA logic expressed in Eq. (1), as follows:

1) for blocked node i

Pp(1) = Pr(node 1 success |[node i is blocked)

Pr(node 1 success and node 1 is blocked)
Pr(node 1 is blocked)

where

) 8
P(node i success and node 1 is blocked) =p, I I (Fszsjisosj)P(sl,...,SM)
s4=2 1#
S; #1
(3#1)

24

with the summation ranging over all state values for which node i is blocked and no

other node is active. The exponents 8 are Kronecker coefficients. Furthermore,



P(node i blocked) = z P(Sl’...si’...%{)

Si-Z

2) for active node i

PA(i) = P(node 1 successlnode i 1is active)

P(node i success and node i is active)
= P(node 1 is active)

where

) 8
T 17, 257,95 JB(S)5eeesS))
sg=1 j# 3 J
Ss: #1

(3#1)

P(node i success and node i is active) =

and

P(node i is active) = I P(Sl,...Si,...SM)

Si=1

3) for idle node i

P;(1) = P(node i success |[node i is idle)

P(node 1 success and node i is idle)
= P(node 1 is idle)

where

[ [
: 1G 2si‘xj°sa'>-p<s1....,su>

S: 2l
i) .

P(node i success and node 1 is idle) = ki

and

P(node 1 is idle) = I P(sl’°"si’°"SM)
Si-O

10



5. The Delay

The total average delay incurred by a packet from the moment of its arrival to
the terminal until the time of its successful transmission consists of three com
ponents, waiting time in queue, Wﬁ(i), "service” time from the instant it arrives at
the head-of-the-line position in the buffer until it is successfully transmitted,
ws(i), and the actual transmission time (which we take to be equal to one slot for

"local” environments).

G,(1)
The component Ws(i) is approximated by-;—zzj-which is, equivalently, given by
Pr(i is blocked) B :
(D) . The component wq(i) is obtained from Little's result by
B
L
i
W(i) B e—
q A

where Li is the average queue length (without considering the blocked head-of-the-
line packet as part of the queue). This quantity is calculated in Appendix 2 and is

given by

2——.
i} A AP (1)
(FPy) = AF, (L) = A (PL(1) - 2,())

L (10)

i

Thus, for terminal i, the delay Dy is given by

L Go(l)

i
D, = 1 +-——+
i A PR(D)

and the total weighted average system delay D is given by

M
LD,
4o 11 .
D=—
M
DY

i=] 1

6. The Solution Algorithm and Numerical Results

As explained in the preceding sections the state equations that must be solved

11



to yield the system state probabilities P(Sl,SZ,...,SM) and the state equations for
the node state probabilities u(Ti,Ni) are coupled and must be solved simultaneously.
The coupling, as shown in the appendixes, occurs in terms of the boundary condition
probabilities Pi(lll) and P1(0I2) as well as the average success probabilities P (1),
PI(i), PA(i). Given the values of these auxiliary quantities each system of
equations can be solved separately. Thus due to the non-linear nature of the
coupling, it is natural to proceed iteratively, as shown in Figure 3. The iterative
method used is identical to the one used in [1]. Arbitrary values for one set of
state probabilities are chosen and used to solve for the other set. Then the values
obtained for the secon& set are used to recalculate those of the first set, and so
on. Conditions for convergence are identical as in [1]. Of course it must be assu-
med that the values of the arrival rates Ai are such that the system of the queues is
stable (ergodic). As conditions for ergodicity are not known except for the case of
M=2 [9-13], we used rather small values for the A;'s to avoid running into the
unstable region in which the numerical results would be meaningless. In fact, the
region near saturation is expected to show poor agreement with simulation exactly
because the stability boundary (which is not precisely known) may be crossed in a simu-
lation.

The numerical results for the case of M=2 with A, = Az and P, = p, are shown in

1 2
1= Az, P, # P, in Fig. 5. Numerically optimizing over the values

Fig. 4 and with A
of the pi's we find that in the non-symmetric loading case the delay performance is
consistently superior over all throughput values to that of the best symmetric case,
see Fig. 6. In fact the optimum non-symmetric case requires that one of,.the two pi's
be equal to one. The other pidvalue can be computed and varies with A. The implica-
tion is that by favoring one of the two users the average delay is improved. Thus
the gains achieved by one user outweigh the losses incurred by the other. This

observation may be of value in the design of access protocols if it is explained and

confirmed by rigorous theoretical justification.
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To evaluate this approximate model a Monte-Carlo simulation was run for a 2-node
and a 3-node system with various values of retransmission probabilities and arrival
rates., The comparison to the computational results is shown in Figures 7 and 8
respectively, for non-symmetric loading cases.* The average delay for each éerminal
is plotted separately. The arrival rates are equal for all terminals.

In Fig. 9 we compare the approximate results from our model to the analytical
results of [4]. The case of two users with symmetric loading (pl-pz) is the only
one that has been solved exactly and thus such a comparison is necessary. We find
excellent agreement, with difference between the two sets of results bounded by 7.5%.
Equally good agreement>is found between optimal delays for the approximateand analy-

tical cases for the symmetric two-user system as shown in Fig. 10.

7. Conclusion

In this paper a variation of an approximate model for the delay analysis of a
slotted-ALOHA system with a finite number of buffered terminals was proposed and ana-
lyzed. Limited performance evaluation was carried out for small numbers of terminals
in terms of comparison of the results to the analytically obtained ones (whenever
exact analysis is available) and to those obtained by simulation. Agreement proved
to be very good. Not having evaluated the model for greater values of numbers of
terminals we can only be moderately confident in its predictive capability. Our con-
fidence, however, is backed by the arguments provided about the structural nature of
the model that served also as our primary source of motivation in proposing it. We
believe it may prove to be a useful and usable tool in evaluating performance of
several protocols (such as CSMA) that rely on contenéion among a finite ;ﬁmber of

terminals that maintain packet queues.

* the little "square™ and "triangle” marks on the curves do not represent the points
on the basis of which the curves were drawn but rather serve to identify the curves.
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APPENDIX 1
TRANSITION PROBABILITIES OF SYSTEM STATUS CHAIN

In this Appendix we calculatethe transition probabilities of the system status
chain as discussed in section 3.1. We assume that the quantities s, and r, are equal
to one; that is, a packet gets immediately transmitted when the terminal is idle or
active. The same calculations can be easily carried out when this is not the case.
Al so note that's and A stand for l1-p and 1-) respectively.

Since the aim is to develop the steady state distribution for the system status
chain, we need to calculate the transition probabilities. These calculations reduce
to considering a small number of cases, based on the change in the number of active
nodes, thus we classify the transitions into four types as follows:

1) The number gg active nodes transits from Q tol

An idle node cannot transit into active status, so the only possibility for such
a transition is one involving a blocked node, say node j, which becomes active, while
the other blocked nodes do not attempt to retransmit and all idle nodes receive no

packets., The probability of such a transition is expressed by:

M-n-~1 1l _ p
P(aa=1,08=-1) = 01 X 1 B =L[a-p2)+ AP;(0[2) ]
k=l F4g=1 1 P§ i 3
Mn-1_ntl _ p -
- 1R pi%-} [1-2,0]2))%; ] (1.1)

where AA and AB represent the changes in the numbers of active and blocked nodes

and the first term in brackets is the probability that the buffer contenf of the
blocked node j is not 0, while the second term is the probability that the buffer
content of node j is 0 and a packet arrives. All other quantities involved have been
defined in section 3. Note that for ease of notation the subscripts i and k are
shown to vary from 1 to n+l and from 1 to M-n—-1 while it is meant that they vary over

the sets of blocked and idle nodes respectively. The same notation is followed in
16



the sequel.

2) The number of active nodes remains 1

In this case, the status of all idle nodes and blocked nodes must be kept

unchanged. The probability of such a transition is:

M-n-1_ n __
P(AA = 0) = kfl A 1:11 Py [(I—Pj(1|1)) + xjpj(lll)] Py
Mn-1_n _ [ | _ ]
= I n p, [1-P . (1|1)A, ]p. (1.2)
k=1 & 1= 1 173 ~

where the first term in the brackets is the probability that the buffer content of
the active node, node j, is greater than one and the second term is the probability
that the buffer content is one while one packet arrives.

3) The number of active nodes transits froml to 0

We subdivide this sort of transition into three sub-types. The first sub-type

is that the active node turns to idle. The probability of such a transition is given

by:
M—n—l_ n _[ | ]__
P(MA=-1, AT =1) = I I p, [1-P.(1|1) [A,,p. (1.3)
k=1 xk1=1 1273 373

The second sub-type is that the active node packet collides with packets from
blocked node(s) and becomes blocked. The probability of the transition is:
M-n n-1

P(MA=-1, 8B=1) = T 30 = T p) *p
=1

(1.4)
k i=1 i

The third sub-type is that the active node collides with q~1 idle no‘des, which

results in the active node and the q-1 idle nodes turning to blocked. The probabi-

lity is:
q-1 M-n _
P(AA=-1, Al = - (g-1),AB=¢q) = I Ak I 'pj (1.5)
kl-l 1 k=q

17



4) The number of active nodes remains 0

In this case there are four sub-types. The first one is that all nodes maintain

their status without change. The transition proability is:

[ _i.] M-n - n _ M—n._ M-n
P(AI =0, AB=0) = [1 - np z(_) I X+ 01 7P X z()
=1 T j=1 Py k=1xk =1 ¥ km) R
M-n M-n
+n‘[-np<z<—l)-z()> (1.6)
.—. Xk i=1 ij= K

where the first term is the probability that no packet arrives at the idle nodes
while no blocked node, or at least two blocked nodes, transmit, and the second term
is the probability that no blocked node attempts to transmit while only one of the
idle nodes receives an arriving packet.

The second sub-type is that one of the blocked nodes, say node j, becomes an
idle node. The transition probability is:

M-n-1__ mnt+l _ P
P(AI=1, AB=-1)= I A I pi[_). = (0]2) ] (1.7)

k=1 1=1 3Py 3
where the quantity in the brackets is the probability that the blocked node attempts
to transmit while its buffer content is 0 and no packet arrives at the node.
The third one is that only one of the idle nodes, say node j, becomes a blocked

node. The probability is:

M-n-1 _ A, n-1
P(AI==-1,88=1) = T & (1=, 7) (1.8)
k=1 i

r

The fourth one is that q (q>2) of the idle nodes become blocked. The transition

probability is:

P(AL = -~ 1, AB = 1) = n (‘l) n 3, M-n>1 (1.9)
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Based on these transition probabilities we can express explicitly the state
equations for the system status state. Note that they will depend on known quan-
tities (Ai's and pi's) and the unknown quantities Pi(OIZ) and Pi(l]l). In the next
appendix these quantities will be expressed in terms of the state probabilitiés of

the node chain, ﬂ(Ti,Ni).

r X
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APPENDIX 2

PROBABILITY DISTRIBUTION OF QUEUE LENGTH

In this Appendix, we prove equations (5) - (10) according to the state tran-
sition diagram of Figure ll. Here, too, we assume 8y =y = 1, and we denote 9 = Py

The steady state equations for node i are as follows:
(0,N) = X Pp(1)n(0,N) + X F,(1)n(1,M1) + AP, (1) n(1,N)
+ AP (1)7(0,8-1), N> (2.1)

n(1,N) = AipA(i)n(‘l,N) +‘Xip8(1)n(o,u) + A Py(1) (0,N-1)

+'719A(1)n(1,n+1), N>0 (2.2)
7(0,0) =‘xi¥B(i)n(o,0) +‘1$A(1)n(1,1) + Xi?l(i)ﬂ(l,O) (2.3)
m(1,0) = (1 = AP (1))n(1,0) + XPp(1)n(0,0) + XP,(1)7(1,1) (2.4)

From the equations of #(1,0) and %(0,0), we obtain the following equations

after multiplication of both sides by z® and addition:
[((1) + 2y = PRIV = A (1 = Bz ]ei(2) =
[ Pp(1) +—Ai'p'A(1)z"1]ci(z) + [3(p,(1) = (1)) --xipA(i)z'l]w(l,o) (2.5)
From the equations for =(1,0), w(l,n), we obtain
[1 - APy - Tp, 027 6j(2) = [p(0) + ARy(1)z J6h(2) ,
+ [1-2P ) -2 + AP, (1) - A1PA(i)z-1]1l(1,0) | (2.6)

Eq. (2.5) yields for z = )

1 = 1 = -
Pg(1)Gy(1) = B,(1)6/(1) + (AP (1) -F,(1))x(1,0) (2.7)
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(9.

After differentiating (2.5) we obtain at z = ]:

*i - i - °1 _—— °q _——
pB(i)Go(l) + xiPB(i)Go(l) - PA(i)Gl(l) - AiPA(i)Gl(l) = - AirAﬁi)w(l,o) (2.8)

By differentiating (2.6), evaluating at z = 1, and adding to (2.8), we obtain

i -—
Gl(l) Ai + xin(l,o)

(2.9)

Then from (2.7), (2.9), and the fact that G;(l) + Gi(l) = ] we obtain (6), (8),

From the equations for w(0,0) and w(1,0), we obtain (5), (7).

We use the

generating property of G to calculate the average length Li’ namely

°i |
L = Go(l) + Gl(l)

(2.10)

In order to calculate these derivatives, we use (2.8), which, after substitution

from (5) to (9) for values of n(0,0), =(1,0), =(1,1), Gz(l) and Gi(l), becomes

- 2=

AP (D (Ph(1) - B,(1))

(2.11)

i o |
PL(1)G;(1) - P,(1)6(1) =

A
AiPB(i) - Ai(PI(i) - PA(i))

Also, we add (2.5) and (2.6), differentiate twice, and evaluate at z = 1. Thus
we obtain

. X, . A A P_(1)

Go(D) =5 61(1) + = 1il (2.12)
i APo(1) - A (P (1) - P, (1))

From (2.11), (2.12) we have

. MAP (D) [RRy(1) + AP, (1)] g
(APp(1) = AP, (1)) [\ Pp(1) = A (P (1) - B,(1))]

. AP [P0 + AP, (1) ]

Gy(1) = — = (2.14)
(A Pp(1) = AP, (1)) [NPp() - A (P () - PA(i))]
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Thus

Jf

o . ( )
L, = Gé(l) + Gi(l) = (2.15)
(A (1) - A P (1))[ P (1) - A (P (1) - PA(*’)] :

which 1is Eq. (10).

Finally from the definitions in section 3.1 it follows that

w(1,1)
6;(1) = ®1,0)

r1(1|1) =

P, (0]2) = 1%9492-'
Go(1)

By using (5) - (7), we prove also that
P,(1|1) = P (0[2) (2.16)

Thus all equations now are explicitly obtained and permit the application of the

iterative algorithm shown in Fig. 3.
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Figure 2 ; System Status Markov Chain for M=2; each pair
denotes the status of the two terminals; 0,1,2
stand for idle, active, and blocked respectively.
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Figure 3: Iterative Algorithm for the solution of
the coupled sets of equations for the state
probabilities of the system chain and the
queue length chains.
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