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ABSTRACT

A simple proof is presented for a well known fact about Hopf bifurca-
tion: if the loss of stability of an equilibrium point results in periodic solu-
tions via Hopf bifurcation, then the stability of these periodic solutions is
determined by their stability on an associated center manifold. More
precisely, it is shown that the characteristic exponent determining the
stability of the periodic solutions is the same whether computed for the
original system or the system restricted to the center manifold. Atten-
tion is focused on the finite dimensional case of a one parameter family of
ordinary differential equations. The proof consists of exhibiting a similar-
ity transformation which uncovers the relationship between the linear-
ized flow of the original system and that of its restriction to the center
manifold.
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A standard result in Hopf bifurcation theory is that the stability of
the bifurcated periodic solutions agrees with their stability on an associ-
ated center manifold. Proofs of this result are available, for instance, in
the books by Marsden and McCracken [8], Hassard, Kazarinoff and Wan
[4], Chow and Hale [3] as well as in the article [5] by Kazarinoff, the latter
emphasizing the infinite dimensional case. The purpose of this note is to
give a proof of this basic result which is at once simple and also clarifies
the source of this useful fact. The finite dimensional case will be con-
sidered here.

Consider the system

z = f(z.u) (1)
where 2z € K™, W is a real parameter, f : F"X/K - K™ is a C! vector

field and the dot denotes differentiation with respect to time . Suppose
that f (0,4) = 0 and that the Jacobian matrix D, f (0,0) takes the form

D100 =f 9 2)
where
a=[24) ®)

and where the eigenvalues of 5 lie off the imaginary axis. This can always
be achieved by a linear coordinate transformation if the hypotheses for
Hopf bifurcation are satisfied. The only interesting case to comnsider
regarding stability is when the eigenvalues of B all have negative real
parts, for otherwise the bifurcated periodic orbits are sure te be
unstable. For notational convenience, decompose z as z = (x,y) where
x € R?and y € R™ 2 and let f = (g,h) where g € R® and h € R* 2,
In the sequel, [); will denote differentiation with respect to the i-th argu-
ment of a function.

Denote by M), Alu) the continuous extensions of the eigenvalues +7
for p small but nonzere. If Hopf's transversality condition

Re X(0) # 0 (4)

holds, then the Hopl Bifurcation Theorem asserts that a one parameter
family of nonconstant periodic solutions 7, v € (0, 1] emerges from the
origin for g small. Here v is an auxiliary parameter approximating the
amplitude of the periodic solutions and vy is sufficiently small. The
periodic solutions 7, have precisely two characteristic exponents near
zero for v suflicienty srnall. One of these is precisely O and the other is a
smooth function B(v). If B(v) is not identically O, then the sign of §{v)
determnines (locally) the stability of the bifurcated periodic orbits. To
compute the characteristic exponent §(v), an often used technique is to
restrict the dynamics (1) to a center manifold of a suspended system and
compute f instead for the restricted dynarnics. This is meaningful since
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the local attractivity of any center manifold implies that the periodic
solutions 7, will be confined to the center manifold for small v. It will
now be shown that the characteristic exponent computed in this fashion
must indeed agree with that of the periodic orbits in E™.

Recall that the characteristic muyltipliers of a periodic solution 7 of
an autonomous differential system z = f (z) may be obtained as the
eigenvalues, disregarding unity, of the linearization Dy, of the t-advance
map, or flow, of the system, evaluated at any point & of ¥ with £ set to
the period of ¥ [6].

Consider now the suspended version of (1)

z = f(z,u) (52)

jp=0 (5b)

near the equilibrium (2,u) = (0,0). The Center Manifold Theorem [8, 4, 3]
implies that Eq. (5) has a three dimensional center manifold C near the
origin in E™*! which may be represented as the graph of a function
y = u(z,u):

C={(z.p)=(xyuc ™y =uzu i (6)

The center manifold need not be unique, but any center manifold is
locally invariant and locally attracting. This implies, in particular, that
each center manifold of (5) near the origin contains all the local
recurrence of (5) near the origin. Since u is constant along trajectories
of (5), it is clear that all small amplitude periodic solutions of (1) for u
small can be obtained by studying periodic solutions of the restriction of
(5) to a center manifold. Thus it suffices to use any center manifold and
this explains the common usage ‘‘the’’ center manifold.

On the center manifold C, the dynamics (5) reduce to
z =gz u(z w)u) (72)

L= 0. (7b)
along with the algebraic equation ¥y = w(x,u). It is easily verified that
Eq. (7a) undergoes a Hopf bifurcation fromz = Q0 at y = 0.

Denote by ¢, (z,u) = (¢ (. y.1), of (x,y,1)) the t-advance map of
Eq. (5a), and by ¥:{x,u) the f-advance map of Eq. (7a). Note that the
relationships

ef(x ulz,w) = ¢ (z,0) (8a)

of (z u(z u) = u(y(z.u).u) (8b)
hold for I(:t:,f,b)1 sufficiently small along trajectories of Eq. (5a) which
rernain close to 2 = 0 during the time interval [0,¢]. Egs. (8) are thus
clearly valid for the bifurcated periodic orbits 7, of Eq. (5a), for any



t € R and for small u. Differentiation of (8a,b) with respect to z yields,
respectively,

DW%( + Dopf Dyu = Dy (9a)
Dipf + Do Dyu = DyuD (9b)

where each term is evaluated at {(z, y=u{z,u)). Egs. (9a,b) immediately
yield the identity

I ol_ |1 oflP1¥: Dagpf
Do Dy 1) = \Dyu I | O Dopf = DyuDagf | (10)
where
Dyof Dogpf
D = 11
0= Dyl Dagl ()

and where each term is evaluated at (z, y=u(z,u)).

Letting (x, y=u(z,u)) be a point on 7, (here w = u(v)) and
t = T(v) be the period of 7,, Eq. (10) implies that n—2 of the charac-
teristic multipliers of 7, are the n —2 eigenvalues of (Dopf — DuDsgf),
and the remaining R characteristic multipliers of 7, are unity and the
eigenvalue of D¥; which differs from unity. Thus the characteristic
exponents determining stability of the periodic solution 7, is the same
for Eq. (5a) and for the restricted system (7a). This clearly implies that
the stability of 7, can be determined by considering its stability as a
periodic solution of Eq. (7a), which is the original system restricted to the
center manifold C with 4 = constant, i small.
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