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Abstract 

We develop a new methodology to address the integrity of long term archives using rigorous 
cryptographic techniques. A prototype system called ACE (Auditing Control Environment) was 
designed and developed based on this methodology. ACE creates a small-size integrity token for 
each digital object and some cryptographic summary information based on all the objects 
handled within a dynamic time period. ACE continuously audits the contents of the various 
objects according to the policy set by the archive, and provides mechanisms for an independent 
third-party auditor to certify the integrity of any object. In fact, our approach will allow an 
independent auditor to verify the integrity of every version of an archived digital object as well as 
link the current version to the original form of the object when it was ingested into the archive. 
We show that ACE is very cost effective and scalable while making no assumptions about the 
archive architecture. We include in this paper some preliminary results on the validation and 
performance of ACE on a large image collection. 

1. Introduction 
One of the most challenging problems facing digital archives is how to ensure the authenticity of 
their holdings over the long term (tens or hundreds of years). Unless the authenticity of an archive 
can be assured, it would be almost impossible to use the archive’s holdings to support any 
significant endeavor.  Digital information is in general quite fragile, especially over time. Errors 
can be introduced because of hardware and media degradation, hardware and software 
malfunction, operational errors, security breaches, and malicious alterations, to name a few of the 
obvious ones. Other potential sources of errors, which are particularly relevant for long term 
archives, include major hardware and software systems changes due to technology evolution, and 
the possibility of major natural hazards and disasters such as fires, floods, and hurricanes. Two 
additional factors complicate this problem further. First, an object will typically be subjected to a 
number of transformations during its lifetime, including those migrative transformations due to 
format obsolescence. These transformations may alter the object in unintended ways. Second, 
most current integrity checking mechanisms are based on some type of cryptographic techniques, 
most of which are likely to become less immune to potential attacks over time and hence they 
will need to be replaced by stronger techniques. Therefore any approach to ensure the authenticity 
of a long term archive has to also be able to address these two problems as well.  

Several technical approaches have been proposed to address the long term integrity of digital 
archives, including those that appeared in [2], [5], [8], [10], [12], [14], and [18], but none seems 
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to offer a solid approach that is applicable to the different emerging architectures for digital 
archives (including centralized and distributed archives) and that is capable to continually 
monitor and verify the integrity of the data in a cost effective way. 

In this paper, we introduce a general software environment called ACE (Auditing Control 
Environment), which is based on a rigorous cryptographic approach and yet quite efficient and 
can interoperate with any archiving architecture. Using the new framework, we introduce 
procedures to continually verify the integrity of the archive. Our approach will allow an 
independent auditor to verify the integrity of every version of an archived digital object as well as 
link the current version to the original form of the object when it was ingested into the archive. 

Specifically, ACE is based on creating a small-size integrity token for each digital object upon its 
deposit into the archive (or upon registration of the object of an existing archive), to be stored 
either with the object itself or in a registry at the archive as authenticity metadata. Cryptographic 
summary information that depends on all the objects registered during a dynamic time period is 
stored and managed separately. The summary information is very compact and is of size 
independent of the number or sizes of the objects ingested. Regular audits will be continuously 
conducted, which will make use of the integrity tokens and the summary integrity information to 
ensure the integrity of both the objects and the integrity information. In our prototype, audits can 
also be triggered by an archive manager or by a user upon data access. However we are assuming 
that the auditing services are not allowed to change the content of the archive even if errors are 
detected. The responsibility for correcting errors is left to the archive administrator after being 
alerted by the auditing service. 

In the next section, we provide an overview of integrity techniques, starting with bit stream 
integrity on disks and ending with the main methods that have been proposed for digital archives. 
In Section 3, a technical description of our approach is given and the basic verification procedures 
are introduced. The following section is devoted to a description of the overall architecture of our 
prototype including a description of the software components of our prototype. Section 5 presents 
workflows of our prototype. We conclude in Section 6 with a brief summary of the tests 
conducted on our prototype and some preliminary conclusions. 

2. Existing Integrity Assurance Techniques 
In this section, we describe some of the most common strategies used to ensure data integrity 
starting with the basic techniques for bit streams stored on various types of media or transmitted 
over a network.  

Basic Techniques 
Data residing on storage systems or being transmitted across a network can get corrupted due to 
media, hardware, or software failures. Disk errors, for example, are not uncommon and data on 
disk can get corrupted silently without being detected because a faulty disk controller causes 
misdirected writes [23]. This type of errors remains undetected because most storage software 
expects the media to function properly or fail explicitly rather than mis-operate at any point 
during its life time.  The integrity of data can also get compromised because of software bugs. For 
example, data read from a storage device can get corrupted due to faulty device driver or a buggy 
file system which can cause data to become inaccessible [23]. Moreover, data integrity can be 
violated because of accidental use or operational errors.  Unintended user’s activity might cause 
the integrity to be broken. For instance, deletion of a file might lead to a malfunction of specific 
application/system software that depends on the accidentally deleted file. As a result of this action, 
integrity violations may occur. 
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The simplest technique for implementing integrity checks is to use some form of replication such 
as mirroring. The integrity verification can then be made by comparing the replicas against each 
other. This method can easily detect a change in the stored data only if the modification is not 
carried out in all the replicas and no errors are introduced during data movement. While this 
method is easy to implement and can be effective, it is quite expensive in terms storage use and 
time spent for comparisons, and has serious limitations in a distributed environment. 

A well known approach used in RAID storage is based on coding techniques, the simplest of 
which is parity checking [21]. The parity across the RAID array is computed using the XOR 
logical function. The parity value is stored together with the data on the same disk array or on a 
different array dedicated to the parity itself. When the disk containing the data or the parity fails, 
the data or parity can sometimes be recovered using the remaining disk and performing the XOR 
operation [21].  The XOR parity is a very special type of erasure codes, which can be much more 
powerful. They all involve expanding the data using some types of algebraic operations in such a 
way that some errors may be detected and corrected. While these techniques are critical in 
maintaining some minimal level of data integrity on storage systems, they clearly fall far short to 
meeting our stated requirement for long term integrity of digital archives.  

Another widely used method is based on cryptographic hashing (also called checksum) 
techniques.  In this approach, a checksum of the bit-stream is computed and is stored persistently 
either with the data or separately. The checksum is calculated using a cryptographic hashing 
algorithm. In general, a cryptographic hash algorithm takes an input of arbitrary length and 
converts it into a single fixed-size value known as a digest or hash value. A critical property of 
cryptographic hash algorithms is that they are one-way, that is, given the hash value of a bit-
stream A, it is computationally infeasible to find a different bit-stream B that has the same hash 
value [11], [19]. Assuming that the hash values are correct, data integrity can be verified by 
comparing the stored hash value with a newly computed hash from the data. The most common 
hash functions used in practice are MD5, SHA-1, SHA-256, and RIPEMD-160, none of which 
can be shown to be one-way functions but all of which seem to work well in practice (in spite of 
the recent attacks that illustrated how to break MD5 [25] and SHA-1 [26]). In addition to the one-
way assumption, a key assumption of this technique is that the hash values can be stored securely 
with absolutely no changes introduced to these values over time. Such an assumption may be 
reasonable for maintaining integrity over brief periods of time but it is clearly not sufficient for 
digital archives especially as the number of objects (and hence the number of hashes) continues to 
significantly grow over time. 

Techniques for Digital Archives 
We now describe the most important methods that have been suggested for integrity verification 
for digital archives. These methods heavily depend on the basic architecture, organization, and 
policies assumed for the digital archive, and hence a straightforward comparison is not possible.   

A straightforward method to address integrity checking for digital archives is to compute a hash 
for each object in the archive and store the hashes in a separate, secure and reliable  registry (the 
hash could in addition be stored with the object as well). Integrity auditing involves periodic 
sampling of the content of the archive, computing the hash of each object, and comparing the 
computed hash with the stored hash value of the object. While such a scheme may be sufficient 
for small, centralized archives, it has some serious flaws for long term archives. Setting up a long 
term secure (centralized or distributed) registry that is expected to continuously grow, and 
maintaining its integrity over time, is highly non-trivial. In fact, this is somewhat the problem we 
are trying to solve, except that it is slightly simpler here as the hashes are smaller and less 
complex than the objects themselves. Another problem with this scheme is the fact that 
cryptographic hashing schemes are based on the one-way function assumptions that may not hold 
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over time for the particular hashing scheme used, and hence they may need to be replaced with 
more powerful schemes. There is a way to address this particular issue (to be described later) but 
it is computationally expensive. 

Another simple approach uses a combination of replication and hashing. In this approach, each 
digital object is replicated over a number of repositories. Integrity checking can be performed by 
computing the hash of each copy locally, and sending all the hashes to an auditor. A majority vote 
enables the auditor to discover the faulty copies, if any. This is the primary integrity scheme used 
in LOCKSS [18], which is peer-to-peer replication system for archiving electronic journals in 
which each participating library collects its own copy of the journals of interest. LOCKSS uses a 
peer-to-peer inter-cache protocol (LCAP) which is a cache auditing protocol. It runs LCAP 
continuously between all the caches to detect and correct any damage to cached contents. The 
process is similar to opinion polls in which all the caches vote.  When a storage peer in LOCKSS 
calls for an audit of a digital object, each peer that owns a replica computes the corresponding 
hash value and sends back the value to the audit initiator. If the computed digest agrees with the 
majority of the replies, then the object is believed to be intact. Otherwise, the content has been 
tampered with, and the copy is discarded while a new copy is fetched from the publisher or one of 
the caches with the right copy. This approach is tied to the LOCKSS inherent peer to peer 
distributed architecture applied to a specific domain (with publishers having authentic copies of 
the objects), and hence does not address our more general framework. Moreover, note that 
LOCKSS nodes can arbitrarily initiate auditing requests thereby tying up distributed resources in 
an unpredictable way. In fact, a compromised LOCKSS node can initiate a denial of service 
attack that will affect all the other nodes. One can develop security techniques to counter such 
attacks such as in [2], but such techniques introduce an extra layer of complexity and additional 
costs. Note also that, in general, achieving consensus among distributed nodes that do not trust 
each other (and some of which may be faulty) is a difficult problem that has been studied 
extensively in the distributed computing literature. One can make use of Byzantine agreement 
strategies [14] but these are computational expensive and difficult to implement in a cost effective 
way in an environment such as LOCKSS.  

Another possible approach is to make use of digital signatures based on public key cryptography. 
In essence, such a scheme involves a private-public key pair for performing signing/verification 
operations, and a supporting public-key infrastructure. The basic premise is that the private key is 
only known to the owner, and the public key is widely available. A message signed by a private 
key can be verified using the corresponding public key. The digital signature technology takes 
direct advantage of this property. The digital object is signed using the private key (note that the 
signature depends on the digital object and the private key), and anybody can verify the signature 
using the corresponding public key. If the verification process succeeds, the digital object is 
considered intact (and the identity of the author of the signature verified). Hence a possible 
approach to preserving the integrity of digital archives would be to sign each digital object using 
a private key only known to the archive. However the certificates (public keys signed by a widely 
trusted certificate authority) have a finite life with a fixed expiration date. Hence we need to have 
a trusted and reliable method to track the various public keys used over time. Also should the 
private key be compromised, the whole archive becomes at risk. In general, this is a difficult 
problem that can be solved using sophisticated techniques based on Byzantine agreement 
protocols and threshold cryptography [17], which shed serious doubts on its practicality in a 
production environment. Another potential problem with this scheme is its complete dependence 
on the secrecy of the private key of an independent party (certificate authority) – a risky 
proposition for long term archives. 

We note that schemes based on public-key cryptography are computational intensive, especially 
when extended to complex, large objects. A common technique to reduce the cost is to compute a 
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hash of the object, followed by a digital signature of the hash only. A somewhat related method 
was suggested in [2], which generates a Message Authentication Code (MAC) of each object, and 
then signs the MAC. The MAC can be generated through hashing of the object concatenated with 
a symmetric secret key. This scheme has the same weaknesses mentioned above about digital 
signatures (as well as other complications due to the maintenance of the secret key necessary to 
generate and validate the MAC). 

We now introduce the time stamping technique, which plays a critical role in our proposed 
solution. A time stamp of a digital object D at time T is a record that can be used any time in the 
future (later than T) to verify that D existed at time T. The record typically contains a time 
indicator (date and time) and a guarantee (that depends on the time stamping service) that D 
existed in exactly this form at time T. It is clear that time stamping is essential for the long term 
integrity of digital archives since our integrity notion assumes an auditable record of all the 
versions of the object along the temporal domain beginning from the time the object was 
deposited into the archive up to the present. One way to implement time stamping is to through a 
Time Stamping Authority (TSA) that attaches a time designation to the object (or its hash) and 
signs it using the private key of the TSA. The British Library [12]  uses this strategy through an 
independent TSA. The verification procedure depends completely on the trustworthiness of the 
TSA. We mentioned above a number of significant problems with any approach that uses digital 
signatures, which show up in this scheme as well. A second approach, and the one used in our 
solution, is based on linked (or chained) hashing [9], which amounts to cryptographically 
chaining objects together in a certain way such that a temporal ordering among the objects can be 
independently verified.  In the next section, we will describe this technique as used in our 
approach and illustrate the automatic verification and auditing procedures that will ensure the 
long term integrity of digital information in a cost effective way. 

3. Overview of the ACE Approach 
We start by stating our underlying assumptions about the archive’s environment, and then 
proceed to describe our technical approach.  

Basic Assumptions  
ACE does not make any assumptions about the architecture of the archive, which can be 
centralized, distributed, or peer-to-peer. However it seems reasonable to make the following 
assumptions regarding any long term archive. 

Each object of an archive will be assigned a globally unique identifier, and the archive holds 
more than one copy of each object, one of which will be designated as the master copy. Each 
object retains its globally unique identifier even after it is subjected to a transformation. However 
the different versions of an object are distinguished by a certain versioning scheme (such as 
attaching a version number after each transformation), and all the versions are maintained (say in 
a dark archive) so that one can link the current version to all the previous versions down to the 
original version when the object was ingested into the archive.   

An implicit implication of our assumptions is that a transformative migration or updating any of 
the metadata of an object (say as a result of repurposing, reorganization, or renewing the 
cryptographic information) will be performed on the master copy of the object, after which the 
archive can perform the versioning and replication operations according to its policies.  

Technical Approach 
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The underpinnings of ACE consist of: (i) three types of integrity information; (ii) verification and 
auditing procedures; and (iii) methods to update integrity information as needed. We start by 
describing the three steps used to generate the integrity information, as follows. 

The initial registration (typically during ingestion) of the objects is organized into rounds, each of 
which covers some time interval that is determined dynamically. A typical time stamping service 
(several of which are already available on the internet) operates using fixed intervals with the 
granularity of one second for each round. In our prototype, the time interval is dynamically 
adjusted, depending on the number of registration requests, so as to ensure fixed small-size 
integrity information. Typically, our time interval ranges from one second to at most an hour. 
During each round, the hashes of all the objects submitted for registration as well as random 
hashes as necessary are aggregated using an authentication tree such as Merkle’s tree [20]. The 
value at the root is a hash value that depends in a cryptographic sense on all the objects processed 
during a round. For each object, we assemble a short list of hashes from the tree, called a proof, 
which constitutes the first type of cryptographic information, to be called an integrity token, 
stored with the object (as authentication metadata) or in a separate registry at the archive (for 
distributed archives, the integrity token will appear at any node where a replica of the object is 
stored).  

The second step consists of linking the hash value generated at each round with the hash values 
generated at the previous rounds using a structure that depends on the linking scheme used. In our 
prototype, we use a simple binary linking scheme that computes the hash value of the previous 
Cryptographic Summary Information (CSI) concatenated with the hash value of the current round. 
This is the same scheme as suggested in [9] and [24]. 

The third step consists of aggregating the global hash values over each week using an 
authentication tree. The value generated at the root of the tree is called a witness for that 
particular week, and is published on the web as a widely observed witness. We explain later how 
this is accomplished on our current prototype. This value is also stored on a CD-ROM (in fact, on 
multiple CD-ROMs that are refreshed on a regular basis). 

Before providing more details about each of the steps, we note that the integrity token pertains to 
a unique object; the CSI pertains to a unique round but depends on all the objects submitted at 
that round and previously computed round values; and the witness pertains to a unique week but 
depends in a cryptographic sense on all the CSI values computed at all the rounds during that 
week. Moreover the size of each type is small and fixed and depends on the hash functions used – 
typically in the order of a few kilobytes at most. Clearly the number of integrity tokens is equal to 
the number of objects while the numbers of CSI values and witness do not depend on the number 
of objects ingested. In our prototype, there are 52 witness values per year.  

We now provide more details about each of the steps. During the first step, the hash values of all 
the objects processed during a round form the leaves of a balanced binary tree such that the value 
stored at each internal node is the hash value of the concatenated hashes at the children. Note that 
we typically insert random hash values into each round, which also ensures that there always will 
be a certain minimal number of objects in each round. The value computed at the root of the tree 
is the hash value of the round. Each object will retain a proof of its participation in this round, 
which consists of the hash values of the siblings of all the nodes on the unique path to the root, 
plus the previous CSI. Consider for example a round involving eight objects with the hash 
values . The corresponding authentication tree is shown in 7210 ,...,,, hhhh Figure 1. 
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Figure 1. Authentication Tree (IT Reqi contains hi) 

The CSI values are chained in a simple binary chain as illustrated in Figure 2. Therefore the CSI 
generated at time interval t cryptographically depends on the hashes of all the objects ingested 
into the system at any time less than or equal to t.  

 

Figure 2. CSI Chain 

The witness value corresponding to each week is generated using Merkle tree built on the CSI 
values generated during this week and randomly generated hashes.  

Verification and Auditing Procedures  
ACE provides two types of integrity auditing, the first involves a process running on a moderately 
secure server external to the archive,  which verifies the integrity of the archive’s content in a 
periodic, regular fashion; the second involves an auditing process triggered by an archivist or by a 
user upon data access. Details of how these processes are implemented in our prototype system 
will be given in Section 4. Here we mention the verification algorithms used to perform the 
auditing. The correctness of our algorithms depends on two assumptions: the hash functions have 
the collision intractability property, and the witness values cannot be compromised. Should one 
of the hash functions be compromised, the integrity information needs to be updated in such a 
way that we can verify the authenticity of the data from the initial ingestion up to the present. We 
will describe in the next subsection how to accomplish this. As for the witness values, their total 
size over a period of ten years is less than 1-2MB, and hence a web publishing mechanism 
backed-up with storage on CD-ROMs (and coupled with majority voting whenever necessary) 
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should be sufficient to ensure its integrity. We will explain in Section 5 the web publishing 
mechanism used in our current prototype. 

As stated above, we generate three types of integrity information – a token attached to an object, 
a CSI corresponding to a round, and witness value W corresponding to a weekly digest of all the 
CSI values generated during that week. A simple way to verify the integrity of an object involves 
the following steps. 

Step 1. We start by ensuring the correctness of the object’s integrity token. We use the hash 
value in combination with the proof in the integrity token to determine the CSI of the 
round during which the object was registered into the system. If the computed CSI is 
the same as the CSI stored at the registration time, it indicates that the token is intact, 
and we proceed to Step 2. Otherwise, we stop the verification procedure, and notify the 
archive manager of the possible corruption of the integrity token. In this case, the 
archive manager may verify the integrity of the object by comparing it to a replica, and 
re-register the object to create a new integrity token. 

Step 2. Once we are confident that the integrity token is intact, we verify the integrity of the 
object as follows. We compute the hash of the given object and compare it to the hash 
stored in the object’s integrity token. If there is an agreement, we conclude that the 
object is intact. Otherwise, the object is corrupt. 

We now outline the process to verify the integrity of the CSI values. For each witness value W 
and for each CSI value computed within that week, we check to see if the proof attached to the 
CSI value yields W. In the affirmative, the CSI value is correct. Otherwise, it is not. 

We now address the issue of what to do in the case when the object or the CSI is determined to be 
incorrect. In our prototype, our verification service notifies the archive manager about the faulty 
object, and it is left up to the archive to take the appropriate action. We believe that an integrity 
verification service should not be allowed to modify anything in the archive. Its main function is 
to continually monitor and verify the authenticity of the data. In our experimental setting, we use 
the distributed persistent archive pilot system that provides at least three replicas for each digital 
object based on the federated SRB (Storage Resource Broker) grid technology [3], and hence a 
copy can be corrected using a voting scheme over the distributed archive. As for correcting 
erroneous CSI values, our integrity checking prototype makes use of a three-way mirrored 
registry of the CSI values, each of which is audited independently. Hence the faulty CSI can be 
corrected using a correct replica from the other registries. Note that the size of a registry grows in 
the order of a few gigabytes per year (independent of the size of the archive), and that the registry 
is not publicly accessible. Therefore maintaining the integrity of the CSI registry can be done in a 
cost effective way. 

Updating Integrity Information 
There are two cases in which the integrity information must be updated. The first case is when the 
archive decides to substitute a stronger hash function for one of the hash functions currently in 
use because of some recently discovered potential threats. The second is when the archive decides 
to apply certain transformations to some of the objects (because of the possibility of a format 
becoming outdated for example). There is a well-known solution to deal with renewing the 
integrity information for the first case by re-registering each related object with the old integrity 
token attached to it (see for example [8]). Such a solution will ensure our ability to verify the 
integrity of the object since its ingestion into the archive as articulated in earlier work. This 
process increases the size of the integrity token, but has no impact on the sizes of the other 
integrity components.   
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We now discuss how to renew the integrity information in the case when the object is subjected 
to a transformation. A possible solution would be to re-register the new object by concatenating 
the hashes of the old and the new form of the object and an ID of the transformation, and use the 
resulting string as if it were the hash of an object to be registered. However, as mentioned before, 
we are assuming that all the versions of each object are maintained by the archive (using a deep 
archive for example) and each version will include the information about each transformation. 
Therefore it would be sufficient in this case to include the version number in addition to the hash 
of the object and re-register the object after the transformation to generate new integrity 
information for this particular version of the object. Different versions can be linked through the 
global ID of the object using the dark archive, and hence it is possible to verify the integrity of all 
the versions of each object starting with the current one and ending with the first version ingested 
into the archive. Note that the integrity of an object should be verified before it is transformed 
into a new format to ensure its authenticity at this time of its history.  

4. Prototype System Architecture 
The ACE prototype includes two major components: ACE Integrity Management System (ACE-
IMS) and ACE Audit Manager (ACE-AM). The ACE-IMS is a server that issues integrity tokens, 
preserves the CSI values, and computes and publishes the witness values. The ACE-AM is a 
bridging component between the archive and the ACE-IMS, which is local to each archiving node. 
In a distributed setting, the audit managers work asynchronously independent of each other, and 
hence copies of the same object will be audited independently of each other. 

The ACE-IMS, operating separately from the archive, provides two important services: integrity 
token issuing and CSI verification. The former service generates an integrity token upon a request 
from the archive. Using the digital object and the integrity token, the archive can at anytime 
construct the cryptographic summary corresponding to the round in which the digital object was 
registered. The CSI values will be maintained separately and independently by the ACE-IMS.  

In a typical archiving environment, the integrity tokens can be stored either with the object itself 
or in a separate registry dedicated to authenticity metadata. In our prototype, we use a separate 
database to hold the integrity tokens. 

The ACE Audit Manager (ACE-AM) is local to an archiving node whose main function is to pass 
information between the archiving node and the ACE-IMS. In particular, the ACE-AM selects a 
digital object to be audited, either based on the local periodic auditing policy of the archiving 
node or upon request from an archive manager or a user. It then retrieves the digital object’s 
integrity token, computes the hash of the object, and sends this information to the ACE-IMS.  

Figure 3 shows the overall ACE architecture assuming a distributed archiving infrastructure. A 
centralized archiving infrastructure will reduce to a single archiving node. The upper section 
represents the archive, the middle section contains the ACE-AM that is local to each archiving 
node, and the lower section represents the ACE-IMS, which is completely outside the archive. 
The implementation details of the ACM-IMS and the ACM-AM will be given next. 
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Figure 3. ACE System Architecture 

Software Components 
We now provide the details of the ACE-IMS and the ACE-AM, including a description of their 
internal modules. We also cover the communication mechanisms between the ACE-IMS and its 
users. Our implementation largely relies on open standards and web technologies. In particular, 
we have chosen Java as the base programming language and SOAP [29] as the main 
communication protocol.  We use XML to represent various integrity information.  

ACE Integrity Management System (ACE-IMS) 
The ACE-IMS generates the integrity tokens, the CSI for each round, and the weekly witness 
values, and provides services to the archive. The WSDL specifications of these services are given 
in Appendix A. We start by describing three main services that are provided by the ACE-IMS 
(Figure 4 shows the message formats used) followed by a description of internal modules of this 
component. 
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• TSS_Stamp(TS_Req) : This function, called upon to register an object to ACE, adds this 
request to the aggregation queue, which will be processed by the Aggregator module (to be 
explained soon) to generate the integrity token for the request.  The function returns the 
registration receipt (TS_Rcpt) that, among others, contains the request ID and the expected 
time when the integrity token will be ready. 

• TSS_ITRequest(RequestID) : This function returns the integrity token that corresponds to the 
request ID (RequestID), if available. The function is typically called by the same entity that 
previously called TSS_Stamp when the expected time is reached.  

• TSS_CompareCSI(TimeStamp, Csi): This function compares the supplied cryptographic 
summary information, Csi, to the one maintained by the ACE-IMS, and indexed by 
TimeStamp. The function returns true or false depending on whether or not the two agree. The 
auditor computes its own value Csi of CSI from the current digital object and its integrity 
token, and then calls this function to verify the integrity of the object. 

 
Figure 4. Message Formats 

We now give details about each of the internal modules. 

• Aggregator: The Aggregator is responsible for managing the rounds of aggregation and 
building an authentication tree (Figure 1) given the registration requests. The time interval of 
each round is determined by two internal elements: a timer and a traffic monitor. If there is at 
least one unanswered registration request in the aggregation queue, the timer sends a trigger 
signal at a fixed interval (currently every hour). On the other hand, the traffic monitor sends a 
trigger signal when the number of unanswered registration requests exceeds a certain number 
(say 1024). Regardless of the sender, whenever a trigger signal is received, the current round 
of aggregation is closed and the next round of aggregation begins. By using these two 
conditions (the amount of time and the number of requests), not only can the Aggregator 
control the size of each integrity token (or more specifically the length of a proof in an 
integrity token), it can also ensure that every request will be answered in a timely manner 
(currently within an hour at most). The dynamic time window is expected to be particularly 
beneficial in an archiving environment that is likely to exhibit bursty behavior. The time 
when an aggregation round ends is the timestamp value assigned to all the registration 
requests during the round. 
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• Linker: The Linker is responsible for generating and storing the CSI for each aggregation 
round. The root of the authentication tree that was built after a round of aggregation is 
concatenated to the previous CSI, which is then hashed (using possibly a different hash 
function than the one used for aggregation) to generate a new CSI for this aggregation round 
(Figure 2). The new CSI is stored along with the timestamp of the round in a database. An 
integrity token containing the time stamp of the round, the proof to the authentication tree, 
and the previous CSI is built. The timestamp is used by an auditor to query the ACE_IMS 
about the CSI of the round associated with the timestamp, whereas the proof and previous 
CSI are used by the auditor to calculate its own value of CSI. When the two CSI values match, 
the auditor concludes that the digital object has not been altered. 

• Post & Validate: The Post & Validate module creates, posts, and validates witness values. 
To create a witness, we use the same method used in Aggregator, that is, the CSI values 
produced during a week period are aggregated together in an authentication tree. The root of 
the authentication tree is the witness value, which is published over the internet through 
public, widely known entities. ACE currently uses the Internet newsgroups at Google, Yahoo, 
and MSN to publish the witness values. We are also planning to use public digital library 
services to publish these values. Since the size of the witness is very small (1KB~2KB a year 
when SHA256 is used to build the authentication tree), we also store them on a CD-ROM. 

ACE Audit Manager (ACE-AM) 
The ACE-AM is a client of the ACE-IMS which initiates both regular and on-demand audits. The 
regular audits are automatically performed according to a policy set by an administrator at the 
corresponding local archiving node, whereas the on-demand audits are triggered by an archive 
manager or by a user upon data access. In the following, we discuss the ACE-AM’s two internal 
modules: Audit Trigger and Notifier.  

• Audit Trigger: As mentioned before, two types of audits are executed by the Audit Trigger: 
regular audits and on-demand audits. Upon receiving an on-demand audit request, the Audit 
Trigger immediately activates the audit on the given object. On the contrary, regular audits 
are continuously and autonomously conducted. For regular audits, the Audit Trigger manages 
a number of audit queues. Each audit queue can be scheduled to be audited with a certain rule. 
For example, the group of objects stored in an old hard drive can be assigned to a higher 
priority queue than objects stored in more reliable storage. For each queue, the Audit Trigger 
performs the following steps for each object in the queue at the appropriate time. 

Step 1. The Audit Trigger retrieves the corresponding integrity token either directly from 
the object, or from a separate local registry. 

Step 2. Using the proof in the integrity token, the Audit Trigger computes the CSI and 
compares it to the stored CSI in the ACE-IMS by calling the web service function 
TSS_CompareCSI(TimeStamp, Csi). A match indicates that the integrity token is 
intact and the Audit Trigger proceeds to Step 3. Otherwise, the Audit Trigger 
informs the Notifier of the possible corruption of the integrity token. 

Step 3. If the integrity token is verified to be intact in Step 2, the Audit Trigger computes a 
hash of the given object and compares it to the one in the integrity token.  If they 
match, the object is intact. Otherwise the object is corrupt and the Audit Trigger 
reports the Notifier about the corruption of the object.  

Upon finishing the above steps, the Audit Manager continues by pulling the next object out of 
the audit queue at the next appropriate time unit. 
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Note that the decision about the integrity of the given object is made only in Step 3, and note 
also that the object is determined to be intact only after passing the hash comparison test in 
Step 3. In all the other cases, an appropriate message is constructed and passed to the Notifier.  

Once informed by the Audit Trigger, the Notifier performs the following actions. 

• Notifier: The Notifier warns the archive administrator, or its automated counterpart, of either 
a corrupted object or a (possibly) corrupted integrity token. Since we are assuming that the 
auditing services are not allowed to change the content of the archive, the ACE-AM does not 
attempt to make any corrections. Instead, once alerted by the Audit Trigger, the Notifier 
builds an alert message that contains the Audit Trigger’s report, and delivers the message to 
the archive administrator who can then initiate a comparison of the object with other copies in 
the archive or trigger an audit of the ACE-IMS using witnesses or follow other procedures 
depending on the policy set by the archive to handle such problems. 

5. Workflows 
In this section, we give a description of the ACE workflows executed during object registration, 
witness publication, auditing, and witness validation. 

Object Registration 

Figure 5 illustrates the registration workflow initiated during the last phase of the ingestion 
process of an object (or could be applied to an object that is already in the archive). 

Step 1. During the last phase of the ingestion process, the deposit process (DP) initiates a 
request for an integrity token of the digital object by calling TSS_Stamp  service of 
ACE-IMS while providing the message digest of the digital object as input.  
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Step 2. The ACE-IMS queues the request into its aggregation queue to be later processed by 
the Aggregator. 

Step 3. The ACE-IMS sends back a receipt that contains a request id (REQID) 
corresponding to the request, and the expected time (ETIME) when the integrity 
token will be ready. 

Step 4. Once the round time is up, the Aggregator gathers all the requests received, inserts 
random hashes if necessary, and builds an authentication tree. 

Step 5. Using the root value of the aggregation tree and the previous CSI, the Aggregator 
computes the CSI for the current aggregation round, and stores the CSI into the CSI 
Registry along with the current time. Using this time value as the Time Stamp, the 
current CSI, and the proof of the authentication tree, the integrity token for each 
request is individually built. 

Step 6. When ETIME has reached, DP calls TSS_ITRequest with the REQID asking for the 
integrity token. 

Step 7. The integrity token made in Step 5 is retrieved. 

Step 8. The integrity token for the digital object is finally sent back to the requester (DP).  

Once the integrity token is received, it is attached to the object after which the object is deposited 
into the archive following the archive’s policy (which may include creating a number of replicas, 
and storing the complete object into a deep archive). 

Figure 5. Object Registration Workflow 

Witness Publication 
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The ACE-IMS periodically (currently once a week) runs another aggregation round for 
computing a witness for that particular period. The purpose of the witness is to ensure the 
integrity of CSI values generated during the various rounds during a week. Figure 6 shows the 
corresponding workflow. 

Step 1. Once a week, the Post & Validate module builds an authentication tree from the CSI 
values generated during that week, using the same technique as before. The root 
value of the authentication tree concatenated with the witness from the previous 
week is fed into a hash function (currently SHA-256) to create the witness of the 
week. The proof of the authentication tree and the current time is written back to the 
CSI registry in the Proof field and the Time Frame ID, respectively. 

Step 2. The witness of the week currently gets posted to the newsgroups at Google, Yahoo 
and MSN. These newsgroup services will also automatically send emails to all the 
newsgroup subscribers with the witness value. In an operational setting, we expect 
these witness values to be published through widely known library or storage 
services. The witness is also saved on a CD-ROM. 

 
Figure 6. Witness Publication Workflow 

Audit 
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The ACE-AM (ACE Audit Manager) is responsible both for regular and on-demand audits. The 
digital object to be audited is determined by the Audit Trigger scheduler for regular audits, or by 
the archive manager or the user for on-demand audits. Figure 7 illustrates the workflow of the 
process to audit an object. 

Step 1. The ACE-AM retrieves the integrity token associated with the digital object and 
computes the corresponding CSI value from the integrity token, followed by calling 
TSS_CompareCsi using the computed value and the timestamp parameters.  

Step 2. The ACE-IMS retrieves the stored CSI that corresponds to the timestamp, and 
compares the stored CSI to the computed value.  

Step 3. The comparison result is returned to the ACE-AM. 

Step 4. If the comparison result is positive, the Audit Manger computes the hash of the 
object and compares it to the hash stored in the integrity token. 

 
Figure 7. Audit Workflow 

Depending on the comparison results performed in Step 2 and Step 4, the ACE-AM either 
successfully finishes the audit on the digital object, or lets the Notifier deliver an alert message to 
the archive manager.  

If an alert message is delivered to the archive administrator, the administrator can take the 
appropriate steps to deal with the suspicious object as per the set policies of the archive. 

Witness Validation 
The Post & Validate module runs periodic internal audits on the CSI values. The validation is 
based on the public witness values, each of which cryptographically represents a set of CSI values. 
For each set of CSI values within the same Time Frame, Figure 8 shows the witness validation 
workflow.  
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Step 1. From the CSI Registry, the Post & Validate gathers the CSI values that share the 
same Time Frame ID, and builds an authentication tree using the same technique 
that produced the original witness. The root of the authentication tree is 
concatenated with the previous witness, which is saved from the previous witness 
validation process. This concatenated value is hashed to generate a validation 
witness. 

Step 2. The Post & Validate retrieves the published witness of this Time Frame ID from the 
Internet.  The published witness is then compared to the validation witness. The 
validation fails if the two witnesses are different, in which case all the CSI values 
within this Time Frame ID are marked invalid. 

 

 
Figure 8. Witness Validation Workflow 

Once CSI is marked invalid, the audit on the digital objects that belong to the CSI will fail (Step 1 
in Section 4 – ACE-AM – Audit Trigger), in which case ACE will forward its alert message to 
the archive administrator who will then take the appropriate steps. For example, the archive 
administrators can simply re-register the digital objects to ACE.  
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6. Conclusion 
We have designed and implemented a digital archive integrity management system that is based 
on time stamping and linked hashing techniques. This system is third-party auditable, 
cryptographically rigorous yet cost-effective, update-aware, highly interoperable, and scalable. 

Specifically, ACE creates and maintains a small size integrity token for each digital object, which 
can later be used to rigorously audit the digital object. Combined with other cryptographically 
related data (CSI values and witnesses), an integrity token can provide convincing evidence 
whether or not the associated digital object is intact, not only to our own auditor (ACE-AM), but 
also to any independent third-party auditor. 

Although our approach relies on rigorous cryptographic techniques, ACE is quite cost-effective 
since it does not demand an expensive external infrastructure, such as a PKI infrastructure, which 
significantly reduces the operational and computational overhead. 

ACE can cope with the future transformations of the digital object or changes in the 
cryptographic functions. During the course of the update, The ACE’s update scheme includes a 
link to the previous data (the previous digital object, the previous integrity token and/or the 
previous hash function) in such a way that a future audit can certify not only the integrity of the 
current digital object but also the integrity of every version of the digital object since its ingestion 
into the archive. 

ACE can interoperate with any archiving architecture since it does not rely on any assumption 
about the archive architecture. In addition, ACE is platform independent and is built using 
exclusively open standards and web technologies.  

ACE is efficient and scalable as well. The ACE Audit Managers can be distributed among the 
archiving nodes if these are distributed, each performing its tasks independently of the others. 
While the web-based ACE Integrity Management System is centralized, its function is relatively 
quite simple and can be performed extremely quickly, and is only available to the participating 
archive. Simple well-known web server techniques can be used to ensure extremely high 
availability, and scalability ([1], [14], and [5]). Moreover, the aggregation scheme with adaptive 
round time is expected to help reduce the amount of work that the ACE-IMS needs to deal with at 
a given time. 

In terms of performance, we have evaluated ACE using the NARA EAP (The National Archives 
Electronic Access Project) Image Collection consisting of approximately 130,000 files of total 
size over 1.1TB. We were able to fully audit all the objects in about 15 hours while storing the 
data remotely on a separate server. Most of the time was spent in moving the data between the 
separate machines in our environment. We expect performance to be much better in a production 
environment since all the data movement will be carried out locally between the audit manager 
and the local storage. 
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Appendix A. ACE-IMS Web Service Descriptor (WSDL)
<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions targetNamespace="urn:tss.ias.umiacs.umd.edu" xmlns:apachesoap="http://xml.apache.org/xml-soap" 
xmlns:impl="urn:tss.ias.umiacs.umd.edu" xmlns:intf="urn:tss.ias.umiacs.umd.edu" 
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
<!--WSDL created by Apache Axis version: #axisVersion# 
Built on #today#--> 
 
   <wsdl:message name="TSS_TokenRequestResponse"> 
      <wsdl:paart name="TSS_TokenRequestReturn" type="soapenc:base64Binary"/> 
   </wsdl:message> 
   <wsdl:message name="TSS_TokenRequestRequest"> 
      <wsdl:part name="reqId" type="soapenc:string"/> 
   </wsdl:message> 
    
   <wsdl:message name="TSS_DoesTokenExistRequest"> 
      <wsdl:part name="reqId" type="soapenc:string"/> 
   </wsdl:message> 
   <wsdl:message name="TSS_DoesTokenExistResponse"> 
      <wsdl:part name="TSS_DoesTokenExistReturn" type="xsd:boolean"/> 
   </wsdl:message> 
    
   <wsdl:message name="TSS_CompareCSIRequest"> 
      <wsdl:part name="time" type="xsd:long"/> 
      <wsdl:part name="CSI" type="soapenc:base64Binary"/> 
   </wsdl:message> 
   <wsdl:message name="TSS_CompareCSIResponse"> 
      <wsdl:part name="TSS_CompareCSIReturn" type="xsd:boolean"/> 
   </wsdl:message> 
 
   <wsdl:message name="TSS_GetServerTimeRequest"> 
   </wsdl:message> 
   <wsdl:message name="TSS_GetServerTimeResponse"> 
      <wsdl:part name="TSS_GetServerTimeReturn" type="xsd:long"/> 
   </wsdl:message> 
 
   <wsdl:message name="TSS_StampRequest"> 
      <wsdl:part name="in_tsreq" type="soapenc:base64Binary"/> 
   </wsdl:message> 
   <wsdl:message name="TSS_StampResponse"> 
      <wsdl:part name="TSS_StampReturn" type="soapenc:base64Binary"/> 
   </wsdl:message> 
 
 
   <wsdl:portType name="IAS_TimeStampingSystem"> 
      <wsdl:operation name="TSS_GetServerTime"> 
         <wsdl:input message="impl:TSS_GetServerTimeRequest" name="TSS_GetServerTimeRequest"/> 
         <wsdl:output message="impl:TSS_GetServerTimeResponse" name="TSS_GetServerTimeResponse"/> 
      </wsdl:operation> 
 
      <wsdl:operation name="TSS_Stamp" parameterOrder="in_tsreq"> 
         <wsdl:input message="impl:TSS_StampRequest" name="TSS_StampRequest"/> 
         <wsdl:output message="impl:TSS_StampResponse" name="TSS_StampResponse"/> 
      </wsdl:operation> 
 
      <wsdl:operation name="TSS_DoesTokenExist" parameterOrder="reqId"> 
         <wsdl:input message="impl:TSS_DoesTokenExistRequest" name="TSS_DoesTokenExistRequest"/> 
         <wsdl:output message="impl:TSS_DoesTokenExistResponse" name="TSS_DoesTokenExistResponse"/> 
      </wsdl:operation> 
 
      <wsdl:operation name="TSS_TokenRequest" parameterOrder="reqId"> 
         <wsdl:input message="impl:TSS_TokenRequestRequest" name="TSS_TokenRequestRequest"/> 
         <wsdl:output message="impl:TSS_TokenRequestResponse" name="TSS_TokenRequestResponse"/> 
      </wsdl:operation> 
 
      <wsdl:operation name="TSS_CompareCSI" parameterOrder="time CSI"> 
         <wsdl:input message="impl:TSS_CompareCSIRequest" name="TSS_CompareCSIRequest"/> 
         <wsdl:output message="impl:TSS_CompareCSIResponse" name="TSS_CompareCSIResponse"/> 
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      </wsdl:operation>     
   </wsdl:portType> 
 
 
   <wsdl:binding name="IAS_TimeStampingSystemSoapBinding" type="impl:IAS_TimeStampingSystem"> 
      <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/> 
 
      <wsdl:operation name="TSS_GetServerTime"> 
         <wsdlsoap:operation soapAction=""/> 
         <wsdl:input name="TSS_GetServerTimeRequest"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:input> 
         <wsdl:output name="TSS_GetServerTimeResponse"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:output> 
      </wsdl:operation> 
 
      <wsdl:operation name="TSS_Stamp"> 
         <wsdlsoap:operation soapAction=""/> 
         <wsdl:input name="TSS_StampRequest"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:input> 
         <wsdl:output name="TSS_StampResponse"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:output> 
      </wsdl:operation> 
 
      <wsdl:operation name="TSS_DoesTokenExist"> 
         <wsdlsoap:operation soapAction=""/> 
         <wsdl:input name="TSS_DoesTokenExistRequest"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:input> 
         <wsdl:output name="TSS_DoesTokenExistResponse"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:output> 
      </wsdl:operation> 
 
      <wsdl:operation name="TSS_TokenRequest"> 
         <wsdlsoap:operation soapAction=""/> 
         <wsdl:input name="TSS_TokenRequestRequest"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:input> 
         <wsdl:output name="TSS_TokenRequestResponse"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:output> 
      </wsdl:operation> 
 
      <wsdl:operation name="TSS_CompareCSI"> 
         <wsdlsoap:operation soapAction=""/> 
         <wsdl:input name="TSS_CompareCSIRequest"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:input> 
         <wsdl:output name="TSS_CompareCSIResponse"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:output> 
      </wsdl:operation> 
 
      <wsdl:operation name="helloWorld"> 
         <wsdlsoap:operation soapAction=""/> 
         <wsdl:input name="helloWorldRequest"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
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use="encoded"/> 
         </wsdl:input> 
         <wsdl:output name="helloWorldResponse"> 
            <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="urn:tss.ias.umiacs.umd.edu" 
use="encoded"/> 
         </wsdl:output> 
      </wsdl:operation> 
   </wsdl:binding> 
 
   <wsdl:service name="IAS_TimeStampingSystemService">  
      <wsdl:port binding="impl:IAS_TimeStampingSystemSoapBinding" name="IAS_TimeStampingSystem"> 
         <wsdlsoap:address 
location="http://naradev05.umiacs.umd.edu:8080/IAS_TimeStampingSystem/services/IAS_TimeStampingSystem"/> 
      </wsdl:port> 
   </wsdl:service> 
 
</wsdl:definitions> 
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