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1 IntroductionAn important geometric problem involving planar shapes is whether two simple polygonsintersect one another. If the polygons do intersect it is often useful to acquire more infor-mation regarding the nature of the degree of overlap. One measure of the degree of overlapis the area of overlap between the two polygons. In many applications the placement of oneor both of the polygons is subject to translation. In this case it is natural to consider howthe area of overlap of the two polygons varies as a function of their mutual relationship. Inthis paper we analyze a number of mathematical and computational properties of the areaof overlap of polygons under translation.Let P be a simple polygon, that is, a closed connected set of points in the plane boundedby a closed polygonal Jordan curve. Let Int(P ) denote the interior of P and Ver(P ) denoteits vertex set, and Bnd(P ) denote its boundary. These are to be thought of as geometricsets in the plane, that is, as sets of points in R2. (Most of the results of this paper areapplicable to the more general case of closed bounded sets with polygonal boundaries, thatare not necessarily simply connected.) Given a polygon P in the plane, and vector t 2 R2,the translate of P by t, denoted t+ P , is the set ft+ p j p 2 Pg. Let �P = f�p j p 2 Pg,and de�ne t� P to be t+ (�P ). Given two simple polygons P and Q, the area-of-overlapfunction is the function Ar : R2 ! R given by Ar(t) = Area(P\(t+Q)). It su�ces to assumethat only one of the two polygons has been translated because Area((s + P ) \ (t + Q)) =Area(P \ ((t� s) +Q)). For arbitrary sets P and Q in the plane, we de�ne their sum (alsocalled vector sum or Minkowski sum) P +Q = fp+ q j p 2 P; q 2 Qg.There are a number of interesting applications and interpretations of this function. Inmotion planning in which two objects can be moved by a sequence of translations, the set offeasible placements of the two objects, de�ned to be the set of nonoverlapping placements,is just the set over which the area-of-overlap function is equal to zero. Combinatorial prop-erties of the region of zero overlap for two simple polygons were studied by Pollack, Sharirand Sifrony [12]. Kedem, Livne, Pach and Sharir [9] considered the situation of a singlemoving convex polygon amidst a set of stationary nonintersecting convex polygons. Otherapplications of zero overlap placements include packing and covering by translates of poly-1



gons [11, 10]. The general area-of-overlap function is a natural generalization of the area ofzero overlap when objects are de�ned to be \fuzzy" and the goal is to minimize the area ofoverlap. The area of overlap can be also be viewed as a convolution between two functionswhich are unit valued over the interiors of P and Q.In this paper we consider a number of mathematical and computational results involvingthe area-of-overlap function. We show that the area-of-overlap function of two simple poly-gons is a continuous, piecewise polynomial surface of degree at most two. We present boundson the combinatorial worst case complexity of this surface given the number of sides of thetwo polygons. We also present an e�cient algorithm for computing a representation of thearea-of-overlap function. Finally we present an algorithm for e�ciently tracing a contourcurve of constant area of overlap.2 Object Recognition by ProbingThe application which brought us to the area-of-overlap problem was a method of performingmodel-based object recognition in computer vision by means of a method called probing. Theproblem of object recognition by probing has been well studied recently by computationalgeometers. The early work was in the area of �nger probes where an object is identi�edby shooting a ray from in�nity until it contacts the object's boundary [4, 5]. The probingparadigm was generalized by Skiena and others to include other classes of probes [6, 14, 15,16].We consider another version of the probing paradigm that seems to be relevant to com-puter vision. We assume that a single polygonal object P , called the target , has beentranslated to an unknown position within a bounding rectangular region, called the image.We assume that there is a local operator that is capable of determining whether some point(x; y) of the image lies within the interior of the translated polygon. In this case the point(x; y) is called a hit and otherwise it is a miss. Each such point (x; y) is called a probe. Theproblem is how to use the fewest probes most accurately to �x the location of the target.We assume that we have at least one initial hit to start the process o�. The use of probingfor object recognition has been studied in [1, 2].2



Each possible placement of the polygon is speci�ed by a translation vector t. Given anyset of hits and misses, the locus of placements of P that are consistent with this set formsa polygonal domain in the plane, that is, a possibly disconnected region of the plane whoseboundary consists of a �nite number of line segments. To see this, if a point v is a hit,then (assuming that there is only one copy of P in the image) we can infer that v 2 t+ P ,implying that t 2 v�P . Similarly, if the point v is a miss, then we can infer that t 62 v�P .Given a set of probes, v1; v2; : : : ; vh being hits and u1; u2; : : : ; um being misses, we infer thatthe set of feasible values of t (possible placements of P ) is given by the set0@ \1�i�h(vi � P )1A�0@ [1�i�m(ui � P )1A ;(where A nB denotes the set theoretic di�erence of A and B). This set is called the feasibleregion. Since it is formed from set operations on simple polygons it is a polygonal domain.Thus, for a given number of probes, we want to minimize some measure of the size of thefeasible region, such as its area or diameter.Given such a region of feasible placements, a natural question to ask is where to place thenext probe so that it provides the greatest amount of information. One possible criterion isto select the next probe to minimize the area of the feasible region. Since we do not knowthe result of the next probe, the probe should be chosen so that, in the worst case, it reducesthe area of the feasible region as much as possible. If F denotes the current feasible region,and v is the choice for the next probe, then the next feasible region will be F \ (v � P ) ifthe probe hits and F n (v�P ) if the probe misses. In the worst case, the area of the feasibleregion after this probe ismax(Area(F \ (v � P ));Area(F n (v � P ))):Since increasing the area of one term of the maximum decreases the area of the other, weminimize the worst case area by selecting v so that Area(F \ (v�P )) is as large as possiblebut not greater than Area(F )=2. In other words, we seek a placement of �P such thatits overlap with F is equal to Area(F )=2, and if no such placement exists, then one thatmaximizes the area of overlap with �P and F .In general there may be many placements that satisfy these conditions, and so othercriteria (such as the combinatorial complexity of the resulting feasible region) may need3



to be considered. For this reason, computing the entire area-of-overlap function may bepreferred to the simpler task of computing an arbitrary single-placement that satis�es theseconditions.3 Combinatorial and Analytic StructureIn this section we consider the structure of the area-of-overlap function, both its analyticstructure and combinatorial structure. It is easy to see that the area-of-overlap function isnonzero over a bounded region of the plane. We begin with a series of easy observations.Claim 3.1 The subset of R2 for which Ar(t) is nonzero is the Minkowski sum Int(P ) �Int(Q).Proof: P and t+Q have a nonzero overlap if and only if there are interior points p 2 Int(P )and q 2 Int(q) such that p = t + q, or equivalently t = p � q. This is true if and only ift 2 Int(P ) � Int(Q). utClaim 3.2 If P and Q are simple polygons then the subset of R2 over which the functionAr(t) is nonzero is path connected. The subset of R2 over which the function is zero neednot be connected.Proof: Let t and t0 be points in R2 for which the area-of-overlap function is nonzero.Observe that if P and t + Q have a nonzero overlap then there are points p 2 Int(P ) andq 2 Int(Q) such that p = t+ q. Similarly, if P and t0+Q have a nonzero overlap then thereare points p0 2 P and q0 2 Q such that p0 = t0 + q0. Because the interior of Q is connectedthere is a path connecting q0 to q through the interior of Q. We can parameterize the pointsalong this path (e.g. by path length) yielding continuous functions x(s) and y(s) for s 2 [0; 1]such that q = (x(0); y(0)) and q0 = (x(1); y(1)) and such that (x(s); y(s)) 2 Int(Q) for alls 2 [0; 1]. Let t(s) = t + q � (x(s); y(s)). The connected set of translates t(s) + Q, for0 � s � 1, contains the point t+ q � (x(s); y(s)) + (x(s); y(s)) = t+ q = p, and so overlapsP . In the �nal translate, t(1)+Q, the point p coincides with the point q0. Similarly, because4



Int(P ) is connected, we can perform an analogous path translation of P to bring the pointsp0 and q0 into coincidence while maintaining nonzero overlap.To prove that the subset over which the function is zero need not be connected, let Q bea unit square. Consider a square of side length 3 containing a hole slightly larger than a unitsquare. Although this is not a simple polygon, it can be made one by connecting the hole tothe outer boundary by a narrow channel. Call the resulting polygon P . The area of overlapis zero when Q is placed inside the hole, and is zero when Q is placed well outside of P , butQ cannot be moved from one placement to the other without incurring a nonzero overlap. utClaim 3.3 The area-of-overlap function is continuous.Proof: This is obvious since the overlap itself is formed from a �nite set of simple poly-gons, and any in�nitesimal translation can a�ect the dimensions of each such polygon onlyin�nitesimally. utDe�ne a placement to be a pair (P; t +Q). It is easy to see that for many placements asmall perturbation in t induces a smooth variation in the area-of-overlap function, howeverthere are certain critical placements at which the nature of the overlap can change suddenly.For example, if t lies on the boundary of P�Q, where the area function changes from nonzeroto zero, the function may not behave smoothly. We consider under what circumstances suchchanges occur.A placement (P; t+Q) is said to be critical if either a vertex of P intersects the boundaryof t + Q or a vertex of t + Q intersects the boundary of P . Let Crit(P;Q) denote the setof such placements. De�ne the combinatorial type of a placement to be the set of pairs ofedges/vertices of P and edges/vertices of Q that intersect one another. We say that twoplacements given by s and t are equivalent if there is a path � from s to t such that thecombinatorial type is constant along the path. The equivalence classes of this relationshipsubdivide the plane into regions. Noncritical regions of this subdivision have dimension 2.Since a critical region involves the intersection of at least one vertex of one polygon with an5



edge of the other, the dimension of a critical region cannot be greater than 1. Recall thatVer(P ) denotes the set of vertices of P and Bnd(P ) denotes the boundary of P .Lemma 3.1 The locus of critical placements, Crit(P;Q), is given by the union(Ver(P )� Bnd(Q)) [ (Bnd(P )�Ver(Q)):Proof: A placement given by t is critical if and only if it corresponds to an intersectionbetween a vertex of P and the boundary of Q, or vice versa. In the former case this is equiv-alent to saying that there is p 2 Ver(P ) and q 2 Bnd(Q) such that p = t+ q, or equivalentlyt = p� q, meaning that t 2 Ver(P )� Bnd(Q). The other case is analogous. utLemma 3.2 Let t = (tx; ty). Let E(t) denote the set of all equivalent placements. For allpoints in E(t), the area-of-overlap function is given by a polynomial in tx and ty of maximumdegree 2.Proof: Let us assume that P and Q share no parallel edges. In general the theoremholds by applying a continuity argument to the limiting case in which edges approach beingparallel. Consider the placement (P; t+Q). It su�ces to show that, for all su�ciently smalltranslations � such that the placements (P; t + Q) and (P; t + �+ Q) are combinatoriallyequivalent, the di�erence of area Ar(t+�)�Ar(t) is a polynomial of degree 2 as a functionof �'s coordinates, �x and �y.If a vertex of P overlaps a vertex of t+ Q then it follows that E(t) consists of just thesingle point t, and the lemma is trivially true. Let us assume this is not the case. Considerthe �nite point set S consisting of the union of the vertex set of P , the vertex set of t+ Qand the set of all points de�ned by the intersection of the interiors of two edges of P andt+Q. It is easy to see that under our hypotheses this is a �nite set of isolated points. Sincethe set is �nite, we can subdivide the plane into a �nite number of polygonal cells such that(1) each cell either contains a single edge of one of the polygons, or contains a single pointof S and the edges of the polygon(s) incident to this point, and (2) the vertices of the cells6
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Figure 1: Decomposition of the area of overlap.do not intersect the boundary of either polygon. An example of such a subdivision is shownin Fig. 1(a).Since the cells have a particularly simple structure we can calculate their areas individu-ally and sum them. Since vertices of the cells do not intersect the boundaries of the polygons,and since the vertices and intersection points of the polygon boundaries do not intersect theboundaries of the cells, any in�nitesimal perturbation of the translation vector � does nota�ect the incidence relations between the polygons and the subdivision. By restricting t+�to equivalent placement we do not a�ect the incidence relations between the two polygons.A cell that contains no polygon boundary, or that contains only the boundary of theunmoving polygon P , does not change its contribution to the area of overlap as � varies.For a cell that contains only one edge of the boundary of t+Q or for a cell that contains anintersection point of the boundaries of P and t+Q, it is easy to see that the change in areacan be expressed as a �nite sum of trapezoids (degenerating possibly to triangles), wherethe angles of the sides remain �xed, but the distance between the bases increases linearlywith �x and �y. See Fig. 1(b). It follows that the lengths of the bases of the trapezoids alsovary linearly with �x and �y, so the area of the resulting trapezoid varies quadratically in�x and �y. Summing over all such cells completes the proof. utFor a �xed area value �, the set of contour lines arising by considering all placementst such that Ar(t) = � is a set of planar curves formed from pieces that are polynomials ofdegree at most 2. Thus we have the following.7



Corollary 3.1 Given simple polygons P and Q, for a �xed area �, the locus of placementst such that the area of overlap is equal to �, ft 2 R2 j Ar(t) = �g, consists of curves thatare (possibly degenerate) piecewise conics.Theorem 3.1 Let P and Q be two simple polygons with m and n sides respectively. Thearea-of-overlap function Ar(t) is a piecewise polynomial function of degree at most 2 overR2. The number of pieces is O((mn)2). This bound is tight in the worst case. If both P andQ are convex then the number of pieces is O(m2+n2+mnmin(m;n)), and if further, P andQ are equal up to translation then the number of pieces is O(m2).Proof: Lemma 3.2 establishes that the area-of-overlap function Ar(t) is a piecewise poly-nomial function of degree at most 2 in the coordinates of t. Lemma 3.1 establishes that theregions of the equivalence classes are bounded by a Minkowski sum of the vertices of P andthe boundary of �Q, and vice versa. A Minkowski sum of the m vertices of P and the nedges of �Q is a line segment arrangement with mn segments. Such an arrangement canhave at most O((mn)2) faces.
Q
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Figure 2: Worst case example.To see that the bound is tight consider the example shown in Fig. 2, which is due toPollack, Sharir, and Sifrony [12]. The polygon P consists of two \combs" each with m\teeth", such that the teeth of the two combs are perpendicular to each other. Q consistsof two combs each with n+ 1 teeth, and hence n \gaps" between the teeth. Clearly P and8



Q consist of O(m) and O(n) sides respectively. It is evident from the �gure that for each ofthe m2 possible choices of one horizontal tooth and one vertical tooth from P and for eachof the n2 possible choices of one horizontal and one vertical gap from Q, there is a placementof P and Q such that the designated teeth of P protrude within the designated gaps of Q,implying zero overlap. Any two such placements are combinatorially inequivalent, becauseany motion between the two placements must pass through a placement of nonzero overlap.Since all choices are independent, there are O((mn)2) connected components of zero overlap,and hence the number of pieces is at least this large.If both P and Q are convex, then the arrangement de�ning the set of critical placementshas a particular structure. In particular, the Minkowski sum Ver(P ) � Bnd(Q) consistsof m copies of identical n-sided convex polygons. Since the boundaries of two translatesof a convex polygon can intersect at most twice, there can be at most O(m2) intersectionpoints. Similarly, there can be at most O(n2) intersection points in the arrangement ofBnd(P ) � Ver(Q). Finally, in the union of the two arrangements, for any pair of the mnconvex polygons, one from each arrangement, there can be at most min(m;n) intersections(since each edge of one polygon can intersect at most two edges of the other polygon). Thusthe total number of intersections in the arrangement is O(m2 + n2 + mnmin(m;n)). Thetotal number of vertices in the arrangement is dominated by this quantity. Finally, by Euler'sformula, the number of faces in the arrangement is a linear function of the number of verticesin the arrangement.Finally, if P and Q are translates of one another, then the above analysis holds, exceptthat any pair of polygons, one chosen from each of the arrangements, can intersect in at mosttwo points. Thus the min(m;n) term is replaced by 2. Since m = n, this gives O(m2). ut4 Area ComputationIn this section we consider the problem of computing a representation of the area-of-overlapfunction. Recall that Crit(P;Q) denotes the line segment arrangement(Ver(P )� Bnd(Q)) [ (Bnd(P )�Ver(Q));9



and let Arr(P;Q) denote the combinatorial complexity (number of edges) in this arrange-ment. The line segment arrangement Crit(P;Q) is formed from m copies of the n segmentsof Q, plus n copies of the m segments of P , implying that there are O(mn) segments in totalin the arrangement, and hence its combinatorial complexity, Arr(P;Q), is at most O((mn)2).By Lemmas 3.1 and 3.2 each face of this arrangement can be associated with the coe�cientsof a polynomial in x and y of degree at most 2. This polynomial de�nes the area-of-overlapfunction for each point within the face. This provides a representation of the area-of-overlapfunction whose size is O(Arr(P;Q)).Combining the proofs of Lemma 3.2 and Theorem 3.1, we can derive a naive algorithmwith running timeO(mn log(mn) + Arr(P;Q)((m+ n) log(m+ n) +mn)) � O((mn)3)for computing the area-of-overlap function. Using standard algorithms from computationalgeometry, we can compute the line segment arrangement Crit(P;Q) in O(mn log(mn) +Arr(P;Q)) time [3]. By Euler's formula, the number of faces in this arrangement is propor-tional to its complexity. The dual graph whose vertices are the faces of the arrangement canbe computed in the same time bound needed to compute the arrangement.For each of the O(Arr(P;Q)) faces of the arrangement, we construct a representativeplacement of P and Q for this equivalence class, by taking any point t within the interiorof this face and constructing the line segment arrangement de�ned by the boundaries of Pand t+Q. This single-placement arrangement (not to be confused with the arrangement ofcritical placements, Crit(P;Q)) contains m+ n segments and can be constructed in O((m+n) log(m + n) + mn) time [3]. We can compute a subdivision satisfying the conditions ofLemma 3.2 within this same time bound, by �rst computing trapezoidal decomposition ofthe arrangement in the same time bound [3], then \fattening" each edge of the arrangementby a su�ciently small amount (forming a set of corridors that surround the boundaries ofthe polygons), and �nally subdividing each of these corridors into polygonal regions thatseparate nonincident elements. Because each of the resulting regions contains at most aconstant number of edges and at most one vertex of the arrangement, we can compute thecontribution of each region of the subdivision to the area of overlap in O(1) time. The time10



for this computation is dominated by the time to compute the single-placement arrangement.The total complexity of this method is O(mn log(mn) + Arr(P;Q)) to compute andtraverse the arrangement of critical placements, and then for each of the O(Arr(P;Q)) facesof Crit(P;Q) we spend O((m+n) log(m+n)+mn) time to compute the area function. Thusthe total time is O(mn log(mn) + Arr(P;Q)((m+ n) log(m+ n) +mn)).The main result of this section is to show that we can shave o� the factor of O((m +n) log(m + n) + mn) in the running time of this procedure. This is done by incremen-tally updating the contribution to the area-of-overlap function in O(1) time per face of thearrangement of critical placements (rather than computing it from scratch each time).Theorem 4.1 Given two polygons P and Q, of m and n sides respectively,(i) a representation of the area-of-overlap function for these two polygons can be computedin O(mn log(mn)+Arr(P;Q)) � O((mn)2) time, where Arr(P;Q) is the complexity ofthe arrangement of critical placements of P and Q,(ii) the representation of the function has space complexity O(Arr(P;Q)) � O((mn)2), and(iii) given this representation, the area of overlap of P and t + Q can be computed inO(log(n+m)) time, given any translation vector t.Proof: As before we construct the arrangement of critical placements, Crit(P;Q), and aswe are doing so, we label each edge with a pair of indices, indicating the vertex of P andedge of Q, or vertex of Q and edge of P that gave rise to this edge. This can be done withinthe same asymptotic time bound as before.As before we traverse the faces of this arrangement, and for each face we compute thecoe�cients of the area-of-overlap function. We start with the external face of the arrange-ment, since the area-of-overlap function is just the zero function. As we walk around theline segment arrangement (e.g. by a depth-�rst traversal of its dual graph), suppose thatwe walk from a face f to a neighboring face f 0 across an edge that is labeled with vertexv of P and edge e of Q. The transition in the area-of-overlap function as the translationvector crosses from f to f 0 arises because the edge e has been translated so that it crosses11



over vertex v. The edge separating f from f 0 in the arrangement corresponds to a set oftranslations that cause edge e to intersect vertex v. In Fig. 3(a) Crit(P;Q) is shown, andthe corresponding translation is shown in (b).
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Within the interior of R there are three edges, the edge e of Q, and the two edges incidentto v. The three lines carrying these segments de�ne a line arrangement within R. This linearrangement can be subdivided into seven regions. Six of these regions come about byconsidering the region bounded by pairs of consecutive lines around the boundary of R. LetB(t), C(t), D(t), E(t), F (t), and G(t) denote the areas of these regions as a function of t.In Fig. 4(b)) these are indicated by the letters B through G. The seventh area (H(t)) is thearea of the triangular region at the center of the arrangement. Observe that in Fig. 4(b),the regions representing the areas B(t), D(t), and F (t) contain the central triangle whosearea is given by H(t). Because placements t and t0 are combinatorially equivalent aboutthe boundary of R, as the edge e is translated to its new placement at t0, each of thesearea functions varies according to a single polynomial I(t) of degree 2 in the coordinates oft. (This was argued in the proof of Lemma 3.2 because the di�erence in area is given bya trapezoid of linearly varying height). Also the area-of-overlap function varies as a singlepolynomial outside of R because the two placements are combinatorially equivalent outsideof R. Thus it su�ces to show that as the line segment (t; t0) passes the point of criticality,the area-of-overlap function changes only in the addition or subtraction of the area functionsof one of these seven regions. In fact, the change will be the addition or subtraction of thearea function H(t).A complete proof of this would involve an exhaustive analysis of the possible con�gura-tions of the arrangements. Let us consider a couple to illustrate the idea. The other casesare similar. Suppose in Fig. 4(b), that the area of overlap consists of the region lying belowthe boundary of P and above the boundary of Q. Then the area of overlap, Ar(t) is equalto the sum Ar(t) = B(t) + F (t)�H(t) + I(t):H(t) is subtracted because both regions overlap H(t), so its area is counted twice. As wemove to the con�guration shown in Fig. 4(c), the area of overlap, below P and above Q cannow be seen to be Ar(t) = B(t) + F (t) + I(t)(where the relevant regions are labeled B 0 and F 0 in the �gure). Thus the incrementaldi�erence in the two area functions is the addition of H(t).13



As another example, suppose that in Fig. 4(b), the area of overlap consists of the regionlying below P and below Q. Then the area of overlap is equal toAr(t) = C(t) +D(t) + E(t)�H(t) + I(t):(Again H(t) is subtracted because D(t) contains H(t) but H(t) is not part of the overlap.)As we move to the con�guration in Fig. 4(c), the area below P and below Q is equal toAr(t) = C(t) +D(t) + E(t)� 2H(t) + I(t)(where the relevant regions are labeled C 0, D0, etc. in the �gure). The subtraction of 2H(t)is because C(t) and E(t) both contain H(t), but it is not part of the overlap.) Thus theincremental di�erence in the two area functions is the subtraction of H(t).Since the area function H(t) is a polynomial of degree 2 in the coordinates of the trans-lation vector t, we can compute the incremental change by simply computing the coe�cientsfor this polynomial, and then subtracting these from the current set of coe�cients. Inthis way we can update the area-of-overlap function in O(1) time per face visited. Sincethe total number of faces visited is O(Arr(P;Q)) = O((mn)2) this is the amount of timeneeded to compute the area-of-overlap function. The running time is dominated by theO(mn log(mn)+Arr(P;Q)) time needed to compute the arrangement of critical placements.This establishes item (i) of the theorem.To establish item (ii), observe that the space complexity is proportional to the size ofthe arrangement of critical placements, which is at most O((mn)2). For (iii), we can applyany standard point location algorithm to determine the face of the arrangement of criticalplacements containing t, and in constant time compute the area function at t for the result-ing function. ut5 Contour TracingGiven simple polygons P and Q, and given an area value �, de�ne the �-contour of Pand Q to be the set of points t in the plane such that Ar(t) = �. One way to compute a14



contour is to apply the results of the previous section to compute the entire area function,and then compute the contour within each one of the pieces. In this section we consider thefollowing problem. Given two polygons P and Q, and a single point t0, trace the connectedcomponent of �-contour that contains t0. (The questions of how to locate a point of a givenvalue � and how to determine the set of all connected components of a given � value areboth nontrivial, short of a complete traversal of the area function.) Observe that in generala contour can consist of multiple connected components, in fact as many as 
((mn)2) fromthe worst-case example given in the proof of Theorem 3.1. In certain degenerate cases eachconnected component of a contour may not consist of just a simple closed curve in the plane.For example, a contour may broaden into a 2-dimensional region if the area function (whenviewed as a 3-dimensional surface) 
attens into a plateau, or there may be degenerate pointswhere multiple contour curves intersect each other. We will simplify the presentation byassuming that � is a general value so these degeneracies do not arise. With this assumption,from Corollary 3.1, the intersection of the �-contour with any cell in the arrangement ofcritical placements, Crit(P;Q), consists of a conic curve.The area function at t0 is determined by the face of Crit(P;Q) that contains this point.To avoid O((mn)2) time for computing the entire arrangement, we can compute the areafunction at t0, in O((m + n) log(m + n) + mn) time, as we did in the previous section, bycomputing the single-placement arrangement at the point t0, and building the area functionfrom this arrangement through the method given in Lemma 3.2. Because the contour curveis a conic, we can apply standard methods from the theory of algebraic curves to convert itinto a rational parametric form [8]. Thus, we can describe each point on the contour as afunction t(s), for a real parameter s � 0, where t(0) = t0.To trace the curve, we need to determine the parameter value s at which a translationvector traveling along the contour curve induces the next critical placement. Again, wedo not want to take the time to compute the entire arrangement of critical placements,Crit(P;Q). Instead, we consider the placement (P; t0 + Q). As we translate Q along thecontour, a transition in the area function occurs at the smallest positive parameter values such that either (1) a vertex of t(s) + Q intersects an edge of P , or (2) a vertex of Pintersects an edge of t(s) +Q. To determine this value of s in case (1) we imagine shooting15



a bullet starting at each vertex v of Q, that travels along the contour t(s) + v until it �rststrikes the boundary of P . See Fig. 5(a). In case (2) we shoot a bullet from each vertexv of P , that travels along the contour �t(s) + v until it �rst strikes the boundary of Q(observing that this implies that the corresponding boundary point of t(s)+Q intersects v).See Fig. 5(b). Among all O(m+ n) such bullets, we take the one that hits �rst, in the sensethat the intersection point has the smallest value of s. (In Fig 5 this will be achieved by thelower right vertex of P .) This will be the smallest s such that the placement (P; t(s) +Q) iscritical.
P

Q

(a) (b)

P

QFigure 5: Determining the next critical placement by bullet shooting.Unfortunately, we know of no data structure that will support bullet shooting alongrational parametric functions of bounded algebraic degree in a time bound that is based onthe combinatorial complexity of the objects. However, many standard ray shooting and raytracing data algorithms [7, 13] can be generalized to handle tracing of parametric curves.Once we have traced the contour to the next critical placement, we can apply the tech-nique described in Lemma 4.1 to incrementally update the area-of-overlap function. Oncethis is done we can go back, derive the new contour, and continue the process. This process isrepeated from one critical placement to the next, until returning to the initial con�guration(which must occur because of our assumption that the contour is a simple closed curve).We lack theoretical bounds on the complexity of bullet shooting, and in general we cannotbound the number of transitions of critical placements the tracing algorithm will encounter.However, it is reasonable to believe that this approach is likely in many practical cases to bemore e�cient than computing the entire arrangement of critical placements. In summary,we have the following. 16



Theorem 5.1 Given two polygons P and Q, and a point t0 on an �-contour of P and Q, wecan trace the connected component of the contour containing t0 in O(mn+ k(T (m)+T (n)))time, where m and n are the number of edges in the two polygons, k is the number of criticaltransitions visited by the contour trace, and T (m) is the time to perform \ray-shooting"queries along curved rays represented by rational parametric conic curves, through a collectionof m line segments.6 Concluding RemarksThe area-of-overlap function has interesting applications in many areas such as object recog-nition by probing. In this paper we considered the area of overlap of translated simplepolygons. We showed that the area-of-overlap function of two simple polygons with m and nsides respectively is a continuous piecewise surface of polynomials of degree at most 2, whichhas up to O((mn)2) pieces. An e�cient algorithm to compute the function was presented tocompute a representation of the function in O(mn log(mn) + Arr(P;Q)) � O((mn)2) time,where Arr(P;Q) is the complexity of the arrangement of critical placements of P and Q.The representation of the function has space complexityO(Arr(P;Q)) � O((mn)2). We alsopresented a technique for tracing a single contour curve without explicitly constructing theentire critical arrangement. Some interesting related questions are:� What if we restrict the polygons to be convex polygons? An important special case iscomputing the area-of-overlap function for a convex polygon with itself.� Can the results of Section 5 be extended to �nd all contour lines of �xed area in ane�cient manner (without computing the entire area function)?� Is it possible to �nd the translation that maximizes the area of overlap (without com-puting the entire function)?� What if the sides of the polygons are curves (e.g. low-degree splines) rather thanstraight lines?� What if rotations are allowed? 17
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