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Abstract

Given two simple polygons P and () in the plane and a translation vector ¢ € R?, the
area-of-overlap function of P and @ is the function Ar(¢) = Area(P N (t + Q)), where t + @
denotes () translated by ¢. This function has a number of applications in areas such as motion
planning and object recognition. We present a number of mathematical results regarding
this function. We also provide efficient algorithms for computing a representation of this
function, and for tracing contour curves of constant area of overlap.
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1 Introduction

An important geometric problem involving planar shapes is whether two simple polygons
intersect one another. If the polygons do intersect it is often useful to acquire more infor-
mation regarding the nature of the degree of overlap. One measure of the degree of overlap
is the area of overlap between the two polygons. In many applications the placement of one
or both of the polygons is subject to translation. In this case it is natural to consider how
the area of overlap of the two polygons varies as a function of their mutual relationship. In
this paper we analyze a number of mathematical and computational properties of the area

of overlap of polygons under translation.

Let P be a simple polygon, that is, a closed connected set of points in the plane bounded
by a closed polygonal Jordan curve. Let Int(P) denote the interior of P and Ver(P) denote
its vertex set, and Bnd(P) denote its boundary. These are to be thought of as geometric
sets in the plane, that is, as sets of points in R*. (Most of the results of this paper are
applicable to the more general case of closed bounded sets with polygonal boundaries, that
are not necessarily simply connected.) Given a polygon P in the plane, and vector ¢ € R?,
the translate of P by t, denoted t + P, is the set {t +p | p € P}. Let —P ={—p|p € P},
and define t — P to be t + (—P). Given two simple polygons P and @, the area-of-overlap
Junction is the function Ar: R? — R given by Ar(t) = Area(PN(t+Q)). It suffices to assume
that only one of the two polygons has been translated because Area((s + P)N (1 + Q)) =
Area(P N ((t —s) +Q)). For arbitrary sets P and @ in the plane, we define their sum (also
called vector sum or Minkowski sum) P4+ Q ={p+q|p € P,q € Q}.

There are a number of interesting applications and interpretations of this function. In
motion planning in which two objects can be moved by a sequence of translations, the set of
feastble placements of the two objects, defined to be the set of nonoverlapping placements,
is just the set over which the area-of-overlap function is equal to zero. Combinatorial prop-
erties of the region of zero overlap for two simple polygons were studied by Pollack, Sharir
and Sifrony [12]. Kedem, Livne, Pach and Sharir [9] considered the situation of a single
moving convex polygon amidst a set of stationary nonintersecting convex polygons. Other

applications of zero overlap placements include packing and covering by translates of poly-



gons [11, 10]. The general area-of-overlap function is a natural generalization of the area of
zero overlap when objects are defined to be “fuzzy” and the goal is to minimize the area of
overlap. The area of overlap can be also be viewed as a convolution between two functions

which are unit valued over the interiors of P and Q).

In this paper we consider a number of mathematical and computational results involving
the area-of-overlap function. We show that the area-of-overlap function of two simple poly-
gons is a continuous, piecewise polynomial surface of degree at most two. We present bounds
on the combinatorial worst case complexity of this surface given the number of sides of the
two polygons. We also present an efficient algorithm for computing a representation of the
area-of-overlap function. Finally we present an algorithm for efficiently tracing a contour

curve of constant area of overlap.

2 Object Recognition by Probing

The application which brought us to the area-of-overlap problem was a method of performing
model-based object recognition in computer vision by means of a method called probing. The
problem of object recognition by probing has been well studied recently by computational
geometers. The early work was in the area of finger probes where an object is identified
by shooting a ray from infinity until it contacts the object’s boundary [4, 5]. The probing
paradigm was generalized by Skiena and others to include other classes of probes [6, 14, 15,
16].

We consider another version of the probing paradigm that seems to be relevant to com-
puter vision. We assume that a single polygonal object P, called the target, has been
translated to an unknown position within a bounding rectangular region, called the image.
We assume that there is a local operator that is capable of determining whether some point
(x,y) of the image lies within the interior of the translated polygon. In this case the point
(x,y) is called a hit and otherwise it is a miss. Each such point (x,y) is called a probe. The
problem is how to use the fewest probes most accurately to fix the location of the target.
We assume that we have at least one initial hit to start the process off. The use of probing

for object recognition has been studied in [1, 2].



Each possible placement of the polygon is specified by a translation vector ¢t. Given any
set of hits and misses, the locus of placements of P that are consistent with this set forms
a polygonal domain in the plane, that is, a possibly disconnected region of the plane whose
boundary consists of a finite number of line segments. To see this, if a point v is a hit,
then (assuming that there is only one copy of P in the image) we can infer that v € ¢t + P,
implying that ¢t € v — P. Similarly, if the point v is a miss, then we can infer that t &€ v — P.
Given a set of probes, vy, vy, ..., v, being hits and wuq, us, ..., u, being misses, we infer that

the set of feasible values of ¢ (possible placements of P) is given by the set

[no-r\( Y w-n).

(where A\ B denotes the set theoretic difference of A and B). This set is called the feasible
region. Since it is formed from set operations on simple polygons it is a polygonal domain.
Thus, for a given number of probes, we want to minimize some measure of the size of the
feasible region, such as its area or diameter.

Given such a region of feasible placements, a natural question to ask is where to place the
next probe so that it provides the greatest amount of information. One possible criterion is
to select the next probe to minimize the area of the feasible region. Since we do not know
the result of the next probe, the probe should be chosen so that, in the worst case, it reduces
the area of the feasible region as much as possible. If F' denotes the current feasible region,
and v is the choice for the next probe, then the next feasible region will be F' N (v — P) if
the probe hits and F'\ (v — P) if the probe misses. In the worst case, the area of the feasible

region after this probe is
max(Area(F' N (v — P)), Area(F'\ (v — P))).

Since increasing the area of one term of the maximum decreases the area of the other, we
minimize the worst case area by selecting v so that Area(F N (v — P)) is as large as possible
but not greater than Area(F')/2. In other words, we seek a placement of —P such that
its overlap with F' is equal to Area(F')/2, and if no such placement exists, then one that
maximizes the area of overlap with —P and F.

In general there may be many placements that satisfy these conditions, and so other

criteria (such as the combinatorial complexity of the resulting feasible region) may need
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to be considered. For this reason, computing the entire area-of-overlap function may be
preferred to the simpler task of computing an arbitrary single-placement that satisfies these

conditions.

3 Combinatorial and Analytic Structure

In this section we consider the structure of the area-of-overlap function, both its analytic
structure and combinatorial structure. It is easy to see that the area-of-overlap function is

nonzero over a bounded region of the plane. We begin with a series of easy observations.

CrAM 3.1 The subset of R* for which Ar(t) is nonzero is the Minkowski sum Int(P) —
Int(Q).

PROOF: P and t+(@ have a nonzero overlap if and only if there are interior points p € Int(P)
and ¢ € Int(q) such that p =t + ¢, or equivalently ¢ = p — ¢. This is true if and only if
t € Int(P) — Int(Q). O

CLAIM 3.2 If P and Q are simple polygons then the subset of R* over which the function
Ar(t) is nonzero is path connected. The subset of R* over which the function is zero need

not be connected.

PROOF: Let ¢ and ¢ be points in R? for which the area-of-overlap function is nonzero.
Observe that if P and ¢ + @) have a nonzero overlap then there are points p € Int(P) and
q € Int(Q) such that p =1t + ¢. Similarly, if P and ¢’ + Q) have a nonzero overlap then there
are points p' € P and ¢’ € @ such that p’ = 1" 4+ ¢’. Because the interior of () is connected
there is a path connecting ¢’ to ¢ through the interior of (). We can parameterize the points
along this path (e.g. by path length) yielding continuous functions x(s) and y(s) for s € [0, 1]
such that ¢ = (2(0),y(0)) and ¢’ = (2(1),y(1)) and such that (z(s),y(s)) € Int(Q) for all
s € 10,1]. Let t(s) = t+ ¢ — («(s),y(s)). The connected set of translates t(s) + @, for
0 < s <1, contains the point ¢ + ¢ — (x(s),y(s)) + (2(s),y(s)) =t 4+ ¢ = p, and so overlaps
P. In the final translate, t(1) + @, the point p coincides with the point ¢’. Similarly, because
4



Int(P) is connected, we can perform an analogous path translation of P to bring the points

p’ and ¢’ into coincidence while maintaining nonzero overlap.

To prove that the subset over which the function is zero need not be connected, let @) be
a unit square. Consider a square of side length 3 containing a hole slightly larger than a unit
square. Although this is not a simple polygon, it can be made one by connecting the hole to
the outer boundary by a narrow channel. Call the resulting polygon P. The area of overlap
is zero when () is placed inside the hole, and is zero when () is placed well outside of P, but

() cannot be moved from one placement to the other without incurring a nonzero overlap. 0O

CraM 3.3 The area-of-overlap function is continuous.

PRrROOF: This is obvious since the overlap itself is formed from a finite set of simple poly-
gons, and any infinitesimal translation can affect the dimensions of each such polygon only

infinitesimally. O

Define a placement to be a pair (P,1 4+ Q). It is easy to see that for many placements a
small perturbation in ¢ induces a smooth variation in the area-of-overlap function, however
there are certain critical placements at which the nature of the overlap can change suddenly.
For example, if ¢ lies on the boundary of P—(), where the area function changes from nonzero
to zero, the function may not behave smoothly. We consider under what circumstances such

changes occur.

A placement (P, t+ Q) is said to be eritical if either a vertex of P intersects the boundary
of t + Q) or a vertex of ¢ + () intersects the boundary of P. Let Crit(P, Q) denote the set
of such placements. Define the combinatorial type of a placement to be the set of pairs of
edges/vertices of P and edges/vertices of () that intersect one another. We say that two
placements given by s and t are equivalent if there is a path 7 from s to ¢ such that the
combinatorial type is constant along the path. The equivalence classes of this relationship
subdivide the plane into regions. Noncritical regions of this subdivision have dimension 2.

Since a critical region involves the intersection of at least one vertex of one polygon with an



edge of the other, the dimension of a critical region cannot be greater than 1. Recall that

Ver(P) denotes the set of vertices of P and Bnd(P) denotes the boundary of P.

LEMMA 3.1 The locus of critical placements, Crit(P,Q), is given by the union
(Ver(P) — Bnd(Q)) U (Bnd(P) — Ver(Q)).

PrOOF: A placement given by t is critical if and only if it corresponds to an intersection
between a vertex of P and the boundary of (), or vice versa. In the former case this is equiv-
alent to saying that there is p € Ver(P) and ¢ € Bnd(Q) such that p =t + ¢, or equivalently
t = p — ¢q, meaning that ¢ € Ver(P) — Bnd(Q). The other case is analogous. O

LEMMA 3.2 Let t = (t,,1,). Let E(t) denote the set of all equivalent placements. For all
points in F(t), the area-of-overlap function is given by a polynomial in t, and t, of mazimum

degree 2.

PrOOF: Let us assume that P and () share no parallel edges. In general the theorem
holds by applying a continuity argument to the limiting case in which edges approach being
parallel. Consider the placement (P, + Q). It suffices to show that, for all sufficiently small
translations A such that the placements (P,t + @) and (P,t + A + ) are combinatorially
equivalent, the difference of area Ar(f 4+ A) — Ar(¢) is a polynomial of degree 2 as a function
of A’s coordinates, A, and A,.

If a vertex of P overlaps a vertex of t + ) then it follows that E(t) consists of just the
single point ¢, and the lemma is trivially true. Let us assume this is not the case. Consider
the finite point set S consisting of the union of the vertex set of P, the vertex set of ¢t + @)
and the set of all points defined by the intersection of the interiors of two edges of P and
t 4+ Q). 1t is easy to see that under our hypotheses this is a finite set of isolated points. Since
the set is finite, we can subdivide the plane into a finite number of polygonal cells such that
(1) each cell either contains a single edge of one of the polygons, or contains a single point

of S and the edges of the polygon(s) incident to this point, and (2) the vertices of the cells
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Figure 1: Decomposition of the area of overlap.

do not intersect the boundary of either polygon. An example of such a subdivision is shown
in Fig. 1(a).

Since the cells have a particularly simple structure we can calculate their areas individu-
ally and sum them. Since vertices of the cells do not intersect the boundaries of the polygons,
and since the vertices and intersection points of the polygon boundaries do not intersect the
boundaries of the cells, any infinitesimal perturbation of the translation vector A does not
affect the incidence relations between the polygons and the subdivision. By restricting ¢t + A

to equivalent placement we do not affect the incidence relations between the two polygons.

A cell that contains no polygon boundary, or that contains only the boundary of the
unmoving polygon P, does not change its contribution to the area of overlap as A varies.
For a cell that contains only one edge of the boundary of ¢ + () or for a cell that contains an
intersection point of the boundaries of P and ¢ + (), it is easy to see that the change in area
can be expressed as a finite sum of trapezoids (degenerating possibly to triangles), where
the angles of the sides remain fixed, but the distance between the bases increases linearly
with A, and A,. See Fig. 1(b). It follows that the lengths of the bases of the trapezoids also
vary linearly with A, and A, so the area of the resulting trapezoid varies quadratically in

A, and A,. Summing over all such cells completes the proof. O

For a fixed area value «, the set of contour lines arising by considering all placements
t such that Ar(?) = « is a set of planar curves formed from pieces that are polynomials of

degree at most 2. Thus we have the following.



COROLLARY 3.1 Given simple polygons P and @), for a fixed area «, the locus of placements
t such that the area of overlap is equal to o, {t € R* | Ar(t) = a}, consists of curves that

are (possibly degenerate) piecewise conics.

THEOREM 3.1 Let P and @) be two simple polygons with m and n sides respectively. The
area-of-overlap function Ar(t) is a piecewise polynomial function of degree at most 2 over
R*. The number of pieces is O((mn)?). This bound is tight in the worst case. If both P and
Q are convex then the number of pieces is O(m? +n? + mnmin(m,n)), and if further, P and

Q are equal up to translation then the number of pieces is O(m?).

PROOF: Lemma 3.2 establishes that the area-of-overlap function Ar(#) is a piecewise poly-
nomial function of degree at most 2 in the coordinates of . Lemma 3.1 establishes that the
regions of the equivalence classes are bounded by a Minkowski sum of the vertices of P and
the boundary of —(), and vice versa. A Minkowski sum of the m vertices of P and the n
edges of —(@) is a line segment arrangement with mn segments. Such an arrangement can

have at most O((mn)?) faces.

- %TQ

Figure 2: Worst case example.

To see that the bound is tight consider the example shown in Fig. 2, which is due to
Pollack, Sharir, and Sifrony [12]. The polygon P consists of two “combs” each with m
“teeth”, such that the teeth of the two combs are perpendicular to each other. () consists

of two combs each with n + 1 teeth, and hence n “gaps” between the teeth. Clearly P and
8



() consist of O(m) and O(n) sides respectively. It is evident from the figure that for each of
the m? possible choices of one horizontal tooth and one vertical tooth from P and for each
of the n? possible choices of one horizontal and one vertical gap from Q, there is a placement
of P and () such that the designated teeth of P protrude within the designated gaps of @),
implying zero overlap. Any two such placements are combinatorially inequivalent, because
any motion between the two placements must pass through a placement of nonzero overlap.
Since all choices are independent, there are O((mn)?) connected components of zero overlap,

and hence the number of pieces is at least this large.

If both P and () are convex, then the arrangement defining the set of critical placements
has a particular structure. In particular, the Minkowski sum Ver(P) — Bnd(Q) consists
of m copies of identical n-sided convex polygons. Since the boundaries of two translates
of a convex polygon can intersect at most twice, there can be at most O(m?) intersection
points. Similarly, there can be at most O(n?) intersection points in the arrangement of
Bnd(P) — Ver(@). Finally, in the union of the two arrangements, for any pair of the mn
convex polygons, one from each arrangement, there can be at most min(m,n) intersections
(since each edge of one polygon can intersect at most two edges of the other polygon). Thus
the total number of intersections in the arrangement is O(m? + n* + mnmin(m,n)). The
total number of vertices in the arrangement is dominated by this quantity. Finally, by Euler’s
formula, the number of faces in the arrangement is a linear function of the number of vertices

in the arrangement.

Finally, if P and @) are translates of one another, then the above analysis holds, except
that any pair of polygons, one chosen from each of the arrangements, can intersect in at most

two points. Thus the min(m,n) term is replaced by 2. Since m = n, this gives O(m?). O

4 Area Computation

In this section we consider the problem of computing a representation of the area-of-overlap

function. Recall that Crit(P, Q) denotes the line segment arrangement

(Ver(P) — Bnd(Q)) U (Bnd(P) — Ver(Q)),
9



and let Arr(P,(Q)) denote the combinatorial complexity (number of edges) in this arrange-
ment. The line segment arrangement Crit(P, Q) is formed from m copies of the n segments
of @, plus n copies of the m segments of P, implying that there are O(mn) segments in total
in the arrangement, and hence its combinatorial complexity, Arr(P, @), is at most O((mn)?).
By Lemmas 3.1 and 3.2 each face of this arrangement can be associated with the coefficients
of a polynomial in x and y of degree at most 2. This polynomial defines the area-of-overlap
function for each point within the face. This provides a representation of the area-of-overlap

function whose size is O(Arr(P, Q)).

Combining the proofs of Lemma 3.2 and Theorem 3.1, we can derive a naive algorithm

with running time
O(mnlog(mn) + Are(P,Q)((m + n)log(m + n) +mn)) < O((mn)?)

for computing the area-of-overlap function. Using standard algorithms from computational
geometry, we can compute the line segment arrangement Crit(P, Q) in O(mnlog(mn) +
Arr(P,Q)) time [3]. By Euler’s formula, the number of faces in this arrangement is propor-
tional to its complexity. The dual graph whose vertices are the faces of the arrangement can

be computed in the same time bound needed to compute the arrangement.

For each of the O(Arr(P,Q)) faces of the arrangement, we construct a representative
placement of P and () for this equivalence class, by taking any point ¢ within the interior
of this face and constructing the line segment arrangement defined by the boundaries of P
and t + Q). This single-placement arrangement (not to be confused with the arrangement of
critical placements, Crit(P, Q))) contains m + n segments and can be constructed in O((m +
n)log(m + n) + mn) time [3]. We can compute a subdivision satisfying the conditions of
Lemma 3.2 within this same time bound, by first computing trapezoidal decomposition of
the arrangement in the same time bound [3], then “fattening” each edge of the arrangement
by a sufficiently small amount (forming a set of corridors that surround the boundaries of
the polygons), and finally subdividing each of these corridors into polygonal regions that
separate nonincident elements. Because each of the resulting regions contains at most a
constant number of edges and at most one vertex of the arrangement, we can compute the

contribution of each region of the subdivision to the area of overlap in O(1) time. The time

10



for this computation is dominated by the time to compute the single-placement arrangement.

The total complexity of this method is O(mnlog(mn) + Arr(P,Q)) to compute and
traverse the arrangement of critical placements, and then for each of the O(Arr(P, Q)) faces
of Crit(P, Q) we spend O((m+n)log(m+n)+mn) time to compute the area function. Thus
the total time is O(mnlog(mn) 4+ Arr(P, Q)((m + n)log(m + n) 4+ mn)).

The main result of this section is to show that we can shave off the factor of O((m +
n)log(m 4+ n) + mn) in the running time of this procedure. This is done by incremen-
tally updating the contribution to the area-of-overlap function in O(1) time per face of the

arrangement of critical placements (rather than computing it from scratch each time).

THEOREM 4.1 Given two polygons P and (), of m and n sides respectively,

(i) a representation of the area-of-overlap function for these two polygons can be computed
in O(mnlog(mn)+ Arr(P,Q)) < O((mn)?) time, where Arr(P, Q) is the complexity of

the arrangement of critical placements of P and @),
(ii) the representation of the function has space complexity O(Arr(P,Q)) < O((mn)?), and

(iii) given this representation, the area of overlap of P and t + Q) can be computed in

O(log(n + m)) time, given any translation vector t.

PROOF: As before we construct the arrangement of critical placements, Crit(P, (Q)), and as
we are doing so, we label each edge with a pair of indices, indicating the vertex of P and
edge of (), or vertex of () and edge of P that gave rise to this edge. This can be done within

the same asymptotic time bound as before.

As before we traverse the faces of this arrangement, and for each face we compute the
coefficients of the area-of-overlap function. We start with the external face of the arrange-
ment, since the area-of-overlap function is just the zero function. As we walk around the
line segment arrangement (e.g. by a depth-first traversal of its dual graph), suppose that
we walk from a face f to a neighboring face [’ across an edge that is labeled with vertex
v of P and edge e of (). The transition in the area-of-overlap function as the translation
vector crosses from f to f’ arises because the edge e has been translated so that it crosses

11



over vertex v. The edge separating f from f’ in the arrangement corresponds to a set of
translations that cause edge e to intersect vertex v. In Fig. 3(a) Crit(P, Q) is shown, and

the corresponding translation is shown in (b).

(@ (b)

Figure 3: Critical transition.

In order to determine the incremental change in the area-of-overlap function as we move
from f to f’, we first observe that it suffices to determine the incremental change in the
function in any small neighborhood about any transition point, since the function is a con-
stant within each face of the arrangement of critical placements. To do this, let us consider
a pair of placements ¢ in f, and ¢’ in f’, which we assume to be placed arbitrarily close to
each other (see below). Let R denote a polygon that contains only a segment of e, v, and
segments of the edges incident to v. Also assume that R is chosen so that, excluding the
interior of R, all translations between ¢ and ¢’ are combinatorially equivalent (including the
intersections between P and () with the boundary of R). See Fig. 4(a). It is clear that if ¢
and 1’ are close enough to one another, and the line segment between ¢ and ¢’ does not pass
through any critical vertex, then such a polygon R can be found in constant time by a local

analysis the polygons P, t + () and ' + () around the critical point.

P P P
R R R
7 G| F ) T1°
><'V ‘ X B1”>%§ _F
Q el Q =pE H| s
@) (b) (©

Figure 4: Updating the area function across a critical placement.
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Within the interior of R there are three edges, the edge e of (), and the two edges incident
to v. The three lines carrying these segments define a line arrangement within R. This line
arrangement can be subdivided into seven regions. Six of these regions come about by
considering the region bounded by pairs of consecutive lines around the boundary of R. Let
B(t), C(t), D(t), E(t), F(t), and G(t) denote the areas of these regions as a function of t.
In Fig. 4(b)) these are indicated by the letters B through (G. The seventh area (H(t)) is the
area of the triangular region at the center of the arrangement. Observe that in Fig. 4(b),
the regions representing the areas B(t), D(t), and F(?) contain the central triangle whose
area is given by H(t). Because placements ¢ and ¢’ are combinatorially equivalent about
the boundary of R, as the edge e is translated to its new placement at ', each of these
area functions varies according to a single polynomial I(¢) of degree 2 in the coordinates of
t. (This was argued in the proof of Lemma 3.2 because the difference in area is given by
a trapezoid of linearly varying height). Also the area-of-overlap function varies as a single
polynomial outside of R because the two placements are combinatorially equivalent outside
of R. Thus it suffices to show that as the line segment (¢,#') passes the point of criticality,
the area-of-overlap function changes only in the addition or subtraction of the area functions
of one of these seven regions. In fact, the change will be the addition or subtraction of the

area function H(?).

A complete proof of this would involve an exhaustive analysis of the possible configura-
tions of the arrangements. Let us consider a couple to illustrate the idea. The other cases
are similar. Suppose in Fig. 4(b), that the area of overlap consists of the region lying below
the boundary of P and above the boundary of (). Then the area of overlap, Ar(?) is equal
to the sum

Ar(t) = B(t)+ F(t) — H(t) + 1(1).
H(t) is subtracted because both regions overlap H(%), so its area is counted twice. As we
move to the configuration shown in Fig. 4(c), the area of overlap, below P and above @ can
now be seen to be
Ar(t) = B(t)+ F(t) + I(t)
(where the relevant regions are labeled B’ and F’ in the figure). Thus the incremental

difference in the two area functions is the addition of H(t).
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As another example, suppose that in Fig. 4(b), the area of overlap consists of the region

lying below P and below ). Then the area of overlap is equal to
Ar(t)=Ct)+ D(t) + E(t)— H(t) + 1(1).

(Again H(t) is subtracted because D(?) contains H(t) but H(t) is not part of the overlap.)

As we move to the configuration in Fig. 4(c), the area below P and below @) is equal to
Ar(t)=C(t)+ D(t)+ E(t) —2H(t) + 1(t)

(where the relevant regions are labeled C’, D', etc. in the figure). The subtraction of 2H(t)
is because C(t) and F(t) both contain H(t), but it is not part of the overlap.) Thus the

incremental difference in the two area functions is the subtraction of H ().

Since the area function H(t) is a polynomial of degree 2 in the coordinates of the trans-
lation vector ¢, we can compute the incremental change by simply computing the coefficients
for this polynomial, and then subtracting these from the current set of coefficients. In
this way we can update the area-of-overlap function in O(1) time per face visited. Since
the total number of faces visited is O(Arr(P,Q)) = O((mn)?) this is the amount of time
needed to compute the area-of-overlap function. The running time is dominated by the
O(mnlog(mn)+ Arr(P,Q)) time needed to compute the arrangement of critical placements.

This establishes item (i) of the theorem.

To establish item (ii), observe that the space complexity is proportional to the size of
the arrangement of critical placements, which is at most O((mn)?). For (iii), we can apply
any standard point location algorithm to determine the face of the arrangement of critical
placements containing ¢, and in constant time compute the area function at ¢ for the result-

ing function. O

5 Contour Tracing

Given simple polygons P and (), and given an area value «, define the a-contour of P

and @ to be the set of points ¢ in the plane such that Ar(t) = a. One way to compute a
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contour is to apply the results of the previous section to compute the entire area function,
and then compute the contour within each one of the pieces. In this section we consider the
following problem. Given two polygons P and (), and a single point ¢y, trace the connected
component of a-contour that contains #5. (The questions of how to locate a point of a given
value a and how to determine the set of all connected components of a given « value are
both nontrivial, short of a complete traversal of the area function.) Observe that in general
a contour can consist of multiple connected components, in fact as many as Q((mn)?) from
the worst-case example given in the proof of Theorem 3.1. In certain degenerate cases each
connected component of a contour may not consist of just a simple closed curve in the plane.
For example, a contour may broaden into a 2-dimensional region if the area function (when
viewed as a 3-dimensional surface) flattens into a plateau, or there may be degenerate points
where multiple contour curves intersect each other. We will simplify the presentation by
assuming that « is a general value so these degeneracies do not arise. With this assumption,
from Corollary 3.1, the intersection of the a-contour with any cell in the arrangement of

critical placements, Crit(P, @), consists of a conic curve.

The area function at ty is determined by the face of Crit(P, @) that contains this point.
To avoid O((mn)?) time for computing the entire arrangement, we can compute the area
function at o, in O((m + n)log(m + n) + mn) time, as we did in the previous section, by
computing the single-placement arrangement at the point ¢y, and building the area function
from this arrangement through the method given in Lemma 3.2. Because the contour curve
is a conic, we can apply standard methods from the theory of algebraic curves to convert it
into a rational parametric form [8]. Thus, we can describe each point on the contour as a

function #(s), for a real parameter s > 0, where £(0) = .

To trace the curve, we need to determine the parameter value s at which a translation
vector traveling along the contour curve induces the next critical placement. Again, we
do not want to take the time to compute the entire arrangement of critical placements,
Crit(P, Q). Instead, we consider the placement (P, ty + Q). As we translate @) along the
contour, a transition in the area function occurs at the smallest positive parameter value
s such that either (1) a vertex of #(s) + @ intersects an edge of P, or (2) a vertex of P

intersects an edge of ¢(s) + (). To determine this value of s in case (1) we imagine shooting
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a bullet starting at each vertex v of ), that travels along the contour ¢(s) 4+ v until it first
strikes the boundary of P. See Fig. 5(a). In case (2) we shoot a bullet from each vertex
v of P, that travels along the contour —#(s) + v until it first strikes the boundary of @
(observing that this implies that the corresponding boundary point of ¢(s) + ) intersects v).
See Fig. 5(b). Among all O(m + n) such bullets, we take the one that hits first, in the sense
that the intersection point has the smallest value of s. (In Fig 5 this will be achieved by the
lower right vertex of P.) This will be the smallest s such that the placement (P, #(s) + @) is

critical.

@ (b)

Figure 5: Determining the next critical placement by bullet shooting.

Unfortunately, we know of no data structure that will support bullet shooting along
rational parametric functions of bounded algebraic degree in a time bound that is based on
the combinatorial complexity of the objects. However, many standard ray shooting and ray

tracing data algorithms [7, 13] can be generalized to handle tracing of parametric curves.

Once we have traced the contour to the next critical placement, we can apply the tech-
nique described in Lemma 4.1 to incrementally update the area-of-overlap function. Once
this is done we can go back, derive the new contour, and continue the process. This process is
repeated from one critical placement to the next, until returning to the initial configuration
(which must occur because of our assumption that the contour is a simple closed curve).
We lack theoretical bounds on the complexity of bullet shooting, and in general we cannot
bound the number of transitions of critical placements the tracing algorithm will encounter.
However, it is reasonable to believe that this approach is likely in many practical cases to be
more efficient than computing the entire arrangement of critical placements. In summary,

we have the following.
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THEOREM 5.1 Given two polygons P and (), and a point ty on an a-contour of P and (), we
can trace the connected component of the contour containing to in O(mn + k(T(m)+T(n)))
time, where m and n are the number of edges in the two polygons, k is the number of critical
transitions wvisited by the contour trace, and T(m) is the time to perform “ray-shooting”
queries along curved rays represented by rational parametric conic curves, through a collection

of m line segments.

6 Concluding Remarks

The area-of-overlap function has interesting applications in many areas such as object recog-
nition by probing. In this paper we considered the area of overlap of translated simple
polygons. We showed that the area-of-overlap function of two simple polygons with m and n
sides respectively is a continuous piecewise surface of polynomials of degree at most 2, which
has up to O((mn)?) pieces. An efficient algorithm to compute the function was presented to
compute a representation of the function in O(mnlog(mn) + Arr(P,Q)) < O((mn)?) time,
where Arr(P, Q) is the complexity of the arrangement of critical placements of P and Q.
The representation of the function has space complexity O(Arr(P,Q)) < O((mn)?). We also
presented a technique for tracing a single contour curve without explicitly constructing the

entire critical arrangement. Some interesting related questions are:

o What if we restrict the polygons to be convex polygons? An important special case is

computing the area-of-overlap function for a convex polygon with itself.

e Can the results of Section 5 be extended to find all contour lines of fixed area in an

efficient manner (without computing the entire area function)?

e Is it possible to find the translation that maximizes the area of overlap (without com-

puting the entire function)?

e What if the sides of the polygons are curves (e.g. low-degree splines) rather than

straight lines?

e What if rotations are allowed?
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