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Abstract— In wireless networks, due to the broadcast property
of the medium, nodes close to each other cannot simultaneously
transmit over the same channel. One way to overcome this
limitation is to use multiple independent channels available in
the system. Although we can use a single wireless interface
card to access multiple channels, such schemes can raise issues
of compatibility (e.g., modification of the MAC protocol) and
performance degradation (e.g., due to frequent channel switch-
ing). In this paper, we assume that nodes are equipped with
multiple interface cards, and focus on the channel assignment
problem for minimizing the total number of interferences among
wireless links. We show that the problem is NP-hard and
present distributed heuristics. We also present two centralized
algorithms and show that the algorithms give constant factor
approximation guarantees. We perform simulation experiments
for the proposed distributed heuristic. The results show that
compared to one-channel scenarios, our proposed algorithm can
reduce the number of interferences by up to 85% when nodes
are equipped with four interface cards. Through detailed packet-
level simulation experiments, we also show that depending on the
scenario, the resulting channel assignment actually achieves up
to seven times throughput improvement over the single-channel
case.

I. INTRODUCTION

In wireless networks, due to the broadcast property of the
medium, nearby nodes interfere with each other and cannot
simultaneously transmit over the same wireless channel. One
way to overcome this limitation is to use independent channels
available in the system. For example, the IEEE 802.11b
standard [1] defines three independent channels (or non-
overlapping frequency ranges), and administrators of typical
wireless local area networks (WLANSs) assign independent
channels to neighboring access points. This channel assign-
ment allows multiple nodes in the system to transmit and
receive data packets, and leads to higher system performance.
Although such centralized channel assignment works well
in the infrastructure-based environment, this scheme is not
applicable to ad hoc networks, which typically lack in infras-
tructure. The goal of this paper is to develop a scheme that
exploits independent channels available to wireless devices and
enhances the throughput of ad hoc networks.

We can consider two different strategies for using multiple
channels to achieve higher network performance. The first
strategy is to enable a single wireless interface card to access
multiple channels [2], [3], [4]. For example, So and Vaidya [2]
propose a scheme that allows wireless devices to communicate
on multiple channels using a single interface card. However,
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Fig. 1. In this ad hoc network, each node has two interface cards. We can
assign a distinct channel to each link as shown above. With the above channel
assignment, there is no interference among wireless links.

the scheme requires the modification of the MAC protocol.
It also results in frequent channel switching, which incurs
considerable overhead in the current hardware []. The other
strategy is to use multiple interface cards [5], [6], [7], [8].
Suppose that all nodes have two 802.11b interface cards
as shown in Figure 1.' In this example, node A is using
two independent channels: channel 1 for e; and channel 2
for ey. With this channel assignment, we can use all three
wireless links at the same time. If all nodes have packets
to transmit, then the network throughput using the above
channel assignment will be three times as high as that of the
single-interface case. In this paper, we assume that there exist
nodes equipped with multiple interface cards, and focus on the
channel assignment problem to enhance the overall network
throughput.

As previously observed in [9], [10], interference among
wireless links is a major factor that limits overall network
throughput. For example, the channel assignment shown in
Figure 1 leads to no interference among links, while the use
of only one channel would result in interference between
all the three pairs of edges (ej-e2, ej-e3, and eq-e3) [10].
We consider the problem of channel assignment to minimize
the total number of interferences in an ad hoc network. Our
contributions are as follows:

« We formulate the channel assignment problem consider-
ing the effect of interference on the network throughput.
We also show that even in its simplest setting, the channel
assignment problem is NP-hard.

« We propose a distributed heuristic for channel assignment
in wireless ad hoc networks. By utilizing as many inde-
pendent channels available in the system as possible, our
proposed scheme significantly reduces the total number
of interferences among links.

¢ When all nodes have the same number of interfaces, we

Tn the IEEE 802.11b standard, we use independent channels 1, 6, and 11.
However, to simplify the notation in this paper, we use {1,2,:--,k} for a
set of k independent channels.



prove that a simple greedy algorithm gives a solution that
is essentially best possible. We also present two central-
ized algorithms for more general networks and prove that
they have constant factor approximation guarantees.

o Through packet-level simulations we show that the de-
crease in the total number of interferences indeed leads to
throughput improvement. Our results show that compared
to the one-channel case, our scheme using four interfaces
can increase the network throughput by up to seven times.

The rest of this paper is organized as follows: We review
related work in Section II and describe our design goals and
problem formulation in Section III. We present our distributed
heuristic in Section IV and discuss theoretical aspects of the
channel assignment problem in Section ??. In Section VI, we
present our simulation results, and Section VII concludes.

II. RELATED WORK

Many schemes have been proposed to exploit multiple chan-
nels for performance improvement in wireless networks. One
class of work is to enable only one network interface card to
operate in multiple channels. Multinet [3] exploits Power Sav-
ing Mode in the IEEE 802.11, and a node switches channels
and checks TIM messages to see if there are incoming data
packets. The MMAC (Multi-channel MAC) protocol also uses
a single interface to access multiple channels [2]. In MMAC,
time is divided into beacon intervals, and as in the PSM
operation of the IEEE 802.11 standard [1], nodes buffer data
packets until next beacon interval. In the beginning of each
beacon interval, nodes with buffered data packets exchange
a number of control messages with destinations, so that they
can agree on the channel for data transmission. However, this
scheme requires the change in MAC protocols and thus cannot
be readily used in current wireless networks. Also, MMAC can
increase packet latency due to channel switching. Nasipuri et
al. [11] also propose a protocol, which assumes a node can
continuously monitor all available channels. However, most of
current wireless interfaces do not have such capability.

Another line of work is to use multiple interfaces available
at each wireless nodes, which is closest to our work. In Multi-
raiod Unification Protocol (MUP) [5], when a node has k
network interface cards, it only uses k& channels (channels 1, 2,
- -, k). Each node statically assigns a channel to each interface
card, and when a node needs to transmit a packet, it checks the
channel condition and uses the channel with the best condition
at that time. We discuss the difference between MUP and
our scheme later in this paper. Raniwala et al. [6] consider
the channel assignment problem combined with routing in the
context of static mesh networks. They assume that long-term
traffic load between source and destination pairs is known a
priori, and based on the information, and present a centralized
heuristic for throughput improvement. Our work proposes
a distributed algorithm for channel assignment in general
networks.

Draves et al. [12] propose a new routing metric when
nodes have multiple interface cards. They use fixed channel
assignment to find high-throughput paths, but do not consider
the channel assignment problem itself. Jain et al. [10] consider

the problem of finding an optimal path, given the network
topology and workload specification. They show that the
problem is NP-hard, and provide a centralized algorithm based
on an integer program, which can be generalized to the case
where nodes have multiple interfaces.

III. MODEL AND PROBLEM FORMULATION

In this section, we first describe our design goals for our
approach. Then, we present the network and interference
model used in this paper. Finally we formulate our channel
assignment problem, which is a variant of the well-known
edge-coloring problem.

A. Design Goals

The goal of this paper is to develop a distributed scheme
for channel assignment to improve network throughput when
there exist nodes with multiple interface cards. Our design
goals are as follows:

e The proposed scheme should use currently available
hardware and MAC protocols without the modification.

e The proposed scheme should inter-operate with existing
upper-layer protocols with minimal modification.

e The channel assignment should be done in a distributed
way using only local information.

As shown in [10], [6], even when we use a centralized
algorithm based on the knowledge of traffic pattern, finding
an optimal channel assignment and path selection is NP-hard.
However, in general we do not know the traffic pattern in ad
hoc networks, and the use of distributed algorithms is desirable
in ad hoc networks. We use a different approach to improve
network throughput as described below.

We consider the number of conflicts between two edges
where concurrent transmissions would interfere with each
other. Our channel assignment scheme attempts to minimize
the number of such conflicts. (In this paper, we use interference
and conflict interchangeably.) We assume that (1) we use
a contention-based MAC protocol (e.g., the IEEE 802.11
standard), and (2) the access probability is identical for all
links. For example, we expect that the second assumption is
true when the network load is high. Under these assumptions,
a smaller number of interferences results in the increase in ex-
pected network throughput. Our channel assignment schemes
attempt to improve the network throughput by minimizing the
number of interferences. In Section VI, we use simulations
to show that the decreased interference level by our channel
assignment scheme indeed leads to network throughput im-
provement.

In the rest of this section, we define the network and
interference model and formally define the channel assignment
problem.

B. Network and Interference Model

We represent a network as an undirected graph G = (V, E),
where V is a set of nodes, and E a set of links. Let Cg
be the number of channels available in the system and C,
be the number of network interface cards at node v. Without
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Fig. 2. Tllustration of one-hop and two-hop interference when the wireless
link from S to T is used.

loss of generality, we assume Vv,C, < Cg. Although each
network interface can change the channels for transmission
and reception, it can operate only one channel at a given time.
We assume that there is no interference between independent
channels.

In this paper, we consider the following two simplified
interference models. Clearly, a node cannot simultaneously
transmit and receive over a single channel, and we represent
such constraint using the one-hop interference model [13].
Therefore, an edge e interferes with the following set of edges:
I(e) = {€'|¢’ has a common endpoint v with e}. For example,
in Figure 2, when node S sends a packet to node 7', all
neighboring nodes of S and T (e.g., C, D, J, K, and Q)
cannot send data packets to S and T (shown in dashed lines).
This one-hop interference model is simple and uses only one-
hop neighborhood information, it sometimes does not capture
the real wireless communication environments. For example,
a transmission from B to J may collide with the transmission
from S and T'.

In the two-hop interference model [14], in addition to the
constraint in the one-hop model, edge e cannot be used if
there exists an ongoing transmission over an edge e’ where
either endpoint of e is a neighbor of either endpoint of e’.
That is, I(e) = {€|e and e’ have a common endpoint or are
adjacent to a common edge e"}. For example, in Figure 2,
I(e = (S,T)) = {€|¢' is incident to C,D,J,S,T, K, and
@} (shown in dotted lines). However, any edge in solid line
(e.g., from G to L) can be used together with e = (S,T).
Since transmissions from J to H can concur with transmission
from S to T, this two-hop interference model can be seen as
too restrictive. However, if we use RTS/CTS control message
exchanges as in the 802.11 MAC protocol [1], the two-
hop model approximates the actual wireless interference well.
Although other more complicated interference models are used
in the literature [9], in this paper we focus on the one-hop and
two-hop interference models when we assign the channels to
interface cards at each node.

C. Channel Assignment Problem

Let us define the interference number (i.) of an edge e € £
to be the number of other edges that interfere with e depending
on the interference model [9]. In other words, 7. is the number
of edges in I(e) that use the same channel as e. Our goal is

to minimize the following metric:

i = % > e (1)
eckE

One obvious way to reduce the metric is to disable some edges
while maintaining network connectivity [15], [16]. However,
we assign channels such that we retain all wireless edges in
E. We can still combine the two approaches by applying our
proposed scheme onto network topologies obtained using the
topology control schemes [15], [16].

Our channel assignment problem is a variant of the edge
coloring problem. Recall that the objective of edge coloring
is to minimize the number of colors when we assign a color
to each edge, such that no two adjacent edges have the same
color. However, our problem is different from the original edge
coloring problem in two aspects. First, the coloring need not
be proper, but two adjacent edges are allowed to use the same
color, and the goal is to minimize the number of such conflicts
(also known as soft edge coloring []). Second, each node has its
local color constraints, which limit the number of colors that
can be used by the edges incident to the node. For example,
if a node has two interfaces, it can use only up to two colors.
Last, we consider a more general model for edge conflicts (i.e.,
two-hop interference model).

In the next sections, we present various algorithms for
this channel assignment problem. In the remainder of this
paper, we mean channels by colors and use edge coloring
and channel assignment, interchangeably. We also use conflict
and interference interchangeably.

IV. DISTRIBUTED HEURISTICS

In this section, we present distributed heuristics for the
channel assignment. We assume that neighbors exchange infor-
mation such as their interface counts and channel assignment.
We first focus on the initial color assignment procedure
and discuss the adaptive operation in Section IV-C. Table I
summarizes the notations we use in the algorithm description.

Our proposed heuristics consist of two steps. In the first
step, each node v chooses its own set of colors S(v) of size
Cy, such that any two neighbors have a common color. More
formally, we ensure that Ve = (u,v),S(u) N S(v) # 0. In
the second step, for each e = (u,v) node v chooses a color
from S(u) N S(v) to assign the color to e. In this step, each
node attempts to balance the numbers of colors assigned to its
edges. Formally, a node attempts to minimize:

dy = max A, (¢) — min A, (c), )

ceS(v) ceS(v)

where \,(c) denotes the number of edges in FE(v) that
are assigned color c. Intuitively, the above heuristic tries to
minimize the one-hop interference using local information.

Color assignments are performed in a distributed fashion.
when node v wants to color its edges, v first requests its
neighbors that they do not change colors until v finishes. v
waits until every neighbor acknowledges the request. Node v
determines the colors of E(v) only with neighbor information,
and once v determines the color of edge e = (u,v), u cannot
change the color of e.



Notation Definition
Ca the number of available channels in the system
Cy the number of colors that node v can use
S(v) the color-set of node v (Cy = |Sy|)
E(v) the set of edges incident to v
N(v) the set of v’s neighbors
N;(v) the set of v’s neighbors with ¢ interfaces
Nr(v) UNi(v) Vi< Cy
U(v) the set of neighbors u such that edge (v, u) is not determined
T(v) the set of v’s neighbors with S(v) # 0
U(v) E(v) — U(v)
TABLE I
NOTATIONS

We present two heuristics that use different mechanisms for
these two steps. We begin with a simpler approach and then
present a heuristic that further improves the performance.

A. BASIC-COLORING algorithm

In the BASIC-COLORING algorithm, each node v simply
chooses S(v) = {1,2,...,Cy}, which is similar to MUP [5].
For example, nodes with two interfaces use {1,2} for their
color-sets. In this assignment, any pair of nodes share at least
one common color (i.e., color 1). In the original MUP scheme,
a node does not fix a channel to a link, but opportunistically
uses the channel with best quality. In this section, we assume
that based on the chosen sets, a node fixes a channel to each
link, and discuss this issue later in Section IV-C.

We now discuss the channel assignment to edges, based on
the chosen color sets. In homogeneous networks, where every
node has k interface cards, Yv,S(v) = {1,2,---,k}, and
assigning a color uniformly at random is likely to lead to small
d,. However, in general networks, nodes can have different
numbers of interfaces, and this random channel assignment
does not perform well. For example, suppose that only two
neighbor nodes have two interfaces, while the other nodes in
the network have only one interface and use channel 1. In
this scenario, the two nodes should use channel 2 for higher
performance, but the random assignment may assign channel
1 with the probability of 0.5.

We present a channel assignment scheme in which node
v attempts to minimize §, in the case of general networks.
Instead of randomly choosing colors, we assign colors in round
robin. Let U(v) C N(v) be the set of nodes u such that (u,v)
is not colored as yet when v tries to assign colors to E(v),
and subset U;(v) C U(v) denote a set of nodes u which have
i interfaces. In addition, we define U(v) to be N(v) — U(v),
and subset U.(v) C U(v) to be a set of nodes u such that
(u,v) have chosen color c.

Fig. 3 illustrates BASIC-COLORING at node v with four
interface cards. The set of wv’s neighbors is N(v) =
{A,B,...,G}, and their color-sets are shown in the figure.
For example, node C has three interfaces, thus S(C) =
{1, 2, 3}. If a neighbor already colored edges to node v (nodes
B and FE in Fig 3), we show the chosen colors next to the edges
(colors 2 and 3 for edges (v, B) and (v, E), respectively). We

Algorithm 1 BASIC-COLORING: Color Assignment at node
v
We consider color ¢ = 1 to C), in round robin and repeat
the following until U (v) becomes empty.
if U.(v) is not empty then
we remove one node from U (v).
else
we choose node u from U (v) with smallest C,, such that
Cy > c. If such u exists, we assign ¢ to edge (v,u) and
remove u from U(v).
end if

[ Neighbor Table ]

U(v) uw)

Cv |Nodes Color |Nodes
1A 1

2| 2B
3|'C!iD: 3[E

41 F) 4

5|G!

") selection in round 1

"} selection in round 2

[ Color Assignment ]

colors [1 2 3 4
round1|A B E F
round2|C D G

Fig. 3. Example of BASIC-COLORING

sort U(v) by their interface counts (C), and sort U(v) by
their chosen colors.

In the first round, we choose A, B, E, and F' (in dashed
circles) for color 1,2, 3, and 4, respectively. Then we remove
A,B,E, and F from U(v) and U(v). In the second round,
since there is no neighbor such that C,, =1 or 2 in U(v) or
Cyu = 1 or 2 in U(v), we assign colors 1 and 2 to edges to
C and D, respectively. Finally, we choose G for color 3. The
resulting colors are shown in the figure. Note that §, = 1 in
this example.

Drawback of BASIC-COLORING: The BASIC-COLORING
algorithm uses channels only from {1,...max, C,}. Usu-
ally the number of available independent channels is larger
than max, C,; for example, IEEE Std. 802.11a provides up
to twelve independent channels while most mobile stations
are equipped with a few interface cards. However, utilizing
more available channels for wireless links can reduce 2-hop
interference significantly.

Consider a channel assignment by BASIC-COLORING algo-
rithm in Figure. 4-(a) where all the nodes have three interface
cards. The given channel assignment allows only four 1-hop
interferences. However, when node S transmit a packet to 7',
three other edges ( (C,D), (K, F), and (K, R) ) cannot be
used because of 2-hop interference with the edge (S,T). We
can remove these 2-hop interferences by introducing a new
color, say color 4. If we assign color 4 to those three edges,



interface count =3
1-hop interference = 5
2-hop interference = 2
total interference =7

interface count =3
1-hop interference = 4
2-hop interference = 11
total interference =15

(a) BASIC-COLORING (b) EXTENDED-COLORING

Fig. 4. Comparison of BASIC-COLORING and M-coloring by example graph

((C,D), (K, F), and (K, R)), we can eliminate three 2-hop
interferences without violating color constraints.

B. EXTENDED-COLORING algorithm

To address the limitation of BASIC-COLORING algorithm
which uses max C), colors, we propose a new heuristic, which
we call EXTENDED-COLORING algorithm. In this algorithm,
we use (2maxC, — 1) colors without violating color con-
straints. Since we use more channels in the system, the total
number of interferences significantly decreases as shown later
in this paper.

We begin with the case of homogeneous networks. Consider
two nodes u and v with the same number of interfaces,
say K. In EXTENDED-COLORING, they randomly choose K
colors from P = {1,2,...,2K — 1}. Then, by the pigeonhole
principle, S, N S, # 0. (2K-1) is the maximum number
when we use the pigeonhole principle, and as shown in
Section VI, the use of a smaller set for P leads to a smaller
amount of performance improvement. Although this simple
algorithm works for homogeneous networks, in general it does
not guarantee S, NS, # (. For example, if C,, = 2 and
C, = 3, and u picks S(u) = {1,2} from {1,2,3} and v
picks S(v) = {3,4,5} from {1,2,...,5}, S(u) N S(v) = 0.
However, we can simply solve this problem as follows: since
v has a neighbor u with C, = 2, it chooses two colors from
{1,2,3}. Then, the remaining color can be chosen randomly.
We next present our heuristic that guarantees a common
channel between neighbor in the case of general networks.

In EXTENDED-COLORING, each node v with k interfaces
waits for all neighbors in N (v) (see Table I for definition) to
select their color sets and notify v. Then, v chooses k colors
from P = {1,2,...,2k — 1} as follows. Let T'(v) be the set
of neighbors that have already selected their color sets. Note
that T'(v) includes all the nodes in Ny, (v) and some nodes in
Nj (v) since some nodes in Ng(v) may have already chosen
their color sets depending the order of running the algorithm.
Algorithm 2 is the max-color algorithm for choosing color set
at node v.

Theorem 4.1: Suppose S(v) is the color set chosen by the
above algorithm. Then, for any neighbor node v € T(v),
Su)NS) #0

Algorithm 2 EXTENDED-COLORING: Choose color set at
node v
At i-th iteration (¢ = 1 to C}), we do the following.
k; = the number of colors chosen after (i — 1)-th iteration
if N;(v) is not empty or i = C,, then

if i=1 then
choose color 1
else

From set {max(1,2k;),...,2i — 1}, choose (i — k;)
most frequent colors in color sets of nodes in T'(v).
end if
end if

[ Color Set Table ]
Node | Color Set

Mmoo >
NN

3 56

(" selection in round 1
. selection in round 2

<
—_

{1,3,5,6}

{2,3,5}

[ Color Assignment ]

colors 1 3 5 6

round1|A C D E
round 2| B F

[ Number of Interfaces ]

Node ! vVABCDEFG
IFcnt;41 2 33 445

Fig. 5. Example of BASIC-COLORING

Proof: See Appendix A. [ ]
Figure 5 illustrates how a node chooses its color set ac-
cording to Algorithm 2. We list the number of interfaces at
each node in the figure. The color-set table at each node
records the color set of each neighbor, which is sorted by
the number of interfaces. Since Cg > C,, G chooses its color
set after v, and the color set of G is empty. In this example,
T(v) = {A,B,C,D,E,F}. When i = 1, we choose color
1 since C4 = 1. When i = 2, k; = 1 and we have to
choose ¢ — k; = 1 color out of {2,3}. In this example, we
choose color 3 because more neighbors have chosen color
3 than color 2. Also, when ¢ = 3, k; = 2 and we choose
i — k; = 1 color. Color 5 is chosen because 5 occurs more
than 4. Similarly, we choose 6 when 7 = 4. In this way, node
v choose S(v) = {1,3,5,6}, as shown at the bottom of color
set table in the figure.

Once node v chooses its color set S(v), it assigns the colors
to the edges incident to nodes in T'(v). The other edges will
be colored by neighbors in N(v) — T'(v). The algorithm 3
describes the procedure in which a node assigns colors to
edges in round robin fashion as in BASIC-COLORING.

We again use Figure 5 to illustrate the color assignment
using EXTENDED-COLORING. As a result of algorithm 2,
S(v) = {1,3,5,6}. Suppose that we choose ¢ in an increasing



Algorithm 3 EXTENDED-COLORING: Color assignment at
node v
repeat
We choose ¢ € S(v) in round robin.
We choose a node, u € T'(v) with smallest Cy, s.t. ¢ €
S(u).
if u exists then
We assign ¢ to edge (u,v) and remove u from T'(v).
end if
until 7'(v) becomes empty

order from 1 to 6. When ¢ = 1, color sets of nodes A, B, C, E,
and I contains color ¢. However, A has the smallest C4 = 1,
and therefore we color edge (v, 4) in color 1 and remove A
from T'(v). When ¢ = 3, nodes C, D, and F' has color 3 in
their color sets, but C' has the smallest Cc = 3 and we color
edge (v, C) in color 3. Similarly, we color edges (v, D) and
(v, E) in color 5 and 6, respectively. After the first round,
we have T'(v) = {B, F'}. In the second round, when ¢ = 1
we choose B since 1 € S(B). We cannot color when ¢ = 3
since no node in T'(v) contains 3 in its color set. Finally, we
choose F' for ¢ = 5. In Figure 5, we show the resulting color
assignment in the color assignment table.

Fig 4 compares the performance of BASIC-COLORING
and EXTENDED-COLORING. The total number of in-
terferences is 15 for BASIC-COLORING, and 7 for
EXTENDED-COLORING. Although the number of one-hop
interferences for EXTENDED-COLORING (5) is slightly larger
than that of BASIC-COLORING (4), EXTENDED-COLORING
significantly decreases the number of two-hop interferences,
and as shown in Section VI, this results in substantial im-
provement in network throughput.

C. Discussions

1) Comparison with Opportunistic Schemes : In our
proposed heuristics, we fix a channel to each wireless link.
However, an obvious alternative is to use an opportunistic
scheme similar to MUP [5], where after each node chooses its
color set, two neighbors agree on a common set of channels
and select the best one according to the current network
condition. Such an opportunistic approach requires channel
quality estimation, which usually uses frequent probe message
(e.g., two probes per second) [5]. We also expect that in high-
load scenarios, the performance of our fixed-channel strategy
will be similar to the opportunistic case.

Another related question is that the cardinality of com-
mon channel set is larger in BASIC-COLORING than in
EXTENDED-COLORING. Suppose that all nodes have £ inter-
faces. If we randomly selects & colors out (2k — 1) colors, in
EXTENDED-COLORING, the average size of common channel

. . 2 2
set between two neighbors is sA— = k — E=k <

2k—1 2k—1

In BASIC-COLORING, all neighbors share k channels, and
it may appear that using the above opportunistic approach,
BASIC-COLORING provides a better chance to use a channel
with high quality. However, as shown in Section VI, the
fundamental limiting factor is the total number of utilized

channels, and the smaller number of utilized channels in
BASIC-COLORING leads to network saturation at lower data
rate than EXTENDED-COLORING.

2) Adaptivity to Dynamic Ad Hoc Networks : In ad
hoc networks, nodes can join, leave, and even change their
positions. Our proposed algorithm can be adaptively used for
such dynamic environment as follows. When a new node
n tries to join the network, it first identifies its neighbors,
N(n), by scanning all available channels. Since Yv € N(n),
S(v) # 0, n can immediately run EXTENDED-COLORING
algorithm to choose its color set S(n) and determine colors
of edges incident to neighbors with less or equal number
of interfaces. We color the remaining edges later by the
following process. Also, each node v periodically updates
its neighbor list N(v) and checks if there exists u € N(v)
such that S(v) N S(u) = @. If there exists such u, v runs
the EXTENDED-COLORING algorithm. Even when no such u
exists, v may find that the channel assignment is not balanced
(e.g., due to node movement). In this case, v re-assigns the
channels to edges using Algorithm 3. Note that the update of
S(v) at node v may require neighbor node w to update its
color set if ¢, > ¢,. However, the maximum interface in the
network is likely to be small in practice (e.g., 3 or 4), and we
expect that the number of affected nodes is small. We plan
to further investigate the control overhead of our scheme in
dynamic ad hoc networks in the future.

In the next section, we consider theoretical aspects of this
channel assignment problem.

V. FURTHER THEORETICAL RESULTS

In this section, we discuss theoretical results on the one-hop
interference model. We present a distributed greedy algorithm
for homogenous networks and prove that the algorithm gives
a solution that is essentially best possible. We also present
two centralized algorithms for 1-or-k networks? with constant
approximation factors.3

In the one-hop interference model, a node experiences the
minimum number of conflicts when the colors of its incident
edges are evenly distributed. In other words, the number
of conflicts is minimized at node v when d,/C, edges are
chosen for each color, where d,, denotes the degree of node
v. Therefore, the average number of one-hop interferences of
each edge e € E(v) is lowerbounded by d,,/C, —1. This lower
bound plays an important role in proving our approximation
guarantees. For the two-hop interference model, however, the
lowerbound is not enough to prove a non-trivial approximation
guarantees.

A. Greedy Algorithm

Although the channel assignment problem appears easy at
first glance, we can show that it is NP-hard even in the simplest
setting. Consider the homogenous network ( Vv,C, = k).
We can easily show that the problem of minimizing one-
hop interferences is NP-hard for arbitrary K by the reduction

2Nodes in the network have either one or k interface cards.
3 An algorithm is said to give an approximation factor o when the cost of
the solution produced by the algorithm is at most c times the optimal.



from edge coloring problem [17]. However, a very simple
greedy algorithm gives a solution in which the total number of
interferences is at most OPT + |E|. The result is essentially
best possible since it is NP-hard to approximate within additive
term of o(|E|("~9)) for a given € > 0.

The greedy algorithm works as follows. We use colors from
{1,...,k}. For any uncolored edge e = (u,v), we choose
a color for edge e that introduces the smallest number of
interferences. More formally, let n(c,v) be the number of
edges in E(v) that are already colored with ¢. We choose color
¢ such that n(c,u)+n(c,v) is minimized. We repeatedly color
edges until all edges get colored.

We can show that the average number of interferences over
all edges in E(v) is at most d, /k in the solution obtained by
the greedy algorithm. As mentioned above, lowerbounds can
be obtained when each edge e € E(v) experiences d,/k — 1
interferences and therefore, we have the following theorem.

Theorem 5.1: When we use the greedy algorithm, the total
number of one-hop interfences in homogeneous networks is:
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Proof: From the viewpoint of node v, the number of
one-hop conflicts is minimized when edges incident on the
node are evenly distributed. In that case, each edge e € E(v)
experiences d, /k — 1 interferences at average when all nodes
have k interface cards. Therefore, the total number of conflicts
is lower bounded by:

1 dy
IB=352 (&~

v

l—d
Ddv=35) 2 —IE. @&

To upperbound the number of intereferences by the greedy
algorithm, consider an edge e = (u, v). Let n(e) be the number
of interferences that e introduces when it gets colored. The
total number of interferences in the final coloring is ) n(e).
Since we choose a color for e such that it introduces the
smallest interferences in node u and v at the time in which
edge e gets colored, n(e) is at most (d, (e) +dy(e))/K where
dy(€) and dy(e) are the number of edges in E(v) and E(u)
that get colored before e.

Therefore, the total number of conflicts by the greedy
algorithm is:

done) <D (dule) +dule)) /K

e e=(u,v)

v e€E(v)
1
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< OPT +|E|.

IN

|
The approximation ratio is best possible by the following
theorem.

Theorem 5.2: It is NP-hard to approximate the channel
assignment problem in the one-hop interference model within
an additive term of o(|E|'~¢).

Proof: See Appendix B. [ ]

In the next two sections, we further examine theoretical
aspects of the channel assignment problem for more general
cases.

B. Centralized Greedy Algorithm

We consider the networks where each node can have either
one or k interfaces. These cases are interesting for the fol-
lowing reasons. (1) As shown below, even when k& = 2, the
problem of minimizing the number of one-hop interferences
is NP-hard. (2) It best captures the current realistic setting, in
which most of mobile stations are equipped with one interface
card and some of them have two (or k, in general) interface
cards. We present two centralrized algorithms for this type
of networks and analyze the approximation factors of the
algorithms.

We show that the problem of minimizing the number of one-
hop interferences in 1-or-k networks is NP-hard. We prove this
by the reduction to 3SAT [17]. The reduction is simliar to the
reduction from edge coloring to 3SAT [18].

Theorem 5.3: The channel assignment problem to minimize
the number of one-hop interferences is NP-hard even when
C,=1or2.

Proof: See Appendix C for the proof. [ ]

We first present a centralized greedy algorithm for 1-or-k
networks. The algorithm generalizes the idea of the greedy
algorithm for homogenous networks. The difficulty in this
case comes from the fact that an edge cannot choose its color
locally since the color choice of an edge can affect colors for
other edges to obey color constraints and connectivity.

Before describing the algorithm, we define some notations.
Let V; C V be the set of nodes v with C, = i (i.e., we have V;
an Vg). We partition V; into several clusters Vll, Vf, .. .Vlt,
such that nodes u,v € V; belong to the same cluster if and
only if there is a path composed only of nodes in V;. Let E}
be a set of edges either of which endpoints is in V;. Note that
all edges in E} should have the same color. We also define
Bi C E! to be a set of edges where one endpoint is in V!
and the other is in Vx. We can think of B{ as a set of edges
in the boundary of cluster V. See Fig 6 for example.

In the greedy algorithm for homogenous networks, each
edge greedily chooses a color so that the number of inter-
ferences it creates (locally) is minimized. Similarly, in 1-or-k
networks, edges in the same cluster E{ choose a color so that
the number of interfaces it creates is minimized. Note that,
however, it cannot be done efficiently in distributed manner
since all edges in the cluster should agree to have the same
color. Once edges in E{ for all ¢ choose their colors, the
remaing edges (edges not belonging to any cluster) greedily
chooses their colors. Algorithm 4 describes the centralized
greedy algorithm.

Since we choose a color for a group of edges at a time, the



Fig. 6. The figure show an example of clusters Vli in 1-or-k networks. White
nodes have only one interfaces and black nodes have k interfaces. Dotted lines
belong to Bji.

Algorithm 4 Centralized Greedy Algorithm

for each cluster Vi do
choose a color for edges in each E? as follows.
if B! is empty then
choose any color for Ei.
else
for each color ¢ € {1,...,k} do
count the number of interferences to be created
when we choose color ¢ for Ei. Formally, count
Ze:(u,u)eBi ne(v) where n.(v) is the number of
edges ¢’ € E(v) with color c.
end for
choose a color ¢ that minimizes Ze:(u,v)eB;' ne(v).
end if
end for
for each edge that does not belong to any Ei do
choose a color using the simple greedy algorithm in
Section V-A.
end for

approximation factor is not as good as the greedy algorithm
for homogenous networks.

Theorem 5.4: The approximation ratio of the centralized
greedy algorithm in the one-hop interference model for 1-or-k
networks is (2 — 1/K).

Proof: See Appendix D. ]

When K = 2, the centralized greedy algorithm finds a
1.5-approximation. In the following section, we use a more
involved algorithm to obtain a better approximation ratio.

C. SDP-based Algorithm

In this section, we formulate the problem using semidefinite
programming*(SDP) relaxation, and obtain a solution by ran-
domized rounding based on the solution of SDP. Semidefinite
programming relaxation is one of the powerful tools to obtain

4An n x n matrix A of reals is symmetric positive semidefinite if and only
if there exists a matrix m x n B such that BT B = A. It is known that given
A, such B of full row-rank can be found in time polynomial in n. In an
instance of semidefinite programming, we wish to optimize a linear function
of a symmetric positive semidefinte matrix A subject to linear constraints. For
any positive real €, a semidefinite program can be solved within an additive
error of € in time polynomial in the size of the input and log %

approximate solutions for several NP-hard problems including
MAX-CUT and Vertex Coloring [19], [20].

Consider the following vector programming (VP), which we
will convert to SDP later. For ease of presentation, we only
consider the case when K = 2 and Cg = 3. The results can
further be extended for general K. We have two types of m-
dimensional® unit vectors: X, for each vertex v and Y, for
each edge e.

VP:
min ) %(zyel Yo, + 1) forei, ey € E(v) 5)
€1,€2
|Xo| = 1 (6)
v = 1 @
X,-Y, = 1 ifC,=1, ec E(v) (8

X, Y, = 1/2 if C, =2, e € E(v)(9)

We can relate a solution of VP to a channel assignment
as follows. Since Cg is 3, at most 3 colors will appear
in a channel assignment. We can map each color to a m-
dimensional vector so that the dot product of each pair is
exactly —%. That is, the angle between any pair of vectors
corresponding to different colors should be exactly %’T Y,
takes the vector that corresponds to the color of edge e. If
C is one, all edges incident to v should have the same color.
Therefore, X,, can take the same vector as Y, where e € E(v).
If Cy is 2, edges in E(v) can have two colors. To ensure that
all edges in E(v) choose from only two colors, we restict the
angle between X, and Y, (e € E(v)) to be 3 Therefore, X,
goes in the middle of the vectors corresponding to two colors
used by edges in E(v). It is easy to check that (X, Y?) satisfy
constraints 8 and 9. Moreover, the objective function is exactly
the same as the number of one-hop interferences in the given
channel assignment since if Y, = Y, (e; and ey have the
same color), it contributes one to the objective function, and 0
otherwise. Thus the optimal solution of the VP gives a lower
bound of the optimal solution in channel assignment problem
for the one-hop interference model.

We now convert the VP into SDP by letting m,, be the
dot product of vector p and gq.

SDP:
min Y GpgMpq + bpg (10)
Mipp 1 (11)
Mpg =  Cpg (12)

apg=2and bpy = L if p=Y,,,q=7Y,, and ey, €3 €
E(v) for some v. For any other pairs of vectors, ap, = 0 and
bpg =0.¢cpg=1if p=X,,¢g=Y, (e€ E(v)) and C,, =1
cpg =1/2if p=X,, ¢ =Y, (e € E(v)) and C, = 2.

It is known that semidefinite programs (SDP) can be solved
in polynomial time (within any desired precision) [21], [22],
[23], [24], [25], and given a solution for the SDP, we can

5Thus the VP produces m X n matrix B where n = |V| + |E|.
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Fig. 7. Black nodes have two interface cards and white nodes have only
one interface card. (a) The solution uses only two colors. The number of
interferences is minimized (b) Three colors are used in the solution. There is
one link that cannot be assigned to any color. (c) Three colors are used. The
solution introduce more conflicts than (a).

find the solution to the corresponding VP, using imcomplete
Cholesky decomposition [26].

It remains to round the solution to the VP into a feasible
channel assignment. We use the same rounding technique used
for MAX-CUT by Goeman and Williamson [19]. Given an
optimal solution for VP, we obtain a coloring as follows. We
select a vector r uniformly at random. For each edge e, assign
color 1 if Y, -7 > 0 and assign color 2 otherwise. We can
show that the expected number of interferences in the solution
obtained by the above rounding algorithm is at most 1.342
times the optimal channel assignment.

Theorem 5.5: The expected number of total conflicts by our
algorithm is at most 1.342 times the optimal.
Proof: See Appendix E. ]

We can generalize the results to the case when C, = 1 or
k (k > 2) and Cg = k, the approximation guarantee in this
case is 1 + ﬁ

Note that in all three algorithms (greedy, centralized greedy,
and SDP-based algorithm) the total number of different colors
used in the network is only max C'y rather than Cg. This is
because if we allow them to use colors more than max C,, it
often lose connectivity or gives a solution that has more one-
hop interferences. (see figure 7 for example). After obtaining
the solution by the algorithm, we may further improve the
solution by allowing more colors to be used while retaining
all edges in the graph. We could not prove that such improve-
ments give a better approximation gaurantee for the one-hop
interference model, but in practice, we expect that it should
reduce the number of two-hop interferences significantly.

VI. SIMULATION STUDY

In this section, we use simulation experiments to evaluate
our proposed algorithm. We first show that compared to the
single-channel case and BASIC-COLORING, the channel as-
signment using EXTENDED-COLORING significantly reduces
the total number of interferences. Then, we use packet-level
simulations to show that the decrease in the number of interfer-
ences actually can lead to network throughput improvement.

A. Channel Assignment and Interference

In this section, we first describe simulation scenarios and
present the results about the number of interferences when
we use EXTENDED-COLORING. We place N nodes in 1000m

Values

1000 m by 1000 m

{50,100, 150, 200}

{200m, 250m, 300m, 3507, 400m }
{1,2,3,4}

TABLE II
PARAMETERS USED IN SIMULATIONS

parameters
Network Dimension
Network Size (N)
Tx Ranges (R)
Interface Counts (K)

100 :

Il 1-hop Interference
90t [ 2-hop Interference
80 4
70 4

60| .
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Interface Count at Each Node

Fig. 8. The amount of interference for each scheme as the number of
interfaces varies.

by 1000m square area uniformly at random, and we vary N
to experiment with different network size. We also vary the
transmission range R, and there is an edge between two nodes
if the distance between them is less than . We also vary the
number of interface cards at each node. Table II summarizes
parameters use in the simulations. For each experiment, we
use the average of 20 runs with different node placement.

Experiments in Homogeneous Networks: We first exper-
iment with homogeneous networks, where all nodes have
k interface cards. In Figure 8, we plot the relative num-
ber of interferences for each scheme when compared to
the single-channel case. In this set of experiments, we use
100 nodes and the transmission range of 300 meters while
we vary the value of k as shown on the horizontal axis.
When k£ > 2, EXTENDED-COLORING reduces the number
of interferences significantly more than BASIC-COLORING.
Specifically, when &k = 4, EXTENDED-COLORING decrease
the number to around 14.5% = 1/6.89, while the reduction
using BASIC-COLORING is around 24.9% = 1/4.01. In
this case (k=4), EXTENDED-COLORING uses seven chan-
nels in the system, and BASIC-COLORING uses only four
channels. We can observe that the use of more channels in
EXTENDED-COLORING is closely related to the amount of
reduction. We also plot the number of one-hop interferences in
Figure 8, and EXTENDED-COLORING and BASIC-COLORING
have similar values.

In Figure 9, we plot the number of interferences of each
scheme when we vary the number of nodes in the network.
We fix the transmission range at 300 meters, and all nodes
have three interface cards. Since we use the fixed area size
of 1000m by 1000m and transmission range, the increase in
the number of nodes corresponds to increase in the average
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Fig. 9. The number of interferences when we vary the number of nodes in
the network. We fix the transmission range at 300m, and all nodes have three
interface card. Note that the Y-axis in log-scale.
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number of neighbors. As a result, the total number of conflicts
increases as the network size increases. In the simulation,
compared to the single-channel case, the percentage of conflict
reduction using both schemes stays almost constant, regardless
of the network size: 20.4% for BASIC-COLORING and 33.3%
for EXTENDED-COLORING. We performed experiments using
different network settings, and for a fixed k, the performance
gain using EXTENDED-COLORING was similar across various
settings.

In the next experiments, we examine the performance
when there is not a sufficient number of channels for
EXTENDED-COLORING. In Figure 10 we show the reduced
interference by the channel assignment algorithms as the
number of available independent channels (denoted by Cg)
increases from 1 to 9. The lower two lines represents the
case when all the nodes are equipped with two interface cards
(K = 2), and the higher two lines represents when the nodes
have four interface cards (KX = 4). When K = 2, although
BASIC-COLORING reduces up to 50% of original interferences
until Cg = 2, the reduction of interference does not grow
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with multiple interfaces.

more as Cg increases more. However, with the same number
of interfaces per node , EXTENDED-COLORING can use up
to three channels, resulting more reduction of interferences
up to 66%. When K = 4, similarly, the performance of
BASIC-COLORING stops growing at 75% reduction when
Cg = 4 while EXTENDED-COLORING reduces the interfer-
ence until Cg = 7 reducing interference by up to 85 %. For
example, when eight independent channels are available in the
network such as in 802.11a, and when the mobile stations are
equipped with four interface cards, EXTENDED-COLORING
algorithm utilizes seven different channels and reduces 10%
more interferences than BASIC-COLORING algorithm.
Experiments in General Networks: We briefly present
the results when we use EXTENDED-COLORING in gen-
eral networks. Due to the space constraint, we report the
results when we use l-or-k networks, where all nodes
have either one interface or k intefaces. In Figure 11, we
plot the number of interferences when we vary the pro-
portion of nodes with k interfaces. We use £k = 2,4
and 100 nodes while the transmission range is 300 me-
ters. The dotted line shows the original interference, which
is reduced to dashed lines by BASIC-COLORING and to
solid lines by EXTENDED-COLORING algorithms. In this
figure, we observe that EXTENDED-COLORING always out-
performs BASIC-COLORING, and the performance gap be-
tween EXTENDED-COLORING and BASIC-COLORING grows
as more nodes have multiple interface cards. We also experi-
mented using different scenarios: random assignment of inter-
face count between 1 and k£ = 4 with varying proportions for
each count. In all cases, EXTENDED-COLORING outperformed
BASIC-COLORING as well as the single-channel case.

B. Packet-level Simulations

In this section we present the results of simulation ex-
periments using ns-2.° The main goal of this packet-level
simulation is to see the relationship between our proposed
metric in Eq. 1 and the network performance in practice.

6 Available at http://www.isi.edu/nsnam/ns.



We have modified the simulation code such that each node
has multiple wireless interfaces. Also, each node periodically
broadcasts the information on the number of its interfaces and
the channel usage. Depending on this information obtained
from neighbors, a node assigns a channel to each wireless
link as described in Section IV. We modify the simulation
code for the logical link layer such that packets sent to
neighbors use the appropriate network interfaces according to
the above channel assignment. In our simulations, we assume
that sufficient number of channels are available in the system,
and focus on the case where all nodes are equipped with the
same number of interface cards.

We use the AODV (Ad hoc On Demand Distance Vector)
routing protocol to find end-to-end paths [27]. According to
one of our design goals in Section III, we do not modify the
AODV protocol in our simulations. However, upon receiving
broadcast control messages (e.g., route request messages), our
modified link layer replicates and sends them using all wireless
interface cards the node has. We report results when we place
50 stationary nodes uniformly at random on a 1000m by
1000m square and use a fixed transmission range of 250 meters
for all nodes. We also experimented in different environments
(e.g., node density, network size), and the results were similar.
We use stationary nodes to minimize the impact of routing
overhead due to route failures.

We select ten source-destination pairs uniformly at random
among the pairs that require at least two intermediate nodes
along the path (i.e., the distance between source and destina-
tion is more than 500 meters). Each source generates a CBR
(Constant Bit Rate) flow using 1024-byte UDP packets. In
the simulations, we vary the packet frequency of each source
and examine the average data delivery ratio and end-to-end
latency with different network traffic load. For example, if each
source sends ten packets per second, then the aggregate end-
to-end data rate becomes 800 Kbps. Each flow starts between
10 and 30 seconds chosen uniformly at random and ends
at 90 seconds.” We use the IEEE 802.11b standard for the
underlying MAC layer protocol [1], and the underlying data
transmit rate is fixed at 2 Mbps for all nodes. We use average
values of ten runs with different node placement.

In the first experiment scenario, all nodes have four interface
cards, and we vary the packet rate of each source and inves-
tigate the data delivery ratio of each scheme. In Figure 12,
we plot average data delivery ratios when we increase the
total packet transmission rate. In the signle-channel case, the
used channel becomes saturated even with low data rate.
As a result, the delivery ratio becomes lower than 80% in
the case of 320Kbps data rate, and around 20% when the
data rate becomes 1.2Mbps. In contrast, BASIC-COLORING
and EXTENDED-COLORING use four interfaces available at
each node and maintain high delivery ratios for significantly
increased traffic load.

In Figure 12, we can observe that EXTENDED-COLORING
outperforms BASIC-COLORING. When the data rate is more
than 800Kbps, BASIC-COLORING delivers less than 90% of
data packets. In contrast, using EXTENDED-COLORING, we

7We also experimented using longer durations, and the results were similar.
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Fig. 12. The average data delivery ratio when we vary the data rate. Each

node has four interface cards.

Data rate (Kbps)
160 320 480 640 800 960

BASIC-COLORING 314 342 37.0 652 225.1 4983
EXTENDED-COLORING | 303 313 351 362 40.1 75.5
TABLE III

AVERAGE END-TO-END DELAY (IN MS) WHEN WE VARY THE DATA RATE.

can maintain the data delivery ratio higher than 95% up
to the data rate of 1.2Mbps. This is because the use of
more channels in EXTENDED-COLORING (seven against four
in BASIC-COLORING) lowers the total number of interfer-
ences among links, which allows more concurrent transmis-
sion to succeed. For a similar experiment setting, compared
to BASIC-COLORING, the results in Figure 8 show that
EXTENDED-COLORING lowers the number of interferences to
14.5% = 1/6.89, while in Figure 12, EXTENDED-COLORING
can support around seven times as high data traffic load as the
single-channel case. From these results, we can see that there
is close relationship between the reduction in the number of
interference and network throughput improvement.

In Table III, we tabulate the average end-to-end de-
lays for BASIC-COLORING and EXTENDED-COLORING using
the same experiment scenarios as in Figure 12. When the
data traffic load is relatively low, EXTENDED-COLORING
achieves lower latency than BASIC-COLORING. Specifically,
while both schemes deliver more than 99% of data pack-
ets, compared to BASIC-COLORING, the average latency of
EXTENDED-COLORING is around 10% lower in the case of
320 Kbps, and around 45% lower in the case of 640 Kbps.
We also can observe that when the data rate increases from 640
Kbps to 800 Kbps, the average latency of BASIC-COLORING
grows four times as high, which shows that the network starts
to become saturated.

Varying the Number of Interfaces: We next investigate
the throughput performance when we vary the number of
interfaces at each node. For a given number of interfaces,
we increase the data rate by an increment of 160 Kbps and
examine how much data traffic each scheme can support.
We determine that the scheme can support the data rate if it
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delivers more than a certain threshold, and in our simulations,
we use 95% as the decision threshold value.

In Figure 13, we show the maximum data rate that each
scheme can support as we vary the number of interfaces
at each node. The numbers in the plot denote the corre-
sponding average delivery ratios (in %). As expected, the
network can support more amount of data traffic as nodes
have more interface cards. Again, EXTENDED-COLORING
can support higher data rate than BASIC-COLORING, which
again agrees with the results shown in Figure 8. Specif-
ically, when there are two interface cards at each node,
EXTENDED-COLORING uses three independent channels, and
BASIC-COLORING uses only two. In Figure 13, compared
to the single-channel case, EXTENDED-COLORING achieves
three times as high network capacity, while the improvement
ratio of BASIC-COLORING is around two. From this result we
can infer that in EXTENDED-COLORING, the reduced number
of interferences by using more channels is closely related to
the improvement in network throughput.

To summarize, the packet-level simulation results show that
our proposed scheme to reduce the total interference can lead
to network throughput improvement in practice.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem of minimizing
radio interference in wireless ad hoc networks, where nodes
are equipped with multiple interface cards. We formulate the
problem as the channel assignment problem for minimizing
the total number of interferences among communication links.
We show that the problem is NP-hard and propose a dis-
tributed heuristic called EXTENDED-COLORING. In addition,
we present centralized approximation algorithms with constant
approximation factors. Through simulations, we show that our
scheme significantly reduces the total number of interferences,
which indeed leads to improvement in network throughput.

In the future, we will further investigate the performance
of our adaptive algorithm (e.g., convergence time, control
overhead) In our current EXTENDED-COLORING, we use only
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(2k-1) channels when k is the maximum interface count
number. We plan to investigate whether we can use more
channels without violating the constraint in a distributed
manner. Currently, our work treats all edges equivalently,
and in the future, we want to generalize the current scheme
to differentiate edges according to their weight. Also we
plan to study the combination of our channel assignment
algorithm with topology control schemes so that we can relax
node connectivity constraints and allow more performance
improvement.
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APPENDIX
A. Proof of Theorem 4.1

Proof: Note that C,, < C, since u belongs to T'(v).
The color set S(v) includes at least C, colors from set
{1,...,2C, — 1} since N¢, (v) is not empty. Also the size of
S(u) is Cy and S(u) C {1,...,2C, — 1}. By the pigeonhole
principle, S(v) () S(u) # 0. [ ]

B. Proof of Theorem 5.2

Proof: Suppose that we have a simple graph G = (V, E).
It is known that finding the chromatic index x'(G) of G is
NP-hard (chromatic index is the minimum number of colors
for edge-coloring G) [18]. By the Vizing’s theorem [28], the
chromatic index of G is A or A+ 1 where A is the maximum
degree of any vertex v € V.

Given ¢, let G’ = (V', E') be the graph which has |E|!/¢~1
copies of G. Note that [E'| = |E|'/¢. We set Cg = C, =
A. If x'(G) = A then the optimal solution of the channel
assignment problem in the one-hop interference model will
be 0. Otherwise if x'(G) = A +1, then each of component of
G’ has at least one conflict and therefore, the optimal solution
has at least E'/¢~1 conflicts, which is the same as |E'|'~¢.
Thus if we have an approximation algorithm with additive
term of o(|E'|'~€) for a graph G' = (V, E'), we can decide
the chromatic index of G. Contradiction. ]

C. Proof of Theorem 5.3

Given an instance C' of the problem 3SAT, we construct
a graph G, in which each node has the balanced assignment
if and only if C is satisfiable (by balanced assignment, we
mean that colors are evenly distributed to edges in E(v)).
In a channel assignment of G, a pair of edges is said to
be true if the edges are assigned the same channel, and
false if the edges are assigend different channels. The pairs
of edges we consider are shown inside rectangles in Fig. 14
for example. We need three components for the reduction —
inverting, variable setting, satisfaction testing. In the figures,
black nodes have 2 interfaces and white nodes have only one
interface.

In the inverting components (Fig. 14), one can easily see
that black nodes have the balanced assignment if and only if
the input pair of edges is true and the output pair is false, or
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vice versa. These components are used to obtain the negation
of variables. In the variable setting components (Fig. 15),
all the pairs of edges in the rectangles should be the same
- either true or false. We can use as many output pairs as
there are appearances of variable v; or v; (combined with the
inverting components). For each clause c; in C, we have one
satisfaction testing component (Fig. 16). It can be checked
that black nodes in the satisfaction testing components have
the balanced assignment if and only if at least one of three
pairs of edges corresponding to literals in ¢; is true. Combining
all the components, we can construct a graph G, in which all
nodes have balanced assignments if and only if C is satisfiable.

D. Proof of Theorem 5.4

Proof: Edges (u,v) both of which endpoints belong to
V1, should use the same color as any other adjacent edges
no matter what algorithm we use. For edges (u,v) neither
of which endpoints belong to V;, we assign colors using the
simple greedy algorithm discussed in Section V-A. Using the
analysis similar to Section V-A, we can show that the average
number of interferences each edge creates is at most one more
than the optimal (therefore, at most | E| more than the optimal
in total).

We only need to analyze the number of conflicts created
by edges in B! (recall that we defined Bi C Ei to be edges
one of which endpoint is in V}). Suppose that the algorithm
assign color ¢ to E}. Recall that for an edge e = (u,v) where
u € Vi and v € Vj, n.(v) is the number of edges (u',v) ¢
Ei with color c. Since we choose a color ¢ that minimizes

> e—(u,)eBi Me(v), we have
e=(u,v)€Bi

e=(u,v)€BI

ne(v) <

(d(v) —ei(v))/k
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where e;(v) be the number of edges in E(v) () Ei. Then, the
number of conflicts created by edges in Bi is

D L 2

e€B; (u,v) € B}
v E Vg

>

(u,v) € Bt
veE Vg

dy 1
= 2 ) ra-2).
> (§-)ro-p
(u,v) € B}
v E Vg

Note that both Z(u,v)eB;',veVK (dy/k — 1)
Z(u,v)eB{,ver e;(v) are lower bounds of the optimal
solution. Therefore we have (2 — 1/k)-approximation. [ |

(ne(v) +ei(v) — 1)

IA

(u,v) € BS
v E Vg

and

E. Proof of Theorem 5.5
Lemma 1.1: [19] For —1 < ¢ < 1, 2x€Cost > &(] _¢),
where a > .87856.

proof of Theorem 5.5: Let X;; be 1 if e; and e; have the
same color for e;,e; € E(v). For any vertex v with one
interface, all edges in E(v) should be the same color in any
solution. Therefore, we only consider edges e;,e; € E(v)
when C, = 2. The total number of such conflicts is X =

> X
E[X] > E[X;]
> Pr(C., =Ct,)
= Z(l - Pr(Cei 7£ Cej))

> (@-2Pr(Y,,; -7 >0, Y, -r<0)
arccos(Ye, - Ye;)

= 2(1 T)
Y-S0 -Y. Y,)

IN
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3o 3o 2 1
Z(l_Z+Z(§ e Ye; +3)

3
(2 - %)OPT + %TQOPT
1.3420PT

<
<

We obtain the first inequality by Lemma 1.1 and the second
inequality comes from the fact that for any pair of edges in
E(v), the probability that they have the same color in an
optimal solution is at least 1/2 (as C,, = 2) and also from
the lower bound given by SDP.

ei(v)



