
Data Structures for Dynamic Queries:An Analytical and Experimental EvaluationVinit Jain and Ben Shneiderman+Human-Computer Interaction Laboratory &Department of Computer ScienceInstitute for Systems Research+University of MarylandCollege Park, MD 20742Index Terms : Dynamic queries, data structures, main memory database, search overheadquanti�cation, storage overhead quanti�cation.AbstractDynamic Queries is a querying technique for doing range search on multi-key data sets.It is a direct manipulation mechanism where the query is formulated using graphicalwidgets and the results are displayed graphically in real time.This paper evaluates four data structures, the multilist, the grid �le, k-d tree andthe quad tree used to organize data in high speed storage for dynamic queries. The ef-fect of factors like size, distribution and dimensionality of data on the storage overheadand the speed of search is explored. A way of estimating the storage and the searchoverheads using analytical models is presented. These models are veri�ed to be correctby empirical data.Results indicate that multilists are suitable for small (few thousand points) data setsirrespective of the data distribution. For large data sets the grid �les are excellent foruniformly distributed data, and trees are good for skewed data distributions. There wasno signi�cant di�erence in performance between the tree structures.1 IntroductionMost users of database systems must learn a querying language which they use to selectand retrieve information. A query language is a special purpose language for constructingqueries to retrieve information from a database of information stored in the computer [21].1.1 Dynamic QueriesDynamic queries [1] is a novel way to explore information. This mechanism is well suited formulti-key data sets where the results of the search �t completely on a single screen. Figure 1shows an application of dynamic queries in searching a real estate database. The query is1



Figure 1: The Dynamic Home Finderformulated using widgets such as buttons and sliders, one widget being used for every key.A study [26] was conducted which compared dynamic queries (DQ) to a natural languagesystem known as \Q & A" and a traditional paper listing sorted by several �elds. Therewas statistically signi�cant di�erence in the performance of the DQ interface compared tothe other two interfaces. The DQ interface enabled users to perform faster and was ratedhigher than the other two in the terms of user satisfaction. The DQ interface was veryuseful in spotting trends and exception to trends as compared to the other two interfaces.One of the important features of a DQ interface is the immediate display of the results ofthe query. In fact, users should be able to perform tens of queries in a span of a few secondsso that the mechanism remains dynamic. Using larger data sets slows down the mechanismso that there is a noticeable time interval between the movement of sliders and the displayof results.There are two main facets to the issue of speed. Since the mechanism of dynamic query is aGraphical User Interface (GUI) the speed depends considerably on the graphical capabilitiesof the machine on which it runs. The e�ect of this factor largely depends on how the resultsare displayed. The other factor on which the speed is dependent is the time it takes tocompute the results of queries. Even though the search time depends to a great extent onthe hardware of the machine used, query computation can be optimized to a great extent2



Data Storage Cost Search CostStructure S(N; k) Q(N; k)Sequential List O(Nk) O(Nk)Multilist O(Nk) O(Nk)Cells O(Nk) O(2kF )k-d Tree O(Nk) O(N1�1=k + F )Quad Tree O(Nk) O(N11�1=k + F )Range Tree O(Nlogk�1N) O(logkN + F )k-Ranges O(N2k�1) O(klogN + F )Figure 2: Storage and Search time overheads for various data structuresby using suitable data structures.In this paper data structures for main memory are examined. We assumed that the datasets remains frozen i.e. there are no insertions, deletions or updates. The time taken toload the data into memory i.e. the preprocessing time is ignored as it is done only once.Only simple rectangular queries are considered i.e. queries will be a simple conjunct of theranges speci�ed by the sliders.1.2 Multi Attribute Range Search MethodsThe problem of range search on multi attribute data sets can be de�ned as:For a given multi-attribute data set, and a query which speci�es a range for each attribute,�nd all records whose attributes lie in the given ranges.The cost functions of various data structures are provided whereN is the number of records,k is the number of attributes and F is the number of records found. For the quad tree N1is the number of nodes in the tree. Further details about these data structures can beobtained from the references.� S(N; k) is the cost of storage required by the data structure.� Q(N; k) is the search time or query cost.Figure 2 shows cost functions for structures that are suitable for rectangular queries. Manyother complex structures exist, but they are mainly of theoretical interest only because of3



their high memory overhead. It can be seen that range trees and k-ranges have relativelyhigh storage overheads and are thus eliminated from consideration.2 Data StructuresWe assume the following characteristics of dynamic queries. The parameters of search arespeci�ed using sliders with one slider being used for each dimension. There are a limitednumber of positions the dragbox of a slider can take. This results in the ranges gettingbroken into discrete intervals. If every slider is assumed to break a range into G intervals,and if the data set has D dimensions then the search space can be split into GD buckets.A bucket is the smallest unit of search and it is not possible to di�erentiate between pointsin a bucket. During search all or none of the data points of a bucket get included in thesolution set. It may happen that in certain data distributions some buckets are empty.Unlike the case in bucket methods for storage on disks, there is no limit on the number ofpoints in a bucket when main memory is used.Four data structures are described in this section. The data points are stored in a simplearray. It is assumed that points belonging to the same bucket will be stored consecutively.The data structures will be used to maintain an index on the array so that the search timeis reduced. To maintain these indices, memory overhead is incurred which needs to bekept low. These structures can be classi�ed in two categories i.e. bucket and non-bucketmethods. In bucket methods an index is maintained on buckets and in non-bucket methodsit is maintained on data points. The linked array which is a non-bucket method is described�rst. Later the bucket methods are described.2.1 Linked ArrayFigure 3 shows a part of the linked array when the data is two dimensional (i.e. D = 2).Also shown in the �gure is a data array. The data array is an array which holds the datapoints. With every interval in the slider range is associated a linked list. Every point inthe data set will lie in one and only one linked list of every slider. Also with every recordis associated a ag (not shown in the �gure). This ag keeps count of the number of �eldsof the record which satisfy the region of interest. When this count becomes equal to thenumber of dimensions then the record is displayed.2.2 Grid ArrayFigure 4 shows a part of the grid array used to index the data array for the two dimensionalcase. This is a bucket method and a bucket is essentially a pair of index numbers or pointerswhich point to the �rst and last record in the data array that belong to the bucket. Thesebuckets form a part of the D dimensional search space. Therefore, to index them a Ddimensional array is used. 4



slider1 slider2

data array

1 2 3 1

2

3

1

2

2

2

2

1

1

4

4

f1f2f1 f2

1

linked array

4 4

Figure 3: Linked Array used to index the Data Array
1

2

3

4

2

1 3

4

1 1

1 1

1 2

1 3

1 3

1 4

2 2

2 2

null

slider2

Grid Array

Data Array
f1 f2

slider1Figure 4: Grid Array used to index the Data Array5



1 1

1 1

1 2

1 3

1 3

1 4

Data Array
f1 f2

2

2 2

1 1

1

disc2

disc2

disc1

disc1

3

buckets

Figure 5: k-d Tree used to index the Data Array2.3 k-d TreeFigure 5 shows a part of a k-d tree and the data array associated with it. In k-d trees,the concept of the buckets is again the same as the grid array. For the k-d tree being usednot all nodes at the same level in the tree have the same discriminator key. Nor are all theleaves at the same level. Therefore, in each node, besides the discriminator key value, thetype of the discriminator key and a ag (not shown in the �gure) which indicates the typeof children (node or leaf) is also stored. This is done so that if the number of non-emptybuckets is few, then the tree size can be reduced. In some cases, it is possible that afteroptimization some leaves may move so that they are no longer at the level they were in thenon-optimized tree. In such cases an additional check needs to be done to ensure that thebucket reached is valid. A ag (not shown in the �gure) is kept in the leaves which indicateswhether this check needs to done.2.4 Quad TreeJust as k-d trees could be used to index the buckets, quad trees can also be used to index thebuckets. Figure 6 shows how a quad tree can be used to maintain an index. The nodes ofthe quad tree depend on the dimensionality of the data set. Each node has D discriminatorkeys and 2D pointers for the children. Just as in the case of a k-d tree, the children of anon-leaf node may be a mix of leaves and (non-leaf) nodes which is determined by a ag.6



1 1

1 1

1 2

1 3

1 3

1 4

Data Array
f1 f2

2 , 2

1 , 1

nodes (f1,f2)

1 , 3

buckets

Figure 6: Quad Tree used to index the Data ArrayOne bit is required to maintain this information about each child. It is assumed that D isat most 5, hence the number of children is at most 32 and one word (32 bits or 4 bytes)su�ces to store leaf/non-leaf information for all the children of a node. In some cases, afteroptimization, some leaves may move, (as in the k-d tree) and a check may be required toensure correctness. A ag is maintained in the leaf nodes for this purpose.3 Analytical ModelWe analyze the storage and search overheads of data structures used for dynamic queriesin this section. Storage overhead refers to the additional storage requirements for the datastructure used. Search overhead is the number of operations required to compute the queryresult when the slider is moved. These two metrics will be used throughout this section toevaluate the data structures for dynamic queries. Search overhead will depend on how largethe space being searched is. At any given moment the sliders de�ne something called theregion of interest, which is the portion of the search space being displayed. Every movementof a slider is a query which increases or decreases the region of interest. It is assumed thatat any time only one dragbox of a slider will move in steps of one discrete interval. As aresult of this move, points have to be removed or added to the display. In the case of thesearch overhead, it is assumed that the case where the region of interest is increasing willapply as a general case. For the worst case the increment in the region of interest shouldbe the greatest. This happens when D� 1 sliders have their left and right dragboxes in theextreme left and right respectively. In this case with every move of the Dth slider GD�1buckets are added to the region of interest. 7



The e�ectiveness of a method will be studied with respect to factors such as� The distribution of the data points in the search space.� Dimensionality of the data set D� Size of the data set N3.1 Comparing Bucket MethodsIn this section a comparison of bucket methods is presented. Only the number of non-empty buckets will be considered in the analysis. The number of tuples does not e�ectthe performance in any way. As mentioned earlier, two performance metrics used in theanalysis are the storage overhead for the index on buckets and the worst case search time.The following symbols will be used:N : Number of points in the data set.D : Number of dimensions.G : Number of intervals in each slider range.Noi : Number of nodes in the tree (no. of dimensions is i).Bi : Number of non-empty buckets (leaves , no. of dimensions is i).Nvi : Number of (non-leaf) nodes visited in the worst-case (no. of dimensions is i).Bvi : Number of leaves visited (non-empty buckets for the grid array) in the worstcase (no. of dimensions is i).The storage overhead is the cost of maintaining an index on the data points. In computingthe storage overheads, it is assumed that each integer is 4 bytes, each character is 1 byteand each pointer is 4 bytes. If the number of dimensions is i, then the following holds true:Grid Array: In grid arrays, 2 integer indices (�rst and last) are maintained for each bucket,irrespective of data distribution. So, 8 bytes are required for each bucket. Therefore,Total storage overhead = 8Gi bytes .k-d Tree: In k-d trees, each non-leaf node has an integer discriminator key (4 bytes), acharacter discriminator key type (1 byte), a character ag for type of children (1 byte) andtwo pointers for left and right children (4 bytes each), resulting in a total of 14 bytes. Eachleaf (non-empty bucket) has 2 integer indices (4 bytes each) and a character ag (1 byte),resulting in a total of 9 bytes. So,Total storage overhead = 14Noi + 9Bi bytes.Quad Tree: In quad trees, each non-leaf node has 2i pointers for children of the node (4bytes each), i integer discriminator keys (4 bytes each) and one ag for maintaining typesof children (4 bytes), resulting in a total of 4(2i+ i+1) bytes. Each leaf (non-empty bucket)requires 9 bytes as in the case of k-d trees. So,Total storage overhead = 4(2i + i + 1)Noi + 9Bi bytes.8



The following assumptions have been made in calculating the search time overhead. i isused to indicate that the terms are for i dimensional case.� For every non-empty bucket visited it is assumed that one operation is done to reportthat the bucket is non-empty.� For the grid array one operation is required to visit a bucket and if it is non-emptythen another operation is performed.� For the k-d tree every non-leaf node visited has to put into the stack and then laterretrieved from the stack. This requires 2 operations. In processing every node twocomparisons have to be made. This makes it a total of 4 operations for every non-leafnode visited. In visiting leaves, 2 operations will always be required: 1 operation forreporting that the bucket is non-empty (as discussed earlier) and 1 operation to get tothe leaf. In some cases, because of the optimizations on the tree that were discussedearlier, an additional check is required to ensure that the bucket reached is the correctone. This may require up to 2i operations.� For the quad tree every non-leaf node visited has to be put into the stack and laterretrieved from the stack. This requires 2 operations. 2i comparisons are required todetermine which children of the node to search. 2 operations are required for checkingthe ags to determine the type of children. So, in all 2i+ 4 operations are done forevery non-leaf node visited. In visiting leaves, 2 operations will always be required:1 operation for reporting that the bucket is non-empty (as discussed earlier) and oneoperation to get to the leaf. As in the case of k-d trees, an additional check may berequired to ensure correctness of the leaf reached which requires 2i operations.� In the worst case, for both k-d tree and quad tree, it is assumed that the number ofnodes visited, when the data is i dimensional is Noi�1. This is because in the worstcase i � 1 sliders do not restrict the search in any way. The slider restricting thesearch has only one of its discrete intervals to be searched for. It is like taking a sliceof thickness 1 from the i dimensional search space.3.1.1 Uniform Data DistributionIn this subsubsection, the analysis for computing storage overheads and search time ispresented, for the case when the data distribution is uniform. An important factor e�ectingthese performance metrics is the percentage of buckets which are non-empty. Two extremecases will be considered in this subsection, when all the buckets are non-empty and whenonly 25% of the buckets are non-empty. The method of analysis presented here can be usedto derive exact expressions for other cases, but details of those are not presented here.Case 1 : When all buckets are non-emptyIn this case, the number of non-empty buckets (BD) is GD. The storage overheads for eachof the data structures are as follows: 9



Grid Array: As discussed earlier, the storage overhead for the grid array is 8GD bytes,irrespective of the data distribution.k-d Tree: For optimal k-d trees, number of non-leaf nodes is the same as the number ofleaf nodes (non-empty buckets), i.e. Noi = Bi. Therefore, if the number of dimensions is D,NoD = BD. The storage overhead for k-d trees is 14NoD+9BD. Since, NoD = BD = GD,Total storage overhead = 23GD bytes.Quad Tree: In the quad trees, the number of nodes NoD is GD=(2D � 1). As discussedearlier, the storage overheads for quad trees, when the number of dimensions is D is 4(2D+D + 1)NoD + 9BD. Since BD = GD,Total storage overhead = 4(2D +D + 1) GD2D�1 + 9GD bytes.Next, the second performance metric, search time is considered. Search time means thetime (operations) required when the exactly one slider is advanced by one region. Searchtime overheads in the worst case are as follows:Grid Array: For the grid array, the number of buckets visited (BvD) is GD�1. As discussedearlier, one operation is required for each bucket visited and one additional operation isrequired if the bucket is non-empty. Since all the buckets are non-empty,Total number of operations = 2GD�1.k-d Tree: For the k-d tree, the number of (non-leaf) nodes visited (NvD) is NoD�1. Thenumber of leaves (non-empty buckets) visited (BvD) is BD=G. For an optimal k-d tree,the number of non-leaf nodes is the same as the number of leaf nodes, i.e. Noi = Bi.Therefore, NvD = NoD�1 = BD�1. Since all the buckets are full, average height of aleaf node from the maximum depth is 0. Consequently, additional checks for �nding if thebucket reached is the correct one will never be required. As discussed earlier, accessing eachnon-leaf node requires 4 operations and accessing each leaf node requires 2 operations.Total number of operations = 4NvD + 2BvD = 6GD�1.Quad Tree: For the quad tree, the number of (non-leaf) nodes visited (NvD) is NoD�1.The number of leaves (non-empty buckets) visited (BvD) is BD=G. Also, for a quad tree,the number of (non-leaf) nodes is GD=(2D � 1). Since all the buckets are full, averageheight of a leaf node from the maximum depth is 0. Consequently, additional checks for�nding if the bucket reached is the correct one will never be required. As discussed earlier,accessing each non-leaf node requires 2D+4 operations and accessing each leaf node requires2 operations.Total number of operations = (2D+ 4) GD�12D�1�1 + 2GD�1.Case 2 : When 25% of all buckets are non-emptyIn this case, the number of non-empty buckets BD = GD4The storage overheads for data structures are:Grid Array: For a grid array, the storage overhead is independent of data distribution. 8bytes are required for each bucket, soTotal storage overhead = 8GD bytes.k-d Tree: For the case of the k-d tree, it can be assumed that No = B for optimal trees.10



Therefore NoD = BD. The storage overhead, as discussed earlier is, 14NoD + 9BD. SinceBD = GD=4,The storage overhead = 23BD = 23GD4 bytes.Quad Tree: For quad trees, number of nodes NoD = GD2D�1 . Storage overhead, as discussedearlier, for the quad trees is 4(2D +D + 1)NoD + 9BD. Since BD = GD=4,Total storage overhead = 4(2D +D + 1) GD2D�1 + 9GD4 bytes.Search time overheads in the worst case are as follows:Grid Array: For the grid array, the total number of buckets visited is GD�1. One operationis required for visiting each bucket. On an average, we will expect that 25% of all the visitedbuckets are non-empty. One additional operation is required for each non-empty bucketvisited. So,Total number of operations = GD�1 + GD�14 = 5GD�14 .k-d Tree: As discussed earlier, for the k-d tree, NvD = NoD�1. Also, the total number ofnon-empty buckets (leaf nodes) visited (BvD) is BD=G For an optimal k-d tree, Noi = Bi.Therefore, NvD = BD�1. Since only 1/4 of all the buckets are non-empty, average heightof a leaf node from the maximum depth of the tree is 2. Therefore, 4 additional operationsare required for every bucket visited. In all, 4 operations are required for each non-leaf nodevisited and 6 operations are required for each bucket visited. Since NvD = BD�1 = GD�1=4and BvD = BD=G,Total number of operations = 4GD�14 + 6GD�14 = 5GD�12 .Quad Tree: For the quad tree, number of non-leaf nodes visited (NvD) is NoD�1. Thenumber of buckets visited is (BvD) isBD=G. Since Noi = Gi=(2i�1),NvD = GD�1=(2D�1�1). Average height of a leaf node from the maximum depth is 0 (except in the case ofD = 2,which is ignored). 2D + 4 operations will be required for each non-leaf node visited and 2operations will be required for each bucket visited.Total number of operations = (2D+ 4) GD�12D�1�1 + GD�12 .Figures 7 and 8 show how the storage and search overheads vary as the fraction of non-empty buckets changes for uniformly distributed data. The value used were, G = 16 andD = 4. On the basis of this analysis, the grid array is a signi�cantly better structure touse when data is uniformly distributed and most buckets are non-empty. It has a lowermemory and search time overhead than both the tree structures. However as the numberof empty buckets rises the di�erence in the memory overhead reduces and the trees getbetter. When comparing the search overheads of the structures for the case where mostbuckets are non-empty the quad tree has a lower search overhead. The dimensionality ofthe data only increases the di�erences with the di�erences in performance becoming greateras dimensionality rises.3.1.2 Skewed Data DistributionSo far only the cases when the data distribution was uniform were examined. In thissubsubsection, the performance of data structures is examined when the data distribution11



grid

qtree

kdtree

bytes x 106

X0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

0.20 0.40 0.60 0.80 1.00Figure 7: Memory overhead for UniformlyDistributed Data Vs. the fraction of non-empty buckets
grid

qtree

kdtree

operations x 103

X
2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

0.20 0.40 0.60 0.80 1.00Figure 8: Search overhead for UniformlyDistributed Data Vs. the fraction of non-empty bucketsis skewed. Here two cases will be examined. First the case where all the non-empty bucketsare only along the diagonal of the search space. Later the case where all the non-emptybuckets are within a distance of G=4 from the diagonal is examined.Case 1 : When all non-empty buckets are along the diagonalIn this case, the number of non-empty buckets BD is G. The storage overheads for the datastructures will be as follows:Grid Array: For the grid array, 8 bytes will be required for each bucket. Total storageoverhead = 8GD bytes.k-d Tree: For optimal k-d trees, Noi = Bi. Therefore, NoD = BD = G. Since 14 bytesare required for storing each non-leaf node and 9 bytes are required for storing each bucket,Total storage overhead = 14NoD + 9BD = 23G bytes.Quad Tree: Since there are only G non-empty buckets, all of them along the diagonal,every node of the quad tree will have only two non-empty children. Therefore, NoD = BD.Total storage overhead = 4(2D +D + 1)NoD + 9BD = 4(2D +D + 1)G+ 9G bytes.Search time overheads in the worst case are as follows:Grid Array: For the grid array, number of buckets visited (NvD) is GD�1. The numberof non-empty buckets visited is BD=G = 1.Total number of operations = GD�1 + 1 � GD�1.12



G/4
G

Search Space

Figure 9: Skewed Distribution: All points within G=4 of Diagonalk-d Tree: For the k-d tree, the number of non-leaf nodes which need to be visited (NvD)is equal to the height of the tree which is log2G. The number of buckets to be visited (BvD)is BD=G = 1. Average height of a leaf node from the maximum depth is greater than D.Therefore, 2D+ 2 operation will be required for the bucket visited. So,Total number of operations = 4log2G+ 2D + 2.Quad Tree: For the k-d tree, the number of non-leaf nodes which need to be visited(NvD) is equal to the height of the tree which is log2G. The number of buckets to bevisited (BvD) is BD=G = 1. Average height of a leaf node from the maximum depth is 0(no optimization). So,Total number of operations = (2D+ 4)log2G+ 2.Case 2 : When all non-empty buckets are within a distance of G=4 of the diagonalIn this case, the number of non-empty buckets (BD)isBD = G4 D + 3G4 ((G4 )D � (G4 � 1)D)Figure 9 shows the two dimensional case for this distribution. The storage overheads fordata structures are as follows:Grid Array: 8 bytes are required for each bucket, irrespective of its being empty or not.So,Total storage overhead = 8GD bytes.k-d Tree: For optimal k-d trees, Noi = Bi. Therefore, NoD = BD. Since 14 bytes arerequired for each non-leaf node and 9 bytes are required for each leaf node (bucket),Total storage overhead = 23((G4 )D + 3G4 ((G4 )D � (G4 � 1)D)) bytes.Quad Tree: For quad trees estimating NoD for this case is a little complex. Out of theBD leaves in the tree b1 = 4(G=4)D leaves are set aside. Let b2 = BD � b1. A quad tree ofb2 leaves and height log2G will have bf = b21=log2G children for a node. Number of nodesis b2bf�1 . The b1 nodes that were kept aside form 4 dense subtrees each with approximately13



(G=4)D=(2D � 1) nodes. Total number of nodes (NoD) isNoD = b12D � 1 + b2bf � 1Total storage overhead = 4(2D +D + 1)NoD + 9BD bytes.Worst case search time overheads are as follows:Grid Array: For the grid array, number of buckets visited is GD�1. On an average, BD=Gnon-empty buckets will be visited. Since one operation is required for visiting each bucketand one additional operation is required if the node is non-empty,Total number of operations = GD�14 + BDG .k-d Tree: For the k-d tree, NvD is NoD�1 and BvD is BD=G. For an optimal k-d tree,No = B. Therefore, NvD = BD�1. Average height of a leaf node from the maximum depthis greater than D. Therefore, 2D + 2 operation will be required for the bucket visited. So,Total number of operations = 4BD�1 + (2D+ 2)BDG .Quad Tree: For the quad tree,NvD isNoD�1 and BvD is BD=G. NoD�1 can be calculatedas was done for computing the storage overhead earlier. Average height of a leaf node fromthe maximum depth is 0 (no optimization).Total number of operations is = (2D+ 4)NoD�1 + 2BDG .For skewed distributions there is a signi�cant di�erence between the performance of treesand the grid array with the trees being superior. This is reected both in memory andsearch overheads. For the case where non-empty buckets lie only along the diagonal of thesearch space the di�erence in the trees and the grid is phenomenal. In the second case alsothe trees are signi�cantly better. Amongst the trees it can be said that the k-d tree has amarginally lower memory overhead and a marginally higher search overhead than the quadtree. As in the case of uniformly distributed data higher dimensionality of data makes thedi�erences more pronounced.3.2 Bucket Vs Non-Bucket MethodsIn the previous subsection bucket methods were compared. In bucket methods the numberof points does not e�ect the search overhead if the number of points is su�ciently large tomake most buckets non-empty. However when the number of points is small or the numberof dimensions is low it may be worth trying to use the linked array. This is because forlinked arrays the storage overhead is directly proportional to the number of points in thedata set and the dimension of the data set.Using the same symbols the storage and search time overheads of the linked array arediscussed. In addition to the value of G = 16 the value of D = 4 has been used in thegraphs comparing the two methods.� Every tuple of the linked array has to be kept on D lists. For this D additionalpointers (4 bytes) are needed. In addition a ag (1 byte) is required as discussed insection 2.1 earlier. Therefore, storage overhead is (4D+ 1)N .14



� Generally each linked list associated with a slider will haveN=G tuples in it. Therefore,search overhead (worst case and average case) is NG .The linked array was compared to the grid array for uniform data distributions. Only thegrid array was chosen because it has a superior performance compared to the trees foruniform distribution. With a value of G = 16 and D = 4, it was seen that the linked arrayperformed much better as far as the search overhead is concerned. However the storageoverhead for this structure gets very high.The linked array was compared with the tree structures for the skewed distribution. Thegrid array was dropped from consideration here because trees perform better under skeweddata distributions. In this case the performance of the tree structures, specially the quadtree is much better both when storage overhead and search overheads are compared. Onereason could be that in skewed distributions the bucket occupancy rises very steeply whencompared to the uniform distributions.The analytical models developed in this section give an insight as to how the data structurescan be analyzed for cases other than the ones already discussed. However the modelsdeveloped in this section need to be con�rmed by empirical evidence, specially for the caseof k-d trees and quad trees where the di�erences are not clear. The next section is devotedto the empirical results from the implementation of these models.4 Experimental ResultsThe analytical models of section 3 were veri�ed by implementing the cases discussed. Theimplementation was done on a dedicated SUN 4/50 with 16 MB of memory and runningSunOS. The memory overhead was calculated by counting the nodes and leaves for thebucket methods, and the number of points for the linked array. Clock time in microsecondswas used to measure the speed of search instead of the number of operations as in section 3.The process switching overhead was ignored as the machine had negligible load.4.1 Comparing Bucket MethodsThe analytical models of subsection 3.1 were implemented and the results are presented inthis subsection. In the calculation of memory overhead, only the extra memory required tomaintain the index was considered. As mentioned before in calculating the search time, thetime for display of records was ignored. The value of G = 16 was used in implementations.4.1.1 Uniform Data DistributionAs discussed in the subsubsection 3.1.1 there are two cases to be considered. First the casewhere all the buckets are non-empty is discussed. Figures 10 and 11 show the results of thememory and search time overhead respectively. For this case the grid array is signi�cantlybetter than the tree structures both in terms of memory overhead and search time overhead.15



grid

qtree

kdtree

bytes x 106

Dimensions
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.00 3.00 4.00 5.00Figure 10: Memory overhead for Uni-formly Distributed Data (100% bucketsnon-empty)
grid

qtree

kdtree

microseconds x 103

Dimensions
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

2.00 3.00 4.00 5.00Figure 11: Search overhead for Uni-formly Distributed Data (100% bucketsnon-empty)In the case where 25% of the buckets are empty, �gure 13 shows the grid array to be asigni�cantly better structure as far as the search time overhead is considered. However�gure 12 shows that the k-d tree is marginally better when memory overhead is consideredbut has a higher search overhead. All results in this subsubsecton closely match previousanalytical models.4.1.2 Skewed Data DistributionAs discussed in the subsection 3.1.2 there are two cases to be considered. First the casewhere all the non-empty buckets are along the diagonal is discussed. Figures 14 and 15show the results of the memory and search time overhead respectively. For this case boththe k-d tree and the quad tree give a performance far superior to the grid array both formemory overhead and search time overhead. However there is no signi�cant di�erence whenthe performance of trees is compared with each other.When all points lie in buckets within a distance G=4 of the diagonal the tree structuresturn out to be excellent performers compared to the grid array. This can be seen clearlyin �gures 16 and 17. However the di�erence between the tree structures themselves in notlarge. It should be noted that as in the previous cases the results of the implementationsdo not di�er from the analytical models. 16



grid

qtree

kdtree

bytes x 106

Dimensions
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.00 3.00 4.00 5.00Figure 12: Memory overhead for Uni-formly Distributed Data (25% bucketsnon-empty)
grid

qtree

kdtree

microseconds x 103

Dimensions
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

2.00 3.00 4.00 5.00Figure 13: Search overhead for Uni-formly Distributed Data (25% bucketsnon-empty)4.2 Bucket Vs Non-Bucket MethodsIn this subsection the results from the implementation of the analytical models of section 3.2are presented. In the calculation of memory overhead for linked array, only the extra mem-ory required to maintain the linked list was considered. As mentioned before in calculatingthe search time, the time for display of records found was ignored. The values of G = 16and D = 4 were used in the implementations.4.2.1 Uniform Data DistributionFigures 18 and 19 show the comparison between the linked array and the grid array. Asmentioned before in subsection 4.2 only the grid array was chosen among bucket methods asit has the best performance for uniformly distributed data. As far as search time overheadis considered the linked array performed better than the grid for up to approximately100; 000 points. However the drawback is that the memory overhead for this structurekeeps increasing as the size of the data set increases unlike the case for the grid array whereit remains a constant. So users may be constrained in using linked array because of its highmemory requirements. 17



grid

qtree

kdtree

bytes x 106

Dimensions
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.00 3.00 4.00 5.00Figure 14: Memory overhead for SkewedData Distribution (non-empty bucketsalong diagonal only)
grid

qtree

kdtree

microseconds x 103

Dimensions
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

2.00 3.00 4.00 5.00Figure 15: Search overhead for SkewedData Distribution (non-empty bucketsalong diagonal only)4.2.2 Skewed Data DistributionFigures 20 and 21 show the comparison between the linked array and the tree structuresfor skewed distributions. As mentioned before in subsection 4.2 only the trees were chosenamong bucket methods as they have signi�cantly better performance for skewed data dis-tribution. When compared to the linked array the tree structures get signi�cantly betterthan the linked array both in terms of search time and memory overhead. However whenthe number of tuples is small (about 10; 000) it is better to use a linked array because ofits simplicity.In this section the results of implementations have been discussed. All the results wereas predicted by the analytical models. It can be noticed that there is a steep rise in thegradient of the curves showing the search time overhead for uniformly distributed data.This is due to the memory requirements getting so high that a very high number of pagefaults starts occuring.
18



grid

qtree

kdtree

bytes x 106

Dimensions
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.00 3.00 4.00 5.00Figure 16: Memory overhead for SkewedData Distribution (all non-empty bucketswithin a distance of G=4 of diagonal)
grid

qtree

kdtree

microseconds x 103

Dimensions
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

2.00 3.00 4.00 5.00Figure 17: Search overhead for SkewedData Distribution (all non-empty bucketswithin a distance of G=4 of diagonal)
larray

grid

bytes x 106

Points(1000)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00 100.00 200.00Figure 18: Memory overhead for UniformlyDistributed Data
larray

grid

microseconds x 103

Points(1000)
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 100.00 200.00Figure 19: Search overhead for UniformlyDistributed Data19



larray

qtree

kdtree

bytes x 106

Points(1000)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

50.00 100.00Figure 20: Memory overhead for SkewedData Distribution (all non-empty bucketswithin a distance of G=4 of diagonal)
larray

qtree

kdtree

microseconds x 103

Points(1000)
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

50.00 100.00Figure 21: Search overhead for SkewedData Distribution (all non-empty bucketswithin a distance of G=4 of diagonal)5 Conclusions5.1 ContributionsWe have presented a way of analyzing data structures for dynamic queries applications.Analytical models were constructed and their usefulness was shown by empirical data. Inalmost all cases the empirical results con�rmed the analytical models. The results can bedivided into two on the basis of the data distributions used.In the case of uniformly distributed data the linked array structure performed quite wellbut the drawback in this structure is that its memory overhead is very high and thereforeit should be used only for small data sets. For larger data sets it is recommended that agrid array be used. The advantage in the grid array is that the memory overhead does notdepend on the number of points in the data set but only on the number of buckets in thedata set.The second case investigated was for skewed data distributions where most of the bucketsare empty. The performance of the tree structures, k-d tree, and quad tree was much betterthan the grid array. Among tree structures the k-d tree used marginally less memory buthad a marginally higher search overhead. Compared to the linked array again the treeswere much better except for the cases where the number of data points were just a fewthousand. However there is a temptation to use the linked array because of its simplicity.20



It is recommended that the tree structures be used for skewed data distributions if thenumber of points exceed a few thousand.In cases where knowledge of the data distribution is lacking we recommend using the k-dtree as the it is highly likely that the distribution is non-uniform. The k-d tree is alsomuch easier to construct compared to the quad tree when the ranges of the sliders are notequal. It was noticed that the performance of a data structure does not change with thedimensionality of the data set. The only e�ect of increasing dimensions is that the numberof buckets increases, which results in the di�erences in the performance becoming morepronounced.The data structures discussed in this paper are practical and make it possible to implementdynamic queries on standard machines in common use without major special requirements.This is essential, specially because in addition to experts, novice users with inexpensivemachines also �nd DQ very appealing.Dynamic query applications can be integrated with standard DBMS to rapidly browsethrough parts of a database, as it is usually not possible to �t entire databases in mainmemory. One way of doing this is to select a part of the database which is to be browsedusing dynamic queries. The selected parts could then be loaded in memory and browsedthrough rapidly. This technique was used in \Dynamic Trend Maps", a project developedfor the National Center for Health Statistics, where trends in mortality data for 38 typesof cancer and their correlation to 15 demographic variables was studied using a dynamicquery interface.5.2 Future DirectionsWhile analyzing the data structures an assumption was made that the data set remainsfrozen. However data sets usually change over time. It would be an interesting problem toinvestigate the e�ect of updates on these data structures. Another assumption made wasabout the nature of queries, which were assumed to be a simple conjunct of ranges. Inmany applications this assumption does not hold. The suitability of these structures on therelaxation of this assumption can also be studied.Data structures that were investigated were for main memory only. However for very largedata sets it would be impossible to do with main memory only. In such cases disk accessesbecome a necessity. Even though seeing the current state of technology it would not bepossible to maintain real time performance it would be worth while to relax this requirementand study applications where data is organized on disks.The segregation of data into buckets can also lead to interesting methods for compression.Values of some of the �elds in the data set can be determined just by knowing the bucketthe record resides in. If dynamic queries are to run in main memory then the issues ofcompression become very important.For very large data sets the querying could be done on multiple machines i.e. the querycould be distributed. In these cases data sets have to be fragmented and replicated at21



the local sites of the machines involved in the computation. Good schemes which reducecommunication overhead and distribute query computation load in a fair manner becomeessential.Making dynamic query applications run on parallel machines will give us the capabilityof handling very large data sets while maintaining real time performance. Using parallelmachines will require solving of problems like, e�cient distribution of data among nodesand ways of reducing messages between nodes.One of the reasons dynamic query applications are e�ective is because they present queryresults in a way to help users visualize the data set. Therefore e�ective ways of visualizingdata, specially multi-dimensional data are important for the success of dynamic queries.Acknowledgements : We would like to thank The National Center for Health Statisticsfor supporting the development of \Dynamic Trend Maps" which in part inspired this work.We also thank Catherine Plaisant for her leadership in developing \Dynamic Trend Maps".References[1] C. Ahlberg, C. Williamson, and B. Shneiderman, \Dynamic Queries for InformationExploration: An Implementation and Evaluation", Proc. CHI'92, ACM, New York,1992, pp. 619-626.[2] N. Beckmann, H. P. Kriegel, R. Schneider and B. Seeger, \The R*-Tree: an E�cientand Robust Access Method for Points and Rectangles", ACM SIGMOD, Atlantic CityNJ, 1990, pp. 322-331.[3] D.A. Beckley, M.W. Evans and V.K. Raman, \Multikey Retrieval from K-d Trees andQuad-Trees", Proc. ACM SIGMOD International Conference on the Management ofData, Austin, 1985, pp. 291-301.[4] J. L. Bentley, \Multidimensional Binary Search Trees Used for Associative Searching",Communications of the ACM, Vol. 18, No. 9, 1975, pp. 509-517.[5] J. L. Bentley and D. F. Stanat, \Analysis of Range Searches in Quad Trees", Informa-tion Processing Letters, Vol. 3, No. 6, 1975, pp. 170-173.[6] J. L. Bentley, D. F. Stanat and E. H. Williams Jr., \The Complexity of Fixed-RadiusNear Neighbor Searching", Information Processing Letters, Vol. 6, No. 6, December1977, pp. 209-212.[7] J. L. Bentley, \Decomposable Searching Problems", Information Processing Letters,Vol. 8, No. 5, 1979, pp. 133-136.[8] J. Bentley and J. Friedman, \Data Structures for Range Searching", Computing Sur-veys, Vol. 11, No. 4, December 1979, pp. 397-409.[9] J. Bentley and H. Maurer, \E�cient Worst-Case Data Structures for Range Searching",Acta Informatica, Vol. 13, No. 2, 1980, pp. 155-168.22



[10] S. Dandamudi and P. Sorenson, \Algorithms for BD Trees", Software-Practice andExperience, Vol. 16, No. 12, December 1986, pp. 1077-1096.[11] C. Faloutsos and P. Bhagwat, \Declustering Using Fractals", 2nd International Confer-ence on Parallel and Distributed Information Sysems, San Diego CA, 1993, pp. 18-25.[12] R. A. Finkel and J. L. Bentley, \Quad Trees , A Data Structure for Retrieval onComposite Keys", Acta Informatica, Vol. 4, 1974, pp. 1-9.[13] H. Garcia-Molina and K. Salem, \Main Memory Database Systems: An Overview",IEEE Transactions on Knowledge and Data Engineering, Vol. 4, No. 6, 1992, pp. 509-516.[14] A. Guttman, \R-Trees: A Dynamic Index Structure for Spatial Searching", Proc. ACMSIGMOD Conference, Boston, 1984, pp. 47-57.[15] D. E. Knuth, \The Art of Computer Programming, Vol. 3: Sorting and Searching",Addison-Wesley, 1973.[16] D. T. Lee and C. K. Wong, \Worst-Case Analysis for Region and Partial RegionSearches in Multidimensional Binary Search Trees and Balanced Quad Trees", ActaInformatica, Vol. 9, 1977, pp. 23-29.[17] D. Lomet, \A Review of Recent Work on Multi-attribute Access Methods", SIGMODRECORD, Vol. 21, No. 3, September 1992, pp. 56-63.[18] V. Y. Lum, \Multi-attribute Retrieval with Combined Indexes", Communications ofthe ACM, Vol. 13, No. 11, 1970, pp. 660-665.[19] J. Nievergelt and H. Hinterberger, \The Grid File: An Adaptable, Symmetric MultikeyFile Structure", ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984,pp. 38-71.[20] M. Regnier, \Analysis of Grid File Algorithms", BIT, Vol. 25, 1985, pp. 335-357.[21] P. Reisner, \Human Factors Studies of Database Query Languages: A Survey andAssessment", Computing Surveys, Vol. 13, No. 1, 1981, pp. 13-31.[22] H. Samet, \The Design and Analysis of Spatial Data Structures", Chapter 2, AddisonWesley 1989.[23] P. Scheuermann and M. Ouksel, \Multidimensional B-Trees for Associative Searchingin Database Systems", Information Systems, Vol. 7, No. 2, 1982, pp. 123-137.[24] B. Shneiderman, \Direct Manipulation: A Step Beyond Programming Languages",IEEE Computer, Vol. 16, No. 8, August 1983, pp. 57-69.[25] B. Shneiderman, \Designing the User Interface: Strategies for e�ective Human-Computer Interaction", Second Edition, Chapter 5, Addison-Wesley 1992.23



[26] C. Williamson and B. Shneiderman, \The Dynamic Home�nder: Evaluating DynamicQueries in a Real-Estate Information Exploration System", Proc. ACM SIGIR Con-ference on Information Retrieval, Copenhagen Denmark, 1992.

24


