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1. INTRODUCTION

Error correcting codes were invented to improve communication across noisy channels. In his seminal
1948 paper [17], Shannon stated that there exists error correcting codes that can achieve an arbitrarily small
probability of error given the rate of such a code falls below the channel’s capacity. Since Shannon’s claim,
researchers have focused their attention on finding such code constructions, resulting in the invention of a
multitude of code families.

Of all the code families in existence, none has likely been applied to such a wide array of real-world,
engineering problems as Reed-Solomon (RS) codes. RS codes are being used to correct errors occurring in
storage devices such as CDs, DVDs, and hard drives. One will often find RS codes on telecommunication
lines such as satellite links. Indeed, advances in the decoding of Reed-Solomon codes would certainly find
application in today’s engineering problems.

2. LIST DECODING

In this chapter, we describe the Algebraic Soft-Decision Decoding (ASD) algorithm of RS codes and
prove its correctness. The results presented here are mostly due to Guruswami and Sudan [7] with contri-
butions by Koetter and Vardy [11] and McEliece [12]. We also discuss how ASD can be used to decode a
family of RS-based codes recently proposed by Parvaresh and Vardy [13].

2.1. Introduction. RS codes are one of the most studied class of error-correcting codes. Under the tra-
ditional approach [1], they are decoded to correct errors up to half of their minimum distance d. In 1999,
Guruswami and Sudan [7] suggested a list-decoding algorithm of RS that corrects more than d/2 errors in
the list-decoding sense. An even more powerful version of their algorithm, the Algebraic Soft-Decision
Decoder, was introduced in the same paper [7] and later refined by Koetter and Vardy in [11]. While this
approach shows promise to improve the decoding performance of Reed-Solomon codes, the improvement
claim over conventional hard-decision decoding techniques in the published literature is only supported by
experimentation.

This thesis gives an error radius within which ASD has the transmitted codeword on its list for a discrete,
memoryless channel with additive noise. Based on a comparison of this radius with that of hard-decision
decoding methods, we are indeed able to claim that ASD gives a performance improvement in RS decoding
for a subset of low-rate codes. However, one should note that there exists decoder configurations which do
not exhibit an improvement.

We present new results in upper bounding the probability of error for ASD. In [10], Ratnakar and Koetter
derive an upper bound for the probability that the decoder’s list does not contain the transmitted codeword.
We show that the probability of error for this error event can be zero for low-rate codes, making it is not a
comprehensive measure of ASD’s probability of error. We redefine the definition of ASD’s probability of
error to be the selection of the correct codeword from the decoder’s list, and we derive an upper bound for
the probability for this new error event for ASD.

2.2. Reed-Solomon Coding Model. Let q be a prime power and let Fq = {α0 = 0, α1, ...αn} be the finite
field of q elements. For a polynomial f ∈ F[X] define the evaluation mapping eval : f → Fn

q given by
(evalf)i = f(αi), 1 ≤ i ≤ n. Thus, the evaluation mapping associates a q-ary n-vector to every polynomial
f ∈ Fq[x].

Definition 1. A q-ary RS code C of length n = q − 1 and dimension k is the set of codewords of the form
c = eval(f) where f runs over all polynomials over Fq of degree 0 ≤ deg f ≤ k − 1.

To describe the encoding of the code C, suppose that the message to be transmitted is u = (u1, u2, ...uk)
where ui ∈ Fq, 1 ≤ i ≤ k. The codeword that corresponds to it is given by c = eval(f), where the
polynomial f has the form

f(X) = u1 + u2X + u3X
2 + ... + ukX

k−1.
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FIGURE 1. Block diagram of a communication system using an error-correcting code.

We assume that the codeword c is transmitted over a discrete, memoryless channel with additive noise
e as shown in Figure 2.1. The output of the channel is the vector z = c + e, where the alphabet for
z = (z1, z2, ...zn) is Z = {ζ1, ζ2, ...ζJ} that is not necessarily equal to Fq. Define the channel transition
probability as

wi,j = Pr(z = ζi|c = αj).
Since the channel is additive and memoryless, we know it is symmetric as defined in Section 8.2 of [2].

RS codes can be decoded by either making hard decisions or soft decisions based on information gathered
from the channel. If soft-decision decoding is utilized, then the channel’s output is taken in the form of a q
x n matrix Π defined as

πi,j = Pr(c = αi|z = zj).
Each column of the matrix Π is the set of posterior probabilities for one symbol position of the codeword.
As is explained below, the ASD algorithm takes as inputs nonnegative integers rather than probabilities. For
this reason, a Pre-Processor converts the matrix Π into a q × n matrix M of non-negative integers that is
passed to the decoder.

If hard-decision decoding is used, the vector z is converted to the vector y = (y1, y2, ...yn), where

(1) yi = argmaxx∈Fq
Π(x, i).

The decoder then operates directly on y to give its best estimate of the message û.

2.3. Reed-Solomon Decoding Techniques. This thesis concentrates on the ASD algorithm [11] and com-
pares its performance to the well-known hard-decision decoding algorithms of Berlekamp-Massey (see e.g.
[1]) and Guruswami-Sudan [7, 12]. Most decoders in use currently use some variant of Berlekamp-Massey
(BM) syndrome decoding.

Let y be the hard-decision vector formed according to (1), and let c be the transmitted codeword. Let
dist(·,·) be the Hamming distance. If the number of errors t = dist(c, y) satisfies

(2) t ≤
⌊

n− k

2

⌋
,

then the decoder will output c. If condition (2) is not true, then decoding is guaranteed to fail. Therefore,
(2) is a necessary condition for BM decoding success.

Guruswami-Sudan (GS) decoding produces a list that contains all the codewords of distance tm from the
vector y and potentially some codewords outside of this Hamming ball. List decoding success is declared if
the correct codeword is on the list. Figure 2.2 is a conceptual picture of GS decoding in the Hamming space
over the field Fn

q . In this case, c1 was transmitted, y was received, and the channel has caused t errors. With
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FIGURE 2. GS Decoding in Hamming space.

the decoding distance at tm, GS will produce a list of at least four codewords that contains the transmitted
codeword. In the list decoding sense, Figure 2.2 is a picture of successful decoding.

The distance tm is determined by m which is a parameter of the algorithm. As m increases, tm increases
to an asymptotic limit given in Lemma 1.

Lemma 1. (Guruswami and Sudan [7]) Let m →∞. Let c be a codeword that satisfies

(3) dist(y, c) < n−
√

nk.

Then c will be included in the list output by the GS decoder with input y.

The complexity of the algorithm often becomes a limiting factor before the maximum possible tm is
achieved. Note that GS decoding is guaranteed to have the transmitted codeword on the list if the error
pattern satisfies (3), assuming large m. However, it is not necessarily true that an error pattern that does not
satisfy (3) will not be on the list. Thus, (3) is only a sufficient condition on GS list-decoding success.

Let τ = t/n be the normalized error correction radius of RS decoding algorithms, and let R = k/n be
the rate of the code. We have

(4) τ =
1−R

2
(BM Decoding) τ = 1−

√
R (GS Decoding, m large).

Figure 2.3 compares the error radii given by (4). The GS decoding radius is always greater than its BM
counterpart as shown in Figure 2.3; however, the difference becomes small for high rates. Missing from the
graph and from the published literature is a sufficient condition for ASD list-decoding success.

2.4. Bivariate Polynomials. In this section, we prepare the way for the description of algebraic list decod-
ing algorithms. Bivariate polynomials play a central role in ASD and GS decoding, so it is necessary first to
introduce some basic concepts. Let

(5) Q(X,Y ) =
∑

i,j

ai,jX
iY j

be a polynomial over Fq. For a given positive integer v, define the weighted degree of the monomial XiY j

as
wdegv XiY j = i + vj.

We will often use the value v = k − 1 for the weight and omit the subscript v in this case. For v = 1, the
weighted degree will be called simply the degree. The weighted degree of a bivariate polynomial Q(X,Y )
is equal to maximum weighted degree among its component monomials. The weighted degree defines a
reverse lexicographic order of monomials. Namely, let Xi1Y j1 and Xi2Y j2 be monomials with weighted
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FIGURE 3. Performance of BM and GS Decoding.

degrees w1 = i1 + vj1 and w2 = i2 + vj2, respectively. We say that Xi1Y j1 ≺ Xi2Y j2 if w1 < w2 or if
i1 < i2 in the case that w1 = w2. Furthermore, let

Nv(δ) = |{XiY j : i, j ≥ 0 & i + jv ≤ δ}|.
It is of interest to determine the index of the term Y L, denoted B(L, v), and the index of the term XK ,

denoted A(K, v), within the reverse lexicographic order of monomials. Lemma 2 gives an expression for
both of these quantities.

Lemma 2. (McEliece [12]) Let r = K mod v. Then

A(K, v) =
K2

2v
+

K

2
+

r(v − r)
2v

B(L, v) =
vL2

2
+

(v + 2)L
2

.

Lemma 2 implies

Corollary 1. For v ≥ 1,

L =


√

2B(L, v)
v

+
(

v + 2
2v

)2

−
(

v + 2
2v

)

K <
√

2vA(k, v).

Finally, let us discuss what it means for Q(X,Y ) to pass through a point (α, β) ∈ F2
q . The polynomial

Q(X,Y ) has a zero at the point (α, β) (passes through the point (α, β)) if Q(X − α, Y − β) ≡ 0. A
polynomial can also pass through the same point many times, meaning that it has a multiple zero at that
point.
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Definition 2. A bivariate polynomial Q(X, Y ) has a zero of multiplicity of order m at (0,0) if no monomial
of Q(X,Y ) is of degree less than m. Similarly, Q(X, Y ) has a zero of multiplicity m at (α,β)∈ F2

q if
Q(X + α, Y + β) has a zero of multiplicity m at (0, 0).

For example, the polynomial

Q(X,Y ) = (X − α)2(Y − β) + (X − α)(Y − β)2

has a zero of multiplicity 3 at (α, β).

2.5. Guruswami-Sudan List Decoding. Intuitively, the GS decoder determines its list by curve-fitting all
the codewords to the received vector y. Consider the mapping mult: Fn

q → {(α1, β1), ...(αn, βn)} defined
by (mult y) = {(x1, y1), ...(xn, yn)}. A GS decoder attempts to find codewords that are a good fit to the set
of points (mult y). The codewords that match in at least tm symbol positions are included in the list by the
decoder. GS decoding consists of the three steps detailed in Sections 2.5.1 and 2.5.2.

2.5.1. Interpolation. The first phase of decoding is called interpolation since it consists of filling in the
space between points with a curve. When the decoder receives y, it constructs a bivariate polynomial
Q(X,Y ) that has a zero of multiplicity m at each of the points (xi, yi). This task is accomplished by
solving the system of linear equations

(6) Q(X + xi, Y + yi) ≡ 0, i = 0, 1, . . . , n.

For each i, the decoder has to find a Q(X + xi, Y + yi) that has a zero of multiplicity m at (0, 0). This
implies that all the monomial coefficients of Q(X +xi, Y + yi) that are of degree less than m must be zero.
This task is difficult with the system linear equation expressed as (6). The following lemma allows us to
rewrite these equations into an easier form to handle.

Lemma 3. (Guruswami and Sudan [7]) Define Q(X, Y ) as in (5). For any (α, β) ∈ F2
q ,

Q(X + α, Y + β) =
∑
r,s

Qr,s(α, β)XrY s,

where

Qr,s(X, Y ) =
∑
r,s

(
i

r

)(
j

s

)
ai,jX

i−rY j−s.

Proof.

Q(X + α, Y + β) =
∑

i,j

ai,j(X + α)i(Y + β)j

=
∑

i,j

ai,j

(∑
r

(
i

r

)
Xrαi−r

)(∑
s

(
j

s

)
Y sαj−s

)

=
∑
r,s

XrY s
(∑

i,j

(
i

r

)(
j

s

)
ai,jα

i−rβj−s
)

=
∑
r,s

Qr,s(α, β)XrY s.

¤

The expression Qr,s(X, Y ) is called the (r, s)th Hasse derivative of Q(X,Y ). Lemma 3 allows us to
rewrite (6) as

(7) Qr,s(xi, yi) = 0, ∀i : 0 ≤ i < n, ∀(r, s) : 0 ≤ r + s < m.

5



Methods to solve the set of linear equation (7) efficiently have been suggested by Feng-Tzeng [4] and
Koetter [10]; Gaussian elimination could also be used to solve (7) but not as efficiently as the two aforemen-
tioned methods. Lemma 4 gives a condition under which there exists a non-zero polynomial Q(X, Y ) that
satisfies (7).

Lemma 4. Let wdeg Q(X,Y ) = δ. If

Nk−1(δ) > n

(
m + 1

2

)
,

then the system (7) has a non-zero solution.

Proof. Let us determine the number of linear equations contained in (7). For each i, the number of equations
equals the pairs of integers that satisfies 0 ≤ r + s < m. This number is m(m+1)

2 , and the total number of
equations (constraints) is nm(m+1)

2 .
The number of unknowns is the number of coefficients of Q(X, Y ), or Nk−1(δ). Thus, if Nk−1(δ) >

n
(
m+1

2

)
, the number of unknowns exceeds the number of constraints, and there must be a non-zero solution.

¤

2.5.2. Factorization and Selection. It is not required to fully factor Q(X, Y ) in order to determine the
decoder’s list. We only need to determine the factors of Q(X, Y ) of the form Y − f(X) where deg f(X) ≤
k − 1. An efficient root-finding technique has been suggested by Roth and Ruckenstein in [16].

A key goal in list decoding is bounding the size of the output list. A simple upper bound can be derived
by finding an expression for the Y -degree of Q(X, Y ). This bound will not be tight due to the fact that
Q(X,Y ) may have roots that satisfy (6) but do not correspond to codewords because their degree exceeds
k − 1. This upper bound on the size of the list can be found by considering the Y L monomial that has the
same degree as greatest Y -degree monomial of Q(X, Y ). Lemma 5 gives an upper bound for the value of
L.

Lemma 5. (McEliece [12]) The size of the list L produced by a GS decoder is bounded above as

(8) L <


√

n

k − 1
m(m + 1) +

(
k + 1
2k − 2

)2

−
(

k + 1
2k − 2

) .

Proof. Assume that Y L has the same Y -degree as Q(X, Y ); it follows that L bounds the size of the list
produced by a GS decoder. Corollary 1 gives an upper bound on L, so it is only a matter of determining
B(L, k − 1) and v. We set v = k − 1 because we are interested in polynomials of degree k − 1 or less.
Since Y L is the largest monomial of weighted degree L, it follows that B(L, k − 1) = Nk−1(L). By using
Lemma 4, we know Q(X,Y ) exists if

B(L, k − 1) > n

(
m + 1

2

)
.

Setting B(L, k − 1) = n
(
m+1

2

)
gives us the upper bound in the lemma. ¤

After factorization is complete, maximum likelihood selection for the list obtained can be is used to
determine the best estimate of the transmitted message. In this case, maximum likelihood selection consists
of a search for the codeword on the list that is closest to the received vector by Hamming distance.

2.6. Algebraic Soft-Decision Decoding. ASD extends GS decoding through the manipulation of the mul-
tiplicities. Instead of operating on a vector y, ASD takes as input multiplicity matrix M. The soft-decision
decoder constructs a bivariate polynomial Q(X, Y ) that has zeros of multiplicity set by M. In contrast to
GS decoding that always constructs Q(X,Y ) based on n distinct zeros, ASD can have up to qn distinct
zeros. The methods of determining M from the channel output is discussed in Section 2.6.1.

6



Similarly to GS decoding, ASD uses curve-fitting of codeword polynomials to points. However, since
there are many more points, including multiple points for the same codeword position, Hamming distance
is an inadequate way to measure the fit of a codeword. Thus, we must introduce the notion of a codeword
score.

Definition 3. Let the score of a vector v be

〈M, [v]〉 =
n∑

i=1

mv(i),i.

The notation [.] represents the indicator matrix such that [v]i,j = 1 if vj = αi, where Fq = {α1, α2, ...αq},
and [v]i,j = 0 otherwise. Furthermore, v(i) = l where vi = αl.

The higher the score of a codeword, the better the fit to the multiplicity matrix. In this new paradigm, the
geometric picture of Figure 2.2 no longer applies. The question that follows is how we can now determine
whether a codeword is on the list produced by ASD. This question is answered in Section 2.6.2.

2.6.1. The Multiplicity Matrix. The matrix M is determined from the matrix of posterior probabilities Π
which is based on the received vector z. This vector z is equal to the hard-decision vector y only if e ∈ Fn

q .
Koetter-Vardy [11], Parvaresh-Vardy [13], and El-Khamy-McEliece [3] have proposed various methods for
determiningM from Π. This thesis will use the simplest method for converting Π toM proposed by Gross-
Kschischang-Koetter-Gulak [6]. It is named the Proportionality Multiplicity Assignment Strategy (PMAS),
and it finds M by performing the following element-wise calculation on Π.

(9) mi,j = bλπi,jc
The parameter λ ∈ Z+ is the complexity factor, and its adjustment directly controls the balance between
the performance and the complexity of ASD. Another important measure of the complexity of the decoder
is the cost of the multiplicity matrix.

Definition 4. Let the Cost of a multiplicity matrix M be

C(M) =
〈M,M〉+ 〈M, 1〉

2
=

1
2

∑

i,j

mi,j(mi,j + 1).

2.6.2. Threshold Condition. Since we are no longer guaranteed to produce a list that contains all the code-
words less than Hamming distance tm, one wonders how to know if a codeword c is on the list produced
by ASD. It turns out that if SM(c) exceeds a threshold given in Lemma 8, it follows that c is on the list
produced by ASD.

In order to motivate Lemma 8, consider the following system of linear equations associated with a given
multiplicity matrix M.

(10) Qr,s(xi, yi) = 0, ∀(i, j, r, s) : 0 ≤ r + s < mi,j

Claim 1. The number of equations in (10) equals C(M).

Similarly to Lemma 4, a polynomial Q(X, Y ) that satisfies (10) is guaranteed to exist if

Nk−1(wdeg Q(X,Y )) > C(M).

We need to introduce one technical lemma before proceeding.

Lemma 6. (Guruswami and Sudan [7]) If (α, β) is a zero of multiplicity m of polynomial Q(X,Y ) and
β = f(α), then (X − α)m | Q(X, f(X)).

Lemma 7 will show that Y − f(X) is a factor of such a Q(X,Y ) when the score of the codeword is large
enough.

Lemma 7. Let δ = wdeg Q(X,Y ) and let c = eval(f) where f ∈ Fq[x] is a polynomial of degree≤ k− 1.
If Nk−1(δ) > C(M) and SM(c) > δ, then (Y − f(X)) | Q(X,Y ).

7



Proof. Define the polynomial P (X) as

P (X) = Q(X, f(X)).

If it can be shown that P (X) ≡ 0, then Y − f(X) is a factor of Q(X, Y ). Let mi = mc(i),i and SM(c) =∑n
i=1 mi, i.e. Q(X, Y ) has zeroes of multiplicity mi at each of the points (xi, ci), respectively. From

Lemma 6, we have
(X − x1)m1(X − x2)m2 ...(X − xn)mn | P (X).

We now know that either deg P (X) ≥ SM(c) or P (X) ≡ 0. On the other hand, since deg f(X) ≤ k − 1,

deg P (X) ≤ wdeg Q(X, Y ).

Therefore, if SM(c) > wdeg Q(X, Y ), then it follows that P (X) ≡ 0, and the lemma is proven. ¤

Lemma 8 is the main result of the section. It follows directly from Lemma 6.

Lemma 8. (Koetter and Vardy [11]) If

SM(c) >
√

2(k − 1)C(M)

or equivalently
n∑

i=1

mc(i),i >

√
(k − 1)

∑

i,j

mi,j(mi,j + 1),

then Q(X, Y ) contains a factor Y − f(X).

Proof. If we can find an upper bound for wdeg Q(X,Y ), and if the score of a codeword exceeds this upper
bound, then we know from Lemma 7 that this codeword is on the decoder’s list. To this end, consider
the monomial XK that is same degree as the greatest weighted degree among the monomials of Q(X, Y ).
Corollary 1 provides an upper bound on K as follows.

K <
√

2vA(K, v)

We set v = k − 1 since we trying to find a factors of the form Y − f(X) where deg f(X) ≤ k − 1.
We also know that A(K, v) ≥ C(M), otherwise there may not exist a Q(X, Y ) which meets all the linear
constraints of M. Thus,

√
2(k − 1)C(M) is an upper bound for wdeg Q(X,Y ). If SM(c) exceeds this

upper bound, then the conditions of Lemma 7 must be true, and Lemma 8 is proven. ¤

2.7. Multivariate Interpolation. Recently, Parvaresh and Vardy introduced a new class of codes con-
structed as evaluations of M ≥ 2 polynomials and extended the decoding procedure described above to
multivariate interpolation. A code C in the Parvaresh-Vardy (PV) family is defined as follows.

Let {1, β1, β2, ...βM−1} be a basis over FqM , let {a1, a2, ...aM−1} be a set of positive integers greater
than 1, and let e(X) be an irreducible polynomial over Fq. The code has parameters [n, k] where n = q− 1.
It follows that the rate of a PV code C is R = k

Mn and the minimum distance is d = n − k + 1. The
encoder constructs f(X) as the polynomial derived from the message u, and it finds the set of polynomials
{g1(X), g2(X), ...gM−1(X)} by computing

(11) gi(X) = (f(X))ai mod e(X).

Since (11) is a non-linear operation, the code C is not necessarily linear. A codeword c = {c1, c2, ...cn}
of a PV code that is associated with u is found through the evaluation

ci = f(αi) +
M−1∑

j=1

βjgj(αi), ∀i : 1 ≤ i ≤ n,

whereαi, i = 1, . . . , n are all the nonzero elements of Fq.

8



The authors considered only hard decision decoding by an extension of the Guruswami-Sudan method;
however, following Lemmas 6-8, it is possible to establish a sufficient condition under which soft-decision
decoding places a codeword on the list.

Theorem 1. Let C be an [n, k] PV code over FqM communicated over a discrete memoryless channel with
additive noise. Suppose that it is decoded using a multivariate version of the ASD algorithm. A codeword
c = (c1, . . . , cn) will be included in the list output by the algorithm if

n∑

i=1

mc(i),i > M+1

√√√√(k − 1)M
∑

i,j

(
mi,j + M

mi,j − 1

)
.

Proof. By extending equation (38) of [13], we can derive an upper bound for the multivariate polynomial as

(12) wdeg Q(X,Y1, ...YM ) <

 M+1

√√√√(k − 1)M
∑

i,j

M∏

l=0

(mi,j + l)

 .

where wdeg XiY j1
1 ...Y jM

M = i+(k−1)
∑M

l=1 jl. If the score SM(c) exceeds (12), then c is on the algebraic
soft-decision decoder’s list by a similar argument that was used in Lemma 7. ¤

3. ASD ERROR CORRECTING PERFORMANCE

This chapter quantifies the performance of Algebraic Soft-Decision Decoding in two ways. First, we
derive an ASD decoding radius and show that this radius is larger than the GS decoding radius of Lemma 1
for a subset of low-rate codes for discrete, memoryless channels with additive noise. The only exception to
this claim is if the complexity factor does not exceed a threshold that is a function of the channel.

Second, we consider the ASD probability of error by realizing that decoding success is the intersection
of the decoder’s list containing the transmitted codeword and the decoder selecting the correct codeword
from the list. While the published literature has taken the list-decoding probability of error to only measure
the first event, we propose that both events must be considered to give good insight into the list-decoding
probability of error. An upper bound is presented for this newly-defined probability of error termed the
probability of error for decoder selection.

3.1. Setting. Assume that the error vector e ∈ Fn
q . Thus, z = y. We also assume that each symbol entering

the channel is uniformly drawn from Fq, an assumption also made by Koetter and Vardy in [11] and Justesen
in [9]. It follows that πi,j = wi,j . Since the channel is symmetric, we can assume that the channel transition
probabilities wi,j are drawn from the set {p1, p2, ...pq}. Next, we will introduce the three channel statistics

pmax = max
1≤i≤q

pi pmin = min
1≤i≤q
i:pi>0

pi γ =
q∑

i=1

p2
i .

When the channel is noiseless, set pmin = 0. We will assume throughout that the channel’s capacity is
greater than zero, giving us pmax > pmin. As will be seen later, pmax, pmin, and γ will be the only channel
statistics necessary in our analysis of ASD’s performance.

3.2. ASD Error Radius. In this section, we present one of our main results, an estimate of the error correc-
tion radius of the algorithm. ASD will produce a list with a codeword c when y, as defined in (1), is within
a Hamming distance t from c. Thus, we are analyzing a soft-decision decoder using a hard-decision metric.
We would like to stress that the error correction radius of ASD decoding is defined in a different way than
for BM and GS decoding. In the case of BM and GS decoding, all of the codewords within the error radius
are on the decoder’s list, but for ASD, the only codeword within the error radius that is guaranteed to be on
the list is the transmitted codeword.

9



Theorem 2. Suppose a RS code with rate R = k/n is used to communicate over an discrete, additive-noise
channel. An algebraic soft-decision decoder, with complexity factor λ, is used to decode, and t = dist(c, y).
If

(13)
t

n
≤

pmax −
√

R
(
γ + 1

λ

)− 1
λ

pmax − pmin
,

then the decoder’s list will contain the transmitted codeword c.

Proof. Let c be the transmitted codeword, let y be defined as in (1), and let the functions c(i) and y(i) be
defined by αc(i) = ci and αy(i) = yi, respectively. Substituting (9) in Lemma 8, we get

(14)

∑n
i=1bλwc(i),y(i)c√∑n

i=1

∑q
j=1 (bλwi,jc2 + bλwi,jc)

≥
√

k − 1.

Introduce the parameter µi,j as the PMAS error term satisfying mi,j = λπi,j − µi,j ∀(i, j). The inequality
(14) becomes

(15)

∑n
i=1

(
λwc(i),y(i) − µc(i),y(i)

)
√∑n

i=1

∑q
j=1 ((λwi,j − µi,j)2 + λwi,j − µi,j)

≥
√

k − 1.

Dropping the PMAS error terms in the denominator of the LHS of (15) can only make the LHS smaller.
A smaller LHS makes (15) a more stringent condition for c ∈ L, where L is the soft-decision decoder’s list.
Rearranging and using the additive nature of the channel yields

(16)
1
n

n∑

i=1

wc(i),y(i) ≥
√

R

(
γ +

1
λ

)
− γ

n
− 1

λn
+

1
λn

n∑

i=1

µc(i),y(i).

Inequality (16) certainly holds true for the codeword c if

(17)
1
n

n∑

i=1

wc(i),y(i) ≥
√

R

(
γ +

1
λ

)
+

1
λ

.

We have derived a condition based on a specific y, but we are interested in ASD’s performance for any y
when c is transmitted. Thus, y becomes a random variable. Let W be wc(i),y(i) given random y. Thus, W
is also a random variable. The dependence on c has been dropped since the p.m.f. of W is independent of c
for an additive channel. The p.m.f. of W is as follows.

pW (pi) = Pr{W = pi} = pi ∀i : 1 ≤ i ≤ q

Taking each Wi to be a random variable with the same p.m.f. as W, equation (17) can be rewritten

(18)
1
n

n∑

i=1

Wi ≥
√

R

(
γ +

1
λ

)
+

1
λ

.

Using t as defined in the theorem statement, the LHS of (18) can be lower below as

1
n

n∑

i=1

W ≥ 1
n

(tpmin + (n− t)pmax).

Thus, c is on the soft-decision decoder’s list if

1
n

(tpmin + (n− t)pmax) ≥
√

R

(
γ +

1
λ

)
+

1
λ

.

The theorem’s result follows. ¤
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FIGURE 4. Decoding radius for the “typewriter channel” of Example 1.

A first look at the error radius in Theorem 2 reveals that (13) becomes large as pmin approaches pmax. In
other words, ASD performs well when the channel is far from q-ary symmetric. If the channel is noiseless
and λ is sufficiently large, then the bound in Theorem 2 reduces to 1 − √R which is the GS normalized
error bound. Let us consider two examples.

Example 1. Consider the “typewriter channel” where wi,i = 0.8, wi,j = 0.2 for some j 6= i, and wi,j = 0
for all the remaining pairs (i, j). Thus, pmax = 0.8, pmin = 0.2, and γ = 0.68. Let us set λ = 100.
Figure 3.1 shows the normalized error bound compared to the GS error bound for this example. The BM
error bound is also shown for reference. ASD is able to produce a list with the codeword c for a greater
error radius than GS decoding for many low to medium rates. The range of rates for which ASD decoding
corrects more errors than GS decoding is characterized in Section 3.4.

Example 2. Figure 3.2 shows the normalized error bound compared to the GS error bound for a q-ary
symmetric channel with pmax = 0.805 and q = 16. Thus, pmin = 0.013 and γ = 0.6506, and we set
λ =

⌈
1

pmin

⌉
= 77. ASD still provides an improvement, but it is only for extremely low-rate codes. The lack

of improvement for the q-ary symmetric channel is expected since all error patterns, given that there are t
errors, are equally probable.

3.3. Size of the List. Proposition 1 gives an upper bound for the size of the list produced by ASD.

Proposition 1. Given an additive noise channel, the size of the list for an algebraic soft-decision decoder,
with R > 1

n , is bounded above as

(19) |L| ≤



√√√√λ2γ + λ

R− 1
n

+

(
R + 1

n

2R− 2
n

)2

−
(

R + 1
n

2R− 2
n

) .

11
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FIGURE 5. Decoding radius of ASD for a q-ary symmetric channel compared to GS and
BM decoding.

Proof. Observe that

(20) 〈M,M〉+ 〈M, 1〉 = n

q∑

i=1

(λpi − µi)
2 + n

q∑

i=1

(λpi − µi)

≤ nλ2γ + nλ.

Substituting the upper-bound of (20) in (8) gives the result in the proposition. Since v ≥ 1, it follows that
R > 1/n. ¤

The bound in Theorem 1 is based on the Y -degree of the polynomial Q(X,Y ). Thus, it counts all such
solutions to the system of equations (10), including the higher-order polynomials. As a result, Theorem 1’s
bound is not tight.

Example 3. Figure 3.3 shows a graph of the bound on the list size presented in Theorem 1 for Example 1
with n = 255. The list size can be seen to be a strictly decreasing function of the rate.

The maximum number of codewords on a list occurs when R is at its minimum. With the restriction
R > 1/n in place and the bound being a strictly decreasing function of the rate, an upper bound on the list
size is obtained when we consider R = 2/n. In this case, (19) becomes

(21) |L| ≤
⌊√

nλ2γ + nλ +
9
4
− 3

2

⌋
<

√
λ2γ + λ

√
n.

As one can see from (21), the number of codewords is polynomial in n.

3.4. A Closer Look at the ASD Error Radius. We are interested in quantifying when the radius in Theo-
rem 2 is larger than the radius in Lemma 1.
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Corollary 2. With λ > 1/pmin, the algebraic soft-decoding radius exceeds the GS decoding radius if

(22) R <


 pmin − 1

λ√
γ + 1

λ − pmax + pmin




2

.

Proof. Solving the equation

pmax −
√

R
(
γ + 1

λ

)− 1
λ

pmax − pmin
> 1−

√
R

for R and assuming λ > 1/pmin yields the corollary. ¤
¿From Corollary 2, we see that the ASD error radius exceeds the GS error radius for a subset of low rates

for λ large enough. However, this subset may be small and not achievable if n is small. One can see this
subset clearly in Example 1. One also notices in Example 1 that there is another non-zero subset of code
rates where the transmitted codeword is always on the list, i.e. t/n ≤ 1. Corollary 3 quantifies this region.

Corollary 3. Let λ > 1/pmin. If

(23) R ≤
(
pmin − 1

λ

)2

γ + 1
λ

,

then an algebraic soft-decision decoder will always produce a list containing the transmitted codeword c.

Proof. If the RHS of (13) is 1, then ASD will produce a list that contains c regardless of the error pattern.
Thus, the task reduces to solving for R in the inequality

pmax −
√

R
(
γ + 1

λ

)− 1
λ

pmax − pmin
≥ 1,

from which the corollary follows. ¤
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It is a surprising result that there exists non-zero rates where ASD always produces a list that contains
the transmitted codeword. The intuition in support of this result is that there is always a path from the
transmitted vector to the received vector. Thus, the soft-decision decoder can neglect those codewords that
could not have been transmitted due to zeros in the transition probability matrix, allowing the decoder to
produce a list that is polynomial in n.

For the q-ary symmetric channel, a case where intuition tells us that ASD should provide no improvement
over GS decoding, Figure 3.2 still shows a region that where ASD’s error radius exceeds GS decoding’s error
radius. However, there is no code construction that simultaneously satisfies the conditions of Corollary 3
and (22) for the q-ary symmetric channel unless we have λ → ∞. Thus, there is no achievable rate region
where the ASD radius is larger than the GS decoding radius except when the size of the list is unbounded.

Even though the decoder always has the transmitted codeword on its list for rates that satisfy Corollary
3, there is still a non-zero probability of a decoding error due to another codeword also on the list being
ultimately selected by the decoder. The probability of a wrong codeword being selected is a separate error
event that will be discussed in more detail in Section 3.6.

3.5. Multivariate Error Decoding Radius. Suppose a PV code is transmitted over an discrete additive
channel with error probabilities {p1, p2, ...pqM }. The statistics pmin, pmax, and γ are defined as before over
this new set of transition probabilities. An error radius is given in Theorem 3 for soft-decision decoding of
PV codes.

Theorem 3. Given a PV code with rate R = k
Mn is used to communicate over an additive-noise channel. If

(24)
t

n
≤

pmax − M+1

√
RMMM

(M+1)!

∑qM

i=1

∏M
l=0(pi + l/λ)− 1

λ

pmax − pmin
,

then an algebraic soft-decision decoder, with complexity factor λ, will produce a list that contains the
transmitted codeword c.

The proof is done in exactly the same way as Theorem 2 and is omitted.

Example 4. Let us return to the typewriter channel, pmax = 0.8, pmin = 0.2, γ = 0.68, and λ = 100,
and compare trivariate soft-decision decoding of PV codes to bivariate soft-decision decoding of RS codes.
Figure 3.4 shows the error radii (13) and (24). The graph shows that trivariate decoding provides an
improvement over bivariate for rates less than 0.3.

3.6. Bound on the Probability of Decoding Error. This section is focused on bounding the probability
of error for Algebraic Soft-Decision Decoding. In the list-decoding setting, the probability of error has
generally been defined as the probability that the transmitted codeword is not on the decoder’s list. In many
applications, in the final stage of decoding, it is required to select a unique codeword candidate from the
list obtained using the maximum likelihood criteria. In this section, we derive a bound for the probability
of error when the criteria is the transmitted codeword is on the decoder’s list and it is selected as the best
estimate.

The only known previous work in deriving ASD probability of error bounds is [15]. In that paper, Rat-
nakar and Koetter consider a general channel and take the probability of error to be the event that the
transmitted codeword is not on the decoder’s list. We propose a more comprehensive probability of error
that includes the event that the decoder chooses the wrong codeword form the list, and we present an upper
bound for this probability of error.

3.6.1. General Form. As in the previous section, the channel is assumed to be additive and memoryless.
The transmitted codeword is c, the decoder’s list is L, and the decoder’s chosen codeword is ĉ. Define the
following random events A and B as

A : c /∈ L B : {ĉ 6= c}

14
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FIGURE 7. Trivariate decoding of a PV code compared to ASD of a RS code.

The list-decoding probability of error, which is the probability that the list produced by ASD contains the
transmitted codeword, is given by Pr{A}. The selection probability of error is given by Pr{B}. Observe
that A ⊆ B, giving us Pr{A} ≤ Pr{B}. Each of these probabilities can be bounded above by using the
Chernoff bound (see e.g. [5]).

Lemma 9. (Chernoff Bound ) Let w be a random variable with moment generating function Φw(s) and let
A be a real number. Then

(25) Pr{w ≥ A} ≤ e−sAΦw(s) s > 0

(26) Pr{w ≤ A} ≤ esAΦw(−s) s > 0.

In applications, one optimizes on the choice of s to obtain the tightest bound possible. The Chernoff
Bound will allow us to write

Pr{A} ≤ e−nEA , Pr{B} ≤ e−nEB .

The functions EA and EB are the error exponents for Pr{A} and Pr{B}, respectively.

3.6.2. List-Decoding Probability of Error. Theorem 4 gives an upper bound on the probability that the
transmitted codeword is not on the decoder’s list.

Theorem 4. The probability of event A can be bounded above as

Pr{A} ≤ e−nEA ,

where

EA = ∞ ifR <
(pmin − 1

λ)2

γ + 1
λ

, λ >
1

pmin

EA = − ln

(
q∑

i=1

pie
−s
�
pi−

q
R(γ+ 1

λ
)− 1

λ

�)
otherwise.
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Proof. According to Corollary 2, we know c ∈ L for all error patterns when

R ≤ (pmin − 1
λ)2

γ + 1
λ

, λ >
1

pmin
.

Thus, EA = ∞ in this rate region. In order to gain insight into the the event A for the remainder of
the rates, consider again Lemma 8. If the condition in Lemma 8 is met, it is clear that A is false, but if
the condition is not met, A could either be true or false. Thus, A will be true a certain fraction of the time
when Lemma 8 is false. Now recall that (18) follows directly from Lemma 8, except it is generalized to all
possible received vectors y. Following the logic above, the probability that (18) is false will give an upper
bound on Pr{A}. On account of Lemma 8, we obtain

Pr{A} ≤ Pr

{
n∑

i=1

Wi ≤ n

√
R

(
γ +

1
λ

)
+

n

λ

}

≤ e
sn
�q

R(γ+ 1
λ)+ 1

λ

�(
q∑

i=1

pie
−spi

)n

(s > 0)

which proves the theorem. ¤

In order to obtain the tightest bound, we need to maximize EA through proper choice of s. If we define
g(s) by EA = − ln(g(s)), then the goal is to minimize g(s). When the maximum value of EA is negative,
then reliable communication is not possible. The following lemma shows that reliable communication is
possible when the code rate is less than a rate maximum that can be well-estimated by γ.

Lemma 10.

EA > 0 if R < Rmax =
(γ − 1

λ)2

γ + 1
λ

EA = 0 otherwise.

Proof. We have that

g(s) =
q∑

i=1

pie
−s
�
pi−

q
R(γ+ 1

λ
)− 1

λ

�
.

First observe that g′′(s) > 0, indicating that the function g(s) is convex. Next observe that g(0) = 1 and

that g′(0) < 0 ↔ R <
(γ− 1

λ
)2

γ+ 1
λ

. In the case that g′(0) < 0, the minimum value of g(s) is achieved for some

s′ > 0, and since g(0) = 1, g(s′) ≤ 1. Thus, EA > 0. Otherwise, g(s) ≥ 1 which implies EA = 0. ¤

3.6.3. Probability of Error for Selection. When the list-decoding probability of error is zero, one does not
have insight into the performance of ASD. Since the transmitted codeword is always on the decoder’s list,
the probability of decoder error only exists in the selection phase. Therefore, it is of interest to quantify a
comprehensive probability of error given by Pr{B} and bounded in Theorem 5.

Theorem 5. Let C be a q-ary code of length n and rate R. The probability of event B can be bounded above
as

Pr{B} ≤ e−nEB

for at least one coset of a RS code, where

EB = − ln
(
qR−1es/λ + 2qR−1

q∑

i=1

q∑

j=1
j 6=i

pie
−s(pi−pj− 1

λ
)
)
.
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Proof. Consider the following random code construction. Select a RS code C of rate R, and denote the
cosets of the code as Ci, i = 1, ... qn−k with any ordering. Suppose a message is transmitted using the
random code C ′ defined as

(27) Pr{C ′ = Ci} =
1

qn−k
.

If the probability of error can be bounded above for this random-code construction, then there is at least
one coset of C that has a probability of error with this same upper bound. Observe that

(28) Pr{B} = Pr{∃c′ 6= c, c′ ∈ L : SM (c′) ≥ SM (c)}
Define the events Ci and Di as follows:

Ci : {(ci ∈ L) & (SM (ci) ≥ SM (c))}
Di : {SM (ci) ≥ SM (c)}

Clearly, Pr{Di} ≥ Pr{Ci}. Assume that the codewords of each coset are ordered in some particular way
of which ci is a member codeword. Next, continuing from (28)

Pr{∃c′ 6= c, c′ ∈ L : SM (c′) ≥ SM (c)} = Pr
{ qk⋃

i=1
i:ci 6=c

Ci

}
≤

qk∑

i=1
i:ci 6=c

Pr{Ci}

≤
qk∑

i=1
i:ci 6=c

Pr{Di}.(29)

Define the event Ei as follows:
Ei : {vi ∈ Fn

q : SM (vi) ≥ SM (c)}.
The probability that a given vector is a codeword in Ci is 1

qn−k . Using this fact, (29) can be rewritten

qk∑

i=1
i:ci 6=c

Pr{Di} =
qn∑

i=1
i:vi 6=c

Pr{Ei, vi ∈ C ′}

=
qn∑

i=1
i:vi 6=c

1
qn−k

Pr{Ei}.
(30)

For a given message, the codeword transmitted is drawn uniformly from a set of candidate codewords
that are equally likely to have any of the q symbols at each symbol position. Thus, one element in SM (vi) is
drawn uniformly from the set of q possible multiplicities. Let Vi be a random variable uniformly distributed
on {p1, p2, ...pq}. We have

qn∑

i=1
i:vi 6=c

1
qn−k

Pr{Ei} =
qn − 1
qn−k

Pr
{ n∑

i=1

bλVic ≥
n∑

i=1

bλWic
}

≤ qk Pr
{ n∑

i=1

(
λVi − µi,V

) ≥
n∑

i=1

(
λWi − µi,W

)}

≤ qk Pr
{ n∑

i=1

(
Vi −Wi

) ≥ −n

λ

}
.
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FIGURE 8. Comparison of the two error exponents for ASD over low rates.

The second line introduces PMAS error terms, that satisfy 0 ≤ µi,V , µi,W < 1, similarly to the proof
of Theorem 1. The V and W subscripts indicate the random variable to which the error terms are associ-
ated. We arrive at the third line by setting the error terms to their extreme points that make the probability
expression greater. Now let us apply the Chernoff bound (25). For any s > 0,

(31) Pr
{ n∑

i=1

(Vi −Wi) ≥ −n

λ

}
≤ e

sn
λ

( q∑

i=1

1
q
espi

)n( q∑

i=1

pie
−spi

)n
.

Algebraic manipulation of (31) and the appropriate definition of EB results in the theorem. ¤

Define EB = − ln(h(s)). Minimizing the bound is the same as minimizing h(s), and this procedure
is independent of the value of R. It is of interest to find out the behavior of EA compared to EB across
all values of R. For the same channel in Example 1 (pmax = 0.8, pmin = 0.2, λ = 100, q = 256, and
γ = 0.68), Figure 3.5 shows the comparison of EA to EB. The One can see that reliable communication,
in the list-decoding sense, is assured for rates less than 0.67, and reliable communication, based on the
probability of error of selection, is guaranteed for rates less than 0.41.

4. CONCLUSION

The results presented in this thesis have shown that Algebraic Soft-Decision Decoding is able to outper-
form its hard-decision counterparts for low-rate to medium-rate codes. The error decoding radius presented
is a new result in the literature that allows ASD to be compared to other RS decoding methods. A compre-
hensive probability of error bound is derived that includes the previously overlooked probability of selection
error.

4.1. Open Questions. Though there has generally been a dearth of publications related to Algebraic Soft-
Decision Decoding, one area of relatively high activity has been the investigating the best method of gener-
ating the multiplicity matrix from the channel. The PMAS method was chosen to use in this thesis, but it is
unknown if other methods may yield a larger decoding radius.
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Throughout this thesis, it has been assumed that the channel is discrete. An interesting question is if
an error radius can be derived for the Gaussian channel. Techniques used in this thesis do not seem to be
sufficient to accomplish this goal. Another possible avenue of research is a study of the trade-off among the
error-correction radius, error probability, and the size of the decoder’s list. It also would be worthwhile to
extend ASD to the decoding of Algebraic-Geometry codes.

An open question that remains unanswered is if ASD’s performance makes it a worthwhile decoder to
use in Reed-Solomon coding applications. For low-rate coding applications with channels that are far from
q-ary symmetric, ASD shows the potential to correct a greater number of errors than hard-decision decoders.
However, there is no insight in this thesis about the performance of high-rate ASD decoding of high-rate
codes.

We are interested in decoding high-rate codes because they are the most frequently used to solve real-
world engineering problems. Koetter and Vardy have projected in [11], through simulation, that a 1 dB
coding gain can be achieved over GS and BM decoding for a RS code of rate 0.92. If the channel used in the
simulation was q-ary symmetric, then this coding gain would likely be reduced, but the question remains of
what is the improvement that ASD gives the user in high-rate coding applications.
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