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An evaporator test stand has been designed, sized, constructed, calibrated and 

operated to investigate the evaporator performance degradation for low temperature 

refrigeration applications.  Measurements have been taken of air- and refrigerant-side 

temperatures, refrigerant-side pressures, air- and refrigerant-side differential pressures, 

air- and refrigerant-side mass flow rate and the power consumption of the electric defrost 

heater.  The system is designed to work as a commercial refrigeration system for low 

temperature applications including freezing and defrost cycles.  A manual and automatic 

defrost control has been designed and tested.  The calculated values are the air- and 

refrigerant-side capacities.  The tests have shown that the system is able to accomplish all 

desired test conditions. 
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The performance of the evaporator was evaluated continuously during testing. Its 

performance degraded constantly by accumulation of frost during each frosting cycle, 

which resulted in the loss of superheat towards the end of each cycle.  The defrost 

operation could not restore the full capacity of the evaporator.  The defrost cycle consists 

out of two phases, melting the ice and re-cooling the coil. The first phase melts all the ice 

of the coil but the drainage of the resulting water is incomplete.  The re-cooling phase 

freezes the amount of water residue on the evaporator coil, which causes an accelerated 

frost formation in the following freezing cycle.  All over this behavior causes an 

accelerated reduction in evaporator capacity and therefore earlier superheat loss. It has 

been investigated for two air flow rates. The comparison of cycles with different air flow 

rates showed that with an increased air flow rate the frost density increases and the free 

flow area of the air passage in the evaporator decreases more slowly. 
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1 Introduction 

Low temperature refrigeration, at temperatures below 0°C, affects everyday life.  It is 

mostly used for food preservation, such as in the freezer of a refrigerator.  There are 

different kinds of refrigeration systems according to different refrigeration temperatures.  

For low temperature refrigeration with temperature above -20°C, single-stage 

refrigeration systems are used, below -20°C, two-stage systems or compound systems are 

used. The primary refrigerant for these systems is R-22.  However, R-22 will be phased 

out due to environmental issues. A proposed replacement is R-404A. 

When the temperature is lower than the freezing point of water, formation of frost 

occurs.  Frost, like snow, is the result of deposition of water vapor in saturated air.  The 

difference between snow and ice is that snow is formed from a transformation of water 

vapor into solid state, however, when water vapor condense and then solidifies, ice or 

sleet is formed.  Figure 1, a morphological diagram, shows different shapes of snow 

crystals under different temperature and super saturation condition. 

 

Figure 1: Morphology Diagram [1] 
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Frost growth on a solid surface happens when the solid surface is colder than the 

freezing point of water.  Frost deposition is formed by condensed and solidified water 

vapor on the cold surface.  Condensation and frost formation start first at various 

nucleation sites depending on the solid surface.  From there it will spread out all over the 

solid object. 

Frost growth can be observed on low temperature evaporators.  The evaporator in the 

refrigeration system provides the coldest surface for condensation of the water vapor and 

freezing.  The frost growth on the evaporator results in decrease of water contend and 

humidity ratio of air.  The initial humidity level determines how much frost can be 

formed on a coil.  Ideally the low temperature chamber should be completely sealed so 

that after the first frost has been defrosted from the coil the humidity level in the 

refrigerated space is low enough that no more frost can form.  In supermarket application, 

freezer doors are opened and closed frequently.  Every time, when a door opens, it 

provides the refrigerated space with additional water vapor, which will freeze on the heat 

exchanger eventually.  The frost has a positive and a negative effect.  The initial frost will 

create turbulences in the air flow, which has a positive effect for the heat transfer. 

However, if the frost growth continues, it causes additional thermal resistance and 

increases the hydraulic resistance to the air flow, then the capacity of the evaporator will 

decrease dramatically. 

Therefore it is important to investigate the frost formation on heat exchangers 

especially for low temperature applications in order to understand the effect of frost 

formation on the performance degradation.  Typically, a fin-and-tube type heat exchanger 

is used for low temperature conditions.  The fin spacing is much larger than for medium 
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temperature heat exchangers to prevent a total block of the air passage by frost.  The fin 

itself usually is flat and polished.   

Although frost is a constant problem for low temperature applications, no complete 

model has been developed to predict it accurately yet.  There are too many variables 

influencing the growth of frost. 
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2 Literature Review 

Many studies have been conducted in attempts to investigate and model frost 

properties and frosting behavior.  

N.H. Fletcher [2] characterized frost formation on a cold surface into two processes: 

nucleation and crystal growth.  The initial frost forms through nucleation on the surface. 

From this state the ice crystal starts to grow.  B. Na et al. [3] investigated the fundamental 

understanding of factors affecting frost nucleation. He related the surface energy with 

frost formation. The development of low energy surfaces could lead to less frost. Gibbs 

Energy is used to describe the energy level of the surface.  Most studies do not consider 

frost nucleation. 

Frost growth and frost properties models for a cold flat surface have been developed by R. 

Yun et al. [4].  Besides a physical model for the frost layer growth and frost properties, an 

empirical correlation for average frost roughness was presented.  Frost roughness is 

defined as the difference between the height of hill and valley of the frost.  The effects of 

frost roughness and turbulent boundary layer thickness are used to generate a model for 

heat and mass transfer coefficients. 

Above studies were conducted on the fundamentals of frost formation or frost 

formation on simple geometries like a flat plate.  More complex geometries are the next 

step to use the gained basic knowledge and to create new models.  D. Seker et al. 

modeled [5] and experimentally investigated the frost formation on fin-and-tube type heat 

exchangers [6].  The model used six main assumptions in order to be able to create a 

transient semi-empirical model to predict frost growth on forced convection evaporators 

in domestic refrigerators.  The model validation was done experimentally, but there are 
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still big differences in between the experimental and simulated data, which leaves space 

for improvement. 

Several approaches have been done to create empirical models for frost prediction.  

Y. Xia et al. [7] presented an empirical study of frost accumulation effects on 

performance of louvered-fin microchannel heat exchangers.  The outcome is that the 

bridging of the louver gaps by frost is the major reason for a decreased air side heat 

transfer and therefore a capacity reduction of the coil. 

Another approach to deal with frost formation is to reduce the effect of frost 

growth by surface changes. H. Lee et al. [8] investigated the effect of different surface 

hydrophilicity.  The outcome is frost maps which show what kinds of frost structure will 

build up on either hydrophobic or hydrophilic surface under specific conditions.  Mainly 

three frost structures are classified: feather type, grass type and plate type.  Z. Liu et al. 

introduced a new anti frosting paint and evaluated it by direct comparison with an 

uncoated metallic surface [9] and a long term performance test [10].  The paint is based 

on the theory of Na et al. [3] of a low energy surface. The direct comparison showed that 

the paint can both efficiently delay the frost crystal nucleation and decrease the frost 

deposition rate.  The long term performance test showed that the surface has frost 

formation like on a hydrophobic surface with frost of a very lose, weak and fragile 

structure.  Even after more than 2 months of testing a degradation of the anti frost 

performance of the coating was not observed. 

The frost model to predict frost growth on complex geometries, such as complete 

heat exchangers for any kind of low temperature refrigeration applications, has not been 

found yet. It seems like that we are far from there. 
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Although new approaches are conducted to reduce frost formation, it is not 

possible to avoid frost formation.  Therefore an investigation of frost formation 

characteristic in the actual heat exchanger and its effect on the refrigeration performance 

is necessary. 
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3 Objectives 

The literature review showed that a considerable amount of research has been 

conducted relating to frost formation.  Simple geometries and different surfaces have 

been investigated.  Many studies on more complex heat exchangers have been conducted 

only with single phase refrigerant not with two-phase refrigerants. 

In order to be able to evaluate the performance a market ready evaporator under real 

operating conditions tests have to be conducted.  Therefore, the current study requires a 

test facility to experimentally determine the performance degradation of frost formation 

on heat exchangers.  The facility needs to be flexible enough to change the evaporator 

coils easily to investigate the effect of different fin geometries, heat exchanger types, 

such as microchannel or spine type.  And it has to be as close to a real case refrigeration 

application as possible.  Therefore, the refrigerant in the evaporator has to be a two-phase 

refrigerant. 

It is the objective of this study to investigate the frost formation characteristics of the 

low temperature evaporator coil and its effect on the refrigeration performance under 

cyclic operation including freezing and defrosting processes. 
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4 Test Facility 

The test facility must simulate realistic operating conditions for low temperature 

applications.  Small capacity low temperature refrigeration systems, such as a reach-in 

unit, are commonly used in supermarkets and small stores to keep food frozen.  For a 

reach-in unit the refrigerated space is at a low temperature and the condensing unit is 

exposed to an ambient condition.  For this reason, a wind tunnel containing the 

evaporator was built in an environmental chamber that has the capacity to go down to -

40ºC.  The condensing unit was installed in a separate climate chamber to simulate 

outdoor conditions.  

4.1 Test Heat Exchanger 

The heat exchanger for the test is a standard fin-and-tube type heat exchanger. It is 

commercially available for reach-in units. Its specifications are shown in Table 1. 

Table 1: Test Evaporator Specifications 
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The circuitry of the heat exchanger has a special design. To begin, one tube enters 

the coil, then after the first row, the tube splits up into two rows which combine at the 

outlet back to one tube. The design is shown in Figure 2. 

 

Figure 2: Circuitry of Test Heat Exchanger 

Since the test will include frost formation, it is necessary to defrost the heat 

exchanger. This is done by an electric heater, which is directly installed onto the fins of 

the bottom side of the heat exchanger. The left picture in Figure 3 shows the coil with the 

electric defrost heater. In the same picture, there are two temperature switches at the 

outlet of the evaporator which are wired to a control box. They will be used to determine 

the two phases of the defrost cycle, the electric heater defrost and the re-cooling the coil. 

 

Figure 3: Pictures of Test Heat Exchanger 

Bottom View 

Temperature Switches 

Embedded Electric Defrost Heater 
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4.2 Test Conditions 

Frost plays an important role in low temperature applications.  The test conditions 

were established to determine the effects of frost formation on the performance of the 

heat exchanger.  The relative humidity, in particular, plays an important role in the 

experimental set-up, as well as for the test conditions. 

Table 2: Test Conditions - Refrigerant side 

 

Table 2 shows the test conditions for the refrigeration circuit and Table 3 shows 

the conditions for the air inlet temperature of the evaporator.  The refrigerant R22 was 

used for all tests. 

Table 3: Test Conditions - Air side 
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R22 is still a widely used refrigerant, and based on the evaporation and 

condensing temperature, the expected refrigeration cycle can be visualized in a pressure-

enthalpy diagram.  This is shown in Figure 4, assuming isenthalpic expansion and 

isentropic compression. 

 

Figure 4: Expected Refrigeration Cycle in p-h Diagram 

 

4.3 Wind Tunnel Layout / Design 

In order to adequately test a heat exchanger, it is necessary to place it into a wind 

tunnel.  The wind tunnel can be a part of a controlled closed loop or an open wind tunnel 

installed in an environmental chamber.  In both cases, it is important that the inlet 

conditions for the test heat exchanger are controlled.  There are several advantages for 

using an open wind tunnel.  It is easily accessible, more flexible in terms of placement 

and size, and easier to change, repair and manufacture.  Only environmental chambers are 
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necessary to conduct the tests.  Consequently, the heat exchanger test facility consists of 

an open wind tunnel integrated with the test evaporator and a condensing unit, each of 

which is placed in a different environmental chamber.  Figure 5 shows the system layout.  

The bold framing lines indicate the environmental chamber walls.  The refrigeration 

system is designed to be controlled from only the condensing unit chamber so that the 

evaporator air condition will not be affected during the test. 

 

Figure 5: System Layout 

As shown in Figure 5, the majority of measurements are taken at the evaporator.  

In order to calculate the airside capacity, two thermocouple grids and a relative humidity 

sensor were installed at the inlet of the evaporator and four thermocouple grids consisting 

out of two thermocouples each and a relative humidity sensor were installed at the outlet.  

To determine the air mass flow rate, a standard ASME long radius nozzle with 3” throat 

diameter was installed.  The differential pressure and temperature across the nozzle were 

measured in order to calculate the air mass flow rate through the duct and evaporator.  
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The pressure drop across the evaporator was also measured, which is an indicator for 

frost growth. 

For the refrigerant side it is important to determine the inlet and outlet conditions 

of the evaporator as well as the refrigerant mass flow rate.  The inlet and outlet conditions 

are needed to determine the enthalpies, which in connection with the mass flow rate are 

used to calculate the refrigeration capacity.  When comparing different types of 

evaporators, it is important to have a refrigerant side differential pressure transducer 

across the heat exchanger.  A complete list of all measurements is shown in Table 4. 

Table 4: System Measurements 

Air-Side Ref.-Side 

Evaporator Inlet Temp. (2 x 4 T/C) Inlet Temp. (In-stream), Pressure 

Evaporator Inlet RH Outlet Temp. (In-stream), Pressure 

Evaporator Outlet Temp. (4 x 2 T/C) �P of Evaporator. 

Evaporator Outlet RH Mass Flow Rate 

�P of Evaporator Temp. before/after the Compressor 

�P of Nozzle (Air Velocity) Temp. and Pressure before Exp. valve 

The actual dimensions of the wind tunnel were chosen according to the size of the 

test heat exchanger (21 5/16” by 4”).  While considering piping work and all other 

connections, the inside wind tunnel dimensions were fixed to 20” height and 25” width.  

The overall length was determined by ANSI/ASHRE 41.2-1987 Standard Methods for 

Laboratory Airflow Measurement and the space in the environmental chamber[11].  The 

total length of the open loop wind tunnel is 51”.  The final wind tunnel layout is shown in 

Figure 6. 
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Figure 6: Wind Tunnel Layout 

To make the duct accessible from all sides and to be able to visually monitor the 

conditions inside at any time, the side walls were made out of clear acrylic plastic sheet 

and all other sides were made out of polypropylene plastic sheets.  Figure 9 shows the 

wind tunnel with its top opened, close to its complete construction. 

All corners were held together with sheet metal angles and, during construction, 

silicone was used as the primary sealant.  Additional aluminum duct tape was applied 

inside the duct as a secondary sealant. 

 

Figure 7: Picture of the Wind Tunnel 
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4.3.1 Wind Tunnel Fan 

In order to determine a suitable fan motor for the wind tunnel, a pressure drop 

estimation was performed. 

The wind tunnel pressure drop is calculated by summing up the pressure drops 

across the duct, heat exchanger, mesh sheets and nozzle. 

The inner wind tunnel dimensions are 25” by 20” (0.64m by 0.51m).  The area 

and perimeter could therefore be calculated. By using equation 1 [12], the hydraulic 

diameter was calculated. 

m
perimeter

area
Dh 564.0

4 =⋅=        (1) 

The given maximum air flow rate is 240 cfm (0.1133m3/s).  Therefore, the mean 

velocity of the air flow in the duct is 0.4 m/s.  The kinematic viscosity, ν, at -17.8ºC 

according to air side test conditions is 1.197*10-5 m2/s.  Knowing ν, the Reynolds number 

can be determined by equation 2 [12]. 

 55.16Re =
⋅

=
υ

VDh         (2) 

The duct friction factor was also considered.  By choosing the roughness factor 

from Table 1 in ASHRE fundamentals 2001 SI - 34.71[12], ε is equal to 0.03.  The 

friction factor was calculated using equations 3 and 4 [12]. 

157.0
Re
68

11.0 =+⋅=′
hD

f
ε

       (3) 

If  f’�0.018  then f=f’        (4) 
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The length of the duct is 51” (1.29 m) and the density of air at -17.8ºC is about 

1.365 kg/m3.  The pressure drop through the duct itself, therefore, can be calculated using 

equation 5 [12]. 

Pa
D

Vlf
p

h

3.30
2

2

=
⋅

⋅⋅⋅=∆ ρ
       (5) 

To determine the pressure drop across the heat exchanger, coil designer [13], a 

heat exchanger designing tool developed by CEEE, was used.  A pressure drop of 75 Pa 

was calculated. 

The nozzle pressure drop can be calculated with the air flow rate (AFR) according 

to test conditions up to 0.113 m3/s and an assumed Cd value of 1.  The real Cd value will 

be slightly smaller then 1, which is negligible for the pressure drop estimation.  The 

nozzle throat diameter was 3” and therefore the nozzle throat area was 0.00456 m2.  By 

rearranging equation 6 and using equation 7 [14], the maximum pressure drop of 411.0 

Pa was calculated with equation 8. 

41
2

β
ρρ
−

∆=⋅= P
ACAFRw throatnozzled       (6) 

h

nozzle

D
d

=β          (7) 

( )4
22

2

1
2
1 βρ −

⋅
=∆

dthroatnozzle CA

AFR
P       (8) 

According to ANSI/ASHRE Standard 41.2-1987 the mesh sheets installed in the 

duct have to have an open area of 50-60% of the total area [11].  Two mesh sheets were 

installed.  The pressure drop across each of them was estimated to be 85 Pa. 
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This estimation leads to a total pressure drop of 686.3 Pa. The detailed addition is shown 

in Table 5. 

Table 5: Total Wind Tunnel Pressure Drop 

Wind Tunnel 30.3 Pa 

Evaporator 75.0 Pa 

Nozzle 411.0 Pa 

Mesh Sheet (2x) 170.0 Pa 

Total 686.3 Pa 

 

Since the result is based on estimation, the pressure drop is assumed to be around 

700 Pa.  Therefore a fan with a rating of at least 2.81” of water (700 Pa) at 240 cfm had 

to be used. 

A 0.5 horse power centrifugal blower for low temperature applications with a 

variable frequency drive ready motor was selected from CFM Continental Fan and 

installed into the wind tunnel.  The fan curve is shown in Figure 8.  As can be seen in the 

Figure 8, the fan is slightly oversized to ensure that it will work for the required 

application.  The air flow rate is adjusted by a frequency inverter drive. 
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Figure 8: Fan Curve 

4.3.2 Condensing Unit – Compressor Sizing 

The condensing unit came with a compressor and a receiver. Both components 

were oversized for the current small capacity application.  Consequently, the receiver was 

removed and the compressor needed to be replaced with a smaller capacity compressor.  

In order to choose the right size of compressor, an estimation of its capacity and 

displacement volume was performed. 

Engineering Equation Solver (EES) was used to model the refrigeration cycle.  

Several assumptions were made in order to find the minimum required size of the 

compressor.  Most of the cycle is fixed by the given test conditions. 
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Figure 9: Real Test Cycle in P-h Diagram 

Figure 9 shows the test cycle to estimate the compressor specifications.  The first 

assumption is that the pressure stays constant on the high- and the low-side of the 

refrigeration cycle. 

322 PPPP alow === ; 41 PPPhigh ==  

The low pressure is defined by the evaporating temperature of -23.3°C and the 

high pressure is defined by the condensing temperature of 43.3°C, according to test 

conditions.  The corresponding saturation pressures of R22 for Plow and Phigh are 215.4 

kPa and 1662.0 kPa, respectively. 

The enthalpy of point one in Figure 9 is specified by temperature and high 

pressure.  The temperature is also specified by 8.3°C sub-cooling, which corresponds to a 

temperature, t1, of 35.0°C. 

),( 11 tPfh high=  
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The expansion is assumed to be isenthalpic.  Therefore h1 is equal to h2. 

21 hh =  

The enthalpy of point three in the figure can be calculated with known 

temperature and low pressure.  The temperature is specified by 4.5°C superheating, 

which corresponds to a temperature t3 of -18.9°C. 

),( 33 tPfh low= ; ),( 33 tPfs low=  

The capacity of the evaporator, Qevap, is determined from the manufacturer’s 

specifications and is equal to 0.5 kW.  Therefore, it is possible to calculate the expected 

mass flow rate using the following equation: 

)( 23 hh

Q
m evap

−
=�         (9) 

The expected mass flow rate is 3.22 g/s.  An ideal compressor would have 

isenthalpic compression, corresponding to point 4 in Figure 9, but in reality, there is no 

ideal compressor.  Using CEEE’s past experience results for similar compressors the 

isentropic efficiency was assumed to be 0.6, the volumetric efficiency to be 0.7, the 

rotations per minute were assumed to be 3500 and the motor efficiency to be 0.85. 

Given the assumed values, it is possible to calculate the displacement volume and 

the assumed compressor power using eqs. 10-12. 

),( 34 sPfh high=  
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The displacement volume is assumed to be 8.44 cm3 and the power consumption 

should be around 300 W.  After an intensive search in the laboratory, a suitable 

compressor meeting the above criteria was found.  It is a Samsung 44A080HU1EB with a 

displacement volume of 11.5 cm3 and a nominal power consumption of 740 W.  The 

nominal power consumption is higher than the estimated power consumption.  This, 

however, does not matter since the heat exchanger is what is being evaluated, not the 

entire system.  It is more important that the displacement volume is in the same target 

range.  In order to be able to control the refrigeration cycle, a hot gas bypass was installed 

to adjust the refrigerant mass flow rate. 
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4.4 Instrumentation 

As shown in Figure 5, a variety of sensors were installed in the system.  This 

chapter specifies each sensor, including its range and error.  

4.4.1 Pressure Transducers 

 

Figure 10: Setra Pressure Transducer 280E 

Four pressure transducers from Setra Systems, Inc. (model 280E) were installed at 

the following locations. 

Table 6: Pressure Transducer - Locations and Specifications 

Location: Specification: 

  High pressure side:  

      Compressor Outlet 0-500 psia 

      Expansion Valve Inlet 0-500 psia 

  Low pressure side:  

      Evaporator Inlet 0-500 psia 

      Evaporator Outlet 0-500 psia 
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All pressure transducers were calibrated over their entire range.  Additional calibration 

points were measured around the expected high and low test pressures.  This procedure 

was done to increase local accuracy for the transducers at their operating range.   The 

calibration showed that the pressure transducers have a 99.99% fit with the linear trend 

line in excel for all of them.  The accuracy is ±0.11% full-scale accuracy 

4.4.2 Differential Pressure Transducers 

    

Figure 11: Differential Pressure Transducer 

left: Setra 230; right: Setra 264  

Three differential pressure transducers from Setra Systems, Inc. were installed for 

the measurement of the pressure drop, two of them on the air-side and one of them on the 

refrigerant-side.  The range was chosen according to the calculations of the duct pressure 

drop. 

Table 7: Differential Pressure Transducers – Locations and Specifications 

Air-side: Range: 

  Across heat exchanger: Setra 264 0-1” H2O 

  Across nozzle: Setra 264 0-2.5” H2O 

Refrigerant-side:  

  Across Hest Exchanger: Setra 230 0 - 25 psid 
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The differential pressure transducers factory calibration data were used.  The 

accuracy of the Setra models 230 and 264 are ±0.25% and 264 ±1% full-scale accuracy, 

respectively. 

4.4.3 Thermocouples 

In order to control and understand the behavior of the cycle characteristics, many 

thermocouples were installed on refrigerant-side and air-side.  Four in-stream 

thermocouples were installed on the refrigerant side and nine thermocouple grids were 

installed on the air-side.  The different temperature measurement locations are listed 

below. 

Table 8: Thermocouple Locations – Air-side 

Air-side:  

  Heat exchanger inlet 2 t/c grids horizontal 

  Heat exchanger outlet 4 t/c grids to divide the area into quarters 

  Nozzle outlet  1 t/c grid of six thermocouples 

 

 

Figure 12: Test Heat Exchanger T/C Grid Location 

 

HX Inlet HX Outlet 

Grid 2 Grid 4 

Grid 3 

Grid 6 

Grid 5 Grid 1 
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Table 9: Thermocouple Locations – Refrigerant-side 

Refrigerant side:  

  High pressure side:  

      Compressor Outlet in stream thermocouple 

      Expansion valve Inlet in stream thermocouple 

  Low pressure side:  

      Evaporator Inlet in stream thermocouple 

      Evaporator Outlet in stream thermocouple 

      Compressor Inlet surface thermocouple 

 

 All thermocouples used are T-type with an accuracy of ±0.5°C or less.  

Calibration was performed with an ice bath and boiling water.  Additional two RTD 

thermocouples were installed in the middle of the HX inlet and the nozzle outlet because 

of their high accuracy of ±0.1°C or less.  The RTD thermocouples are used to calculate 

the energy balance of the system.  

4.4.4 Relative Humidity and Temperature Sensor 

The humidity control plays an important role for frost formation study.  Therefore, 

it is important to have an accurate measurement of the relative humidity.  The test 

conditions require a humidity sensor which can operate in temperatures around 0°F         

(-17.8°C).  Therefore, a Vaisala HMP 233 temperature and humidity sensor was used.  

The Vaisala HMP 233 has an operating range from 0 to 100% relative humidity and -

40°C to 80°C.  The accuracy for the humidity measurement in the applied range is ±1%.  
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The temperature sensor paired with the humidity sensor is a PT 100 RTD.  It 

ranges from -40 to 80°C with an accuracy of ±1°C. 

4.4.5 Mass Flow Meter 

The refrigerant mass flow rate was measured with a Coriolis type mass flow 

meter.  Specifically, the mass flow meter is a Micromotion Inc. model CMF025M, with a 

temperature range of -50°C to 125°C, a maximum pressure of 10 MPa, and an accuracy 

of ± 0.1% for the range of 0 to 5g/s of liquid fluid.  It was installed at the condenser outlet 

where the refrigerant density is highest among the cycle state points. 

The mass flow meter was purchased and factory calibrated for the range of 0 to 

5g/s according to the cycle simulation. 

4.4.6 Power Consumption Measurement 

Power measurement for the refrigeration system is not a special interest since the 

heat exchanger performance is the major investigation.  The power consumption of the 

electric defrost heater during the defrost cycle, however, is an important factor to record.  

A watt meter was connected to the electric defrost heater to measure the power 

consumption during its operation.  The specifications of the wattmeter, GH-002D from 

Ohio Semitronics, Inc., are input 0-300 V, 0-5 A and an output of 0-10 VDC.  The 

accuracy is ± 0.2 % of reading regardless of variations in voltage, current, power factor or 

load. 
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4.5 Nozzle 

The nozzle was sized according to the test conditions of 210/240 cfm air volume 

flow rate.  ANSI/ASHRE 41.2-1987 “Standard Methods for Laboratory Airflow 

Measurement”[11] sets the throat velocity of any nozzle from not less than 15m/s nor 

more than 35m/s for accurate measurement. 

According to these requirements, a standard long-radius ASME nozzle with a 

throat radius of 3” was selected and used.  A calibration was performed although the 

standard does not require a calibration for these types of nozzles. 

4.5.1 Nozzle Calibration 

The nozzle calibration is based on the Bernoulli Equation [15], shown below, and 

the conservation of mass. 

22
2
22211

2
111 2
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2
1

ghvPghvP ρρρρ ++=++      (13) 

Since the wind tunnel has no height difference, h1equals h2, and the change in 

density is negligible, so ρ1 equals ρ2.  Then the equation simplifies to: 
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+=         (14) 

Considering the air mass flow rate through the duct has to be the same as through 

the nozzle, the following equation is valid: 

avAv 2211 ρρ =         (15) 

Where A is the cross sectional area of the duct and a is the cross sectional area of the 

nozzle outlet. 

By applying the same assumptions as above to this equation, it simplifies to: 
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A
a
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By combining equations 14 and 16, it is possible to calculate the velocity through 

the nozzle knowing the pressure drop across it. 
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The air mass flow rate can be calculated by multiplying equation 13 with the local 

density and throat area of the nozzle as shown below: 

2vam ⋅⋅= ρ�          (18) 

The actual mass flow rate is smaller than the theoretical value.  Therefore, a 

discharge coefficient value, Cd, is required to obtain the actual flow rate.  The Cd value is 

formulated by “Fluid Meters and Their Applications” [16] based on flat plate boundary 

layer theory:  

a

dC �
�
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00653.09975.0
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      (19) 

where Re is the Reynolds number and a is a Reynolds dependent factor. 

For a Reynolds number smaller than 300,000, a equals 0.5 and for a Reynolds 

number larger than 3,000,000, a equals 0.2.  If the Reynolds number is in between, linear 

interpolation applies.  Knowing the theoretical velocity through the nozzle, the nozzle 

diameter and the kinematic viscosity, it is possible to calculate the Reynolds number and 

Cd value accordingly. The real mass flow rate can be calculated by the following equation 

[15]: 



29 

�
�
�
�

�

�

�
�
�
�

�

�

−

−⋅⋅⋅=
2

21

)(1

1)(2

A
a

PP
aCm d ρ

ρ�      (20) 

The calibration of the nozzle is used to verify that the theoretical value fits to the 

measured value.  The calibration was done with an electric heater installed in front of the 

nozzle.  By heating the air it is possible to measure a temperature difference which can be 

used to calculate how much the actual air flow rate is.  Also the power consumption of 

the heater needs to be measured.  The mass flow rate can be calculated by: 

Tc
P

m
p

heater

∆⋅
=�          (21) 

The result of a calibration is show in Figure 13.  The calibration was within 2.2% of the 

theoretical value. 

 

Figure 13: Cd versus Re - Nozzle Calibration 
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4.6 Defrost Control 

The defrost control of the original evaporator, is specified by the manufacturer in 

a four step sequence operation.  

Table 10: Cycle Sequence [17] 

Step “A”: Normal Refrigeration Cycle Fan and Compressor on 

 Defrost heater off 

Step “B”: Defrost Cycle   Defrost heater on 

 Fan and Compressor off 

Step “C”: Coil Re-Cooling Cycle Compressor on 

 Defrost heater and Fan off 

Step “D”: Return to Normal refrigeration Cycle Fan and Compressor on 

 Defrost heater off 

 

Initially the System is in the normal refrigeration mode like described in step “A”. 

At step “B” the defrost heater warms the coil to 55°F and the defrost termination 

thermostat opens, which de-energizes the defrost heater.  This ends step “B” and begins 

step “C”: 

When the coil reaches a temperature of 35°F, the fan delay thermostat will close, 

ending step “C” and beginning step “D”. 

The unit is now back to operation as in step “A”.  This cycle will repeat two to 

four times a day in order to keep the capacity of the coil at an acceptable level according 

to the manufacturer. 

The typical wiring diagram of the control is shown in Figure 14. 
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Figure 14: Typical Wiring Diagram for Thin Profile Electric Defrost Unit Cooler 

[17] 

Since the heat exchanger should be tested under real operating conditions 

including cycling, it was necessary to establish a defrost control.  To ensure that the 

control would be successful, a redundant system was created with 2 options: manual and 

fully automatic defrost control.  

Manual control was done visually. Lights indicated if the heater was running and 

which line was energized. According to the lights the devices were turned on or off. 

The automatic defrost control used either temperature or power and voltage 

measurements with a programmed algorithm to control the devices. 

The electrical wiring diagram is shown in Figure 15.  Three solid state relays 

control the defrost heater, wind tunnel fan and compressor.  The activation can be done 

manually or by the data acquisition system (DAS), but it is important to ensure that they 

do not run together.  Thermostat I is integrated into the system and turns off the heater.  
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The de-energizing of the heater determines Step “B” of the defrost cycle.  If the defrost of 

the coil is not complete, it is possible to override thermostat I by closing the bypass 

switch.  Thermostat II is used to determine the re-cooling of the coil. A control was set-

up using lights to indicate which thermostat is turned on. The lights are used for a manual 

defrost. Voltmeters I and II are used to sense the voltage in each line to run a fully 

automatic defrost cycle. 

 

 

Figure 15: Electrical Wiring Diagram for Defrost Control 

 

The fully automated cycle consists of four phases, exactly following the steps “A” 

through “D” as the manufacturer requires.  Each stage has its own termination control.  

Step “A’ is time determined.  The time is a user input into the data acquisition system.  
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Step “B” is terminated by the reading of the wattmeter, once thermostat I opens the heater 

is de-energized and the wattmeter reading decreases to zero and the program goes to step 

“C”.  Step “C” is terminated by thermostat II.  The two voltmeters measure the voltage 

through the two wires entering thermostat II and, because only one wire is active at a 

time, the voltmeters sense when the switch occurs.   

This is the end of the defrost cycle and the system enters the first loop and can be 

run continuously until the user aborts the program. 

 

        

Figure 16: Picture of the Defrost Control Box 

 

The cycle control is shown in Figure 16.  Communication between all 

components is combined in the two boxes.  The exact location of the defrost control 

switches is shown in Figure 17.  
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Figure 17: Defrost Control Setup 

 

4.7 Data Acquisition System 

 All air- and refrigerant-side instruments were connected to National Instruments’ 

FieldPoint data acquisition system (DAS) modules, which communicate with a LabView 

data acquisition software package.  The FieldPoint DAS modules allow flexibility in 

instrumentation, as additional channels can easily be added or removed.  These modules 

can be placed close to the individual parts of the experiment, which reduces the wiring 

length and other problems associated with long wiring. 

A total of 31 channels were used to collect data (16 channels for the 

thermocouples and 15 channels for the analog inputs).  The DAS was developed by using 

LabView to display the measured parameters (pressures, temperatures, mass flow rates 

and power consumption) in the form of numbers and graphs on the computer screen, as 

shown in Figure 18.  Data was measured with a five second interval. 

 

Refrigerant 
Outlet 

Two 
Thermostats 
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Figure 18: Screenshot of LabView Data Acquisition System 

 

4.8 Test Procedure 

In order to make a fair comparison between each test, an appropriate test procedure 

was developed.  Since the test is a transient test, the energy balance fluctuates and 

conditions are never steady.  Consequently, a pretest for the dry coil was added to the test 

procedure to show the validity of the test measurements and to adjust the settings to test 

conditions. 
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4.8.1 Pretest Procedure 

A pretest is necessary to adjust the opening of the expansion valve and 

compressor bypass valve.  Afterwards, no major adjustments are necessary during the 

actual test.   

The pretest is conducted in a similar manner to the normal test but with some 

variations as follows: 

• Test startup is the same except for the RH level 

1. Dehumidifier is on for the whole time 

2. Humidifier is off 

• Test cycling is performed until step 7 except: 

1. Humidifier stays off 

2. Dehumidifier will be turned off, because it will cause additional load for 

the chamber and it could cause temperature fluctuations 

3. Step 7 will be the final step for this kind of test and the adjustment will be 

done in about 2 hours (60 min for compressor to reach steady state – 60 

min adjustment afterwards) 

4. Pictures will be taken during the pretest to ensure that there is little or no  

frost on the coil 

4.8.2 Test Procedure 

This is the standard procedure for this test.  Each test consists of three stages: 

startup, cycling and shut down.  The exact chain of action is described below. 
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4.8.2.1 Startup 

1. Check control of chambers and RH sensor position and function 

2. Start decreasing the chamber temperature (humidifier off – dehumidifier on) 

3. Turn on and adjust water supply for humidifier  

4. Turn on wind tunnel fan (around 40 Hz) 

5. Turn on DAS and computers  

6. Check if all measured values are in the proper range  

7. Turn on and check webcams and digital cameras (function and focus) 

8. Arrange data-saving folders for new test 

9. Check defrost control and provide heater power 

10. When the cold chamber temperature reaches the -1°F control reading, turn off 

dehumidifier.  Turn on humidifier and Set RH level 

4.8.2.2 Cycling 

1. Set cold chamber to 0°F 

2. Make sure that all values are in the right range, especially inlet RH, HX inlet 

temperatures and the air volume flow rate through HX  

 Start webcams and digital cameras to take pictures every 15 min 

4. Start recording values of the DAS 

5. Turn on condenser fan 

6. Turn on compressor 

7. Adjust values to test conditions (not more than 15 min) 

8. Run for 6.5 hours from compressor start 

9. Defrost cycle (automatic or manual): 
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a. Record movies with the webcam 

b. Take pictures every minute 

c. Start automatic or manual defrost cycle 

d. After defrost 

i. Save movie files 

ii. Set webcams and digital cameras as in step 3 

10. Run for another 6.5 hours 

11. Defrost cycle (automatic or manual): 

a. Record movies with the webcam 

b. Take pictures every minute 

c. Start automatic or manual defrost cycle 

d. After defrost 

i. Save movie files 

ii. Set webcams and digital cameras as in step 3 

12. Test complete.  Turn off compressor and condenser fan 

13. Turn off DAS recording 

4.8.2.3 Shut down 

1. Turn off webcams and digital cameras 

2. Turn off heater power  

3. Turn off humidifier 

4. Increase cold chamber temperature incrementally to 45°F 

5. Measure amount of collected defrost water after chamber is defrosted 
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Based on the above procedure, the total duration of one test can be estimated as follows: 

 

Time estimation per test: 

1. Preparation and Startup:   4h 

2. 1st cycle:    6.5h 

3. 1st defrost:    0.5h 

4. 2nd cycle:    6.5h 

5. 2nd defrost:    0.5h 

6. Shut down:    1h 

 

Complete test:      19.0h 
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5 Data Analysis  

The analysis of the data was embedded into LabView.  Modules based on XProps 

[18] were added to the LabView program so that it was possible to monitor the 

refrigeration and air capacities directly during testing.  XProps is an enhancement to 

NIST’s REFPROP7 database and provides additional integration capabilities. 

5.1 Refrigeran-Side Performance 

The analysis of the refrigerant-side performance requires the basic assumption of 

isenthalpic expansion in order to calculate the capacity of the coil.  Therefore, the 

enthalpy at the evaporator inlet is assumed to be equal to the enthalpy at the expansion 

valve inlet.  An in-stream thermocouple and an absolute pressure transducer were 

installed at the expansion valve inlet. 

),( expexp inininevap PTfh =  

The enthalpy at the evaporator outlet could be measured directly as long as the 

refrigerant is superheated.  Otherwise, a capacity calculation with the current setup is not 

possible. 

),( outevapoutevapoutevap PTfh =  

The mass flow rate was measured with a coriolis type mass flow meter.  Therefore, 

the capacity of the evaporator coil is calculated using the following equation: 

)( inevapoutevapevap hhmQ −⋅= �        (22) 

In order to calculate the degrees of superheating and subcooling, the saturation 

temperatures had to be determined. 
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)( inExpancondsat PfT =  

)( outEvapevapsat PfT =  

Knowing the above temperatures, the degrees of superheating and subcooling could 

be calculated using the following two equations: 

evapsatoutevap TTT −=sup         (23) 

incondsatsub TTT exp−=         (24) 

5.2 Air-Side Performance 

The air side capacity is based on the measurement of five sensors: two RTD 

sensors, two relative humidity sensors and the differential pressure measurement across 

the nozzle.  The temperature and relative humidity at these points were chosen because of 

their higher accuracy.  The measurements of temperature and relative humidity are taken 

at the inlet of the test heat exchanger and at the outlet of the nozzle.  

Implemented air property modules, based on XProps, used temperature, relative 

humidity and absolute pressure to calculate the enthalpies, humidity ratio and air density 

at the nozzle.  The pressure at the inlet, Phx in, is atmospheric pressure and was fixed for 

all calculations to be equal to 101.325 kPa.  The pressure at the nozzle outlet, Pnozzle out, 

varies by the test due to the pressure drops through the heat exchanger, mesh sheet and 

nozzle.  However, since the airside properties do not change significantly Pnozzle out was 

fixed for all calculations to be to equals 101.0 kPa. 

),,( inhxinhxinhxinhx PRHTfh =  

),,( outnozzleoutnozzleoutnozzleoutnozzle PRHTfh =  
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),,( inhxinhxinhxinhx PRHTfhumRAT =  

),,( outnozzleoutnozzleoutnozzleoutnozzle PRHTfhumRAT =  

),,( outnozzleoutnozzleoutnozzleoutnozzle PRHTf=ρ  

The air side mass flow rate is calculated by equation 25.  The equation was 

simplified by inserting all dimensions and other calibrated variables in order to have only 

two inputs: density and differential pressure.. 

Pm outnozzleair ∆⋅⋅⋅⋅= − ρ510160772.4974.0�      (25) 

The total capacity of the air side can be calculated with the following equation: 

)( outnozzleinhxairsideair hhmQ −⋅= �        (26) 

The total air side capacity is a summation of sensible and latent capacity.  Since the 

current test is designed to determine frost formation, the latent capacity plays an 

important role.  The sensible capacity can be calculated with the following two equations 

[19]: 
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)( outnozzleinhxpairsensible TTcmQ −⋅⋅= �       (28) 

The latent capacity can be calculated using the following equation: 

heatlatenthumRAThunRATmQ outnozzleinhxairlatent ⋅−⋅= )(�    (29) 

5.3 Energy Balance 

 In order to show the accuracy of the above measurements and calculations, an 

energy balance was conducted.  The energy balance on the evaporator was calculated by 
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comparing the refrigerant-side capacity to the air-side capacity.  The result is shown as 

the energy balance error in percent. 
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 The average error during steady state for all tests was less than 5%. 

5.4 Uncertainty Analysis 

Systematic Error 

The uncertainty of this experiment was determined using the Pythagorean summation of 

the discrete uncertainties as shown in Equation 41. 
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Where 

fu is the overall uncertainty of function f resulting from individual uncertainties of xi...xn, 

ix are then nominal values of variables and  

ixu are the discrete uncertainties 

During the experiment several sources of error have been identified which are listed in 

the following table. The worst case temperature, pressure and mass flow rate was chosen. 

Table 11: Uncertainty Analysis - Refrigerant Side Systematic Error 

Measurement Accuracy 

Temperature ± 0.5°C or 2.6%  

Pressure ± 3.8kPa or 1.7% 

Mass Flow Rate ± 0.3% 

Capacity ±0.6% 

 

The uncertainty was calculated using Engineering Equation Solver (EES). 
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Random Error 

The data used to calculate the random error is the pretest data, because it is at steady state. 

The average values and standard deviations were calculated with excel over a time period 

of 45 min.  The chosen values to determine the random error are the highest throughout 

the 45 min time interval. 

Table 12: Uncertainty Analysis - Refrigerant Side Random Error 

 Average value Std. Deviation Error in % 

Temperature -23.9°C 0.25°C 1.0% 

Pressure 1667.9 kPa 2.0 kPa 0.1% 

Mass Flow Rate 2.426 g/s 0.006g/s 0.25% 

Capacity 377.1 W 1.0W 0.2% 

 

Total Error 

The total error is the summation of the systematic and random error. 

Table 13: Uncertainty Analysis - Refrigerant Side Total Error 

 Temperature Pressure Mass Flow Rate Capacity 

Systematic Error 2.6% 1.7% 0.3% 0.6% 

Random Error 1.0% 0.1% 0.25% 0.2% 

Total Error 3.6% 2.8% 0.55% 1.2% 
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6 Test Results 

The results of the heat exchanger tests are presented below.  For each test the test 

conditions are fixed as described earlier.  Only the air flow rate was varied from 210 cfm 

to 240 cfm. All measured data is shown for each test. 

The test at 210 cfm was conducted for 5 cycles, at 240 cfm for 2 cycles, respectively. 

For all tests a pretest was conducted to adjust the system to the desired test conditions. 

6.1 Fin-and-Tube Type Heat Exchanger – 210 cfm 

This test was conducted with the specified test conditions with an air flow rate of 

210 cfm.  It was conducted for five frosting and defrosting cycles.  The following figure 

shows the refrigerant side temperatures. 

 

Figure 19: Refrigerant –Side Temperature versus Time at 210 cfm 
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A special focus is set on three temperatures: evaporator inlet, evaporator outlet 

and expansion valve inlet.  The expansion valve inlet temperature has to be stable in 

order to provide constant inlet conditions into the evaporator coil.  The difference in 

evaporator inlet and outlet is the superheat. 

As described earlier the coil inlet and outlet has all together six thermocouple 

grids.  The next figure shows them over time. 

 

Figure 20: Evaporator Air-Side Temperature versus Time at 210 cfm 

The difference in temperatures at the outlet of the coil is to explain with the frost 

buildup which starts growing from the bottom to the top of the coil according to the 

circuitry.   

The condensing unit was placed into an environmental chamber.  Since the 

system is very small in capacity and the receiver had been removed it was very sensitive 

to temperature fluctuations.  Especially the condenser inlet temperature should ideally be 
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a straight line.  The next figure shows the air side temperatures at the condenser inlet and 

outlet.  

 

Figure 21: Condenser Air-Side Temperature versus Time at 210 cfm 

 

Figure 22: Pressure versus Time at 210 cfm 
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The system pressures are shown in Figure 22.  The system pressure is used to adjust the 

condensing and evaporating temperatures.  Therefore it was necessary to adjust it 

carefully.  The pressure decrease towards the end of each cycle is to explain with 

superheat loss and therefore the whole system pressures shifted down. 

 The air and refrigerant mass flow rate is shown in Figure 23.  The refrigerant side 

mass flow rate stays nearly constant, while the air side mass flow rate constantly 

decreases as frost builds up. 

 

Figure 23: Mass Flow Rates versus Time at 210 cfm 

 

 The humidity level is an important measurement in this test.  It was about the 

same for the first three cycles and then it was increased in order to see how much its 

effect on the coil is.  The relative humidity for the inlet and outlet of the coil is shown in 

Figure 24. 
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Figure 24: Relative Humidity versus Time at 210 cfm 

 

Figure 25: Differential Pressure and Air Flow Rate versus Time at 210 cfm 

Figure 25 shows the air side and refrigerant side differential pressure of the coil 

and air flow rate.  The refrigerant side differential pressure is constant though all cycles. 

RHin 
average 
77.9% 

RHin 
average 
77.8% 

RHin 
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79.1% 

RHin 
average 
79.5% 

RHin 
average 
80.5% 
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The air side differential pressure is increasing as frost builds up and the air flow rate is 

decreasing. 

 

Figure 26: Capacity & Error versus Time at 210 cfm 

The air side and refrigerant side capacities as well as their error are shown in 

Figure 26.  The refrigerant side capacity can only be calculated when the outlet of the coil 

is superheated and vapor condition.  That explains why it is not possible to show the 

refrigerant side capacity throughout each cycle.  The error is not computable when there 

is no superheat.  For the first cycle the capacities fit together very well and the error is 

below 5%. Throughout the other cycles the error increases, which can be explained with 

frost buildup at the sensor itself.  The frost buildup will decrease the accuracy and slow 

down the response time of the sensor. 

The superheat is the indicator if the coil is still able to evaporate all refrigerant.  If 

frost builds up and blocks the air flow the heat transfer of the air side decreases and 

therefore the heat exchanger loses superheat.  The following figure shows degrees of 

1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle 
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superheating and sub cooling versus time.  Sub cooling needs to be constant to provide 

constant inlet conditions into the evaporator coil.  

Figure 27: Degrees of Superheating and Subcooling versus Time at 210 cfm 

 

Figure 28: Latent and Sensible Heat Transfer Rate versus Time at 210 cfm 
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Figure 28 shows the calculated sensible and latent capacities.  Obviously the 

latent load is pretty much constant, even with increased relative humidity, especially for 

the 5th cycle. 

 The defrost cycle behavior, heating time and re cooling time is shown in Figure 

29.  When the heater power consumption starts up is the end of the freezing cycle and the 

beginning of the defrost cycle.  The temp control 2 regulates the refreezing period for the 

coil. And when it ends the defrost ends too and a next freezing cycle starts up. 

Figure 29: Defrost Heater Power versus Time at 210 cfm 

The following Figures 30 to 39 show pictures taken at the inlet of the coil.  All 

five freezing and defrosting cycles are shown in detail.  Especially focus should be set for 

the startup picture of each freezing cycle, since the coil never drains completely and 

water refreezes. 

Figure 30 shows the 1st frosting cycle.  The pictures are in time steps of one hour 

in general and half an hour for the last picture.  At the test start the coil is absolute dry.  
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Individual crystals are visible after 1 hour, which are the start of the frost formation.  

These single crystals start growing until the most of the surface is covered (picture at 2h).  

From there the crystals start to grow into the air passage (picture at 3h) and finally 

connect with each other blocking the air passage (picture at 4h).  Even it seems like the 

air passage is blocked after 4 hours, the density of the frost is not high enough to totally 

block the air passage.  During the following 2.5 hours frost densification happens.  An 

interesting observation is that where the fins were bended and closer together the frost 

grew faster and heavily blocked the air passage. 

Figure 31 shows the first defrost cycle.  The defrost cycle time is not specified 

since two thermostats control the heater time and the re-cooling time of the coil.  The first 

picture is essentially the same as at the end of the first frosting cycle for consistency, but 

it is the startup of the electric defrost heater of the evaporator.  The second picture shows 

the coil at the time when the thermostat de-energized the electric defrost heater and the 

re-cooling of the evaporator coil begins.  It is obvious that coil drainage is an important 

issue since many droplets of water stayed on the surface even after the defrost cycle.  As 

shown in the third picture, which is taken at the end of the re-cooling sequence when the 

evaporator coil starts its normal freezing cycle.  Here a lot of initial ice has formed on the 

evaporator coil. 

Figure 32 shows the 2nd frosting cycle.  The initial ice on the evaporator changes 

the frost formation tremendously.  The ice crystals grow faster and also the 

interconnections in between two surfaces happen earlier.  All over the evaporator coil is 

much more affected by frost.  The measurement of the air volume flow rate supports this 

observation, as can be seen in Figure 25.  At each freezing cycle startup it is in the same 
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range, but with the increase of the total frosting cycles the less air volume flow rate 

passes the coil at each end of the cycle.  

The frost build up of the fourth cycle, shown in Figure 36, is very heavy, so that 

the defrost cycle, shown in Figure 37, is not able to remove all the ice from the inlet of 

the evaporator coil.  Therefore the blockage of the coil occurs much faster and the fifth 

freezing cycle is not valid for a comparison with the others.  Also the relative humidity 

level was changed for the fifth cycle to see how much the capacity gets affected.  With an 

increase of the relative humidity the evaporator coil blocks quickly and build up a layer 

of ice right in front of it, as shown in Figure 38. The defrost cycle can not handle the 

huge amount of ice at the inlet of the coil, as shown in Figure 39. 
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Figure 30: 1st Frost Cycle – 210 cfm 
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Figure 31: 1st Defrost Cycle – 210 cfm 
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Figure 32: 2nd Frost Cycle – 210 cfm 

 



58 

 
Start Defrost 

 
Heater Off – Compressor On 

 
Fan On 

 
Figure 33: 2nd Defrost Cycle – 210 cfm 

 



59 

 
Startup 

 
1h 

 
2h 

 
3h 

 
4h 

 
5h 

 
6h 

 
6.5h 

 
Figure 34: 3rd Frost Cycle – 210 cfm 
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Figure 35: 3rd Defrost Cycle – 210 cfm 
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Figure 36: 4th Frost Cycle – 210 cfm 
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Figure 37: 4th Defrost Cycle – 210 cfm 
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Figure 38: 5th Frost Cycle – 210 cfm 
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Figure 39: 5th Defrost Cycle – 210 cfm 
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6.2 Fin and Tube Type Heat Exchanger – 240 cfm 

This test was done with the specified test conditions with an air flow rate of 240 

cfm.  It was conducted for two frosting and defrosting cycles.  The following figure 

shows the refrigerant side temperatures. 

 

Figure 40: Refrigerant-Side Temperature versus Time at 240 cfm 

It is obvious that the first defrost cycle differs from the second.  This is to explain 

with a malfunction of the automatic defrost control.  It started twice in a row, which 

shows in a spark in temperature and then a decrease.  Since the compressor gets hot 

quickly it takes time to restart it.  This explains the time delay before the startup of the 

second cycle. 

The following figure shows the air side temperatures of all installed thermocouple 

grids. 

Evap in 

Evap out 

Suction 

Discharge 

Expan in 

1st freezing cycle 2nd freezing cycle 1st defrost cycle 2nd Defrost cycle 
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Figure 41: Evaporator Air-Side Temperature versus Time at 240 cfm 

 

Figure 42: Condenser Air-Side Temperature versus Time at 240 cfm 

Figure 42 shows the condenser inlet and outlet temperature.  For the first cycle the 

inlet temperature is bouncing, but for the second cycle it is absolute constant. The pretest 
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was not as well performed as for the other test.  It shows in the discharge pressure in 

Figure 43 at the startup, where additional adjustment was performed. 

 

Figure 43: Pressure versus Time at 240 cfm 

 

Figure 44: Mass Flow Rates versus Time at 240 cfm 
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Figure 44 shows the refrigerant side and air side mass flow rates.  The adjustment 

at the beginning of the first cycle is obvious. The mass flow rate makes big jumps about 

0.1 g/s until it becomes steady. At the startup of the second cycle the mass flow rate was 

not adjusted. This behavior is the usual startup until the compressor becomes steady. 

The humidity level for the inlet and outlet of the coil is shown in Figure 45. The 

control was not as good as for the test at 210 cfm. The difference is a setup change from 

adjusting the humidity of the complete environmental chamber, shown here, and a local 

humidification used in the test at 210 cfm. 

 

Figure 45: Relative Humidity versus Time at 240 cfm 

The following figure shows the air side and refrigerant side differential pressure 

and the air flow rate across the coil.  The graph shows ideal behavior, air side pressure 

drop constantly increasing, refrigerant side pressure drop after adjustment constant and 

air flow rate constantly decreasing. 

RHin 
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RHin 
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Figure 46: Differential Pressure and Air Flow rate versus Time at 240 cfm 

 

Figure 47: Capacity and Error versus Time at 240 cfm 

Since the relative humidity was much more instable the capacity calculation was 

influenced too.  That is why in Figure 47 the error goes up to 25%.  The refrigerant side 

1st Cycle 2nd Cycle 
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capacity is the more reliable in this case.  Figure 48 shows the superheat and sub cooling 

of the system.  During first adjustment the superheat goes to zero, but then raises back. 

 

Figure 48: Degrees of Superheating and Subcooling versus Time at 240 cfm 

 

Figure 49: Sensible and Latent Heat Transfer Rate versus Time at 240 cfm 
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The sensible and latent heat transfer rate is shown in Figure 49.  Although the 

relative humidity made major jumps the latent heat transfer rates is about the same. 

Figure 50 shows the defrost heater power consumption and the refreeze delay 

time control. 

 

Figure 50: Heater Power Consumption versus Time at 240 cfm 

The following Figures 51 to 54 show pictures taken at the inlet of the coil.  All 

two freezing and defrosting cycles are shown in detail.  Especially focus should be set for 

the startup picture of each freezing cycle, since the coil never drains completely and 

water refreezes. 

Figure 51 shows the first frosting cycle of the evaporator for 240 cfm.  The initial 

crystal growth on the surface is very similar to the test at 210 cfm.  The difference is in 

the continuation of the frost growth.  The crystals do not grow as big as with the lower air 

flow rate. Moreover even at the end of the cycle, the surface is barely covered completely. 
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Figure 52 shows the first defrost cycle.  The first picture is the startup of the 

defrost cycle, when the heater turns on.  The second picture shows the turning point from 

heating the evaporator to re-cooling the evaporator.  The third picture shows the refrozen 

water on the evaporator shifting back to normal freezing cycle mode.  All over the 

amount of water seems to be comparable to the first defrosting cycle at 210 cfm. 

Figure 53 shows the second frosting cycle.  The frost growth happens much faster 

compared to the first cycle and the complete surface is covered with ice crystals.  Also 

the surface roughness seems to be much higher than for the first cycle.  The higher 

surface roughness enhances the heat transfer and makes up for the additional thermal 

resistance of the frost layer.  This is the explanation why the capacity of the evaporator 

did not decrease much even with increased frost formation. 

Figure 54 shows the second defrost cycle.  Outstanding is the re-cooled coil.  It 

seems that much more ice is accumulated after the second defrost cycle. 
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Figure 51: 1st Frost Cycle – 240 cfm 
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Figure 52: 1st Defrost Cycle – 240 cfm 
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Figure 53: 2nd Frost Cycle – 240 cfm 
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Figure 54: 2nd Defrost Cycle – 240 cfm 
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6.3 Comparison and Discussion 

The conducted tests produced a lot of data.  Therefore it is necessary to find a way 

to compare the individual cycles.  At every start of a new cycle the compressor needs 

about 45 min to come to steady state, which means its discharge temperature increases to 

a maximum. During this warm-up period the system pressure shifts slightly up. Once the 

discharge temperature reaches its steady state, the system pressures stabilize too.  

Therefore the first 45 min of each cycle is not valid for comparison.  However, the data 

after the first hour to the end of the freezing cycle should be valid for a fair comparison. 

Since frost formation occurs continuously the test is always transient and the total 

average over the cycle period does not make sense for all variables.  Also single point 

would not be a good comparison and not accurate at all. Therefore a ten minute time 

period at one hour and after 6.5 hours as well as the total average from one hour to 6.5 

hours of each cycle was chosen.  In order to better understand which three numbers are 

compared, the averaging time periods are indicated in Figure 55. 

 

Figure 55: Comparison Time Ranges 

After evaluating each test cycle with the pattern described above, the cycles can 

be compared.  The most important variable is the relative humidity at the inlet, since it 

Defrost: 
  I: Defrosting 
  II: Re-Cooling 

I      II 
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determined how much water vapor will be carried into the coil.  Therefore, the following 

table shows the average relative humidity of each cycle for the conducted tests. 

Table 14: RHaverage inlet Comparison 

Test Cycle RH average inlet 
1 77.9 
2 77.8 
3 79.1 
4 79.5 

 
 

210 cfm 

5 80.5 
1 80.4  

240 cfm 2 80.0 
 

Since the fifth cycle of the test at 210 cfm, as seen in the pictures, had frost at the 

inlet at its start, it is not a valid for comparison.  Cycle three and four at 210 cfm and 

cycle one and two at 240 cfm show a comparable relative humidity level.  The 

completely analyzed data of cycle three and four at 210 cfm and cycle one and two at 240 

cfm is shown in the appendix in Table 17 and Table 18. 

 In order to be able to see how well the tests compare with each other, the system 

measurements after one hour of the freezing cycle should fit to the original test conditions.  

The comparison of the cycles with comparable relative humidity is shown in Table 15. 

Table 15: Cycle Comparison at 1h 

Nom. 
AFR 

 
Cycle 

T ev in 
Ref 
[°°°°C] 

T exp in 
Ref 
[°°°°C] 

T ev in 
Air 
[°°°°C] 

MFR 
Ref 
[g/s] 

AFR 
[cfm] 

Super 
Heat 
[°°°°C] 

Sub 
cool 
[°°°°C] 

Cap. 
Ref 
[W] 

210cfm 
(100%) 

3 -23.5 35.1 -17.8 2.4 191.1 
(91.0%) 

5.2 8.2 375.9 

210cfm 
(100%) 

4 -23.3 35.2 -17.7 2.4 196.2 
(93.4%) 

4.7 7.9 372.7 

240cfm
(100%) 

1 -23.2 34.8 -18.0 2.8 236.2 
(98.4%) 

2.3 7.5 424.7 

240cfm
(100%) 

2 -23.7 35.2 -18.0 2.8 237.7 
(99.0%) 

4.9 8.9 435.7 

Test 
cond.  -23.3 35.0 -17.8 * * 4.5 8.3 * 

* Values adjusted in pretest or calculated 
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The fourth cycle at 210cfm and the second cycle at 240cfm fit together the best, not 

only because of the fitting data, but also in terms of cycling.  Both of them have a defrost 

cycle before they start, which provides them the about same start up conditions.  A big 

difference happened in the reduction of the air flow rate within the first hour, as shown in 

Table 15.  For the cycle four at 210 cfm it reduced already about 6.6% while it only 

decreased about 1.0% for the second cycle at 240 cfm. 

However, it is possible to investigate the effect of an increased air flow rate for the 

rest of the cycle.  The frost buildup observed from the pictures is much more for 210 cfm 

than for 240 cfm.  This fact is also deserved in the outlet relative humidity.  By 

comparing the humidity ratios of the inlet and outlet conditions it shows that the frost 

buildup and therefore humidity ratio reduction is less for the test at 240 cfm. The analysis 

is shown in Table 16.  

Table 16: Humidity Ratio Comparison 

Nom. 
AFR Cycle 

RH average 

inlet 
[%] 

T in 
[°°°°C] 

RH average 

outlet 
[%] 

T nozzle 
[°°°°C] 

210 cfm 4 79.5 -17.7 74.5 -20.9 
240 cfm 2 80.0 -18.0 80.1 -20.5 

  Humidity Ratio Humidity Ratio 
210 cfm 4 0.0006302 0.0004364 
240 cfm 2 0.0006165 0.0004877 

  Difference 
210 cfm 4 0.0001938 
240 cfm 2 0.0001288 

  Air side MFR [kg/s] 
210 cfm 4 0.112 
240 cfm 2 0.148 

  Frost Amount (6.5h) [kg] 
210 cfm 4 0.507 
240 cfm 2 0.446 (12.1% less) 
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The humidity ratio at the inlet and outlet was calculated with temperature, relative 

humidity and pressure. The difference in humidity ratio multiplied by average air side 

mass flow rate and the cycle time gives the theoretical frost amount on the coil at the end 

of the cycle. The difference in frost amount is about 12.1%, although the test conditions, 

except the air flow rate, for the coil were the same.  The air flow rate was increased from 

210 cfm to 240 cfm, an increase of 14.3%.  Therefore the increased air flow rate must 

increase the density of frost deposition on the coil, since less blockage of the air passage 

at the coil is visible. This effect was also investigated by R. Yun et al. [4]. 
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7 Conclusion 

The purpose of this study was to design, size, construct, calibrate and run a test stand 

to investigate the evaporator frost performance for low temperature applications.  The test 

system is designed to test any type of small capacity evaporator, whose outer dimensions 

do not exceed 20” height by 25” width.  The refrigeration system consists out four 

components, a compressor, condenser, evaporator and expansion valve.  All components 

are easy accessible and changeable in order to test different kind of refrigerant or capacity 

range.  The data acquisition control can handles manual or fully automatic defrost control.  

The automatic defrost control can be adjusted for an individual best fit for the heat 

exchanger.   

Pretests and tests were conducted for specific test conditions at two air flow rates for 

at least two cycles.  During the freezing cycle pictures were taken each 15 min. For the 

defrost cycle pictures each minute and real time movie were recorded.  Pictures and 

movies were recorded for the inlet as well as the outlet of the heat exchanger in order to 

visually investigate the frosting behavior of the heat exchanger. The data was recorded in 

every five seconds and the datasets of each test includes the compressor’s mass flow rate, 

the defrost heaters power consumption, temperatures and pressures at each state point for 

air- as well as refrigerant-side.  The tests have shown that the system is able to 

accomplish all desired test conditions. 

Tests were conducted for the two air flow rates.  The data was recorded and 

compared.  The performance of the evaporator was evaluated continuously during testing. 

Its performance degraded constantly by accumulation of frost during each frosting cycle, 

which increased the thermal resistance and blocked the air passage through the coil.  This 
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resulted in the loss of superheat towards the end of each cycle.  The defrost operation 

could not restore the full capacity of the evaporator.  The defrost cycle consists out of two 

phases, melting the ice and re-cooling the coil. The first phase melts all the ice of the coil 

but the drainage of the resulting water is incomplete.  The re-cooling phase freezes the 

amount of water residue on the evaporator coil, which causes an accelerated frost 

formation in the following freezing cycle.  All over this behavior causes an accelerated 

reduction in evaporator capacity and therefore earlier superheat loss. 

To compare the cycles with two different air flow rates, the most suitable ones were 

chosen. The decision was based on the air inlet conditions of the coil such as relative 

humidity and temperature and as well the refrigerant side inlet conditions such as 

evaporator and condenser temperature and pressure.  Two cycles had a tight fit and were 

compared to investigate the effect of an increased air flow rate.  It showed that the frost 

amount of the cycle at 240 cfm was 12.1% less.  The air flow rate change is about 14.3% 

from 210 cfm to 240 cfm.  There are two explanations for this behavior.  First of all has 

been investigated in earlier research that an increased air flow rate increases the density 

of the frost, which results in less blockage of the air gap.  And if the frost does not build 

up a net of interconnections from one surface to another, the total amount of frost 

formation is limited.  Therefore the observed frost formation happens. 
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8 Future Work 

The test results of various operating conditions showed that the behavior of the coil 

under frosting conditions can not determine easily and it needs to be further explored.  

The future work should include 

• An detailed investigation of the driving forces for frost formation for a 

better analysis 

• The effect of the relative humidity has to be investigated over the whole 

range. 

• More test with different types of fins. 

• More test with different types of heat exchanges. 

• Comparison and further development of models to predict freezing of the 

coil 
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9 Appendix 

Table 17: Test results for 210 cfm – Cycle 3 and 4 

HX Test Phase air/ref side Measurement Unit
at 1h at 6.5h 1- 6.5h

± 5min  - 10min average

Benchmark Test 17 5. Frost 3 c ref side T evap in °C -23.6 -24.0 -23.8
Benchmark Test 17 5. Frost 3 c ref side T evap out °C -18.8 -24.0 -20.2
Benchmark Test 17 5. Frost 3 c ref side T suction °C 32.4 32.3 32.4
Benchmark Test 17 5. Frost 3 c ref side T discharge °C 67.6 68.0 67.9
Benchmark Test 17 5. Frost 3 c ref side T cond out °C 35.1 35.2 35.1
Benchmark Test 17 5. Frost 3 c air side T evap in °C -17.8 -17.7 -17.7
Benchmark Test 17 5. Frost 3 c air side T evap out °C -20.5 -21.4 -21.1
Benchmark Test 17 5. Frost 3 c air side T nozzle °C -20.2 -21.0 -20.6
Benchmark Test 17 5. Frost 3 c air side T cond in °C 34.9 35.0 35.0
Benchmark Test 17 5. Frost 3 c air side T cond out °C 35.9 36.1 36.0
Benchmark Test 17 5. Frost 3 c ref side P cond out kPa 1656.9 1651.3 1654.7
Benchmark Test 17 5. Frost 3 c ref side P evap in kPa 217.5 214.5 215.9
Benchmark Test 17 5. Frost 3 c ref side P evap out kPa 210.0 208.4 208.8
Benchmark Test 17 5. Frost 3 c ref side MFR g/s 2.4 2.4 2.4
Benchmark Test 17 5. Frost 3 c air side AFR cfm 191.3 142.7 169.9
Benchmark Test 17 5. Frost 3 c air side RH in % 78.5 79.3 79.1
Benchmark Test 17 5. Frost 3 c air side RH out % 75.4 74.1 74.6
Benchmark Test 17 5. Frost 3 c ref side Dp kPa 12.0 11.6 11.8
Benchmark Test 17 5. Frost 3 c air side Dp Pa 50.9 241.5 142.1
Benchmark Test 17 5. Frost 3 c ref side superheat °C 5.2 0.1 3.9
Benchmark Test 17 5. Frost 3 c ref side subcool °C 8.2 7.9 8.0
Benchmark Test 17 5. Frost 3 c ref side Capacity W 375.9 340.6 370.3
Benchmark Test 17 5. Frost 3 c air side Capacity W 370.7 369.3 390.8
Benchmark Test 17 6. Defrost 3 c
Benchmark Test 17 7. Frost 4 c ref side T evap in °C -23.3 -23.8 -23.5
Benchmark Test 17 7. Frost 4 c ref side T evap out °C -18.9 -24.0 -20.8
Benchmark Test 17 7. Frost 4 c ref side T suction °C 32.6 31.8 32.3
Benchmark Test 17 7. Frost 4 c ref side T discharge °C 68.4 68.0 68.2
Benchmark Test 17 7. Frost 4 c ref side T cond out °C 35.2 35.0 35.1
Benchmark Test 17 7. Frost 4 c air side T evap in °C -17.7 -17.6 -17.7
Benchmark Test 17 7. Frost 4 c air side T evap out °C -20.4 -21.6 -21.0
Benchmark Test 17 7. Frost 4 c air side T nozzle °C -20.2 -20.9 -20.5
Benchmark Test 17 7. Frost 4 c air side T cond in °C 35.0 34.8 34.9
Benchmark Test 17 7. Frost 4 c air side T cond out °C 36.0 35.6 35.8
Benchmark Test 17 7. Frost 4 c ref side P cond out kPa 1650.4 1630.0 1643.0
Benchmark Test 17 7. Frost 4 c ref side P evap in kPa 220.4 216.2 218.7
Benchmark Test 17 7. Frost 4 c ref side P evap out kPa 213.0 210.4 212.0
Benchmark Test 17 7. Frost 4 c ref side MFR g/s 2.4 2.4 2.4
Benchmark Test 17 7. Frost 4 c air side AFR cfm 196.2 138.8 170.3
Benchmark Test 17 7. Frost 4 c air side RH in % 78.4 79.8 79.5
Benchmark Test 17 7. Frost 4 c air side RH out % 75.0 73.9 74.5
Benchmark Test 17 7. Frost 4 c ref side Dp kPa 11.9 11.4 11.7
Benchmark Test 17 7. Frost 4 c air side Dp Pa 52.0 259.1 158.4
Benchmark Test 17 7. Frost 4 c ref side superheat °C 4.7 0.0 2.9
Benchmark Test 17 7. Frost 4 c ref side subcool °C 7.9 7.6 7.8
Benchmark Test 17 7. Frost 4 c ref side Capacity W 372.7 -175.0 259.8
Benchmark Test 17 7. Frost 4 c air side Capacity W 406.6 354.3 399.3
Benchmark Test 17 8. Defrost 4 c

Frost 1/2 - Time

HX Comparison Wind Tunnel Test - Overview
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Table 18: Test results for 240 cfm – Cycle 1 and 2 

HX Test Phase air/ref side Measurement Unit
at 1h at 6.5h 1- 6.5h

± 5min  - 10min average

Benchmark 240cfm Test 05 1. Frost 1 ref side T evap in °C -23.2 -23.4 -23.3
Benchmark 240cfm Test 05 1. Frost 1 ref side T evap out °C -21.5 -19.3 -19.0
Benchmark 240cfm Test 05 1. Frost 1 ref side T suction °C 30.9 31.5 31.3
Benchmark 240cfm Test 05 1. Frost 1 ref side T discharge °C 67.7 69.2 68.9
Benchmark 240cfm Test 05 1. Frost 1 ref side T cond out °C 34.8 35.2 35.1
Benchmark 240cfm Test 05 1. Frost 1 air side T evap in °C -18.0 -17.7 -17.7
Benchmark 240cfm Test 05 1. Frost 1 air side T evap out °C -20.1 -21.0 -20.4
Benchmark 240cfm Test 05 1. Frost 1 air side T nozzle °C -20.4 -20.8 -20.4
Benchmark 240cfm Test 05 1. Frost 1 air side T cond in °C 34.4 34.6 34.5
Benchmark 240cfm Test 05 1. Frost 1 air side T cond out °C 35.4 35.5 35.5
Benchmark 240cfm Test 05 1. Frost 1 ref side P cond out kPa 1621.9 1706.3 1697.0
Benchmark 240cfm Test 05 1. Frost 1 ref side P evap in kPa 215.2 212.1 213.5
Benchmark 240cfm Test 05 1. Frost 1 ref side P evap out kPa 210.8 208.0 209.3
Benchmark 240cfm Test 05 1. Frost 1 ref side MFR g/s 2.8 2.8 2.8
Benchmark 240cfm Test 05 1. Frost 1 air side AFR cfm 236.2 213.6 225.7
Benchmark 240cfm Test 05 1. Frost 1 air side RH in % 79.2 81.1 80.4
Benchmark 240cfm Test 05 1. Frost 1 air side RH out % 81.1 79.4 80.6
Benchmark 240cfm Test 05 1. Frost 1 ref side ∆p kPa 14.8 13.1 13.7
Benchmark 240cfm Test 05 1. Frost 1 air side ∆p Pa 45.7 156.6 100.4
Benchmark 240cfm Test 05 1. Frost 1 ref side superheat °C 2.3 4.9 5.0
Benchmark 240cfm Test 05 1. Frost 1 ref side subcool °C 7.5 9.2 9.1
Benchmark 240cfm Test 05 1. Frost 1 ref side Capacity W 424.7 431.8 432.9
Benchmark 240cfm Test 05 1. Frost 1 air side Capacity W 456.4 541.6 517.5
Benchmark 240cfm Test 05 2. Defrost 1
Benchmark 240cfm Test 05 3. Frost 2 ref side T evap in °C -23.7 -23.3 -23.4
Benchmark 240cfm Test 05 3. Frost 2 ref side T evap out °C -19.6 -19.4 -19.7
Benchmark 240cfm Test 05 3. Frost 2 ref side T suction °C 31.3 31.3 31.3
Benchmark 240cfm Test 05 3. Frost 2 ref side T discharge °C 68.9 69.7 69.4
Benchmark 240cfm Test 05 3. Frost 2 ref side T cond out °C 35.2 35.2 35.2
Benchmark 240cfm Test 05 3. Frost 2 air side T evap in °C -18.0 -17.7 -18.0
Benchmark 240cfm Test 05 3. Frost 2 air side T evap out °C -20.4 -21.0 -20.9
Benchmark 240cfm Test 05 3. Frost 2 air side T nozzle °C -20.7 -20.8 -20.9
Benchmark 240cfm Test 05 3. Frost 2 air side T cond in °C 34.5 34.5 34.5
Benchmark 240cfm Test 05 3. Frost 2 air side T cond out °C 35.6 35.6 35.5
Benchmark 240cfm Test 05 3. Frost 2 ref side P cond out kPa 1692.4 1711.9 1705.4
Benchmark 240cfm Test 05 3. Frost 2 ref side P evap in kPa 211.4 213.8 212.8
Benchmark 240cfm Test 05 3. Frost 2 ref side P evap out kPa 205.9 208.9 207.7
Benchmark 240cfm Test 05 3. Frost 2 ref side MFR g/s 2.8 2.8 2.8
Benchmark 240cfm Test 05 3. Frost 2 air side AFR cfm 237.7 212.3 224.9
Benchmark 240cfm Test 05 3. Frost 2 air side RH in % 81.2 82.5 80.0
Benchmark 240cfm Test 05 3. Frost 2 air side RH out % 80.9 79.8 80.1
Benchmark 240cfm Test 05 3. Frost 2 ref side ∆p kPa 13.2 13.3 13.3
Benchmark 240cfm Test 05 3. Frost 2 air side ∆p Pa 56.5 165.3 109.2
Benchmark 240cfm Test 05 3. Frost 2 ref side superheat °C 4.9 4.7 4.6
Benchmark 240cfm Test 05 3. Frost 2 ref side subcool °C 8.9 9.4 9.2
Benchmark 240cfm Test 05 3. Frost 2 ref side Capacity W 435.6 441.4 438.6
Benchmark 240cfm Test 05 3. Frost 2 air side Capacity W 521.6 534.7 516.8
Benchmark 240cfm Test 05 4. Defrost 2

Frost 1/2 - Time

HX Comparison Wind Tunnel Test - Overview
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