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Abstract:  The idea of creating a general purpose machine intelligence that captures many of 
the features of human cognition goes back at least to the earliest days of artificial intelligence 
and neural computation. In spite of more than a half-century of research on this issue, there is 
currently no existing approach to machine intelligence that comes close to providing a 
powerful, general-purpose human-level intelligence. However, substantial progress made 
during recent years in neural computation, high performance computing, neuroscience and 
cognitive science suggests that a renewed effort to produce a general purpose and adaptive 
machine intelligence is timely, likely to yield qualitatively more powerful approaches to 
machine intelligence than those currently existing, and certain to lead to substantial progress in 
cognitive science, AI and neural computation. In this report, we outline a conceptual 
framework for the long-term development of a large-scale machine intelligence that is based on 
the modular organization, dynamics and plasticity of the human brain. Some basic design 
principles are presented along with a review of some of the relevant existing knowledge about 
the neurobiological basis of cognition. Three intermediate-scale prototypes for parts of a larger 
system are successfully implemented, providing support for the effectiveness of several of the 
principles in our framework. We conclude that a human-competitive neuromorphic system for 
machine intelligence is a viable long-term goal, but that for the short term, substantial 
integration with more standard symbolic methods as well as substantial research will be needed 
to make this goal achievable. 
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I. Introduction 
 
The idea of creating a general purpose machine intelligence that captures many of the 

features of human cognition goes back at least to the earliest days of artificial intelligence (AI) 
and neural computation. In spite of more than a half-century of research on this issue, there is 
currently no existing approach to machine intelligence that comes close to providing a 
powerful, general purpose human-level intelligence. For example, while general cognitive 
architectures such as SOAR [Rosenblum et al, 1993] and ACT-R [Anderson et al, 2004] have 
been studied for many years and have been used successfully to model many specific aspects of 
human behavior, they have been less successful in scaling up to real world applications, and are 
limited by being rooted in rule-based (production system) processing. There have also been 
fairly general AI models of knowledge representation and inference, such as those based on 
first-order predicate calculus (e.g., resolution-based refutation systems) and state space search 
methods [Brachman & Levesque, 2004; Russell & Norvig, 2003; Sowa, 2000]. While these 
general AI methods are widely applicable, they are sometimes called “weak methods” because 
they have proven less effective in applications and are computationally expensive. General 
purpose neural network methods such as backpropagation and self-organized feature maps have 
also been very successful in specific applications involving learning, such as pattern 
recognition, data visualization, and autonomous vehicle control, but have not been extended to 
many aspects of cognition. Many more symbolic, neural, and probabilistic methods have been 
studied in cognitive science, AI and neural computation, but the common experience seems 
clear: success has come in specific, focused domains, and not in the form of a general, human-
like ability to solve problems and learn. 

 
In spite of this limited success, we believe that a renewed effort to produce a general 

purpose and adaptive machine intelligence is timely, likely to yield qualitatively more powerful 
approaches to machine intelligence than those currently existing, and certain to lead to 
substantial research progress in cognitive science, AI and neural computation.  Our optimism in 
this regard comes from the convergence of three advances:   

 
• Experiments and discoveries in cognitive science and neuroscience are revealing key 

aspects of human memory, reasoning and learning mechanisms and their 
neurobiological basis, e.g., via the use of fMRI, MEG, and other functional 
measurements. 

 
• Methods for constructing intermediate-scale modular neural systems have become 

increasingly effective and refined; the task now is to expand these systems, and to 
assemble and integrate them in a single framework. 

 
• Progressively more powerful and less expensive computer hardware is becoming 

available, including non-standard high-performance computing architectures that make 
possible highly parallel computations. 

 
These advances suggest that fundamental progress in creating a powerful, general purpose 
machine intelligence will come from creating a modular but integrated cognitive architecture 
that is inspired by human brain organization and supported by a high-performance computing 
platform. 
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When one considers the broad range of problems faced by people on a routine basis, or 
how people address formalized situations such as potential Decathlon and Challenge problems, 
it quickly becomes evident that we bring to bear a remarkable range of abilities during problem 
solving in an integrated fashion. Such integration will be essential for a situated, general-
purpose machine intelligence to exhibit human competitive (or better) intelligence. In the 
following, it is important to recognize that this integration will need to occur along at least two 
related but largely orthogonal dimensions. The first dimension of integration, behavioral tasks, 
spans the broad range of tasks an intelligent agent must perform, often concurrently.  These 
include processing multi-modal sensory input, determining the current situation from these past 
and present sensory events, controlling actions (motor control, arm manipulation, etc.), 
navigating through a changing environment, recognizing threats and opportunities, processing 
written and spoken natural language, pursuing self-determined goals in a rational fashion, 
adjusting to unexpected events, and learning from experience. The second dimension of 
integration, cognitive mechanisms, spans the underlying information processing algorithms 
required to support these individual behaviors/tasks.  These include a variety of memory and 
representation mechanisms for both long-term memory (semantic, procedural, episodic, etc.), 
and short-term working memory, a broad range of reasoning algorithms (deductive inference, 
causal/explanatory or abductive inference, probabilistic pattern classification, etc.), methods for 
generating and/or interpreting temporal sequences of events, learning procedures at multiple 
levels that lead to improved performance, and top-down control mechanisms that coordinate all 
of these memory, reasoning, and learning methods. While there are many computational 
systems today that can produce a reasonable level of performance on one or a few aspects of 
such behavioral tasks and cognitive mechanisms, no single existing system encompasses the 
broad array of behaviors and algorithms listed above. Further, it is not enough just to include all 
of these specific abilities within a single system: they must also act together in an effective and 
coordinated fashion. 

 
In this context, we believe that the long-term goal of creating a general-purpose machine 

intelligence will best be served by pursuing a computational model that is directly based on the 
hierarchical and modular organization, dynamics, and plasticity of the human brain, especially 
the neocortex and its interactions with subcortical structures. Why pursue a 
neuromorphic/brain-inspired architecture? One reason is that the human brain is currently the 
only known entity capable of exhibiting robust general intelligence in the form of integrated 
problem solving, language processing, planning, creative design, and learning. In short, the 
brain provides the only proof-of-existence that such an integrated intelligent entity is possible, 
and it is the only known system that encompasses information processing mechanisms 
sufficient to produce human-level cognition. These mechanisms are based on an underlying 
neural foundation that inherently supports massively parallel computations, something that is 
necessary for real-time operation and robustness to damage. Our judgment is that a large-scale 
computer system modeled after the human cerebral cortex (neocortex), the part of the human 
brain most closely related to problem solving and cognition, as well as closely integrated non-
neocortical brain structures (thalamus, hippocampus, basal ganglia, cerebellum, etc.), is 
currently the best bet for a truly qualitative advance in machine intelligence over the long term. 
The following sections of this report present a conceptual framework in which to develop a 
large-scale neurocognitive architecture of the sort we envision, along with some preliminary 
results supporting the plausibility of this framework. 
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While this long-term goal provides a clear target for a successful, general-purpose machine 
intelligence, it raises the question of what the optimal strategy is for attaining that goal while 
simultaneously making progress over the short term of the next five years. One strategy would 
be to immediately commence implementing a large-scale neuromorphic architecture that spans 
all of cognition. However, our current knowledge of brain function still contains substantial 
gaps and uncertainties, and our understanding of how to use contemporary neural computation 
methods effectively to capture some aspects of cognition is also limited. Accordingly, over the 
next five years, we believe that the optimal short-term strategy is to develop a hybrid 
architecture that combines neurobiologically-inspired methods and cognitively-inspired 
methods within a unified framework.  By “cognitively inspired methods”, we mean more 
conventional symbolic and numeric methods from cognitive science and AI rather than neural 
computational methods. Part 2 of this report, Design and Implementation, provides a more 
detailed look at the motivations for a hybrid architecture, and then extends our framework to 
encompass cognitively-oriented symbolic and other methods in a unified setting. 
 

 
II. Design Principles for a Neuromorphic Framework 

 
Given that the human brain is the only known system capable of general cognition, it 

seems prudent to base the design of a general-purpose machine intelligence on the brain’s 
organizational and computational principles, and this is the approach that we take here. Of 
course, there are widely recognized barriers to such a neurobiologically-inspired methodology, 
and these have deterred past work in this area. The human brain is highly complex, and we 
currently have an incomplete understanding of the neurobiological basis of many aspects of 
human cognition. Those aspects of brain function that we do understand reasonably well seem 
to be primarily low-level sensorimotor and reflex functions, while higher-level cognitive 
functions are much less understood. Further, the size and complexity of an artificial large-scale 
neurocognitive architecture would appear to make its implementation very difficult. We believe 
that these barriers can largely be overcome. The design of complex systems can be facilitated 
by modularity, and there is continuing steady progress in understanding the biological basis of 
cognition, led in part by functional imaging and modern electrophysiological methods. Existing 
neurocomputational models of individual brain systems show that the technology is there for 
many of the parts needed for a full-scale system, and the difficult challenge now is how to put 
those parts together effectively into a large-scale and coordinated whole. Further, contemporary 
high-performance electronic computing hardware and emerging non-standard computing 
resources indicate that the needed computational substrate is or will soon be available, and will 
lead to very efficient implementations by ultimately capturing the natural parallelism of neural 
computations at the hardware level. 
 

In this and the following sections, we present a computational theory of human cognition 
that is tightly grounded in the hierarchical and modular structure, dynamics, and plasticity of 
neocortex and other closely coupled subcortical brain structures. While the inspiration for our 
approach comes directly from the brain, we are not trying to develop a veridical model of the 
brain. Rather, we are extracting the fundamental organizational and processing principles of the 
nervous system and applying them to create a neuromorphic machine intelligence. These 
principles include locality of computation, massively parallel processing, hierarchical and 
modular structure, decentralized control, and a fundamental role for learning and adaptation. 
Our theory will subsequently serve as the basis for designing a large-scale integrated model of 
cognition founded primarily upon neurobiological principles, and this will be described in a 
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future Part 2 of this report. While there are many previous theories/models of brain subsystems, 
to our knowledge no one has ever created an architecture with the broad scope and integrated 
coverage of brain and cognitive functions that we are considering here. Our neurobiologically-
oriented approach focuses on the critical issue of bridging the gap between neuromorphic 
systems and cognition.  

 
In the rest of this section we describe and elaborate upon some of the basic design 

principles used in our theory. Subsequently, we present the results of two initial experiments 
developing intermediate-scale systems that demonstrate the feasibility of some aspects of our 
approach (Section III below). We then return to the broader issue of how multiple systems can 
be integrated and controlled in a full, large-scale neurocognitive architecture (Section IV).  

 
A. Top-Level Overview 

 
Our neuromorphic theory is based upon an underlying architecture having a network of 

hierarchically organized modules whose structure and function is directly inspired by human 
neocortical and subcortical organization and brain relationships to cognition. While there are 
important gaps in our knowledge [Uttal 2001], a great deal is currently known about the 
mapping of behavior in general and cognitive functions in particular to human brain regions. 
We thus summarized the results of our recent efforts to compile a listing of important known 
function-to-brain relationships as a separate report [Tinerella et al, 2006]. Cataloging these 
relationships between cognitive functions and brain regions proved to be an ambitious goal, 
given the uncertainties and even disagreements about the representation of some aspects of 
memory, language, and other cognitive functions in the brain. Further, the mapping is not really 
one-to-one in that some cognitive functions are distributed over multiple brain regions, and 
some regions contribute to multiple functions [Mesulam, 1990]. 

 
The basic conclusion that comes from critically examining current knowledge of human 

brain structure and function is that the brain’s architecture can best be viewed as composed of 
repeating and nested functional modules. The hierarchical organization is roughly  

 
brain → systems → areas/nuclei → local circuits → neurons. 

 
For example, in the neocortex the local circuit modules are cortical columns whose inter-
columnar connectivity is extensively (but only partially) documented in the voluminous 
neuroscientific data that is available. These columns are often viewed as the basic functional 
units of cortex [Mountcastle, 1998]. At the next level up, modules correspond to cortical areas 
that are interconnected by various neuroanatomical pathways and tracts. Concrete examples of 
histologically-distinguishable cortical areas would be the Brodmann areas 1, 2, 3, 4, …  which 
are also labeled in ways related to their functionality (S1, M1, Wernicke’s area, prefrontal eye 
fields, etc.) or anatomical features (supramarginal gyrus, angular gyrus, etc.). These areas can 
sometimes themselves be divided into subregions, e.g., primary somatosensory cortex region 
S1 can be viewed as partitioned into hand/arm/trunk regions. Examples of specific 
pathways/tracts connecting cortical areas are the arcuate fasciculus between Wernicke’s and 
Broca’s areas, and callosal connections between corresponding left and right mirror image 
cortical areas. At the next highest level, interconnected areas are integrated into identifiable 
functional systems such as the inferior temporal-frontal visual system, the spoken language 
system, the sensorimotor system, and so forth. Finally, these systems are integrated into a top-
level network via the pathways between their components and/or overlapping components.  
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Implicit in this organization are feedforward, feedback, and recurrent connectivity. A similar 
hierarchical structure can be identified for subcortical regions such as the cerebellum, thalamus 
and basal ganglia. 

 
 In this context, the primary features of our framework for creating a large-scale and 

general-purpose neurocognitive architecture can be summarized as follows.  
 

• Our architecture is a hierarchical network of nested and iterated modules, inspired 
by the neurobiological structures outlined above. These modules have spatial relationships 
to one another, unlike with many neural models, and this has significant implications for 
connectivity, functionality and learning.  

 
• Functionality in our architecture is provided by the activation dynamics of its 

modules, occurring simultaneously at multiple levels of the structural hierarchy. In other 
words, our framework is based on a dynamical systems perspective rather than the 
primarily logical/symbolic approach used in many mainstream cognitive models in 
psychology and AI. Cognition is viewed as an emergent property of self-organizing neural 
processes, not something that is directly “programmed in”. 

 
• Both the structural architecture and the neurobiologically-inspired functional 

mechanisms are guided not only by the need for good performance but also by a drive to 
minimize costs (energy use, connectivity, etc.). In part, cost minimization is based upon the 
strength and nature of functional interactions between brain regions, and is informed by 
recent human functional imaging data (fMRI, PET, etc.) and electrophysiological data 
(EEG, MEG, etc.).  

 
• Working memory, executive control functions, and sequential behavioral 

processing are represented in multiple ways in our theory, including competition between 
neural modules for activation that influences global control of activity (one aspect of 
attentional mechanisms), sustained patterns of neural activity in cortical regions, and 
recurrent connectivity between regions that can gate one another’s activity. 

 
• Functions of modules are largely learned, not pre-programmed, so that a module’s 

functionality is determined in part by its location and connectivity, and in part by a 
“learning agenda” during which different components of the model learn independently in a 
prescribed, multi-stage fashion before being integrated and trained further collectively, 
much as occurs in human brain and childhood cognitive development. 

 
• Finally, learning is a continuous process, implying among other things that our 

architecture can reorganize after damage and partially recover via dynamic reallocation of 
functionality. 

 
We now turn to making this top-level perspective operational by considering some of the basic 
design principles of our architecture’s structure, dynamics and learning mechanisms in more 
detail. 
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B. Structure 
 
Paralleling the hierarchical organization of the human brain summarized above, i.e., 
 

      brain → systems → areas/nuclei → local circuits. 
 

the structural aspects of our framework are  
 
           architecture → systems → regions → cells/voxels. 

 
For clarity, the correspondences and terminology used in the following are summarized in 
Table 1. An important emphasis in our approach is that conceptually one is focused on 
specifying an architecture more at the level of assembling regions into systems and less on 
specifying low-level details of neurons and their connectivity than in most past 
neurocomputational work. In other words, while neurocomputational models are often viewed 
as a “bottom-up” approach to machine intelligence, our conceptual framework takes a “top-
down” view of their design. 

 
              Table 1: Terminology and Correspondences 

Biological  Structure Model Structure Interconnection Name 
    brain        architecture      relation 
    system system      coupling 
    area/nucleus        region      pathway 
    local circuit voxel/cell      connection 
    neuron      -            - 

 
The lowest level of detail in this framework is the neural cell that is loosely intended to 

model a local volume element, or voxel, and its included local neural circuitry, such as a 
cortical column. The term “cell” here is not related to the concept of a biological cell; it refers 
instead to a cell of space and its contents in the same way that the term “cell” in computational 
systems like cellular automata refers to an atomic processing unit. A distinguishing feature of 
our neuromorphic architecture is that individual neurons within a cell are generally not 
explicitly represented – the atomic elements used in our model are the cells/voxels and their 
interconnections. This differs from most neurocomputational models where neurons (or even 
smaller elements such as dendritic compartments) are explicitly viewed as the atomic units of 
computation. Our position is that if one wants to develop a large-scale integrated machine 
intelligence, individual neurons (dendritic trees, molecular structures, etc.) provide too low a 
level of abstraction at which to start. Some implications of this choice are that the functionality 
of local neural circuits must be captured in the internal dynamics of a voxel/cell, and that the 
dynamics of a cell does not in general match that of an individual neuron. Cells communicate 
locally in our model via weighted connections and have one or more internal activation levels. 

 
Cells in our framework are assembled into regularly structured regions that roughly 

correspond to areas in the cortex, or subcortical neuroanatomic structures such as nuclei in the 
thalamus or basal ganglia. As illustrated in Figure 1, these cellular arrays or regions have an 
explicit spatial organization. In the following, we will generally view these arrays as being 2D 
structures, but there is no reason that other dimensionalities (1D, 3D, etc.) cannot be used, and 
all that we say below applies equally well in such situations. The regular repetitive cells in 
arrays provide a simple, uniform base upon which to construct an architecture and define its 
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computational properties, and this uniformity will facilitate a hardware implementation over the 
long term should that become appropriate. Some implications of an explicit spatial 
representation are that real-valued distance metrics are relevant, that intra-array connectivity 
can be an explicit function of geometric (versus topological) distances, and that self-organizing 
topographic and feature map formation becomes an important functional issue. As illustrated in 
Figure 1, a region receives inputs and sends outputs to other regions via pathways, collections 
of individual inter-cell connections analogous to identifiable tracts in the central nervous 
system. Regions also generally have substantial internal recurrent connectivity. 

 
 
 
    backward inter-regional 
      pathways (recurrent) 
  
 
           intra-regional 
             pathways 
            (recurrent) 
  
    forward inter-regional 

        pathways 
 
 
Figure 1.  Schematic representation of a generic 2D region where each element is a cell/voxel 
(volume element) whose functionality captures the dynamics of local neural circuits such as 
those of a cortical column. Arrows indicate forward (bottom), backward (top) and internal (on 
the right) connectivity, which is highly recurrent.  

 
A system in our framework is the analog of a brain system that is devoted to some class of 

behavioral function, such as vision, motor control, memory, language, etc. As illustrated below 
in Figure 2, a system is composed of a network of regions that are interconnected via pathways. 
The explicit spatial organization of regions means that such pathways can be specified as 
geometrically-meaningful projections or mappings of one region onto another, rather than 
connection-by-connection. Further, each region like those pictured in Figure 2, viewed as a 
whole, has one or more associated activation levels distinct from those of its component cells, 
and each pathway has one or more associated weights distinct from those of its constituent 
connections. These activation values and weights serve as part of the top-level control 
mechanism, as will be explained below. 
 
 

 
 
 
 
 
 

Figure 2. A system within our architecture is a network of interconnected, functionally-related 
regions like that shown in Figure 1, seven of which are shown here. The regions are connected 
via bidirectional pathways (lines without arrowheads).  
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Finally, in an analogous fashion, the resultant neurocognitive architecture can be viewed 
as composed of a network of interconnected systems that provide the structural basis of the 
entire model. Each individual system, viewed as a whole, may have one or more associated 
activation values, distinct from those of their component regions, and one or more associated 
weights on their interconnected couplings that are distinct from the weights on their inter-
regional pathways. While it is beyond the scope of this report, “social interactions” between 
multiple neurocognitive architectures can be influenced by relations as indicated in Table 1, 
supporting the formation of social networks.  

 
C. Dynamics 

 
At the level of cells, activation dynamics in our model incorporate many features of 

methods used in contemporary neural networks, and these features are not intended as 
innovations of this work.  Each cell has one or more real-valued activation levels that are 
repeatedly updated based on incoming activity from other cells in their local neighborhood, or 
from other regions. Activation rules that govern the updating of a cell’s activity are generally 
expressed as non-linear differential equations, and the behavior of a cell is viewed as a 
dynamical system having various attractor states. The cells forming a region act collectively, 
producing region-level attractor states that emerge from the numerous non-linear interactions 
between activated cells in that region, something that can be viewed as an analog of the “mass 
action” occurring in the nervous system.  Cognitively-relevant information is thus encoded in a 
region using a distributed representation/encoding (coarse coding). Put otherwise, working 
memory is represented by sustained activity patterns across regions, where these patterns are 
the attractor states.  Long-term memory is represented in inter-cell connection weight values, or 
intra-cell parameter values.  

 
In addition to these fairly conventional computational mechanisms, our approach 

encompasses a number of innovations, or at least non-standard features. One fundamental 
organizing principle that distinguishes our theory is that neural architectures should be based 
not only on obtaining good performance, but just as importantly on minimization of costs such 
as energy use and structural connectivity. Such cost minimization, or parsimony, appears to be 
an important constraint on brain evolution [Gibbons, 1998], has proven very effective in some 
of our past work in explaining neocortical dynamics and specialization [Reggia et al, 1992; 
Shkuro et al 2003], and creates neural architectures that scale up in size better if eventually 
implemented in hardware. We now describe two ways that this basic parsimony principle is 
incorporated within our framework. 

 
First, as the cells/voxels that are atomic elements of our model are not neurons, they can 

exhibit behaviors that are quite different from typical biological neurons in past neural models.  
For example, a cell in our framework may retain specific details of previously seen input 
patterns and base its output on such patterns in novel ways.  This allows one to capture within a 
cell’s dynamics the functionality of neural circuitry used in some past models of working 
memory [Tagamets & Horwitz, 1998]. Most relevant here is that a cell/voxel may also exhibit 
competitive activation dynamics [Reggia et al, 1992] that can substantially reduce intra-
regional recurrent connectivity.  For example, neocortex has long been recognized to exhibit a 
Mexican Hat pattern of activation due to a localized stimulus: a region of evoked activity is 
surrounded by an annulus of suppressed activity.  This is captured in many computational 
models of cortex by intra-region connections: relatively few short-range excitatory connections 
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and relatively many longer range inhibitory connections.  In our model, cells/voxels can 
competitively distribute their activity, something that is implausible for an individual neuron 
but is perfectly legitimate for a voxel (neural circuitry) to do.  The result is that a Mexican Hat 
activity pattern is produced without the need for numerous inhibitory connections, greatly 
simplifying intra-regional circuitry. Distributing neural activity in this competitive fashion 
implies synaptic connections whose strengths not only change slowly during learning as in 
most neural models, but also change very rapidly to direct the spread of activity. Such “fast 
weights” have become increasingly plausible in recent years with the growing evidence that 
rapid (on the order of milliseconds) changes in biological synaptic strengths are a common and 
important computational mechanism in the brain [Abbott & Regehr, 2004]. 

 
A second, more cognitively interesting use of competitive dynamics within our framework 

is at the higher level of regions and their interconnecting pathways (Figure 2). As noted earlier, 
regions and pathways also have activation levels and weights associated with them that are 
distinct from those of their components. The higher-level activation values associated with 
regions can either be derived from the activations of the region’s component cells, such as a 
time-averaged mean activity level, or imposed by other regions or external entities as top-down 
control information. Similarly, each inter-region pathway has one or more associated weights 
distinct from the weights on the individual inter-cell connections that compose the pathway. 
For example, one weight associated with a pathway is its gain indicating the magnitude of its 
inter-regional effects; dynamically adjusting such a gain alters effective network structure. The 
key idea is that, in integrating regions into systems, and systems into an architecture, these 
high-level activations/weights allow regions to turn one another on/off, and for one region to 
“gate” (enable/disable) the flow of activity between other regions. Such gating is believed to 
occur, for example, between cortical and subcortical brain regions during motor control and 
during performance of working memory tasks. We view these high-level inter-regional effects 
as the basis for implementing competitive and cooperative effects between regions, just as they 
occur between cells within a region, and for parsimoniously distributing activity. In this way, 
there is a distributed global control of the flow of activity throughout the overall architecture, 
and this control process forms one aspect of attentional mechanisms. While we have previously 
used competitive activity distribution between columns as the basis of a theory of neocortical 
dynamics [Reggia et al, 1992], and also as a control mechanism for non-neurobiological 
cognitive/AI models of print-to-sound transformation and diagnostic problem solving, this will 
be the first time that it will be used as part of an attention mechanism based on thalamocortical 
interactions.  
 

Finally, for a situated cognitive architecture to function effectively, it must be able to 
process events as they unfold sequentially in time. Processing of temporal/sequential events is 
supported within our framework by recurrent intra-region connections and recurrent inter-
region pathways. This recurrent connectivity with its inherent delays leads to attractor states 
that are generally not fixed points, i.e., to quasi-periodic and chaotic attractors, and to switching 
between such attractor states as the basic mechanism for cognitive operations over time. 
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D. Learning: A Developmental Approach 
 
The ability to learn is a critical aspect of human intelligence and thus a fundamental part of 

our theoretical framework. The needs in this area are extensive. Learning is required across a 
range of levels, from low-level sensorimotor processing and control through high-level 
cognitive functions and executive decision making, and across a range of contexts (supervised, 
reinforcement, and unsupervised scenarios) and modalities. We address these needs by 
integrating multiple learning algorithms in our framework, some of which are off-the-shelf 
methods and others of which are innovations that address specific needs. These algorithms act 
at different levels of our structural hierarchy, from individual cells and their connections to 
entire regions and their inter-regional pathways. The functional operations acquired by an 
initially generic region during learning are based on that region’s unique position in an 
architecture’s network as well as its intrinsic properties, just as is postulated to occur for 
functional localization in the cerebral cortex [Passingham et al, 2002]. As we explain below, 
the modular nature of our architecture allows learning to proceed in a multi-stage, incremental 
fashion that we refer to as a learning agenda. This approach is inspired by human 
neurobiological and cognitive developmental stages, and makes the training of a large scale 
cognitive system tractable. We now consider some of the details of the learning mechanisms, 
starting with the most conventional. 

 
As with activation dynamics, at the level of cells and their connections we incorporate a 

variety of existing learning methods within our framework that are not intended as innovations 
of this work. These include unsupervised methods such as Hebbian learning, reinforcement 
methods such as temporal difference learning [Sutton & Barto, 1998], and supervised methods 
such as contemporary versions of error backpropagation like RPROP [Reidmiller & Braun, 
1993] and methods for learning with recurrent networks. However, even at this lowest level we 
adopt some non-standard methods to address the broad range of learning methods needed by a 
general purpose machine intelligence, and give two examples of these here. 

 
First, as noted earlier, processing temporal events is a fundamental requirement for a 

situated autonomous/semi-autonomous cognitive agent. At a minimum, the ability to learn to 
both recognize and generate temporal sequences is needed. There are a variety of effective 
supervised learning methods for temporal sequences, but unsupervised methods for distributed 
representations are much less developed. For the latter, recent discoveries of temporally 
asymmetric Hebbian learning in neocortex and other brain structures [Bi and Poo, 2001; 
Markram et al, 1997] have led to suggestions that this may be an important mechanism for 
learning temporal sequences [Rao and Sejnowski, 2000]. We recently created a specific 
implementation of temporally-asymmetric Hebbian learning and used it successfully with 
recurrent neural networks to “discover” an effective distributed representation for different 
temporal sequences of phonemes representing words [Schulz & Reggia, 2004]. This approach 
should generalize to analogous sequential tasks (e.g., learning to recognize an opponent’s 
strategies). Our more recent experiences integrating and adopting sequence processing methods 
in larger, system-level models are encouraging, as we describe in Section IIIA below. 

 
A second non-standard approach to learning at the level of cells that is incorporated into 

our framework is the learning of activation dynamics. Most neural network learning methods 
assume an a priori, fixed activation dynamics that is at least loosely modeled after how 
individual neurons process information, with learning occurring primarily by changing weights 
on connections. However, since the atomic units in our framework (cells/voxels) are not 
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restricted to behave like individual neurons as long as they retain local information processing, 
our approach permits the activation function of cells (as well as connection weights) to be 
learned. For example, cells can learn novel ways to combine their individual inputs (rather than 
just as a linearly weighted sum), internal parameter values, whether to distribute their output 
activity in the usual non-competitive fashion or in a competitive fashion, and so forth.  We have 
previously used this approach successfully in simple networks [Grundstrom & et al, 1996], and 
believe that it will generalize readily to the neural architecture described here, greatly 
increasing the flexibility and effectiveness of learning. 

 
Learning at higher levels in the structural hierarchy, such as learning activity and weight 

values at the level of regions and their pathways, is largely unexplored in past 
neurocomputational systems. We believe that reinforcement learning methods are very 
promising at this level. In addition, fMRI data may provide useful guidance for setting pathway 
parameters such as the functional connectivity between regions. By functional connectivity, as 
opposed to structural connectivity, we mean the dynamic relationships between regions that 
exist during cognitive tasks. These relationships are associated with the covariance of regional 
activities as observed during functional imaging and often represented using structural equation 
modeling. Our initial attempts to guide task-specific pathway gain learning using fMRI data 
have been encouraging and are described below in Section IIIB. 

 
Finally, from a more global perspective, our framework recognizes that one cannot 

assemble a large-scale neurocognitive system all at once and simultaneously learn everything 
that is needed in one step. Thus, a central aspect of our methodology is that it incorporates a 
developmental approach that leverages our framework’s inherently modular architecture. This 
is inspired by developmental processes shaping the human brain during childhood. Different 
brain systems have distinct developmental time courses, with synaptogenesis and synaptic 
elimination reaching peaks at different ages for different systems [Neville and  Bavelier, 2000]. 
Behaviorally, children go through a sequence of stages in which psychological competencies 
appear in a fairly typical order, and these stages are loosely correlated with developmental 
changes in the brain [Kagan and Baird, 2004]. For example, children learn to recognize some 
aspects of phonemes of their native language well before they learn to produce spoken 
phonemes [Vouloumanos and Werker, 2004]. Our intent is not to model accurately the details 
of human childhood development, but to use this natural multi-stage process as a guide in 
assembling a large-scale neurocognitive architecture.  

 
In our framework, the practical implementation of a developmental approach takes the 

form of a learning agenda. A learning agenda specifies a plan or procedure for the incremental 
construction and training of parts of a system, their assembly and further training, and so forth, 
until a complete and fully trained architecture is achieved. In a sense, this is a specific 
instantiation of a long-standing philosophy of how to go about creating a general machine 
intelligence that can be dated back to the early days of AI [Turing, 1950] and that continues to 
have its advocates today. This philosophy argues that one should initially aim to produce a 
machine intelligence with the abilities of a young child, and then allow such an artifact to learn 
additional abilities. Our initial experiment in using a simple multi-stage learning agenda as part 
of building an intermediate-scale neuromorphic architecture is encouraging, and we turn to that 
in the following section. 
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III. Intermediate-Scale Prototype Experiments 
 
Here we describe the results of three exploratory computational experiments that we have 

just completed to establish the plausibility of some of the concepts introduced above and to 
examine their implications. The general hypothesis being tested in these experiments is that one 
can efficiently create intermediate-scale neuromorphic models based on the principles of our 
theoretical framework that not only perform nontrivial cognitive tasks but also are consistent 
with existing neuroscientific data obtained in intact and brain damaged individuals. Each of the 
three intermediate-scale models developed in this work roughly corresponds to what we have 
referred to as a “system” above: they are a collection of functionally related regions that are 
formed into a network by inter-regional pathways.  
 
A. Associative Word Learning Model 
 

Our first experiment focused on the assembly of an associative word learning model. This 
model is based on the “classic” and highly influential Wernicke-Lichtheim-Geschwind (WLG) 
theory of language processing that is widely known in neuropsychology and clinical neurology 
[Brown & Hagoort, 1999]. Accordingly, it differs from most past computational models related 
to language in that past models have largely simulated the cognitive processes involved and 
generally did not intend to represent the underlying cortical regions and their interregional 
connections explicitly. We use the model to address two specific questions.  First, beginning 
with an untrained model consisting of interconnected neocortical regions spanning both 
cerebral hemispheres, is it possible to create a left-lateralized computer simulation of the 
primary regions and pathways of the WLG theory that can learn to recognize heard words that 
are object names, repeat them, and associate them with the appropriate objects? Second, 
assuming that one can successfully implement a computational simulation of the WLG theory, 
to what extent does it behave in ways reminiscent of the classic aphasia syndromes following 
focal cortical lesions?  
  

The basic functional-anatomic framework of the WLG theory is illustrated in Figure 3. 
Broca’s area (BA) and Wernicke’s area (WA) are the most prominent language processing 
centers in almost all theoretical models of language processing, including the WLG theory.  
Although the relative importance of these areas to different language functions is a long-
standing question, there is no doubt they each serve separate roles.  WA receives input from 
primary auditory cortex (A1), among other areas. The language deficit known as Wernicke’s 
aphasia is closely associated with WA loss, and is characterized by impaired comprehension 
and repetition ability, but with some spared ability to produce fluent, but often meaningless, 
verbal utterances. In contrast, BA is believed to be responsible for more expressive aspects of 
language, playing an important role in grammatical speech production. Destruction of BA 
along with surrounding frontal cortex is associated with Broca’s aphasia, an impaired ability to 
produce linguistic output despite retained comprehension. The arcuate fasciculus (AF) is the 
pathway connecting WA and BA. There are some linguistically impaired patients, said to have 
conduction aphasia, who are capable of both comprehending and producing speech, but 
incapable of repeating heard words. Historically the proposed underlying deficit in these 
individuals is blockage of the AF ‘s “conduction” of information from WA to BA. Currently it 
is believed that communication between these areas is mediated by more extensive anatomical 
routes, including regions such as the supramarginal gyrus in the parietal lobe. Another parietal 
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area, the angular gyrus, appears to play an important role as functional center of linguistic and 
visual object comprehension as part of a distributed semantic system. Lesions to the angular 
gyrus and surrounding cortex have been shown to lead primarily to multimodal comprehension 
deficits and have been classically associated with transcortical sensory aphasia. Finally, inferior 
cortical association areas have also been linked with recognizing and naming visual objects 
(confrontation naming). Object recognition is believed to take place through a ventral visual 
pathway, leading from V1/V2 to inferior temporal cortex (IT), with IT representations being 
more complex and not retinotopic.  While classical WLG theory did not include IT, lesions 
along this pathway lead to loss of object recognition.  
 

 
Figure 3. Central aspects of the Wernicke-Lichtheim-Geschwind theory.  Wernicke’s area 
(responsible for receptive language processing) is connected via the arcuate fasciculus (AF) 
to Broca’s area (expressive processing). Inferior parietal regions such as the supramarginal 
gyrus and the angular gyrus are viewed as important tertiary association cortex but are not 
labeled here. The cortical areas supporting language are assumed to be only present in the 
dominant left hemisphere.  
 

While the WLG theory is clearly inadequate to account for all language phenomena and it 
does not incorporate some important concepts from contemporary psycholinguistics [Caplan, 
2003; Poeppel and Hickok, 2004], it is a powerful organizing heuristic for understanding the 
neurobiological basis of language that has influenced most contemporary theories of language. 
To our knowledge, no one has previously developed a neurocomputational model of language 
functions based on this traditional neurological theory.  
 

The architecture that we assembled is illustrated in Figure 4 and consists of a network 
of perisylvian cortical regions forming the core of the WLG theory. This implementation is also 
informed by the results of studies over the last few decades that were not available to the 
founders of the WLG model, such as functional imaging. Some of these regions, their 
activation dynamics, and their learning procedures are inspired by earlier, simpler neural 
network models. Broca’s area (BA) and primary motor cortex (M1) are modeled after an earlier 
phoneme sequence generation model [Reggia et al, 1998], while primary auditory cortex (A1) 
and superior temporal gyrus (our rendition of Wernicke’s area (WA)) are modeled after an 
earlier phoneme representation model [Schulz & Reggia, 2004]. The remaining four regions 
(visual cortex (V1/V2), inferior temporal cortex (IT), and supramarginal gyrus (SMG), and 
angular gyrus (AG)) use similar methods. Each region is a cellular array in the sense defined 
earlier, and in addition to the inter-regional recurrent connections, there are recurrent intra-
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regional connections that are not shown in Figure 4. 
 
While the classic WLG model is generally used to describe human left hemisphere 

language processing pathways only, more recent research has suggested that homologous right 
hemisphere processing circuits may also exist and contribute to right hemisphere language 
processing. Experimental observations that were largely unavailable to the founders of WLG 
theory suggest that both hemispheres have substantial potential for language processing 
initially, with (usually left) hemispheric specialization for language arising during childhood 
development and language acquisition. In this context, our computational model’s structure 
includes two initially identical hemispheres. For each left hemisphere region, there is a 
homologous right hemisphere region homotopically connected to it via simulated corpus 
callosum connections. The exception is that only a single M1 output layer is present, with 
connections back to both left and right hemisphere BA areas. This ensures that only a single 
output is produced based on the input received from pathways of both hemispheres. Thus, there 
are a total of 15 simulated cortical regions in the model. Except for different random initial 
weights, homologous left and right regions are initially identical. In effect, two identical sets of 
mirror image hemispheric regions are present, with one being designated the left hemisphere 
and the other designated the right. The challenge is for left hemisphere dominance, an 
important explicit feature of the WLG framework, to emerge during learning even though both 
hemispheres receive the same input patterns. Our intent here is not to suggest that paired left 
and right hemispheric regions are ultimately necessary in a neurocognitive architecture; we are 
only trying to determine whether current methods for guiding which functions become acquired 
by which regions can scale up to a model of this size and complexity. 

 

 
Figure 4.  Diagram of the modules within the associative word learning model’s left 
hemisphere, along with arrows representing inter-region pathways. Grey arrows indicate 
unsupervised learning pathways, and dark arrows indicated supervised learning pathways.  
Intra-regional recurrent connections exist but are not shown. Homologous regions and 
pathways are present in the right hemisphere but not pictured here. BA = Broca’s area, WA = 
Wernicke’s area, IT = inferior temporal cortex, SMG = supramarginal gyrus, AG = angular 
gyrus.  

 
We limited the model to processing single word names for tractability, and because it is an 

important part of routine “bedside testing” in clinical neurology. Inputs to the model are fifty 
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“heard words” taken from the NetTalk corpus represented as temporal sequences of auditory 
phonemes in primary auditory cortex (A1), and images of objects from the Snodgrass-
Vanderwart corpus in primary visual cortex (V1). Input of a spoken word was done by 
presenting its phonemes as a temporal sequence of patterns imposed on A1, as illustrated in 
Figure 5a.  Because the model is instantiated in two hemispheres, input patterns are presented 
simultaneously to A1 areas in the left and right hemisphere. Each individual input phoneme is 
encoded as a unique distributed pattern of 34 auditory distinctive features (voicing, duration, 
nasality, etc.), normalized to unit length to prevent input patterns with many features from 
dominating learning. Visual input consists of 50 two-dimensional images, each corresponding 
to one of the words described above. Figure 5b gives an example. These images were taken 
from the line drawings of familiar objects in the normed Snodgrass and Vanderwart (1980) 
corpus, converted and scaled to a 50 x 50 bitmap format. The images (considered as vectors) 
are also normalized to unit length.  
 

 
Figure 5.  Coded representations of inputs in areas A1 and V1/V2.  Each darkened neural 
element is “on” (activation value 1.0), while all others are set to “off” (0.0).  a. In A1, the word 
“kite” is presented as a temporal sequence of three phoneme vectors, each represented as a 
vector of auditory distinctive features, followed by an all off end-of-word indicator /#/. b. In 
V1/V2, the corresponding picture is presented as a two dimensional, 2500 element image.  
 

Outputs from the model are “spoken words” represented as temporal sequences of 
motor phonemes in primary motor cortex (M1) corresponding to the correct pronunciation of 
the given input word or picture. Each motor phoneme is encoded as a pattern of 20 articulatory 
distinctive features (using a different encoding than A1), so each neural element in M1 
represents an articulatory distinctive feature.   
 

During training, the model produces a sequence of output phonemes, ideally the same 
number as the number of phonemes in the target output, plus an output vector of all zeros called 
the stop phoneme and designated /#/. No specific functionality is assigned a priori to model 
cortical regions, other than that implicitly present due to their location and interconnectedness 
in the network. Initially, homologous cortical regions in the simulated left and right 
hemispheres are symmetric except for randomly assigned synaptic weights, so before training 
both hemispheres contribute equally to output and the model structure does not favor either left 
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or right hemisphere specialization.   
 
Rather than trying to train all of the model’s functions simultaneously, we adopted a 

learning agenda that consists of three stages. The goal of the first stage is to develop 
representations within the primary sensory association areas (IT and WA) using unsupervised 
learning. This phase corresponds to attentive viewing and listening to pictures and auditory 
stimuli without producing output, much as an infant experiences both visual and auditory 
stimulation following birth before language production occurs [Vouloumanos and Werker 
2004]. Using the 50 stimuli described above as inputs, with each stimulus having both a visual 
(image in V1/V2) and auditory (temporal sequence of phonemes in A1) representation, learning 
proceeded separately for each stimulus modality.  Each iteration consists of the stimulus 
information being set in the sensory cortical area (V1/V2 or A1), activity propagating to the 
sensory association area (IT or WA), and finally weights being adjusted using competitive 
Hebbian learning based on activity within the sensory association areas. Note that for heard 
words presented as a temporal sequence (e.g., for kite, /k/, /ai/, and /t/ plus stop phoneme), for 
any given auditory stimulus multiple inputs are received by the system, with learning occurring 
after each input phoneme using temporally-asymmetric Hebbian learning [Schulz & Reggia, 
2004].  

 
The goal of the second stage of training is to learn the bidirectional associations 

between word representations in WA and image representations in IT. This was accomplished 
using resilient error backpropagation [Reidmiller and Braun, 1993] where area AG served as a 
“hidden layer” between WA and IT. While error backpropagation is generally viewed as a form 
of supervised learning, note that the model is free to determine any representation (i.e., 
encoding) for the word-image associations that it learns in area AG. 

 
The goal of the third stage of training is to have the model generate the correct output 

sequence of motor phonemes to name a seen picture or to repeat a heard word. Learning to 
repeat a heard word is especially challenging: generation of the output motor phonemes does 
not start until all input auditory phonemes for that word have been processed. Thus, the model 
must discover an internal representation for each temporal auditory sequence that persists and 
is adequate to generate the correct corresponding temporal sequence of motor phoneme 
features. Learning during this second phase occurs for all connections to and from areas SMG, 
BA, and M1 using resilient error backpropagation [Riedmiller and Braun 1993].  

 
Hemispheric specialization is an important aspect of the WLG model. Past 

computational studies using simpler models than the one we are studying here have found that 
lateralized functionality can be consistently produced during learning when corresponding left 
and right cortical regions are asymmetric in size, excitability or synaptic plasticity [Shkuro, 
Glezer et al. 2000; Reggia, Goodall et al. 2001; Weems and Reggia 2004].  We elected to 
encourage left hemisphere specialization in our model by giving the left hemisphere a learning 
rate advantage throughout training (all three phases).  Thus, while the two hemispheres were 
structurally identical and connected through a simulated corpus callosum for each area, the left 
hemisphere was a more rapid learner and therefore expected to become a better language 
processor. 
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We adopted the following four performance measures to assess model behavior.  
Repetition measures the percentage of correct output phonemes produced following 
presentation of auditory input words. Naming is measured in the same way as repetition, except 
that it reflects percent correct phonemes following visual stimuli. Fluency is a measure of the 
percentage of the expected number of phonemes that are produced following auditory input 
(unlike with repetition, the correctness of the phonemes produced is not considered). Finally, 
recognition is a measure of the number of correctly identified stimuli, regardless of the 
correctness of phonemic production.  Identifying an equivalent of recognition in a neural 
network is a problematic issue since it is a purely cognitive construct.  The angular gyrus has 
been identified at times as the location for storage of semantic information [Caplan 2003; 
Dronkers, Wilkins et al. 2004] and as a modality-independent association area [Binder, Frost et 
al. 1997; Booth, Burman et al. 2002].  In our model, it is the earliest area to receive information 
from both visual and auditory modalities, and thus is in a unique position to associate 
information received through these two stimulus input pathways. For these reasons, we defined 
recognition to be the extent to which the AG regions’ activation patterns bilaterally, following a 
stimulus, could be used to determine correctly what the stimulus name had been. A value of 
100% correct on this measure with the intact model implies that a unique activation pattern was 
created during learning in the AG’s for each word in the training data.  Following lesions to the 
WLG model, the value of this measure indicates the extent to which the original representations 
of learned words in the intact WLG model persist in the lesioned WLG model.  

 
 Model performance, as determined by our four performance measures, was assessed in 
ten independent simulations that were identical except for initially random weights. Figure 6 
shows performance of the intact model before (a) and following (b) initial training.  We see that 
the trained model performs nearly perfectly for each of the four dependent measures.  Thus, the 
model developed unique internal representations (AG activity patterns) for the individual 
named objects. It was also successful in identifying the simulated visual and auditory input 
stimuli and mapping them onto the correct series of output phonemes.  This is a substantial 
accomplishment, as the correct sequence of phonemes, ranging from three to ten in length, 
needed to be produced from two different forms of input based solely on learning synaptic 
connection strengths in a complex recurrent network.  We also measured a laterality coefficient 
value [Shkuro et al, 2000] of -0.36, indicating that the left hemisphere had a much more 
influential role in determining phonemic output than the right hemisphere.  

 
Figure 6.  Unlesioned modeling performance, as assessed using the four dependent measures 
produced by the model.  Before training (a), the model fails to identify or recognize the stimuli, 
but after training (b) the model performs consistently well, above 90% for each measure.  
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In addition to testing the intact model, we also examined model performance following 
simulated lesions to the regions WA, BA, AG, and IT, and to the AF pathway. Lesions 
consisted of “removing” 75% of the neural elements in a given area (or 75% of the connections 
in the case of the arcuate fasciculus) by permanently fixing their output to zero. The lesions 
roughly correspond to damage classically associated with Wernicke’s, Broca’s, and 
transcortical sensory aphasia, visual anomia, and conduction aphasia, respectively (Caplan 
2003).  However, correspondences between these biological lesion sites and aphasic syndromes 
are currently recognized to be imperfect at best.   

 
Remarkably, simulated lesions to the individual regions of the model generally 

produced deficit patterns reminiscent of the corresponding classical aphasia syndromes seen in 
people [Caplan, 2003]. For example, Figure 7 shows performance following damage to the 
model’s AF.  When the left hemisphere AF was damaged (Figure 7a), both repetition and 
naming performance measures dropped below 40%.  Fluency, although affected, dropped much 
less, and recognition ability did not drop at all.  In contrast, damaging the right hemisphere AF 
(Figure 7b) had minimal effect on all four performance measures. Damage to the left arcuate 
fasciculus (AF) in humans is classically associated with impaired naming and repetition ability, 
but a retained ability to comprehend and produce some linguistic output (Anderson, Gilmore et 
al. 1999), consistent with the model’s behavior. Comparable results were obtained with lesions 
to other model areas [Weems and Reggia, 2006]. 

 

 
Figures 7. Model performance following (a) left and (b) right hemisphere damage to the 
simulated arcuate fasciculus. 
 

To summarize, the key finding of the current model was that it is capable of learning 
“from scratch” the visual image, auditory phoneme sequence representations (names), and 
motor phoneme sequence representations of fifty separate objects. We consider such results to 
be promising.  Remember that we did not assign any functionality a priori to any cortical region 
in the model, nor did we devise any new neurocomputational methods in creating the model 
(i.e., we used off-the-shelf modules, activation dynamics, learning methods, etc.). The learned 
ability of the model to produce output corresponding to the correct phonemic representation of 
both auditory and visual input stimuli is not trivial, as both the auditory and motor phoneme 
distinctive feature representations were distinct and complex; associations had to be made at 
several processing levels via multi-layered neural networks. For example, in word repetition, 
the model did not begin to generate output motor phonemes until after all auditory phonemes 
had been processed for that word, so it had to retain an internal representation of the word from 
which to generate its correct pronunciation. The model had to learn to not only map to the 
correct sequence of motor output vectors representing phonemes from the input patterns, in 
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whatever form that input took (temporal auditory phoneme sequence or static image), but also 
had to know the correct temporal length of the appropriate output and cease output phoneme 
production at the correct time.  This is considerably more complex than simple association 
learning, yet the model demonstrated near perfect performance on all performance measures in 
spite of the simplicity and small size of the cortical regions simulated relative to their biological 
counterparts. 

 
Lesion analysis further supports the belief that word and picture recognition in our 

computational model was accomplished in a manner similar to that posited historically by the 
creators of the WLG theory.  The primary finding was that the model, in general, demonstrated 
patterns of word processing deficits following left hemisphere lesioning much like those 
predicted by the WLG theory and often similar to those observed in human aphasic patients. 
None of these deficit patterns occurred with equivalent damage to the homologous regions of 
the right hemisphere, consistent with the model’s acquisition of hemispheric specialization.   
While some of the model’s deficits following lesioning would be readily predicted from the 
architecture of the model (just as the originators of WLG theory surmised), other results are 
much less straightforward.  For example, it is not obvious why damage to the model’s 
Wernicke’s area should reduce repetition ability but have much less impact on fluency. This 
dissociation between repetition and fluency performance is an interesting aspect of this model, 
and is especially promising because it suggests that Wernicke’s area is responsible for 
meaningful speech production, but not simply the ability to produce speech-like utterances.  If 
Wernicke’s area is simply an important part for the production of verbal output, both repetition 
and fluency should have both suffered following WA damage.  Instead, verbal production 
remained high following WA damage, but that output was meaningless (high fluency), 
indicating Wernicke’s area plays an important role in the management of performing 
meaningful speech.  
 
 
B. Delayed Match-to-Sample Model 
 

Executive functions are the high level cognitive abilities that allow manipulation of 
information. One major component of executive function is the ability to keep information in a 
short-term memory so that it can be manipulated and combined with other information. Both 
single-cell recordings in animals and imaging studies in humans suggest that this ability, called 
working memory (WM), involves a network of interacting brain regions, with the frontal cortex 
playing a key role. WM is further divided into different components, which include the 
maintenance of information online, resistance to interference from irrelevant information, and 
operations that allow this memory to be erased, updated, and selected for further processing. 
Decision-making is also thought to involve operations that require comparisons of alternatives 
that are held in WM, and is closely linked to WM. However, the neural underpinnings of these 
functions are poorly understood.  

 
Although functional magnetic resonance imaging (fMRI) has revealed brain regions that 

are involved in WM, there still are no techniques for relating fMRI activity to underlying 
neuronal circuit properties. In order to understand how the operations of WM are implemented 
in the brain, we have developed a large-scale systems-level model of WM that includes a 
method for relating the neural mechanisms to human fMRI data. The goals for the model are 
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that it be able to perform WM tasks that are typically used in fMRI studies, that its neural 
dynamics mimic those found in animal single-cell recordings, and that it reproduce human 
imaging results quantitatively in the brain regions included in the model. This approach makes 
it possible to begin to explain the human data in terms of underlying neuronal circuit dynamics. 
The model is composed of multiple brain regions and includes a working memory circuit that 
maintains representations of recently seen objects in short-term memory, and it performs a 
delayed match-to-sample task, in which it makes a decision about whether there is a match 
between a stimulus held in working memory and a stimulus that is presented after a delay, 
possibly with intervening stimuli. An attentional system that models the presumed effects of 
dopamine controls the performance. The model fulfills three major requirements for a working 
memory system: 1) maintaining representations in short-term memory; 2) resistance to 
interference; and 3) the ability to make a decision that initiates an update of the contents of the 
memory. Together, these features implement a form of executive control that is necessary for 
intelligent behavior.  
 

The basic model that we created addresses the delayed match-to-sample task, and 
incorporates the ventral visual pathways. In the delayed match-to-sample task, subjects are 
asked to determine whether or not the current input stimulus matches a previously seen 
stimulus that is retained in working memory. Previously we studied a simpler model as shown 
in Fig. 8. Inputs are visual patterns (letters, simple geometric shapes, etc.) similar to those used 
in human fMRI experiments. Outputs from the prefrontal (PF) region are decisions (match or 
no match) about whether the current visual input matches the previous one stored in working 
memory. Prefrontal cortex is believed to play a critical role in working memory during this 
task, and this is captured in the model by cortical column circuitry inspired by electro-
physiological data from this region [Tagamets & Horwitz, 2003].  This previous model serves 
as the basis for our new model as described in the following. 

 
 
Figure 8: The match-to-sample 
model has connections based on 
neuroanatomic pathways. Only right 
regions and pathways are shown; 
left ones and inter-hemispheric 
pathways are also present. Grids 
illustrate activity patterns 
propagating through the network. 
LGN = lateral geniculate nucleus; 
V1/V2,V4 = early visual regions; 
TEO/IT = inf. temporal visual 
regions; PF = prefrontal cortex.  

 
 

In new work, we explored the hypothesis that we can create an intermediate-scale 
neurocognitive system, but now one that includes regions from both hemispheres, working 
memory, and learning of interregional functional connectivity based on human fMRI data. 
Unlike the original functional imaging model (Figure 8), learning is now used heavily to 
acquire connection weights and pathway level inter-regional connectivity strengths instead of 
manually assigning such values. Most importantly, the new resulting model differs from most 
previous visual system models in being constrained to match quantitative fMRI data (some of 
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which we collected ourselves), in spanning two cerebral hemispheres, and by its integration 
with hippocampal regions and with prefrontal working memory regions. To our knowledge, no 
one has previously developed a neurobiologically grounded computational model of delayed 
match-to-sample human behavior having this scope and fidelity to behavioral, neural, and 
functional imaging data. 
 

Figure 9 depicts the overall architecture of the new extended model. The task that we 
model, visual shape matching, involves mainly the occipitotemporal visual pathway. Single-
cell recordings in primates have provided data about specific visual response properties in these 
areas [Tanaka 1993], as have imaging studies in humans [Sergent et al 1992; McIntosh& 
Gonzalez-Lima 1994; Courtney et al 1996]. This pathway includes areas V1, V2, V4, the TEO 
region of the inferotemporal cortex (TEO/IT), and lateral prefrontal cortex (PFC). The 
hippocampus (HC) is primarily associated with long-term memory (LTM) but is also thought to 
be involved in working memory. 

 
Each region in the model is composed of 8x12 arrays that represent subpopulations of 

neurons with different types of response properties. The early visual cortices, areas V1 and V2, 
encode simple components of visual objects, such as line segments, their orientations, and 
intersections of lines that form angles. In the model, there are subpopulations that encode 
horizontal and vertical lines. Area V4 is the first region in the pathway that is considered to be 
association cortex, in which visual representations of basic shapes combine with other 
information, such as color (which enters the brain via a different pathway) and spatial 
relationships from the dorsal visual pathway. Area TEO/IT is thought to be a region of the 
brain that encodes whole objects, such as faces, trees, or words, with specialization for different 
types of objects in different populations and sub-areas of TEO/IT. The evidence for this is that 
damage to this region can result in selective loss of the ability to recognize specific classes of 
objects, such as faces, words, or even vegetables. The PFC has been implicated in executive 
function in general, and is thought to contain abstracted representations of objects and their 
context. Finally, the hippocampus (HC) has also been implicated in WM, thought its role in this 
is not clearly understood. Neurons in the regions V1, V2, and V4 are active only when a 
stimulus is in view. Neurons in regions further along in the pathway (including areas TEO/IT 
and PFC) have the capability of maintaining high levels of activity even when no item is 
currently in view. Thus these regions are likely to play a key role in WM function. However, 
one distinction between areas TEO/IT and PFC that has been observed in neurons from 
electrophysiological experiments in monkeys is that WM traces are maintained across 
intervening stimuli in PFC, whereas in TEO/IT an intervening stimulus replaces the current 
memory with a representation of the new stimulus [Miller et al, 1993]. This suggests that 
neuronal circuits in the PFC implement the property of resistance to interference in WM. In the 
model, the PFC contains the WM circuits, and feedback from the PFC to area TEO/IT enhances 
temporary memory maintenance for only the most recent stimulus in area TEO/IT. 
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Figure 9:  Architecture of the full model. Each block represents a brain region that has been 
implicated in visual working memory. Visual input enters the network through the lateral 
geniculate nucleus (LGN) and is passed forward through visual brain regions (V1, V2, and 
V4) that successively abstract the representations. Area TEO of the inferior temporal cortex 
(TEO/IT) is the region thought to be specialized for representations of whole visual objects. 
The prefrontal cortex (PFC) contains the working memory circuits, which maintain short-
term memories of recent stimuli, and make decisions about whether they match the current 
stimulus. 
 

Specialized circuits that maintain memory traces and decide on matching stimuli make up 
the populations in the PFC region of the model. The four different types of units in the WM 
circuit are based on distinct populations that have been identified in single-cell recordings in 
monkeys in delayed memory tasks [Funahashi & Kubota, 1994; Goldman-Rakic 1995]. 
Activity enters the circuit via the cue units C, from where it is passed on to D2 delay units. 
After the stimulus disappears, D1 delay units increase activity, and the memory is maintained 
by recurrent excitation between the D1 and D2 units. If a new stimulus matches the currently 
held memory, the response units R become active, indicating a match. Otherwise, if attention 
modulation is strong enough, the D1 and D2 units continue to maintain the representation of the 
remembered stimulus. 

 
A separate circuit implements decision-making in the model (Figure 10). This circuit is 

composed of two units in each hemisphere: one that responds when a stimulus matches the one 
in WM, and another that responds when there is no match. These units receive inputs from all 
of the WM circuit units in the frontal cortex (see Figure 10), and thus collect the total response 
from all frontal WM circuits. The connection weights are determined by a supervised learning 
mechanism. 
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Figure 10. Decision-making circuits in the frontal cortex of the model. D1 and D2 units 
maintain delay-period activity if there is a sufficiently high level of attention. Response units R 
activate if a new stimulus matches that currently held in memory. The frontal cortex in the 
model is made up of an array of these circuits. All WM circuits in the frontal cortex converge 
onto this circuit, which includes a match unit that fires when a match has occurred, and a 
mismatch unit that fires when the current stimulus does not match the one held in memory. 
 
 

The most critical issue with the extended model was matching model activity to fMRI, 
which is an indirect measure of neuronal activity.  The relationship between fMRI and neuronal 
measures is complex. The responses of neurons constitute the computations that are performed 
by the brain: a high firing rate in a neuron suggests selectivity of that neuron to a particular 
state of the brain, e.g., it might represent that a face is in view. The connections between 
neurons, i.e. their strengths and patterns, determine the responses of the neurons. Changing how 
neurons interact changes their firing properties, and activity in these connections requires large 
amounts of energy. Energy requirements in local brain regions increase demand for oxygen. 
Finally, fMRI measures oxygen levels that change when blood flow responds to local changes 
in energy needs. The net effect is that fMRI is thought to mainly reflect the energy 
requirements of synaptic activity, and not the neuronal spiking that is commonly used as an 
index of encoding. We have previously demonstrated that the consequence of this is that there 
can be a dissociation between neuronal spiking activity and measured fMRI [Tagamets & 
Horwitz, 2001]. 

 
Our approach to modeling fMRI has been to focus on the numbers and attributes of the 

connections. Most connections in the brain do not extend beyond a fairly localized area, and 
this is captured in the architecture of the local circuits. Thus, incoming activities can have 
potentially large effects on the local circuits, depending on their configuration. fMRI data is 
modeled as the sum of all incoming and local circuit connections within a region integrated 
over time. 
 

We developed a neural network learning algorithm, the gains learning algorithm, that can 
be used to find the strengths of interregional connections for the model to match activations in 
an arbitrary fMRI data set [Winder et al, 2006]. This problem differs from the usual supervised 
learning methods in neural networks in that there are target values for all regions in the 
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network, not just for an output “layer.” This method allows estimation of functional 
connectivity while allowing for effects of the interaction of interregional and local circuits. It 
differs from other measures of functional connectivity for fMRI currently in use in two major 
ways. First, the model itself is a generative one that attempts to explain how imaging data such 
as rCBF and BOLD can be explained by neuronal behaviors. Second, the connection training 
method is based on matching average activations in the regions of interest (ROIs), as opposed 
to other methods such as structural equation modeling [McIntosh & Gonzalez-Lima, 1994], 
partial least squares [McIntosh, 1998; McIntosh et al., 2004; McIntosh & Lobaugh, 2004], and 
DCM [Friston et al., 2003; Mechelli et al., 2003; Penny et al., 2004], which derive effective 
connection strengths from covariances or correlations that are computed from the data. This is 
an advantage over the other methods, since in many cases, average within-task activations are 
computed more reliably than within-task covariances, which are difficult to compute in event-
related fMRI data.  

 
The gains learning algorithm is a gradient descent method that attempts to find solutions 

that will minimize the overall error between modeled and target activations. It was 
demonstrated empirically that this algorithm converges to unique solutions, and that it finds the 
correct solutions on data with known connectivity. We then applied it to an fMRI data set in 
order to examine connections in healthy control subjects as they performed a working memory 
task involving linguistic stimuli. The connection weights shown in Figure 9 provide an 
example. These specific weights were derived by using this learning method on the fMRI data. 
The learning algorithm was also applied to fMRI data from the same task in a group of 
volunteers with schizophrenia. The greatest differences between the groups were found in 
temporo-frontal connections between the groups, a result that is consistent with a number of 
other imaging results in schizophrenia.  
 

Finally, we examined the effects of modifications in local prefrontal circuitry on changes 
in fMRI activations, functional connectivity, and performance of the task. The results of 
damaging the frontal circuitry suggest that functional connections are much more sensitive to 
these changes than BOLD activations, and the performance changes are suggestive of working 
memory deficits commonly found in schizophrenia, in that the memory is more susceptible to 
interference. Together with evidence for local circuit disturbances in prefrontal regions in 
schizophrenia, our results suggest that decreased recurrent excitation within prefrontal cortex 
can simultaneously explain the disconnection between frontal and temporal regions and the 
deficits in working memory in schizophrenia. 
 

In summary, our work with modeling functional imaging data has been directed at gaining 
a better understanding of both the quantitative and qualitative properties of this data and in 
elucidating the underlying neuronal circuits that carry out cognitive operations. This method 
allows experimental results from the animal literature to be incorporated into explaining fMRI 
data. We conclude that this combined theory-driven and data-driven methodology extends 
current imaging analysis methods, and allows examination of properties other than total 
activations and functional interregional connection strengths that are currently in use for fMRI 
data analysis. 
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C. Adaptive Sensorimotor Control Model 
 

A primary goal of research on the cognitive neuroscience of decision-making is to produce 
a comprehensive model of behavior that flows from perception to action (including decision-
making) with all of the intermediate steps defined. The model should be able to generate not 
only simulated neural activity, fMRI and other functional neuroimaging data (as shown in 
Sections IIIA-B), but also behavioral performance (i.e., accuracy and reaction time data) data in 
both intact and neurological conditions. Although we and others (e.g., [Husain et al., 2004]) 
have developed models of perception, and models of action have also been put forward 
[Bullock et al., 1993; Guigon and Baraduc, 2002; Contreras-Vidal and Wen, 2003], integrating 
perception, decision-making, and action networks is still needed. To address this gap, we have 
recently integrated a model of adaptive frontal-parietal sensorimotor transformation with the 
Bullock et al (1993) model of redundant arm reaching. Importantly, our model now 
incorporates complementary parallel cortico-cerebellar-thalamo-cortical and cortico-striato-
thalamo-cortical neural “loops” that are thought to be critical for motor adaptation learning in 
response to developmental and/or environmental changes.  

The hypothesized cortical sensory integration and coordinate transformations required for 
controlling an arm reaching to visual targets (summarized in Figure 11) can be initially learned 
through simultaneous exposure to patterned proprioceptive and visual stimulation during self-
produced movement [Bullock et al, 1993; Guigon and Baraduc, 2002]. These sensorimotor 
transformations or mappings can then later be updated (or new maps formed) with the help of 
fronto-parietal and/or parieto-cerebellar circuits. Recent motor control theories suggest that the 
brain uses internal models to learn these mappings, and to plan and control accurate 
movements. An internal model is thought to represent how the biomechanics of the arm 
interacting with the outside world would respond to a motor command; therefore it can be seen 
as a predictive model of the reafference that helps the system plan ahead [Imamizu et al., 
2000]. For example, during adaptation to 'force fields' (external forces applied through a robotic 
manipulandum which alter the normal dynamic characteristics of arm motion), these adaptive 
internal models are thought to generate compensating torques which allow the arm to track an 
invariant reference trajectory to a specified target. In the case of a distorted kinematic 
environment (e.g., altered screen cursor-hand relationships), the internal model would represent 
the new inverse kinematics required to transform a desired movement vector in visuospatial 
coordinates into a joint-based motor command. Adaptive sensorimotor behavior therefore 
involves the problems of localizing the hand and the targets in space, trajectory planning 
(which involves computing the vector linking the hand to the target), coordinate transformation, 
and control, and the brain must solve these problems to bring the hand from the starting 
position to a desired target location. There are many different approaches to modeling adaptive 
sensorimotor behavior ranging from adaptive control techniques to biologically-inspired neural 
network approaches [Bullock et al, 1993; Contreras-Vidal et al, 1997]. A benchmark test 
performed by many researchers in motor learning is a reaching task between points usually 
lying along the circumference of a circle at equally spaced intervals (i.e., the 'center-out' task).  
The human operator is told to move 'as fast as possible', the cursor on the computer screen from 
point A to point B in a straight line using a robot manipulandum, or a computer mouse or pen 
as input devices. The experimenter then either distorts the kinematic mapping of the handle (or 
mouse) or programs the robot handle to exert environmental force disturbances on the subject.  
This allows researchers to examine how subjects react to various kinematic and dynamic 
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perturbations, thus furthering their understanding of any adaptive processes that might be 
occurring in parallel.  

 
Figure 11: Adaptive sensorimotor transformations for redundant reaching. Visual (xvis) and 
proprioceptive (xprop) signals are integrated to form a multimodal representation of initial hand 
position (xo), which can then be compared to the desired target location (xd) to compute the 
movement vector in visuospatial coordinates. Next, inverse kinematic computations are 
performed in a parieto-premotor network to transform changes in end-effector position (dxr/dt) 
into changes in joint angles (dqr/dt) that specify the desired trajectory of movement, that is, the 
intended direction of action. Deviations between desired and actual movements, detected by an 
action monitoring system, causes progressive recruitment of basal ganglia and cerebellar 
networks, respectively, for updating the sensorimotor transformation networks. It is 
hypothesized that action monitoring is performed by the anterior cingulate cortex, whereas 
action selection and reinforcement may be related to basal ganglia function and sensorimotor 
tuning may result from cerebellar involvement. Notation adapted from Sober and Sabes (2003). 
 

           An interesting result of these studies has been that despite large differences in models, 
they often display three common features:  a trajectory generator, sensory feedback and control 
loops, and an adaptive process.  Models of reach planning based on either kinematic (e.g., 
velocity command model) or dynamic (e.g., torque command model) variables have been 
proposed in the literature. In the velocity command model, the motor command is specified as 
joint angle velocities, whereas in the torque command model, the trajectory generator outputs a 
set of nominal joint torques for the arm which is learned over a lifetime of executing such tasks.  
The second feature is that humans will use visual and kinesthetic feedback to correct for the 
arm motion when it drifts from this nominal path.  Finally, humans will adapt to environmental 
disturbances or distortions to the sensory mappings to keep the arm moving along the desired 
trajectory [Shadmehr and Mussa-Ivaldi, 1994; Contreras-Vidal and Buch, 2003]. Researchers 
such as Bullock et al (1993), Sanner and Kosha (1999) and Thoroughman and Shadmehr 
(2000) have used neural network based approaches to attempt to model these adaptation 
processes.  Their results indicate that the brain constructs motor commands using 
computational elements that are a superposition of primitives that have gaussian-type tuning 
functions that encode hand velocity. However, these models cannot account for the effects of 
neurological lesions (e.g., Parkinsonism or cerebellar lesions) nor the functional and kinematic 
changes resulting from environmental changes such as screen cursor rotations or force field 
perturbations.  
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To address these gaps, we have extended Bullock et al (1993) model of redundant reaching 
by complementing the cortical circuit with two sub-cortical networks, namely, a fronto-striatal 
loop and a parieto-cerebellar loop. The fronto-striatal network is modeled as an adaptive search 
element, guessing new sensorimotor transformations and reinforcing successful guesses while 
punishing unsuccessful ones [Grosse-Wentrup and Contreras-Vidal, 2006]. This system uses an 
error (evaluative) signal to drive the selection and the reinforcement/punishment mechanisms. 
The parieto-cerebellar component is modeled as an adaptive error-correcting module that 
continuously updates a correction term to drive the error of actual versus desired movement to 
zero [Contreras-Vidal, Grossberg, Bullock, 1997]. Simulations of a kinematic visuomotor 
adaptation task using a redundant arm moving in the horizontal plane (see Figure 12) and with 
learning processes disabled in the cortico-striatal network resulted in error curves resembling 
those of Parkinson’s disease patients [Contreras-Vidal and Buch, 2003; Grosse-Wentrup and 
Contreras-Vidal, 2006]. Simulated PET data have also been computed to assess the functional 
activation of various brain regions of interest [Contreras-Vidal and Wen, 2003]. The model’s 
patterns of simulated constant and variable errors were found to match the learning curves seen 
in the experimental data. In agreement with experimental studies (Inoue et al, 2000), for 
example, the simulated PET signal of superior parietal lobe showed an increase in functional 
activation due to the introduction of the visual feedback distortion. Our simulations also 
showed increased activation in the lateral cerebellum as reported by Imamizu et al (2000) in a 
similar study involving adaptation to rotated screen cursor-hand relationships. 
 
 

IV. Towards a Large-Scale Neuromorphic Architecture 
 
In the previous sections, we outlined some basic design principles for organizing a 

neurocognitive architecture, and showed that one can readily build substantial portions of 
system-level modules of such an architecture at present using many of these principles. In this 
section, we focus on specifying the behavioral capabilities required for a large-scale 
architecture representing a situated and embodied agent functioning in a naturalistic setting. 
Our intent is not to exhaustively list and describe all of these, but rather to address those that 
we see as critical in the initial development of the architecture. Specifically, we consider the 
range of systems needed in a large-scale architecture, including 

 
Sensory Systems 
Motor Control 
Memory  
Language 
Executive Functions 

 
We outline the scope and functional requirements of each system, and provide where possible 
an indication of important neurobiological inspiration for functionality. Implicit in all of this is 
that learning is involved in each system listed above, and that each system is based on the 
principles outlined in Section II. 
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A. Sensory Systems 
 

A full-scale neurocognitive architecture will need to process, interpret and act upon a 
broad range of sensory inputs. At a minimum, these include analogs to human vision, audition 
and proprioception, but in specific situations might also include more exotic senses such as 
infrared detection or chemical recognition. Here we consider general issues concerning sensory 
processing, illustrating them with specific details for the visual system, the most highly 
elaborated sensory system in humans and non-human primates. 
 

While the goal of sensory systems is to convey and interpret environmental information, 
in a broader sense this information must also be evaluated in terms of three factors: 1) the need 
for action; 2) its unexpectedness/novelty; and 3) its usefulness. If action is required, the sensory 
information needs to facilitate an estimate of its urgency. Urgent needs have to be routed via 
faster pathways to more automatic response systems, while non-urgent information can be 
further evaluated for novelty and usefulness. Novel stimuli convey less certainty about utility 
and need for action, but more potential for unexpected results. A full architecture will need 
sensory systems that encode features that address each of these three factors. One key factor 
that especially needs to be accounted for is the amount of time it takes to process information 
that has varying degrees of immediate utility. Each of the factors outlined above takes 
increasingly more time for processing, and thus they will be encoded and represented in 
separate but integrated subsystems. Toward this end, the full architecture should have parallel 
pathways that accommodate fast reflexive actions and increasingly slower evaluative processes.  
 

The organization of biological sensory systems provides useful insights for an artificial 
architecture. Biological systems carry out sensory processing by means of hierarchical 
pathways that successively transform incoming stimuli from specific features to progressively 
more abstract representations that include encoding of context. When sensory information 
reaches the neocortex, it passes through a network of cortical regions that provide increasingly 
abstract representations. Each modality has a primary sensory cortical area containing different 
populations of neurons that respond selectively to very specific properties of the incoming 
stimuli. For example, in the visual system, the primary visual cortex has separate populations of 
neurons that encode features such as orientation of line segments and edges, direction of 
motion, and color. These primary region populations forward their encoded information via 
multiple separate pathways that each process distinct types of visual information. A ventral 
system that deals with object identification (the “what pathway”, as in the match-to-sample 
model earlier) and a dorsal system (“where pathway”) that processes spatial information, were 
identified some twenty years ago [Ungerleider and Mishkin 1982]. Other identified visual 
pathways include those for color perception and motion detection. These multi-area pathways 
are also highly interactive with one another. Both monkeys and humans have specialized 
regions for face and hand recognition, and for distinguishing between biological and non-
biological motion. Humans have also been found to have specialized brain regions for specific 
objects besides faces and hands, such as words, places, tools, and other classes of objects. The 
price of such complexity is relative slowing of operations, since visual information must pass 
through multiple levels of analysis before a full representation is built. 
 

In the object vision pathway, edges and oriented line segments are successively 
composed into groupings that represent parts of objects, and finally reach the inferior temporal 
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cortex, where visual representations of whole objects are thought to be stored in the brain (at 
least in large part). Initially separate from each other, the pathways exchange increasingly more 
information further along in the hierarchy, so that, for example, the color and shape of objects 
are represented together in the inferior temporal cortex. Beyond this area, the visual 
representations are increasingly integrated with other sensory systems in multimodal 
association regions in the superior and anterior temporal cortex. The abstracted representations 
finally converge in two main high-level brain regions, as follows. Abstracted, possibly 
multimodal representations converge in the frontal cortex, where evaluation of the incoming 
information is integrated into the context of the current state. Other pathways lead to the medial 
temporal lobes, which mediate integration of new information into long-term memory. 
Presumably each of these endpoints requires somewhat different representations of the content. 
We have previously implemented models of sensory systems for the object vision pathway as 
described above [Tagamets and Horwitz 1998] and the auditory pathway [Husain et al. 2004]. 
These models have a hierarchical structure, and include a short-term memory module that 
maintains representations of recent items and makes decisions about the similarity of new 
information to that currently in short-term memory.  
 

Humans also possess fast sensory pathways that lead almost directly to the orienting 
motor output system, allowing for reflexive responses that do not depend on the more 
extensive, slower evaluation in the main pathways. In the visual system, there is a pathway that 
leads directly from the retina to the superior colliculus, which, in turn, is connected directly to 
the motor output system. This pathway is particularly sensitive to motion, and is presumably 
useful for quickly responding to potentially threatening movements. Similar fast pathways exist 
for the auditory and somatosensory systems, mediating the startle reflex to sudden sounds and 
the somatic reflex arc that mediates reflex reactions to sudden pain on the surface of the body. 
These fast pathways do not process the level of detail that is available to the other pathways, 
and thus are not necessarily available for conscious perception. Rather, they encode existence 
of sudden changes in the environment, such as sudden movement or a sudden loud noise, 
favoring speed over detail. 
 
B. Motor Control 
 
 The organization of biological motor control systems in human and non-human 
primates provides useful insights that may be adopted in an artificial sensorimotor control 
system. Anatomical, physiological and clinical studies suggest multiple spatially segregated 
cortico-striatal and cortico-cerebellar loops, with each loop involved in a distinct aspect of 
cognitive-motor behavior as summarized in Figure 12 [Hoover & Strick, 1993; Middleton and 
Strick, 2000; Doyon et al, 2003]. Each basal ganglia loop originates in a cortical area, and 
enters the basal ganglia through cortical projections to the sensorimotor (skeletomotor) striatum 
or the associative (cognitive) striatum. The basal ganglia output to individual cortical areas 
appears to originate from separate regions in the internal segment of the globus pallidum (GPi), 
which in turn projects through specific thalamic areas to cortical areas known to control distinct 
aspects of behavior. Thus, in reaching tasks involving hand movements to a chosen visual 
target after an instructed delay period, cortico-basal ganglia activation would be characterized 
by neuronal activation of dorsomedial regions of the GPi which project to the supplementary 
motor area (SMA) involved in motor preparation, as well as to prefrontal areas responsible for 
spatial working memory during a delay period (area 46). Moreover, ventrolateral GPi neurons 
and their cortical targets in the ventral premotor (PMv) area, which is involved in target 
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selection, and coordinate transformations for movement, would also be recruited. As the 
movement command is released and the movement starts to unfold, primary motor cortex and 
related basal ganglia and thalamic areas would be recruited to control movement parameters 
such as movement speed and size rescaling.  
 

In this scenario, cerebellar associative and motor channels originating in distinct regions 
of the cerebellar dentate nucleus would be recruited in parallel to reduce the discrepancy 
between desired and actual (or predicted) states. Thus, while the basal ganglia may be involved 
in the selection of appropriate movements and/or control strategies based on external cues, the 
cerebellum may be involved in the recalibration of motor commands through the adjustment 
and optimization of movement parameters [Jueptner and Weiller 1998]. Thus, it appears that 
functional cortico-basal ganglia engagement is crucial in tasks that are initially effortful and in 
which correct responses are self-selected through trial-and-error. However, once the 
appropriate action has been found and stabilized, the cortico-cerebellar networks can fine-tune 
the internal model through practice until the task can be performed automatically. This 
updating is likely to be accomplished through internal models representing the forward and 
inverse computations related to sensory-motor mappings and the interaction of the body and the 
environment [Kawato & Wolpert, 1998].  

 
 
Figure 12: Multiple spatially separate cortico-
basal ganglia-thalamo-cortical and cortico-
cerebellar-thalamo-cortical networks involved in 
distinct cognitive and motor functions. AIP, 
anterior interpositus nucleus; DN, dentate 
nucleus; GPi, globus pallidum pars interna; SMA, 
supplementary motor area; PMv, ventral 
premotor cortex; M1, primary motor cortex; Vlo, 
ventrolateral nucleus, oral division; X, area X; 
VLc, ventrolateral nucleus, caudal division; VA, 
ventroanterior nucleus; VPLo, ventral posterior 
nucleus, oral division; pl, posterior lateral; m, 
medial; cr, caudal-rostral; pc, posterior-caudal. 
Note that basal ganglia and cerebellar input areas 
(e.g., striatum and cerebellar cortical areas) are 
not shown. Adapted from Middleton and Strick 
(2000). 
 

 
  Importantly, the internal (forward) model contributes a speed advantage by using 
predicted sensory reafference instead of waiting for actual reafference. However, the system’s 
predictive ability is adaptively recalibrated by new experiences with actual kinesthetic 
consequences of motor signals. These kinesthetic signals provide a non-visual basis for 
measuring the evolving configuration of the body parts and their positions vis-à-vis the visible 
or remembered location of environmental features. Interestingly, although internal parallel 
forward models can actually improve upon kinesthesia, they are also parasitic upon it, and can 
be expected to degrade if kinesthesia degrades [Contreras-Vidal and Gold, 2004]. 
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The importance of having internal models of movement control is best exemplified by 

behavioral studies of adaptation/learning in the presence of kinematic and/or dynamic 
perturbations during limb movements. The generation of descending neural commands 
appropriate for required actions implies that the internal representation includes a mechanism 
for selection of motor commands that can produce the desired kinematic output [Dounskaia 
2005]. Moreover, these adaptation studies demonstrate the existence of aftereffects after 
extended practice under distorted environments that represent learning and/or updating of 
internal kinematic or dynamic representations of the interaction of the limb and the 
environment [Kagerer & Contreras-Vidal, 1997; Contreras-Vidal & Kerick, 2004]. 
Neuroimaging studies suggest both cortical and subcortical substrates for the acquisition of 
these internal models. For example, fMRI and PET studies of adaptation to kinematic 
distortions (e.g., alterations of hand-cursor relationships) in human subjects show a highly 
interconnected network comprising the putamen, preSMA, PMv, posterior parietal cortex 
(PPC), and the lateral cerebellum [Imamizu et al. 2000; Krakauer et al., 2004].  

 
Recent studies indicate that these internal models are not necessarily exact replications 

of complex dynamic equations that account for interaction torques, gravitational forces, or 
inertial characteristics of the arm [Dounskaia 2005]. Rather, approximations of internal 
representations for proximal and distal components of movement are used to simplify the 
computational burden. Specifically, it appears that for planning and control purposes, the 
‘leading’ joint responsible for launching and directing the movement towards the desired target 
is initially controlled without regard to interaction torques, whereas the function of the 
‘secondary’ or joint ‘slaves’ is to take advantage of interaction torques generated by the leading 
joint to take the end-effector to the target.  

 
The principles underlying internal model formation and representation can be 

generalized to learning of internal representations of the spatial or contextual environment for 
navigation. The hippocampus of the rat has been hypothesized to host a spatial representation 
of the animal’s surrounding environment [O’Keefe & Nadel, 1978], as the firing of 
hippocampal ‘place’ cells is strongly correlated with the location of a freely moving rat in its 
environment. If the environment changes (e.g., configuration, orientation and color of objects), 
remapping of the hippocampal map occurs leading to distinct maps for distinct environments 
[Lever, Willis, Cacucci, Burguess, & O’Keefe, 2002; Bostock, Muller & Kubie, 1991; 
Cressant, Muller & Poucet, 2002]. It has been suggested that a dynamical spatial and temporal 
representation of the space and task environment based on the encoding of transitions provides 
a natural solution for switching from a spatial cognitive map to its motor implementation 
[Banquet et al, 2005].  The so-called ‘place’ cells integrate visual and movement related 
information during navigation. In this scenario, transitions are associated with their movement 
vector by convergence of place information and path integration as navigation takes place. 
Transitions are computed using current direct and delayed indirect visual inputs, and 
spatiotemporal contiguity between successive place fields is ensured by Hebbian learning of a 
contextual map during exploration [Banquet et al, 2005]. The transition cells in this cognitive 
map are the building blocks of the neural representations of temporospatial sequences, graphs, 
and contextual maps putatively stored in parietal or prefrontal cortices. They appear to 
correspond to the internal representations for inverse/forward kinematics used during arm 
reaching in which changes in end-effector location are associated with changes in joint angles 
and vice versa.  Thus, internal models of sensorimotor transformation or coordinate 



 34 

transformations (e.g., from changes in visual space to changes in joint space) may represent 
general design principles used for movement planning and control during navigation and 
reaching [Grosse-Wentrup and Contreras-Vidal, 2006]. 
 
 

C. Memory  
 

The range of memory functions needed in a full-scale architecture is illustrated in Figure 
13. In this hierarchy, which is typical of how neurospychologists view human memory 
organization today (e.g., [Baddeley, 1997]), different types of memory are often distinguished 
via dichotomies:  long-term memory versus short-term memory, implicit versus explicit 
memory, semantic versus episodic memory, etc.  Of these, the distinction between long and 
short term memory is arguably the most important.  Information must not only be stored in a 
long term sense, becoming available days, months, or years after it is integrated with existing 
knowledge, but must also be readily retained over shorter periods of time, typically down to the 
range of seconds.  Whereas the former is essential for the gradual accumulation of knowledge 
about one’s environment, the latter is essential for the routine availability of that information 
both during and after storage. Working memory is sometimes used synonymously with short-
term memory, although it refers to that information within short-term memory that is also 
manipulated as part of active cognitive processing.  Implicit memory is that which does not 
require conscious awareness for recall, whereas explicit memory requires attention.  Mirroring 
the distinction between implicit and explicit memory is procedural and declarative memory, 
with the former involving attention-independent motor skill learning, and the latter involving 
attention-dependent accumulation of knowledge.  Within different kinds of explicit or 
declarative memory there also exists semantic and episodic memory. Semantic memory 
involves recall of meaning and other general knowledge not necessarily linked with the 
learning event itself, and episodic memory involves the recall of information along with the 
context and other environmental factors that were present at the time of learning. 
 
          Memory 
 
 
     Short-term  Long-term 
                         (Working) 
 
              Implicit        Explicit 
                                                (Procedural)       (Declarative) 
 
       
         Semantic               Episodic 
               (Autobiographic) 
 
Figure 13: The range of memory functions needed in a full-scale architecture. Approximate 
synonyms are indicated parenthetically.  
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        Several cortical areas have been identified as having especially important roles in memory 
storage and recall, and provide inspiration for model development. First, the medial temporal 
lobe, which includes hippocampus, entorhinal, perirhinal, and parahippocampal cortex, is 
highly involved in memory storage and consolidation [Tulving and Markowitsch, 1998].  
Explicit memories appear to be stored in neocortex in a distributed manner. Memories are also 
stored only in relation to existing knowledge, so that both storage and recall of new information 
leads to a restructuring of one’s representation of the world. Second, premotor cortex and 
subcortical structures, such as basal ganglia and cerebellum, are important for procedural 
memory, a type of implicit memory involving motor function [Schacter, 1987]. Third, limbic 
structures are important in making salient events more likely to be stored in memory [Damasio, 
A., 1996]. Finally, prefrontal cortex plays a key role in maintaining information in working 
memory, and for providing information about context that is important for episodic memory 
[Cohen et al, 2004].  
 
          There are important implications of the hierarchy of memory types in Figure 13 and of 
the many brain regions playing roles in human memory. The memory system of a full-scale 
architecture should be highly distributed and highly overlapping with other systems. Clearly, 
memory storage and recall does not occur independently of other aspects of cognition.   Using 
the neurobiological mechanisms of human memory as a starting point, it appears that model 
regions will fall into two classes: regions in many systems (sensory, motor, language, etc.) will 
need to be involved in memory storage and recall, while separate regions should be responsible 
for consolidation (analogy to hippocampus), for linking stored information with specific 
information about the learning event in which it was acquired, for providing context in episodic 
memory (prefrontal cortex), etc.  For example, the memory system must be closely linked with 
the motor system for that part of implicit memory that involves movement and navigation.  
Finally, mechanisms are required for recognizing particularly salient and novel information so 
that it may be given priority for storage. 
 
 
D. Language 
 

The WLG model (associative word learning model) of Section IIIA provides a useful 
starting point for building a full-scale language processing system. That model learns to 
recognize, repeat and produce names represented as phoneme sequences for a limited number 
of object images. While the language processing facilities of a full architecture must extend 
qualitatively beyond such abilities, a full human competitive natural language processing 
system seems an improbable target for the short-term, given that a half century of work with 
this goal has met only limited success. A more reasonable goal is to produce an architecture 
that learns a restricted but representative core vocabulary, perhaps comparable to that of a 
young child, and that has the ability to learn additional task-specific words when appropriate. 
Here we assume that input/output is spoken in the form of phoneme sequences. Contemporary 
speech processing methods could be integrated with such discrete phoneme processing if 
needed. 

 
To achieve language sufficiency, the information learned by a full-scale architecture 

will need to go beyond the WLG word association model in at least three fundamental ways. 
First, a much larger vocabulary is needed, and must include words naming non-objects (verbs 
describing states and actions, conjunctions, negation, prepositions, etc.).  Word sense 



 36 

disambiguation will become very important in this context. Second, the full architecture must 
be able to interpret heard word sequences, such as multi-word names and complete sentences, 
extracting their meaning in terms of the current situation, external events, and internal goals. 
This includes basic tense information (past, present, future, etc.). Third, the architecture will 
need the ability to map its internal representations of situations, events, goals, etc. onto multi-
sentence spoken utterances in appropriate situations. From a pragmatics perspective, the 
architecture must be able to determine when it should ignore/attend to input communication, 
and when it is appropriate to initiate spoken sentences. This latter ability transcends language in 
a narrow sense, overlapping with the executive functions and control issues discussed later in 
this report. To assure generality of the mechanisms used to support all of these language 
capabilities, a reasonable requirement to impose on the architecture is that its language learning 
mechanisms should work independently of the specific natural language used for training 
(English is assumed here, but in principle the use of any other natural language should be 
learnable just as well). 

 
While our understanding of the neurobiological basis of language is quite limited, there 

are many insights available from lesion data and contemporary experimental studies (fMRI, 
EEG, MEG, etc.) that provide hints and guidelines for implementing a language system, 
including those summarized earlier in Section IIIA. Example sources of further biological 
inspiration include the following. First, the neurobiological basis of word meanings (semantics) 
is heterogeneous and widely distributed across a number of neocortical areas bilaterally, 
including secondary/association and motor areas [Saffran and Sholl, 1999]. This suggests that a 
substantial part of learning involving the language system will need to occur in the context of at 
least partially trained sensorimotor systems, providing both a basis for grounding word 
meanings as well as important constraints on a learning agenda. Many intriguing 
psycholinguistic disruptions following localized brain damage (category-specific deficits, loss 
of specific details vs. category information, dissociation of abstract versus concrete word 
impairments, etc.) provide both clues as to the organization of stored information and the 
potential patterns of behavioral disruption that could be useful should one wish to assess the 
neurobiological plausibility of an implemented artificial architecture. In contrast to semantic 
processing, the neurobiological mechanisms underlying syntactic processing tend to be more 
localized and largely confined to the language-dominant hemisphere. Both lesion studies and 
functional imaging data have fairly consistently indicated that Broca’s area is most strongly 
associated with grammatical encoding and parsing operations, although there is some 
conflicting evidence, and the left anterior temporal and other regions have also been implicated 
[Hagoot et al, 1998]. Perhaps the most surprising aspect of this observation is that the use of 
syntactic information, even during heard sentence interpretation, seems to be tied to a “speech 
output area” (Broca’s area) rather than receptive temporo-pareital regions, as might be expected 
from classic WLG theory. At the very least, these observations of distinctly distributed 
neurobiological mechanisms suggest that syntactic and semantic processing should be viewed 
as separate, concurrently active operations that jointly constrain sentence interpretation and 
generation.  
 

 

E.  Executive Functions 
 

The executive functions of planning and goal-seeking are high-level cognitive 
operations that bestow capabilities often thought to be uniquely human. From a 
neurocomputational perspective, planning tasks are among the most difficult to solve. A 
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number of nontrivial issues need to be addressed for a successful planning system: 1) What 
is an optimal representation for a plan? 2) What regulates the sequencing of operations, both 
when creating a plan and when executing it? 3) How is progress evaluated as a plan is 
carried out? 4) How are corrections and revisions made when things do not proceed 
according to plan? 5) What role, if any, do emotion and motivation play in human plan 
formulation? and 6) How does success or failure in formulating and/or carrying out plans 
relate to learning new or better strategies? While sophisticated symbolic AI software for 
automated planning is available today [Ghallib et al, 2004], it is generally not robust to noise 
or unexpected events, and is generally hand-coded rather than learned. 

 
Planning and goal-seeking behaviors are generally referred to as executive functions 

in the cognitive literature. Other aspects of executive function are voluntary attention, 
working memory, and inhibition of inappropriate or irrelevant thoughts or actions. These 
functions all play a role in planning. However, there is evidence that there are other, 
possibly subconscious, aspects of cognition that play an important role in strategic 
behaviors. A recent study examined the influence of deliberation on decision making 
[Dijksterhuis 2006].  Not surprisingly, this study found  that people made better decisions 
after thinking about pros and cons in a simpler decision task, when there were up to 4 or 5 
factors in the choice. But in complex decisions, when there were more factors, better 
decisions were made when people were not given an opportunity to deliberate about the 
options, but rather used their "gut" feeling to make a choice. This finding supports the view 
that the human brain is a stochastic machine that has limited resources for logical 
manipulation of complex situations.  

 
Recent theories of the organization of prefrontal cortex address how these limited 

resources might be optimized by hierarchical structuring of goals. In this view, the most 
anterior part of prefrontal cortex generates and holds general goals and schemas [Ramnani 
2004]. Pathways from this region enter other frontal regions that process successively more 
specific information, with the endpoint being the most posterior part of frontal cortex, i.e. 
the motor cortex, which initiates actions. In between the two extremes lie parts of the frontal 
cortex that have been associated with working memory, which is thought to be the limiting 
factor in complexity of cognitive operations. Working memory is generally viewed as a 
temporary store in which contextual information can interact with incoming information. 
For example, in operations for summing a series of numbers, each successive number must 
be added to the currently held sum, that sum must be updated, and maintained until the next 
number is available. The contextual information is usually a combination of content 
retrieved from long-term memory (e.g. knowledge that 4 + 2 = 6) and new information (i.e. 
the current task). This organization scheme suggests that chunking into subgoals might be a 
continuum, and that working memory is a key player in selecting, scheduling, and 
evaluating the organization of subgoals. Another salient aspect of this scheme is that the 
anterior frontal cortex has often been associated with affective states, or emotional aspects 
of decision-making. This suggests that the most abstract level of goal formation is likely to 
be strongly affected by the internal state of the individual, by factors such as mood, 
motivation, and arousal. Finally, information certainly goes in the opposite direction, thus 
"informing" the anterior frontal cortex of the consequences of the operations. Presumably 
this information is abstracted as it proceeds in the forward direction, and is ultimately 
reintegrated into the internal state. Theories of reward and reinforcement learning rely on the 
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salience of outcomes to an internal motivational state, and this may be a mechanism by 
which goals are revised and new strategies can be learned. 

 
 

V. Conclusions and Implications 
 
In this report, we presented a conceptual framework for the long-term development of a large-
scale machine intelligence that is based on the modular organization, dynamics and plasticity of 
the human brain. Some basic design principles were presented along with a review of some of 
the relevant existing knowledge about the neurobiological basis of cognition. Three 
intermediate-scale prototypes for parts of a larger system were successfully implemented and 
evaluated, and these provide support for the effectiveness of several of the principles in our 
framework. We conclude that a human-competitive neuromorphic system for machine 
intelligence is a viable long-term goal.  For the short term, however, substantial integration 
with more standard symbolic methods as well as substantial research will be needed to make 
this goal achievable, and we will consider such issues in Part 2. 
 

The two intermediate-scale models that we studied both learned to perform relatively 
simple cognitive tasks. The WLG model dealt with processing single spoken words and images 
of the objects named by these words. The match-to-sample model learned to make decisions 
about whether a visual pattern was the same as the preceding one.  In both cases the model was 
composed of a network of multiple regions with interconnecting pathways that could be 
directly related to neocortical and subcortical brain structures. Further, training these models 
was computationally tractable: learning times were measured in hours using contemporary 
laptop computers. The primary conclusion from these results is that one can readily build 
substantial portions of system-level models of basic aspects of cognition at present using the 
framework and principles that we described in Section II. This conclusion is supported by other 
experiences building system-level models of lower-level sensorimotor mechanisms such as 
limb control.  

 
More specifically, the results that we obtained establish the following important aspects of 

our conceptual framework including the following: 
 
1. It is possible today to routinely assemble networks of regions whose functionality is not pre-
assigned or programmed-in, but is determined during learning by their location within a 
network of interconnected regions.  

 
2. Temporal sequences can be recognized and generated appropriately by such networks 
following training, based on recurrent connectivity between regions. 

 
3. A learning agenda can be used to divide the learning process into manageable pieces,  
allowing an entire system to learn in a multi-step process that resembles the occurrence of 
multiple stages during human childhood development. 

 
4. Working memory can readily be implemented as regional activation attractor states, 
activation patterns that persist across multiple input/output events.  

 
5. Learning of higher-level pathway weights (gains) can be guided effectively via data about 
functional connectivity of brain areas collected during experimental fMRI studies. 
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6. The complexity of these systems makes it very difficult to monitor their dynamics and 
changes during learning; a graphic interface permitting visualization of model states is very 
informative and increasingly necessary as the size of a system increases. 
 
Of course, the exploratory systems done to date are quite limited in the size of their regions and 
the generality of the cognitive tasks that they address, and they are not integrated with other 
systems. This implies that some key issues that remain to be specified are how to scale systems 
up to full human-level functionality, the range of systems that should be developed in a 
complete system, how individually-developed systems will interact and become integrated, and 
how top-level control will work.   
 
 
 



 40 

V. Literature Cited 
 

Abbott L & Regehr W. Synaptic Computation, Nature, 431, 2004, 796-803. 
 
Anderson J et al, Integrated Theory of Mind, Psych. Rev, 111, 2004, 1036-60. 
 
Anderson, J., R. Gilmore, et al. (1999). Conduction aphasia and the arcuate fasciculus:  A 

reexamination of the Wernicke-Geschwind model. Brain and Language 70(1): 1-12. 
 
Baddeley, A. Human Memory:  Theory and Practice, Psychology Press, 1997. 
 
Banquet J, Gaussier Ph, Quoy M, Revel A & Burnod Y. A hierarchy of associations in  

hippocampal-cortical systems : Cognitive maps and navigation strategies,  
Neural Computation 17, 2005, 1339-1384. 
 

Bi G and Poo M. Synaptic Modification by Correlated Activity, Annual Review of  
Neuroscience, 24, 2001, 139-166. 

 
Binder, J., J. Frost, et al. (1997). Human brain language areas identified by functional magnetic 

resonance imaging. Journal of Neuroscience 17(1): 353-362. 
 
Booth, J., D. Burman, et al. (2002). Functional anatomy of intra- and cross-modal lexical tasks. 

NeuroImage 16(1): 7-22. 
 
Bostock, E., Muller, R. U., & Kubie, J. Experience-dependent modifications of hippocampal  

place cell firing. Hippocampus, 1, 1991, 193–206. 
 
Brachman R, Levesque H. Knowledge Represent. & Reasoning, Morgan-Kaufmann, 2004. 
 
Brown C & Hagoort P. Neurocognition of Language, Oxford Univ. Press, 1999. 
 
Caplan, D. (2003). Aphasic syndromes. Clinical Neuropsychology. K. Heilman and E. 

Valenstein. New York, Oxford University Press: 14-34. 
 
Cohen, J., Aston-Jones, G., and Gilzenrat, M.  (2004).  A systems-level perspective on attention  
 and cognitive control.  Cognitive Neuroscience of Attention.  M. Posner, Ed. Guilford. 
 
Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial 

visual working memory activate separate neural systems in human cortex. Cerebral  
Cortex, 6, 39-49. 

Cressant, A., Muller, R., & Poucet, B. Remapping of place cell firing pattern after maze  
rotations. Exp. Brain. Res., 143, 2002,  470–479. 

 
Contreras-Vidal JL & Gold DR. (2004) Dynamic estimation of hand position is abnormal in  

Parkinson's disease. Parkinsonism and Related Disorders, 10(8):501-506. 
 



 41 

Contreras-Vidal JL & Kerick S. (2004). Independent component analysis of dynamic brain  
responses during visuomotor adaptation. Neuroimage. 21(3): 936-945 

 
Contreras-Vidal JL & Schultz S. (1999). A predictive reinforcement model of dopamine  

neurons for learning approach behavior. J Comput Neurosci. 6(3):191-214. 
 

Contreras-Vidal JL, Grossberg S, Bullock D (1997) A neural model of cerebellar learning  
for arm movement control: cortico-spino-cerebellar dynamics. Learning and Memory,  
 3(6):475-502. 

 
Contreras-Vidal J & Buch E (2003). ‘Effects of Parkinsons disease on visuo-motor  

adaptation’. Exp Brain Res 150:25–32. 
 
Contreras-Vidal J & Wen J (2003). Functional Activation, Proc Intl Graph. Soc., 72-76. 
 
Dijksterhuis A et al. On making the right choice: the deliberation-without-attention effect,  
 Science,  311, 2006, 1005-1007. 
 
Damasio, A.  (1996).  The somatic marker hypothesis and the possible functions of prefrontal  
 cortex.  Philosophical Transactions of the Royal Society of London, 251, 1413-1420. 
 
Dounskaia N (2005) The internal model and the leading joint hypothesis: implications for  

control of multi-joint movements. Exp Brain Res 166:1-16. 
 
Doyon, J, Penhune V, Ungerleider LG. (2003). Distinct contribution of the cortico-striatal and  

cortico-cerebellar systems to motor skill learning. Neuropsychologica 41:252–262.  
 
Dronkers, N., D. Wilkins, et al. (2004). Lesion analysis of the brain areas involved in language 

comprehension. Cognition 92: 145-177. 
 
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 

19, 1273-1302. 

Funahashi, S. & Kubota, K. (1994). Working memory and prefrontal cortex. Neurosci.Res., 
21, 1-11. 

Ghallib M, Nau D & Traverso P. Automated Planning, Morgan-Kaufmann, 2004. 
 
Gibbons A. The Brain’s Energy Crisis, Science, 280, 1998, 1345-7. 
 
Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14, 477-485. 

Grosse Wentrup M & Contreras-Vidal JL. (2006). The role of the striatum in adaptation  
learning: A computational Model. Submitted to Biological Cybernetics.  

 
Grundstrom E & Reggia J. Learning Activation Rules, Int. J. Neural Sys, 7, 1996, 129-47. 
 
Guigon E & Baraduc P (2002). A neural model of perceptual-motor alignment. J Cogn  



 42 

Neurosci 14:538–549. 
 
Hoover J, Strick P (1993) Multiple output channels in the basal ganglia. Science. 259:819-821. 
 
Husain FT, Tagamets MA, Fromm SJ, Braun AR, Horwitz B (2004) Relating neuronal 

dynamics for auditory object processing to neuroimaging activity: a computational 
modeling and an fMRI study. NeuroImage, 21: 1701-1720. 

 
Imamizu H, Miyauchi S, Tamada T, et al. (2000) Human cerebellar activity reflecting an  

acquired internal model of a new tool. Nature 403(6766):192-5. 
 
Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar  

control of movements as revealed by functional imaging studies. Brain 121:1437–1449. 
 
Kagerer FA, Contreras-Vidal JL, Stelmach GE (1997) Adaptation to gradual as compared with  

sudden visuo-motor distortions. Exp Brain Res 115:557–561. 
 
Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D & Ghez C (2004) 

Differential cortical and subcortical activations in learning rotations and gains for  
reaching: A PET Study, J of Neurophysiology, 91:924-933. 

 
Kawato M, Wolpert D (1998) Internal models for motor control. Novartis Found Symp  

218:291–304. 
 
Kagan J & Baird A. Brain and Behavioral Development During Childhood, in The  
 Cognitive Neurosciences III, M. Gazzaniga (ed.), MIT Press, 2004, 93-103. 
 
Lever, C., Willis, T., Cacucci, F., Burgess, N.,&O’Keefe, J. (2002). Long-term plasticity 

in hippocampal place-cell representation by environmental geometry. Nature, 416, 
90–94.  

 
Markram H, Luebke J, et al. Regulation of Synaptic Efficacy by Coincidence of Post- 

synaptic aps and epsps, Science, 275, 1997, 213-215. 
 
McIntosh, A. R. (1998). Understanding neural interactions in learning and memory using 

functional neuroimaging. Ann.N.Y.Acad.Sci., 855, 556-571. 

McIntosh, A. R., Chau, W. K., & Protzner, A. B. (2004). Spatiotemporal analysis of event-
related fMRI data using partial least squares. NeuroImage, 23, 764-775. 

McIntosh, A. R. & Gonzalez-Lima, F. (1994). Structural equation modeling and its 
application to network analysis in functional brain imaging. Human Brain Mapping, 2, 
2-22. 

McIntosh, A. R. & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging 
data: applications and advances. NeuroImage, 23 Suppl 1, S250-S263. 

Mechelli, A., Price, C. J., Noppeney, U., & Friston, K. J. (2003). A dynamic causal 



 43 

modeling study on category effects: bottom-up or top-down mediation? J.Cogn 
Neurosci., 15, 925-934. 

Mesulam M, Large-Scale Neurocognitive Networks, Ann Neurol, 28, 1990, 597-613. 
 
Middleton FA, Strick PL. (2000) Basal ganglia and cerebellar loops: motor and cognitive  

circuits. Brain Res Brain Res Rev. (2-3):236-50. 
 
Miller, E. K., Li, L., & Desimone, R. (1993). Activity of neurons in anterior inferior 

temporal cortex during a short- term memory task. Journal of Neuroscience, 13, 1460-
1478. 

Mountcastle V. The Cerebral Cortex, Harvard Univ. Press, 1998. 
 
Neville H & Bavelier D. Specificity and Plasticity in Human Neurocognitive Development, 

The New Cognitive Neurosciences, M. Gazzaniga (ed.), MIT Press, 2000, 83-98. 
 

O’Keefe, J.,&Nadel, N. (1978). The hippocampus as a cognitive map. Oxford: Clarendon 
Press. 

 
Passingham R, Stephan K & Kotter R. The Anatomical Basis of Functional Localization in  

the Cortex, Nature Reviews Neuroscience, 3, 2002, 606-616. 
 
Penny, W. D., Stephan, K. E., Mechelli, A., & Friston, K. J. (2004). Modeling functional 

integration: a comparison of structural equation and dynamic causal models. 
NeuroImage. 

Poeppel, D. and G. Hickok (2004). Towards a new functional anatomy of language. Cognition 
92: 1-12. 

 
Rao R & Sejnowski T. Predictive Learning of Temporal Sequences in Recurrent  

Neocortical Circuits. In Solla S et al (eds.), Advances in Neural Information Processing 
Systems, MIT Press, 12, 2000, 164-171. 

 
Reggia J et al. Competitive Distribution in Neocortex, Neural Comp., 4,1992, 287-317. 
 
Reggia J, Goodall S, & Shkuro Y. Computational studies of lateralization of phoneme sequence  

generation, Neural Computation, 10, 1998, 1277-1297. 
 
Reggia, J., S. Goodall, et al. (2001). The callosal dilemma: Explaining diaschisis in the context 

of hemispheric rivalry via a neural network model. Neurological Research 23: 465-471. 
 
Riedmiller, M. and H. Braun (1993). A direct adaptive method for faster backpropagation 

learning: the RPROP algorithm. Proceedings of the IEEE Conference on Neural 
Networks.  

 
Rosenbloom P, Laird J & Newell A, The Soar Papers, MIT Press, 1993. 
 



 44 

Russell S & Norvig P, Artificial Intelligence, Prentice Hall, 2003. 
 
Sanner R, & Kosha M (1999). A Mathematical Model of the Adaptive Control of Human Arm  

Motions.  Biological Cybernetics, 80:369-382 
 
Schacter, D.  (1987).  Implicit memory: History and current status.  Journal of Experimental  
 Psychology, Learning Memory and Cognition, 13, 501-518. 
 
Schulz, R. and J. Reggia (2004). Temporally asymmetric learning supports sequence 

processing in multi-winner self-organizing maps. Neural Computation 16(3): 535-561. 
 
Sergent, J., Ohta, S., & Macdonald, B. (1992). Functional neuroanatomy of face and object 

processing: A positron emission tomography study. Brain, 115, 15-36. 

Shadmehr R, Mussa-Ivaldi F (1994). Adaptive representation of dynamics during learning of a  
motor task. J Neuroscience 14:3208-3224. 
 

Shkuro, Y., M. Glezer, et al. (2000). Interhemispheric effects of simulated lesions in a neural 
model of single word reading. Brain and Language 72: 343-374. 

 
Shkuro Y & Reggia J. Cost During Evolution…, Cognitive Sys Res, 4, 2003, 365-83. 
 
Sober SJ, Sabes PN. (2003) Multisensory integration during motor planning. J Neurosci,  

23(18), 6982-6992. 
 
Sowa J. Knowledge Representation, Brooks/Cole, 2000. 
 
Sutton R & Barto A. Reinforcement Learning, MIT Press, 1998. 
 
Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental 

data to create a large-scale model that simulates a delayed match-to-sample human brain 
imaging study. Cereb. Cortex, 8: 310-320. 

 
Tagamets M & Horwitz B. A model of working memory, Neural Networks, 13, 2000, 941-952. 
 
Tagamets, M. A. & Horwitz, B. (2001). Interpreting PET and fMRI measures of functional 

neural activity: the effects of synaptic inhibition on cortical activation in human 
imaging studies. Brain Res.Bull., 54, 267-273. 

Tanaka, K. (1993). Neuronal mechanisms of object recognition. Science, 262, 685-688. 

Thoroughman K and Shadmehr R (2000). Learning of action through adaptive combination of  
motor primitives.  Nature, 407: 742-747. 
 

Tinnirella M, Tagamets M, Weems S, Contreras-Vidal J and Reggia J. A Behavior-to-Brain  
Map, CS-TR-4803/UMIACS-TR-2006-24, University of Maryland, 2006. 

 
Tulving, E. and Markowitsch, H.  (1997).  Episodic and declarative memory:  role of the  



 45 

 hippocampus.  Hippocampus, 8(3), 198-204. 
 
Turing A. Computing Machinery and Intelligence, Mind, 59, 1950, 433-460. 
 
Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, 

and Mansfield RJW, eds. Analysis of Visual Behavior. Cambridge, MA: MIT Press, 549-
586. 

 
Uttal W. The New Phrenology, MIT Press, 2001. 
 
Vouloumanos, A. and J. Werker (2004). Tuned to the signal: The privileged status of speech 

for young infants. Developmental Science 7(3): 270-276. 
 
Weems, S. and J. Reggia (2004). Hemispheric specialization and independence for word 

recognition:  A comparison of three computational models. Brain and Language 89: 
554-568. 

 
Weems S & Reggia J. Simulating single word processing in the classic aphasia syndromes 

based on the Wernicke-Lichtheim-Geschwind Theory, Brain and Language, 2006, in 
press. 

 
Winder R, Cortes C, Reggia J & Tagamets M. A learning method for matching experimental 

fMRI to a model of visual working memory, 2006, under review. 
 


