
 
 

ABSTRACT 
 
 
 

Title of dissertation: EFFECT OF AGING ON COLONIC 
CHEMOPREVENTION BY DIETARY CURCUMIN 

 

Youngjoo Kwon, Doctor of Philosophy, 2006 

 

Dissertation directed by:  Assistant Professor Bernadene Magnuson  
Department of Nutrition and Food Science 

 

 

The incidence of cancer is highly dependent on age.  The hypothesis of this 

thesis was that aging may alter the efficacy of dietary chemoprevention.  This 

hypothesis was tested by evaluating the effect of age on inhibition of colonic aberrant 

crypt foci (ACF) by dietary curcumin.  Three different ages of male F344 rats were 

fed either the control diet or diet containing 0.6% curcumin and given injections of a 

colon carcinogen, azoxymethane (AOM).  Curcumin reduced the number of colonic 

ACF in young and old, but not middle-aged rats.  Resistance of middle-aged rats to 

colonic chemoprevention by curcumin seems to be due to age-related differences in 

colon carcinogensis rather than curcumin metabolism.  Liver cyclooxygenase-2 



mRNA expression, measured as an indicator of biological activity of curcumin, was 

similarly affected by curcumin regardless of ages.  Also, curcumin similarly affected 

arachidonic acid metabolism, which is regarded as one of chemopreventive 

mechanisms of curcumin, in the colon of young and middle-aged rats.   

The involvement of apoptosis was investigated as a potential mechanism 

responsible for age-related differences in curcumin chemoprevention.  A time course 

study of colonic apoptosis following AOM injections demonstrated that older animals 

were more susceptible to AOM-induced apoptosis.  The effect of aging on 

curcumin-induced apoptosis in the colon was evaluated at 0, 8, and 16 hours after 

AOM injection.  Curcumin increased both basal and AOM-induced apoptosis in 

young and old but not in middle-aged rats.  Activation of caspase-9 only in young 

rats fed curcumin indicates that curcumin-induced apoptotic pathway is mediated by 

mitochondria in young but not in old.  AOM may also induce apoptosis by a 

mitochondrial-independent pathway.   

In conclusion, these studies support the hypothesis that aging modulates 

colonic chemoprevention by curcumin.  This dissertation represents the first 

documentation of an age-related difference in efficacy of dietary chemoprevention.  

The differential response to curcumin-induced apoptosis is proposed as a mechanism.  

Further study is needed to confirm whether this phenomenon occurs in humans and 



contributes to the lack of agreement between efficacy of dietary chemoprevention in 

preclinical studies with young animals and clinical studies with adult humans. 
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Chapter 1. Literature Review 

 

1.1 Cancer: a disease of the elderly 

Cancer is often characterized as a multi-step process, including initiation, 

promotion and progression (1).  Exposure to carcinogens induces mutations either 

directly or through formation of DNA adducts.  DNA adducts can cause mutations 

and mutations left without repair can be permanently fixed by DNA replication.  If 

this mutation occurs at genes that regulate cell growth and sites critical for protein 

function, cancer can be initiated.  However, cancer initiation is not enough to 

develop tumors.  Promotion to tumors involves selective growth of initiated cancer 

cells.  This step is mediated by promoting factors such as inflammatory responses 

and hormones.  As the tumor grows, cancer cells acquire more mutations, lose 

cellular differentiation, and tend to metastasize.  The acquisition of the ability to 

metastasize results in progression to metastatic tumors. 

The incidence of cancer is highly dependent on age (2).  In humans, cancer 

incidence exponentially increases with age from age 40 to 80 (3).  More notably, the 

majority of cancers in the older ages are derived from epithelial cells (3).  Although 

it is unclear how the aging process is involved in carcinogenesis, there are several 

suggested mechanisms to explain the marked rise of cancer incidence in the aged.  
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Sequential accumulation of somatic mutations over a lifetime has long been 

considered to contribute age dependence in cancer incidence.  This view has recently 

been reinforced in the reviews by Peto (4) and Dix (5).  According to this hypothesis, 

we are continuously exposed to various endogenous and exogenous DNA damaging 

agents through the lifetime.  The high prevalence of cancer in the older subjects 

simply reflects a more prolonged exposure to carcinogens.  Cancer is a disease of 

genes as described above.  Also, somatic mutation due to oxidative damage, an 

endogenous carcinogen, increases with age (6).  However, frequent mutations are 

also observed in normal appearing tissues (2).  Moreover, this hypothesis may not be 

enough to explain why epithelial cell driven cancers are predominant in older 

individuals (3).  Therefore, it is unlikely that overload of somatic mutation alone in 

the aged is sufficient to drive cancer. 

There is increasing evidence that the cellular microenvironment is a potent 

factor to determine suppression or promotion of malignant phenotype (2, 3, 7).  

Successive studies of McCullough et al. (8-10) showed that the development of 

tumors from epithelial cancer cells was affected by changes in tissue 

microenvironment and that the aging process causes such alterations in the tissue 

environment.  In their studies, intrahepatic transplantation of liver neoplastic 

epithelial cells rapidly produces tumors at the sites of inoculation both in young and 

2 



 

old rats.  However, tumors at the transplantation site in young rats eventually regress, 

whereas in older rats, tumors grow progressively (8).  McCullough et al. also found 

that liver neoplastic epithelial cells transplanted in extrahepatic sites did not regress, 

even in young animals (9).  Cells transplanted to the liver reside as differentiated 

hepatocytes.  Upon withdrawal from the liver, neoplastic epithelial cells revert to an 

undifferentiated and malignant phenotype (10), indicating the importance of 

environmental signals to suppress malignancy.  Krtolica et al. (11) also reported that 

senescent cells stimulate growth of premalignant cells but not normal cells in culture.  

Senescent fibroblasts induce premaligant and malignant cells to form tumors in vivo 

(11).  These findings suggest that the microenvironment can be a powerful 

modulator of tumor development from initiated cancer cells.  More importantly, the 

aging process may modulate tissue environment, promoting cancer cells to develop 

malignant tumors.  Thus, the age-related increase in cancer results from the interplay 

of both accumulation of mutations and alteration of tissue milieu to promote tumor 

development with age, as suggested by Krtolica et al. (2, 11).   

 

1.2 Diet and colon cancer  

Colorectal cancer is a leading neoplastic disease that affects both men and 

women in high frequency in Western countries, including the United States (4).  
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Cancer statistics for 2005 demonstrate that colon cancer is the third most common 

cancer both in men and women (12).  About 104,950 new cases of colon cancer are 

expected to be diagnosed and about 56,290 men and women together are expected to 

die of cancer of colon and rectum in 2005 (12).   

Cancer risk is associated with both inherent factors such as mutations and 

environmental factors including diet, tobacco use, and physical activity (4).  

Interestingly, colon cancer risk is closely related with dietary factors.  For example, 

red meat consumption appears to increase the risk of colorectal cancer (13).  There is 

converging agreement that heme may be responsible for the increase of colon cancer 

by high consumption of red meat (14, 15).  Several case-control studies (16, 17) 

showed that colorectal cancer risk was positively correlated with high consumption of 

well-done meat probably due to heterocyclic amines (HCA) produced by pyrrolysis of 

meats when cooked at high temperature (18).  In addition, this relationship was 

further enhanced when genetic polymorphism of HCA-metabolizing enzymes was 

considered (16).  Dietary fat has been considered to increase cancers related with 

Western lifestyle, including colorectal cancer (19).  However, not only amount of 

consumption but also the fatty acid composition appears to contribute to the increase 

of colon cancer (20).  Generally, n-3 polyunsaturated fatty acids are thought to 

protect against colorectal cancer (21, 22) whereas n-6 polyunsaturated fatty acids 
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appear to promote colon carcinogenesis (21, 23).  

On the other hand, some nutrients and phytochemicals show a preventive 

effect on colon cancer.  Epidemiological studies showed that high consumption of 

fruits and vegetables is negatively associated with colon cancer risk.  As a result, 

plant foods and compounds derived from plants have been widely investigated in 

relation with prevention of colon cancer (24-27).  Several prospective studies 

showed that high calcium consumption has a negative relationship with risk of colon 

cancer (28, 29).  Sesink et al. (14) suggested that dietary calcium inhibits colon 

carcinogenesis by inhibiting the hyperproliferative effect of dietary heme.  It is 

generally considered that dietary intake of folate is inversely related with colorectal 

cancer risk due to its role in one carbon transfer in DNA synthesis (30, 31).  

Polymorphism in the methylenetetrahdrofolate reductase gene, which causes DNA 

hypomethylation, seems to modulate colorectal cancer risk when folate status is low 

(30, 31), showing a diet-gene interaction in colon carcinogenesis.  A diet-diet 

interaction in colon carcinogenesis also has been reported by Lupton and colleagues 

(32).  Their study suggested that fish oil may be protective against experimentally-

induced colon carcinogenesis by enhancing apoptosis when compared to corn oil diets, 

but this depended on the dietary fiber included in the diet (33).  Therefore, as we 

further understand diet-gene interactions as well as diet-diet interactions, it is 
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becoming more apparent that dietary components greatly impact colon carcinogenesis.  

 

1.3 Colon cancer prevention study in animal models 

Reliable preclinical models are critical in understanding etiology, 

development, and control of human diseases including colorectal cancer (34).  In fact, 

animal model studies of colon cancer have contributed considerably to our 

understanding of colon carcinogensis and evaluation of nutritional and 

chemopreventive agents for the prevention of colon cancer.  The APCmin/+ mouse 

model and the azoxymethane (AOM) rat models are the main animal models used to 

study development and prevention of colon cancer (34). 

Reddy and colleagues (34) have largely contributed to establishing the AOM 

rat model.  Using this model, they have tested many potential chemopreventive 

agents.  AOM is an alkylating agent.  After AOM is administered, methyl groups of 

AOM are hydroxylated to azoxymethanol (MAM), probably by CYP2E1 and other 

cytochrome P450 enzymes (35).  MAM can be further oxidized in the liver and 

extrahepatic organs, including the colon, producing methylazoxyformaldehyde that 

produces the highly electrophilic methyldiazonium ion.  Methyldiazonium ions 

eventually methylate DNA and form DNA adducts prone to mutation (35).  Other 

alkylating agents including 1,2-dimethylhydrazine, a precursor of AOM, also have 
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been used to induce colon cancer in specific strains of rats (36-39).  Direct acting 

carcinogens, such as methylnitrosourea or N-methyl-N’-nitro-N-nitrosoguanidine are 

used for chemically-induced animal models (40, 41).  Heterocyclic amines, like 2-

amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), is another class of 

chemicals that has been used as a colon cancer inducing agent.  In contrast to AOM, 

PhIP is present in our daily foods (42, 43).  It has been argued that PhIP-induced 

colon tumor model is a more appropriate model for mimicking human colon cancer 

studies (43).  However, AOM has been extensively used by many investigators as it 

is less expensive, more potent and more convenient to use (34).   

If AOM is given weekly twice subcutaneous (s.c.) injection at the dose of 15 

mg/kg body weight, the first visible colon tumors can be endoscopically detected 15 

weeks after the treatment and the mean latency period of such tumors is about 20 

weeks (44).  It has been demonstrated that AOM-induced tumors share many 

morphologic and histopathologic characteristics with human tumors (34).  In 

addition, the biological behavior of AOM-induced rat colon carcinomas is similar to 

that of human colon carcinomas (34).  AOM-induced carcinomas metastasize to 

regional lymph nodes and the liver.  Also, as in human colon cancer, both adenomas 

and adenocarcinomas occur in the AOM-rat model (34).  Genetic mutational changes 

in AOM-induced colon have been largely studied by Takahashi and colleagues (45-
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48).  In AOM-induced colon tumors, mutations in K-Ras gene are as frequent as in 

human colorectal tumors (45, 48).  However, in contrast to human tumors, Apc gene 

mutations are rarely observed in AOM-induced tumors (49).  Apc mutations have 

been found in patients with familial adenomatous polyposis (FAP) who have germline 

mutations in one of the Apc alleles as well as in sporadic colon cancer (50, 51).  The 

protein products of mutant Apc genes are defective in their ability to stimulate 

degradation, resulting in stabilization and accumulation of β-catenin in plasma (52).  

Interestingly, Takahashi et al. (46, 47, 53) reported that β-catenin genes are frequently 

mutated in AOM-induced colon tumors, suggesting that similar pathways are involved 

in both human and AOM-induced rat colon carcinogenesis.  

The multiple intestinal neoplasia (Min) mouse was first identified by Moser 

et al. (54).  This Min mouse has mutated Apc genes in heterozygous forms and 

mimics the rapid development of adenomatous polyps as shown in humans with FAP 

(55).  After the discovery of the Min mouse with truncated Apc in position 850, other 

genetically modified models have been developed such as mice with mutations in 

different location of the Apc gene or other cancer related genes like Msh2 and Mlh1 

(50).  This Min mouse model develops a large number of tumors within short time.  

Min mice on a C57BL/6J background develop an average of more than 50 tumors 

within 90 days of birth (55).  However, the major drawback of this mutant model is 
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that tumors occur predominantly in the small intestine, not in the colon (50).  

Moreover, most tumors in the Min mouse are adenomatous whereas adenocarcinomas, 

more invasive tumors, are seldom observed (34).  In addition, the K-Ras mutations 

observed in many human tumors were not detected in Min mice tumors (50).  In 

spite of these drawbacks of the Min mouse as a model of human colon cancer, this 

model has provided a shorter assay time to evaluate tumors and has made a 

contribution to the understanding of the colon cancer process and prevention by diets 

and chemopreventive agents.  

Corpet and Pierre (50) recently reported in their review that there is a 

correlation, in general, between the efficacy of diets or chemopreventive agents in the 

Min mouse model and the AOM rat model.  They concluded that there is a close 

agreement between the results observed in the colons of the AOM rat model and in 

the small intestine of the Min mouse model.  They also examined the relationship of 

animal studies with human trials.  When they compared the results of colon tumor 

incidence in AOM-treated rats or polyp number in Min mice to the recurrence of 

colonic adenomatous polyps in human trials, many promising chemopreventive agents 

which strongly and consistently suppressed colon carcinogenesis in animal models 

showed at best modest effect in inhibiting colon carcinogenesis in humans.  There 

are differences in end points, cancer incidence vs. recurrence of polyps, and other 
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limiting factors in human studies such as compliance to the chemopreventive agents 

and errors in sample selection as addressed by Corpet and Pierre (50).  Also, 

differences of pharmacokinetics of chemopreventive agents caused by species 

difference may contribute to the efficacy of agents in inhibiting colon cancer.  

However, one of main differences that have not been considered may be the age of the 

target group.  Human intervention trials with chemopreventive agents target middle 

to older adults, whereas preclinical studies have been exclusively conducted with 

young animals.  As described earlier, aging is perhaps the most potent carcinogen 

which drives cancer including colorectal cancer, and tissue milieu altered with age 

appears to promote tumor development.  Consequently, the effect of age on 

chemoprevention should be considered in interpretation of preclinical results to 

human trials. 

 

1.4 Aberrant crypt foci as a biomarker of colon cancer 

To investigate the effects of dietary factors on colon cancer development in 

animal models, evaluation of the number, size, and the extent of aggressiveness of 

tumors are used.  Min mice, which rapidly develop tumors, rarely live more than 150 

days of age on the c57BL/6J background due to pathologies other than colon cancer 

including anemia and intestinal blockage (54).  As a result, this model cannot be 
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used in aging studies.  However, a long period of time is required to develop colon 

tumors when tumors are induced with chemical agents as in the AOM rat model.  

Consequently, surrogate end point biomarkers have been sought to predict tumor 

incidence.  Aberrant crypt foci (ACF) have been regarded as precancerous lesions 

and have been widely used as a biomarker of colon cancer in many studies (56).   

Bird (57) first identified ACF from the colon mucosa of mice treated with 

AOM and defined them as crypts that have altered luminal opening; exhibit thickened 

epithelia; and are larger than adjacent normal crypts.  ACF are observed in rodents 

administered colon chemical carcinogens but are not present in the colon of untreated 

animals (56).  However, there is a report (58) that ACF were observed in old 

untreated rats, but not in young.  Later, Pretlow et al. (59) also found the presence of 

such lesions in the colon of patients with colon cancer.  Identification of ACF lead to 

a number of studies to evaluate molecular, morphological, and growth features of 

ACF and to assess their nature as precursor lesions of colon cancer (56).  The 

number and growth of ACF are enhanced or suppressed in response to known 

promoters or inhibitors of colon cancer (60, 61).  It has been reported that ACF 

harbor mutations in K-Ras genes both in rodent and human colons as often observed 

in colon tumors (46).  Increases of inducible nitric oxide synthase have also been 

observed in AOM-induced ACF and in human colon tumors (47).  Hyperplastic ACF, 
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which are less advanced, have a higher tendency to harbor K-Ras mutations and no β-

catenin mutations whereas dysplastic ACF, which are more advanced, showed altered 

cellular localization of β-catenin (46).  Hao et al. (21) also reported altered β-catenin 

expression in human colonic aberrant crypt foci. 

Important findings in interpreting ACF data were made by a limited 

sequential analysis of the number and growth of ACF prior to and at the time of tumor 

appearance.  Magnuson et al. (62) showed that total number of ACF was decreased 

not increased in rat colons by feeding of diet containing 0.2% cholic acid, a known 

colon cancer promoter.  However, when the number of ACF were examined 

separately by crypt multiplicity (number of crypt per focus), ACF with large 

multiplicity were increased by cholic acid diet over time whereas ACF with small 

multiplicity decreased as duration of ACF increased, suggesting selective stimulation 

of ACF by cholic acid.  Recently, Papanilolaou et al. (63) also suggested that large 

ACF are more relevant to predict tumor outcome.  They sequentially analyzed ACF 

and tumors in three strains of mice differing in susceptibility to AOM in developing 

colon cancer.  In their study, almost no differences were found among different 

strains of mice in total number of ACF whereas large ACF (5 and over crypts/focus) 

were correlated with tumor incidence and susceptibility to AOM-induced colon 

tumors.  Moreover, morphological analysis of ACF showed that most susceptible 
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mice had the highest percentage of dysplastic ACF (the more advanced forms), 

followed by the relatively susceptible strain, indicating that the difference in 

susceptibility may be due to the lack of progression of smaller ACF in the resistant 

mice (63).   

There is a general agreement that ACF are preneoplastic lesions of colon 

cancer.  The model of genetic changes associated with human colorectal 

tumorigenesis (64, 65) supports hypothesis that ACF are precursor lesions and that 

carcinomas arise from preexisting dysplastic ACF.  In this model, Apc mutations 

initiate the neoplastic process and develop into numerous dysplastic ACF.  Some, but 

not all, ACF progress to adenoma as they acquire K-Ras mutations and develop to 

carcinoma as they acquire additional mutations including mutations in p53 (65, 66).  

However, it should be noted that the majority of ACF will not develop into colon 

tumors and that ACF are heterogeneous at the morphological and molecular levels.  

Therefore, ACF with large multiplicity or advanced ACF should be considered 

predictive of tumor incidence when ACF are utilized as a biomarker of colon cancer 

although evaluation of tumors is the best way to investigate the effect of dietary 

factors on development of colon cancer.  
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1.5 Curcumin and colon cancer prevention 

Many compounds of plant origin have been studied in relation to their 

biological activity.  Curcumin is one of the compounds that have been extensively 

studied in a broad spectrum of biological activity including antioxidative activity, 

lipid and cholesterol lowering activity and anti-inflammatory activity (67-69).  Many 

studies also showed potential chemopreventive activity of curcumin in many different 

types of cancer such as skin, colon, breast, prostate, lung and liver (70-75).  Some 

studies also indicated potential combinational use of curcumin to improve efficacy of 

other cancer treatments as shown in adjunct use with TRAIL-mediated 

immunotherapy (76), and to reduce treatment-induced toxicity as observed in 

radioprotective effect of curcumin when curcumin is given before or after γ-ray 

irradiation (77). 

Curcumin is a polyphenolic compound imparting the yellow color in the spice 

turmeric (78).  Turmeric, powdered rhizome of Curcuma longa Linn., has been 

extensively used for flavor and color in food preparation and also for treatment of 

inflammatory conditions and other diseases in East Asia (78).  In India, one of the 

countries that consume high amount of curcumin in their diet, the rates of colorectal, 

prostate, and lung cancer are among the lowest in the world (79).  During its long 

history of usage in diet, almost no toxicity of curcumin has been reported.  A recent 
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pharmacological study of curcumin also showed that there is no dose-limiting toxicity 

at doses between 450 and 3,600 mg per day for four months in colon cancer patients 

(80).  At least two phase I curcumin clinical trials were completed or are ongoing (80, 

81) and curcumin is in a phase II clinical trial for the prevention of colorectal cancer. 

Many studies using human cell lines and animal models have demonstrated 

chemopreventive activity of curcumin against colon cancer.  Feeding 0.2% curcumin 

to F344 rats inhibited both AOM-induced ACF formation (82) and tumor 

development (71, 72).  Curcumin also decreased incidence of intestinal tumors in the 

Min mouse model (27, 42).  Inhibition of cell growth by curcumin was observed in 

different colon cancer cell lines with different genotypes and phenotypes including 

HT-29, HCT116, SW620, and SW480 (83-85).  These studies with preclinical 

models also suggested potential chemopreventive mechanisms through which 

curcumin acts.   

Earlier studies investigated anti-inflammatory activity of curcumin in relation 

with mechanisms of colon cancer prevention.  Cyclooxygenases (COX) are enzymes 

that mediate inflammatory process, catalyzing conversion of arachidonic acids into 

prostaglandins (86).  Two isoforms of COX are known, COX-1 and COX-2.  COX-

1 is constitutively expressed, maintaining normal physiological function.  In contrast, 

COX-2 is induced by cytokines, mitogens and tumor promoters.  Many studies have 
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reported that COX-2 is highly expressed in colon tumors (87-89) and inhibition of 

COX-2 is related with colon cancer prevention (90).  Curcumin inhibited 

phospholipases, responsible for generation of arachidonic acid and formation of 

prostaglandin E2 both in colonic mucosa and colon tumors (71).  Goel (91) also 

reported that curcumin inhibited COX-2 expression at mRNA and protein levels but 

did not affect COX-1 expression in HT29 cells.   

Curcumin is also known to inhibit activation of nuclear transcription factor 

κB (NF-κB) by inhibiting I-κB kinase (IKK) activity (83).  NF-kB is present in the 

cytoplasm as an inactive form bound with its endogenous inhibitor, IκBα.  

Following stimulation by cytokines, IκBα is phosphorylated by successive kinases 

including NF-κB inducing kinase (NIK) and IKK and undergoes rapid degradation, 

resulting in activation of NF-κB and triggering gene transcription related with cell 

survival (92, 93).  In addition, studies with cell lines derived from colon cancer have 

showed that curcumin modulates cell signaling pathways, inhibiting cell proliferation 

as well as inducing apoptosis (92, 94-96).  

 

1.6 Induction of apoptosis: one of chemopreventive mechanisms of curcumin  

Apoptosis, programmed cell death, is the process by which cellular proteins 

and DNA decompose in an orderly manner.  Cells are subsequently taken up by 
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phagocytosis.  In mitotic tissues such as the colon where cells continuously 

proliferate, cell number is maintained by apoptosis in coordination with cell 

proliferation (97).  Apoptosis also plays an important role in removing unwanted 

cells caused by severe DNA damage which otherwise may develop into a neoplasm, 

thereby preventing carcinogenesis (98, 99).  Indeed, apoptosis is one of main 

mechanisms through which many chemopreventive agents, including curcumin, act.  

Apoptosis molecular pathways were described well in a recent review by 

Sprick and Walczak (100).  Mainly, two different pathways leading to apoptosis have 

been identified – intrinsic and extrinsic pathways.  In spite of their different modes 

of apoptosis induction, both pathways involve the activation of a cascade of 

proteolytic enzymes known as caspases.  In the extrinsic pathway, also called death 

receptor-mediated pathway, cell death is initiated by stimulation of members of the 

tumor necrosis factor (TNF) receptor superfamily, termed death receptors, in plasma 

membranes.  Binding of death receptors by their ligands triggers intracellular 

binding of the adaptor-protein Fas-associated death domain (FADD) to the receptor, 

forming the death inducing signaling complex (DISC).  FADD serves to recruit pro-

caspase-8 into the complex, resulting in activation of pro-caspase-8.  Caspase-8 

triggers the activation of caspase-3.  In contrast, the intrinsic pathway is mediated by 

the mitochondria that regulate the formation of the caspase-9-activating complex, the 
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apoptosome.  Chemical stress is one of stimulants to trigger the formation of 

apoptosome by causing a breach in mitochondrial integrity and therefore a release of 

cytochrome c and other pro-apoptotic molecules.  Released cytochrome c, together 

with Apaf-1, recruits pro-caspase-9 to activate it and later trigger the activation of 

caspase-3.   

Many proteins are involved in the regulation of the apoptosis pathway.  The 

integrity of the mitochondrial membrane is regulated by the Bcl-2 family, which can 

be divided into three groups, anti-apoptotic, pro-apoptotic, and BH-3-only proteins 

(100).  Anti-apoptotic Bcl-2 members, like Bcl-2 and Bcl-x, serve to maintain 

membrane integrity.  Under normal conditions, BH-3-only proteins are inactive.  

Upon activation, they activate pro-apoptotic proteins, Bax and Bak,that breach 

mitochondrial integrity.  Pro-apoptotic Bid that belongs to BH-3-only proteins is 

activated by caspase-8-mediated cleavage, providing a link between the receptor-

mediated pathway and mitochondria-mediated pathway (100).  Also, apoptosis can 

be negatively regulated by cellular caspase-inhibitors such as IAPs that inhibit 

activation of caspases (100).  Heat shock proteins induced by various stresses are 

known to play a negative regulatory role in apoptosis (101, 102).  In addition, 

apoptosis is mediated or suppressed by other cell signaling pathways including c-Jun 

N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), and NF-κB 
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pathways (84, 92, 103).  Therefore, cumulatively cell destination, death or survival, 

is determined. 

Many studies with different types of cells have showed that curcumin induces 

apoptosis and inhibits cell growth.  Curcumin, at a concentration of 10 µM, 

enhanced apoptosis in the breast cancer cell line, MCF-7, by p53-dependent Bax 

induction (74).  In human melanoma cells, apoptosis was induced by 60 µM 

curcumin through Fas receptor pathway, p53-independent (104).  On the other hand, 

25 µM curcumin induced apoptosis through activation of BID cleavage and 

cytochrome c release in the myelogenous leukemia cell line HL-60 (96).  Treatment 

of renal carcinoma Kaki cells with curcumin downregulated Bcl-2, Bcl-xL, and IAP, 

activating the release of cytochrome c, resulting in induction of apoptosis (105).  In 

HCT116 colon cancer cells, curcumin-induced apoptosis was mediated through JNK, 

a member of MAPK.  Curcumin treatment induced sustained activation of JNK and 

phosphorylation of c-Jun and a JNK-specific inhibitor prevents curcumin-induced 

apoptosis (84).  Therefore, curcumin-induced apoptosis is mediated by many 

different signaling pathways and this is largely dependent on the types of cells and 

concentration of curcumin. 
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Chapter 2. Effect of age on inhibition of ACF development 

by curcumin  

 

2.1 Introduction 

Colorectal cancer, one of the leading causes of deaths in the United States, is 

strongly associated with dietary factors.  Many compounds in food, including some 

nutrients, have been reported to promote colon cancer whereas some nutrients and 

many phytochemicals have been shown to have colon cancer preventive properties 

(106, 107).  Curcumin, the yellow pigment of rhizomes of Curcuma longa Linn., has 

been commonly used for flavoring and coloring as a powder called turmeric in South 

East Asia.  Curcumin has been gaining popularity as a supplement due to reported 

various biological activities that include its anti-inflammatory, antioxidative, anti-

bacterial and chemopreventive activities (78).   

Curcumin inhibits colorectal cancer in several animal models.  Feeding of 

0.2 % curcumin to azoxymethane (AOM)-treated F344 rats inhibited both incidence 

of colon tumor and multiplicity of tumor (71, 72).  Curcumin also decreased 

intestinal tumors in a familial adenomatous polyposis animal model (27, 42).  The 

study by Sharma et al. (108) provided preliminary information on human 

pharmacodynamic and pharmacokinetic properties of curcumin extract in patients 
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with colorectal cancer.   

However, preclinical studies aimed at identifying potential chemopreventive 

dietary compounds have been conducted almost exclusively with young animals.  

Curcumin is no exception.  Modulation of gene expression and oxidative stress 

through which dietary compounds may show chemoprevention are highly associated 

with age (109, 110).  Moreover, metabolism of curcumin, which can be affected by 

the age, may alter efficiency of chemoprevention by curcumin (111).  For these 

reasons, the current animal study design using young animals may not properly reflect 

chemopreventive activity of dietary compounds in human colon cancer, a disease of 

the aged.  The hypothesis of this study was that maturation and aging may alter the 

response to a dietary intervention.  This hypothesis was tested using curcumin, a 

well-established colon chemopreventive agent, and the aberrant crypt foci (ACF) 

model.  ACF are preneoplastic lesions of colorectal cancer and ACF with large 

multiplicity are closely associated with tumor development (62).  This study was 

conducted to investigate the effect of age on inhibition of early stage of colon cancer 

by curcumin.   

Cyclooxygenase (COX) enzymes catalyze conversion from arachidonic acids 

to prostaglandins (86).  Curcumin reduced COX activity in colonic mucosa and 

tumors from AOM-treated F344 rats (71).  COX-2 is highly expressed in colon 
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cancer and prevention of COX-2 expression suppresses progression of colon tumor 

(91, 112).  Zhang et al. (113) reported that curcumin inhibited bile acid and phorbol 

ester-induced COX-2 expression in gastrointestinal cell line.  In addition, curcumin 

specifically inhibited COX-2 expression in HT-29 cells whereas COX-1, 

constitutively expressed in most tissues, was not affected by curcumin (91).  As a 

result, colonic COX-2 expression levels were measured using immunohistochemistry 

in this study.  

We also investigated whether the age-related difference in response to dietary 

curcumin was colon specific.  Curcumin affects arachidonic acid metabolism in the 

liver and inhibits formation of AOM-induced prostaglandins (114).  Ramirez-Tortosa 

et al. (69) reported that an ethanol-aqueous extract obtained from curcumin lowered 

total plasma cholesterol in male rabbits fed 1.3% cholesterol diet.  Administration of 

500 mg of curcumin per day for 7 days reduced total serum cholesterol in healthy 

humans (115).  Therefore, liver COX-2 mRNA expression and total serum 

cholesterol were measured to determine whether age affected other tissues in response 

to dietary curcumin.  This study reports significant effects of age on response to 

dietary curcumin in F344 male rats. 
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2.2. Materials and Methods 

 

2.2.1 Experimental animals and diets  

Experimental animals were young (6 weeks), middle-aged (12 months), and 

old (22 months) male F344 rats obtained from the colony at the National Institute of 

Aging (Bethesda, MD).  Six rats of each age group were randomly assigned to either 

AIN-93 containing 0.6% curcumin (Sigma, St. Louis, MO) or AIN-93 control diet.  

For the old group, 8 rats were allotted to each diet group because of their high risk of 

loss.  One week after starting on the experimental diet, all the rats were treated with 

azoxymethane (AOM, Sigma, St. Louis, MO) with 2 weekly s.c. injections (15 

mg/kg).  Rats were fed experimental diets for total 3 months, then were killed and 

colon, liver and serum were collected.  In the old group fed AIN-93 diet, two months 

after the first injection of AOM, one rat was found dead and another rat was killed 

because of significant weight loss.  Two of old rats fed curcumin showed lower food 

consumption and body weights through the whole experiment even though they 

recovered their body weight within 10 days after AOM injections.  Therefore, two 

old rats in each diet group were excluded from the data analyses. 
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2.2.2 Aberrant crypt foci evaluation 

Whole colons were flushed with 1 X phosphate buffer saline and opened.  

Colon pieces fixed in 4% paraformaldehyde were stained with 0.2% methylene blue 

as previously described (116).  Number, multiplicity (number of crypts per focus) 

and distribution of ACF were recorded.  ACF with 5 and 2 multiplicity in a colon 

stained with methylene blue are shown in Fig. 1.  ACF were evaluated from whole 

colon except for a short segment taken from the middle 2 cm toward the cecal end.  

This segment was used later for RNA isolation.  The RNA obtained from that tissue 

was of poor quality and could not be subsequently used to study changes in gene 

expression as originally intended. 
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Figure 1. Aberrant crypt foci (arrows) in a rat colon stained with methylen blue. Focus 
with 5 multiplicity is on the left and 2 multiplicity on right.   
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2.2.3 Liver cyclooxygenase-2 mRNA expression 

Total cellular RNA from liver was extracted by the use of TRIzol Reagent 

(Invitrogen, Carlsbad, CA).  RNA samples were treated with DNAse-I enzyme using 

the DNA-free kit (Ambion Inc., Austin, TX).  First strand synthesis was performed 

using Retroscript kit (Ambion Inc.) and concentration of cDNA was measured 

spectrophotometrically. 

Cyclooxygenase-2 gene expression was studied using mouse COX-2 gene-

specific Relative RT-PCR Kit (Ambion Inc.).  Ribosomal gene 18S (498 bp) was 

used as an internal control.  The 18S primer:competimer ratio was optimized 

according to the manufacturer’s instructions before changes in expression of COX-2 

gene (297 bp) were analyzed.  After optimization of PCR assay conditions (DNA 

Engine, MJ Research, Waltham, MA), the multiplex reaction contained 1X complete 

reaction buffer; 200 µM dNTPs mixture; 0.4 µM 18S primers:competimers (1:9) 

mixture; 0.4 µM COX-2 primer and 0.5 U/25 µl Taq DNA polymerase.  The 

following thermocycling conditions were used for PCR assays: one 2-min cycle at 92 

oC followed by 27 cycles of denaturation for 30 s at 92 oC, annealing for 30 s at 59 oC , 

and extension for 1 min at 72 oC .  The final extension was given for 5 min at 72 oC 

before analysis of the PCR products.   

The PCR products from multiplex reactions were quantified using DNA 500 
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LabChip® and Agilent 2100 bioanalyzer according to the manufacturer’s protocol.  

Changes in the gene expression were determined by calculating the ratio of COX-2 

mRNA to 18S mRNA.  The ratios were calculated from the area under the curve 

values for each PCR product. 

 

2.2.4 Cyclooxygenase-2 immunohistochemisty  

To determine whether age or diet affects expression of COX-2 gene product 

in the colon, four pieces of tissues from different locations of the formalin-fixed 

colons were longitudinally embedded in paraffin, sectioned and immunostained for 

COX-2.  Deparaffinized tissue sections were incubated with 3% hydrogen peroxide 

and 2% normal goat serum to block endogenous peroxidase activity and non-specific 

binding sites, followed by incubation with rabbit polyclonal anti-murine COX-2 

antibody (Oxford BioMedical Research, Oxford, MI) diluted 1:1000.  Biotinylated 

anti-rabbit igG incubation was followed by amplification using the Vectastain ABC 

peroxidase kit (Vector Laboratories, Burlingame, CA).  Color was developed by 

treatment with diaminobenzidine tetrahydrochloride (DAB, Sigma).  Slides were 

counterstained with hematoxylin.  
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2.2.5 Total serum cholesterol  

Blood was collected by cardiac puncture and centrifuged at 3000 rpm for 20 

minutes after clotting.  Collected serum was frozen at -80 oC until analysis.  Serum 

cholesterol was measured with the RefLab® cholesterol reagent (Fisher Scientific, 

Pittsburgh, PA) using a Beckman 640 spectrophotometer (Beckman Instruments, Inc., 

Fullerton, CA). 

 

2.2.6 Data analysis  

One-way analysis of variance (ANOVA) was conducted for the all data 

analyses using SAS software (8.1, SAS Institute Inc, Cary, NC) to determine if there 

were significant differences between rats fed curcumin and control diets.  Two-way 

ANOVA was performed to examine the effect of age and diet and their interaction on 

the number of ACF with 2 and over multiplicity.  Repeated measured analysis was 

used for average body weight at each time point.  
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2.3 Results 

 

2.3.1 General observations 

Average food consumption of each group of rat is shown in Table 1.  

Curcumin did not change food consumption in either middle-aged or old rats.  

However, food consumption was slightly higher in young rats fed curcumin (p < 0.05) 

compared to young rats fed the control diet.  When repeated measured analysis was 

performed for each time period, there was no difference (p > 0.05) in body weights of 

rats fed AIN-93 control diet (AIN) and AIN-93 containing 0.6% curcumin diet (CUR) 

in all age groups (Fig. 2).  Both middle-aged and old rats took longer than young rats 

to regain weight loss resulting from the AOM injections (Fig 2).  
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Table 1. Food consumption of different age groups of rats 

Age 

Dieta)
Young Middle-aged Old 

AIN 13.9 ± 0.3b) 14.9 ± 0.5 13.3 ± 0.5 

CUR 15.2 ± 0.5c) 14.8 ± 1.0 14.3 ± 0.5 

a) AIN represents the group fed the AIN-93 control diet and CUR represents the group 
fed the AIN-93 diet containing 0.6% curcumin 
b) g/day, mean ± SE, n=5-6 rats/group 
c) significant difference (p < 0.05) between diet groups in each age group by ANOVA 
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Figure 2. Average body weight (mean ± SE, n=5-6 rats/group). YA: young rats fed 
AIN (AIN-93 control diet), YC: young rats fed CUR (AIN-93 diet containing 0.6% 
curcumin), MA: middle-aged rats fed AIN, MC: middle-aged rats fed CUR, OA: old 
rats fed AIN, OC: old rats fed CUR. Rats were given 2 weekly s.c. injections of AOM 
(arrow) one week after starting their experimental diets. 
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2.3.2 Aberrant crypt foci evaluation 

Two-way analysis of variance (diet × age) revealed a significant effect of diet 

(p < 0.01) on ACF number, and a significant interaction between diet and age (p < 

0.05).  As shown in Fig. 3, a significant inhibition of ACF by curcumin was 

observed only in young and old but not in middle-aged rats.  The number of ACF in 

young and old rats was lower in curcumin-fed rats by 49% and 55% respectively (p < 

0.05).  In contrast, there was no difference (p > 0.05) in the number of ACF between 

the two diet groups in middle-aged rats.  Age-related differences were also found in 

the inhibition of different size categories of ACF (Fig. 4).  In young rats, the 

reduction in ACF in curcumin-fed rats was observed mainly in small ACF (2 and 3 

multiplicity).  In contrast, the numbers of ACF in all size categories were not 

significantly different in the two diet groups in middle-aged rats.  In old rats, there 

were fewer ACF in all size categories in the curcumin-fed group.  The distribution of 

ACF throughout the whole colon is shown in Fig. 5.  The majority of the ACF in old 

rats were located in the distal to mid-colon in both groups of rats fed CUR and AIN.  

Distribution of ACF in young and middle-aged rats was similar to that of old rats and 

was not significantly different between diet groups (data not shown). 
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Figure 3. Reduction in number of ACF with 2 and over multiplicity by curcumin in 
different ages of rats (mean ± SE, n=6 rats/group). AIN is the group fed the AIN-93 
control diet and CUR is the group fed the AIN-93 diet containing 0.6% curcumin. * 
represents significant differences (p < 0.05) between AIN and CUR groups in each 
age group by ANOVA.  
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Figure 4. Number of ACF in multiplicity categories of 2 and 3, 4 and 5, and 6 and 
over in rats fed either the AIN-93 diet (AIN) or the AIN-93 diet containing 0.6% 
curcumin (CUR) (mean ± SE, n=6 rats/group). A is multiplicity category of 2 and 3 
multiplicity, B is multiplicity category of 4 and 5 multiplicity and C is multiplicity 
category of 6 and over multiplicity.  

34 



 

 

Figure 5. Distribution of ACF in the colon of old rats (mean ± SE, n=6 rats/group) fed 
either the AIN-93 diet (AIN) or the AIN-93 diet containing 0.6 % curcumin (CUR). 
Data are depicted for every 2 cm of colon. A 2 cm segment from middle to cecal end 
was not evaluated for ACF. 
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2.3.3 Colonic cyclooxygenase-2 immunohistochemistry 

The level of COX-2 protein expression in the normal-appearing colon tissue 

detected by immunostaining was very low in all animal groups (data not shown).  

Therefore, we were unable to determine conclusively whether COX-2 protein 

expression in early stage colon carcinogenesis was affected by age or dietary 

curcumin.  

 

2.3.4 Liver cyclooxygenase-2 mRNA expression   

Liver COX-2 mRNA expression levels increased as age increased, in both 

AIN and CUR groups (Fig. 6).  In all age groups, curcumin-fed rats had similarly 

lower (p < 0.05) COX-2 mRNA levels compared to AIN-fed rats: 35% lower in young, 

36% lower in middle-aged, and 42% lower in old. 
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Figure 6. Effect of curcumin on liver cyclooxygenase-2 mRNA expression in relation 
to 18S mRNA in different aged rats (mean ± SE, n=5-6 rats/group). AIN is the group 
fed the AIN-93 control diet and CUR is the group fed the AIN-93 diet containing 
0.6% curcumin. Cyclooxygenase-2 mRNA expression levels were normalized to 
expression levels of an internal control, 18S gene. * represents significant differences 
(p < 0.05) between AIN and CUR groups in each age group by ANOVA.  
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2.3.5 Total serum cholesterol level 

Total serum cholesterol levels increased as age increased (Fig. 7).  Middle-

aged and old rats had higher (p < 0.05) total serum cholesterol levels compared to 

young rats in the control diet group.  Cholesterol levels were higher (p < 0.05) in 

young rats fed curcumin than in young rats fed the control diet.  In middle-aged and 

old rats, serum cholesterol levels were not significantly affected by curcumin feeding.   

 

2.3.6 Macroscopic and histopathological observations  

Tissues obtained from the study were observed and evaluated by a pathologist.  

Macroscopic and histopathological changes in different tissues by age or diet are 

shown in Appendices.  
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Figure 7. Effect of curcumin on serum total cholesterol levels in different ages of rats 
(mean ± SE, n=5-6 rats/group). AIN is the group fed the AIN-93 control diet and CUR 
is the group fed the AIN-93 diet containing 0.6% curcumin. * represents significant 
differences (p < 0.05) between AIN and CUR groups in each age group by ANOVA. # 
represents significant differences among different age groups in each diet group by 
ANOVA. 
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2.4 Discussion 

The most important finding of this study is the significant effect of age on 

inhibition of the development of early stages of colon cancer by dietary curcumin.  A 

significant age-related difference was found in inhibition of colonic ACF development 

by 0.6 % dietary curcumin.  Rao et al. (71) and Kawamori et al. (72) showed that 

curcumin effectively inhibits colon tumor in young F344 rats.  Interestingly, in this 

study, curcumin effectively inhibited the number of ACF in young and old rats 

whereas ACF growth and development in middle-aged rats was not affected by 

curcumin (Fig. 3).  The number of large ACF is more predictive of tumor 

development than total number of ACF (62).  In young rats, feeding curcumin more 

effectively inhibited smaller ACF than larger ACF.  On the other hand, old rats fed 

curcumin had a much lower number of ACF in all categories.  In middle-aged rats, 

curcumin did not inhibit the number of ACF in any size of category.   

It is unclear how curcumin affects progression of small ACF to large ACF.  

Small ACF (2 and 3 multiplicity) may be more susceptible to curcumin and selected 

small ACF resistant to dietary curcumin may progress into more advanced stages.  

Another possible explanation would be that large, advanced ACF might be more 

resistant to curcumin.  The study of Magnuson et al. (62) showed that feeding of 

cholic acid to AOM-treated rats reduced the number of small ACF, but increased the 
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growth of large, resistant ACF and the tumor incidence.  ACF in rats fed the AIN-76 

diet containing 0.2% cholic acid had lower number of apoptotic bodies per 100 cells 

than ACF in rats fed AIN-76 control diet (62), demonstrating resistance to the 

cytotoxic effect of cholic acid. 

Age also affected ACF development.  There was a trend for reduced number 

of ACF in middle-aged and old rats as compared to young rats fed the control AIN-93 

diet in response to the same dose per body weight of AOM.  This is in contrast to a 

previous report (58) in which middle-aged female Sprague-Dawley rats developed a 

higher number of ACF than did young rats.  There are several differences between 

this study and the previous study including sex, strain and supplier of the rats, as well 

as diet.  In this study, F344 rats were obtained from the NIA aged animal colony at 

the aged 6 weeks, 12 months and 22 months, and the AIN-93 diet was used as the 

base diet.  The previous study (58) was conducted using female Sprague-Dawley rats 

from Simonsen Laboratories Inc, aged 4 and 50 weeks and fed standard rat chow.  

However, the study of Verghese et al. (117), which also used male F344 rats from the 

NIA colony and the AIN-93 diet, suggested that middle-aged rats were more sensitive 

to AOM.  Variations in development of colonic tumors and ACF due to strain, sex, 

animal supplier and diet have been reported previously (118).  Chung and colleagues 

(119) recently reported that when C57BL/6JNIA mice were given the same per body 
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weight dose of AOM, old male mice (21-22 mo) developed significantly more ACF 

than did young mice (4-5 mo).  However, when the same total dose was delivered, 

young mice developed more ACF, presumably due to the higher dose per body weight.  

Dix (5) suggested that increase of cancer incidence with age might be caused by 

change of cell proliferation rate with age.  However, Magnuson et al. (58) reported 

that cell proliferation rate determined by bromodeoxyuridine labeling index was 

similar between 4 and 50 weeks of age although there was age-related difference in 

ACF development.  Also, Chung et al. (119) showed that age-related susceptibility to 

AOM is not due to differences of COX-2 expression, cell proliferation, or AOM 

hydroxylase activity in C57BL/6JNIA mice.  At this time, it is not clear whether 

young animals are more susceptible to AOM-induced colon carcinogenesis than are 

old animals, or what factors may influence the effect of age.  

The precise mechanisms by which age affects response to dietary curcumin 

are not known.  A possible explanation may be differences in the absorption, 

metabolism, and/or excretion rate of curcumin due to age.  Dybing and Soderlund 

(120) reported decreased metabolism in the very young and old, and proposed that 

newborns and elderly may be more sensitive to xenobiotics whose toxicity is due to 

the parent compound.  Ireson et al. (111) showed that curcumin metabolites 

differently inhibited phorbol ester-induced prostaglandin E2 (PGE2) production – 
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curcumin reduced PGE2 levels to control levels whereas tetrahydrocurcumin, 

hexahydrocurcumin, and curcumin sulfate had much less inhibitory activity, and 

hexahydrocurcuminol was inactive.  Therefore, the relative amount of curcumin and 

each curcumin metabolite may affect biological activity of curcumin in vivo.  

However, several studies on the pharmacokinetics of curcumin (121-124) have 

illustrated that metabolites of curcumin are only detectable in plasma when high dose 

of curcumin, followed by rapid sampling.  Pan et al. (123) reported that when 

curcumin was administered orally in a bolus dose (1.0 g/kg), curcumin was below 

detection level within 6 hours and existed as conjugate or reduced form in plasma.  

Sharma et al. (125) reported curcumin levels in the liver and colon mucosa from 

female F344 rats fed 2 % curcumin for 14 days.  They were able to measure 

curcumin from liver and colon mucosa but curcumin glucuronide and curcumin 

sulfate were below detection limit.  Therefore, it was unlikely to be able to measure 

curcumin and all metabolites from tissues of rats fed 0.6% curcumin.   

We attempted to estimate the biological activity of curcumin in the three ages 

of rats using changes in serum cholesterol, COX-2 mRNA in the liver and COX-2 

protein expression in the colon.  Several studies have demonstrated that curcumin is 

involved in cholesterol metabolism.  Hypocholesterolemic properties of curcumin in 

male rabbits (69) and in healthy humans who did not have a high fat or high 
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cholesterol diet (115) have been reported.  In this study, curcumin did not reduce 

total serum cholesterol levels in either middle-aged or old rats.  On the contrary, 

curcumin increased serum total cholesterol in young rats, which had initial lower total 

serum cholesterol levels than middle-aged and old rats.  Most previous animal 

studies used high fat and high cholesterol diets to investigate the hypocholesterolemic 

effect of curcumin (69, 126), although a high fat or high cholesterol diet was not 

applied in the human study where 500 mg of curcumin per day for 7 days reduced 

total serum cholesterol (115).  Therefore, total serum cholesterol levels in the rats in 

this study may not have been high enough to see hypocholesterolemic effect of 

curcumin.  Harris (127) reviewed the effects of n-3 fatty acids on serum lipid and 

lipoprotein concentrations in seven species of experimental animals.  In all 

experimental animals, n-3 fatty acids apparently reduced high-density-lipoprotein-

cholesterol (HDL) concentrations, which is never observed in humans with fish-oil 

supplementation.  It was suggested that these differences between animals and 

humans were caused by species differences in lipoprotein metabolism and differences 

in experimental design (127).  Mela et al. (128) also postulated that differences in 

plasma HDL responses to adiposity in humans and experimental animals would arise 

by species differences in lipoprotein metabolism.  Therefore, changes in total serum 

cholesterol may not be a good measure of curcumin activity in rats.  
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Sharma et al. (125) suggested that both colon mucosa and liver are target 

organs of curcumin as feeding 2 % dietary curcumin for 14 days elevated glutathione-

S-transferase levels in the liver and reduced levels of malondialdehyde-

deoxyguanosine adduct in colon mucosa.  AOM is generally used to induce colon 

cancer and causes formation of prostaglandins from arachidonic acid as a result of 

inducing COX-2 expression in the colon (71).  Liver is a major organ where not only 

curcumin but also AOM are metabolized and where prostaglandin formation is 

induced by AOM (114).  Rao et al. (114) reported that curcumin suppressed AOM-

induced prostaglandin and thromboxane in the liver and colonic mucosa of young 

male F344 rats.  Therefore, liver COX-2 mRNA and colonic COX-2 protein levels 

were measured to compare the biological activity of curcumin in the three ages of rats.  

Liver COX-2 mRNA expression increased as age increased, but curcumin reduced 

COX-2 mRNA expression to similar extent in three ages of rats, suggesting similar 

levels of biologically active curcumin in the liver (Fig. 6).  This result indicates that 

age-related differences in the absorption or metabolism of curcumin were not 

occurred.  

As has been reported previously for normal and preneoplastic colonic tissues 

(46), the levels of COX-2 were not high enough to detect using 

immunohistochemistry, preventing the determination of whether age or curcumin 
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reduced colonic COX-2 expression.  Therefore, in contrast to the age-related 

difference in inhibition of colonic ACF by curcumin, any other age-related difference 

in response to curcumin was not detected.  This age-related difference is more likely 

due to age-related differences in cellular events relevant to colon carcinogenesis rather 

than in curcumin absorption or metabolism.   

In conclusion, these results demonstrate that age affects inhibition of early 

stage of colon carcinogenesis by curcumin.  Further investigations are needed to 

determine whether aging affects responses to other dietary interventions in colon 

carcinogenesis or whether this effect is limited to curcumin, and whether age also 

affects inhibition of advanced tumor development by curcumin.  These results 

suggest that the effect of age should be considered in preclinical study designs of 

dietary interventions to determine whether age-related differences may be at least 

partially responsible for lack of correlation of efficacy of dietary interventions in 

animal and human colon cancer intervention trials.   
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Chapter 3. Confirmation of lack of preventive effect of 

curcumin on ACF development in middle-aged rats 

 

3.1 Introduction 

Age is a single potent factor contributing to the incidence of cancer, including 

colorectal cancer.  Most of cancers derived from epithelial cells onset at the age of 

about 40 and after that exponentially increase with age both in men and women (3).  

Although it is unclear how the aging process is involved in carcinogenesis, the 

microenvironment of the organism seems to have a significant effect on determining 

the progression of the malignant phenotype.  Successive studies of McCullough et al. 

(8-10) showed that the development of tumors from liver epithelial cancer cells was 

affected by changes in tissue microenvironment and that the aging process causes 

such alterations in the tissue environment.  Krtolica et al. (11) also reported that 

senescent fibroblasts stimulate growth of premalignant cells both in vitro and in vivo.  

These findings suggest that the microenvironment can modulate tumor development 

from initiated cancer cells and aging process may contribute alteration of tissue 

environment, promoting initiated cancer cells to grow malignant tumors.   

The significance of the microenvironment in carcinogenesis led us to 

hypothesize that the aging process may also affect chemoprevention by dietary 

47 



 

compounds.  Interestingly, the previous study showed no inhibition of formation of 

aberrant crypt foci (ACF), putative lesions of early colon cancer, by dietary curcumin 

only in middle-aged rats compared to effective reduction in young and old rats 

(Chapter 2).  This loss of preventive activity of curcumin in middle-aged rats was a 

novel finding, with important implications for human intervention trials.  Therefore, 

it was important to confirm this observation and to further investigate potential 

mechanisms responsible.  Age-related differences in the response in the colon rather 

than in curcumin metabolism seemed to be responsible for our finding as liver COX-2 

mRNA expression, an indicator of biological activity of curcumin, was similarly 

affected by curcumin in all ages (129).   

Curcumin is a polyphenolic compound imparting the yellow color in the spice 

turmeric, powdered rhizome of Curcuma logna Linn.  The chemopreventive activity 

of curcumin in young animal models and in colon cancer cell lines is well established 

(27, 42, 71, 72, 82-84).  However, the chemopreventive activity of curcumin in 

middle-aged or old animals had not been previously reported.   

The anti-inflammatory activity of curcumin has been postulated as a mechanism of 

colon cancer prevention.  In general, COX is a rate-limiting enzyme catalyzing 

conversion of arachidonic acid into prostaglandins.  Two forms, COX-1 and COX-2, 

are known.  COX-1 is constitutively present whereas COX-2 is induced by cytokines, 
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mitogens, and tumor promoters, and mediates the inflammatory process (86).  Many 

studies have reported that COX-2 is highly expressed in colon tumors (87-89) and 

inhibition of COX-2 as a mean of colon cancer prevention has been reviewed by 

Gupta and DuBois (90).  Curcumin inhibited phospholipases, responsible for 

generation of arachidonic acid from membrane phospholipids and formation of 

prostaglandin E2 (PGE2), both in colon tumors and colon mucosa (71).  Curcumin 

treatment also inhibited COX-2 expression at both mRNA and protein levels in HT-29 

colon cancer cells (91).  The effect of dietary curcumin on arachidonic acid 

metabolism has not been investigated in the colon at the stage of ACF formation in 

either young or older animals.  In the previous study (Chapter 2), curcumin inhibited 

COX-2 mRNA expression in all ages in the liver but the effect of curcumin on colonic 

COX-2 protein expression estimated by immunohistochemisty was not determined 

due to very low expression in all groups.  Therefore, this study duplicated the ACF 

study with only middle-aged rats to confirm previous findings of resistance of middle-

aged rats to curcumin chemoprevention and investigated if the lack of 

chemoprevention by curcumin in middle-aged rats is due to a failure of inhibition of 

COX-2.  

This study reports confirmation of the previous findings – middle-aged male 

F44 rats are resistant to the chemopreventive activity of curcumin against AOM-
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induced colon carcinogenesis.  Transcriptional levels of COX were lower in the liver 

but higher in the colon of middle-aged rats fed the curcumin diet.  There were no 

age-related differences in colon COX expression in rats either untreated or treated 

with AOM.  Shortly after AOM treatment, colonic COX-1 mRNA levels were 

reduced in all ages of rats whereas COX-2 mRNA levels were not affected by AOM 

in any age group.  It should be further studied whether curcumin similarly increases 

COX expression in the colon of young rats.   

 

3.2 Materials and Methods 

 

3.2.1 Experimental animals and diets  

In all the studies, experimental animals were male F344 rats obtained from 

the colony at the National Institute of Aging (NIA, Bethesda, MD).  Young, middle-

aged, and old rats were treated at the age of 6 weeks, 12 months, and 22 months, 

respectively.  Control diet was AIN-93 diet (AIN) and experimental diet was AIN-93 

diet containing 0.6% curcumin (CUR) prepared by Dyets (Dyets, Inc., Bethlehem, 

PA).  Curcumin was purchased from Sigma (St. Louis, MO). 
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Experiment 1. Effect of curcumin on colonic ACF formation and 

arachidonic acid metabolism in the colon and the liver of middle-aged rats: To 

confirm the previous observation (Chapter 2) of resistance of chemoprevention in 

middle-aged rats, and to investigate the effect of curcumin on colonic arachidonic acid 

metabolism, we followed our previous experimental protocol (Section 2.2.1) using 

only middle-aged rats, and increased the number of animals per group.  Twenty 

middle-aged rats were randomly assigned to either CUR or AIN diets.  One week 

after starting their experimental diets, all the rats were given 2 weekly s.c. injections 

(15 mg/kg body weight) of azoxymethane (AOM, Sigma) and were maintained on 

their experimental diets.  Three months after the first AOM injection, the rats were 

killed.  Tissue collection and assays are described below.  Transcriptional levels of 

COX-1 and COX-2 were measured in collected colon mucosa and livers.  Also, 

colonic PGE2 levels were evaluated.  Two rats fed the AIN-93 diet were found dead 

3 days after the second injection of AOM and one rat fed curcumin diet was 

incorrectly injected with lower dose of AOM.  Data from those 3 rats were removed 

from all analyses.  

 

Experiment 2. Effect of AOM on colonic cyclooxygenase in three 

different ages of rats: The effect of AOM treatment on the colonic COX-1 and COX-
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2 mRNA expression was tested in three different ages of animals.  Groups of 12 

young, middle-aged, and old male F344 rats were obtained.  Six rats in each age 

group were randomly given a single injection of either AOM (15 mg/kg body weight) 

or saline after being fed AIN-93 diet for one week.  Rats were killed 0 (saline 

control) or 24 hours after the AOM injection and colons were collected for 

measurement of COX-1 and COX-2 mRNA levels. 

 

3.2.2 Tissue collections 

Colons were immediately placed on a cold surface and scraped to collect 

mucosa.  Half of the mucosa from each rat was fixed in RNAlater (Ambion Inc, 

Austin, TX) for RNA isolation and the rest was frozen at –80 oC for the PGE2 

immunoassay.  Collected livers were stored at –80 oC until analyzed.  

 

3.2.3 Aberrant crypt foci evaluation 

Whole colons were flushed with cold 1 X phosphate buffer saline and opened 

longitudinally.  ACF were evaluated as described in previous studies (Section 2.2.2), 

(116) from whole colon except for 2 cm of distal colon which was scraped and treated 

as described above.   

 

52 



 

3.2.4 Cyclooxygenase-1 and 2 mRNA expression using RT-PCR 

Total RNA was isolated from the liver and the colon mucosa using TRIzol 

Reagent (Invitrogen, Carlsbad, CA).  cDNA was generated using Retroscript kit 

(Ambion Inc., Austin, TX).  An aliquot of cDNA was subjected to RT-PCR for COX-

1 or COX-2 genes as described previously (Section 2.2.3).  Briefly, gene expression 

levels of COX-1 and COX-2 were measured using the mouse COX-1 (401 bp) and 

COX-2 (297 bp) gene-specific Relative RT-PCR Kit (Ambion Inc.), respectively, 

relative to 18S (498 bp), primer:competimer (1:9).  18S mRNA was used to 

normalize COX gene expression to control for possible differences in loading.  The 

PCR conditions for COX-1 and COX-2 genes were the same as described in the 

previous study (Section 2.2.3) with exceptions that an annealing temperature for 

COX-1 was 61 oC and the number of thermocycles was 27 and 29 for the colon and 

the liver cDNAs, respectively.  The levels of PCR products of COX-1, COX-2 and 

18S were determined using DNA 500 LabChip® and Agilent 2100 bioanalyzer 

(Agilent Technologies Inc., Palo Alto, CA) and the ratio of PCR products of COX-1 

or COX-2 to 18S were generated.   

 

3.2.5 Prostaglandin E2 using enzyme immunoassay  

Frozen colon tissues were homogenized with 50 mM TRIS buffer (pH 7.5) 
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containing 10 µM indomethacin (MP Biomedicals, Aurora, OH).  Colon 

homogenates were acidified with 2M HCl to pH 3.5 and extracted 3 times with ethyl 

acetate (10 times of homogenates in volume).  Collected ethyl acetate layers 

following centrifugation at 5,000 g for 5 min were evaporated to dryness under N2 

and reconstituted with the assay buffer for measurement of PGE2 using the 

prostaglandin E2 enzyme immunoassay kit (Assay Designs Inc., Ann Arbor, MI).  

Results were expressed as pg PGE2/mg wet tissue.  

 

3.2.6 Data analysis  

One-way analysis of variance (ANOVA) was conducted for the all data 

analyses using SAS software (8.1, SAS Institute Inc, Cary, NC) to determine if there 

were significant differences between any two groups.  Two-way ANOVA was 

performed to examine the effect of age and azoxymethane treatment and their 

interaction on the ratio of mRNA levels of colonic COX-1 or COX-2 to 18S. 
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3.3 Results 

 

3.3.1 Experiment 1. Effect of curcumin on colonic ACF formation and 

arachidonic acid metabolism in middle-aged rats 

Aberrant crypt foci evaluation: As shown in Table 2, there was no 

significant difference between rats fed curcumin (CUR) and control (AIN) diet in 

either the total number of ACF or any category of ACF multiplicity.  ACF 

multiplicity is a measure of progression of ACF and is equal to the number of aberrant 

crypts per focus (62).  P-values tended to become close to 1 as multiplicity increased.  
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Table 2. Number of ACF in different categories of multiplicity in middle-aged rats 

 Categorya)

Dietb)  

Total 2-3 4-5 6-9 >10 

AIN 244.3 ± 18.2 113.4 ± 8.5 34.6 ± 5.6 21.8 ± 6.4 5.3 ± 2.0 

CUR 204.1 ± 12.6 95.4 ± 7.7 28.3 ± 2.4 22.9 ± 3.6 5.8 ± 1.2 

p – valuec) 0.0937 0.1375 0.3270 0.8799 0.8258 

a) ACF were categorized by their multiplicity  
b) AIN is AIN-93 control diet and CUR is AIN-93 diet containing 0.6% curcumin  
c) There were no significant differences (p > 0.05) between diet groups in any 
category of ACF multiplicity by ANOVA.   
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Cyclooxygenase mRNA expression and colonic prostaglandin E2 levels:  

In the liver, rats fed the curcumin diet had significantly lower (p < 0.05) levels of both 

COX-1 and COX-2 mRNA compared to rats fed the control diet (Fig. 8).  On the 

contrary, colonic COX-2 mRNA levels were significantly higher (p < 0.05) in the 

curcumin diet group compared to the control diet group.  Feeding 0.6% curcumin did 

not significantly affect (p > 0.05) either colonic COX-1 mRNA expression (Fig. 8, A) 

or PGE2 levels (Fig. 8, B).  In the liver, transcriptional levels of COX-2 were much 

lower than COX-1 whereas in the colon, the relative levels of COX-2 to COX-1 

mRNA were similar as shown in Fig. 8.  
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Figure 8. Effect of curcumin on arachidonic acid metabolism in middle-aged rats 3 
months after the AOM injection (mean ± SE, n=8-9 rats/group). AIN is the group fed 
the AIN-93 control diet and CUR is the group fed the AIN-93 diet containing 0.6% 
curcumin. Transcriptional levels of COX-2 and COX-1 in relation to 18S in the liver 
(upper) and the colon (lower, A). PGE2 levels in the colon (lower, B). Data values of 
COX-2 mRNA were log transformed due to large difference in variance between two 
diet groups. * represents significant differences (p < 0.05) between AIN and CUR by 
ANOVA.   
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3.3.2 Experiment 2. Effect of AOM on colonic cyclooxygenase mRNA levels in 

three different ages of rats  

Dietary curcumin differentially affected the levels of COX expression in the 

liver and the colon mucosa of middle-aged rats.  The increased colonic COX 

expression in curcumin-fed rats was unexpected.  Therefore, it was investigated 

whether colonic COX mRNA expression is differently affected by AOM treatment in 

different aged rats.  The levels of colonic COX-1 and COX-2 mRNA were examined 

in three different ages of rats treated with either AOM or saline.  

As shown in Fig. 9, COX-2 mRNA levels were not significantly affected (p > 

0.05) by AOM treatment in any age group.  Two-way analysis of variance (age × 

AOM treatment) also showed no significant age, treatment, or interaction effects for 

COX-2.  In contrast, in every age group, rats treated with AOM had lower levels of 

colonic COX-1 mRNA levels 24 hours following injection.  When two-way ANOVA 

was performed, there was a significant AOM effect (p < 0.05) whereas neither the 

effect of age or interaction of age and treatment were significant.  The levels of 

colonic COX-1 and COX-2 were similar among all ages of animals within the same 

treatment group (Fig. 9).  Therefore, transcriptional levels of COX-1, but not COX-2, 

were inhibited by AOM in all age groups. 
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Figure 9. Effect of AOM on colonic mRNA expression of COX-2 (upper) and COX-1 
(lower) in relation to 18S expression in three different ages of rats at 0 (saline 
treatment) or 24 hours after AOM injection (mean ± SE, n=6 rats/group). Two-way 
ANOVA showed a significant effect (p < 0.05) of AOM treatment on colonic COX-1 
mRNA expression levels.   

60 



 

3.4 Discussion 

This study sought to confirm previous findings of age-related differences in 

chemoprevention by curcumin and explore possible mechanisms.  As described in 

Chapter 2, the chemopreventive activity of curcumin determined by inhibition of 

AOM-induced ACF was not observed in middle-aged rats, while significant 

chemoprevention was observed in young and old rats.  Resistance of middle-aged 

rats to colonic chemoprevention by dietary curcumin is a significant observation.  It 

is middle-aged to older individuals who are targeted for prevention of cancer.  

However, young animals have been exclusively used in preclinical studies.  As 

shown in Table 2, the number of ACF did not significantly differ by diet group in any 

multiplicity category of ACF and this was even more apparent in larger ACF 

(multiplicities of 6-9 and >10), indicating no chemopreventive effect of curcumin.  

Rats fed curcumin did have significantly lower levels of both COX-1 and COX-2 

mRNA in the liver (Fig. 8) as observed previously (Section 2.3.4).  Therefore, this 

study reproduced and confirmed previous findings – middle-aged animals are resistant 

to the chemopreventive activity of curcumin against AOM-induced colon 

carcinogenesis.  

This study also investigated if arachidonic acid metabolism is potentially 

involved in the lack of curcumin chemoprevention in middle-aged rats.  Previous 
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studies have suggested that high expression of COX-2 and COX-2-metabolites such 

as PGE2 are involved in colon carcinogenesis (48, 71, 130, 131).  Modulation of 

arachidonic acid metabolism by inhibiting the COX-2 enzyme is considered an 

effective mechanism for anticarcinogenic action of chemopreventive agents including 

curcumin (90).  Earlier studies reported that curcumin inhibited the enzyme activity 

of total COX in the colon mucosa of rats treated with AOM (114) and reduced ex-vivo 

production of PGE2 in AOM-induced colon tumors (71).  A more recent study 

showed that curcumin treatment inhibited COX-2 expression at both mRNA and 

protein levels in HT29 colon cancer cells which highly express COX-2 (91).  

However, the effect of dietary curcumin on arachidonic acid metabolism was not 

investigated in ACF stage of AOM-induced colon carcinogenesis in either middle-

aged or young animals.  In previous our ACF study (Chapter 2), the poor quality of 

RNA in formalin-fixed colon tissues made difficult to evaluate COX-2 mRNA 

expression.  Colonic COX-2 protein levels were very low in all age and diet groups 

as determined by the immunohistochemical staining method.  Therefore, in this 

study, we investigated the effect of curcumin on arachidonic acid metabolism in the 

colonic mucosa by measuring COX-2 mRNA and PGE2 levels in middle-aged rats.  

Surprisingly, in contrast in the liver, COX-2 was not inhibited in the colon of middle-

aged rats fed curcumin, but significantly higher COX-2 mRNA levels were observed 
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(Fig. 8A).  Inhibition of colonic PGE2 production through inhibiting COX-2 enzyme 

activity has been targeted for colonic chemoprevention (90) and considered one of the 

anticarcinogenic mechanisms of curcumin as reviewed above.  Thus, the results in 

the colon gave a rise to the speculation that the lack of inhibitory effect of dietary 

curcumin on arachidonic acid metabolism might be the cause of failure of colonic 

chemoprevention by curcumin in middle-aged rats.  

However, four lines of evidence indicate the inhibition of ACF formation 

during initiation and early promotion stage of carcinogenesis by curcumin, a known 

COX inhibitor and colonic chemopreventive agent, may not be due to inhibition of 

COX-2 activity and PGE2 production in the colon.  First, the enhancing effect of 

AOM on colonic COX-2 expression or PGE2 production has not been demonstrated 

during initiation of AOM-induced colon carcinogenesis in spite of general agreement 

in over-expression of COX-2 and PGE2 in advanced tumors.  Colonic PGE2 levels 

were not significantly affected by two weekly injections of AOM at the stage of ACF 

formation in mice (132).  Takahashi et al. (46) reported that epithelial COX-2 

expression was only positive in large adenocarcinoma but not in either dysplastic or 

hyperplastic ACF, suggesting that the COX-2 expression levels in colonic ACF may 

be as low as in normal-appearing colon crypts.  COX-2 expression increased with 

advancement of colon cancer in AOM-treated rats (46) and sporadic human cancer 
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(133).  Secondly, it is not evident that inhibition of COX-2 activity and PGE2 

production is an effective mechanism to inhibit the initiation of colon carcinogenesis.  

Administration of rofecoxib, a selective COX-2 inhibitor, for six months to 1,2-

dimethylhydrazine-treated rats failed to inhibit ACF formation, but reduced later stage 

tumor progression (134).  Moreover, recent data suggest that many selective COX-2 

inhibitors have multiple chemopreventive mechanisms including induction of 

apoptosis, which might be important in inhibiting the initiation of cancer, in a COX-2 

independent pathway (135, 136).  Eklou-Kalonji et al. (137) also reported 

prostaglandin-independent effects of aspirin on cell growth and cell cycle in colon 

cancer cells.  Thirdly, there are no available data demonstrating that curcumin 

inhibits COX-2 or PGE2 under normal conditions in contrast to an apparent inhibitory 

effect on highly enhanced COX-2 expression and PGE2 production observed in colon 

tumors or induced inflammation (70, 111, 113).  Lastly, but not least, recent studies 

described below indicate the importance of COX-2 in maintaining gastrointestinal 

(GI) homeostasis (138-140).  Therefore, COX-2 inhibition may not be an 

anticarcinogenic mechanism during initiation of colon carcinogenesis and thus may 

not be responsible for the resistance to curcumin chemoprevention in middle-aged rats. 

In general, COX-2 expression is low under normal conditions and rapidly 

induced in response to inflammatory signals whereas COX-1 is constitutively 
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expressed in various normal tissues including the GI mucosa.  These differences in 

the COX isoforms lead to the idea that COX-1 has a housekeeping role in GI mucosa.  

As a result, inhibition of COX-1 but not COX-2 was considered to be responsible for 

the GI damage mainly due to deficiency of prostaglandins as seen in the use of non-

steroidal anti-inflammatory drugs (NSAID).  However, recent studies using different 

types of COX inhibitors have shown that inhibition of not only COX-1 but also COX-

2 is required for NSAID-induced GI injury (139, 140).  The administration of a 

conventional NSAID such as indomethacin causes hemorrhagic damage in the small 

intestine of rats (139) and small bowel ulcer in mice (140).  The combined 

administration of the COX-1 selective inhibitor and the selective COX-2 inhibitor 

induces such damage in the small intestine of rats (139) and mice (140).  However, 

the administration of either the selective COX-1 inhibitor alone or the selective COX-

2 inhibitor alone does not produce such damages (139, 140).  The study of 

Sigthorsson et al. (140) further supports the importance of COX-2 in maintaining 

integrity of GI mucosa, showing occurrence of an ileal ulcer that is distinguished from 

the ulcer caused by indomethacin in long-term COX-2 deficiency.  MacNaughton 

and Cushing (141) also reported constitutive expression of COX-2 mRNA and protein 

in mouse colon.  Therefore, these studies suggest that both COX-1 and COX-2 play 

roles in maintaining the levels of prostaglandins required to ensure the integrity of GI 
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mucosa. 

In spite of recent researches emphasis on modulation of arachidonic acid 

metabolism in colonic chemoprevention, there were no reports on the effect of AOM 

on COX-2 expression in the colon.  Experiment 2 was conducted to determine 

whether colonic COX-1 and COX-2 mRNA expression is affected by the initiation of 

AOM-induced carcinogenesis in three different aged rats.  Basal COX-1 mRNA 

levels were similar among different ages of rats, and COX-1 mRNA expression was 

similarly inhibited shortly after AOM injection in all age groups (Fig. 9).  Also, 

curcumin alone does not seem to affect colonic COX-2 mRNA levels.  Feeding 0.6% 

curcumin for 10 days did not increase COX-2 mRNA expression in any age of rats not 

treated with AOM (unpublished observations).  This fact excludes the possibility that 

feeding curcumin increases basal levels of COX-2 mRNA expression only in the 

colon of middle-aged rats.  Therefore, effect of curcumin on arachidonic acid 

metabolism after AOM treatment should be examined in young rats in order to 

determine if failure of inhibition of COX-2 mRNA expression and PGE2 production 

in the colon contributes to the lack of chemoprevention by curcumin in middle-aged 

rat.  

In summary, in the middle-aged group, rats fed curcumin had higher COX-2 

mRNA levels in the colon in contrast to reduced COX mRNA levels in the liver.  

66 



 

AOM decreases COX-1 mRNA expression, and does not enhance COX-2 mRNA 

expression immediately following injection regardless of the ages of animals.  

Moreover, recent data do not support the contention that modulation of arachidonic 

acid metabolism plays an important role in preventing initiation of colon 

carcinogenesis.  Whether curcumin increases COX-2 mRNA expression in young 

rats as in middle-aged rats should be investigated during early stage of AOM-induced 

carcinogenesis to determine if arachidonic acid metabolism is involved in the 

resistance of middle-aged rats to curcumin chemoprevention.   
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Chapter 4. Effect of AOM and curcumin on transcriptional 

induction of Hsp70  

 

4.1 Introduction  

Curcumin did not inhibit the formation of colonic ACF in middle-aged rats, 

despite effective reduction of ACF in young and old (Chapter 2).  It is important to 

understand the underlying mechanism(s) responsible for resistance to curcumin 

chemoprevention in middle-aged animals as it is middle-age to older human 

population who are not only likely suffering from colorectal cancer but also targeted 

for dietary chemoprevention.  

Cyclooxygenase (COX) enzymes are known to be rate-limiting enzymes in 

production of prostaglandins from arachidonic acids.  Many epidemiological, 

clinical, and experimental studies (142-146) have reported a colonic chemopreventive 

effect of nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit COX activity 

(147).  In support of this implication of preventive effect of NSAIDs in colon cancer, 

high levels of COX-2 expression and PGE2 were reported in AOM-induced colon 

tumors as well as in familial adenomatous polyposis (FAP) and sporadic colon tumors 

(88, 148).  However, long-term use of traditional NSAIDs induces deleterious 

damage in the gastrointestinal mucosa probably due to reduced levels of 
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prostaglandins by inhibition of both COX-1 and COX-2 (139, 149).  Therefore, 

COX-2 specific inhibitors are attractive in chemoprevention of colon cancer.  

Curcumin is also known to be a COX inhibitor, although it is unclear whether 

curcumin is COX-2 specific or an inhibitor of both COX-1 and COX-2.  Zhang et al. 

(113) reported that curcumin specifically inhibited the expression of COX-2 without 

affecting the level of COX-1 in HT-29 colon cancer cells.  On the contrary, curcumin 

more effectively inhibited peroxidase activity of COX-1 compared to COX-2 in vitro 

(68).  A previous study (71) reported involvement of arachidonic acid metabolism in 

colonic chemoprevention by curcumin.  However, there is little evidence to suggest 

that modulation of arachidonic acid metabolism by curcumin is responsible for the 

age-related difference in inhibition of colonic ACF formation.  Available data do not 

support that COX-2 or PGE2 levels are elevated in initiation of colon carcinogenesis, 

the stage of ACF formation or earlier.  AOM treatment did not significantly affect 

the PGE2 levels in the colon of mice at the stage ACF form in either high-fat or low-

fat diet group (132).  In the previous study (Section 3.3.2), colonic COX-2 mRNA 

expression was not affected by AOM shortly after the treatment.  On the contrary, 

COX-1 mRNA levels were reduced in the colons of AOM-treated rats.  

The elevation of colonic levels of COX-2 or PGE2 seems to be more related 

to progression of colon carcinogenesis.  COX-2 expression increased with 
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advancement of colon cancer in AOM-treated rats (46) and sporadic human cancer 

(133).  Moreover, rofecoxib, a selective COX-2 inhibitor failed to inhibit ACF 

formation and only effectively reduced tumor progression (134).  In addition, age-

related differences were not observed in colonic COX-1 or COX-2 mRNA expression 

levels before or after AOM treatment (Section 3.3.2) whereas basal liver COX levels 

appeared to increase in older animals (data not shown).   

AOM has been widely used to induce colon tumors in preclinical models.  

We do not know why AOM-induced tumors mainly occur in the colon.  It is also still 

unclear what specific enzymes are involved in metabolic activation of AOM.  

Several studies suggested that metabolic activation of AOM is initiated by hepatic 

CYP2E1 (35).  However, administration of diallyl sulfide, a CYP2E1 inhibitor, 

increased AOM-induced formation of ACF in F344 rats (150).  Moreover, initial 

levels of colonic or liver DNA methyl adduct after the AOM treatment did not predict 

the differential susceptibility to colon tumors in inbred mice, and both susceptible and 

resistant mice strains had equivalent metabolic capacity estimated by production of 

O6-methyl guanine after the incubation of colon microsomes with AOM (151).  Also, 

several studies indicated that neither DNA repair enzyme activity or cell proliferation 

rates in the dimethylhydrazine (DMH)- or AOM-treated colons are modulated by 

dietary chemopreventive agents (152, 153) or aging (58, 119).  Dietary calcium 
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(152) or fish oil (153) did not affect either O6-alkyl guanine alkyltransferase activity 

or cell proliferation after DMH or AOM treatment in the same models where they 

showed chemopreventive activity and decreased levels of mutations or DNA adducts.  

Therefore, it was difficult to reason that any of AOM metabolism, repair enzyme 

activity, or cell proliferation was involved in age-related differences in curcumin 

chemopreventive efficacy.   

Apoptosis plays a role in maintaining the number of cells in normal mitotic 

tissues such as the colon.  Apoptosis is also an important mechanism to remove 

unwanted cells due to severe DNA damage (97).  Induction of apoptosis right after 

carcinogen treatment occurs in conjunction with activation of DNA repair systems 

(154), and therefore apoptosis may be an important mechanism to reduce mutation 

load and prevent initiation of cancer.  

Many different proteins regulate apoptosis.  Heat shock proteins (HSP) 

induced by stress may function at key regulatory points in the control of apoptosis 

(155).  Hsp70 has been most studied in terms of its transcriptional regulation and 

relationship with apoptosis.  Hsp70 is induced by exposure to various physiological 

and environmental stresses including elevated temperature, heavy metals, amino acid 

analogs, and oxidative stress (156).  It was also recently reported that occupational 

exposure to coke-oven emission, which is genotoxic, increases Hsp70 protein levels 
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in lympocytes in exposed workers (157).  Induced Hsp70 interacts with proteins 

damaged by stress and restores them to function properly allowing cells to maintain 

their function and survive (156).  On the other hand, overexpression of Hsp 70 

inhibits cell death, perhaps in spite of severe damage, and therefore increases the 

chance that damaged cells will grow into tumors.  Hsp70 protects cells from both 

stress-induced caspase-dependent and –independent apoptosis (101, 102).   

Transcription of Hsp70 is highly regulated through the transcriptional factor, 

heat shock factor 1 (HSF1), in eukaryotes (156).  Transcriptional activation and 

attenuation of Hsp70 in response to stress shows how strikingly these processes are 

regulated so that they rapidly respond to differing intensities and sources of stress and 

prevent overexpression.  Hsp70 induction also seems to be affected by maturation 

and/or the aging process (158-162).  There is accumulating evidence that 

transcriptional activation of Hsp70 by stress is delayed and/or decreased in older 

animals because of lower HSF1 binding activity to DNA (163).  

Interestingly, curcumin treatment induces Hsp70 under stress conditions 

(164) probably by increasing HSF1 binding activity to DNA, directly opposite to the 

behavior of HSF1 in older individuals.  Therefore, this study hypothesized that when 

AOM produces methylated adducts in association with DNA, RNA, and protein, it 

may induce Hsp70 and that curcumin may increase induction of Hsp70 by AOM 
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under this stress condition where transcription of Hsp70 is triggered.  This 

preliminary study was conducted to investigate whether AOM induces Hsp70 

expression and whether curcumin increases AOM-induced Hsp70 expression in the 

colon and the liver.   

 

4.2 Materials and Methods 

 

4.2.1 Experimental animals and diets  

Experimental animals were male 4-5 week old F344 rats.  Rats were 

randomly assigned into 8 groups (3 or 4 rats per group) depending on their 

experimental diets and time killed.  Among 31 rats, 8 rats were fed AIN-93 diet 

containing 0.6% curcumin and the rest were fed AIN-93 control diet.  Except for rats 

in the untreated control group (UNT), remainder (n = 4/group) was administered a 

single s.c. injection of AOM at the dose of 15 mg/kg body weight one week after 

being fed their experimental diets.  Rats in the control diet group (AIN) were killed 1, 

3, 7, 14, and 28 days after AOM injections.  Rats fed the curcumin diet (CUR) were 

killed 3 (AOM-3DAY) and 14 days (AOM-14DAY) after the AOM injections.  

Mucosa was scraped from colons for isolation of RNA and immunoassay.  Livers 

were also dissected and frozen using liquid nitrogen.  Collected tissues were stored 
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at –80 oC until analyzed.  

 

4.2.2 Gene expression levels using RT-PCR 

Total cellular RNA from colonic mucosa was extracted using TRIzol reagent 

(Invitrogen, Carlsbad, CA) and reverse transcribed into cDNA using Retroscript kit 

(Ambio Inc, Austin, TX) as described above (Section 2.2.3).  COX genes were 

amplified using mouse COX-1 or COX-2 gene-specific Relative RT-PCR Kit 

(Ambion Inc.).  The sequences for the specific oligonucleotides for Hsp70 were as 

previously described (165), and for p21 were as follows (sense: AGC AAA GTA TGC 

CGT CTC T, antisense: GAG TGC AAG ACA GCG ACA AG, Invitrogen).  An 

aliquot of cDNA was subjected to amplification for each gene using specific 

oligonucleotides.  Ribosomal gene 18S (498 bp) was used as an internal control.  

PCR reactions for mRNA amplification of each gene were carried out using the DNA 

engine (MJ Research, Waltham, MA).  The same thermocycling conditions were 

used as in COX-2 amplification (Section 2.2.3) except that the number of cycles was 

28 for Hsp70 and 26 for p21 and annealing temperatures were 59 and 60 oC, 

respectively.  The PCR products from multiplex reactions were quantified using 

DNA 500 LabChip® and Agilent 2100 bioanalyzer as described previously (Section 

2.2.3).  

74 



 

4.2.3 Colonic PGE2 levels using EIA  

Colonic PGE2 levels were measured as described above (Section 3.2.5).  

Data values were presented as pg of PGE2 per mg of wet tissue. 

 

4.3 Results 

 

4.3.1 Hsp70 mRNA expression in the colon  

Fig. 10 shows changes in Hsp70 mRNA expression in the colon with the time 

after AOM injections.  Colonic Hsp70 mRNA tended to decrease for 3 days after 

AOM injections and after that increased to the level of AOM-untreated controls (Day 

0).  Curcumin feeding did not significantly alter colonic Hsp70 mRNA levels as 

compared to rats fed the control diet (Fig. 10).   
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Figure 10. Time course of Hsp70 mRNA expression in relation to 18S mRNA 
expression in the colon of young rats following AOM injection (mean ± SE, n=3 or 4 
per group). Rats in Day 0 were AOM-untreated control. Rats in Day 1 were killed 1 
day after AOM injection vice versa. AIN: AIN-93 control diet, CUR: AIN-93 diet 
containing 0.6% curcumin 
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4.3.2 Hsp70 mRNA expression in the liver 

As shown in Fig. 11, liver Hsp70 mRNA levels were similar to basal levels 

(Day 0) for at least 7 days following AOM injection.  At Day 14 and 28 time points, 

Hsp70 mRNA levels were higher than levels at the Day 0.  Rats fed curcumin had 

similar Hsp70 mRNA levels when they were compared to control diet group at the 

same time points (Fig. 11).  
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Figure 11. Time course of Hsp70 mRNA expression in relation to 18S mRNA 
expression in the liver of young rats following AOM injection (mean ± SE, n=3 or 4 
per group). Rats in Day 0 were AOM-untreated control. Rats in Day 1 were killed 1 
day after AOM injection vice versa. AIN: AIN-93 control diet, CUR: AIN-93 diet 
containing 0.6% curcumin 

78 



 

4.3.3 p21 mRNA expression in the colon 

Colonic mRNA levels of p21 fluctuated over the experimental time points 

and did not appear to be affected by AOM (Fig. 12).  At the Day 3 time point, p21 

mRNA levels of rats fed control diet were significantly higher (p < 0.05) than those of 

rats fed the curcumin diet.  However, p21 mRNA levels in curcumin-fed rats were 

only measured at one time point.  Due to fluctuation of transcriptional levels of p21 

with time in the control diet group, it is inconclusive whether curcumin affected p21 

transcriptional levels in this study. 
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Figure 12. p21 mRNA expression in relation to 18 mRNA expression in the colonic 
mucosa of young rats following AOM injection (mean ± SE, n=3 or 4 per group). Rats 
in Day 0 were AOM-untreated control. Rats in Day 1 were killed 1 day after AOM 
injection vice versa. AIN: AIN-93 control diet, CUR: AIN-93 diet containing 0.6% 
curcumin 
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4.3.4 COX-1 and COX-2 mRNA expression in the colon  

The levels of colonic COX-2 mRNA in AOM-treated rats (AOM-3DAY and 

AOM-14DAY) were similar to AOM-untreated rats (AOM-UNT) among groups fed 

the control diet (Fig. 13A).  In rats fed the control diet, COX-2 mRNA levels did not 

change with time up to 28 days after AOM injection (data not shown).  A significant 

effect of feeding of curcumin on the levels of colonic COX-2 mRNA was not evident 

3 days after AOM injection (AOM-3DAY).  However, 14 days after the AOM 

injection (AOM-14DAY), rats fed the curcumin diet had significantly higher (p < 

0.05) colonic COX-2 mRNA expression (Fig. 13, A) and PGE2 levels (Fig. 13, B) 

compared to rats fed the control diet.   

In contrast to COX-2 mRNA levels, AOM-treated rats (AOM-3DAY) in both 

diet groups had significantly lower (p < 0.05) COX-1 mRNA levels than UNT rats 

(Fig.13A).  Fourteen days after the AOM injection (AOM-14DAY), colonic COX-1 

levels returned to basal levels in both diet groups.  However, COX-1 mRNA levels 

recovered to a greater extent in curcumin-fed compared to control-fed rats, resulting 

in a significantly higher (p < 0.05) COX-1 mRNA expression in curcumin diet group 

compared to control diet group in AOM-3DAY (Fig. 13A).  There were no 

significant differences in the levels of liver COX-1 or COX-2 mRNA expression 

regardless of diet, AOM treatment, or exposure time (data not shown). 
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Figure 13. Effect of curcumin on colonic arachidonic acid metabolism in young rats 
(mean ± SE, n=3 (UNT) or 4 rats/group). Transcriptional levels of COX-2 and COX-1 
in relation to 18S (A). PGE2 levels at AOM-14DAY (B). UNT: rats fed control diet 
(AIN) for one week and killed; AOM-3DAY: rats injected with AOM after feeding 
curcumin (CUR) or control diet (AIN) for one week and killed 3 days after the AOM 
injection; AOM-14DAY: rats injected with AOM after feeding of CUR or AIN for one 
week and killed 14 days after the AOM injection. There were no significant 
differences (p > 0.05) by ANOVA among groups bearing the same alphabets.  
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4.4. Discussion 

Hsp70 mRNA levels in the colon were not elevated after AOM injection.  

Rats fed curcumin have not increased colonic Hsp70 mRNA levels compared to rats 

fed the control diet.  These results were unexpected as it was hypothesized that AOM 

would induce Hsp70 expression and that this induction would be further enhanced by 

curcumin.  One possible explanation is that Hsp70 induction occurred before the 24 

hour time point.  If AOM can induce the heat shock response, the time course of 

Hsp70 expression may resemble, but be slightly earlier than, the time course of 

apoptosis induction.  Previous studies show that the apoptotic incidence reached 

maximum levels at 6~8 hours after AOM injection (153) and cellular rate of apoptosis 

was almost back to basal levels 3 days after AOM injection in young rats (166).  In 

our study, the transcriptional level of Hsp70 was lower after AOM injection, although 

this was not significant, possibly because there were only 3 or 4 rats per group.  

Hsp70 mRNA levels are regulated by Hsp70 protein by a negative feedback 

mechanism (167).  It is possible that Hsp70 protein expression was induced by the 

AOM injection and was present prior to apoptosis induction (i.e. earlier than the peak 

of apoptosis, 8 hours after AOM injection).  If that occurred, then Hsp70 mRNA may 

be already attenuated by high levels of Hsp70 protein at 24 hours following AOM 

injection, which was the time it was measured.   
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Another possible explanation of the lack of effect of AOM and curcumin on 

Hsp70 may be involvement of other potential Hsp70 effectors.  CO2 was used for 

euthanasia of rats and variation in the time for rats to succumb to CO2 might be 

reflected in the results as transcription of Hsp70 can be induced by hypoxic conditions 

(168).  If this is the case, Hsp70 mRNA levels of rats untreated with AOM do not 

represent basal levels and the effect of AOM and curcumin on Hsp70 expression level 

cannot be detected.  Also, AOM untreated control animals were not included at each 

time point, therefore the effect of the developmental stage of rats on Hsp70 expression 

cannot be assessed, making it difficult to interpret the increase of Hsp70 

transcriptional levels at 7 days after AOM injection in the liver.   

Transcriptional levels of p21 were measured in the colon in order to estimate 

the extent of AOM-induced DNA damage, as p21 levels are known to increase in 

response to DNA damage.  However, our study did not show that AOM affects p21 

mRNA expression.  Aizu et al. (169) suggested that p21 expression was not affected 

by AOM in the mouse colon both at transcriptional and translational levels due to 

down-regulation of p300, the transcriptional co-activator of p53 by AOM.  Their 

study showed that AOM increased both transcriptional and translational levels of p21 

and other p53-regulated genes such as Bax and Gadd45 3 hours after AOM injection 

in the liver whereas AOM did not affect expression of those genes in the colon – 
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transcriptional levels were not changed when measured at 0, 3, 6, 24 and 48 hours 

after AOM injection.  Therefore, in this study where AOM was used as a DNA 

damaging agent, p21 mRNA levels may not be a good indicator of DNA damage with 

time.   

In the previous study (Section 3.3.1), feeding 0.6% curcumin did not inhibit 

either COX mRNA expression or PGE2 production in the colon, but rather increased 

COX-2 mRNA levels.  This lack of inhibitory effect of dietary curcumin on 

arachidonic acid metabolism might be the cause of failure of colonic 

chemoprevention by curcumin in middle-aged rats.  However, as reviewed above, it 

is also now questionable whether inhibition of arachidonic acid metabolism is an 

important chemopreventive mechanism in the early stage of colon carcinogenesis.  

Based on recent reports, another possibility is that the increase of COX-2 mRNA 

expression in curcumin-fed rats was a biologically required event.  Tanaka et al. 

(138) reported that COX-2 mRNA levels were up-regulated in the stomach shortly 

after the administration of a selective COX-1 inhibitor but not after a selective COX-2 

inhibitor.  A selective COX-1 inhibitor decreased PGE2 content in the stomach 

mucosa 2 hours after administration of the inhibitor however, levels were being 

recovered by 8 hours due to an increased expression of COX-2 (138).  This suggests 

a compensatory role of COX-1 and COX-2 in maintaining the PGE2 content in 
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gastrointestinal mucosa.  We investigated if the increased COX-2 mRNA in the 

curcumin diet group was associated with reduced COX-1 expression.  Feeding 0.6% 

curcumin to young rats did not affect COX-2 mRNA expression 3 days after AOM 

treatment (Fig. 13A).  However, similar to the previous result in middle-aged rats, 

significantly higher levels of COX-2 mRNA were measured 14 days after AOM 

treatment in the colonic mucosa of young rats fed curcumin compared to rats fed the 

control diet.  Colonic levels of PGE2 were also significantly higher in young rats fed 

the curcumin diet.  This was not consistent with a previous study by Rao et al. (114) 

showing a significant reduction in colonic production of PGE2 after feeding young 

rats a 0.2 % curcumin diet for 19 days.  However, in their study, COX activity was 

measured as the in vitro production rate of prostaglandins including PGE2 by colonic 

microsomal proteins in the presence of sufficiently added arachidonic acid whereas in 

our study, endogenous PGE2 levels were measured in the colonic homogenates.  

Recent reports suggest that phospholipase activity is reduced in both AOM-induced 

colonic ACF and tumors, reducing available free arachidonic acid (170).  Therefore, 

in vitro measurement of PGE2 in the previous study might not properly reflect the 

production rate of endogenous prostaglandins in vivo if AOM-induced carcinogenesis 

reduces available arachidonic acid.   

The increase of COX-2 and PGE2 in young rats fed the curcumin diet seems 
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to be related with decreased COX-1 mRNA levels in the colon, shortly after the AOM 

injection.  The elevation of COX-2 mRNA expression at 14 days was preceded by 

the reduction in COX-1 mRNA levels 3 days after AOM injection (Fig. 13A).   

Although one cannot directly compare two studies, which differ in age of animals and 

duration of study, we speculated that the higher COX-2 mRNA levels observed 

previously at the stage of ACF formation in middle-aged rats fed curcumin diet 

(Section 3.3.1) might be also due to a response to decreased COX-1 mRNA levels by 

AOM treatment.  The previous study (Section 3.3.2) demonstrated that the inhibitory 

effect of AOM on colonic COX-1 mRNA was not limited to young animals.  

Therefore, aging does not appear to alter the effect of curcumin on colonic COX-2 

mRNA expression in either AOM-treated or untreated rats.    

In conclusion, transcriptional levels of Hsp70 were not significantly affected 

by either AOM treatment or curcumin probably because transcriptional induction of 

Hsp70 occurred earlier than our first time of measurement at 24 hours.  p21 also did 

not appear to be significantly affected by AOM treatment.  Rats fed curcumin had 

significantly increased transcriptional levels of COX-2 and PGE2 levels in the colon 

of young rats, which probably was a compensatory mechanism in response to initial 

reduced COX-1 mRNA expression.  Therefore, this study and the previous study in 

Chapter 3 together suggest that the effect of curcumin on arachidonic acid metabolism 
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in the colon may not contribute to the age-related difference in the chemopreventive 

activity of curcumin. 
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Chapter 5. Effect of aging on AOM-induced apoptosis in the 

colon of rats 

 

5.1 Introduction  

Apoptosis is genetically programmed cell death characterized by a highly 

ordered decomposition of DNA and proteins (171).  Regulation of cellular apoptosis 

is important for tissue homeostasis.  Inappropriate activation of apoptosis may cause 

loss of constituent cells and result in tissue dysfunction, or tissue may retain cells 

prone to mutations and potentially develop neoplasia, especially if cells are highly 

resistant to apoptotic stimuli.  The aging process might be derived by an altered 

apoptotic response (172, 173).  It is becoming evident that deregulation of apoptosis 

may cause age-related diseases including neurodegenerative diseases, osteoarthritis, 

cardiovascular diseases, and cancer (173, 174).  

It is generally accepted that cellular dysfunction is related with loss of cells 

due to a high incidence of apoptosis in some post-mitotic tissues like neurons and 

muscles (174).  However, how the aging process affects the regulation of apoptosis 

in mitotic tissues has been understudied.  In the normal colon, age does not appear to 

significantly affect either cell proliferation or apoptosis (109).  Lee et al. (109) 

speculated that age-related differences in apoptosis may not be sufficient enough to 
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detect, as apoptosis rarely occurs both in young and old normal colonic epithelium.  

Apoptosis may more likely take place upon exposure to toxic substances such as 

carcinogens, and cellular control of apoptosis in response to carcinogens may 

significantly affect not only carcinogenesis but also cellular function in the colon.  

Azoxymethane (AOM) has been widely used to induce colon cancer in 

rodents.  AOM is metabolized to highly reactive methyldiazonium, which can bind 

to DNA and cause mutations (35).  In mediating cellular responses to the DNA 

damage, transcriptional factors, p53, AP-1 (activator protein-1), and nuclear factor 

kappa B (NF-κB), play significant roles (175).  In contrast to the p53 tumor 

suppressor, which induces cell cycle arrest and apoptosis, activation of NF-κB 

promotes resistance to programmed cell death (176).  Paradoxically, many DNA 

damaging agents induce activation of both p53 as well as NF-κB (176). 

In most type of cells, inactive NF-κB is sequestered in cytoplasm through 

interaction with the inhibitory proteins, IκBs (175).  Upon exposure to stimuli such 

as cytokines, reactive oxygen species, and genotoxic drugs, IκBs are phosphorylated 

by their kinase, IKK, and rapidly degraded, allowing NF-κB to be released and 

translocate to the nucleus where it subsequently activates its target genes.  Many of 

NF-κB-regulated genes are anti-apoptotic and include the protein families of Bcl-2 

and inhibitors of apoptosis (IAP).  IAP suppresses apoptosis by direct inhibition of 
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proteolytic caspases.  X-chromosome linked IAP (XIAP) is the most potent inhibitor 

of apoptosis but its regulation by NF-κB seems to be limited to specific cell types 

(176).  Although IAP-1 and IAP-2 have reduced ability to inhibit apoptosis 

compared to XIAP, their induction in response to activation of NF-κB has been 

observed in various cells (176, 177).  It is well known that activation of NF-κB 

induces transcriptional activation of Bcl-xL in many different types of cells.  Recent 

studies also suggested the involvement of Bcl-2 in the anti-apoptotic activity of NF-

κB (175, 176).  It is well understood that high expression of Bcl-xL and Bcl-2 

inhibits apoptosis through the suppression of the release of cytochrome c from 

mitochondria (178, 179).   

On the other hand, p53 activity seems to be inhibited in the AOM-treated 

colon.  Shortly after the AOM injection to mice, p53-regulated genes were not 

induced in the colon in contrast to rapid induction of p53-responsive genes including 

p21 and Bax in the liver (169).  In addition, Wu et al. (23) reported that cytosolic 

wild type (wt) p53, which is stable and inactive, was increased whereas active 

mitochondrial wt p53 decreased in the colon after AOM treatment although levels of 

wt p53 mRNA and total proteins were not inhibited by AOM.  Therefore, activation 

of NF-κB may have an important role in modulating cell death in the AOM-treated 

colon.  
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AOM induces apoptosis in the colonic epithelium within several hours after 

AOM injection in young animals (166).  However, the time course of apoptosis upon 

exposure to AOM in older animals has not been studied.  This study investigated the 

effect of aging on the regulation of apoptosis in response to an acute exposure to 

AOM.  In this study, the time course of apoptotic response in different ages of 

animals was investigated to determine whether older animals respond excessively or 

bluntly to the exposure of colonic cytotoxicants compared to young animals.  Also, 

NF-κB-regulated genes, Bcl-2, Bcl-xL, and IAP-2 were examined to assess whether 

differences in apoptosis induction by age involves regulation of those genes. 

 

5.2 Materials and Methods 

 

5.2.1 Experimental animals and diets 

Experimental animals were young (6 weeks), middle-aged (12 months), and 

old (22 months) male F344 rats purchased from the colony at the National Institute of 

Aging (Bethesda, MD).  The rats were fed the AIN-93 diet for 1 week after 

acclimation to lab conditions.  All the rats except 6 rats per age group were given 

single s.c. injection of AOM (Sigma, St. Louis, MO) at the dose of 15 mg/kg.  Six 

rats per age group were killed at four different time points, 4, 8, 16, and 24 hours after 
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AOM injection.  The zero hour control was injected with saline right before they 

were killed as a sham control.  Colons were collected after flushing with cold saline.  

Two cm of colon tissue from the distal end were fixed in 10% formaldehyde for 

immunohistochemistry and the rest of the colon was scraped to collect epithelial 

mucosa.  One half of the mucosa from each rat was fixed in RNAlater (Ambion Inc, 

Texas, AU) for RNA isolation and the other half was frozen on liquid N2 for protein 

analysis.  Tissues were then frozen at –80 oC until analyzed. 

 

5.2.2 Apoptosis 

Paraffin-embedded colon pieces were subjected to immunohistochemistry 

using ApopTag Peroxidase kits (ApopTag 700, Chemicon International, Inc., 

Temecula, CA) according to the manufacture’s instructions, and apoptotic indices 

were determined by counting the total number of stained cells per crypt.  Briefly, 

DNA 3’-OH ends were labeled with oligonucleotides containing digoxigenin 

conjugate by terminal deoxynucleotidyl transferase.  Labeled cells were detected by 

anti-digoxigene conjugated with peroxidase reporter and subsequent reaction with 

diaminobenzidine (DAB) substrate.   
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5.2.3 Transcriptional levels of Bcl-2, Bcl-xL, and IAP-2 using RT-PCR 

Total RNA was extracted from colon mucosa and reverse transcribed to 

cDNA as described (Section 2.2.3).  An aliquot of cDNA was subjected to RT-PCR 

for each gene using specific oligonucleotides for Bcl-2 (180), Bcl-xL (181), and IAP-

2 (sense: AAA TGC TGA CCC TCC AG, antisense: AAA TGC TGA CCC TCC ACT 

TG, Invitrogen).  The DNA engine (MJ Research, Waltham, MA) was used for 

mRNA amplification of each gene.  Thermocycling conditions were used as follows: 

one 2-min cycle at 94 oC, 30 ( IAP-2 and Bcl-Xl) or 32 (Bcl-2) cycles of denaturation 

for 30 s at 92 oC , annealing for 30 s at 57 oC (Bcl-xL) or 60 oC (IAP-2 and Bcl-2), 

and extension for 1 min at 72 oC, and a final extension for 5 min at 72 oC.  

Ribosomal 18S was used as an internal control and the PCR products from multiplex 

reactions were analyzed using DNA 500 LabChip® and Agilent 2100 bioanalyzer as 

previously described (Section 2.2.3).  

 

5.2.4 Data analysis 

This study was a two factorial (age × time) design.  Two-way analysis of 

variance (ANOVA) was conducted using SAS software (9.1, SAS Institute Inc, Cary, 

NC) to investigate the effect of age, time and their interaction on apoptosis and 

transcriptional levels of each gene.  
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5.3 Results 

 

5.3.1 Apoptosis  

An apoptotic peak in the colon was reached 8 hours after AOM injection and 

after that apoptotic incidence decreased with time but was still elevated 24 hours after 

the carcinogen treatment compared to basal levels in all age groups (Fig. 14).  Older 

animals had significantly higher apoptotic indices (total stained cells/crypt) at 8 (p < 

0.05) and 16 hours (p < 0.07) after AOM injection, compared to young animals.  

When two-way ANOVA was conducted, there were significant differences in effects 

of age, time, and the interaction of age and time.   
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Figure 14. Time course of apoptosis indices in the distal colon of young, middle aged 
and old rats after being treated with AOM (mean ± SE, n=5 or 6/group). Apoptotic 
index was generated by counting total stained cells per crypt. Except for 24 hour point 
in young rats, apoptotic indices were higher (p < 0.05) at 8, 16, and 24 hour points 
compared to 0 or 4 hour point in each age group. Middle-aged and old rats (lower 
panel, left) had significantly higher (p < 0.05) apoptotic indices compared to young 
rats (lower panel, right) at 8 hour time point. Two-way ANOVA indicated significant 
effects of age, time, and interaction of age and time.  
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5.3.2 Transcriptional levels of Bcl-2, Bcl-xL, and IAP-2  

Changes in colonic transcriptional levels of Bcl-2, Bcl-xL and IAP-2 with 

time after AOM injections showed a similar trend in each age group – mRNA levels 

of genes were lowered after carcinogen treatment in young and old rats whereas in 

middle-aged rats, they were unchanged following AOM injections (Fig. 15).  Two-

way ANOVA showed that there was a significant interaction of age and time in Bcl-xL 

and Bcl-2 mRNA levels.  

Young rats showed the most apparent change of mRNA expression levels of 

the genes after AOM treatment.  In young rats, transcriptional levels of all of the 

genes, Bcl-xL, IAP-2, and Bcl-2, were significantly reduced (p < 0.05) 24 hours after 

the AOM treatment compared to 0 hour control (Fig. 15).  In old group, Bcl-xL and 

IAP-2, but not Bcl-2 mRNA levels, were significantly decreased following AOM 

treatment.  There were no significant changes in transcriptional levels of Bcl-xL, 

IAP-2, or Bcl-2 after AOM injections in middle-aged rats.   
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Figure 15. Changes in transcriptional levels of Bcl-xL, IAP-2, and Bcl-2 in relation to 
18S in the colon of three different ages of rats 0, 8 or 24 hours after AOM injection 
(mean ± SE, n=5 or 6/group). * represents significant differences (p < 0.05) compared 
to 0 hour control in each age group by ANOVA.  
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5.4 Discussion  

Apoptosis is a critical mechanism in maintaining tissue homeostasis.  Two 

apoptotic pathways are known.  One is the external pathway where death-receptors 

are involved and the other is the mitochondrial-dependent pathway, called the internal 

pathway.  Cellular apoptotic events are highly regulated by many proteins whose 

expressions are controlled by many different signaling pathways as described above 

(Section 1.6).  The regulation of apoptosis varies by stimuli and intensity of 

apoptosis, and depends on cell types.  Even more complicated, the two apoptotic 

pathways interact and induction of one apoptotic pathway requires amplification of 

apoptotic signaling by the other pathway (100).  

Deregulation of apoptosis seems to contribute to the aging phenotype.  In 

post-mitotic tissues, apoptosis increases with age and causes loss of tissue structure 

and function due to loss of cells as seen in muscle atrophy, sarcopenia, and 

neurodegenerative diseases (174, 182, 183).  However, it is largely unknown how 

aging contributes to the regulation of apoptosis in mitotic tissues including the colon.  

The current study confirmed previous results that basal levels of apoptosis were 

similar among different age groups (109) and that maximum levels of apoptosis were 

reached 8 hours after the AOM injection in young rats (166).  Aging did not alter the 

time at which apoptosis reaches a peak (Fig. 14).  However, the levels of AOM-
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induced apoptosis at the peak were higher in older animals compared to young.  

Therefore, this study showed that apoptosis increases with age upon exposure to a 

genotoxic agent in the mitotic tissue, the colon, as demonstrated in many post-mitotic 

tissues. 

Upon exposure to DNA damaging agents, apoptosis functions to remove 

damaged DNA and reduce mutation load in tissues (184, 185).  Therefore, apoptosis 

is a critical mechanism to prevent initiation of cancer.  In the first study (Chapter 2), 

the development of ACF after AOM treatment was lower in middle-aged and old 

compared to young rats.  Higher incidence of apoptosis immediately after the AOM 

treatment in older animals may inhibit the initiation of colon cancer and therefore 

explain the reduced development of colonic preneoplastic lesions, ACF.  

On the other hand, high incidence of apoptosis may eventually cause loss of 

functional cells in the colon.  Apoptosis depletes the stem cell pools that replenish 

renewable tissues (186, 187).  Notably, the majority of AOM-induced programmed 

cell death occurred in the bottom of crypts in both young and old animals (Fig. 14).  

The fact that AOM-induced apoptosis targets stem cells was also previously observed 

(154).  By contrast, in the normal colon, apoptotic cells are often found in the upper 

portions of the crypts where highly differentiated cells reside and are exfoliated into 

the lumen for excretion (154).  How this high incidence of apoptosis contributes to 
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the aging phenotype in the colon needs further study.  However, it might be 

reasonable to assume that a high incidence of apoptosis in the colon of older rats may 

potentially contribute to loss of structure and function due to loss of functional cells as 

demonstrated in post-mitotic tissues.  It should be also noted that destruction of 

tissue structure can deregulate cell proliferation, differentiation and apoptosis (188-

190) and that modification of tissue structure can actually initiate cancer (191).   

Another possible mechanism by which over-activation of apoptosis may 

increase the cancer development is the stimulation of cell proliferation to compensate 

for loss of cells, thereby, potentially providing more chances to establish the 

mutations by replication.  In fact, basal levels of cell proliferation determined by 

proliferating cell nuclear antigen (PCNA) were slightly but significantly higher in 

older rats compared to young rats (Chapter 6).  A previous study (166) showed that 

three days after AOM single injection, cell proliferation rate was significantly 

elevated compared to basal levels in young rats, probably in order to replenish lost 

cells.  Cell proliferation rate was significantly reduced 16 hours after AOM injection 

compared to basal levels only in old rats whereas proliferation rate was not altered in 

either young or middle-aged rats (Chapter 6).  If loss of cells due to apoptosis 

increases cell proliferation even higher than basal levels in old rats as in young rats  

(166), cell proliferation would dramatically rise in old animals probably much higher 
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than young.  A high incidence of cell proliferation is considered to increase risk of 

cancer development due to the increased chance of a mutation leading to 

preneoplastic lesions.  Repeated exposures to genotoxic agents may have substantial 

impact on individuals highly susceptible to apoptotic stimuli.  In the short term, high 

incidence of apoptosis in response to AOM in older animals has a beneficial effect in 

prevention of initiation of colon cancer.  In the long term, however, the high 

susceptibility to induced apoptosis may potentially contribute to the aged phenotype 

and increased cancer incidence due to loss of tissue structure and deregulation of cell 

proliferation, providing an environment more conducive to cancer initiation and 

promotion.  

In this study, changes in the expression of NF-κB-regulated genes following 

AOM treatment were examined.  Bcl-2, Bcl-xL, and IAP-2 transcriptional levels 

were all similarly affected by AOM treatment in three different aged rats.  

Interestingly, except for Bcl-2, these three genes were transcriptionally less expressed 

24 hours after AOM injection compared to 0 hour control in young and old animals 

(Fig. 15).  On the contrary, in middle-aged rats, none of these genes were 

significantly reduced after AOM injection.  The protein products of these genes 

inhibit apoptosis.  Assuming that the change in messages of Bcl-2, Bcl-xL, and IAP-

2 are translated to protein levels, inhibitors of apoptosis would be decreased in the 
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colon of young and old rats and increase sensitivity to apoptosis, in contrast to no 

changes in the colon of middle-aged rats.  The change in transcriptional expression 

levels of those genes did not appear to relate with age-related differences in apoptosis 

induction, as if this were the case, the lowest levels of apoptosis should have been 

observed in middle-aged rats.   

Bcl-2, Bcl-xL, and IAP-2 proteins seem to play critical roles in inhibiting the 

mitochondrial-dependent pathway.  IAP family inhibits caspase-9 and hence the 

cleavage of pro-caspase-3 to the active form whereas no apparent effect of IAPs was 

reported in activation of caspase-3 by caspase-8 (192, 193).  Bcl-2 and Bcl-xL 

inhibit cytochrome c release from mitochondria and therefore suppress apoptosis 

mediated by the mitochondrial-dependent pathway (194).  Whether high expression 

of Bcl-2 or Bcl-xL also has an inhibitory effect on death receptor-mediated pathway 

of apoptosis is controversial (100).  This seems to depend on the type of cells (100).  

A certain type of cells is resistant to apoptosis induced by death ligands.  This type 

of cells has low death receptor levels, is resistant to cross linking of receptors, or 

possibly expresses inhibitory decoy receptors.  Also, this type of cells has high levels 

of anti-apoptotic proteins like IAPs and require the release of mitochondrial 

Smac/DIABLO, which sequester IAPs in order to activate caspase-9 and caspase-3.  

This release of Smac/DIABLO from mitochondria is inhibited by Bcl-2 family.  
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Therefore, in this type of cells, Bcl-2 or Bcl-xL has inhibitory effect on death 

receptor-mediated apoptosis as well.  It should be confirmed that transcriptional 

levels of Bcl-2, Bcl-xL and IAP-2 were translated to protein levels.  The 

mitochondrial-independent pathway, which is not affected by IAPs or Bcl-2/Bcl-xL, 

might be responsible for the age-related differences in AOM-induced apoptosis. 

Many chemicals that induce DNA damage are known to induce apoptosis 

through the mitochondrial-dependent pathway or both internal and external pathways.  

It is not well understood how AOM induces apoptosis in the colon.  Several studies 

also reported that production of cytokines, including TNF-α and IL-6, is elevated in 

AOM-treated colon (170, 195, 196) although it is not clear whether levels of 

cytokines are increased directly by AOM treatment or during progression of 

carcinogenesis.  Interestingly, it is well established that production of TNF-α and IL-

6 increases in older individuals (197).  Moreover, old subjects not only produce 

higher TNF-α but also are more susceptible to TNF-α-induced apoptosis compared to 

younger individuals (197).  It would be interesting to investigate if older rats 

increase colonic production of cytokines including TNF-α or IL-6 in response to 

AOM exposure or are more sensitive to apoptosis induced by those cytokines. 

In summary, this study showed that the colons of older animals are more 

susceptible to AOM-induced apoptosis and this age-related difference in the incidence 
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of apoptosis is likely not related with NF-κB activity.  Further study will be required 

to identify the apoptotic pathway that AOM induces and to understand the biological 

significance of high susceptibility of older animals to apoptosis upon an exposure to a 

colon carcinogen.  
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Chapter 6. Effect of aging on colonic apoptosis induced by 

AOM and curcumin 

 

6.1 Introduction 

Middle-aged rats are resistant to inhibition of colonic ACF development by 

dietary curcumin (Chapter 2).  ACF represent a stage of initiation and early 

promotion in colon carcinogenesis.  In the early stages of carcinogenesis, the 

dynamics of carcinogen metabolism, repair of DNA mutation, cell proliferation and 

apoptosis determine the mutation load in the tissue and the initiation of carcinogenesis.  

The induction of apoptosis may be an important mechanism in the inhibition of AOM-

initiated colon carcinogenesis.  Shortly after the AOM injection, p53-regulated genes 

were not significantly induced in the colon of mice whereas they were markedly 

enhanced in the liver (169), indicating suppression of apoptosis or cell cycle arrest by 

AOM treatment in the colon.  Also, the efficacy of chemoprevention appears to be 

related with the ability of chemopreventive agents to induce apoptosis.  Samaha et al. 

(198) reported that the high tumor incidence (number of rats bearing tumors) was 

correlated with a lower apoptotic index when they used different chemopreventive 

agents.  Moreover, studies that investigated the chemopreventive activity of pectin 

and fish oil in AOM-induced colon cancer suggest that the chemopreventive effect of 
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diet may be due to the increase of apoptosis not the decrease of cell proliferation at all 

stages of carcinogenesis, initiation, promotion, and progression (33, 153, 199).  

The induction of apoptosis by curcumin and potential apoptotic pathways that 

curcumin may mediate has been extensively studied (84, 95, 96, 104, 105, 200, 201).  

Most were conducted in vitro and the apoptotic pathways affected by curcumin varied 

depending on cell line types and concentrations of curcumin used.  However, many 

studies suggest that curcumin induces apoptosis through the mitochondrial-dependent 

pathway.  In addition, a recent study (202) showed that young rats fed curcumin had 

higher active caspase-9 expression levels, indicating that curcumin-induced apoptosis 

is mediated by the mitochondrial-dependent pathway.  

Based on previous studies above, the resistance of middle-aged rats to 

curcumin chemoprevention (Chapter 2) may be due to the failure of curcumin to 

enhance apoptosis in middle-aged rats.  One of the potential mediators may be 

Hsp70 in the colon as described previously (Section 4.1).  However, the preliminary 

study (Chapter 4) investigating the time course of Hsp70 mRNA expression after 

AOM injection did not provide conclusive results.  It would be relevant to first 

determine whether age affects curcumin-induced apoptosis rather than search for 

responsible modulators.  Regulation of apoptosis is a significant event in both the 

aging process and cancer prevention as reviewed above.  Moreover, the study 
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described in Chapter 5 showed significant age-related differences in AOM-induced 

apoptosis.  

Therefore, this study investigated whether age affects curcumin-induced 

apoptosis and whether it is related to the resistance to chemopreventive activity of 

curcumin in middle-aged animals.  In this study, the time course of Hsp70 

expression following AOM injection was also examined to determine if AOM induces 

Hsp70 mRNA expression, and if the induction of Hsp70 has a regulatory role in 

curcumin-induced apoptosis.  Additionally, the activity of caspase-9 was assessed to 

investigate if curcumin-induced apoptosis is mediated through the mitochondrial-

dependent pathway. 

 

6.2 Materials and Methods 

 

6.2.1 Experimental animals and diets 

Male F344 rats at the ages of 6 weeks, 12 months, and 22 months were 

purchased from the same colony described above (Section 5.2.1).  Rats were 

randomly allocated into either AIN or CUR diet groups.  All the rats were injected 

with AOM at the dose of 15 mg/kg body weight after 1 week on their diets.  Eight 

and sixteen hours after the AOM single injection, rats were killed.  Rats in the 0 hour 
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control group were injected with saline right before they were killed.  These rats 

represented basal levels.  A 2 cm colon piece from the mid point towards the distal 

colon, and one from the distal end were fixed in 10% formaldehyde for 

immunohistochemisty and the rest of colon was scraped for mucosa and stored for 

RNA and protein isolation as described (Section 5.2.1).  

 

6.2.2 Apoptosis 

Incidence of apoptosis was assessed by immunohistochemical staining using 

ApopTag Peroxidase Kits (Chemicon International, Inc., Temecula, CA) and apoptotic 

indices of total stained cells per crypt were generated as described (Section 5.2.2).  

Two sections (one from distal and the other from middle of the colon) of each colon 

were used for apoptosis to determine if results differed with the region of the colon. 

 

6.2.3 Cell proliferation 

Paraffin-embedded colons from two locations (one from distal and the other 

from middle of the colon) were sectioned and subjected to immunohistochemical 

staining for PCNA.  Tissue sections were incubated with primary antibodies against 

PCNA (predilute, Zymed Laboratories, South San Francisco, CA) for one hour at 

room temperature.  Histostatin-Plus kits (DAB, Broad Spectrum, Zymed) were used 
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to successively conjugate primary antibodies with biotinylated secondary antibodies, 

streptavidin-peroxidase conjugates and diaminobenzidine (DAB) substrates.   

Computer-Assisted Image Analysis was employed to quantitatively measure 

immunohistochemically stained PCNA.  Each stained slide was viewed at 100X with 

a Nikon Eclipse microscope mounted with a high-resolution camera.  Images were 

obtained from two locations of each section and a mean labeling index was calculated 

as the percentage of the positive nuclear-stained area in the total nuclear area using a 

Image-Pro Plus 6.0 image analysis software (Media Cybernetics, Silver Spring, MD).  

Only complete crypts with a clear opening to the lumen were selected for analysis.  

 

6.2.4 Transcriptional levels of Hsp70 by RT-PCR 

Hsp70 mRNA levels were measured by RT-PCR and the ratio of Hsp70 to 

18S was determined as previously described (Section 4.2.2).  

 

6.2.5 Caspase-9 protein levels by Western blotting 

Frozen colon mucosa samples were lysed with T-PER tissue protein 

extraction reagent (Pierce Biotechnology, Inc., Rockford, IL) containing protease 

inhibitors (Halt protease inhibitor cocktail, Pierce Biotechnology).  Tissue 

homogenates were centrifuged at 10,000 g for 5 min at 4 oC.  Aliquots of tissue 
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supernatant were mixed with sample loading buffer (50 Mm Tris buffer pH 6.8, 10% 

glycerol, 2% SDS, 5% β-mercaptoethanol, and 0.02% bromophenol blue) and 

denatured at 95 oC for 5 min.  Denatured proteins were loaded onto 10-20% gradient 

Novex® Tris-Glycine gels (Invitrogen, Carlsbad, CA).  After electrophoresis, 

proteins were transferred onto nitrocellulose membranes and probed with caspase-9 

antibody (MBL International, Woburn, MA).  The Western blot was visualized using 

Super Signal West Pico Chemiluminescent Substrate (Pierce Biotechnology).  The 

densitometry of the bands corresponding to the molecular size of active caspase-9 (35 

kD) and procaspase-9 (45 Kd) were quantified using Image J software (1.35g, NIH) 

and the ratio of active caspase-9 to procapase-9 was generated for each rat.  There 

was no difference among samples in intensity of bands of β-actin used as a loading 

control.  Protein concentration of tissue lysates was measured using Coomassie Plus 

protein assay kit (Pierce Biotechnology).  

 

6.2.6 Data analysis  

Two-way analysis of variance (ANOVA) using SAS software (9.1, SAS 

Institute Inc, Cary, NC) was performed to examine the effect of diet, time, and their 

interaction on the ratio of Hsp70 to 18S mRNA levels and the ratio of active caspase-

9 to procaspase-9 in each age group.  Two-way ANOVA was also conducted to 
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determine if there were significant effects of age, diet, and their interaction on 

apoptotic index in each time after the AOM injection due to high variability of values 

depending on the time at which apoptosis was evaluated.  

 

6.3 Results 

 

6.3.1 Apoptosis 

There was a significant interaction effect (p < 0.05) of age and diet at all time 

points.  Curcumin-fed young and old rats showed significantly higher basal levels (0 

hour) of apoptosis in the colon in contrast to no effect of curcumin in middle-aged rats 

(Fig. 16).  Dietary curcumin also enhanced AOM-induced levels of apoptosis in 

young and old rats, at 8 and 16 hours, respectively, compared to their control diet 

counterparts whereas middle-aged rats had similar levels of apoptosis in both diet 

groups in all time points (Fig. 16).  Results from the middle colon were similar, but 

less apparent as in distal colon (data not shown). 
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Figure 16. Effect of curcumin on levels of basal and AOM-induced apoptosis in the 
distal colon of three different aged rats (mean ± SE, n=5 or 6/group). AIN is the group 
fed the AIN-93 control diet and CUR is the group fed the AIN-93 diet containing 
0.6% curcumin. Apoptosis was detected by immunohistochemical staining 0, 8, and 
16 hours after AOM injection. Apoptotic indices were generated by counting total 
number of stained cells per crypt. * represents significant differences (p < 0.05) 
between AIN and CUR at each time point and each age group by ANOVA.   
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6.3.2 Cell proliferation 

Changes of cell proliferation rate in distal colon expressed as PCNA labeling 

index is shown in Table 3.  In control diet group, basal levels (0 hour) of PCNA 

labeling indices were significantly higher (p < 0.05) in middle-aged and old rats 

compared to young rats in the distal colon.  Feeding curcumin did not significantly 

affect basal levels of cell proliferation in any ages of rats.  Carcinogen treatment 

significantly reduced (p < 0.05) the proliferation rate in all ages of rats fed curcumin.  

In the control diet group, only old rats had a significantly reduced cell proliferation 

rate following AOM injection, but this was still higher than in rats fed the curcumin 

diet.  Therefore, after carcinogen treatment, rats fed the curcumin diet had 

significantly lower (p < 0.05) levels of PCNA staining compared to their control diet 

counterparts in all three ages.  There were no significant changes by age, diet, or 

time after AOM treatment in the middle colon (data not shown).  
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Table 3. PCNA labeling index (%) in distal colons of three different aged rats before 
and after AOM injection 

Timea)        Age 
Dietb)

Young Middle-aged Old 

AIN 13.6 ± 1.79c) 22.6 ± 3.00d)  28.8 ± 3.93d)0 hour 

CUR 12.8 ± 3.31 17.1 ± 3.23 20.5 ± 4.09 

AIN 13.3 ± 1.86 15.4 ± 1.64 14.7 ± 3.22f)16 hour 

CUR  6.9 ± 1.59e)  5.0 ± 0.82e),f)  6.2 ± 1.43e),f)

a) Rats were killed 0 or 16 hours after AOM injection 
b) AIN is AIN-93 control diet and CUR is AIN-93 diet containing 0.6% curcumin 
c) PCNA labeling index was calculated by percentage of nuclear-stained area of the 
total nuclear area, mean ± SE (n=5 or 6 per group). Data values were log transformed 
due to large difference in variance among different groups for ANOVA.  
d)Significant difference (p < 0.05) among different age groups at each time point and 
each diet group by ANOVA  
e)Significant difference (p < 0.05) between diet groups at each time point and each age 
group by ANOVA  
f)Significant difference (p < 0.05) between time points at each age and each diet group 
by ANOVA  
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6.3.3 Hsp70 mRNA levels  

In young rats, Hsp70 mRNA levels were increased after AOM injections in 

the control diet group.  Young rats fed the control diet had significantly higher (p < 

0.05) Hsp70 levels 16 hours after AOM treatment compared to basal levels (Fig. 17).  

This elevated level of Hsp70 mRNA in young rats was significantly lowered in rats 

fed curcumin (Fig. 17).  However, there were no significant differences (p > 0.05) by 

either AOM treatment or diet in old animals (Fig. 17) and results similar to old were 

observed in middle-aged animals (data not shown).   
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Figure 17. Changes in Hsp70 transcriptional levels 0, 8, and 16 hours after AOM 
injection in the colon of young and old rats fed either AIN or CUR (mean ± SE, n= 5 
or 6/group). AIN is the group fed the AIN-93 control diet and CUR is the group fed 
the AIN-93 diet containing 0.6% curcumin. * represents significant differences (p < 
0.05) between AIN and CUR at each time point and each age group. # represents 
significant differences (p < 0.05) among different time points at each age and each 
diet group by ANOVA. There were no significant effects of diet or AOM treatment in 
old animals. Results similar to old were observed in middle-aged animals (data not 
shown). 
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6.3.4 Caspase-9 protein levels 

As shown in Figure 18, in the young, rats fed the curcumin diet had a higher 

ratio of active caspase-9 to procaspase-9 compared to rats fed the control diet in all 

times consequently showing a significant diet effect (p = 0.004).  The ratios of active 

caspase-9 to procaspase-9, which reflect the activity of caspase-9 were significantly 

increased 0 and 8 hours after AOM injection in young rats fed curcumin diet 

compared to rats fed the control diet (Fig. 18).  There were no significant differences 

between two diet groups in all time points in middle-aged or old rats (Fig. 18).   
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Figure 18. Effect of curcumin on the activity of caspase-9 in the colon of three 
different ages of rats, 0, 8, and 16 hours after AOM injection (mean ± SE, n=5 or 
6/group). (A) Proteins were separated by electrophoresis and blots were probed with 
caspase-9 antibody, lane 1-2; 0 hour, lane 3-4; 8 hour, lane 5-6; 16 hour in young rats. 
Bands of 45 kD and 35 kD corresponded to procaspase-9 and active caspase-9, 
respectively. (B) The ratio of active caspase-9 to procaspase-9 was calculated after the 
densitometry corresponding to the size of two proteins was quantified by Image J 
software. β-actin was used as a loading control and there was no difference in 
intensity of β-actin protein among samples (not shown). p values represent the overall 
effect of diet in each age group. * represents significant differences (p < 0.05) 
between AIN and CUR at each age group and each time point by ANOVA.  
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6.4 Discussion 

The hypothesis of this study was that the resistance of middle-aged rats to 

curcumin-induced apoptosis at the initiation of colon carcinogenesis contributes to the 

failure of curcumin to inhibit colonic ACF in this age group.  The results support this 

hypothesis as young and old rats fed the curcumin diet had higher levels of apoptosis 

compared to rats fed the control diet whereas middle-aged rats had similar levels of 

apoptosis in both diet groups.  Curcumin similarly affected cell proliferation 

assessed by PCNA immunohistochemical staining in all age groups and significantly 

reduced proliferation rate after AOM injection (Table 3).  This result support 

previous reports that the ability to enhance apoptosis or differentiation rather than 

suppress cell proliferation correlates with efficacy of chemopreventive agents (33, 153, 

199).   Therefore, induction of apoptosis by curcumin before and/or right after 

carcinogen treatment may be at least partially responsible for the differential 

chemopreventive activity of curcumin (Chapter 2). 

Apoptosis may be important in inhibition of not only initiation of cancer but 

also progression of initiated cancer (33, 198).  Volate et al. (202) recently reported 

that curcumin reduced the number of colonic ACF induced by AOM in young rats and 

that this chemopreventive activity of curcumin was related with the increase of 

apoptotic incidence.  This is in agreement with the finding in this study as young and 
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old rats fed curcumin had significantly higher basal levels of apoptosis.  At this time, 

no reports were found to explain what contributes to the higher apoptosis incidence by 

curcumin-fed untreated rats or what are the biological consequences of this 

observation.  However, higher incidence of apoptosis in the AOM-untreated colon 

may provide protection against endogenous carcinogens in the colon, which is 

continuously exposed to toxic substances.  Therefore, through induction of apoptosis, 

curcumin may suppress the initiation of cancer, the development of initiated cancer 

cells to preneoplastic lesions and/or the growth of ACF with small multiplicity to ACF 

with larger multiplicity. 

As described earlier (Section 1.6), activation of procaspase-9 is mediated by 

the mitochondria.  The increase of apoptosis in rats fed curcumin was significantly 

associated with higher active caspase-9 relative to procaspase-9 in young rats (Fig. 

18).  However, this relationship was not observed in old animals, suggesting 

potential involvement of other pathways.  It should be also noted that the ratio of 

active- to pro-caspase-9 did not change with time after AOM injection in all age 

groups.  AOM-induced apoptosis may not require activation of caspase-9 but may be 

mediated by a mitochondrial-independent pathway.  

The mechanism of resistance to curcumin-induced apoptosis in middle-aged 

rats is unclear.  Previously, it was reported that curcumin failed to induce apoptosis 
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in cells which highly express Hsp70 (203) or Bcl-2 (85).  In this study, changes in 

transcriptional levels of Hsp70 with time after AOM treatment were measured to find 

if Hsp70 expression modulates curcumin-induced apoptosis.  Hsp70 was 

transcriptionally induced 8 hours after AOM treatment in young rats, reaching levels 

statistically significant at 16 hours.  This result suggests that the failure in detection 

of induction of Hsp70 transcription following AOM treatment in the previous study 

(Chapter 4) may be because Hsp70 transcription was evaluated at a much later time 

point after AOM treatment.  However, the feeding of curcumin in young rats reduced 

the elevation of Hsp70 mRNA levels.  Therefore, curcumin may act to eliminate 

stress rather than enhance Hsp70 induction as initially hypothesized in Chapter 4.  

Methylated proteins may induce transcriptional activation of Hsp70 in the colon 

following AOM treatment.  Young rats fed curcumin showed increased apoptosis 

incidence after AOM treatment compared to rats fed control diet and this removal of 

damaged cells by apoptosis may result in the reduction of protein damage that would 

induce Hsp70 in the colon.  In middle and old rats, Hsp70 does not appear to be 

induced by AOM and transcriptional levels of Hsp70 were not affected by feeding of 

curcumin either.  The lack of induction of Hsp70 in older rats may be because the 

higher incidence of apoptosis after AOM treatment in middle and old compared to 

young animals effectively removed stressed cells or because older animals have 
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reduced ability to induce Hsp70 (161, 204).  

The study above investigating time course of apoptosis in three different ages 

of rats (Chapter 5), showed no changes in Bcl-2, Bcl-xL, and IAP-2 mRNA levels in 

the colon of middle-aged rats after AOM treatment.  This is in contrast to the 

decrease of expression of those genes in young and old rats.  Bcl-2, Bcl-xL, and 

IAP-2 are regulated by activity of NF-κB and responsible for the resistance to 

apoptosis induction (176).  Although protein levels of those genes should be 

confirmed and the apoptotic pathway curcumin induces identified, the lower 

expression of Bcl-2, Bcl-xL, and IAP-2 suggests a means of sensitizes young and old 

rats to curcumin-induced apoptosis.   

Apoptosis mainly occurred at the bottom of the colon crypts in rats treated 

with AOM in both the previous (Chapter 5) and the current study.  However, rats fed 

the curcumin diet had more apoptosis in the middle or upper areas of crypts compared 

to rats fed the control diet after AOM treatment.  The differential localization of 

apoptosis by diet may be due to the enhanced differentiation and migration of cells in 

the curcumin diet group as suggested by Fenton et al. (205).  Cell differentiation is 

an important characteristic that indicates maintenance of tissue function.  It should 

be also noted that aging seems to increase apoptosis in post-mitotic tissues and 

probably mitotic tissues as well, as demonstrated in our previous study (Chapter 5).  
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Therefore, increasing apoptosis without enhancing cell differentiation would not be 

desirable as it would cause loss of tissue structure and function, further contributing to 

aging.  It should be further confirmed if curcumin enhances cell differentiation.  In 

this study, apoptotic incidence was enhanced by curcumin at a later time point after 

AOM treatment in old compared to young rats (Fig. 16).  The mechanism of this 

delay of increase of apoptosis by curcumin in old rats is also unclear.   

A previous study (109) reported that basal levels of cell proliferation 

determined by bromodeoxyuridine (BrdU) incorporation were not different among 

different ages of male F344 rats in contrast to increased proliferation in the colonic 

epithelium in older rats in this study (Table 3).  Hirose et al. (166) reported that 

PCNA labeling index was not reduced 8 hours after AOM injection when actively 

proliferating cells in the colonic epithelium are expected to be rare as mitotic index 

was significantly suppressed and apoptosis was highly induced at this time point.  

They speculated that cells in not only S phase but also G1 and/or G2 phase may 

immunoreact for PCNA.  PCNA plays important role both in DNA synthesis and 

DNA excision repair.  Possible occurrence of DNA excision repair after AOM 

treatment was also suggested as another explanation of no suppression of DNA 

synthesis assessed by PCNA labeling index after AOM treatment (166).  Therefore, 

different techniques used to assess cell proliferation might give different results.  
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Another possibility was that cell proliferation may be evaluated in tissues from 

different locations of the colon.  Holt and Yeh (206) reported an increased 

proliferation rate and a wider proliferation zone in aged rats in the distal colon but no 

changes were found in the proximal colon when they employed the tritiated thymidine 

incorporation techniques to assess cell proliferation rate.  In present study, there were 

no differences in cell proliferation by age, AOM treatment, or diet in the middle colon.  

A previous study also suggested that differential sensitivity to AOM depending on 

location in the colon (206) .  AOM treatment causes damages predominantly to the 

distal colon and changes of cell proliferation and mitosis were more apparent in the 

distal colon following AOM single injection (206) .  Therefore, the distal colon 

might be more susceptible to carcinogens, age, and probably diet.   

In summary, this study supports the hypothesis that the resistance of 

curcumin-induced apoptosis in middle-aged rats during initiation of AOM-induced 

carcinogenesis contributes to the lack of inhibition of colonic ACF by curcumin in 

this age of animals.  Further study will be required to identify the apoptotic pathways 

and mediators contributing the resistance to curcumin-induced apoptosis in middle-

aged animals. 
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Chapter 7. Conclusions and Future Study 

 

Aging is a potent factor driving cancer including colorectal cancer.  The 

incidence of colorectal cancer, one of leading neoplastic diseases in Western countries, 

is strongly related with dietary factors.  Many food components have been 

extensively studied in relation to the development and prevention of colon cancer.  

However, previous studies in preclinical models have exclusively used young animals.  

The age of animals has not been considered in evaluation of chemopreventive effect 

of dietary components.   

The hypothesis of this thesis was that aging may alter the cancer preventive 

activity of dietary components.  Curcumin is a compound in the spice turmeric, 

powdered rhizomes of Curcuma longa Linn. and a well-established colon 

chemopreventive agent in preclinical models using young animals.  This hypothesis 

was tested by evaluating the effect of age on the inhibition of colonic aberrant crypt 

foci (ACF), preneoplastic lesions of colon cancer, by dietary curcumin.  Curcumin 

effectively reduced the number of colonic ACF in young and old rats whereas no 

reduction of ACF was found in middle-aged rats.  This resistance of middle-aged 

animals to curcumin chemopreventive activity was confirmed in an ACF study with 

only middle-aged rats.  It is important to find potential mechanisms responsible for 
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the resistance of curcumin chemoprevention in middle-aged animals, as it is middle to 

older individuals who are targeted in human clinical trials.   

One consideration was that the age-related difference in curcumin absorption 

and metabolism might contribute to this finding.  However, age did not alter the 

biological activity of curcumin in the liver or serum, which likely reflects absorption 

and metabolism of curcumin in vivo.   

Next, arachidonic acid metabolism was explored as a potential mechanism 

responsible for the resistance of middle-aged rats to curcumin chemoprevention.  It 

has been strongly believed that inhibition of cyclooxygenase-2 (COX-2) is an 

important colonic chemopreventive mechanism as seen in many studies investigating 

the relationship of non-steroidal anti-inflammatory drugs (NSAIDs) with colon cancer 

risk.  However, in this study, curcumin, which is known to inhibit cyclooxygenase 

(COX) activity, increased rather than decreased transcriptional expression levels of 

COX-2 in the colon of both young and middle-aged rats after treatment of 

azoxymethane (AOM), a colon carcinogen in preclinical animal models.  Moreover, 

in young rats, the increase of COX-2 mRNA expression in the curcumin diet group 

consequently increased prostaglandin E2 levels which reflect COX activity in vivo.  

This unexpected result leads to a reexamination of previous literature investigating the 

relationship between colorectal cancer risk and the use of NSAIDs or colonic COX-2 
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expression.  First, it was not evident that COX-2 expression is elevated in the early 

stage of colon cancer.  It seems that COX-2 expression is enhanced during 

progression of carcinogenesis.  Secondly, COX-2 expression is physiologically 

required and has a compensatory role with COX-1 in maintaining prostaglandin levels 

for integrity of the gastrointestinal mucosa.  No reports were found in the literature 

describing how AOM acutely affects expression of COX isoforms.  

Interestingly, the acute time course study demonstrated that AOM did not 

affect the colonic mRNA levels of COX-2 but reduced colonic COX-1 mRNA 

expression in all age groups.  These results suggest that curcumin may increase 

COX-2 mRNA expression in response to reduced levels of COX-1 mRNA levels in 

the colon.  This finding may be physiologically important, as deleterious side effect 

of NSAIDs due to inhibition of both COX-1 and COX-2 has long been a concern with 

their use in chemoprevention.  

Apoptosis, programmed cell death, plays a critical role in removing damaged 

cells upon exposure to carcinogens.  Apoptosis might be a relevant mechanism to 

prevent initiation of colon cancer.  Moreover, deregulation of apoptosis seems to 

contribute to the aging process.  However, the means by which regulation of 

apoptosis contributes to aging in mitotic tissues is largely unknown although in post-

mitotic tissues, it was suggested that increased susceptibility to apoptotic stimuli in 
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older individuals may be responsible for tissue dysfunction and aging phenotype.  

Therefore, a time course study of the apoptotic incidence in the colon following AOM 

injections in the three age groups was conducted.  There were no significant age-

related differences in either basal levels of apoptosis or a peak time of apoptotic 

incidence after carcinogen treatment.  However, the peak apoptotic incidence was 

significantly higher in middle-aged and old rats compared to young rats.  Therefore, 

older animals were more susceptible to AOM-induced apoptosis.  One may have 

speculated that older animals would be more resistant to apoptosis compared to young 

animals, as cancer incidence increases with age, suggesting the aged are more 

susceptible to cancers.  In fact, fewer colonic ACF were observed in older rats.  The 

increased response of old animals to apoptotic stimuli might be beneficial in 

preventing cancer in the short term.  However, in the long term, high incidence of 

apoptosis might cause loss of constituent cells and an increase of cell proliferation, 

increasing the likelihood of fixation of the mutation.  If individuals susceptible to 

apoptosis are subjected to repeated exposure to carcinogens, this long-term effect of 

high incidence of apoptosis may be significant.  

Lastly, the effect of aging on curcumin-induced apoptosis in the colons of 

AOM-treated and untreated rats was investigated.  Curcumin increased both basal 

and AOM-induced apoptosis in young and old but not in middle-aged rats.  
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Therefore, induction of curcumin-induced apoptosis immediately after carcinogen 

treatment correlated with the observation of the differential chemopreventive effect of 

curcumin in different aged rats.   

Transcriptional induction of Hsp70 by AOM was investigated.  However, 

clear evidence that Hsp 70 had a regulatory role in induction of apoptosis by AOM 

and/or curcumin was not found.  The family of proteins Bcl-2, IAP, and Hsp are 

among proteins that have a regulatory role in the induction of apoptosis.  There are at 

least two apoptotic pathways and many different proteins that regulate apoptosis.    

The mitochondrial-dependent pathway appears to mediate the curcumin-induced 

apoptosis in young rats as caspase-9 was activated in young.  However, caspase-9 

was not activated by curcumin in old rats.  AOM did not affect the activation of 

caspase-9 either in any age group.  Therefore, a mitochondrial-independent pathway 

might be responsible for AOM-induced apoptosis and curcumin-induced apoptosis in 

old rats.   

In conclusion, the studies in this dissertation provide evidence that aging 

modulates colonic chemopreventive activity of curcumin.  This is the first report 

demonstrating the effect of aging in dietary chemoprevention.  This age-related 

difference in chemoprevention efficacy seems to be due to a differential response to 

curcumin in the induction of apoptosis in different aged rats.  Responsible pathways 
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and proteins in curcumin-induced apoptosis should be further investigated.  Also, 

further study is needed to confirm whether this phenomenon of age-related differences 

in response to dietary chemoprevention occurs in humans and may contribute to the 

lack of agreement between preclinical studies in young animals and clinical studies 

with adult humans.  The relationship of high susceptibility to apoptosis in older 

animals with high incidence of cancer should be also further investigated. 
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Appendices 

 

Appendix 1. Unscheduled Sacrifices in Study 1. 

Animal 

number 

Age Diet Date necropsied Reason 

17 Middle-  

aged 

CUR 11/31/01 Sacrifice delayed to make up time of delayed 

weight recovery following the first AOM 

injection. 

35 Old AIN 10/10/01 Early sacrifice for ethical reasons, deteriorating 

condition; Not included in incidence tables 

because no tissues were collected for 

histological evaluation except colon.  

27 Old CUR 10/30/01 Found dead; Not included in incidence tables 

because of moderate autolysis in all tissues. 

33 Old AIN 11/04/01 Early sacrifice for ethical reasons, deteriorating 

condition. 

31 Old AIN 11/31/01 Sacrifice delayed to make up time of delayed 

weight recovery following the first AOM 

injection. 

25 Old CUR 11/16/01 Early sacrifice for ethical reasons, 12 cm 

subcutaneous mass.  

40 Old CUR 11/29/01 Sacrifice delayed to make up time of delayed 

weight recovery following the first AOM 

injection. 

39 Old CUR 11/29/01 Sacrifice delayed to make up time of delayed 

weight recovery following the first AOM 

injection. 
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Appendix 2. Incidence of animals in Study 1 with macroscopic changes observed at necropsy. 

Age group Young Middle-aged Old 

Diet group AIN CUR AIN CUR AIN CUR 

Tissue/ Macroscopic 

observation 

      

LUNG       

Mass, white, raised     1/8 (30)  

Consolidated, dark red     1/8 (275)  

       

HEART       

Small     1/8 (37)  

       

SPLEEN       

Mass, white, raised     2/8 

(30,332) 

 

Enlarged     2/8 (275, 

332) 

2/8 (253, 

394) 

       

KIDNEY       

Discoloration, green    1/6 (17) 1/8 (31) 1/8 (404) 

Enlarged, bilateral     1/8 (31) 1/8 (404) 

Surface, granular, rough     2/8 (275, 

332) 

 

       

LIVER       

Nodule, raised, medial 

lobe 

  1/6 (19) 1/6 (16)  3/8  

(34, 394, 

253) 

Surface, granular, rough     3/8  

(36, 275, 

332) 

 

Cyst, clear     1/8 (332)  

Focus, white     1/8 (332)  
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Cont.: Appendix 2.   

THYROID       

Enlarged     2/8 (31, 

37) 

 

Small     1/8 (37) 1/8 (332)  

Discolored, dark red     1/8 (31)  

       

ADRENAL GLAND       

Mass, dark gray     1/8 (38) 1/8 (404) 

       

STOMACH       

Area, depressed, 

glandular mucosa 

    1/8 (275) 1/8 (29) 

       

COLON       

Raised lesion 1/6 (10) 3/6 (1, 4, 

12) 

2/6 (15, 

21) 

3/6 (17, 

22, 23) 

1/8 (36) 2/8   

(32, 28) 

Percent affected 17% 50% 33% 50% 12.5% 25% 

Discoloration, red 1/6 (11)   1/6 (18)   

TESTICLES       

Mass, gray-yellow     4/8 (30, 

31, 36, 

37) 

5/8 (26, 

29, 34, 

394, 404) 

Kryptorchism, bilateral      1/8 (394) 

       

       

PITUITARY GLAND       

Enlarged   1/6 (24)   1/8 (394) 

Discolored, red   1/6 (24)  1/8 (31)  

       

SKIN       

Mass, firm, white gray, 

subcutaneous 

     1/8 (253) 
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MUSCULATURE       

Discoloration, dark red, 

pelvic 

     1/8 (28) 

Discoloration, dark red, 

peri-ocular 

    1/8 (275)  

       

EYE       

Discolored, red    1/6 (16) 2/8 (275, 

332) 

 

       

THORACIC CAVITY       

Hemothorax     1/8 (332)  

       

GENERAL BODY 

CONDITION 

      

Thin     1/8 (332)  

       

Total 2 3 4 7 30 20 

All animals were necropsied 11/27-28/01 with the exception of animals assigned upper case numbers:        
2Necropsied 11/4/01, 3 Necropsied 11/16/01, 4 Necropsied 11/29/01, 5 Found dead 10/30/01 
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Appendix 3. Incidence of animals in Study 1 with severity of common pathological age associated 
changes.  

Age group Young Middle-aged Old 

Diet group AIN CUR AIN CUR AIN CUR 

LUNG       

Infiltrate 

lymphoplasmocytic 

6/6 5/6 5/6 6/6 6/6 8/8 

Percent affected/   

Mean Severity 

100% / 

1.8 

83% /  

1.6 

83% / 

2.0 

100% / 

2.3 

100% / 

1.5 

100% / 

1.8 

Microgranuloma 3/6 5/6 3/6 4/6 3/6 5/8 

Percent affected/   

Mean Severity 

50% /  

1.3 

83% /  

1.4 

50% /  

1.7 

67% /  

1.5 

50% /  

2.3 

63% /  

2.2 

       

HEART       

Chronic 

Cardiomyopathy (CCM) 

5/6 6/6 6/6 6/6 6/6 8/8 

Percent affected/   

Mean Severity 

83% /  

1.0 

100% / 

1.5 

100% / 

1.5 

100% / 

1.5 

100% / 

2.7 

100% / 

2.6  

       

AORTA / LG. VESSELS 

/ HEART VALVES 

      

Myxomatous 

degeneration 

3/6 6/6 5/6 5/6 4/6 7/8 

Percent affected/   

Mean Severity 

50% /  

1.3 

100% / 

1.5 

83% /  

1.8 

83% /  

2.0 

67% /  

1.8 

88% /  

1.4 

       

KIDNEY       

Chronic Progressive 

Nephropathy (CPN) 

6/6 6/6 6/6 6/6 6/6 8/8 

Percent affected/   

Mean Severity 

100% / 

1.2 

100% / 

1.0 

100% / 

2.3 

100% / 

2.0 

100% / 

3.0 

100% / 

2.9 
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LIVER       

Microgranuloma 0/6 1/6 0/6 2/6 2/6 3/6 

Percent affected/   

Mean Severity 

0% /    

0 

17% /   

1.0 

0% /    

0 

33% /   

1.0 

33% /  

1.0 

38% /  

1.7 

Inflammation with 

necrosis 

2/6 1/6 4/6 2/6 1/6 3/6 

Percent affected/   

Mean Severity 

33% /   

1.0 

17% /  

1.0 

67% /  

1.8 

33% /  

1.5 

17% /  

1.0 

38% /  

2.0 

Infiltrate 

lymphoplasmocytic 

1/6 0/6 1/6 2/6 5/6 3/8 

Percent affected/   

Mean Severity 

17% /  

1.0 

0% /    

0 

17% /  

2.0 

33% /  

1.0 

83% /  

2.0 

38% /  

1.7 

Hyperplasia, biliary 0/0 0/0 6/6 6/6 5/6 8/8 

Percent affected/   

Mean Severity 

0% / 

0 

0% /  

0 

100% / 

2.5 

100% / 

1.7 

83% /  

2.6 

100% / 

2.5 

Vacuolation, 

hepatocellular 

3/6 3/6 6/6 4/6 5/6 7/8 

Percent affected/   

Mean Severity 

50% /  

1.0 

50% /  

1.7 

100% / 

2.8 

67% /  

1.5 

83% /  

2.2 

88% /  

1.3 

Spongiosis hepatis 

(cystic degeneration) 

6/6 6/6 6/6 6/6 6/6 8/8 

Percent affected/   

Mean Severity 

100% / 

1.2 

100% / 

1.3 

100% / 

2.5 

100% / 

2.2 

100% / 

3.2 

100% / 

2.8 

Hyperplasia, nodular 0/6 0/6 0/6 1/6 0/6 2/8 

Percent affected/   

Mean Severity 

0% /    

0 

0% /    

0 

0% /    

0 

17% /   

3.0 

0% /    

0 

25% /  

1.5 

Hyperplasia, diffuse 1/6 0/6 1/6 1/6 3/6 3/8 

Percent affected/   

Mean Severity 

17% /   

2.0 

0%/      

0 

17%  / 

2.0 

17% /  

2.0 

50% /  

2.3 

38% /  

2.3 

Alteration, cellular, 

focal, eosinophilic 

0/0 0/0 0/0 0/0 1/6 3/8 

Percent affected/   

Mean Severity 

0% /    

0 

0% /    

0 

0% /    

0 

0% /    

0 

17% /   

3.0 

38% /   

2.7 

Alteration, cellular, 

focal, basophilic 

0/0 0/0 0/0 0/0 2/6 3/8 

Percent affected/   

Mean Severity 

0% /    

0 

0% /    

0 

0% /    

0 

0% /    

0 

33% /   

2.0 

38% /  

2.3 
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MESENTERIC LYMPH 

NODE 

      

Accumulation of 

macrophages 

2/6 2/6 6/6 4/6 4/6 7/8 

Percent affected/   

Mean Severity 

33% / 

1.0 

33% /  

1.5 

100% / 

2.5 

67% /  

1.8 

67% /  

2.8 

88% /  

2.9 

       

THYROID       

Hyperplasia, C-cell 4/6 1/6 3/6 1/6 5/6 4/8 

Percent affected/   

Mean Severity 

67% /  

1.5 

17% /  

1.0 

50% /  

1.7 

17% /  

1.0 

83% /  

1.6 

50% /  

2.5 

       

ADRENAL GLAND       

Vacuolation, Zona 

fasciculata 

0/6 0/6 0/6 2/6 2/6 3/8 

Percent affected/   

Mean Severity 

0% /    

0 

0% /    

0 

0% /    

0 

33% /   

1.5 

33% /  

1.0 

38% /  

2.0 

       

STOMACH       

Infiltrate 

lymphoplasmocytic 

0/6 4/6 0/6 2/6 1/6 4/8 

Percent affected/   

Mean Severity 

0% /    

0 

67% /  

1.3 

0% /    

0 

33% /  

1.0 

17% /  

1.0 

50% /  

1.3 

Dilation, glandular 0/6 1/6 2/6 3/6 6/6 5/8 

Percent affected/   

Mean Severity 

0% /    

0 

17% /   

1.0 

33% /  

1.5 

50% /  

1.0 

100% / 

1.7 

63% /  

2.2 

       

DUODENUM       

Infiltrate 

lymphoplasmocytic 

0/6 1/6 1/6 1/6 1/6 3/8 

Percent affected/   

Mean Severity 

0% /    

0 

17% /   

1.0 

17% /   

2.0 

17% /  

1.0 

17% /  

1.0 

38% /  

1.3 

Vacuolation, villi, 

lamina propria 

3/6 1/6 2/6 0/6 1/6 0/8 

Percent affected/   

Mean Severity 

50% /  

2.7 

17% /  

2.0 

33% /  

1.5 

0% /    

0 

17% /  

3.0 

0% /    

0 
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PANCREAS       

Atrophy, acinar cells 1/6 3/6 2/6 1/6 2/6 3/8 

Percent affected/   

Mean Severity 

17% /  

1.0 

50% /  

1.7 

33% /  

2.0 

17% /  

1.0 

33% /  

1.5 

38% /  

1.3 

       

JEJUNUM       

Vacuolation, villi, 

lamina propria 

1/6 1/6 2/6 1/6 0/6 1/8 

Percent affected/   

Mean Severity 

17% /  

1.0 

17% /  

1.0 

33% / 

2.5 

17% / 

2.0 

0% / 

0 

12.5% / 

2.0 

ILEUM       

Vacuolation, villi, 

lamina propria 

3/6 1/6 1/6 0/6 0/6 0/8 

Percent affected/   

Mean Severity 

50% /  

2.3 

17% /  

1.0 

17 % /   

0 

0% /    

0 

0% /    

0 

0% /    

0 

       

SMALL INTESTINES       

Vacuolation, epithelial, 

villi and lamina propria 

5/6 2/6 4/6 1/6 1/6 1/8 

Percent affected/   

Mean Severity 

83%/   

2 

33%/   

1.9 

68%/   

2 

17%/   

2 

17%/   

3 

12.5%/   

2 

       

COLON 6/6 6/6 6/6 6/6 6/6 7/8 

Crypt drop out       

Percent affected/   

Mean Severity 

100% / 

2.7 

100% / 

2.0 

100% / 

2.2 

100% / 

2.2 

100% / 

2.0 

88% /  

2.3 

Inflammation, 

interstitial, focal 

6/6 6/6 6/6 5/6 6/6 8/8 

Percent affected/   

Mean Severity 

100% / 

1.3 

100% / 

1.2 

100% / 

1.5 

83% /  

1.6 

100% / 

1.2 

100% / 

1.5 

Infiltrat, 

lymphoplasmocytic, 

lamina propria 

2/6 5/6 5/6 6/6 5/6 8/8 

Percent affected/   

Mean Severity 

33% /  

1.5 

83% /  

1.4 

83% /  

1.4 

100% / 

1.5 

83% /  

1.8 

100% / 

1.6 
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Cont.: Appendix 3.  

TESTES       

Hyperplasia, interstitial 

cell 

2/6 0/6 5/6 5/6 6/6 6/8 

Percent affected/   

Mean Severity 

33% /  

1.0 

0% /    

0 

83% /  

1.6 

83% /  

1.8 

100% / 

1.8 

75% /  

2.7 

       

EPIDIDYMIS       

Vacuolation, epithelial, 

basophilic, cytoplasmic 

0/6 1/6 4/6 1/6 3/5 5/8 

Percent affected/   

Mean Severity 

0% /    

0 

17% /   

2.0 

67% /   

1.8 

17% /  

2.0 

60% /  

2.7 

63% /  

2.0 

       

PROSTRATE GLAND       

Inflammation 5/6 4/6 6/6 3/6 4/5 7/7 

Percent affected/   

Mean Severity 

83% /  

2.2 

67% /  

2.3 

100% / 

1.8 

50% /  

3.0 

80% /  

2.8 

100% / 

2.7 

Hyperplasia, epithelial 5/6 5/6 6/6 3/6 4/5 6/7 

Percent affected/   

Mean Severity 

83% /  

1.6 

83% /  

2.0 

100% / 

2.0 

50% /  

2.0 

80% /  

1.5 

86% /  

2.2 

       

SEMINAL VESICLE       

Hyperplasia, epithelial 5/6 2/6 2/6 2/6 3/5 4/7 

Percent affected/   

Mean Severity 

83% /  

2.0 

33% /  

1.5 

33% /  

2.0 

33% /  

2.0 

60% /  

2.3 

57% /  

2.5 

       

COAGULATING 

GLAND 

      

Hyperplasia, epithelial 4/6 4/6 4/6 3/6 3/5 4/7 

Percent affected/   

Mean Severity 

67% /  

1.5 

67% /  

2.0 

67% /  

1.8 

50% /  

1.3 

60% /  

2.3 

57% /  

2.3 
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Cont.: Appendix 3.  

POLYARTERITIS 

NODOSA  

Affecting multiple 

organs 

      

Stomach      1/8 

Percent affected/   

Mean Severity 

     13% /  

2.0 

Pancreas   1/6    

Percent affected/Mean 

Severity 

  17% /  

3.0 

   

Testis     1/6  

Percent affected/Mean 

Severity 

    17% /  

2.0 
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Appendix 4. Incidence of animals in Study 1 with severity of small intestinal lamina propria 
vacuolation. 

Age group Young Middle-aged Old 

Diet group AIN CUR AIN CUR AIN CUR 

Small intestines       

Vacuolation, villi, 

lamina propria 

5/6 2/6 4/6 1/6 1/6 1/8 

Percent affected/   

Mean Severity 

83% /   

2 

33% /  

1.9 

68% /   

2 

17% /   

2 

17% /   

3 

12.5% /   

2 
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Appendix 5. Incidence of animals in Study 1 with severity of hepatocellular hyperplasia 
(nodular and diffuse) and altered hepatocellular foci. 

Age group Young Middle-aged Old 

Diet group AIN CUR AIN CUR AIN CUR 

Liver       

Hyperplasia, 

hepatocellular 

1/6 0/6 1/6 1/6 3/6 5/8 

Percent affected/   

Mean Severity 

17% /   

2 

0% /    

0 

17% /   

2 

17% /   

3 

50% /   

2.3 

63% /   

2 

Alteration, 

hepatocellular, focal 

0/6 0/6 0/6 0/6 2/6 5/8 

Percent affected/   

Mean Severity 

0% /    

0 

0% /    

0 

0% /    

0 

0% /    

0 

33% / 

2.25 

63% /  

2.2 
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Appendix 6. Incidence of animals in Study 1 with neoplastic lesions.  

Age group Young Middle-aged Old 

Diet group AIN CUR AIN CUR AIN CUR 

Lung       

Carcinoma 0/6 0/6 0/6 0/6 1/6 0/8 

Percent affected 0% 0% 0% 0% 17% 0% 

Hemo- lymphocytic system        

Lymphoma 0/6 0/6 0/6 0/6 1/6 0/8 

Percent affected 0% 0% 0% 0% 17% 0% 

Spleen       

Histiocytic Sarcoma 0/6 0/6 0/6 0/6 1/6 0/8 

Percent affected 0% 0% 0% 0% 17% 0% 

Thyroid Glands       

Adenoma 0/6 0/6 0/6 0/6 0/6 4/8 

Percent affected 0% 0% 0% 0% 0% 50% 

C-cell Carcinoma 0/6 0/6 0/6 0/6 2/6 0/8 

Percent affected 0% 0% 0% 0% 33% 0% 

Adrenal Glands       

Pheocromocytoma 0/6 0/6 0/6 0/6 1/6 0/8 

Percent affected 0% 0% 0% 0% 17% 0% 

Adenoma, Zona reticularis 0/6 0/6 0/6 0/6 1/6 0/8 

Percent affected 0% 0% 0% 0% 17% 0% 

Pancreas       

Adenoma, islet cell 0/6 0/6 0/6 0/6 1/6 0/8 

Percent affected 0% 0% 0% 0% 17% 0% 

Testes       

Adenoma, interstitial cell 0/6 0/6 0/6 0/6 5/6 6/8 

Percent affected 0% 0% 0% 0% 83% 75% 

Pituitary Gland       

Adenoma, pars distalis 0/6 0/6 1/6 0/6 2/6 1/8 

Percent affected 0% 0% 17% 0% 33% 12.5% 

Skin       

Fibroadenoma 0/6 0/6 0/6 0/6 1/6 0/8 

Percent affected 0% 0% 0% 0% 17% 0% 

Total 0 0 1 0 16 11 
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