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ity Markets, develops a refinement of the equilibrium electricity pricing model in
Bessembinder and Lemmon (2002). The refined model explicitly accounts for con-
strained [capacity, an important feature in electricity markets. Explicitly including
a role for capacity allows the model to reproduce the price spikes observed in whole-
sale electricity markets. The refined model implies that the equilibrium forward
premium, defined to be the forward price minus the expected spot price, is de-
creasing in spot price variance when the expected spot electricity price is low, but
is increasing in the spot price variance when the expected spot electricity price is
high. Further, the refined model implies that, ceteris paribus, the equilibrium for-
ward premium is increasing in the ratio of the expected spot electricity price to the
fixed retail price. The implications of this model are closer to reality.

How does currency return volatility evolve over time and what are the prop-
erties of volatility dynamics? Is the drift of currency return volatility non-linear?

What forms of non-linearities are admitted in the drift and diffusion functions? The



purpose of essay 2, Estimation of Continuous-Time Models for Foreign Exchange
Volatility, is to estimate a large class of volatility processes and explore these issues
using weekly data on two currency pairs: U.S. dollar-British pound and Japanese
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Based on volatility implied by icurrency options, the constant elasticity of vari-
ance specification provides a reasonable characterization of the variance of variance
function. Extending the diffusion function beyond the CEV specification does not
improve the fit of the model, regardless of the assumed form of the drift function.
Further, I find that certain types of non-linearities in the drift function improve the

goodness of fit statistics, though no generalizations can be made.
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Chapter 1

Constrained Capacity and Equilibrium Forward Premia in
Electricity Markets

1.1 Introduction

Electricity prices are known to exhibit price spikes - episodes in which the price
can grow (o 30-40 times the mean price level, followed by a relatively quick (on the
order of days, or even hours) return to normal price levels.! The main reason for
such behavior in electricity prices is the fact that electricity cannot be stored in any
meaningful way. Supply and demand must balance in real-time. There can be no
inventory to smooth supply and /or demand shocks. Hence, the available supply of
electricity (the available system capacity) must exceed the demand at all times in
order to avoid a blackout.

In an important article, Bessembinder and Lemmon (2002, hereafter BL) de-

velop an equilibrium model of electricity forward pricing and hedging. In their

1One seemingly counterintuitive aspect of electricity markets is that the price of electricity can
be negative. Unlike traditional markets, the economic assumption of free disposal does not apply
to the case of electricity. The reason for this has to do with the physical properties of power
plants. Large nuclecar and coal-fired plants cannot be easily shut down and restarted. A nuclear
power plant that has been shut down cannot be restarted for a week or more, and then only at
a significant cost. Thus it may be cheaper for the owner of electricity to pay others to take the

output than to turn off their machines.



model, the spot price of electricity is determined by the level of demand and by the
convexity of the supply curve. BL define the forward premium to be the difference
between (i) the time ¢t = 0 forward price for electricity to be delivered at time ¢ = 1,
and (ii) the time ¢t = 0 expectation of the spot price that will prevail at time ¢ = 1.
BL then derive an expression for the equilibrium forward premium in ferms of the

moments of the expected spot electricity price.

This paper makes two contributions to the theory of electricity markets and
our understanding of how risk premiums are determined in constrained capacity and
zero inventory markets. First, T propose a refinement to the BL. model to account
explicitly for constrained capacity, a fact in electricity markets. In the refined model,
the relevant quantity in determining the spot price of electricity is not the absolute
level of demand, but the level of available supply in excess of demand. The refined
model is designed so that it retains the tractability and ease of interpretation of the
original BL. model, but is better able to replicate the spikes seen in electricity spot
and forward prices.

Second, in the presence of constrained capacity, I formally show that the for-
ward premium depends on fthe level of the retail electricity price relative to the
expected spot price. BL argue that the fixed retail price of electricity must exceed
the expected wholesale (spot) price of electricity. While it is generally true that the
long-term average wholesale price is less than the retail price, in the short term it
can and does happen that expected spot price of electricity is greater than the retail
price of electricity. This feature of electricity markets has important implications for

the equilibrium forward premium, which the extant literature has not fully explored



theoretically or empirically.

My main results are as follows. First, the equilibrium forward premium is
decreasing in the variance of the spot price when the expected spot price is less
than the fixed retail price. However, the premium is increasing in the variance of the
spot price when the expected spot price exceeds the retail price. This relationship
between the forward premium and the spot price variance reflects retailers’ net
hedging demands. High spot prices tend to occur in periods of high demand, so
retail sales and the spot price are positively correlated. When the spot price is less
than the retail price, retailers’ profits are positively related to the spot price. In
this case, retailers reduce forward purchases, thereby driving down the forward price.
However, when the spot price exceeds the retail price, retailers’ profits are negatively
related to the spot price. In this case, retailers increase forward purchases to cap the
price they must pay to meet their demand. and thereby smooth their profit stream.
In either case, the effect increases with the variance of the spot price.

Second, while the original BL model predicts that the optimal forward pre-
mium is uniformly increasing in the skewness of the spot price, the refined model
predicts that the premium increases in the skewness of the spot price for most levels
of the expected spot price, but can decrease in spot price skewness for very high
expected spot prices.

Third, the optimal forward purchase for a retailer of electricity increases in the
ratio of the expected spot price bf electricity to the retail price of electricity, even if
the variance and skewness of the spot price are unchanged. Retailers are assumed to

be mean-variance profit optimizers. The profits of electricity retailers become more



variable as the expected spot price increases relative to the retail price. As the spot
price increases relative to the retail price, retailers optimally would like to increase
forward purchases to counteract the increase in the variance of their profit.
Fourth, ceteris paribus, the equilibrium forward premium increases in the ra-
tio of the expected spot price of electricity fo the retail price of electricity. While

the optimal forward purchase for a retailer of electricity increases in the expected

spot price-retail price ratio, producers are not directly exposed to the retail price
of electricity. As the expected spot price increases relative to the retail price, re-
tailers want to increase forward purchases to counteract the corresponding increase
in the variability of their profit stream. However, producers’ hedging demands are
unchanged as long as the moments of the spot price are unchanged. The equilibrium
forward premium must therefore increase.

This article proceeds as follows. Section II briefly presents the modeling
paradigm adopted in Bessembinder and Lemmon (2002). Section III introduces
the refined model and discusses the determinants of forward premia in the pres-
ence of constrained capacity. Section IV first briefly reviews the daily data for the
Pennsylvania-New Jersey-Maryland (PJM) electricity market and aims to clarify the
main empirical features driving the modeling approach using a simple three-state,
discrete version of the model. The discrete model requires no approximations. Sec-
tion V presents numerical simulation evidence designed to enable comparisons with
the simulations in the BL paper. Section VI concludes and summarizes the contri-

butions.



1.2 The Bessembinder and Lemmon (2002) Model

I begin with a brief discussion of the equilibrium electricity pricing model
in Bessembinder and Lemmon (2002). BL first assume the wholesale market for
electricity consists of Np + Ng total participants, who can be divided into two types
- (1) Np producers, i.e., owners of electric generating capacity, and (2) Ng retailers,
i.e., firms that supply electricity to retail consumers. Their notation is followed as
closely as possible.

Both producers and retailers are assumed to be mean-variance profit opti-
mizers. Specifically, the utility function UJ.] for producers and retailers takes the
form,

Ulr] = E(7) — ?Var(ﬂ) (1.1)

where m is profit and E(.) is the expectation operator. Both producers and retailers
share the same dislike coefficient, A € RT, on the variance term in the utility
function, and R is the real line.

There are two times in the model, t = 0 and t = 1. At ¢ = 0, producers and
retailers of electricity may enter into forward contracts. At ¢ = 1, (random) demand
Q) r; lis realized for each retailer j = 1, Ng. Demand is the fundamental uncertainty
driving the model and is exogenous. Most retail consumers face a fixed retail price,
thus demand is unaffected by the wholesale price, at least to first-order.

Retailers can meet their ¢ = 1 demand either by (i) purchasing electricity
forward at t = O for delivery at # = 1, or, (ii) waiting until ¢ = 1 and purchasing

electricity spot. Adopt the convention that the spot and forward sales are positive



and purchases are negative. For fexample, if retailer j elects to sell forward, which
he is allowed to do, then ng > 0. If the amount purchased forward by retailer j,
ng < 0 is insufficient to meet retailer j’s demand, then retailer j must make up the
difference by purchasing electricity in the spot market in the amount (Qg; + ng).
Importantly, neither producers nor retailers may accumulate inventory. This means

that at £ = 1 supply and demand must balance and this restriction is binding.

BL assume that the total cost for producer 7 to produce electricity is given by
a C
TC;, = F+ p (Qpi)°, (1.2)

where F' > 0 are fixed costs, () p; = output of producer 7, and ¢ > 2. The coefficient
ac R,

Begin at + = 1. The forward positions of each producer i, QF., and each
retailer j, ng./ are thus known. It is straightforward to show that the optimal

wholesale spot sales for producer i, Q%., is:

ot - (M) s (13)

a

and the equilibrium wholesale spot price, Py, are given by,

D\ (1)
where
Ng
QY = > Qr (1.5)

is the total system retail demand.



Given the optimal spot sales, one can move back to time ¢ = 0 and determine

the optimal forward positions for producer 1,

R RO

a

and retailer j as,

@2;- _ l <PF — E(Pw)> PR COV(QR]',PV[/) _ COV(QR]'PV[/,PV[/)’ (17)

A\ Var(Py) Var(Py ) Var(Py)

where Ppg is the (fixed) retail price.
Using the fact that forward contracts are in net zero supply, defining N =
(Np + Ng)/A, and defining # = L, BL finally arrive at an expression for the

forward premium, their equation (12)

5

~N
Pr — E(Py) = - afc ¢ Prcov(Pyy, Pw) — cov(PyH, Pw)] . (1.8)

As BL explain, the forward price converges to the expected spot price if (i) the
number of firms approaches infinity (Np+Ngr — 00), or (ii) the firms are risk neutral
(A =0). In either case, N — oc and the right hand side of equation (1.8) goes to 0.
Otherwise, the two covariance terms capture the hedging demands of producers and
retailers. In their words (p.1358), “The forward price will be less than the expected

spot price if the first term in brackets, which reflects retail revenue risk, is greater

than the second term, which reflects production cost risk.”

1.3  Accounting for Constrained Capacity in Electricity Markets

In this section I develop a refinement of the BL model that (i) explicitly ac-
counts for constrained capacity, and (ii) is better able to produce price spikes than

7



the BL model. The refined model allows me to derive the equilibrium spot price,
the optimal spot and forward positions for producer ¢, and ultimately the equilib-
rium forward premium, Pr — E(Py). Derivations can be found in the Appendix.
The section begins with a discussion of the characteristics of the supply curve in

electricity markets, also known as the supply stack.

1.3.1 The Supply Stack

The production cost function assumed in the BL model, equation (1.2), cap-
tures one of the main features of electricity markets, supply curve convexity (recall
that, in equation (1.2), ¢ > 2), but it does not model explicitly the available supply
of electricity. Because there can be no inventory, the spot price of electricity is
determined not just by the level of demand, but also by the total amount of sup-
ply (electric generating capacity) available to meet that demand in real-time. On
any given day, various power plants are unavailable due to scheduled maintenance
and /or unscheduled, forced outages. Thus, not only does peak demand vary from
day to day, but supply also has variations. For instance, suppose that on Tuesday,
all the electric generating units in the system are available, while on Wednesday
some fraction of the generating units are out of service, effectively shifting the sup-
ply curve to the left. Even if demand is the same on both days, it will be the case
that the spot price is higher on Wednesday.

To focus on the defining characteristics of supply versus demand, Tables

1.1 and 1.22 present data for the Pennsylvania-New Jersey-Maryland (hereafter



PJM) market for the June 2000 through March 2003 time period, available at
www.pjm.com. We refer the reader to Longstaff and Wang (2004) for a discus-
sion of the PJM electricity market. All the data have units of Megawatts (MW).
Table 1.1 displays summary statistics for available supply, i.e., capacity while Table
1.2 displays summary statistics for demand. From Table 1.1 it is clear that capacity
varies from day-to-day, though the variation is much smaller than the variation in
demand.

The supply curve in electricity markets, also known as the supply stack, results
from the stacking of power plants in order from least expensive to most expensive.
The least expensive ‘baseload’ units include hydroelectric, nuclear, and coal-fired
plants. At the top of the supply stack are natural gas-fired ‘peaking’ units. These
peaking units are much more flexible than baseload units - they can be started and
stopped on short notice - but they are more expensive to operate. As a result, the
supply stack looks nearly like a step function - it is relatively flat as long as demand
does not exceed the capacity of baseload units, then it increases dramatically when
demand is such that peaking units are needed. See, for example, Figure 1.2 in

Eydeland and Wolyniec, 2003.

1.3.2 Production Cost Function

Motivated by the previous subsection where supply considerations play an
important role, I propose a refinement to the BL. model that formalizes the impact

of available supply on risk premia and prices. In my model, the determinant of total



cost is not just the demand, but the available supply minus demand. Consider the

following production cost function for producer 7 that captures this feature,

a 1 ¢
F (et ) Mo Qeo (1.9
where F; = fixed costs, Hp; = capacity (or available supply) of producer 7, and, as

before, Qp; = output of producer 7. In the production function, assume a € R
and ¢ € R*. Thus, the presence of capacity makes the production cost function
hyperbolic in Q)p; as opposed to a power function in Bessimbinder and Lemmon
(2002).

The benefit of this production cost function is that it ensures that, as de-
mand approaches available supply, the spot price generated by the model increases

dramatically. This fact is articulated further in the following subsection.

1.3.3 Optimal Producer Spot Sales and the Equilibrium Spot Price

Begin at t = 1 taking the optimal forward positions for producer i, Q%,, and

retailer j, ng./ as given. The ex-post profit for producer i is given by

o F w_ o @ 1 ‘
mpi = PpQp+PwQp —F C<Hpi—Q%—Q£i> , (1.10)

where Pr is the forward price, Py is the wholesale spot price, and (as before) Q%
is the spot sale for producer 7. Notice that the output of producer i, (Jp;, has been
replaced by the sum of producer 7’s spot and forward sales, Q% +QF.. Via the steps

of the proof in the Appendix, it can be seen that the optimal spot sale for producer
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1

W 7 a \ e

Qp; = HPi_QPi_ZPj o (1.11)
w

Producer spot sales are increasing in the spot price, Py, as expected.

Defining lthe total system supply as

Np
o° = Y Hp, (1.12)

i=1
and using the fact that supply and demand must balance, the equilibrium spot price

is given by

c+1
Pw—a (HSNfPQJ | (1.13)

The equilibrium spot price increases in total system demand QP and decreases in
total system capacity H°. At first glance it appears that an increase in producers
Np would increase the spot price. This is not the case, however, as a new supplier
brings new capacity, thereby increasing H* as well.

Equation (1.13) shows analytically that the spot price can increase dramati-
cally as demand approaches supply, i.e., as H° — QP approaches zero. In the BL
model, supply curve convexity is captured by the fact that ¢ > 2. Using daily data,
BL estimate that ¢ is approximately 4. The spot price expression that obtains in
the BL. model, equation (1.4), is unable to reproduce the tremendous increase in
spot prices that occurs as demand approaches available supply, as demonstrated in

Figure 1. Thus, having a model with constrained capacity overcomes some of the

shortcomings of the BL. model.
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Figure 1 plots the spot prices generated by the refined model, equation (1.13)

3

and the BL model, equation (1.4), as a function of the level of demand. The pa-
rameter values, discussed in detail in the simulation section below, in as much as
possible are chosen to be the same as in BI.. In particular, ¢ = 4 for the BL model,
¢ = 1.5 for the refined model, and available system supply H® = 240 MW. Figure 1
demonstrates that, when demand approaches the available supply, equation (1.13)
ensures that the spot price increases dramatically.

As discussed above, electricity spot prices reflect the nature of the supply stack
- prices are relatively constant for low levels of demand, then increase dramatically
at higher levels of demand. The refined model is able to reproduce this behavior
using reasonable parameter values.

In the BL model, each producer sells (or buys) the same amount forward. The
remainder of the realized demand is split equally amongst the producers. That is,

substituting equation (1.4) into equation (1.3) results in Q% = %

—QF,. However,
in the model with capacity each producer is characterized by the same total cost
function, but producers are allowed to have differing amounts of capacity, Hp;.

Returning to the refined model, substitute equation (1.13) into equation (1.11)

which lyields

HS—QD

Q}/sz‘ = |Hp; — ng - Np (1-14)

In this model, rather than each producer having the same spot sales, each producer
is allowed to retain the same amount of unused capacity. Each producer’s spot sales

are equal to his available time ¢ = 1 capacity net of his forward position (Hp; — Q5%,)

12



minus an equal fraction (NLP) of the system ercess capacity (H° — Q). Given the

production cost function in equation (1.9), each producer’s costs are determined by

his excess capacity. In order to equalize marginal costs, each producer in equilibrium

must retain the same excess.

1.3.4 Optimal Producer Forward Position

Stepping back to ¢ = 0, the optimal forward position for producer 7 is shown

in the Appendix to be:

o l PF—E(PW) 4 Hp: — 1 cov (P%+1’PW) (1 15)
PE A\ Var(Py) P ar(r+1) Var(Py) '

where 1z = ;_11 The optimal forward position for retailer j is unchanged from the
BL case, so that equation (1.7) above still applies.

Following BL, T use a second order Taylor series approximation to express the
producer’s optimal forward position in terms of the variance and skewness of the

spot price.

PREM HS — QP
oy HQ7

B z—1 SkGW(Pw)
AV&I‘(Pw) 4 Np 2a*

F

E (Pw) (1.16)

where PREM = Pr— E(Py). The first term on the right hand side is the well-known
optimal response to a nonzero forward premium (e.g., Anderson and Danthine, 1980
and Hirshleifer and Subramanyam, 1993).

In the absence any forward premium, and given normally distributed spot
prices, the first and last terms on the right hand side of equation (1.16) will be

zero. [n this case, each producer will sell forward all of his capacity minus an equal

13



fraction of the overall system reserve, i.e., Hp; — HS]\?PQD. Noting that z < 0, the

optimal forward position for a producer increases in spot price skewness.

1.3.5 Equilibrium Forward Premium

Using the fact that forward contracts are in net zero supply, and defining

N = (Np + Ng)/A, the forward premium is given by,

N
Pr—E(Py) = —£ PRcov(P;”V,PW)—(

T €T
Nat ]>COV(PW+1,Pw) . (1.17)

T+

Using a second-order Taylor series approximation, the forward premium can

be rewritten in terms of the anticipated variance and skewness of the spot price.

Pr— E(Py) = aVar(Py) + ~Skew(Py ), (1.18)
where

o = fV]XJZE(pW)ﬂc—l (Pn— E(Py)), and. (1.19)

1 = S BBy (z ~ 1)Pr — 2B(Pw)]. (1.20)

To get some intuition for this result, consider the expression for the coefficient
a, equation (1.19). BL argue that the retail price of electricity must exceed to
E(Pw)

expected spot price of electricity, 5y < 1, otherwise no retailer would enter

the market. (In their simulation exercises, BL set Pgr = 1.2E(Py).) In this case,
equation (1.19) implies that the forward premium decreases in anticipated spot price
variance (o < 0, recall that —1 < z < 0). BL point out that the profits of electricity

retailers are positively exposed to wholesale spot prices, because more power is

14



sold when the spot price is high. The lower is the expected spot price relative to
the retail price, the less electricity retailers purchase forward, and the lower is the
forward price. This effect is stronger the greater is the spot price variance.

When the forward contract in question is short-term, on the order of one day,

E(Pw)
Ppr

the expected spot price can and often does exceed the retail price, > 1. To see
this point, note that the retail price of electricity is on the order of $80-$100/MWh.
In the PJM market for the June 2000 through March 2003 time period, there are
201 separate occurrences of hours for which the forward price and the spot price

exceeded $100/MWh, and 10 occurrences when both prices exceeded $500/MWh.

The fforward risk premia derived in (1.20) has the following interpretation:

1. When the expected spot price exceeds the retail price then retailers’ profits
are negatively exposed to spot prices. The higher is the expected spot price
relative to the retail price, the more electricity retailers purchase forward (to

cap their losses), thereby driving up the forward price.

2. Conceptually, the forward premia effect is also stronger the greater is the spot

price variance. Thus, the sign of « is negative when the expected spot price

is less fthan the retail price, %}:V) < 1, and positive when the expected spot
price exceeds the retail price, %}:") > 1.

3. The sign of v, Sgn(y) can also change. [Equation (1.20) implies that + will

be positive, and thus the equilibrium forward premium will be increasing in

spot price skewness, if %}:V) < (¢ +2). However, the forward premium will
be decreasing in spot price skewness if %}:V) > (¢+2).

15



Table 1.3 summarizes the signs of @ and v and their possible impacts. Overall,

allowing the expected spot price to exceed the retail price offers more flexibility to

model forward premia in electricity markets.

1.4 State Space Model of Excess Demand

In this section T first briefly describe the data available from PJM. Then T

develop a simple three-state model of excess demand to illustrate the main features
of the model. The data help to guide my choices of parameter values in the state
space model and in the simulations of the following section. These parameter values
are chosen to be as similar as possible to those used in the BL simulations so as to
highlight the more realistic features of the new model with constrained capacity.
This section demonstrates, (i) the implications of the model in an exact setting,
with no need to resort to approximations or numerical simulations, and (ii) that the
equilibrium forward premium increases in the ratio of the expected spot price to the

retail price.

1.4.1 PJM Data

Longstaff and Wang (2004) document the distributional properties of hourly
spot and forward electricity prices in the PJM market for the period June 2000
through November 2002. Panel A of Table 1.4 updates the distributional statis-
tics for the hourly PJM spot market through May 2003 and Panel B of Table 1.4

provides the distributional statistics for the hourly PJM forward market through

16



May 2003. Table 1.4 confirms the result that electricity spot and forward prices are

positively skewed and demonstrate extremely large excess kurtosis. These distribu-
tional characteristics reflect the occurrence of price spikes in the wholesale electricity
market.

Under normal market conditions, prices remain at a relatively low level. Oc-
casionally, prices spike to very high levels, then quickly return to normal. These
spikes cause the distribution of spot prices to be right-skewed and to have fat tails.
One of the contributions of the refined model is the ability to reproduce price spikes
and, therefore, reproduce the distributional characteristics of wholesale electricity
prices.

The demand for electricity is driven primarily by weather conditions. Thus
electricity prices demonstrate pronounced seasonal patterns. The most extreme
price behavior occurs in the summer months, conventionally defined to be June, July,
and August. Succeeding seasons are defined to be succeeding three month periods.
The sample mean for the summer (not shown in the tables) is $38.80/MWh, but the
maximum is over $1,000/MWh. Also, the overall standard deviation for the summer
months is $65.52/MWh, nearly 170% of the mean. Tn the mild spring season, the
standard deviation of spot prices is ‘only’ 67% of the mean, while the maximum

price is more than four times the mean.
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1.4.2 Estimated Exponent ¢ in the Production Function

In order to gain insight into reasonable values of the production cost function

exponent ¢, take logs on both sides of equation (1.13) to obtain

log(Pyw) = log (aNg™) — (c+ 1) log(H — QP). (1.21)

Performing a simple OLS regression of log(Py ) on log(H — QP), by season,
yields a range for the production function exponent ¢. The results are provided in
Table 1.5. The value of ¢ varies from approximately 0.75 to 1.5. Equation (1.13)
does a good job of capturing variation in the spot price, particularly in the summer

months (R?* = 73.8%).

1.4.3 Three-State Model

Consider the following three-state world indexed by w = (wq,ws,w3). The
probability of each state is given by ¢y, i.e.,

P1
Problw] = | 4, |- (1.22)

b3
where 0 < ¢ < 1 Vk = 1,2,3, and 3%_, ¢, = 1. By focusing on the three-state
case, I solve for the forward premium, and the optimal producer forward position,
in closed form, with no need to rely on approximations.
For the purposes of the discrete model, T take H¥ — QP to be the fundamental

uncertainty. 1 assume H¥ —QP to be a symmetrical distribution? (SkeW(H S—QP) =

?In order to ensure symmetry in the excess capacity distribution, in what follows T will set
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0), with E(H S QP ) — HQ. HS — QP variability is controlled by the parameter

g,

(i -@” ) =He| 1 |. (123

Thus, sfafe 1 is the high excess capacity (and therefore low price) state; sfafe 2 is
the normal state; and state 3 is the low excess capacity (and therefore high price)
state.

Convexity in the production cost function, equation (1.9), ensures that the

distribution of spot prices is positively skewed even though excess demand is sym-

metrical,

Pylw] = o | (1.24)
Y3
where ¢y = a1 (N/HQ)™H*(140) /%, 4py = ai (N/HQ) ™%, and 45 = ay (N/HQ)~/*(1—
o)Y/*. Given the spot price Py, it follows that the mean u Py = E(PW) and variance

0}, = E((PW — upW)Q) of the spot price are given by

3
fipy = Y Or (1.25)
k=1
3
Oy = D kUi — Moy - (1.26)
k=1

¢1 = ¢3 = ¢ and ¢d2 = 1 — 2¢. The assumption of symmetric excess demand is consistent with the

actual PJM data. The overall sample has skewness = -0.58.
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Further, the skewness, Skew(Py ) = EK(PW—MPW)B')/(O'I%WW? and kurtosis, Kurt( Py ) =

E((PW - /,LPW)4)/(O-PW) of the spot price are given by

Skew(Pyy) = (21>3/2 [(icbwi)3upw(§3:¢k¢i)+2u?w]= (1.27)

0Py, k=1

Kurt(Py) = ( j [(ZM} 4MPWKZM) (1.28)
+641,, LZM) m (1.29)

The forward premium (PREM = Pr — E(Py)) is given in equation (1.17).
Define the ratio of the expected spot price to the retail price to be %}:V) = 0.

Then Appendix B shows that the forward premium is given by

Np

N a® {HPW [(2345 yrtt) — NP‘J/”V/LPW‘| _
(07) [(Zqﬁ yrt?) - PMPW] } a0,

where pp: = E(F) and p patt = E(P&HY). This equation is exact; it requires no

PREM

approximations.
Now take the partial derivative of the forward premium with respect to 0, i.e.,

with respect to the ratio of the expected spot price fto the retail price.

0 PREM Np pp, 3 1
= P — pps . 1.31
o6 N a* ©2 [(; ¢k’¢k ) MPW/’LPW ; ( 3 )

> 0. (1.32)

Ceteris paribus, the equilibrium for premium is increasing in the ratio of the expected
spot price to the retail price.

Substituting the expressions for the forward premium in equation (1.30) and
the spot price variance in equation (1.26) into equation (1.15), the optimal forward
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position for producer 7 can be expressed as

ro_ Ne ey [ (S ai1) 1_
MY am(zi_lmwz—u%w){ 9 [E(bw’““) Hriline
3
(xil) l(;qﬁwi”) _Wupiwl } (1.33)

It is easy to see that the optimal producer forward position, Qg also increases in
the ratio of the expected spot price to the retail price, ©. However, this response

is due entirely to the increased forward premium. Producers hedging demands are

unchanged. This point is important, and it is discussed further in the simulation
section below.

The discrete case expressions for the forward premium and the optimal pro-
ducer forward position, equations (1.30) and (1.33), are exact and can be evaluated
easily in a spreadsheet. In what follows, T take ¢ = ¢35 = 10% and ¢ = 80%. T
then vary o, the variability parameter from 5% to 50% and examine the forward
premium and the optimal producer forward position.

I set the number of producers and the number of retailers, Np and Ng, to
20. I take expected system capacity to be 200 MW. Each producer is assumed
to be identical, with 10 MW of capacity. Expected demand to be 100 MW, thus
the expected excess capacity is 100 MW. Because excess capacity is symmetrically
distributed, expected excess demand is always equal to 100 MW. The exponent ¢
is set equal to 1.5. Consistent with the BL simulations, T set a = 30 (}V—OS)(CH) thus
ensuring that the spot price is $30/MWh in the normal state, i.e., state 2.

Figure 3 plots the optimal producer forward [position as a function of the
demand standard deviation, o, and the ratio of the expected spot price to the retail
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price, %}:V) = 0. Figure 4 plots the equilibrium forward premium as a function of

the demand standard deviation, o, and the ratio of the expected spot price to the
retail price, % = 0. Figures 3 and 4 demonstrate, for fixed o, both the optimal

producer forward position and the equilibrium forward premium are increasing in

©.

1.5 Simulated Spot Price Characteristics

BL illustrate their model through numerical simulations. In order to enable
straightforward comparisons of the refined model presented in this paper with the
original BL model, in this subsection I perform numerical simulations. I set param-
eters to be consistent with those chosen by BL as much as possible.

Referring again to Table 1.2, note that the standard deviation of demand as
a percentage of the mean varies by month from approximately 10% - 24%. From
Tables 1.1 and 1.2, mean demand as a fraction of mean capacity ranges from 36%
to 62%. At a maximum, demand reaches almost 92% of available capacity.

Asin BL, I first take the demand distribution to be truncated (at zero) normal,
with a mean of 100 MW. The demand standard deviation is varied from 4% to 25%.

Second, the number of producers is set to Np = 20. System capacity is set

to 240 MW. Third, all producers are assumed to be identical, thus Hp; = 12 MW,

. 140 (et+1) . . .
Similar to BL, T set a = 30 (N_p) thus ensuring that the spot price is

$30/MWh given demand of 100 MW. The intent of this assumption is to maintain
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comparability across values of ¢. ¢ is fixed at 1.5 in the refined model and ¢ = 4 in

the BL model. The simulation exercises were repeated for different values of ¢, with
no significant effect on the conclusions.

Finally, the coefficient of the variance term in the utility function, A, in equa-
tion (1.1) is sef fo 42, as in BL. Each simulation consists of 25,000 trials.

Figures 2a through 2e plot various characteristics of the spot price as functions
of the demand standard deviation, . The figures demonstrate the ability of the
refined model to mimic actual gpot price behavior.

Figure 2a plots the expected spot price as a function of ¢, for the refined model
and the BL model. The expected spot price generated by the two models is very
similar. Owing to the choice of parameters values, for both models the expected
spot price is of the same order as the actual PJM prices displayed in Panel A of
Table 1.4. In both models, the expected spot price increases in o, a direct result of
supply curve convexity.

Figure 2b plots the spot price variance as a function of ¢. Again the models
are similar, with the BL model producing slightly higher variances. Notice that,
as o increases, the spot price variance in the refined model increases at a faster
rate than in the BL model. This is another manifestation of the step function-like
behavior of the supply curve in the refined model.

It can be argued that the refined model does a good job in reproducing price
spikes. Consider Figure 2c¢, which plots the maximum spot price generated in the
course of the 25,000 trials, as a function of ¢. As ¢ increases, the maximum

observed in the course of the trials increases, so that the minimum H® — QP de-
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creases, thereby increasing the spot price from equation (1.13). The maximum spot

price generated by the refined model was $1,064/MWh. The BL model managed
only $264/MWh. The refined model is able to reproduce the price spikes seen in
electricity markets.

Figures 2d and 2e plot for each model the spot price skewness and kurtosis,
respectively, again as a function of ¢. From Panel A of Table 1.4, the skewness in
PJM spot prices varies from slightly below 2.0 to well over 10. Figure 2d shows that
the refined model can easily generate this level of skewness (while still maintaining
a reasonable level for the expected spot price). In no case does the BL produce
skewness greater than 1.5. The PJM spot price kurtosis varies from around 8 to
over 300. Figure 2e demonstrates that the refined model can produce kurtosis of
this magnitude, while the BL. model cannot.

The spot price behavior in the refined model is attributable directly to the
form of the production cost function (equation (1.9)) and the spot price expression
(equation (1.13)) that results. The step function-like behavior of the spot price from
equation (1.13) mimics the actual supply curve in electricity markets. Occasionally,
demand in wholesale electricity markets approaches the available supply. This can
happen because (i) demand increases to a high level, (ii) supply decreases due to
plant outages, or (iii) both. When demand approaches supply, there is no inventory
to absorb the shock, so the shock is translated directly into spot prices. The result
is that spot prices spike to extremely high levels. These high spot prices do not
persist for long, rarely for more than a few days. This behavior shows up in the
summary statistics as positive skewness and high excess kurtosis. Under reasonable
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assumptions, the refined model is able to reproduce the price spikes that occur in
electricity markets. As in the actual market, these price spikes lead to positive

skewness and large excess kurtosis in the distribution of spot prices.

1.5.1 Optimal Producer Forward Positions

Recalling that expected demand is 100 MW, equation (1.16) shows that, in
the absence of any forward premium and with normally distributed spot prices,

each producer will sell forward his entire capacity, Hp; = 12 MW, minus an equal

fraction of the system excess capacity, & S];PQD = 7 MW. Thus, each producer will

sell forward 5 MW. T will refer to this as the normal case. Also from equation (1.16),
producers will optimally decrease (increase) forward sales in response to a negative
(positive) forward premium. Further, producers increase forward sales in response
to positive spot price skewness.

Figure 5 plots the optimal forward position for a producer as a function of

demand standard deviation, ¢, and the ratio of expected spot price to the retail price,

E(Pw)
Pg

E(Pw)
Pg

. When the retail price exceeds the expected spot price, i.e., > 1, then
the forward premium is uniformly positive and producers optimally sell forward more
than the 5 MW of the normal case. As ¢ increases, both the forward premium and
spot price skewness increase. Both effects lead to higher forward sales by producers.
When o is low and the retail price exceeds the expected spot price, i.e.,

< 1, the forward premium is negative. In this region, spot price skewness is

E(Pw)
Pg

positive but small in magnitude so that the response to the forward premium is the
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dominant effect and producers optimally reduce forward sales below the 5 MW of
the normal case. As 7 grows, both the forward premium and spot price skewness
grow, hence producers’ optimal forward sales grow. Notice that, even though the
absolute magnitude of optimal producer forward sales is less for low expected spot
prices than for high expected spot prices, the growth rate of the forward sales as o

increases is higher for low expected spot prices.

1.5.2  Equilibrium Forward Premium in Simulated Economies

It was emphasized above that the behavior of the equilibrium forward premium
depends on the level of the expected spot price relative to the retail price. As
summarized in Table 1.3 and discussed above, the forward premium decreases in

the spot price variance when the expected spot price is less than the retail price,

ie., @ < 1, and increases in the spot price variance when the expected spot
R
. ds th 1 ori . E(Py)
price exceeds the retail price, 1.e., “p 1.

Figure 6 plots the forward premium as a function of demand standard devia-
tion, o, and tthe %I:V) ratio. Consider first the cases with %}:V) < 1. The premium
first decreases and finally increases in ¢. Recall that, in this region, the forward
premium decreases with spot price variance and increases in spot price skewness.
At low demand standard deviations, the negative relation of the forward premium
to the spot price variance dominates. At higher demand standard deviations, spot

price skewness increases dramatically (as shown in Figure 2d and discussed in the

previous subsection). Here the positive relation between the forward premium and
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the spot price skewness is the dominant factor. The closer to 1 is =5~ the sooner

E(Pw)

this reversal occurs.

At high expected spot prices, e.g., %}:V) > 1, the forward premium is uni-

formly positive and increasing in o. At higher expected spot prices, the forward
premium is increasing in both the spot price variance and skewness.

For the purposes of examining the behavior of the forward premium, it is
instructive to consider the hedging portions of the pptimal forward positions for
producers, equation (1.16), and retailers, equation (1.7). The first term on the right

hand side of both equations (1.16) and (1.7), is the optimal response to a nonzero

b

forward premium —H2EM x The remainder of the right hand side of equation (1.16)

AVar(pPw

is the forward position entered into by producers to hedge their profit stream. Sim-
ilarly, the remainder of the right hand side of equation (1.7) is the forward position
entered into by retailers to hedge their profit stream. Refer to these as the hedging
demands of producers and retailers, respectively.

Figures 7a and 7b plot the hedging demands of producers and retailers as func-

tions of demand standard deviation and the %}:V) ratio.> Consider first producers

hedging demands, Figure 7a. The hedging demands of producers do not depend

on the @

ratio. Producers’ hedging demands are invariant to the retail price.

E(Pw)
Pgr

Changing the ratio does not change the variance or the skewness of the spot
price, thus it does not change producers’ hedging demands. However, producers

do increase forward sales in response to an increase in ¢. Higher demand standard

3Tn creating these figures, T have assumed that all retailers are identical, and that the demand

for each is simply an equal fraction of the overall system demand.
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deviation results in an increase in the variance of producers’ profits. In order to
smooth their profit stream, producers optimally increase their forward sales. In the
event that a high (low) spot price actually obtains, producers will make (lose) money
on their spot sales and lose (make) on their forward sales.

Now consider retailers’ hedging demands. Notice that, for any o, as the %}:")
ratio increases, retailers optimally desire to increase their forward purchases. As

F{ P, . . . . . . .
the % ratio increases, the variance of retailers’ profits increases. Retailers thus

increase their forward purchases to smooth their profit stream. This observation

explains the fact that, for any fixed o, the forward premium increases in the %}:V)
ratio, as shown in Figure 6. As %}:V) ratio increases, producers’ hedging demands

are unchanged, but retailers wish to increase forward purchases. This increase in
demand for forward purchases drives up the equilibrium forward premium. It needs
to be emphasized that this forward premium behavior occurs even though the an-
ticipated variance and skewness of spot prices do not change.

The refined model produces a much larger range for the forward premium
than does the BL model. Using similar parameter values the BL. model produced a
maximum forward premium of 30%, compared to over 170% in the refined model.
As BL point out, the size of the premium can be made arbitrarily large or small by
varying the risk preference coefficient A. However, regardless of the value of A, the
refined model produces a much larger range for the forward premium.

In order to examine the behavior of the forward premium in Region III, the

simulations were rerun with %}:V) varied from 3.2 to 3.8. Recalling that ¢ = 1.5,

E(Pw)

the forward premium is decreasing in spot price skewness for P > 3.5. However,
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at these extremely high spot prices, the magnitude of o, the coefficient on the spot
price variance in equation (15), increases and this increase swamps the skewness

effect.

1.6 Conclusions

This paper presents a refinement to the equilibrium electricity model in Bessem-
binder and Lemmon (2002). Unlike the BL model, the refined model explicitly ac-
counts for constrained capacity. Because electricity cannot be stored, supply and
demand must balance in real-time, thus the available supply (capacity) is relevant,
as well as the level of demand.

The new model is able to reproduce the price spikes observed in wholesale
electricity markets. Given the importance of price spikes to industry participants,
it is crucial for hedging purposes to capture price spikes.

The equilibrium forward premium is shown to be decreasing in the variance
of the spot price when the expected spot price is low, less than the retail price
of electricity. However, when tthe expected spot price exceeds the retail price, the
forward premium is increasing in spot price variance. These relationships arise
because of the hedging demands of retailers. At low expected spot prices, retailers’
profits are positively related to the spot price. At high expected spot prices, retailers’
profits are negatively related to the spot price. In either case, retailers’ hedging
demands increase with spot price variance. More work is needed to study the impact

of constrained capacity.
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Table 1.1: Summary Statistics for PJM Daily Capacity (MW)

Month Mean Stdev Min Max
Jun-00 56,551 129 55,944 56,652
Jul-00 56,410 404 55,433 56,978
Aug-00 56,701 314 55,910 57,045
Sep-00 57,405 153 56,609 57,469
Oct-00 58,511 15 58,506 58,556
Nov-00 57,877 T 57,876 57,877
Dec-00 57,905 19 57,877 57,919
Jan-01 58,099 75 57,876 58,126
Feb-01 58,464 80 58,201 58,501
Mar-01 58,803 121 58,656 58,943
Apr-01 59,221 55 59,199 59,388
May-01 58,948 80 58,868 59,188
Jun-01 58,231 129 58,043 58,356
Jul-01 58,579 61 58,455 58,711
Aug-01 58,845 150 58,625 59,050
Sep-01 58,890 0 58,890 58,890
Oct-01 59,605 4 59,604 59,618
Nov-01 59,217 0 59,217 59,217
Dec-01 59,357 0 59,357 59,357
Jan-02 61,424 85 61,294 61,601
Feb-02 60,719 25 60,698 60,748
Mar-02 61,662 0 61,662 61,662
Apr-02 61,613 14 61,603 61,656
May-02 61,817 297 61,564 62,244
Jun-02 62,797 219 62,485 63,208
Jul-02 62,621 251 62,136 62,802
Aug-02 62,156 212 61,860 62,465
Sep-02 62,983 240 62,844 63,672
Oct-02 63,315 15 63,257 63,320
Nov-02 63,873 0 63,873 63,873
Dec-02 63,471 303 63,149 64,055
Jan-03 64,144 144 63,727 64,237
Feb-03 64,357 60 64,255 64,432
Mar-03 63,875 42 63,727 63,923
Apr-03 64,453 152 63,941 64,723
May-03 63,587 52 63,561 63,844
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Table 1.2: Summary Statistics for PJM Daily Demand (MW)

Month Mean Stdev Min Max
Jun-00 32,605 6,608 19,525 49,305
Jul-00 31,810 5,896 20,667 47,958
Aug-00 32,929 6,842 19,996 49,462
Sep-00 29,662 5,584 19,021 45,021
Oct-00 27,119 4,134 18,955 35,917
Nov-00 28,779 4,006 19,972 38,083
Dec-00 33,041 3,908 22,023 41,489
Jan-01 32,709 3,800 24,769 41,476
Feb-01 31,081 3,619 21,537 41,150
Mar-01 29,964 3,586 22,759 38,238
Apr-01 26,989 3,941 18,549 35,345
May-01 27,466 4,751 18,790 40,647
Jun-01 32,946 17,469 19,532 50,157
Jul-01 32,676 17,029 20,601 52,132
Aug-01 36,468 7,334 21,909 54,030
Sep-01 29,112 5,398 19,023 43,184
Oct-01 27,338 4,056 19,121 34,789
Nov-01 27,201 3,924 19,031 34,848
Dec-01 29,523 4,169 19,985 38,743
Jan-02 31,076 3,984 21,320 40,002
Feb-02 30,239 3,896 22,010 39,201
Mar-02 28,875 4,113 19,247 38,883
Apr-02 28,530 4,842 19,533 44,537
May-02 28,083 4,929 19,360 43,566
Jun-02 33,588 7,626 19,954 52,938
Jul-02 38,051 8,540 21,984 55,690
Aug-02 37,995 8,396 21,327 55,934
Sep-02 31,282 6,041 19,950 47,186
Oct-02 28,820 4,751 19,702 41,859
Nov-02 29,418 3,811 20,466 37,169
Dec-02 32,563 4,374 23,985 42,386
Jan-03 34,985 4,592 22,332 46,420
Feb-03 34,042 3,783 24,960 41,961
Mar-03 30,193 4,421 20,581 41,538
Apr-03 28,314 4,085 20,103 37,098
May-03 27,189 4,017 19,414 34,104
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Table 1.3: Model Forward Premium Predictions

Region Expected Spot Price o ~y
E(P

I P,:V <1 - +

II 1< 20w < (c 4 2) + +

111 (c+2) < Hw + -

The table presents the model’s predictions regarding the signs of the coefficients o
and ~y from equation (1.18), Pr — E(Py) = aVar(Py ) + ySkew( Py ). The left hand
side is the forward premium, defined to be the difference between the forward price,
Pr, and the expected spot price, F(Py ). Pg is the fixed retail price of electricity. ¢
is the exponent in the production cost function, TC; = F + ¢ (m)c The sign

of alpha can change depending upon the level of the expected spot price relative to

the retail price.
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Table 1.4: Summary Statistics for PJM Hourly Spot Prices

Hour Mean Stdev Skew Kurt Min Max
T $19.84 $11.08 2.93 15.89 $0.00 $107.84
2 $18.93 $12.22 3.47 24.23 -$16.40 $145.07
3 $17.04 $10.99 3.34 22.59 -$2.40 $127.43
4 $16.36 $10.40 3.25 23.27 -$2.42 $117.86
5 $17.48 $10.77 3.46 21.91 -$4.74 $114.60
6 $21.21 $12.79 .76 15.15 $0.00 $125.42
7 $30.52 $22.35 2.05 8.92 $0.00 $182.13
8 $34.75 $25.08 1.92 8.03 $0.00 $207.46
9 $33.93 $20.54 2.01 8.66 -$1.92 $167.76

10 $38.05 $21.57 1.80 8.40 -$2.05 $186.04
11 $43.24 $24.84 1.87 10.55 $10.52 $249.68
12 $42.96 $40.97 10.54 174.88 $7.08 $846.50
13 $43.37 $53.36 11.18 167.87 $2.63 $1,005.53
14 $47.32 $64.82 10.51 141.00 $4.37 $1,020.28
15 $43.93 $67.43 10.56 139.34 $5.19 $1,019.97
16 $42.90 $70.43 10.60 134.65 $7.80 $1,019.72
17 $46.60 $62.95 10.83 150.61 $11.83 $1,019.74
18 $50.07 $54.44 11.22 184.76 $6.13 $1,019.75
19 $44.73 $44.01 9.82 153.00 $11.55 $801.55
20 $41.73 $30.56 7.89 142.43 $9.73 $645.32
21 $44.77 $39.19 13.95 321.50 $13.18 $994.98
22 $37.47 $22.89 3.59 37.22 $11.09 $352.38
23 $26.62 $13.95 2.43 11.42 $6.41 $116.32
24 $21.98 $11.81 3.91 29.37 $0.78 $157.24
Total $34.41 $39.17 13.68 297.40 -$16.40 $1,020.28

The table contains the mean, standard deviation, skewness, and kurtosis for Penn-
sylvania, New Jersey, Maryland (PJM) market electricity spot prices for the three
year period from June 2000 through May 2003. The units, for all values except skew
and kurtosis, are $/MWh. Log prices are not reported since the price of electricity
can be less than or equal to zero. ‘Hour’ refers to the hour ending at the given time.
For example, Hour 1 refers to 12-1lam, Hour 2 refers to 1-2am, Hour 17 refers to

4-5pm, etc.
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Table 1.5: Summary Statistics for PJM Hourly Forward Prices

Hour Mean Stdev Skew Kurt Min Max
1 $20.77 $9.58 2.67 12.73 $5.00 $81.73
2 $18.13 $8.37 2.90 15.69 $0.00 $77.94
3 $16.82 $8.11 2.67 15.30 $0.00 $75.22
4 $16.50 $8.31 2.62 15.00 $0.00 $74.07
b $17.38 $9.12 2.74 15.04 $0.00 $79.90
6 $21.43 $12.05 2.68 13.64 $0.10 $100.65
7 $31.57 $20.79 1.98 8.89 $1.00 $153.25
8 $35.49 $20.54 1.64 6.95 $1.15 $155.71
9 $36.59 $17.92 1.61 7.52 $11.01 $153.00

10 $39.29 $17.45 1.43 6.68 $13.45 $152.79
11 $41.85 $19.35 2.06 12.28 $14.95 $198.10
12 $42.20 $24.07 5.56 63.96 $14.47 $390.93
13 $41.52 $29.65 8.42 119.23 $14.68 $545.46
14 $42.75 $36.33 8.95 123.72 $13.75 $646.81
15 $43.00 $44.77 10.23 149.03 $13.30 $818.54
16 $43.50 $46.66 9.81 141.50 $13.87 $859.05
17 $46.77 $45.90 8.58 109.49 $15.03 $779.38
18 $52.65 $39.53 6.67 74.11 $15.02 $599.22
19 $50.09 $30.13 4.20 41.45 $14.91 $450.01
20 $47.35 $26.58 4.21 44.39 $15.06 $416.27
21 $45.84 $26.57 6.37 90.78 $15.10 $498.01
22 $37.99 $17.85 2.23 13.12 $15.00 $185.90
23 $28.90 $12.78 2.08 9.56 $12.68 $112.86
24 $23.15 $10.19 2.33 10.60 $0.00 $95.78
Total $35.06 $28.18 8.68 168.43 $0.00 $859.05

The table contains the mean, standard deviation, skewness, and kurtosis for Penn-
sylvania, New Jersey, Maryland (PJM) market electricity forward prices for the
three year period from June 2000 through May 2003. The units, for all values ex-
cept skew and kurtosis, are $/MWh. Log prices are not reported since the price of
electricity can be less than or equal to zero. ‘Hour’ refers to the hour ending at the

given time. For example, Hour 1 refers to 12-1am, Hour 2 refers to 1-2am, Hour 17

refers to 4-5pm, etc.
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Table 1.6: Regression Results of log(Spot Price) on log(Capacity - Demand) for

PJM Markets.

Season NOBS k C R?

Summer 6,508 20.97 0.754 73.8%
(0.131) (0.013)

Fall 6,521 24.63 1.073 39.6%
(0.328) (0.032)

Winter 6,466 24.26 1.038 30.6%
(0.391) (0.038)

Spring 6,575 30.02 1.564 30.5%
(0.407) (0.039)

The following regression is performed,

log(Pw) =k — (c+1)log(H — Qp),

Summer is defined to be June, July, and August. Succeeding seasons are defined to

be succeeding three month periods. The data are taken from www.pjm.com.
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Chapter 2

Estimation of Continuous-Time Models of Foreign Exchange
Volatility

2.1 Introduction

Substantial research effort has been directed towards understanding and mod-
eling volatility (e.g., Engle (2004) and Andersen, Bollerslev, Diebold, Ebens (2001))
in financial markets. How does currency return volatility evolve over time and what
are the properties of volatility dynamics? Is the drift of currency return volatility
non-linear? What forms of non-linearities are admitted in the drift and diffusion
functions? The purpose of this study is to estimate a large class of volatility pro-
cesses and explore these issues using weekly data on two currency pairs: U.S. dollar-
British pound and Japanese Yen-U.S. dollar. My estimation approach is based on
maximum-likelihood estimation that relies on closed-form density approximations.
I propose a general stochastic elasticity of variance specification for currency volatil-
ity that nests several plausible models of economic interest. Based on at-the-money
volatility, I find that certain types of non-linearities in the drift function improve
the goodness of fit statistics. Moreover, the constant elasticity of variance specifi-
cation provides a reasonable characterization of the variance of variance function.

The results pose challenges to fexisting paradigms and approaches to modeling cur-
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rency returns and currency distributions (e.g., Bates (1996), Brandt and Santa-Clara
(2002), and Bakshi, Carr, and Wu (2005)).

The general class of continuous-time models of currency return volatility can

be written as a stochastic differential equation of the type:
dX; = p[Xy; ©]dt + o[ Xy; ©)dW,, (2.1)

where W; is a Brownian motion, p[X;;©] is the risk neutral drift function, and
o[X;; O] is the diffusion function. u[Xy; 0] and o[X;; O] are assumed to be func-
tions of the state variable X; and some unknown parameter vector © € RE. If the
preferred method for estimating the parameters © is maximum likelihood, then a
dilemma arises as the transition density function is not known for the entire class,
but for only a few simple cases. Many schemes have been proposed to deal with
this issue, including numerical simulation, Monte Carlo Markov Chains, and vari-
ous nonparametric approaches. In particular, Ait-Sahalia (1999, 2002) develops a
method to approximate the transition density based on Hermite expansion. Bakshi,
Ju, and Ou-Yang (2005) extend his approximation methodology to a broader class
of drift and diffusion functions.

Using the density approximation approach of Ait-Sahalia (1999, 2002) and

Bakshi, Ju, and Ou-Yang (2005) T estimate the stochastic elasticity of variance

class of models where o[X;; 0] = \/ﬁo + 81 X + B2 X7, 1 also consider a class of
X 0] = ag + a1 X; + awX? + a3/ X, as in Ait-Sahalia (1996). The advantage of
this class of drift and diffusion functions is that it allows flexible specifications of

mean-reversion in volatility and exponent parameter 3.
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Guided by Engle (2004), T proxy volatility using at-the-money implied volatil-
ity from currency call options. Even though currency return volatility is far less
than volatility in equity markets, the exponent parameter J3 is estimated to be ap-
proximately 1.26 for YEN-USD volatility. The exponent parameter 35 is less than
unity for the ffull sample (1996-2004) of USD-GBP refurn volatility, but subperiod
estimation reveals that this result does not hold in the most recent (2000-2004) data.

As opposed to a large literature that advocates non-linearities in the currency
returns and currency return volatility, [ find that adding a nonlinearity to the drift
function through ay X? improves the fit of the model for only the USD-GBP currency
pair. There is little change in log-likelihood criterion function with the YEN-USD
currency pair.

One important implication of the results of this paper is that generalizing
the constant elasticity of variance (CEV) diffusion function does not substantially
improve the fit of the model for any currency pair. For instance, the contribution
of the £ X; term in ¢[X] is not that large. The values of ; are consistently small
but nonetheless statistically significant.

This article proceeds as ffollows. Section TI ldetails the specific forms of the
drift function, u[Xy; ©], and the diffusion function, o[ X;; ©] to be estimated. Section
III reviews the estimation procedure. Section IV describes the data, provides the
estimation results, and briefly compares results for FX and cquity volatility. Section

V concludes.
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2.2 Currency Volatility Models in the Stochastic Elasticity of Vari-

ance Class

In what follows, suppose Stf " is the currency h price of currency f at time-t,
with A being the home currency. Let Egﬂ: = log (Stffl / Stf h) denote the logarithmic
return on the currency.

Let X; denote the instantaneous volatility of currency returns. Consider the

following time-homogeneous continuous-time process for X;,

where the class of drift and diffusion functions, respectively denoted as u[X;; ©] and

o[ Xy; ©], for foreign exchange volatility, are due to Ait-Sahalia (1996)

pX; 0] = g4 X+ X+ as/X,, (2.3)

o[X;0) = VBo+ B Xi + B X[, (2.4)

This model, the stochastic elasticity of variance - nonlinear drift model, is referred
to henceforth as SEV-ND. Notice that the SEV-ND allows for nonlinear drift and

diffusion and nests various well-known continuous-time models:

e When s = a3 = 0 and By = 0 in (2.3)-(2.4), the SEV-ND model reduces to

3

the affine model (hereby AFF).

dX; = (g + an Xy)dt + 4/ Bo H B1 XedW. (2.5)
The volatility model in Heston (1993) is a restricted case with Sy = 0 in (2.5);
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e Setting Sy = f1 = 0, T get the constant elasticity of variance (CEV) diffusion

model with,
olX;0] = BX". (2.6)

Three versions of the CEV model, each with differing drift functions, are
estimated. The models, referred o in the following as CEV-CD (constant

drift), CEV-LD (linear drift), and CEV-ND, respectively, are given by

oo dt + B2 X2 dW, CEV-CD

dXy = (ap + a1 Xy) dt + B Xtﬂs dW CEV-LD (2.7)

(ag + o1 Xy + oy X2 + as/X,) dt + By X[*dW,. CEV-ND.
These models also are studied empirically in Ait-Sahalia (1996) and Durham
(2004) for interest rates, and Bakshi, Ju, and Ou-Yang (2005) for equity index

volatility.

e Restricting p[X] and o[ X] provides two additional versions of the SEV model,
corresponding to the specifications of the drift function p[X;; ©], respectively

denoted as SEV-CD and SEV-LD:

dX, = aodt+\/Bo+ X, + B XPdW,, (2.8)

dX; = (ag+a) Xy)dt+ \/ﬁo + By Xy + Bo X2 dW, (2.9)

The model in (2.9) permits a linear drift for foreign exchange volatility while

(2.8) accommodates a constant drift.!

!Chan et. el. (1992) extend the diffusion function by allowing the exponent to be a part of the
parameter set O, rather than being fixed at % This results in the constant elasticity of variance

(CEV) model specified in equation (2.6).
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The general model is driven by an unknown parameter vector,

0= (aO:a17a2:a3750751752:/83): (210)

which needs fo be estimated. Unfortunately, the density function for the stochas-
tic elasticity of variance model is not known in exact form. However, it can be
approximated using the methods in Ait-Sahalia (1999, 2002) and Bakshi, Ju, and
Ou-Yang (2005). In the remainder of the paper I present the density approximation
based estimation methodology and the insights it enables regarding the dynamic
evolution of foreign exchange volatility. These results have important implications

for building models of currency returns, option prices, and risk management.

2.3 Estimation Approach

Several techniques for estimating the parameters of the general diffusion given
in equation (2.1) have been proposed in the literature. Gouriéroux, Monfort, and
Renault (1993) and Gallant and Tauchen (1996) use simulation methods. Hansen
and Scheinkman (1995) and Kessler and Sorensen (1999) develop methods to esti-
mate the parameters using the GMM. Bollerslev and Zhou (2002) apply the GMM
specifically to the case of FX volatility, using high frequency returns to generate
realized volatility. Ait-Sahalia (1996) matches the underlying transition density
nonparametrically, while Eraker (1997) and Jones (1997) resort to Bayesian ap-
proaches. Ruiz (1994) and Harvey and Shephard (1994) estimate a discrete-time
stochastic volatility model using a quasi-maximum likelihood approach. Jacquier,
Polson, and Rossi (1994) and Eraker (2001) resort to Markov Chain Monte Carlo
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(MCMC) methods. For reasons discussed in Ait-Sahalia (2002) and Bakshi, Ju, and
Ou-Yang (2005) I derive the closed-form density approximation and estimate the

continuous-time model via maximum likelihood.

2.3.1 Likelihood Function

Without any loss of generality suppose one observes the discrete-time obser-
vations on foreign exchange volatility or variance X;, {t = iAl|i = 0,n} at equally
spaced intervals A. Let px[A, X;a|X(i—1)a; ©] denote the conditional transition den-
sity of observing X;a at time A given that X;_1)a was observed at time (i — 1)A.
An estimate of the parameter vector © can be found by maximizing the log likelihood

function, defined to be,

L/6] = 3" log (px A Xa [ Ko ya: @]). (2.11)

i=1

The kestimated parameter vector © is the set of values that maximize the log likeli-

hood,

A

© = argmaxg L[O]. (2.12)

As pointed out by Ait-Sahalia (1996) the exact transition density
Px[A, Xia|X(i—1)a; ©] is unknown in closed-form for the SEV-ND. However, based
on Ait-Sahalia (1999, 2002) one could develop a closed-form, accurate approximation
to the transition density and thus the likelihood function. T estimate the parameters
O using an extension of the Ait-Sahalia (1999, 2002) approximation method pro-
posed by Bakshi, Ju, and Ou-Yang (2005). The key features of this approximation
approach are outlined below.
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2.3.2 Density Approximation Approach

Ait-Sahalia (1999, 2002) relies on a transformation of the process X (t) given

in equation (2.1) to a process Y with unit variance. Given the transformation

X du
v =4(x;0) = [ . 2.13
o) = [7 -t (213)
Ito’s Lemma implies that
dY; = py[Yi; ©)dt + dWr, (2.14)

where W; is a Brownian motion, and fthe new drift function is given by

py Yy ©] = 58:18 g;ig; - %%(7‘1(%@);@)- (2.15)

Ait-Sahalia (2002) then utilizes another transformation in order to convert the

process Y into yet a third process Z,
Z =AY2 <Y — y0> (2.16)

which more closely resembles a normal random variable and thus is easier to approxi-
mate. He shows that it is possible to construct a convergent series of approximations
to the transition density for Z, pz (A, z|yo; ©). He then works backwards, using the
Jacobian formula to obtain an approximation, p()}]), to the original transition density
of interest, px[A, X;a| X(-1)a; 0]

Importantly, in order for the approximation scheme to work in practice, Y; and

v~ (y; ©) must be analytical in form. Further, the approximation results in recursion

relations for expansion coefficients ¢; which contain high dimensional integrals for
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j > 3. These requirements limit the class of drift and diffusion functions to which
the approximation method can bhe applied.

Bakshi, Ju, and Ou-Yang (2005) extend the methodology to a broader class
of functions u[X;; ©] and o[X;; O] making it unnecessary to know the closed form
expressions for Y; and y~1(y; ©). Specifically, Bakshi, Ju, and Ou-Yang (2005) begin

by (see their Proposition 1, 2 and 3) defining the function

pX] o1X]

X1 = =5~

o s (2.17)

where o' [X] = 83[)?]. The density approximation can then be expressed in terms of

f1X], p[X], and o[X]. Up to K™ order, the density approximation is given by:

—-1/2 1 T x d K Ak:
Px O'[X; @}gb [A1/2 20 U[u}‘| 28Y ( 0 ﬂu}a[u]) ];)Ck 7[$]|7[$0] LI 7( . )
where ¢[z] = % This approximation is shown to be highly accurate for small

values of K. The function f[X] and the coefficients ¢, k = 1,4 are given explicitly

in Bakshi et al (2005) and are repeated here for convienience.

ol = —— [*Auldw (219
oyl = b+ sz (Nl + Aol — 261l (2.20)
aly]l = A+ = (ely] (A + Al —3efy) +
g (L ) e
and,
il = i+ s (2ely]Aly] — Seal] + 2\oledly]) +
G (ML [ e+
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53Xy 5N%ue] 1 AN lerly] -

(¥ = y0)*
L2esly] + X' [y] + X' [wo]). (2.22)
where,
Ao = =5 (] + £ lelola]), (2.23)
Vil = 20— Lo+ £t (221)
v = P Lo (e o) o)) . 29

o
w0 = L%m, (2.26)

2.3.3 Density Approximation for the SEV-ND Model

An estimate of the values for the parameter vector © are found by replacing
the actual transition density px[A, Xia|X(i-1)a; ©] in equation (2.12) with its K™
order approximation p(f) [A, Xin| X(i—1)a; ©] from equation (2.18). In all estimation
exercises, K is set to K = 4 to achieve the desired degree of accuracy.

Equations (2.19) through (2.26) are straightforward (if tedious) to calculate

and code for the case of equations (2.2), (2.3), and (2.4). The exact expressions

3 3

required for the SEV-ND case are given below. Let f = 8(];:[;‘], = 82]; [2:”}, etc.
Then
_ pla] o]
flz] = ot 2 (2.27)
o W] plelrl) o'
el = G e (2.28)
Plalie) = B (2w lol e+ e o]



plz] (o' [2)*  o" 2] (2.29)

f/// I:Ejl m — /’Ll _ 5
[x

=)
—
TN
9V
=,
)
q\
=]
+
%)

-~ t\
5
q\
=]
+
=
8,
Q\
5

~—
+

T
iy lelole] - T (2.30)
where
plr] = o+ oz + o’ + asgzl (2.31)
ple] = o+ 2001 — asz”?, (2.32)
plr] = 204+ 205272, (2.33)
p'lr] = —6asgz (2.34)
and
olz] = <[3’0 + Bz + B9 x53>1/27 (2.35)
olz] = ﬁ(ﬁl + (a3 xﬁ“) (2.36)
o'a] - ﬁ(— (o)) + SuBe(5s 1)xﬂ3-2)7 (2.37)
o[z = %Mﬁzﬁg(ﬁg — 1) <53 —2-
) <(U<;[[Z]1)2 ~/l). (2:3%)
ofa] = %Mﬁzﬁgwg —1) xﬁ3-4<<53 —2)(Bs —3) — 2(8s — 2)x%
—mQ% + zmQ(‘;[Ef]])Q) + ﬁ < 20" 2])? -
20/ alo" ) =~ )0 o] = (o W). (2.39)

Given these expressions, log likelihood values can be computed from the ap-
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proximate conditional densities and the various models can be compared to one

another.

2.4 Comparison of Volatility Models

This section presents estimation results of variance dynamics for the USD-
GBP and YEN-USD currency pairs. For conciseness T divide the results into four

parts containing a discussion of (i) estimation results for the drift function, u[X,,© ,

(ii) estimation results for the diffusion function, o[X;, ©], (iii) robustness tests, and
(iv) a brief comparison of FX volatility results with those for equity volatility. The
section begins with a brief discussion of the proxy for unobservable volatility and

the data used in the estimation process.

2.4.1 Data

The volatility of logarithmic changes in spot currency is unobservable. Un-
observable volatility is proxied using at-the-money, Black-Scholes implied volatility.
Volatility is the square root of the variance. In the subsequent estimations, I follow
the literature and estimate parameters for variance, i.e., X(¢) = V2, where V is
volatility.

Data used in this study include weekly (taken on Wednesday) FX call option
implied volatilities for two currency pairs - U.S. dollar-British pound (USD-GBP)
and Japanese yen-U.S. dollar (YEN-USD). The options used in the estimation all

have one month until maturity.
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The option prices are quoted for a fixed option delta, not for a fixed strike
price. The option delta is (roughly) the probability that the option will expire in-
the-money. For each date the data contain prices, quoted in the form of implied
volatilities, for a 50-delta call, for each currency pair. Given the option delta, it
is straightforward fo calculate the strike price of the option. These 50-delta calls

have spot-to-strike price (%) ratios that range from 1.005 to 0.998 with a mean of

approximately 1.002. The data cover January 24, 1996 through January 28, 2004,
a total of 415 weekly observations for each currency pair.

Summary statistics for the USD-GBP and YEN-USD volatility are found in
Table 2.1, while time series plots are presented in Figure 1 and 2. Notice that YEN-
USD volatility is nearly 40% higher than USD-GBP volatility. Further, YEN-USD
volatility is more than twice as volatile as USD-GBP volatility (3.12% vs. 1.47%).
As is detailed below, the key to modeling YEN-USD volatility is the specification

of o[ Xy; ©.

2.4.2 FEstimation Results

For all the models and for hoth currency pairs, the coefficients Sy and a3 (see
equations (2.3) and (2.4)) were found to be very mear zero and to have little or no
effect on the log likelihood value. Coefficients 5y and a3 were set to zero for all
models.

Consider first the estimation results for the USD-GBP variance in Table 2.2.

The table presents parameter estimates, standard errors (in parentheses), log likeli-
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hood values, and —% times the Akaike Information Criteria (AIC). The models can
be ranked using the value of —2AIC, which penalizes a more general model for the
loss bf degrees of freedom that results from the increased number of parameters.
Notice that the estimation algorithm could not be made to converge for the SEV-
LD model, hence results are not reported for that model. According fo the AIC
criteria, the CEV-ND model is slightly better than the SEV-ND model (2270.54 vs.
2269.75), though the difference is small. Evidently, adding a square root term to
the standard CEV diffusion function does not improve the fit of the model.

In order to compare nested models, T employ the log likelihood ratio test
statistic, L* = —2.O<L[@R} — L[@U]>, where L[Og| is the log likelihood of the
restricted model and L[Oy] is the log likelihood of the unrestricted model. The
test statistic is distributed x?[df], where df is the number of exclusion restrictions.
Table 2.4 presents the results of the log likelihood ratio test for the USD-GBP and
YEN-USD currency pairs. The table shows that, for the USD-GBP currency pair,
the CEV-ND cannot be rejected against the SEV-ND alternative. The test statistic
is 1.78, while the 95% criterion value is 3.84. The CEV-CD and CEV-LD models
can be rejected at the 1% significance level.

Table 2.3 shows that, unlike the USD-GBP case, for the case of YEN-USD
variance the CEV-LD model fis ranked first by the AIC criteria. However, the
log likelihood values are very close for all but the AFF model. Log likelihood
ratio test statistics reported in Table 2.4, which shows that the CEV-LD model
cannot be rejected at any reasonable significance level when compared to the CEV-

ND, SEV-LD, or SEV-ND models. Notice that, similar to the USD-GBP currency
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pair, generalizing the CEV diffusion function does not improve the fit of the model.

However, whereas the USD-GBP currency pair benefited from adding a nonlinear
term to the drift function, such a generalization does not improve the fit of the
model for the YEN-USD currency pair.

Notice further that all the models have a harder time fitting the YEN-USD
data than the USD-GBP data. (The log likelihood values are consistently lower for
the YEN-USD case than for the USD-GBP case.) Given the summary statistics
in Table 2.1, this result is not surprising. YEN-USD volatility is higher and more
volatile than its USD-GBP counterpart. Thus, it is unsurprising that they require

different model specifications to capture volatility dynamics.

Drift Function p|X;; ©] Estimates

Table 2.2 demonstrates that the drift function, p[z,; 0], for USD-GBP FX
rate variance series is strongly mean reverting, with ap = —935.04 (standard error
= 366.75) for the preferred CEV-ND model. The large negative coefficient on the
square of the variance. s, has the effect of quickly reducing the value of the vari-
ance when it becomes large and thereby forcing the variance back down to lower
levels. Notice that, in moving from the CEV-ND model to the SEV-ND model, the
estimates of the drift coefficients change very little.

The fact that the constant term in the drift function, g, is estimated to be
negative means that, for volatility (i.e., v/variance) values less than approximately

2.7%, the drift term for the USD-GBP variance can be negative. While this result
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would seem to indicate the counterfactual that it is possible for the variance to

become less than zero, the sample data has no observations less than 3.61% for the
USD-GBP volatility. Thus, the estimated drift function is likely not reliable in this
low volatility region.

Nonlinearities in the drift function improve model fit for USD-GBP volatility.
From Table 2.4, the CEV-CD and CEV-LD models are rejected at the 1% signif-
icance level. However, the specification of the drift function is not as important
for YEN-USD volatility. Table 2.4 shows that the CEV-CD and CEV-LD models
cannot be rejected versus the CEV-ND alternative.

Table 2.3 also shows that, for the preferred CEV-LD model of YEN-USD
variance, the coefficient on the linear drift term, oy = —2.23, is negative, thereby
ensuring that the series is stationary. Further, unlike the USD-GBP case, the drift
function for the YEN-USD variance does not become negative for small values.
However, precise estimation of the drift function is difficult. The standard error
for oy reported in Table 2.3 results in ¢—statistic of approximately 1.70 for the
YEN-USD variance series. Table 2.3 shows that estimation of the drift function
parameters is difficult for all the models. As discussed below, part of the reason for
this difficulty lies in the time series pattern of YEN-USD volatility in the sample
data. The volatility trended upward in the first half of the sample data, then dropped
to a lower overall level and stayed relatively flat in the second half of the sample

data. (See Figure 2.)
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Diffusion Function o[Xy; ©] Estimates

For the USD-GBP ATM implied variance the estimate of (3 is less than one

for all the model with the CEV diffusion function. However, sub-period estimation

(see the following subsection) reveals that this result no longer obtains for the most
recent data.

Comparison of individual model specifications demonstrates some important
points. Moving from the AFF model to the CEV-LD model increases the —2AIC
value substantially, from 2263 to 2268. The square root specification for the diffusion
function is inadequate to capture volatility dynamics. However, comparison of the
CEV-CD and CEV-ND models with the corresponding SEV models shows clearly
that moving beyond the constant elasticity of variance specification for the diffusion
function does not improve model performance, regardless of the drift specification.

The diffusion functions for the YEN-USD ATM implied variance series is sim-
ilar to the values found by Bakshi et al. (2005) for equity variance (see their Table
2).2 Tables 2.2 and 2.3 make clear that the additional flexibility of the diffusion
function for the SEV class of models as compared to the CEV class of models does
not improve the fit. CEV-LD (CEV-ND) cannot be rejected versus the SEV-LD
(SEV-ND) alternative. Indeed, when compared to the SEV-ND model, neither the
CEV-CD nor the CEV-LD models can be rejected. As with the USD-GBP currency

pair, generalizing the CEV diffusion function does not improve the fit of the model.

2While the drift function estimated in this paper is also similar to the drift function for equity
volatility found by Bakshi et al., notice that,owing to a much larger data set, those authors are

able to estimate o with much greater precision.
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For the YEN-USD currency pair, moving from the AFF model to the CEV-

LD model results in a dramatic increase the —2AIC value, from 1850 to 1924.
The square root diffusion function is not appropriate for modeling FX volatility.
Notice that, moving from the CEV-LD (CEV-ND) model to the SEV-LD (SEV-ND)
model causes the common parameter estimates to change very little, while the new
parameter introduced in the SEV diffusion function statistically indistinguishable
from zero.

The fact that all the models except AFF have similar log likelihood values
serves to emphasize that the key to modeling YEN-USD volatility is the specification
of the diffusion function o[X; |theta]. Option pricing models and risk management

strategies that rely on a square root diffusion function are misspecified.

Robustness Tests

In order to check the robustness of these findings, the data were split into two
subperiods, corresponding to the time (1) before and (2) after 2000. While this
choice is admittedly ad hoc, it serves to divide the data roughly in half. Subperiod
(1) covers January 24, 1996 through the end of 1999 (NOBS=206), while subperiod
(2) covers the beginning of 2000 through the end of the data, January 28, 2004
(NOBS=209).

AIC rankings and log likelihood ltests for both subperiods (not reported) in-
dicate that, for USD-GBP volatility, CEV-ND is still the preferred model, though

there are interesting differences in the estimation results across the two subperiods.
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In particular, the elasticity coeflicient, 3, increases dramatically in subperiod two.
While 83 = 0.915 for the entire sample and 3 = 0.831 in subperiod (1), for subpe-
riod (2) B3 = 1.220. This result is consistent with the estimate for the YEN-USD
currency pair and for the Bakshi et al. (2005) equity volatility result. The phe-
nomena reported above whereby the elasticity coefficient 03 is less than one for the
ATM implied USD-GBP variance is no longer observed in the most recent data.

As with the USD-GBP currency pair, for the purposes of robustness tests the
YEN-USD data were split into pre-2000, subperiod (1), and post-2000, subperiod
(2). YEN-USD FX rate volatility is much higher and more volatile in subperiod
(1) than in subperiod (2). YEN-USD volatility reaches values of 28.5% on October
7, 1998 and 22.3% on September 22, 1999. After January 1, 2000, the maximum
observed value is only 14.50%, on January 17, 2001. Further, the standard deviation
of ATM implied YEN-USD volatility is 3.81% in subperiod (1), but only 1.50% in
subperiod (2), more in-line with USD-GBP volatility. Evidently, the level and the
volatility of YEN-USD FX rate volatility have decreased dramatically since the turn
of the century.

Recall that, for the case of YEN-USD variance, the CEV-LD model is ranked
first by the AIC criteria. In subperiod (2), the CEV-LD model continues to fit the
data better than the alternatives, but in subperiod (1) the CEV-CD model cannot
be rejected versus the CEV-LD alternative. The coefficient on the linear drift term,
aq, is much higher in subperiod (2), indicating that the speed of mean reversion is
faster in the post-2000 time frame. However, the drift function cannot be estimated

with precision in the post-2000 time frame. This result is not surprising given the
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time series pattern in the data. In the post-2000 time period, YEN-USD volatility

remained essentially flat. Owing to the less volatile behavior of YEN-USD volatility
in subperiod (2), all of the models do a better job of fitting the data, despite the

fact that the drift function cannot be estimated with precision.

Comparison of FX Volatility and Equity Volatility

Bakshi, Ju, and Ou-Yang (2005) report results for the CEV and SEV model
estimations for equity volatility. They use market index volatility, as proxied by
VIX. While this article reports that the CEV diffusion function is sufficient for FX
volatility, they report that, for market index volatility, the SEV diffusion function
fits best.

First, note that equity volatility is consistently higher than its FX counterpart
for both currency pairs. The sample mean volatility value for the USD-GBP cur-
rency pair is 8.21%. The sample mean VIX volatility value in the Bakshi, Ju, and
Ou-Yang (2005) data is 18.91%. Further, VIX volatility is itself more volatile than
FX volatility. The sample standard deviation for the spanned USD-GBP volatility
is 1.47%, while that for the VIX data is 5.85%. Equity volatility is higher and more
volatile than [FX rate volatility. Not surprisingly, equity volatility requires a more
general diffusion function in order to fit the data.

The similarity of the estimates for 55 for (i) VIX volatility, reported in Table 2
of Bakshi Ju, and Ou-Yang (2005), (ii) the volatility of the YEN-USD currency pair

b

reported in Table 2.3 herein, and (iii) the volatility of the USD-GBP currency pair
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beginning in 2000 is striking. For the CEV-LD model (the highest ranked model for

(ii)) Bakshi et al report 8, = 4.70 and 3 = 1.27, while the corresponding estimates
in my context are By = 4.41 and B3 = 1.26. While I estimate #3 = 0.915 for the
volatility of the USD-GBP currency pair for the full sample, subperiod estimation

reveals that 3 = 1.22 since the furn of the century.

2.5 Conclusions

This article estimates univariate continuous-time diffusions for the case of FX
volatility for three currency pairs, U.S. dollar-British pound, Japanese yen-U.S.
dollar, and Japanese yen-British pound. Volatility is proxied by simple ATM implied
volatility from FX options. All the options used in this article have one month until
maturity.

A nonlinear term in the risk neutral drift function improved the fit of the model
only for the USD-GBP currency pair. This is in contrast to the interest rate result
of Ait-Sahalia (1996) and the cquity result of Bakshi, Ju, and Ou-Yang (2005). For
all cases, the estimated parameters of the drift function ensure that the volatility
mean reverts and thus that the diffusion is stationary.

In none of the estimations reported in this paper does allowing for a more
general diffusion function improve upon the constant elasticity of variance model.

One extension of this article involves studying the higher-order implications
of triangular-arbitrage restriction on cross FX rates. The no-triangular-arbitrage

YEN,GBP YEN,USD USD,GBP
= O X Sy

relationship requires that .S; = . where S is the spot
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FX rate in terms of currency f per unit of currency h. Investigating the restrictions
that this relationship implies for covariances may be worth pursuing since volatility

can be recovered in a model-free manner (Barndorff-Nielson and Shephard (2004)).
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Table 2.1: Basic Features of the Volatility Series

USD-GBP YEN-USD

Volatility Volatility

NOBS 415 415
Mean 8.21% 11.46%
Stdev 1.47% 3.12%
Skewness -0.11 1.37
Kurtosis 3.03 5.87
Autocorrelation: lag 1 0.9045 0.9167
Autocorrelation: lag 2 0.8200 0.8694
Autocorrelation: lag 3 0.7445 0.8343
Autocorrelation: lag 4 0.6796 0.8071
Autocorrelation: lag 5 0.6323 0.7726
Autocorrelation: lag 6 0.5910 0.7405

The table contains the sample mean, standard deviation, skewness, kurtosis, and
the first six autocorrelations for USD-GBP and YEN-USD currency return volatility.
Volatility is proxied by at-the-money implied Black-Scholes volatility. The data are
sampled at a weekly frequency for the period January 24, 1996 through January 28,

2004.
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Table 2.2: Estimation Results for US Dollar-British Pound FX Rate

modcl L -2 AIC oo o o 51 Bo B3

AFF 2266.00 2263.00 0.0330 -4.6953 0.0090
(0.0075) (1.1532) (0.0000)

CEV-CD 2267.64 2264.64 0.0065 0.7982 0.9300
(0.0023) (0.0433) (0.0902)

CEV-LD 2272.18 2268.18 0.0241 -3.3189 0.4910 0.8311
(0.0068) (1.1382) (0.0255) (0.0936)

CEV-ND 2275.54 2270.54 -0.0054 8.1108 -935.037 0.7547 0.9149
(0.0125) (4.4996) (366.754) (0.0422) (0.0946)

SEV-CD 2267.64 2263.64 0.0065 0.0000 0.6372 1.8599
(0.0023) (0.0000) (0.0691) (0.1804)

SEV-LD

SEV-ND 2275.75 2269.75 -0.0048 7.8463 -911.425 0.0040 22.8115 2.7033
(0.0136) (4.8213) (390.871) (0.0035) (9.0927) (1.4611)

The SEV-ND model, which nests the SEV-CD and SEV-LD models, is dX; = (ag+

on X; + 0o X7 + as X Y)dt + \/Bo + BiX; + BoX2dW,. The CEV-ND model, which

nests the CEV-CD and CEV-LD models, is dX; = (ag+ a1 Xy + 0o X2+ as X, H)dt +
By XP2dW,. The AFF model is dX; = (g + a1 Xy )dt + v/ Bo + B1 X;dW;. Tn all cases,
B¢ and a3 were found to be zero and were thus eliminated from the estimation. The
series is Black-Scholes implied variance for 1 month at-the-money options. The data

are sampled at a weekly frequency for the period January 24, 1996 through January

28, 2004.
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Table 2.3: Estimation Results for Japanese Yen-US Dollar FX Rate

modcl L -2 AIC oo o o 51 Bo B3
AFF 1853.11 1850.11 0.0791 -5.6115 0.0359
(0.0158) (1.2540) (0.0000)
CEV-CD 1927.30 1924.30 0.0173 5.3208 1.3055
(0.0045) (0.2023) (0.0691)
CEV-LD 1928.78 1924.78 0.0360 -2.2310 4.4161 1.2620
(0.0120) (1.2993) (0.1743) (0.0712)
CEV-ND 1929.16 1924.16 0.0227 0.3661 -101.771 4.6721 1.2747
(0.0192) (3.2665) (118.345) (0.1833) (0.0720)
SEV-CD 1927.38 1923.38 0.0172 0.0012 40.2130 2.7060
(0.0045) (0.0031) (9.9416) (0.2854)
SEV-LD 1928.89 1923.89 0.0367 -2.2935 0.0016 29.5270 2.6392
(0.0124) (1.3241) (0.0034) (7.7708) (0.2888)
SEV-ND 1929.19 1923.19 0.0239 0.1632 -95.121 0.0008 28.8387 2.6071
(0.0202) (3.4203) (123.256) (0.0036) (7.3183) (0.2933)

The SEV-ND model, which nests the SEV-CD and SEV-LD models, is dX; = (ag +

X, + 0n X2 + as X7 Y)dt + 1/ Bo + 1 X, + B2 X2dW,. The CEV-ND model, which

nests the CEV-CD and CEV-LD models, is dX; = (ag + a1 X + s X? +a3Xt_1)dt+
BoXP2dW,. The AFF model is dX; = (o + a1.X;)dt + /Bo + Br X dW;. In all cases,
8o and a3 were found to be zero and were thus eliminated from the estimation. The
series is Black-Scholes implied variance for 1 month at-the-money options. The data

are sampled at a weekly frequency for the period January 24, 1996 through January

28, 2004.
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Table 2.4: Pairwise Log Likelihood Ratio Tests

Rmodel Umodel df USD-GBP YEN-USD

AFF  CEV-LD 1 12.361 151342
(0.000) (0.000)

CEV-CD CEV-ND 2 16.719 3.711
(0.000) (0.156)

CEV-LD CEV-ND 1 11.803 0.906
(0.001) (0.686)

CEV-LD SEV-ND 1 7.143 0.816
(0.028) (0.665)

CEV-CD SEV-CD 1 0.000 0.151
(0.999) (0.697)

CEV-LD SEV-LD 1 NA 0.320
(0.572)

CEV-ND SEV-ND 1 1.782 0.061
(0.182) (0.802)

The table presents the results of the log likelihood ratio test statistic for compar-
ing nested models and the significance level at which the restricted model can be
rejected. The test statistic is —2<L[(:)R} — L[(:)U]>7 where O is the estimated pa-
rameter vector for the restricted model and @U is the estimated parameter vector

for the unrestricted model. The test statistic is distributed x?[df], where df is the

number of exclusion restrictions.
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Appendix A

Derivations

The total cost function for producer i (equation (1.9) in the text) is given by

1 (&4
ro=r+ (g &

¢
where Hp; = capacity (or, available supply) of producer i, and Qp; = output of
producer .

The ex-post profit of producer i (equation (1.10)) is

a 1 ¢

where P is the forward price, Py is the wholesale spot price, Q% is the forward
sale for producer 7, and Q% is the spot sale for producer i. Notice that the output
for producer ¢, Q) p;, has been replaced by the sum of producer #’s spot and forward
sales, QW. + QF,.

At time t = 1, QF, is known. Differentiating equation (A.2) with respect to

spot sales yields

Omp; —e—
2ow = Pw — alHy — QF — QE) Y. (A.3)

OQ p;
Setting this expression equal to zero and solving for the optimal spot sales

results in equation (1.11)

3

%zmﬁ%(af$f (A4)



At time ¢ = 1, supply and demand must balance,

Ng Np
> Qr = > Qp: (A.5)
=1 i—1

Note that the left hand side s the total system demand, Q”, and on the right hand

side replace Qp; = QW. T QF. to get

Np

Q" = Y (Q%+QF). (A.6)

I=1

Now substitute equation (A.4) into the right hand side (A.6) to get

Q0 = Yglmﬁ (Pw)ﬂ (A7)

— HS—Np (P"W>C“. (A.8)

Solving for the spot price then leads to equation (1.13):

NP ct+l
Finally substituting equation (A.9) into equation (A.4) results in equation (1.14)

HS—QD

W F
Fi F i Np

(A.10)

Producer ¢ is assumed to be a mean-variance profit optimizer with utility

function given by
A
Up,;[ﬂ'pi} = E(ﬂ'pi) — §Var(7rpi), (A]].)

where E(7p;) is the time ¢ = 0 expectation of time ¢ = 1 profits.

Substituting equation (A.4) into equation (A.2) gives

1 _c_
mpi = PrQp;+ Pw (HPi_ng)_ — g7 <1+ )Pvctfl- (A.12)
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Equation (A.11) can then be rewritten as

Upilmpi] = er(sz QPZ>W_F—CL(C+1) 1+ le<pV(Vc+1)j

2 (60 (1))

_é (Hpi - @%)2 Var(Py ) — 5 |@
) <1+%> cov <P V(Vf”)>. (A.13)

+A (HPZ — Q£Z> a(cil
Producer #’s time ¢ = 0 problem fs then to maximize equation (A.13) w.r.t. Q%,,

3UPi [WPi]

S0 Pp — E(Pw)+ A (Hp; — QF;) Var(Pyw) —
Pi

C

Setting this equal to zero and solving for Q%, finally gives,

Pr— E(P 1 cov(Pg, Pw

Qp; = F—(W) + Hp; — ( u ) (A.15)
Var( Py ) a®*(z+1)  Var(Ps)

where x = Tll

The expression for the retailer j’s optimal forward position (text equation
(1.7)) is unchanged from the BL case and will not be derived here, merely repeated

for convenience.

Q . <PF — E(Pw)> PR COV(QR]', Pw) n COV(QR]'PI/V, Pw)
Rj — ’

Var(PW) Var(PW) Val"(Pw) (A16)

where Pp is the (fixed) retail price. Notice that producers and retailers are assumed
to have the same coefficient A for the variance term in their utility functions.

Forward contracts are in zero net supply. Imposing market clearing,

Ngr Np
ZlQﬁj +2Q§i = 0. (A.17)
j= i=
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Define N = Y222 and substitute equations (A.15) and (A.16) into equation (A.17)

to get

0 = N|[Pr— E(Py)] + HVar(Py) cov(Py, PEH)

S
af(z+1)
Prcov(QP, Py) — cov(PwQP, Py). (A.18)

Consider the last fwo ferms in equation (A.18), i.e., the covariance ferms
containing the total system load, Q”. Using the expression for Q@ from equation

(A.8), we have,

N
cov(Q, By) =~ cov(Fy, Pw), (A19)
1
N
cov(PwQP, Py) = HSVar(PW)—a—fcov(P‘va,PW). (A.20)

1

Substituting these expressions in equation (A.18) finally yields the expression

for the equilibrium forward premium:

N T
Py~ B(Pw) = ~= | Prcov(Piy, Piy) - (7« .

) cov(PE Py)| . (A.21)

As in BL, expanding Pj, around the expectation E(Py ), the covariance term

cov(Pg,, Py ) can be approximated lto second order by
1
cov(P%, Py) ~ o [E(Py)]* Y Var(Py) + Stz —1) [E(Py)] ™ Skew( Py \A.22)

Applying this approximation for cov(Pg,, Py ) and cov(P%™, Py ) implies equations

(1.18), (1.19), and (1.20). O

74



Appendix B

Discrete Mode

Consider again the expression for the equilibrium forward premium, equation

(1.17), reproduced here for convienience.

N T
Py~ B(Ry) = 2 PRcov(PITV,PW)(T+1>COV(P§V+1,PW) . (B.1)

This expression involves Two covariances, cov(Pg, Py ), and cov(Pg, Py ). Focus

on the former.

cov(Py, Pw) = B((Py — e ) (P — imy) ). (B.2)
= E<P§/PW> — Wpg, Ry (B.3)
3
= Y Uit — wpe pipy, (B.4)
k=1
where ppz = E(Py;). Similarly,
3
cov(Pt, P) = Y Oi " — ppasi fipyy (B.5)
k=1

where fips1 = E(PE™.
Substitution of equations (B.4) and (B.5) into equation (1.17) results in equa-

tion (1.30) in the text. O
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