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 The conversion of agricultural landscapes into residential developments is a 

prominent form of land use change in Maryland.  Macroinvertebrates were sampled in 

Maryland headwater streams, and used to test for differences in diversity and abundance 

between agricultural and developed sites.  Macroinvertebrate richness was highest in the 

agricultural streams, possibly due to a negative relationship between richness and 

impervious surface cover.  The nature of farming operations and their proximity to the 

stream may contribute to increased richness values. 

 In Chapter 2, I compare macroinvertebrate communities collected with single-

habitat and multi-habitat sampling methods.  Communities were compared using IBI 

scores, and the community variables comprising these IBI’s.  Several community 

variables differed between methods, however the IBI scores calculated using the two 

methods were strongly correlated.  Single-habitat samples had a slightly stronger 

relationship with development, indicating that they may be better for monitoring 

important focal sites. 
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Chapter 1: Changes in macroinvertebrate communities resulting from the development 
 
of agricultural landscapes 
 

ABSTRACT 

 The conversion of agricultural lands into residential developments is currently one 

of the dominant patterns of land use change in the United States.  Both agriculture and 

development have been shown to alter stream macroinvertebrate communities, but 

current research suggests that the impacts of urbanization may be more detrimental to 

stream health.  I examined macroinvertebrate assemblages in Maryland, USA headwater 

streams to determine whether agricultural watersheds support more diverse communities 

than developed watersheds, and to identify specific factors that may be driving 

community changes.  Of 124 macroinvertebrate taxa collected, 25 were found 

significantly more often at agricultural sites than developed sites, while no taxa were 

more tolerant of conditions in urbanizing watersheds.  Macroinvertebrate richness 

(including total, EPT and feeding group variables) responded to land use characteristics, 

with agricultural streams sustaining the highest community diversity.  Decreasing 

richness in developed sites may be a result of a strong negative relationship with 

impervious surface cover.  Positive relationships between richness and riparian forest 

cover at highly developed sites suggest that this factor may help offset the harmful effects 

of urbanization.  When compared to other published estimates of macroinvertebrate 

richness in agriculturally impacted streams, the agricultural sites in this study appear to 

be considerably more diverse.  Possible reasons for the higher richness values in this 

study may be due to a greater proportion of riparian forest adjacent to our sampling 

reaches, and the absence of acute stressors caused by cultivation that affect many 
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agricultural areas.  These overall findings indicate that the preservation of agricultural 

land from development may help conserve biodiversity, and that the nature of farming 

practices may contribute to relatively high diversity in these areas. 

 

INTRODUCTION 

 The expansion of human settlements both globally and in the United States has 

caused large portions of natural forested areas to be cleared for increasingly large and 

intensive agricultural operations (Richards 1990; Dale et al. 2000).  This has been 

followed by the rapid expansion of urban developments into agricultural areas (Douglas 

1994; Dale et al. 2000; Moglen 2000).  It has recently been estimated that as much as 

50% of global lands have now been transformed and/or impacted by human activities 

(Vitousek et al. 1997).  

The ecological consequences of land use change can be severe, and are especially 

prevalent in lotic ecosystems, which integrate environmental impacts over large spatial 

scales (Karr and Chu 1999; Palmer et al. 2000; Nilsson et al. in press).  Tilling practices 

in crop fields can lead to soil erosion (Kang et al. 2001), and runoff from these 

agricultural areas can cause large amounts of fine sediment deposition in nearby streams 

and rivers (Richter et al. 1997).  While sediment deposition has been described as the 

most extensive type of agricultural stream pollution (Cooper 1993), drastically altered 

hydrology is a dominant problem affecting water quality in urbanizing watersheds (Paul 

and Meyer 2001; Palmer et al. 2002).  Specifically, increased impervious surface cover 

associated with development causes greater peak flood discharge volumes, leading to 

changes in stream geomorphology and channel erosion (Booth and Jackson 1997).  
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Physical impacts resulting from land use change are often compounded by excessive 

inputs of chemical pollutants, such as nutrients and pesticides in agricultural systems 

(Schulz and Leiss 1999; Cuffney et al. 2000), or metals, oils and road salts from 

developed catchments (Whipple and Hunter 1979; Wilber and Hunter 1979; Howard and 

Haynes 1993). 

 These anthropogenic disturbances in stream habitats can cause dramatic 

ecological transformations, including changes in ecosystem processes (e.g. Young and 

Huryn 1999; Buffagni and Comin 2000; Gessner and Chauvet 2002) and community 

structure (e.g. Kerans and Karr 1994; Weaver and Garman 1994; Barbour et al. 1996).  

Alterations to macroinvertebrate assemblages have been the most extensively studied 

ecological response to human impacts in lotic environments (Paul and Meyer 2001).  

Land use change has been associated with decreases in macroinvertebrate diversity 

(Whiting and Clifford 1983; Thorne et al. 2000), decreases in overall abundance (Lenat 

and Crawford 1994), increases in the relative abundance of pollution tolerant taxa (Hall et 

al. 2001; Walsh et al. 2001), and changes in the distribution of invertebrate feeding 

groups (Lamberti and Berg 1995).  These types of changes in macroinvertebrate 

community structure have been documented with the conversion of natural landscapes for 

both agricultural uses (Barton 1996; Rothrock et al. 1998; Genito et al. 2002), as well as 

residential development (Lenat and Crawford 1994; Morley and Karr 2002; Stepenuck et 

al. 2002). 

 Stream ecosystem impairment in response to land use change in often evaluated 

by comparing degraded streams with undisturbed reference sites in the same region 

(Reynoldson et al. 1997).  However, finding streams within a limited geographical area 
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that have not been influenced by human activities can be difficult.  In many regions of the 

United States, large tracts of land have been dominated by agriculture for much of the last 

two centuries (Dale et al. 2000), and the prevailing form of land use change is now the 

development of these agricultural areas (e.g. Riebsame et al. 1996).  For example, 

forested land in most counties in the state of Maryland is significantly less than the 

combined area of agriculture and urban development, while urban development has 

increased at the expense of agriculture throughout Maryland during the 1990’s (Moglen 

2000).  

 This general pattern of land use change has caused agricultural areas to be the 

primary form of remaining undeveloped land in many regions of the country.  This in 

turn has led to the establishment of agricultural land preservation programs to prevent 

urban sprawl and promote conservation in nearly every state of the U. S. 

(www.farmlandinfo.org/fic).  For instance, many state governments purchase 

conservation easements from private citizens for the permanent protection of large tracts 

of agricultural land.  Three of the states contributing to the Chesapeake Bay watershed 

that have had agricultural easement programs for more than a decade (i.e. Pennsylvania, 

Maryland and Delaware) have combined to permanently preserve over 530,000 acres of 

agricultural land from more than 4000 privately owned farms 

(www.agriculture.state.pa.us/farmland, www.mda.state.md.us/geninfo/genera3.htm, 

www.state.de.us/deptagri/aglands/lndpres.htm).  Many of these programs advocate the 

conservation value of agricultural preservation, yet ecological research in many areas has 

historically shown that farming practices can be detrimental to stream health (e.g. Barton 

1996; Rothrock et al. 1998; Genito et al. 2002).  It has only recently been suggested that 
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streams in urbanizing areas have compositionally different and less diverse communities 

when compared to assemblages in adjacent agricultural lands (Lenat and Crawford 1994; 

Wang et al. 2000; Stepenuck et al. 2002).   

Determining whether agricultural land preservation has a conservation value for 

lotic ecosystems requires an explicit examination of the ecological differences between 

stream communities in landscapes dominated by agriculture and development.  

Recognizing changes in macroinvertebrate communities at urbanizing sites along this 

gradient could help establish management priorities for the conservation of biological 

diversity.  Furthermore, changes in the diversity of particular invertebrate taxa (i.e. 

sensitive populations and functional feeding groups) could indicate changes in consumer 

resources and identify which types of organisms are particularly susceptible to land use 

change.  Understanding community patterns across this land use gradient is necessary so 

that we can begin to investigate specific factors within agricultural or developed areas 

that are affecting stream ecosystems.  For example, while it has been suggested that the 

influences of impervious surface (Schueler 1994) and riparian forest (Weigel et al. 1999; 

Stewart et al. 2001) contribute to ecosystem health, their relative importance at streams 

along this gradient is unknown.  Identifying whether these types of factors are affecting 

community changes can further allow for the establishment of appropriate restoration 

goals for mediating the harmful effects of land use change. 

In this paper, I use data from watersheds in the Chesapeake Bay drainage area to 

examine differences in macroinvertebrate communities from headwater streams across a 

region dominated by a gradient of agriculture and residential development.  I use this 

information to ask what the ecological impacts of the development of agricultural land 
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are for stream ecosystems, and to look at the effects of specific abiotic land use factors on 

community variables.  To address this question, I: (1) use groups of agricultural and 

developed stream sites to compare community tolerance, diversity and abundance 

between land use types, (2) investigate the strength and shape of the relationships 

between specific land use factors (i.e. impervious surface and riparian forest cover) and 

taxa richness, including the ability of these factors to explain community variation within 

the most impaired stream sites, and (3) use a literature survey to compare agricultural 

streams from this study to other agricultural systems for the purpose of identifying how 

different farming operations may influence diversity.  From these analyses, I hope to 

determine the relative effects of residential development on stream communities in 

agricultural landscapes, and to suggest specific factors within these landscapes that may 

help exacerbate or remediate the negative effects of different land use practices.  This 

will help evaluate the importance of protecting agricultural land from development, and 

help establish appropriate research priorities for managing impaired streams in developed 

watersheds. 

 

METHODS 

Study Sites & Land Use 

 This study took place in the Piedmont region of Maryland, USA, on the outskirts 

of the Washington, DC metropolitan area (Fig. 1).  All sampling sites were located within 

four watersheds (29-68 km2) that ultimately drain into the Chesapeake Bay.  These four 

watersheds were historically undeveloped (all ≤ 10% residential) and dominated by 

agriculture (all > 61%) as recently as 1951.  The southern area of this study region 
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experienced a dramatic increase in residential development (and a corresponding loss of 

agricultural land) as a result of urban sprawl during the 1960’s and 1970’s.  Currently, 

Northwest Branch and Paint Branch (tributaries of the Potomac River) have watersheds 

that are characterized by large amounts of residential development (Fig. 1; 53% and 64%, 

respectively).  Nearly all of the development in these watersheds is low (0.2–2.0 

dwellings/acre) or medium (2–8 dwellings/acre) density residential, with only small 

amounts of high density residential, industrial or commercial land use.  Cattail Creek and 

Hawling’s River are both tributaries of the Patuxent River.  The watershed of the former 

is dominated by agricultural land use (56%), while the latter is a mix of agriculture and 

residential development (36% and 25%, respectively).   

Approximately two thirds of the agricultural land in this region is used for 

pasture, while the remainder is actively cultivated for corn, soybean and winter wheat 

crops.  All four watersheds have relatively similar proportions of deciduous forest (21-

32%), with much of this wooded area found along the riparian corridor of the stream 

network as a result of proactive conservation strategies.  The 30 m buffer surrounding the 

stream network of these four watersheds is 47-68% forested, with the maximum area of 

riparian forest in Paint Branch, the most developed watershed.  The relatively low overall 

percentage of forest in these watersheds results in a primary gradient of agriculture to low 

and medium density residential development across the entire region.  For comparative 

purposes, I included a small (3.24 km2) headwater stream in northwestern Montgomery 

County that has a drainage area dominated by deciduous (59%) and coniferous (28%) 

forest.  This watershed was historically used for agriculture (similar to all other sites used 
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in this study), but was reclaimed for public use and has naturally reforested over the last 

30 years. 

   Sixty-nine sites distributed throughout these four main watersheds were sampled 

for macroinvertebrate communities.  Sampling sites were located near the confluence of 

each tributary joining the stream network that had a drainage area ≥ 2.6 km2, as well as 

immediately above and below all confluences along the downstream network.  The small 

headwater streams on the outlying tributaries (n = 30) were often dominated by single 

form of land use, and these sites were separated for my subsequent analyses of 

invertebrate diversity and abundance.  The length of the reach sampled at each site was 

determined by the distance necessary to include the three riffle habitats necessary for 

macroinvertebrate sampling, but was kept at a minimum of 75m. 

 Land use information for this region (historical and current) was obtained from 

Maryland Office of Planning (MOP) GIS coverages available in the ArcView supplement 

program GISHydro2000 2nd ed. (www.gishydro.umd.edu).  These MOP coverages use 

level II Anderson land use classifications, with 30 m resolution.  For most subsequent 

analyses, land use classifications were grouped into 3 broader categories; agricultural 

(crops+pasture), developed (low, medium and high density 

residential+commercial+industrial), and forest (deciduous+ coniferous).  Streams and 

drainage areas for each of the sampling sites (i.e. subwatersheds) were delineated using 

digital elevation maps (Fig. 1).  Land use percentages were determined for each 

subwatershed, and riparian land use was calculated by examining the land use within 30 

m of the stream along the entire upstream network of each sampling site. 
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Macroinvertebrate Communities 

 Macroinvertebrate communities were sampled from March 15-April 15 in both 

2001 and 2002.  All sites were sampled in both years, except three sites that were 

removed from the project following the 2001 sampling season due to site access 

problems.  Samples were collected throughout each sampling reach using a 0.04 m2 

Surber sampler (0.25 mm mesh).  Two Surber samples were collected at random 

locations within each of three riffle habitats (0.24 m2 total area) at each site.  Consecutive 

riffles at each site were sampled, except where consecutive riffles occurred within a 

distance less than 75 m.  In these cases, alternating riffles were sampled to ensure the 

required minimum reach length. The six individual samples were pooled together, and 

one third of this composite material was subsampled.  Composite samples were preserved 

in the lab using a 10% formalin solution. 

Samples were rinsed from preservative using a 0.5 mm sieve, and all invertebrates 

were removed from detrital organic matter and sediment debris.  All macroinvertebrates 

were identified to the lowest possible taxonomic level under a dissecting microscope 

(100X magnification) and assigned functional feeding group (FFG) designations using 

Merritt & Cummins (1996) and Thorp & Covich (2001).  Most insect taxa were identified 

to the genus level, while most non-insect taxa were identified to class or order.  Fifty 

organisms from the family Chironomidae from each sample were slide-mounted and 

identified to genus in 2001 under a compound microscope (400x magnification) using 

Merritt & Cummins (1996) and Epler (2001) to obtain estimated values of richness and 

density for these taxa.  Chironomid taxa were left at the family level in 2002.   
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Variables related to diversity and abundance were used to examine community 

changes across study sites.  Total taxa richness, density, diversity, and evenness were 

determined for both years.  Diversity and evenness were computed using the Shannon-

Wiener indices: 

(1) Diversity (H’) =  - Σ Pi log Pi 

(2) Evenness (J) =  H’ / log S 

where Pi is the proportion of the total number of individuals occurring in species i, and S 

is the total taxa number.  Richness of Ephemeroptera, Plecoptera and Trichoptera taxa 

(EPT; a conventional group of indicator taxa) was also determined across both years, 

while FFG richness required genus level identification of Chironomidae, and was 

calculated for 2001 only. 

Data Analysis 

The relative sensitivity of invertebrates to land use was tested using the 

presence/absence of each population in subwatersheds dominated by either agriculture (≥ 

50%; n = 22) or residential development (≥ 50%; n = 22).  This was done with a 

technique developed by McCoy and Mushinsky (2002) that uses a chi-square 

contingency table to compare the distribution of each population across these two land 

use groups to the 1:1 distribution expected if an organism does not favor a certain land 

use type.  As an example, taxa “A” was found at 20 sites; 17 agricultural sites, and only 3 

developed sites.  If taxa A did not favor either land use, we would expect it’s distribution 

at 20 sites to be split evenly between 10 agricultural sites and 10 developed sites.  The 

chi-square test indicates that the 17:3 ratio is significantly different from the 10:10 null 

ratio (p = 0.02).  Significant chi-square values (p < 0.10) were used to classify a set of 
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“sensitive” taxa that occurred significantly more often at either agricultural or developed 

sites, a “tolerant” group showing no differences in distribution across these two land use 

types, and “rare” taxa that were found at too few sites for significance testing.  This 

analysis was performed for 2001 only, as genus level information was used for the family 

Chironomidae. 

Thirty headwater streams (2.7–9.2 km2) were used to test for differences in 

macroinvertebrate diversity and density between land use types.  These streams were 

divided into distinct categorical land use groups based on the percentages of agriculture, 

forest, and development in their subwatersheds using cluster analysis with Ward’s 

minimum variance method (Proc Cluster, SAS v8.2).  Differences in total community 

diversity, richness, evenness and density between these land use groups were examined 

across both 2001 and 2002 using a 2x2 repeated-measures analysis of variance 

(ANOVA), with autoregressive covariance structure to account for temporal 

autocorrelation across sampling years (Proc Mixed, SAS v8.2).  Chironomid taxa were 

grouped at the family level in these analyses, for the purpose of standardizing taxonomic 

resolution across both years.  Differences in EPT richness between land use groups were 

similarly tested across sampling years using repeated-measures ANOVA, while 

differences in FFG richness were tested in 2001 only using simple one-way ANOVA’s.  

Tukey’s test for pairwise comparisons was used to test for differences between individual 

land use groups when a significant overall main effect of land use was found.  

Simple linear regression models were used to examine the strength of the 

relationships between subwatershed land use (i.e. agriculture, development and 

impervious surface cover) and total macroinvertebrate richness throughout all sampling 
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sites (Proc Reg, SAS v8.2).  Linear models were also used to examine the relationship 

between riparian forest cover and richness at the most developed sites.  Riparian forest 

models for developed sites were tested separately using groups with 15-20% and >25% 

impervious surface to separate the confounding influences of this variable on 

macroinvertebate richness. 

To compile estimates of macroinvertebrate richness (total and EPT) in other 

agricultural systems, I used the ISI Web of Science literature database 

(http://isi5.newisiknowledge.com) to search for articles containing the keywords 

“agriculture” or “agricultural” and “macroinvertebrate”.  This search returned 88 articles 

that were subsequently considered.  All relevant articles (i.e. empirical studies 

investigating macroinvertebrates in agriculturally impacted streams) were examined, and 

richness values were estimated from graphical, tabular or text values. 

 

RESULTS 

 A total of 124 macroinvertebrate taxa were collected throughout the four 

watersheds examined in this study, including 42 EPT taxa.  The chi-square contingency 

analysis revealed 25 “sensitive” taxa in 2001 that were found significantly more often at 

agricultural sites than at developed sites (Table 1; p < 0.10).  In contrast, no 

macroinvertebrate taxa were found significantly more often at developed sites than 

agricultural sites (all p > 0.10).  A total of 49 taxa showed no significant difference in 

their presence at agricultural and developed sites (“tolerant” taxa), while 50 “rare” taxa 

were found at too few sites for significance testing.  I further examined the 

presence/absence of each of the sensitive taxa throughout all study sites, and recorded the 
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maximum amount of agriculture or development occurring among the subwatersheds that 

each taxa was found in (Figure 2).  These comparisons indicate that while all invertebrate 

taxa are found in areas dominated by agriculture, many can only tolerate moderate 

amounts of development. 

The cluster analysis for the 30 headwater streams revealed five distinct underlying 

groups (Fig. 3).  The first of these land use groups was limited to our single forested 

subwatershed.  A second group was represented by high percentages of agricultural land 

use, with relatively low amounts of residential development (n = 11).  The “developed” 

cluster included sites that have large proportions of residential development, and a 

complete absence of agriculture (n = 6).  The final two groups have sites with relatively 

mixed land use, the first with low percentages of development and moderate amounts of 

agriculture (n = 6), and the second with low percentages of agriculture and moderate 

amounts of development (n = 6).  An examination of historical land use patterns within 

these groups indicates that all sites were similarly agricultural and undeveloped until 

approximately 1960 (Fig. 4).  The large amount of variability in development and 

agriculture within the land use groups around 1963 indicates a period of localized and 

rapid land use change at this time.  In 1970 there is a distinct separation in mean 

residential development between the two more urbanized groups, followed by the 

complete separation of development patterns for all four groups around 1990 (Fig. 4). 

These categorical groups (excluding the single forested site) were used to test for 

differences in macroinvertebrate communities resulting from land use.  There was a 

significant main effect of land use on the diversity and richness of the entire community 

(Table 2; p < 0.0001), with developed sites having lower richness and diversity than all 
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other land use groups across both sampling years (Fig. 5).  In both cases there was no 

effect of sampling year, but there was a significant interaction between year and land use 

group (Table 2; p < 0.05).  This was due to a change in the magnitude of differences in 

richness and diversity values between land use groups during the 2002 sampling season.  

There was no significant effect of land use when we examined changes in community 

evenness or community density (Table 2; p > 0.05). 

Very similar community patterns were found when examining differences in 

richness between specific macroinvertebrate groups.  Mean EPT richness varied between 

land use groups (Table 2; p < 0.0001), with agricultural sites having significantly more 

taxa than developed sites across both sampling years (Fig. 5; p < 0.0001).  The two mixed 

land use groups had similar mean EPT richness values, intermediate between the 

agricultural and developed sites.  There was no difference in EPT richness between 

sampling years, nor was there an interaction between year and land use group (p > 0.05).  

There was a significant effect of land use on the richness of all functional feeding groups, 

with the exception of shredders (Table 2).  Collector, filterer, predator and scraper 

richness were all significantly higher in the agricultural streams compared to the 

developed sites (Fig. 5).  The single forested site had total and EPT richness values that 

were intermediate to the agricultural and developed groups.  This stream also had 

intermediate values of collector, predator and scraper richness, with relatively high 

shredder richness and relatively low filterer richness compared to all other land use 

groups. 

The amount of development in each subwatershed explained 52% of the variation 

in total taxa richness in 2001 (Fig. 6a; p < 0.0001).  The strong negative linear 
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relationship between impervious surface cover and richness may help explain decreasing 

diversity in developed subwatersheds (Fig. 6b; p < 0.0001).  It has been previously 

suggested that thresholds may exist in this relationship, whereby richness declines only 

above 10-15% imperviousness (Schueler 1994), or that decreases in diversity will level 

off above 10-15% impervious cover (Stepenuck et al. 2002).  Separate regression models 

on sites with <15% imperviousness (r2 = .30, p = 0.02) and >15% imperviousness (r2 = 

0.55, p = 0.009) suggest an absence of thresholds, and linear declines in richness 

throughout the entire range of impervious surface cover. 

Despite the strong relationships between richness and land use throughout all 

sites, there appeared to be considerable variation in richness within land use groups 

affected by development (Fig. 6).  A great deal of this variation is explained by the 

amount of forest within the 30 m riparian zone of the upstream network of each site (Fig. 

7).  Richness in developed sites was positively related to riparian forest when examined 

separately for groups of moderate (15-20%; r2 = 0.82, p = 0.03) and high (>25%; r2 = 

0.60, p = 0.04) impervious surface cover.  These groups were tested separately to remove 

the confounding effect of impervious surface on diversity, and the subsequent 

relationships between richness and imperviousness within each group were non-

significant. 

The literature survey produced 31 journal articles from which I was able to 

estimate total and/or EPT richness values in agricultural stream systems (Table 3).  Mean 

richness estimates from these studies were separated by geographical region and level of 

taxonomic resolution, and compared to richness values from agricultural streams in the 

current study (Fig. 8).  It is evident that the richness values from this study (both total and 
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EPT) are within the upper range of values found both globally and within the United 

States, regardless of taxonomic resolution.  Mean richness values from this study also 

appear to be higher than the combined means of other published studies (Fig. 8), although 

these differences were not statistically tested.   

 

DISCUSSION 

 Agricultural areas represent the last remaining undeveloped land in many regions 

of the United States (Riebsame et al. 1996; Moglen 2000; Dale et al. 2000), and this has 

led to the establishment of agricultural land preservation programs throughout the 

country.  The goals of many of these programs include biological conservation, yet the 

benefits of agricultural preservation for lotic ecosystems have yet to be explored.  Only 

recently has there been research to suggest that community health in agricultural streams 

may be better than that in adjacent urbanizing areas (e.g. Wang et al. 2000; Stepenuck et 

al. 2002).  Understanding how macroinvertebrate communities change across this land 

use gradient is essential for establishing management priorities and stream restoration 

strategies.  My findings suggest that agricultural streams in Maryland have more diverse 

communities when compared to streams in developed watersheds.  I show that 

impervious surface cover may be causing the decreases in diversity at developed sites, 

although there is evidence to suggest that the presence of riparian forest may mitigate the 

impacts of development.  My data, combined with the results of a literature survey, 

suggest that the relative health of agricultural streams may depend on the nature and 

management of agricultural operations. 
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Macroinvertebrate abundance (e.g. Hachmoller et al. 1991; Hall et al. 2001) and 

the dominance of certain taxa (Karr and Chu 1999) can be used as indicators of stream 

health.  However, total macroinvertebrate density and evenness throughout these sites did 

not show any significant differences between land use groups (Table 2).  This is likely 

due to a relatively high density of chironomid and oligochaete taxa in both agricultural 

and residential areas.  This explanation is supported by other studies that have found an 

increased relative abundance of these groups in disturbed streams (Whiting and Clifford 

1983; Hall et al. 2001).   

Of the 124 taxa found throughout the study area, 25 were found significantly 

more often at agricultural sites than at developed sites, and not a single population was 

found more often in urbanizing watersheds.  This indicates that many taxa are sensitive to 

the development of farmlands, and that no organisms survive better in residential areas 

when compared to agricultural streams.  The relative sensitivity of invertebrate 

populations to development is supported by the diversity patterns found along this land 

use gradient.  Diversity and richness are strong and effective measures that are often used 

to assess anthropogenic impacts on macroinvertebrate communities (eg. Kerans and Karr 

1994; Stribling et al. 1998; Barbour et al. 1996).  Invertebrate diversity and richness were 

significantly lower at developed sites, suggesting the localized disappearance of several 

invertebrate populations in these streams (Fig. 5).  For both total community and EPT 

taxa groups, agricultural streams sustained approximately twice the richness of 

invertebrate taxa compared to developed sites.  The pattern of decreased richness among 

these developed stream sites was also evident within all of the feeding groups except for 

the shredder taxa, indicating that most FFG’s were negatively affected by development.  
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Decreased functional group richness could have important consequences if there is a top-

down relationship between macroinvertebrate consumer diversity and stream ecosystem 

processes.  Invertebrate consumers do influence periphyton growth and decomposition 

rates (e.g. Lamberti et al. 1995; Jonsson and Malmqvist 2000), and relationships between 

diversity and function have previously been demonstrated in stream systems (Cardinale et 

al. 2002).  This overall decrease in richness (including EPT and FFG taxa) with 

development in agricultural landscapes indicates that agricultural land preservation may 

be an important practice for maintaining stream biodiversity. 

Interestingly, macroinvertebrate richness values in the single forested stream were 

similar to or less than the mean richness values at the agricultural sites, with the 

exception of shredder taxa richness.  This may be partially due sampling design, with 

macroinvertebrate samples taken from riffle habitats only.  Coarse riffle substrates sustain 

a large abundance of invertebrate groups (i.e. scrapers and collectors) that feed on the 

algae and bacteria that grow primarily in this habitat.  Closed tree canopies in forested 

headwater streams should lead to relatively low algal productivity in riffles, and cause 

assemblages to be dominated by invertebrates that feed on detrital leaf inputs (Vannote et 

al. 1980).  Thus, macroinvertebrate diversity in forested streams could be greater than 

agricultural streams when all stream habitats (i.e. leaf packs, woody debris) are sampled.  

This is supported by Lenat and Crawford (1994), who found comparable 

macroinvertebrate richness in riffle samples of agricultural and forested sites, but 

significantly greater richness in forested areas when multiple habitats were sampled. 

The finding that agricultural streams sustain relatively diverse communities 

compared to those in residential landscapes has been recently supported by other 
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empirical research.  Wang et al. (2000) and Stepenuck et al. (2002) examined stream 

communities across a similar land use gradient in Wisconsin, and found that 

macroinvertebrate and fish diversity, respectively, decreased with the amount of 

residential and commercial development in a watershed.  Theses authors suggested that 

one of the principal factors contributing to decreased diversity in these landscapes was 

the quantity of impervious surface cover.  I also found a highly significant negative 

relationship between macroinvertebrate richness and imperviousness in Maryland streams 

(Fig. 7a).  Impervious surface cover in the highly developed subwatersheds examined in 

this study (all >25%) significantly exceeds levels that were implicated in community 

degradation in the Wisconsin stream sites.  Schueler (1994) suggests that 

macroinvertebrate diversity will decline drastically once a threshold of 10-15% 

impervious surface cover is reached.  In contrast, Stepenuck et al. (2002) demonstrated 

that decreases in macroinvertebrate richness leveled off above 10-15% impervious 

surface cover.  My data indicates a distinct linear relationship, even when I only 

considered sites with low levels of imperviousness (<15%).  Furthermore, richness 

continues to decrease dramatically even at highly developed sites.  This pattern suggests 

that there may be some level of imperviousness in developed watersheds that will cause 

water quality to be completely inhospitable for macroinvertebrate survival.  The absence 

of the previously suggested thresholds shows that the negative effects of imperviousness 

must be considered even at the early stages of development, and that sustaining aquatic 

life in highly developed watersheds will require active management of stormwater flow. 

While impervious surface cover in subwatersheds may be an important factor 

causing decreases in richness, it appears that the amount of riparian forest along the 
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stream channels of these subwatersheds may mitigate the impacts of development (Fig. 

7b).  Positive relationships between the amount of riparian buffer and richness were 

apparent within both groups of developed sites having similar levels of imperviousness.  

These riparian forests may alleviate the impacts of development in several ways, 

including decreasing erosion due to bank stabilization by the vegetation, and increased 

consumer resources from detrital leaf inputs.  Recognizing the relationships between 

richness and both imperviousness and riparian forest can have important implications for 

stream management.  Restoration strategies that take these factors into account, such as 

stormwater management ponds or riparian reforestation, may be extremely useful in 

alleviating the harmful affects of development. 

Maryland agricultural streams do have more diverse communities than those in 

adjacent urbanizing areas.  Nevertheless, agricultural watersheds represent human-altered 

ecosystems that can receive large inputs of both chemical (Schulz and Leiss 1999; 

Anderson et al. 2003) and sediment (Davis et al. 2003) pollution.  Several previous 

studies have found that macroinvertebrate communities in agricultural streams are 

degraded compared to natural streams (Lenat and Crawford 1994; Roth et al. 1996; 

Rothrock et al. 1998; Genito et al. 2003).  Understanding how communities in Maryland 

agricultural streams compare to those from other agricultural systems is essential for 

pinpointing specific factors in farming landscapes that may contribute to elevated 

diversity.  Maryland agricultural streams were found to have higher richness than most 

other agricultural streams, suggesting comparatively healthy invertebrate communities in 

the current study.   
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Watzin and McIntosh (1999) suggest that the impact of agriculture on 

macroinvertebrate community health will vary depending on the type of agriculture and 

its proximity to the stream.  The agricultural subwatersheds examined in this study were 

dominated by pasture that was typically separated from the stream network with riparian 

buffers, thus avoiding many of the harmful impacts that have been associated with 

cultivation.  Ten of the eleven agricultural sites had uninterrupted riparian forests 

throughout the sampling reaches, and the average agricultural site had 44% forest within 

the riparian zone of the entire upstream network.  Prior research has shown the usefulness 

of forested riparian buffers for removing chemical (Lee et al. 2003) and sediment 

(Muscott et al. 1993; Osborne and Lovacic 1993) pollution in agricultural areas.  

Furthermore, Weigel et al. (1999) and Stewart et al. (2001) have specifically indicated the 

importance of forested buffers in agricultural areas for maintaining macroinvertebrate 

communities.  Although there was not a significant linear relationship between richness 

and forested buffer within the agricultural streams (as was found within the developed 

sites), this may be a result of less variability in riparian forest among the agricultural 

sites.   

 Of the agricultural systems examined in the literature survey, only four had total 

or EPT richness higher than the mean richness values from this study (i.e. Lenat and 

Crawford 1994; Richards and Host 1994; Clenaghan et al. 1998; Delong and Brusven 

1998).  A closer examination of these systems reveals similar qualities to those present in 

the Maryland agricultural streams.  While specific information on riparian forest cover at 

these sites was generally unavailable, the watersheds themselves were 31-77% forested.  

All of these sites had less than 50% crop cultivation, in contrast to many of the other 
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studies considered (Table 3).  The combination of relatively low amounts of crop cover 

and high proportions of forest in these four systems and the Maryland agricultural sites 

could prevent harmful impacts from specific agricultural stressors that have been causally 

implicated in decreased community health, such as pesticides (Barton and Metcalfe-

Smith 1992; Liess and Schulz 1999), irrigation (Armitage and Petts 1992; Koetsier 2002), 

and salinization (Williams et al. 1991).   

 The results of the field study presented here show that agricultural streams in 

Maryland support healthy communities compared to adjacent developed sites, and 

indicate that agricultural land preservation may be helpful for maintaining biodiversity.  

Furthermore, the literature survey suggests that these Maryland agricultural streams are 

comparatively diverse relative to other agricultural systems.  This suggests that the 

relative health of macroinvertebrate communities in agricultural streams may depend on 

the nature and management of farming operations.  The low macroinvertebrate richness 

in developed subwatersheds may be a consequence of high levels of impervious surface 

cover, though it appears that riparian forest at these sites may alleviate some of these 

negative impacts.  Focusing on restoration strategies in developed areas that diminish the 

effects of impervious surface cover and riparian deforestation may be particularly 

successful in maintaining community diversity.  Establishing a direct causal link between 

these variables and invertebrate community health will require more research, but the 

strength of the relationships presented here justifies the further exploration of these 

factors. 
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Table 1.  Macroinvertebrate taxa found throughout all 69 sampling sites, and their 

frequency of occurrence during 2001 (2002 Chironomidae were only identified to the 

family level).  Taxa were considered “sensitive” if they were found significantly more 

often at 22 agricultural sites when compared to 22 developed sites (p < 0.10).  “Tolerant” 

taxa were not found significantly more often at either agricultural or developed sites.  

Rare taxa (with frequency of occurrence) were not represented at enough sites in 2001 to 

determine significant differences between 22 agricultural and 22 developed sites.  Rare 

taxa with zero frequency of occurrence were found only in the 2002 sampling season.  

Invertebrate order (ORD) classifications are; co = Coleoptera, di = Diptera, ep = 

Ephemeroptera, me = Megaloptera, ot = other (non-insect), od = odonata, pl = plecoptera, 

tr = trichoptera.  Functional feeding group (FFG) designations are; c = collector, f = 

filterer, p = predator, sc = scraper, sh = shredder. 

  

TAXA 

Total 
# of 
Sites 
(/70) 

# of 
Ag 

Sites  
(/22) 

# of 
Dev 
Sites  
(/22) 

ORD FFG     TAXA 

Total 
# of 
Sites 
(/70) 

# of 
Ag 

Sites  
(/22) 

# of 
Dev 
Sites  
(/22) 

ORD FFG 

SENSITIVE TAXA          TOLERANT TAXA (CONT)     

 
Parametriocnemus 
sp. 53 22 8 di c     Stenonema sp. 52 21 10 ep sc 

 Tvetenia sp. 50 22 8 di c     Optioservus sp. 51 21 11 co sc 

 Neophylax sp. 47 22 6 tr sc     Polypedilum sp. 49 19 14 di sh 

 Stenelmis sp. 41 20 6 co sc     Hemerodromia sp. 47 18 13 di p 

 Amphinemura sp. 38 21 2 pl sh     Clinocera sp. 45 13 16 di p 

 
Paraleptophlebia 
sp. 34 19 2 ep c     Chelifera sp. 43 18 14 di p 

 Shipsa sp. 31 14 2 pl sh     Tanytarsus sp. 43 19 11 di f 

 Baetis sp. 30 19 1 ep c     Tanypodinae 42 15 9 di p 

 Chimarra sp. 30 16 2 tr f     Eukiefferiella sp. 41 15 7 di c 

 Glossosoma sp. 30 18 4 tr sc     Tipula sp. 37 12 13 di sh 

 Helichus sp. 30 16 1 co sc     Ceratopsyche sp. 36 19 8 tr f 

 Hydrachnida  29 14 4 ot p     Hydrobaenus sp. 35 8 10 di sc 

 Serratella sp. 25 17 0 ep c     Diplectrona sp. 31 10 7 tr f 

 Acerpenna sp. 22 10 1 ep c     Ferrissia sp. 31 8 10 ot sc 

 Isoperla sp. 22 13 1 pl p     Turbellaria 31 13 8 ot p 

 Psephenus sp. 22 11 2 co sc     Nigronia sp. 29 11 8 me p 
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 Leuctra sp. 21 11 2 pl sh     Stegopterna sp. 27 10 3 di f 

 Rhyacophila sp. 20 11 0 tr p     Eurylophella sp. 25 5 9 ep c 

 Strophopteryx sp. 15 7 0 pl sh     Bezzia sp. 23 11 3 di p 

 Leucrocuta sp. 11 9 0 ep sc     Corbicula sp. 23 8 4 ot f 

 Nixe sp. 11 8 0 ep sc     Copepoda sp. 20 2 9 ot c 

 Acentrella sp. 9 5 0 ep c     Microtendipes sp. 20 10 4 di f 

 Hexatoma sp. 7 5 0 di p     Theinemanniella sp. 20 8 4 di c 

 Limnophila sp. 6 5 0 di p     Corynoneura sp. 18 6 2 di c 

 Epeorus sp. 5 5 0 ep sc     Diamesa sp. 18 4 5 di c 

TOLERANT           Arigomphus sp. 16 5 3 od p 

 Oligochaeta  68 22 21 ot c     Parakiefferiella sp. 15 7 3 di c 

 
Cheumatopsyche 
sp. 67 22 21 tr f     Culicoides sp. 12 5 5 di p 

 Antocha sp. 65 22 20 di c     Pilaria sp. 12 5 1 di p 

 Hydropsyche sp. 65 21 20 tr f     Rheocricotopus sp. 12 2 8 di c 

 Orthocladius sp. 64 21 20 di c     Chrysops sp. 11 7 2 di c 

 Nematoda 62 22 18 ot      Probezzia sp. 11 7 2 di p 

 Simulium sp. 62 22 17 di f     Ceratopogon sp. 9 7 1 di p 

 
Rheotanytarsus 
sp. 60 21 18 di f     Dolophilodes sp. 9 1 5 tr f 

 Oulimnius sp. 59 22 15 co sc     Amphipoda 8 2 3 ot sh 

 Cricotopus sp. 57 16 21 di sh     Isopoda  8 3 2 ot c 

 Ephemerella sp. 55 22 11 ep c     Sialis sp. 6 4 1 me p 

  Prosimulium sp. 52 19 11 di f                   

Rare taxa:  Pycnopsyche sp. (10), Ameletus sp. (9), Dicranota sp. (8), Psychomyia sp. (7), Acroneuria sp. (6), Dubiraphia sp. (6), Hirudinea (6),  

Macronychus sp. (6), Cambaridae (5), Ephemera sp. (5), Polycentropus sp. (5), Clioperla sp. (4), Collembola (4), Cryptochironomus sp. (4),  

Potthastia sp. (4), Psilometriocnemus sp. (4), Brillia sp. (3), Diploperla sp. (3), Eccoptura sp. (3), Isonychia sp. (3), Neozavrelia sp. (3),  

Promoresia sp. (3), Sphaeromias sp. (3), Sublettea sp. (3), Caenis sp. (2), Diplocladius sp. (2), Ectopria sp. (2), Endochironomus sp. (2),  

Physidae (2), Stempellina sp. (2), Stempellinella sp. (2), Stenochironomus sp. (2), Cardiocladius sp. (1), Chaoborus sp. (1), Cladotanytarsus sp. (1),  

Corydalus sp. (1), Curculionidae (1), Habrophlebia sp. (1), Hydrophilus sp. (1), Paratanytarsus sp. (1), Planorbidae (1), Stenacron sp. (1),  

Stratiomys sp. (1), Ancronyx sp. (0), Cyrnellus sp. (0), Drunella sp. (0), Habrophlebiodes sp. (0), Lepidoptera (0),  Leptophlebia sp. (0),  

Psilotreta sp. (0)               
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Table 2.  Results of ANOVA mixed models on macroinvertebrate variables using land 

use groups at 29 headwater streams (agricultural, n = 11; mixed-agricultural, n = 6; 

mixed-developed, n = 6; developed, n = 6), with the forested site excluded.  Models using 

all taxa and EPT taxa were tested using repeated-measures ANOVA across both the 2001 

and 2002 sampling seasons, with chironomid taxa identified to the family level.  

Functional feeding group models include genera level chironomid identification, and use 

the 2001 data only.  For land use main effects: numerator degrees of freedom (ndf) = 3, 

and denominator degrees of freedom (ddf) = 25.  For main effects of year: ndf = 1, ddf = 

23.  For year x land use interaction terms: ndf = 3, ddf = 23.  Italicized F-ratios are 

significant at p < 0.05. 

Response F-ratio p F-ratio p

Land Use 0.45 0.72 2.68 0.07
Year 19.00 0.0002 0.04 0.85
LU*Year 0.27 0.84 0.63 0.6

Land Use 18.51 <0.0001 10.74 0.0001
Year 0.62 0.44 0.63 0.44
LU*Year 3.99 0.02 3.19 0.04

Land Use 13.85 <0.0001 8.18 0.0006
Year 0.07 0.8 - -
LU*Year 2.67 0.07 - -

Land Use 9.73 0.0002 8.34 0.0005

Land Use
19.44 <0.0001 1.97 0.14

(Filterer Richness) (Predator Richness)

(Shredder Richness)(Scraper Richness)

Model

(Total Density) (Total Evenness)

(Total Richness) (Total Diversity)

(EPT Richness) (Collector Richness)

Model
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Table 3.  Results of a literature search for published articles providing macroinvertebrate 

richness values in agriculturally impacted streams.  Articles were included if: (1) the 

studies were in lotic systems, (2) were empirical in nature, (3) did not have significant 

land use impacts other than agriculture (e.g. urban, mining), and (4) macroinvertebrate 

richness could be estimated from text, graphical or tabular values.  In many cases, only a 

subset of sites were used from a study according to the author’s indication of streams 

under agricultural influences. 

Study Geographical 
Location 

Land Use Description and 
Extent 

Taxonomic 
Resolution 

Estimated 
Mean 
Total 

Richness 

Estimated 
Mean 
EPT 

Richness 

Determination of Mean 
Richness 

Anderson et al. 
(2003) California 

Row crops throughout 
watershed, heavy agricultural 
impacts from local tributaries 

Genus or 
Species 16.9 - 

Mean of tabular values for 
composite samples at stations 

2, 3, and 4 

Armitage and 
Petts (1992) 

United 
Kingdom 

Agriculture influenced sites 
subject to spray irrigation and 

runoff from fertilized land 

"Genus" 
(family and 

species 
mean) 

21 - 

Mean of graphical values 
(estimated from mean of 

species and  family richness) 
for WP, EP and CD sites 

Barton and 
Metcalfe-

Smith (1992) 
Quebec 

Grain crops dominate 
watersheds of sampling sites; 

influences of pesticides, 
fertilizers and tile drainage 

Unknown 
(lowest 

possible) 
40 - 

Mean of estimated graphical 
values for July Surber samples 

at sites 31 and 32 

Bis et al. 
(2000) Poland 

50-86% Agriculture, 6-36% 
forest throughout study 

watersheds 

Unknown 
(lowest 

possible) 
16.4 - Mean of estimated graphical 

values for all sites 

Brewin et al. 
(2000) Nepal 

39-98% Terraced agriculture 
(mostly rice and maize),   2-

60% forest throughout 
watersheds  

Family 22.7 - 
Mean of tabular values of 
winter and pre-monsoon 

samples at Likhu Khola sites 

Brown and 
May (2000) California 

Sites in agricultural drainages 
or streams affected by 

agriculture 
Family 17 6 

Mean richness given for 
Twinspan group "drain 1"; may 

exclude some rare taxa 

Caruso (2002) New Zealand 
One site (of 12 sites sampled) 
described as an  "agricultural" 

catchment  
Unknown 35.5 - 

Mean of endpoints of the range 
of richness values (34-37) 
given at agricultural site 

Clenaghan et 
al. (1998) Ireland 

25% Agriculture; 40% forest 
(conifer plantation); 35% 
moorland (sheep grazing) 

throughout watershed 

Species 50 - Estimated mean from graphical 
values for all sites 

Corkum (1996) Ontario Dominated by agricultural land Family 20 8 

Richness values obtained from 
graphical density plots at 3 

agricultural sites using natural 
rocks 
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Crane et al. 
(1995) 

United 
Kingdom 

Cereal crops, orchards, grazed 
pastures throughout watershed; 

some sewage influences 
Family 13.9 2.6 

Mean of richness values 
obtained from taxa density 

tables for all sampljng stations 

de Billy et al. 
(2000) France 

Upper portion of catchment 
dominated by meadows used 

for cattle grazing 
Genus 24.4 - 

Mean of tabular values for 
Spring and Winter samples for 

all sites 

Delong and 
Brusven (1998) Idaho 

43% Crop land 
(wheat/pea/barley rotation), 
13% grazing pasture, 44% 

woodland throughout 
watershed 

Genus 50.8 24.8 
Mean of tabular values for all 

sites (after richness 
standardized to genus level) 

Dovciak and 
Perry (2002) Minnesota 

Corn-soy crop rotation and 
hog-cattle production 

throughout watersheds 
Genus - 7 

Estimated mean from 
scatterplot values throughout 

all 68 study sites 

Genito et al. 
(2002) Pennsylvania 

Overall study area land use is 
57% cropland, 35% forest, and 

8% permanent pasture 
Genus 10 - 

Estimated mean from 
scatterplot values of all sites 

with >50% agriculture 

Kay et al. 
(2002) Australia 

Most sites located in wheat and 
wool growing agricultural 

areas  
Family 13.8 - 

Mean of average richness 
values given for 7 site groups 
(weighted by site number in 

group) 

Koetsier 
(2002) Idaho 

Irrigated agricultural land in 
watershed, streams receive 

return water from fields 
Species 8 - 

Mean of estimated graphical 
values for sites MC and ICI in 

winter samples 

Lenat and 
Crawford 

(1994) 

North 
Carolina 

48% Row crops, 5% grasslands 
and pasture, 31% forest 
throughout watershed 

Unknown 
(probably 
species) 

60 11.3 
Mean richness values given for 
kick-net samples in agricultural 

catchment 

Liess and 
Schulz (1999) Germany Beet, barley and wheat crops 

dominate region Species 11 - 

Mean of estimated graphical 
values for 2 months prior to 
insecticide contamination at 

site 

Matagi (1996) Uganda 
Region influenced by fallow 
agriculture with some bush 

land 
Genus 10 2 

Mean is number of taxa found 
at B1 sampling site across 

entire year 

Monaghan et 
al. (2000) Ecuador 

Mixed forest and pasture, some 
crop land throughout study 

area 
Family 23 - 

Mean of graphical values for 
agriculturally impacted 

"modified" sites 

Neumann and 
Dudgeon 
(2002) 

China 
Vegetable and flower crop 

lands near sampling stations, 
secondary forest upstream 

Species 8.8 - 
Mean of estimated graphical 
values for 3 downstream sites 

in March and April 

O'Connor and 
Lake (1994) Australia 

Sheep and cattle grazing, 
broad-acre cereal cropping  

dominate watershed 
Species 20 - 

Estimated mean from graphical 
values for all sites across all 

sampling dates 

Richards and 
Host (1994) Minnesota 

23% Agriculture, 77% forest in 
watershed (but agriculture 

heaviest near watershed outlet) 
Genus 25 18 

Richness values given for East 
Branch Knife River 
(agricultural) site 
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Rothrock et al. 
(1998) Montana 

Region subject to irrigation of 
hay and alfalfa crops; 

Livestock production at various 
intensities 

Genus or 
Species 30.8 12.3 

Mean of tabular values for 
Cottonwood, Nevada, Rock 

and Union tributaries 

Shieh et al. 
(1999) Colorado 

Irrigated agriculture (corn, hay, 
wheat, beans, barley) dominate 
region, some urban influence 

Genus 13 - 
Mean of estimated graphical 
values for sites 3, 4, and 6 

(agriculturally impacted sites) 

Sorace et al. 
(1999) Italy 

Tributary characterized as an 
agricultural zone, with some 
meadows and uncultivated 

areas 

Unknown 7 1 Richness value given at Paglia 
River (agricultural) site 

Stewart et al. 
(2001) Wisconsin 

20-90% agricultural land use 
throughout 38 watersheds used 

in study 
Species 18 5.2 

Median total richness given;  
EPT richness back-calculated 
from median "% EPT species" 

value 

Walsh et al. 
(2001) Australia 

Hinterlands; dominated by a 
mixture of agriculture and 

forest, with some small urban 
centers 

Unknown 
(lowest 

possible) 
10 5 

Estimated means from 
scatterplot values for hinterland 

sites in Spring riffle samples 

Weigel et al. 
(2000) Wisconsin 

Sites in valleys dominated by 
agriculture; riparian land use 

varying from wooded to 
continuous grazing 

Genus 15.6 - Mean of tabular values for 
generic richness for all sites 

Williams et al. 
(1991) Australia 

Agriculture (and  vegetation 
clearing) throughout river 
catchments; influenced by 

agricultural salinization 

Genus or 
Species 23.3 3.5 

Mean of tabular 
presence/absence values for all 
sites (except estuarine stations) 

Wohl and 
Carline (1996) Pennsylvania 

50-85% Agricultural land 
throughout watersheds of all 

sites (mostly pasture) 
Family 12.8 - 

Mean of 3 median richness 
values for each site during May 

sampling period 
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FIGURE LEGENDS 

Figure 1.  Location of the four watersheds containing the 69 macroinvertebrate sampling 

sites. Map shows the position of the study region within the Chesapeake Bay drainage 

basin, as well as the general patterns of agriculture, forest and development in the four 

study watersheds.  Locations of the sampling sites are shown with open shapes, with stars 

representing the 30 headwater sites.  An example of subwatershed delineation used to 

estimate land use percentages (designated by heavy black lines) is given at the 8 

headwater streams in Northwest Branch. 

 

Figure 2.  The maximum tolerance of sensitive taxa for agricultural land use and 

development, ranked according to their frequency of occurrence during the 2001 

sampling season.  Bars represent the maximum amount of each land use in the most 

agricultural or developed site that a particular taxa was found in (land use quantities 

expressed as the proportion of the most agricultural/developed subwatershed throughout 

all 70 sampling sites). 

 

Figure 3.  Results of a cluster analysis performed on headwater stream sites (n = 30), 

based on the percentages of forest, agriculture and development within each 

subwatershed.  Clusters (ellipses surrounding individual sites) are plotted against 

percentages of agriculture and development to demonstrate their distinct separation along 

these two variables. 

 



30 

 

Figure 4.  Historical changes in subwatershed development and agriculture since 1938 for 

the four land use groups (agriculture = 11; mixed-ag = 6; mixed-dev = 6; developed = 6) 

used to compare macroinvertebrate communities.  Symbols represent mean values of 

development (+/- SE).   

 

Figure 5.  Mean invertebrate total, EPT and FFG richness (+/- SE) for land use groups.  A 

significant main effect of land use was found for all richness variables (all p < 0.001) 

except shredder richness.  Bars connected by a line indicate no significant differences 

between land use groups (Tukey’s p > 0.05).  Richness values for the single forested site 

were not included in the ANOVA models, and are shown here strictly for comparative 

purposes. 

 

Figure 6.  Relationships between total macroinvertebrate richness and the percentages of 

(a) development and (b) impervious surface cover in each subwatershed in 2001, based 

on simple linear regression models (n = 30).  Similar patterns were found in 2002, and 

across other invertebrate groups (i.e. EPT and FFG’s).  The dashed line in (b) represents 

the proposed threshold at 15% impervious surface.  Separate linear regressions for sites 

with <15% imperviousness (r2 = 0.30; p = 0.02) and sites with >15% imperviousness (r2 

= 0.55; p = 0.009) suggest an absence of a threshold effect. 

 

Figure 7.  The relationship between taxa richness and upstream riparian forest cover at 

developed sites.  Separate regression models were run for developed sites with 15-20% 

imperviousness (open circles; n = 5) and >25% imperviousness (shaded circles; n = 7). 
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Figure 8.  Comparison of total and EPT richness values in the current study (Moore 2003) 

with richness values from published studies in other agricultural systems throughout the 

world.  Symbol shapes indicate level of taxonomic resolution used in each study, while 

filled shapes indicate values from the current study.  “Other” regions include Africa, 

Asia, Australia and South America for total richness, and includes these continents plus 

Europe for EPT richness.  Lines indicate mean richness values for current study (solid 

line) and all other studies (dashed line). 
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(Figure 3) 
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(Figure 4) 
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(Figure 5) 
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(Figure 6) 
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(Figure 7) 
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(Figure 8) 
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Chapter 2:  A comparison of quantitative single-habitat and stratified multi-habitat 

macroinvertebrate sampling methods for assessing biological integrity 

 
ABSTRACT 

Stream researchers and biomonitoring agencies often employ different methods 

for sampling and/or subsampling benthic organisms.  Quantitative single-habitat 

sampling methods may most accurately portray changes in macroinvertebrate 

populations, but are expensive to implement.  Subsequently, stratified multi-habitat 

subsamples (a commonly used rapid bioassessment protocol) are frequently used to 

evaluate changes in communities over large numbers of sites.  Differences in community 

data between these methods, and potential dissimilarities in the response to human 

impacts, are largely unknown.  I used single-habitat quantitative (Surber) samples and 

multi-habitat (d-net) samples to monitor 32 sites along an urbanization gradient in 

Maryland, USA.  Two multi-metric indices of biological integrity (IBI’s) were used to 

compare macroinvertebrate communities and their response to residential development.  

Several community metrics, and one of the IBI’s, showed significant differences between 

sampling methods.  Specifically, multi-habitat d-net samples frequently produced lower 

richness estimates, due to the exclusion of rare taxa as a result of fixed count 

subsampling. Despite differences in mean IBI scores between protocols, there were 

strong correlations in index values between the two methods.  Community metric values 

from both sampling methods were also strongly related to residential development.  

Richness estimates obtained from single-habitat samples had the highest r2 values, and 

thus single-habitat IBI scores were more strongly related to development than were multi-

habitat scores (when a lone outlier was removed from the model).  Consequently, the 
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more cost effective multi-habitat method should be sufficient for monitoring large 

numbers of sites, however quantitative single-habitat samples may be useful for assessing 

macroinvertebrate community changes at focal sites undergoing rapid land use change. 

 

INTRODUCTION 

 The conversion of forested and agricultural areas into landscapes dominated by 

urban development can cause the rapid deterioration of water resources (Paul and Meyer 

2001; Palmer et al. 2002).  In turn, this degradation can lead to the extirpation of local 

populations of aquatic species (e.g. Lenat and Crawford 1994; Moore, Chapter 1).  

Consequently, structural changes in stream communities are used by both academic 

researchers and governmental organizations to assess human impacts in disturbed or 

ubanizing watersheds (e.g. Stribling et al. 1998; Morley and Karr 2002; Stepenuck et al. 

2002).  The status of benthic macroinvertebrate communities is frequently evaluated 

through the use of multi-metric indices of biotic integrity (IBI’s) that include information 

on loss of diversity and shifts in the relative abundance of sensitive taxa (Barbour et al. 

1999; Karr and Chu 1999).   

Researchers and agencies in overlapping geographical areas may have different 

purposes for assessing biological integrity, and diverse goals can lead to concurrent 

monitoring programs.  For instance, state organizations may need to make assessments of 

large numbers of sites over short periods of time for the purpose of evaluating water 

quality or management criteria (Barbour et al. 1999).  In contrast, local agencies 

developing and evaluating stream restoration projects may need to compile extensive 

long-term data sets at targeted locations that include baseline and post-project monitoring 
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(Kondolf 1995).  There is an excellent potential for agencies to supplement each other’s 

data collection, and thus save time and monetary resources, by collaborating to integrate 

data (Volstad et al. 2002).  However, various monitoring objectives may result in a 

diversity of methods for collecting and processing benthic samples, making data 

integration difficult (Diamond et al. 1996).  A wide variety of sampling techniques have 

been proposed for stream monitoring, including electroshocking (Taylor et al. 2001), drift 

sampling (Pringle and Ramirez 1998), artificial substrates (Barton and Metcalfe-Smith 

1992), kick-seine nets (Barbour et al. 1999), Hess and Surber samples (Kerans et al. 

1992), and d-frame pond-nets (Stribling et al. 1998).   

Many researchers favor the use of “quantitative” single-habitat sampling 

techniques.  The most common single-habitat method is the use of Surber samplers 

(Surber 1937) to obtain precise estimates of invertebrate richness and density from a 

specific area of riffle substrate (Hauer and Resh 1996).  There are two prominent reasons 

why quantitative single-habitat Surber samples may be preferred over other methods.  

First, single-habitat samples may reduce observed variability between sites by 

concentrating on a distinct, well-defined habitat (Parsons and Norris 1996).  Second, 

accurate estimates of richness and abundance require the identification of all 

invertebrates collected in a sample, or a substantial “fixed-fraction” of the sample volume 

(Courtemanch 1996).  Consequently, the large number of organisms identified gives a 

more consistent representation of the community in the given habitat (Doberstein et al. 

2000) and accounts for the presence of rare taxa (Vinson and Hawkins 1996).  In addition 

to being valuable for biomonitoring, quantitative samples are used to closely monitor 

population dynamics and measure invertebrate production (Benke 1996).  As a result, 
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quantitative single-habitat Surber samples may give the most accurate assessment of the 

response of the local invertebrate community to experimental treatments and 

anthropogenic disturbances. 

While quantitative Surber samples provide excellent community information, they 

are time-intensive to collect and expensive to process (Storey et al. 1991).  As a result, 

stream monitoring agencies commonly collect invertebrates using “rapid bioassessment 

protocols” (RBP’s; Barbour et al. 1999).  This technique frequently involves the use of a 

d-frame pond-net (d-net) to sample a variety of habitat types in the relative proportion 

that they occur within a designated stream reach (e.g. Furse et al. 1981; Stribling et al. 

1998).  Invertebrates gathered using this method are usually subsampled in the lab, with a 

fixed-count target of 100-500 organisms removed for identification (Barbour and 

Gerritsen 1996).  There are several advantages of this RBP method, including the 

suggested importance of collecting invertebrates from several stream habitats (Kerans et 

al. 1992; Bradley and Omerod 2002).  Furthermore, the increased resource efficiency 

associated with fixed-count subsampling allows for comparisons across a larger number 

of sites (Barbour and Gerritsen 1996). 

 Multi-habitat d-net methods and quantitative single-habitat Surber methods 

collect information on different aspects of community organization, which can make 

generalization between sampling techniques difficult (Diamond et al. 1996).  

Recognizing differences in community data, and how these differences alter biological 

assessments, is essential for monitoring programs that wish to integrate data from 

multiple sources.  Furthermore, quantitative single-habitat Surber samples should fully 

characterize riffle communities, and thus may show a clearer response of invertebrates to 
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human impacts.  This may indicate that the use of quantitative Surber samples is 

warranted at sites undergoing restoration or rapid urbanization, but justifying the added 

expense of this method requires a full understanding of the potential benefits for 

biological monitoring.  Finally, if there are differences in communities and their response 

to disturbance using these two methods, it is important to identify whether this is due 

primarily to dissimilarities in field sampling procedures (i.e. sampling tools or habitats 

sampled) or to laboratory subsampling procedures.  Determining the relative contribution 

of these factors could indicate how to acquire the most useful biological information 

while maximizing monitoring resources. 

  In this paper, I compare quantitative macroinvertebrate Surber samples from 

riffle habitats with stratified multi-habitat d-net samples collected in urbanizing 

watersheds in Maryland, USA.  I use two multi-metric IBI’s, and the 15 community 

variables comprising these indices, to: (1) determine if the two sampling methods provide 

similar community information, and to test whether IBI scores using these methods can 

be integrated using linear models;  (2) compare the strength of relationships between 

IBI’s and residential development using each collection method; and, (3) test whether 

differences between methods are due to field sampling tools and/or habitats or due to 

laboratory subsampling procedures, by analyzing fixed-count subsamples generated from 

the quantitative data set.  From these analyses, I hoped to discern if quantitative single-

habitat samples could be used to supplement the data collected by monitoring agencies, 

and to address the possibility that quantitative samples may provide additional 

information that may justify their use at important focal sites. 
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METHODS 

Study Sites & Invertebrate Sampling 

 This study took place in three Piedmont watersheds in Montgomery County, 

Maryland, USA.  Paint Branch (28.5 km2) and Northwest Branch (59.0 km2) are 

tributaries of the Potomac River, while Hawlings River (67.6 km2) is a tributary of the 

Patuxent River (Fig. 9).  Each of these watersheds is located within approximately 35 km 

of Washington, DC, and ultimately drains into the Chesapeake Bay.   

These watersheds were similarly dominated by agricultural practices in the mid-

1900’s (>60%), with lesser amounts of forest (<30%) and residential development 

(<10%).  Currently, Paint Branch and Northwest Branch are dominated by residential 

development (64% and 53%, respectively), while Hawling’s River is characterized by a 

mixture of residential development (25%) and agriculture (36%).  Agricultural land use 

in this area generally represents a mixture of approximately two-thirds pasture, and one-

third crop (i.e. corn, soybean and winter wheat) cultivation.  All three watersheds have 

similar amounts of forested area (21-32%), with much of this forest found in extensive 

riparian buffers throughout the stream networks.  

Macroinvertebrate communities were collected at 32 sites in 2001 and 2002 

across these three watersheds.  These sites are part of a benthic monitoring program that 

was implemented by the Montgomery County Department of Environmental Protection 

(DEP) in 1994 (Roth et al. 2001), and are concurrently being surveyed as a part of a 

collaborative study addressing the effects of urban sprawl on stream ecosystems (Palmer 

et al. 2002).  Macroinvertebrates were collected from March 15-April 15 within a 75 m 

reach at each site that has previously been used for benthic monitoring by the DEP. 
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Macroinvertebrates were simultaneously collected with both a d-net using a stratified 

multi-habitat technique, and with composite Surber samples taken in several riffle 

habitats. 

The multi-habitat d-net method has been recently adopted by the DEP to 

correspond to the methodology used by the Maryland Department of Natural Resources 

(DNR) (Volstad et al. 2002).  Twenty d-net “jabs” (approximately 1 ft2 each) were taken 

from each reach, and split up according to relative proportions of the “most productive” 

habitats available (generally riffles, leaf packs, submerged roots and woody debris).  All 

of the benthic material collected was combined, and large pieces of sediment and organic 

matter were rinsed and removed from the sample.  The rest of the material was preserved 

in the field using 95% ethanol, and returned to the DEP lab for processing.  Fixed-count 

macroinvertebrate subsamples were taken by depositing the collected sample on a 

partitioned sorting tray, and collecting invertebrates from randomly selected grids until a 

target of 100 organisms was reached.  All invertebrates within the final grid were 

collected (generally resulting in a final count of 100-200 organisms) and the entire 

macroinvertebrate sample was identified to the lowest possible taxonomic level, usually 

genus.   

Surber samples were gathered from three consecutive riffles starting at the 

downstream end of the 75 m reach at each site.  These single-habitat samples were 

collected at the same time as the multi-habitat d-net samples while working in an 

upstream direction.  This simultaneous sampling was done to minimize the influence of 

substrate disturbance between protocols.  In some instances, the length of the reach was 

extended past 75 m to include the required number of riffles.  Surber samples (0.04 m2 
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each) were collected from two random locations in each riffle by disturbing the substrate 

to a depth of approximately 10 cm for two minutes.  A total of six Surber samples were 

combined into a composite sample in 15 liters of filtered stream water (45 μm), and a 

fixed-fraction (33%) of the pooled material was removed while vigorously agitating the 

sample.  This material was stored on ice, and brought back to the lab for preservation in a 

10% formalin solution.  All organisms collected were identified to the lowest possible 

taxonomic level, usually genus.  Fifty chironomid larvae from each site in 2001 were 

identified to sub-family, and were then used to calculate relative abundance of these taxa 

in each sample.  Chironomid taxa collected in Surber samples were only sorted to the 

family level in 2002. 

Data Analysis 

 Multi-metric IBI’s represent the average of several standardized community 

variables, generally related to diversity and the relative abundance of certain taxa.  

Differences between sampling methods were analyzed using IBI scores from two indices 

used throughout this region by the DEP and the DNR (Table 4).  In addition to examining 

overall IBI scores, I also looked at the differences in the 15 individual community 

variables comprising these two IBI’s.  Information on tolerance values and functional 

feeding group designations of individual taxa (Appendix) were taken primarily from 

Stribling et al. (1998), with missing information supplemented by the Maryland 

Department of Environment, Montgomery County DEP, Barbour et al. (1999), Lenat 

(1993), and Bode et al. (1996). 

 Paired t-tests were used to test for differences in individual IBI metrics between 

sampling methods during the 2001 sampling season (Proc Ttest, SAS v8.2), with type I 
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error rate controlled using Hommel’s adjustment of p-values (Proc Multtest, SAS v8.2).  

Several of the metrics relating to invertebrate relative abundance required arcsine square 

root data transformations to meet assumptions of normality and variance homogeneity 

(Table 5).  The difference in mean DNR IBI scores between sampling methods was also 

tested using a paired t-test.  The comparisons above were performed in 2001 only, as one 

of the metrics used in the DNR IBI (% Tanytarsini) requires sub-family identification of 

Chironomidae, not available for Surber samples in 2002.  A repeated-measures 2 x 2 

factorial analysis of variance (ANOVA; Proc Mixed, SAS v8.2) was used to examine the 

effects of sampling method (single- or multi-habitat) and year (2001 or 2002) on DEP IBI 

scores, with chironomid taxa identified to the family level.  The repeated-measures 

ANOVA structure was used to account for temporal autocorrelation in macroinvertebrate 

communities collected at a given site across sampling years.  Simple linear models were 

used to examine the predictive relationships between the two sampling methods using 

2001 DEP and DNR IBI scores (Proc Corr, SAS v8.2).   

The strength of the relationships between 2001 DEP and DNR IBI scores and 

residential development were examined using linear regression models (Proc Reg, SAS 

v8.2).  Residential development is defined here as the percentage of land use occurring 

within the drainage area of each sampling site.  Research in this system has shown that 

macroinvertebrates communities are significantly degraded by development along this 

land use gradient (Moore, Chapter 1).  Percentages of residential development were 

determined using Maryland Office of Planning GIS land use coverages in the ArcView 

GIS supplement program GISHydro2000 2nd ed. (www.gishydro.umd.edu).  Land use 

percentages for each site were calculated by overlaying these coverages on drainage areas 
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delineated using digitized topographical maps.  Linear model regressions were also used 

to test the strength of the relationships between development and all individual 

community metrics for each sampling method (Proc Reg, SAS v8.2).  Type I error rate 

for the linear model p-values was not adjusted, as descriptive model comparisons 

between methods considered only the absolute r2 values.   

Creating subsamples from the quantitative data set, and then reexamining 

community differences, can help determine the relative contribution of field habitat 

sampling and laboratory subsampling procedures on observed dissimilarities between 

methods.  Random fixed-count subsamples of 100, 200, 300, 400 and 500 organisms 

were computer generated from Surber samples, corresponding to the range of subsamples 

sizes typically used in stream biomonitoring.  Community metrics and IBI’s were 

separately computed for each of these single-habitat subsample groups.  Differences in 

IBI scores and metrics between d-net subsamples and each of the Surber subsamples 

were separately tested using paired t-tests, with error rate controlled using Hommel’s 

adjustment of p-values.  Relationships between residential development and community 

variables for each of the Surber subsamples were examined using simple linear regression 

models.   

  

RESULTS 

Community Comparisons 

Community comparisons between sampling methods were performed separately 

for the community variables comprising the DEP and DNR IBI’s, and for the overall IBI 

scores.  The variables used in the IBI’s were separated into metrics representing 
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invertebrate richness and relative abundance, with the exception of the “biotic index”, 

which represents the mean tolerance value of all invertebrates in a sample (Table 5).  

Single-habitat Surber samples had higher values of total, Diptera, and intolerant taxa 

richness (p < 0.01; Fig. 10a).  Among abundance metrics, single-habitat Surber samples 

had higher values for the percentages of Hydropsyche-Cheumatopsyche sp. and tolerant 

taxa (p < 0.01; Fig. 10b).  Conversely, there were higher percentages of Ephemeroptera, 

EPT taxa, and shredder taxa collected in multi-habitat d-net samples.  The single-habitat 

protocol produced higher biotic index values than did the multi-habitat method (p = 

0.001; Fig. 10a).   

The fixed-count subsamples generated from the single-habitat data set did not 

have any effect on differences between methods for relative abundance metrics (e.g. % 

Hydropsyche/ Cheumatopsyche; Fig. 11a).  However, invertebrate richness in single-

habitat samples decreased with subsample size.  While total single-habitat Surber samples 

and large fixed-count subsamples (400 and 500 individuals) had higher richness 

compared to the multi-habitat d-net method, 100 individual single-habitat subsamples had 

significantly lower richness than the similar sized multi-habitat subsamples (Fig. 11b).   

Differences in community variables between d-net samples and total Surber 

samples led to overall higher DEP IBI scores for d-net samples when examined across 

both sampling years (F1,31 = 7.49, p = 0.01; Fig. 12a).  There was not a significant effect 

of year (F1,31 = 2.82, p = 0.10), or an interaction between year and method (F1,25 = 0.28, p 

= 0.60) in this model.  In contrast to the DEP index, there was no overall effect of 

sampling method in 2001 when comparing DNR IBI scores (t26 = 0.71, p = 0.48; Fig. 

12a).  Differences between single-habitat Surber and multi-habitat d-net IBI scores were 
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also dependent on subsampling procedure (Fig. 12b).  When p-values were adjusted for 

multiple comparisons, differences in DEP IBI scores between multi-habitat samples and 

total or 500 organism single-habitat samples became non-significant.  In contrast, all 

other single-habitat subsamples had significantly lower IBI scores than the multi-habitat 

subsamples (all padj < 0.05).     

There were highly significant correlations between quantitative single-habitat and 

multi-habitat IBI scores for both the DEP index (r2 = 0.46, p = 0.0001) and the DNR 

index (r2 = 0.37, p = 0.0007; Fig. 13).  A distinct outlier was found within the single-

habitat scores (site “NW13”), representing a subwatershed with a large percentage of 

residential development (82%), yet high IBI scores indicative of a healthy invertebrate 

community.  The solitary outlier strongly affected the relationship in IBI scores between 

methods, and removing this site from the analysis allowed 64% and 61% of the variation 

in the DEP and DNR index scores to be explained, respectively (p < 0.0001). 

Community Response to Development 

The response of macroinvertebrate communities to development was examined 

separately for the 15 IBI community variables, and for the overall IBI scores.  Most of the 

individual community variables demonstrated a significant relationship with residential 

development for both the single-habitat Surber and multi-habitat d-net methods (p<0.05; 

Table 5).  In general, richness variables seemed to be more strongly related to 

development (higher r2) than relative abundance ratios.  When comparing the strength of 

the relationships between community variables and development for each method, I 

found that 11 of the 15 community metrics had higher r2 values for single-habitat Surber 
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samples.  This suggests that there may be an overall stronger community response to 

residential development using the quantitative single-habitat method (Table 5).   

 The linear relationships between residential development and IBI scores using the 

two sampling methods were remarkably similar for both the DNR and DEP indices, and I 

give results from only the DEP IBI for the sake of brevity.  Percent development 

explained 43% of the variation in DEP IBI scores using the single-habitat Surber method 

(Fig. 14; p < 0.0001), and 41% of the variation in IBI scores using the multi-habitat d-net 

methods (p = 0.0003).  The relationship between IBI scores and development drastically 

improved when the outlier site NW13 was removed from the analysis (r2 = 0.65).  A more 

detailed discussion of the importance of identifying and/or removing this outlier is 

provided later in this article. 

 Fixed count subsample size did not seem to have a notable effect on the 

relationships between residential development and community variables or overall IBI 

scores (Table 6).  In most cases, r2 values for subsamples were comparable to r2 values 

for the entire sample.  This indicates that differences in the observed response of 

macroinvertebrates to human disturbance are largely due to dissimilarities in field 

sampling procedures (i.e. sampling tools or habitats sampled). 

 

DISCUSSION 

 Single-habitat quantitative collection methods using Surber samplers and 

stratified multi-habitat sampling using d-nets are two common techniques for gathering 

macroinvertebrate community information (e.g. Frost et al. 1971; Furse et al. 1981; 

Mackey et al. 1984; Kerans et al. 1992).  While quantitative samples most thoroughly 



53 

 

characterize benthic communities, monitoring programs frequently prefer the use of the 

more time and cost efficient multi-habitat invertebrate subsamples (e.g. Resh and Jackson 

1993; Stribling et al. 1998).  In this paper, I examine whether monitoring agencies could 

potentially increase their ability to manage disturbed watersheds by selectively utilizing 

quantitative single-habitat Surber samples, and whether these data can be successfully 

integrated into multi-habitat data sets.  To date, few studies have compared differences in 

macroinvertebrate samples between these two methods (but see Mackey et al. 1984; 

Storey et a. 1991), or their differential response to human disturbance. 

Community comparisons 

Multi-metric benthic IBI scores represent the combination of numerous 

community variables, and are often used to rate overall site conditions relative to 

surrounding streams (Kerans and Karr 1994; Resh et al. 1995).  Our results suggest that 

the single-habitat Surber and multi-habitat d-net methods provide somewhat dissimilar 

community information, evident by several significant differences in community metrics.  

For instance, there were lower proportions of Ephemeroptera and EPT taxa in single-

habitat samples, and higher proportions of tolerant organisms and biotic index values.  

This likely reflects the proportionately large number of pollution-tolerant Chironomidae 

and Oligochaeta collected in Surber samples.  Palmer (1990) found that these organisms 

are buried in benthic sediments at relatively high densities.  The Surber method 

thoroughly sampled the top 10 cm of the riffle substrates, and should allow these taxa to 

be well characterized.  In contrast, the d-net method does not sample these habitats as 

intensively and multi-habitat subsamples contain relatively few riffle taxa, causing this 

group to be comparatively under-represented.  Hydropsychid caddisflies are filtering 
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organisms that are also found exclusively in areas of turbulent flow (Wallace and Merritt 

1980), explaining their greater abundance in single-habitat riffle samples.  D-net samples 

had a significantly higher ratio of shredder taxa, invertebrates that utilize concentrated 

areas of organic matter (leaf packs) as a primary food resource (Cummins and Klug 1979; 

Wallace and Webster 1996).  Leaf packs are frequently encountered in depositional areas, 

which are not sampled using the quantitative Surber method. 

Interestingly, three of the five richness metrics had significantly higher values for 

Surber samples, while none of these variables were higher in d-net samples.  Story et al. 

(1991) suggested that the comparatively greater sampling intensity involved in collecting 

Surber samples favors the collection of more invertebrate taxa, although others have 

found greater richness in d-net samples (Mackey et al. 1984).  A more likely reason for 

this finding is the fixed-count subsampling used when processing samples collected with 

the multi-habitat d-net method.  Because fixed-count subsampling reduces the number of 

organisms identified, it should provide lower richness estimates due to the under-

representation of rare taxa (Courtemanch 1996).  In contrast, the fixed-fraction 

subsampling employed in the single-habitat sample processing allowed for a much higher 

abundance of organisms to be identified (mean = 920 individuals).  Randomly resampling 

the single-habitat data set confirmed that differences in richness between methods are due 

primarily to subsampling.  Single-habitat 100 count subsamples actually had fewer taxa 

than multi-habitat subsamples, probably due to the combination of losing the more rare 

taxa and having a relatively high abundance of Chironomidae.  In contrast, abundance 

ratio metrics (i.e. percentage values) were not affected by subsampling, indicating that 

dissimilarities are likely due to taxonomic differences between the habitats sampled. 
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When considered over both sampling years, the single-habitat Surber samples had 

lower mean DEP IBI scores.  The differences in taxonomic composition discussed above 

(i.e. smaller proportions of EPT taxa and larger proportions of pollution tolerant 

organisms in single-habitat samples) likely caused this disparity.  In contrast, there was 

no significant difference in DNR IBI scores between methods.  This indicates that there 

were overall greater differences between methods in the community metrics in the DEP 

IBI.  Interestingly, the differences in DEP IBI scores between sampling methods 

increased when the index was calculated using fixed-count single-habitat subsamples 

(Fig. 12).  This suggests that IBI scores are particularly susceptible to the exclusion of 

rare taxa that occurs during fixed-count subsampling.  In general, these findings indicate 

that site assessment (i.e. IBI scores) may be extremely sensitive to field collection 

methods, the type of subsample processing, and the community metrics used to calculate 

indices.  Consequently, the successful integration of data using different sampling 

methods will require careful prior evaluation of these differences.   

While quantitative single-habitat Surber samples and multi-habitat d-net samples 

provided different values for several community metrics and one of the IBI’s, there was a 

fairly strong correlation in IBI scores between the two methods when I removed the lone 

outlier from the model (Fig. 13).  This indicates that scores obtained using single-habitat 

Surber techniques could be integrated into regional multi-habitat data sets with a fair 

degree of accuracy using simple linear models.  Volstad et al. (2002) previously used this 

correlation technique for integrating data, showing that 78% of the variation in multi-

habitat IBI scores could be predicted using single-habitat invertebrate subsamples.  

However, the difference in absolute IBI values between methods for the DEP index 
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discussed above suggests that the scoring criteria for determining site impairment may 

have to be adjusted when integrating data from other sources. 

Community response to development 

 The strength of linear relationships between community variables and residential 

development show that richness variables are very important for predicting the effects of 

urbanization, and that single-habitat Surber samples may be somewhat better at detecting 

these changes.  A potential explanation for this is the inclusion of more rare taxa in the 

Surber samples.  There has been some recent discussion of the importance of including 

rare taxa in biomonitoring efforts (Cao et al. 1998; Marchant 1999; Cao and Williams 

1999).  Cao et al. (1998) found that including rare taxa helped discriminate between 

impaired and reference sites when segregation was based on invertebrate richness.  In 

contrast, Marchant (1999) suggested that the use of rare taxa is largely unnecessary, and 

removing them from community analyses can result in a nearly identical ordination of 

sites.  Interestingly, the stronger response of the single-habitat community metrics to 

development seems to be independent of subsampling procedure, suggesting that it is not 

the presence of rare taxa in single-habitat Surber samples that is driving these 

relationships.  These associations may be due instead to the more thorough community 

characterization provided by the intensive sampling of the single-habitat method.   

Overall IBI scores from both sampling methods are similarly related to 

subwatershed development (Fig. 14).  However, the more intensive single-habitat 

community sampling revealed that one of the highly developed sites (NW13) had a 

remarkably healthy invertebrate community.  Identifying this type of outlier is important 

for two reasons.  First, removing this point from the single-habitat analysis drastically 
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increases the relationship between IBI scores and development.  This removal would be 

appropriate if the monitoring goal was to create models predicting the effects of 

development on stream communities, and may suggest that single-habitat methods may 

be better in formulating such models.  Second, identifying relatively healthy communities 

in urban areas offers a unique opportunity for investigating the specific factors that are 

mediating or exacerbating the harmful effects of development (Karr and Chu 1999), and 

thus has implications for successful stream restoration.  Site NW13 is one of four 

sampling locations having similar (70-85%) development, yet the upstream network 

draining to this site has a very well protected riparian buffer system (40% forested) 

relative to the other developed sites (4-15% forested).  This riparian forest may be 

shielding the stream from urbanization effects (Moore, Chapter 1).  The fact that the 

Surber sampler was able to detect a healthy community at this site may be due to either a 

greater sampling intensity or a lack of subsampling, which is more likely to fully 

characterize the benthic community (Doberstein et al. 2000).   

Conclusions 

 In general, the results of this study suggest that samples collected using 

quantitative single-habitat Surber methods and stratified multi-habitat d-net methods may 

produce significantly different community data.  These differences are a result of 

taxonomic dissimilarities resulting from laboratory subsampling, as well as field 

collection procedures (including sampling equipment and the habitats sampled), and can 

lead to overall different IBI scores between sampling methods.  Despite these differences 

in absolute index values, the strong correlations in IBI scores between the two methods 

suggest that data integration between protocols could be successful.  Furthermore, the 
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communities collected by both sampling methods demonstrated significant degradation in 

response to residential development.  However, the richness variables from the 

quantitative single-habitat method had the strongest relationships, independent of 

subsampling procedure.  This led to a stronger response of the single-habitat IBI scores to 

development when a lone outlier was removed from the linear model, and suggests that 

this method may be extremely useful in monitoring subtle changes in stream health 

resulting from human impacts.  Consequently, if single-habitat Surber data can indeed be 

successfully incorporated into multi-habitat programs, monitoring agencies may justify 

the use of this quantitative collection method at sites undergoing rapid urbanization or 

targeted for restoration, despite additional costs in resources. 
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Table 4.  Community metric variables used in the calculations of Maryland DNR and 

Montgomery County DEP IBI’s, with explanations on how these variables were 

calculated.  Each metric was scored with a 1, 3 or 5, based on the raw values, and the 

expected direction of change in each metric with increasing urban development is 

indicated.  IBI values for each site are based on the mean scores of all metrics.  DEP 

metrics were scored differently based on stream order, while DNR metric scores are the 

same for all stream sizes. 

Explanation Stream Order  Change
1 3 5 w/ Development

DNR

Total Richness Total # of Invertebrate Taxa <16 16-22 >22 Decrease

EPT Richness Total # of EPT Taxa <5 5-12 >12 Decrease

Ephemeroptera Richness Total # of Ephemeroptera Taxa <2 2-4 >4 Decrease

Diptera Richness Total # of Diptera Taxa <6 6-9 >9 Decrease

Ephemeroptera Percent # Ephemeroptera/Total Abundance <5.7% 5.7-20.3% >20.3% Decrease

Tanytarsini Percent # Tanytarsini/Total Abundance 0 0-4.8% >4.8% Decrease

Collector Percent # Collectors/Total Abundance <13.5 13.5-31% >31% Decrease

Intolerant Richness Total # of Taxa w/ Tolerance 0-3 <3 3-8 >8 Decrease

Tolerant Percent (# Taxa w/ Tolerance 7-10)/Total Abundance >48% 11.8-48% <11.8% Increase

DEP

Total Richness Total # of Invertebrate Taxa 1st-2nd  <12 12-23 >23 Decrease
3rd-4th <11 11-22 >22

EPT Richness Total # of EPT Taxa 1st-2nd  <6 6-11 >11 Decrease
3rd-4th <7 7-12 >12

EPT Percent EPT Abundance/Total Abundance 1st-2nd  <28% 28-55% >55% Decrease
3rd-4th <28% 28-55% >55%

Scraper Percent # Scrapers/(# Scrapers + # Filterers) 1st-2nd  <10% 10-20% >20% Decrease
3rd-4th <9% 9-18% >18%

Shredder Percent # Shredders/Total Abundance 1st-2nd  <3% 3-5% >5% Decrease
3rd-4th <3% 3-5% >5%

Hydropsyche/Cheumatopsyche Percent (# Hydropsyche + # Cheumatopsyhe)/EPT Abundance 1st-2nd  >57% 15-57% <15% Increase
3rd-4th >59% 17-59% <17%

Dominant Taxa Percent # of Most Abundant Taxa/Total Abundance 1st-2nd  >67% 33-67% <33% Increase
3rd-4th >74% 47-74% <47%

Biotic Index (# of Each Taxa*Tolerance of Each Taxa)/Total Abun 1st-2nd  >6.93 3.86-6.93 <3.86 Increase
3rd-4th >6.89 3.78-6.89 <3.78

Scoring CriteriaMetric



60 

 

Table 5.  Tests of differences in individual community metrics between sampling 

methods (paired t-test (Surber - d-net); n = 27), using Hommel p-value adjustment for 

multiple comparisons.  Also shown are the results of linear model regressions indicating 

the strength of the relationship (using r2 values) between each metric and subwatershed 

residential development for both Surber (n = 31) and d-net (n = 27) samples.  Eleven of 

the 15 metrics had higher r2 values using the single-habitat method, indicated by positive 

values of r2
Surber – r2

d-net. 

Metric IBI
Development 

(Surber)
Development 

(d-net)
t-statistic p r2 r2

Invertebrate Richness
Total Richness Both 4.1 0.003 0.53** 0.27* 0.26
EPT Richness Both 2.04 0.21 0.51** 0.49** 0.02
Ephemeroptera Richness DNR 0.16 0.88 0.45** 0.49** -0.04
Diptera Richness DNR 4.19 0.002 0.22* 0.07 0.16
Intolerant Richness DNR 2.67 0.09 0.52** 0.34** 0.18

Abundance Ratio
Ephemeroptera Percent+ DNR -5.64 0.001 0.33** 0.24* 0.09
Tanytarsini Percent+ DNR 1.97 0.21 0.13* 0.20* -0.07
Collector Percent DNR 1.69 0.31 0.19* 0.13* 0.06
Tolerant Percent+ DNR 4.35 0.002 0.05 0.02 0.04
EPT Percent DEP -3.95 0.004 0.14* 0.09 0.05
Hydropyche/Cheumatopsyche % DEP 5.15 0.001 0.38** 0.19* 0.18
Dominant Taxa Percent+ DEP 2.11 0.18 0.14* 0.05 0.09
Scraper Percent+ DEP -1.26 0.44 0.10 0.13* -0.03
Shredder Percent+ DEP -4.29 0.002 0.18* 0.27* -0.09

Other
Biotic Index DEP 5.43 0.001 0.33** 0.18* 0.15
+ Arcsine transformed ratio metrics
* p < 0.05; ** p < 0.001

Paired t-test
r2

Surber - 
r2

d-net
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Table 6.  Changes in mean values of IBI scores and community metrics resulting from the 

subsampling of single-habitat samples.  Letters next to mean single-habitat subsample 

values represent significant (“a”) or non-significant (“b”) differences compared to the 

multi-habitat subsamples based on paired t-tests (p < 0.05).  Also shown are the 

regression coefficients for the strength of the relationship between community variables 

and residential development for each subsample.  All linear relationships shown are 

significant at p < 0.05.  Only one richness metric and one abundance ratio metric are 

shown for the sake of brevity, however these general patterns are the same as those found 

for the other richness and ratio metrics. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mean r2
development* Mean r2

development Mean r2
development

Multi-habitat
100-200 3.08a 0.38 16.93a 0.27 0.26a 0.19

Single-habitat
100 2.21b 0.56 12.78b 0.39 0.52b 0.25

200 2.38b 0.57 15.75a 0.48 0.53b 0.41

300 2.55b 0.59 18.72a 0.44 0.52b 0.45

400 2.56b 0.57 20.06b 0.47 0.53b 0.35

500 2.62a 0.59 21.38b 0.49 0.52b 0.39
Total 2.68a 0.66 24.72b 0.53 0.53b 0.38

* single outlier removed from single-habitat linear models

DEP IBI score Total Richness % Hydropsyche/ 
CheumatopsycheSubsample Size
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FIGURE LEGENDS 

Figure 9.  Regional location of the three study watersheds used for macroinvertebrate 

collecting in Montgomery County, Maryland, USA.  Areas of forest, agriculture, and 

development, are indicated on the bottom of the figure, with open circles representing 

sampling locations. 

 

Figure 10.  Mean values of invertebrate richness and abundance ratio metrics (+/- SE) for 

each sampling method.  Significant differences in means are noted with an asterisk 

(Hommel’s adjusted p < 0.10).  Biotic Index values are included in the richness plot, but 

represent the average tolerance value of all individuals in a sample.  Proportions of 

Ephemeroptera, Tanytasini, collector, tolerant, dominant, scraper and shredder taxa were 

arcsine square root transformed for analysis and back-transformed for plots.   

 

Figure 11.  (a) Mean percentages of Hydropsyche/Cheumatopsyche sp. relative 

abundance, and (b) mean total taxa richness for multi-habitat (usually 100-200 

individual) and single-habitat (100-500 individual) fixed count subsamples.  Significant 

differences between the multi-habitat method and each of the single-habitat subsamples 

(based on paired t-tests, p < 0.05) are indicated by asterisks (*).  Only one richness metric 

and one abundance ratio metric are shown for the sake of brevity, however these patterns 

are the same as those found for the other richness and ratio metrics. 

 

Figure 12.  (a) Mean IBI scores (+/- SE) for each sampling method for both DNR and 

DEP indices (n = 32 for single-habitat Surber samples, n = 27 (2001) or 31 (2002) for 
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multi-habitat d-net samples).  Mean DNR values are for 2001 only (required sub-family 

identification of Chironomidae not available for Surber samples in 2002), while DEP 

scores represent the average across both sampling years.  The line connecting the bars for 

mean DNR index values indicate no significant difference between sampling methods (p 

> 0.05).  (b) Mean DEP IBI scores for multi-habitat (usually 100-200 individual) and 

single-habitat (100-500 individual) fixed count subsamples.  Significant differences 

between the multi-habitat method and each of the single-habitat subsamples (based on 

paired t-tests, Hommel’s p < 0.05) are indicated by asterisks (*).   

 

Figure 13.  Relationship between 2001 DEP IBI scores using single-habitat and multi-

habitat sampling methods (n = 27).  A considerable outlier site is indicated by the closed 

diamond, and r2 values are given with and without this outlier in the analysis.  Regression 

lines indicate the linear relationship in IBI scores between methods with the outlier 

included, but is nearly identical to the regression line with the outlier removed. 

 

Figure 14.  Relationship between subwatershed development and DEP IBI scores in 2001 

for both single-habitat (n = 32) and multi-habitat (n = 27) sampling methods.  A 

considerable outlier in the single-habitat data set is indicated by the closed diamond, and 

r2 values are given with and without this outlier in the analysis.  Regressions lines 

indicate the linear relationship between development and IBI scores (with the outlier 

included in the Surber sample analysis). 
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(Figure 9) 
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(Figure 10) 
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(Figure 11) 
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(Figure 12) 
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(Figure 13) 
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(Figure 14) 
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APPENDIX 

List of taxa (divided by order) found throughout the 32 sampling sites in Montgomery 

County, Maryland, USA.  All organisms were identified to genus when possible.  The 

number of sites that each taxon is found at is given for each sampling method for each 

sampling year (number of sites sampled; Surber 2001/2002 = 32, d-net 2001 = 27, d-net 

2002 = 31).  Tolerance values are rated 0-10, with low numbers indicating high 

sensitivity to disturbance.  Functional feeding group (FFG) designations are: c = 

collector; f = filterer; p = predator; sc = scraper; sh = shredder. 

Taxa Surber d-net FFG Toler-     Taxa Surber d-net FFG Toler- 
  (2001/ (2001/  ance      (2001/ (2001/  ance 

    2002) 2002)             2002) 2002)     

Ephemeroptera        Diptera (continued)    
 Acentrella sp. 3/1 3/1 c 4     Dasyhelea sp.  1/0 c 6 
 Acerpenna sp. 1/11 2/5 c 4     Dicranota sp. 5/2 0/1 p 3 
 Ameletus sp. 4/2 1/9 c 0     Dixa sp.  0/2 f 1 
 Baetis sp. 8/8 7/6 c 6     Dixella sp.  0/2 c 1 
 Caenis sp. 1/1 1/1 c 7     Hemerodromia sp. 19/26 7/12 p 6 
 Centroptilum sp.  2/16 c 2     Hexatoma sp. 1/0 0/1 p 2 
 Diphetor sp.  0/4 c 6     Limnophila sp. 0/1  p 4 
 Drunella sp.  1/0 sc 0     Limonia sp.  0/1 sh 6 
 Epeorus sp. 1/0  sc 0     Mallochohelea sp. 0/1 p  
 Ephemera sp. 0/1 1/1 c 2     Odontomyia sp.  0/1 c 7 
 Ephemerella sp. 22/23 19/23 c 1     Ormosia sp.  1/0 c 6 
 Eurylophella sp. 15/1 2/18 c 2     Pilaria sp. 6/1  p 7 
 Habrophlebia sp. 1/2  c 4     Probezzia sp. 3/1 3/1 p 6 
 Habrophlebiodes sp. 1/2 sc 6     Prosimulium sp. 22/14 11/3 f 2 
 Isonychia sp. 2/1 1/1 c 2     Pseudolimnophila sp. 1/1 p 2 
 Leptophlebia sp.  7/11 c 4     Simulium sp. 28/28 21/12 f 5 
 Leucrocuta sp. 4/4  sc 1     Sphaeromias sp. 1/2  p 6 
 Nixe sp. 2/3  sc 2     Stegopterna sp. 11/2 4/0 f 7 

 
Paraleptophlebia 
sp. 9/13 1/3 c 1     Stratiomys sp. 1/0  c 4 

 Serratella sp. 7/8 1/0 c 2     Tipula sp. 18/14 11/16 sh 6 
 Stenacron sp. 0/2 2/5 sc 4    Coleoptera     
 Stenonema sp. 21/24 17/22 sc 3     Agabus sp.  0/3 p 5 
Plecoptera         Anchytarsus sp.  3/5 sh 4 
 Acroneuria sp. 2/0 1/0 p 0     Ancronyx sp. 0/2 1/4 sc 5 
 Allocapnia sp.  0/1 sh 3     Dineutus sp.  1/0 p 4 
 Amphinemura sp. 12/2 15/13 sh 3     Dubiraphia sp. 1/1 2/4 sc 6 
 Chloroperlidae  0/1 p 0     Helichus sp. 9/1 3/3 sc 5 
 Clioperla sp. 2/3 1/2 p 1     Hydrophilus sp. 1/0  c 5 
 Cultus sp.  0/2 p 2     Hydroporus sp.  0/1 p 5 
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 Diploperla sp. 1/2 3/4 p 2     Macronychus sp. 2/3 2/4 sc 5 
 Eccoptura sp. 1/2 1/0 p 3     Microcylloepus sp. 2/0 sc 2 
 Isoperla sp. 8/11 2/1 p 2     Optioservus sp. 22/24 8/13 sc 4 
 Leuctra sp. 7/15 3/2 sh 0     Oulimnius sp. 27/27 21/1 sc 3 
 Nemoura sp.  1/2 sh 1     Peltodytes sp.  1/0 sh 5 
 Perlesta sp.  0/1 p 3     Promoresia sp. 1/3 1/0 sc 2 
 Prostoia sp.  6/4 sh 6     Psephenus sp. 7/8 1/5 sc 3 
 Shipsa sp. 12/14  sh 2     Scirtidae  0/1 c 7 
 Strophopteryx sp. 6/1 2/2 sh 3     Stenelmis sp. 14/17 9/12 sc 5 
 Taenionema sp.  2/0 sh     Odonata     
Trichoptera         Argia sp.  2/2 p 8 
 Ceratopsyche sp. 15/12 6/1 f 3     Arigomphus sp. 6/9  p 4 

 
Cheumatopsyche 
sp. 3/29 23/2 f 5     Boyeria sp.  1/1 p 2 

 Chimarra sp. 11/1 5/6 f 4     Calopteryx sp.  8/1 p 6 
 Cyrnellus sp. 0/1  f 8     Gomphus sp.  2/0 p 5 
 Diplectrona sp. 14/14 8/12 f 0     Lanthus sp.  0/2 p 5 
 Dolophilodes sp. 8/4 5/5 f 0     Macromia sp.  1/0 p 3 
 Glossosoma sp. 8/1 4/3 sc 0     Stylogomphus sp. 2/0 p 4 
 Hydropsyche sp. 3/26 16/18 f 4    Megaloptera     
 Ironoquia sp.  3/3 sh 4     Nigronia sp. 15/12 8/8 p 4 
 Lype sp.  0/2 sc 2     Sialis sp. 4/1 1/0 p 4 
 Mystacides sp.  0/1 c 4    Other     
 Neophylax sp. 18/15 1/9 sc 3     Amphipoda 3/3 2/9 sh 6 
 Polycentropus sp. 2/1  p 6     Cambaridae 3/3 3/4 c 6 
 Psilotreta sp. 0/1  sc 0     Collembola 2/3  c 8 
 Psychomyia sp. 2/0  c 2     Copepoda 1/15  c 8 
 Pycnopsyche sp. 3/1 2/8 sh 4     Corbicula sp. 12/9  f 6 
 Rhyacophila sp. 5/8 2/5 p 1     Ferrissia sp. 15/13 0/3 sc 6 
Diptera         Gerris sp.  1/0 p  
 Antocha sp. 3/25 15/11 c 5     Hirudinea 3/1  p 8 
 Bezzia sp. 9/1 4/0 p 6     Hydrachnida 9/14  p  
 Ceratopogon sp. 3/2 0/2 p 6     Isopoda 4/3 3/4 c 8 
 Chaoborus sp. 1/0 1/0 p      Lepidoptera 0/5 0/3 sh 6 
 Chelifera sp. 17/17 6/4 p 6     Microvelia sp.  2/0 p 6 
 Chironomidae 32/32 27/31 c 8     Mooreobdella  1/0 p 8 
    Chironomini 23/- 26/28 c 6     Nematoda 26/22 2/0   
    Diamesinae 12/- 9/19 c 7     Oligochaeta 31/32 11/18 c 10 
    Orthocladiinae 32/- 27/31 c 5     Physidae 1/4 2/8 c 8 
    Tanypodinae 17/- 22/27 p 7     Pisidium  0/3 f 6 
    Tanytarsini 28/- 24/26 f 6     Planorbidae  0/6 sc 6 
 Chrysops sp. 5/1 1/2 c 5     Sphaeriidae  6/1 f 8 
 Clinocera sp. 27/25 13/16 p 6     Turbellaria 13/18  p 4 

  Culicoides sp. 4/3   p 10                 
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