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Magnetoencephalography is a noninvasive tool that measures the magnetic activity 

of the brain. Its high temporal resolution makes it useful for studying auditory and 

speech models. However, it suffers from poor signal to noise ratio caused by 

corruption from non-stationary external noise, biological artifacts, and non-auditory 

neural noise in the brain. We remove external noise from neural channels using a 

frequency domain block least mean square adaptive filter with the help of three 

reference sensors that measure environmental noise alone. Significance tests that 

build on F-statistics present ample evidence of the benefit of such de-noising by 

increasing the number of significant channels and reducing the variability of false 

positives. Finally, the least significant and noisiest channel is filtered and used to de-

noise neural signals while minimizing interference with the auditory signal. We 

propose a method for finding such reference channels and assess performance 

through receiver operating characteristics and statistical significance. 
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Introduction 
 
“The poet ranks far below the painter in the representation of visible things, and far below the 

musician in that of invisible things.”       

         Leonardo da Vinci 

 

Magnetoencephalography (MEG) and electroencephalography (EEG) are promising 

techniques with excellent temporal resolution. Nevertheless, the problem of noise— 

environmental interference, biological artifact, and background brain activity—

hinders their full potential.  

Our focus was on magnetoencephalography. Whether we are looking at evoked 

responses, more general hypothesis testing, or medical diagnosis, the localization of 

the source of magnetic fields in the brain is crucial. This requires solving the inverse 

problem, which necessitates clean measurements of MEG signals. Any contaminating 

noise will give a wrong solution, hence a wrong source, hence a wrong diagnosis or 

model. 

Our system is equipped with three orthogonal reference channels that record 

external noise. The noise is non-stationary, so we resort to an adaptive algorithm, 

more specifically a frequency domain block least mean square method (Fast LMS) to 

estimate such additive noise and exclude it from our signal. We apply such a filter to 

data collected from an auditory experiment using sinusoidal amplitude-modulated 

(SAM) stimuli, which are powerful tools in detecting auditory steady state responses 

(ASSR). ASSRs are responses whose frequency components remain constant in 

amplitude and phase over a long period. 



 

 2 
 

As a first step in validating our de-noising algorithm, confidence tests are used to 

distinguish evoked auditory responses from background noise. This enables us to fit 

an accurate dipole to our signals by discarding neural channels that are not significant 

and that would contribute noise. The F-statistics that build on amplitude information 

in the Fourier domain outperformed all other tests in identifying auditory channels. 

However, the non-Gaussian nature of background noise challenges the accuracy of F-

statistics in measuring false positives. In view of this, we changed our method so that 

instead of using the inverse F-distribution to find thresholds, we use averaged data to 

set and control the threshold that determines the number of false positives. Two 

validation mechanisms, significance test design and receiver operating characteristics 

(ROC), are used to validate the performance of Fast LMS.  

Lacking a channel analogous to the environmental sensor that records only artifacts 

or neural noise generated in the brain, we resort to finding the best approximation 

from the 157 neural channels to use as a reference sensor. That is, we identify the 

most noise-prone channels, or better a function of these channels. Nevertheless, any 

operation must have minimal effect on our auditory response. Distance, significance, 

and correlation all play a major role in choosing a reference channel that will preserve 

auditory signal integrity. 

 
Having developed two building blocks, a de-correlation algorithm and a 

significance test, we build a system that can address all aspects of noise in our signal. 

The system consists of three Fast LMS processes, each specific to one of the three 

different kinds of noise (external, artifacts, and background brain activity), while 
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significance tests and ROC ensure that each operation performed is indeed beneficial 

and does not interfere with our signal. 

Figure 1.0 summarizes the proposed model. 

 

 
 
 

Although our proposed model addresses MEG signals, it can be applied to other 

techniques, such as EEG. As for latency-motivated research that uses time 

information, a waveform significance test could be designed to replace the spectrum 

single bin significance test we used; the concept is the same.  
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Figure 1.0: Flowchart of Noise suppression for recovering MEG Auditory 
Response. Four states, and three adaptive processes validated by ROC/ 
Significance test block. 



 

 4 
 

Chapter 1: Preliminary Background and Experiment 
 
“The noblest pleasure is the joy of understanding.” 

  Leonardo da Vinci 

What is Magnetoencephalography (MEG)? 
 

MEG is a powerful functional tool for auditory experiments: it is non-invasive, fast 

(~1 ms), and spatially localizable (~5-10 mm). Compared to other imaging tools, such 

as positron emission tomography (PET), functional magnetic resonance imaging 

(fMRI), and electroencephalography (EEG), MEG provides a different empirical base 

and results in observations reflecting the underlying neurophysiology, creating new 

ways to bridge the gap between imaging and cortical neurophysiology. Unlike PET 

and fMRI, we can draw conclusions from single-subject data, though group studies 

are preferable. MEG does not require subtraction between conditions (which assumes 

perhaps unjustified linearity), though such methods are still possible [9]. MEG 

complements EEG in many ways. Due to differences in how neurally generated 

magnetic and electric fields propagate, MEG is especially sensitive to neuronal 

activity in auditory areas, such as the supratemporal plane, making it a good tool for 

auditory research. MEG auditory responses lateralize strongly; EEG responses mix 

across cortical hemispheres and are strongest medially. 
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Neural Generation of Electromagnetic Fields 
 

Excitatory postsynaptic potentials (EPSPs) are generated at the apical dendritic tree 

of a cortical pyramidal cell and motivate current that flows through the volume 

conductor from the non-excited membrane of the soma and basal dendrites to the 

apical dendritic tree sustaining the EPSPs. Some of the current travels within the 

dendritic trunk (primary current in blue Figure 1.1), while conservation of electric 

charges explains why the current loop is closed, with extracellular currents flowing 

through the volume conductor even at far distances (secondary currents in red) [5]. 

There are at least 1010 neurons in the human brain, equipped with 1014 

interconnections, or synapses. When a signal is being processed, small currents flow 

in the neural system and produce a weak magnetic field. This is what the MEG 

system records. The MEG signal is derived from the net effect of ionic currents 

flowing in the dendrites of neurons during synaptic transmission and in the axons 

during action potentials (although net currents flowing in opposite directions down an 

axon from the point of action potential propagation give rise to magnetic fields that 

tend to cancel each other out). These net currents can be described as current dipoles 

with a position, orientation, and magnitude, but no spatial extent. According to the 

right-hand rule, a current dipole gives rise to a magnetic field that flows around the 

axis of its vector component. The magnetic field arising from the net current dipole of 

a single neuron is too weak to be directly detected. However, the combined fields 

from a region of about 50,000 active neurons can give rise to a net magnetic field that 

is measurable. Since current dipoles must have similar orientations in order to 

generate magnetic fields that reinforce each other, it is often the layer of pyramidal 



 

 6 
 

cells in the cortex, which are generally perpendicular to its surface, that give rise to 

measurable magnetic fields. Furthermore, it is often groups of these neurons located 

in the sulci of the cortex with orientations parallel to the surface of the head that 

project measurable portions of their magnetic fields outside of the head. 

 
 

The Problem of Low Signal to Noise Ratio (SNR) 
 

A measured MEG signal is the combined result of the neural response to presented 

stimuli, additive background brain noise, biological artifacts, and external noise. 

Figure 1.2 lists many sources of additive external and biological noise with their 

relative strengths. For example, the cardiac magnetic field on the chest is 2 to 3 orders 

of magnitude larger than the fields outside the head generated by the brain [8]. As a 

result, the signal integrity of a given stimulus is weak. A robust de-noising algorithm 

is needed to improve signal to noise ratio.  

   
Figure 1.1: (Left) MEG is sensitive to the Primary Current (Blue) while EEG is 
sensitive to the volume current (Red) flowing in a pyramidal cell. [5]. (Right) 
Magnetic field (blue) caused by the primary current flow. On the head surface, 
MEG sensors record the strength and orientation of the field 



 

 7 
 

 
  

Experiment 
 

To explore the effects of noise and search for a de-noising algorithm, we designed 

an experiment that measures steady state response (SSR) using stationary sinusoidally 

amplitude modulated (SAM) stimuli. Auditory steady state response (ASSR) is a 

technique that predicts hearing sensitivity elicited with periodic modulated tones. It 

is frequency specific, hence suitable for our purpose. SAM stimuli, on the other hand 

are easy to track and analyze in the frequency domain for the simple spectrum they 

cover.  We aim to test our algorithm using MEG data driven by SAM stimuli; 

however, the algorithm should not be limited to any MEG data.  

 
Figure 1.2: Peak amplitudes (arrows) and spectral densities of fields caused 
by typical biomagnetic and noise sources. Environmental noise is an order of 
magnitude higher than evoked fields signal. Artifacts and brain background 
noise are less powerful, but still strong [8]. 
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Acoustic Stimuli  
 

We present SAM sounds [24, 20] for two seconds 50 times each in a random order 

with inter-stimulus intervals uniformly distributed between 700 and 900 ms as 

described in [22]. A total of 20 stimuli were generated with five modulation 

frequencies (1.5 Hz, 3.5 Hz, 7.5 Hz 15.5 Hz and 31.5 Hz) and four distinctive carriers 

(pure tone; 1/3 octave pink noise; 1 octave noise and 5 octave noise all centered at 

707 Hz). All stimuli were presented binaurally at a comfortable volume of 

approximately 70 dB SPL. Eight right-handed subjects, 5 female, were recruited.  
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Figure 1.3: Waveforms for stimuli at a modulation frequency of 31.5 Hz with 
four distinctive carriers. From top to bottom: 1st Pure tone; 2nd, 3rd, and 4th 
pure tone plus pink noise at bandwidths of 1/3, 1, and 5 octave respectively. 
Narrow band nature of carrier is evident in the top figure. The random noise 
nature is more evident in the bottom one. 



 

 9 
 

Recordings 
 

The magnetic signals were recorded using a 160-channel, whole-head axial 

gradiometer system [12] housed in a magnetically shielded room. Its detection coils 

are arranged in a uniform array on a helmet-shaped surface on the bottom of the 

Dewar, with about 25 mm between the centers of two adjacent coils 15.5 mm in 

diameter. Sensors are configured as first-order axial gradiometers with a baseline of 

50 mm; their field sensitivities are 5 fT/√Hz or higher at white noise region. Three of 

the 160 channels are magnetometers separated from the others and used as reference 

channels in noise filtering methods. The magnetic signals were bandpassed between 1 

Hz and 200 Hz, notch filtered at 60 Hz, and sampled at the rate of 500 Hz.  

MEG Signal 
 

Responses to each stimulus were taken on each channel from 300 to 2300 ms post-

stimulus (in order to guarantee steady state response [18]) and concatenated, resulting 

in 20 responses (of 2 ms resolution and 100 sec. duration) for each of the 157 

channels. The fast Fourier transform (FFT) transformed each response. The result was 

20 complex frequency responses (of 0.01 Hz resolution and 250 Hz extent) for each 

of the 157 channels. See Figure 1.4 for the magnitude of the FFT of the response of a 

single channel to the 31.5 Hz amplitude modulated sinusoid tone. The SSR peak at 

31.5 Hz is stereotypically narrow with a width of 0.01 Hz. A valuable observation is 

that background responses became noisier with decreasing frequency challenging any 

proposed solution at such bands. 
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Figure1.4: Magnitude of the Fourier transform of single channel response to a pure 
tone sinusoidally amplitude modulated at 31.5 Hz. Note how the spectrum power 
decays as 1/frequency. The response at 31.5Hz is visually evident. 
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Chapter 2: External Noise Suppression 

“Where the spirit does not work with the hand, there is no art.” 

         Leonardo da Vinci 

 

Introduction 

Because the magnetic signals emitted by the brain are in the range of a few femto-

Teslas (10-15T), shielding from external magnetic signals, including the Earth's 

magnetic field (~0.5x10-4T), is necessary. Shielding reduces noise by about 100dB; 

nevertheless, signal to noise ratio is still very low. As a result, suppressing external 

noise is crucial. There are some techniques, such as the Continuously Adjusted Least-

Squares Method (CALM), that suppress such noise. These techniques are not 

powerful enough to clean our signal. 

To remove such noise, which is typically non-stationary, we resort to adaptive 

filtering. Three reference channels, separated from the head, measure the noise alone, 

while 157 neuronal channels, arranged above the head’s surface, record brain activity. 

The filter coefficients that linearly map the noise in the reference channels to the 

noise in the observed signal are calculated using the least mean square method (LMS) 

[27]. Then the estimated noise in the observed neuronal signal is subtracted. A fast 

version of LMS is adopted for speed [10]. 

Finally, we compare the Fast LMS method to the CALM, highlighting the 

weaknesses and strengths of each.  
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Continuously Adjusted Least Square Method (CALM) 

CALM, used in the KIT-UMD MEG lab, reduces the non-periodical low frequency 

(<10 Hz) noise during MEG measurements [1]. The noise reduction procedure 

essentially eliminates any correlation that the MEG signal sensors have with any of 

the three reference magnetometers (set 25 cm apart from neural sensors) by removing 

the detected covariance from the neural MEG sensors. This is performed data point 

by data point, with computation extent of a moving window of a certain length. The 

spectrum for one neural signal and the three reference noise sensors are plotted in 

Figure 2.1. It is clear there is a high correlation between noise and raw signals, 

especially near 17, 25, and 180 Hz. 

If ( )ix t  is the observed signal, ( )is t  is the recovered signal, 

1 2 3( ) [ ( ), ( ), ( )]n t n t n t n t=  are the external noise references, and 

1 2 3( ) [ ( ), ( ), ( )]i i i iw t w t w t w t=  is the set of filter weight coefficients vector, then all are 

related according to the equation: 

( ) ( ) ( ) ( )i i is t x t w t n t= −  (2.1) 

The problem reduces to minimizing the power after subtracting the approximated 

noise components. We therefore find filter coefficients ( )iw t  that minimize L 

according to the equation: 

( ) ( ) ( )2

1

2t T

i it T
L x w n dτ τ τ τ

+

−
= −⎡ ⎤⎣ ⎦∫  (2.2) 

where T1 and T2 are the lower and upper bounds for the sliding window used to 

calculate the weights.  
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The CALM algorithm was not satisfactory for our purpose since it is not designed 

to extract narrowband noise that could have a severe effect on our signal. In addition, 

CALM is designed to deal with low frequency noise (it loses suppression capabilities 

for frequencies above 10Hz, Fig.2.2). Therefore, an alternative method to CALM 

needs to be addressed. 
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Figure 2.1: (Top) Magnitude of Fourier transform for raw data. (Bottom) 
Magnitudes of Fourier transform for the three reference noise channels are 
overlaid on top of each other. The reference and neural channels all have a 
similar envelope, whether it is wideband signal at low frequency or narrowband 
at 17, 25, 120, and 180Hz. 
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Adaptive Filtering 

MEG brain signals are not stationary. This is expected, since the brain background 

is always changing even if we assume that the auditory cortex is responding to our 

stimuli in a stationary fashion. However, the noise is also non-stationary, as many of 

the magnetic sources are isolated events and are therefore variable in time and space 

(e.g., elevator, cars, a chair moved from one place to another). Simulation showed 

that, indeed, neither brain signals nor external noise is stationary, though the latter is 

less variable (experiment dependent). 

Our target signal is corrupted with additive noise. We record the sum of the two and 

cannot tell them apart. However, we do have access to measured noise, which is a 

filtered version of source noise. The problem is to estimate filter coefficients that 

 
Figure 2.2: Magnitude of Fourier transform of raw signal (blue) and filtered with 
CALM (red) for one neural channel using the 3 external reference channels. 
Stimulus frequency is 3.5 Hz where the noise is most prominent, and where CALM 
is more effective. The response at that frequency is compromised, however. Less 
suppression is achieved at frequencies above 10Hz, including the high peak at 
180Hz due to power line. 
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transform noise in the reference channels into noise in the signal. If we can isolate the 

noise in the signal, we can subtract it from the measured signal and thereby recover 

the original signal. 

A classic solution would be to use a Wiener filter (Figure 2.3) as a solution to our 

problem; however, the use of a linear shift-invariant Wiener filter will not be optimal 

because both neural signals and noise are non-stationary. Nevertheless, an adaptive 

Wiener filter that has filter coefficients that are allowed to vary as a function of time 

may provide effective noise cancellation in our non-stationary environment. It is 

worth mentioning that slicing the data in small frames that are almost stationary is not 

an accurate model, since we would be giving up resolution for stationarity, and hence 

we would lose the range of frequencies that are of interest to us.   

 

 
 

 
Signal  
Source 

Noise 
Source 

v(n) 

d(n) 
Recovered Signal 
d’(n)=x(n)-v1’(n) 

Wiener  
Filter 

Reference 
Signal v2(n) 

Observed Signal 
x(n)=d(n)+v1(n) 

Noise estimate 
v1’(n) 

 
Figure 2.3: Wiener noise cancellation to recover unknown neural signal d(n) from 
a measurement of that signal x(n) after being corrupted with additive noise v1(n). 
A measurement of the filtered version of such noise v2(n) is used to estimate filter 
coefficients to recover and subtract the additive noise v1’(n) and subtract it from 
the observed signal. Lack of stationarity in the signal causes this algorithm to fail; 
as it has no feedback, it is not adaptive. 



 

 16 
 

Adaptive noise canceling is an optimal filtering technique that is feasible every time 

we have a reference input available. What is special about this family of techniques 

are its adaptive capabilities, low output noise, and low signal distortion. It can also 

handle unknown and non-stationary inputs. Adaptive filtering is a stable operation 

that turns off when no improvements in SNR are achieved. It outperforms other 

conventional optimal filter configurations [27]. 

The adaptive filter should be able to take in a measured observed signal and a 

reference signal and be able to compute a minimized estimate of the original signal 

and an estimate of the noise. Two operators are derived: 

ĉ : Correlate or filter noise channel to capture noise in observed signal 

d̂ : De-correlate or subtract filtered noise captured in observed signal and recover 

original signal.  

If X is one of the 157 neural channels, R is a reference channel, and T is a filter 

transformation 

R ĉ X = T(R) ∩X = recovered noise. 

R d̂ X = X- T(R)∩X = error = recovered signal. 

 
Figure 2.4 illustrates the building block for the adaptive filter we are seeking to 
design. 

 

 
 

 

Adaptive 
Filter Noise Reference 

Observed Signal Estimated Signal = R d̂ X 

Estimated Noise = R ĉ X

Figure 2.4 Adaptive filter acts as a building block to de / correlate noise and 
observed signal x(n) by using one or multi-reference channels as inputs, and 
estimated signal d’(n) and noise v1’(n) as outputs. 
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Frequency Domain Block LMS (Fast LMS) 

Background brain activity is always changing even if the area of interest responds 

to stimuli in a stationary fashion. External noise is also non-stationary since many of 

its sources are of random characteristics in space and time. We use an adaptive 

process that automatically adjusts the filter parameters to minimize estimation error.  

Figure 2.5 shows the block diagram for Fast LMS. The design is a modification of 

Fast LMS described in [10] upgraded to handle multi-reference sensors. Instead of 

subtracting the filtered version of one reference channel, we subtract the scaled sum 

of the three filtered orthogonal references, each with its own filter coefficients to 

capture noise in observed signal. The scaling is done adaptively among all three 

references with equal probabilities. A validation of our algorithm follows in chapter 

4. 

 

 

 

W1(Z)W1(Z) 
Noise Ref.#1 

Noise Ref.#2 
 

Noise Ref.#3 
 

Recovered  Signal d’(n) 

W2(Z) 

W3(Z) 

Observed   signal x(n) 

 
Figure 2.5: Three reference adaptive filter noise cancellation. Filter coefficients W 
are computed so the sum of the scaled version of the three observed reference 
noise channels captures as much of the observed signal as possible. An estimate of 
the noise is calculated and then subtracted to yield the recovered signal. Arrows 
are in both directions because the filter coefficients are adapting to the signals. 
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From Figure 2.6, we can see narrowband noise suppressed using Fast LMS. In the 

low frequency range, where noise is prominent and hard to suppress, our algorithm 

did a fair job in cleaning noise around our stimulus frequency, 3.5Hz. Fast LMS 

removed most noise at 180Hz (third harmonic of 60 Hz). Remember that a notch 

filter removed 60Hz power line noise after recording and prior to noise suppression. 

There is no neural interest in the 180Hz band; rather, it is a measure of performance 

for our de-noising algorithm.  

 

Adaptation coefficients we used in our design: Block size 128 (block size is equal 

to filter length), adaptation constant 0.01, forgetting factor 0.96 (the larger the 

 
Figure 2.6: Magnitude of Fourier transform of raw signal (blue) vs. filtered 
signal (red) of one channel using Fast LMS,. Magnified spectrum (0-10Hz) 
shows the response at the stimulus frequency (3.5Hz) with suppressed noise in 
the vicinity. Note power line noise suppressed at 180Hz by 20dB.  More narrow 
band signals at lower frequencies were suppressed too including 25Hz, 31Hz, 
and  what is left after applying the notch filter at 60Hz. Most importantly, 
response at 3.5 Hz is barely compromised. 
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forgetting factor, the larger the memory). For less stationary signals, it is better to 

reduce filter size and/or forgetting factor. 

Fast LMS vs. CALM 

CALM is not efficient at removing multiple sources of narrow band noise, and it is 

almost passive at frequencies above 10Hz (see Figure 2.2). On the other hand, CALM 

is much faster than Fast LMS (the latter is slowed by the time-intensive discrete 

Fourier transform computations, and takes about the same time as signal acquisition). 

However, Fast LMS is a whole-spectrum de-noising algorithm and does an excellent 

job of narrowband noise suppression.  

Comparative quantitative measures, summarized for both methods in Table 2.1, 

shows that Fast LMS better preserved the signal at the stimulus frequency. In 

addition, it removed 1.4 dB of noise for frequencies below 10Hz, and approximately 

20 dB around 180Hz. On the other hand, CALM compromised stimulus frequency for 

more suppression at low frequency. It became less effective as frequency increased. 

This weakness is best seen at 180Hz, where very little noise is removed.  

 

 

 Block-LMS Filter CALM Filter 
3.5Hz (Signal loss) 0.3 dB  1.8 dB  
1-10Hz (Noise Suppression) 1.4 dB  2.0 dB  
175-185Hz (Noise Suppression) 19.9 dB  4.3 dB 
Table 2.1: Signal reduction comparison between Fast LMS and CALM 
filters. For a stimulus at 3.5Hz, Fast LMS preserved most of the 
auditory signal, reducing it by only 0.3dB, as opposed to 1.8dB for 
CALM. Also, LMS better removed most of power line noise at 180Hz. 
Calm, on the other hand, removed more noise, on average, below 10Hz, 
but at the expense of stimulus frequency reduction. 
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Several other methods were tried to suppress the noise: Least Mean Square (LMS), 

Recursive Least Square (RLS), QR-Decomposition Least Square Lattice (QRDLSL), 

and others. They are described in detail in [10]. Out of all these methods, Fast LMS 

prevails as the best technique in terms of both SNR improvements and speed. 

Although the algorithm exploits a block structure, the method is slower than other 

non-adaptive filtering methods because of discrete Fourier transform (DFT) 

computations. Nevertheless, SNR was improved with minimal invasiveness to our 

stimulus response signal. 
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Chapter 3: Detection and Significance tests 
 

“Why does the eye see a thing more clearly in dreams than the imagination when awake?”  

Leonardo da Vinci 

Introduction 

Neural and non-neural background noise impedes identification of the auditory 

stimulus evoked response. The problem of identifying those channels that have some 

auditory structure buried in noise is a detection problem. Knowing where to look 

temporally (M100 latency) or spectrally (SAM frequency) for a response adds more 

information, but does not answer the question of whether a channel is significant or 

not. This information is invaluable for accurately solving the inverse problem to 

determine the neural sources generating the measured magnetic field. Therefore, it is 

crucial to distinguish what is strong from what is significant.  

We explore many existing confidence tests to assess and classify responses for 

signals corrupted by noise with our experimentally obtained MEG signals. This can 

be done either by measuring for consistency across different presentations (e.g., phase 

information) or by contrasting the signal strength at one frequency with the noise 

strength in neighboring bands (amplitude information).  

Although various tests build on different techniques, they all tend to agree on what 

is significant and what is not, though some are more stringent than others. The F-test, 

as we shall see, proved to be the most powerful of all the tests we looked at.  

Signal Detection 

Our designed SAM stimulus is tuned at a very narrow band. To track any response, 
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it suffices to look for the same modulation frequency. If activity at that frequency is 

detected, it can only be credibly attributed to our stimulus if the activity is absent 

from neighboring bins. This is exactly how the F-test classifies signals as significant 

or not. A signal could be a true positive, in line with an auditory response, or it could 

be just background noise, a false positive.  

Because of the non-stationarity of the signals in question, and hence the complexity 

for computing the posterior densities, we abandon Bayesian solutions. Our detection 

problem is nonparametric and data driven. Besides, the nature of our stimulus, 

narrowband in nature, makes it more feasible to deal with compared to wideband 

signals that require more complicated waveform detection framework. 

The Neyman Pearson Criterion 
 

The Neyman-Pearson criterion says that decision rules are constructed to have the 

maximum probability of detection (PT) while not allowing the probability of false 

positives (PF) to exceed a certain value α. We first set a false positive threshold not to 

be exceeded as explained below, then we maximize probability of detection for that 

particular false detection. 

Max {PT {such that PF ≤ α}}   (3.1) 

F-Test for Hidden Periodicity 
 

The F-test examines the signal to noise ratio for the signal at stimulus frequency 

compared to the background noise at neighboring frequencies [7, 18]. After taking the 

FFT of the concatenated 50 presentations, the average power of 120 frequency bins 

separated by 0.01Hz (60 below and 60 above the stimulus frequency) is measured, 
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denoting background noise. Total noise bandwidth is 1.2 Hz. The formula to compute 

this ratio is given by: 

2

60
2

60,

120 sf
F i sf

i
i sf i sf

a
R

a
= +

= − ≠

=

∑
 (3.2) 

The F-test ratio is computed for all 20 stimuli at each frequency. Four stimuli 

should yield a correct detection if there was a strong auditory response, while the 

other 16 can produce only false positives, since the experiment was designed such 

that there is exactly one frequency per stimulus (Table 3.1).  

Average False Positives 
 

MEG biological noise is strongly non-Gaussian. Experimental simulations failed 

when using the Gaussian assumption, irrespective of the central limit theorem (if one 

averages enough identical distributions, the resulting density converges to a 

Gaussian), again because of non-stationarity. This should not be surprising, since all 

the above tests statistically use Gaussian white noise as the null hypothesis, and 

typical MEG noise is non-Gaussian. As a result, a noisy signal often fails the 

marginal tests by exceeding the number of false positives allowed. For example, if we 

allow a rate of one percent of detections to be false, with any of the methods 

explored, it is more likely that the observed false positives are more than one percent 

due to the high structure of our background noise. As a result, we turned the problem 

around. Usually, we set a fixed false positive (α ) probability that corresponds to a 

fixed theoretical s value (based on F-statistics). Instead, we computed an estimate of 

false positives at the frequency of interest by averaging a large number of 
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observations of false positives ( avgα ) for responses at the other stimulus frequencies 

(where no auditory response we know of should exist). Accordingly, we tuned the α  

probability to achieve the desired avgα . Table 3.1 shows how we can exploit such 

averaging. 

 

We sort F-scores for all false positives where we expect no auditory response 

(Table 3.1 off diagonal, 16 stimuli per frequency). We normalize scores and get s 

values in order to construct the cumulative distribution of false positives (Figure 3.1). 

We then find the normalized score s that meets an average α false positive (e.g. find s 

such that α = 1%). We do the inverse operation for true positives. First, we sort and 

normalize all true positives’ F-statistics scores (Table 3.1 diagonal, per row for each 

frequency) and form the equivalent cumulative distribution. We then use the s value 

computed earlier as a threshold in order to find what true positives it corresponds to. 

Channels with scores above the threshold are labeled significant, while channels with 

scores below threshold are labeled as non-significant.  

 
Stimuli 1.5Hz 3.5Hz 7.5Hz 15.5Hz 31.5Hz Response 

 Bandwidth 0 .3 1 5 0 .3 1 5 0 .3 1 5 0 .3 1 5 0 .3 1 5 
1.5Hz N N N N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3.5Hz 1 1 1 1 N N N N 1 1 1 1 1 1 1 1 1 1 1 1 
7.5Hz 1 1 1 1 1 1 1 1 N N N N 1 1 1 1 1 1 1 1 
15.5Hz 1 1 1 1 1 1 1 1 1 1 1 1 N N N N 1 1 1 1 
31.5Hz 

  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 N N N N
Table 3.1Ddistribution of correct detections vs. false detections. There are five 

stimuli modulation frequencies (first row) and five corresponding response 
frequencies (first column). Each frequency is presented with four different 
bandwidths (second row). Correct detection could be as high as 157 channels per 
stimuli (diagonal in green). False detection is set to be one on average per stimulus 
(off diagonal in red).  
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Consistency across all significance tests 
 

There are three kinds of significance tests: Those that carry phase information, such 

as Rayleigh’s phase coherence test [19, appendix c1]; those that carry amplitude 

information, such as the F-test; and those that use both phase and amplitude, such as 

Hotelling’s T2 [11, appendix c3]. We explored all the aforementioned methods, in 

addition to a family of other significance tests, in search of the strongest auditory 

responses. This other family of tests includes but is not limited to: T-test, phase 

weighted test and phase coherence weighted test [18]; Multitaper DPSS [17, appendix 

c2]; permutation test [6]; and union and intersection joint tests of the former tests [2]. 

Although some of these tests are more stringent than others, all methods, within a 

small margin of difference, agreed on the results. Refer to Figure 3.2 for receiver 

operating characteristics (ROC) for the three most prominent methods tried.  
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Non parametric Cumulative Distribution of F-statistics

Probability of false positive < 1%, s > 0.55
Probability of true negative > 99%, s > 0.55

 
 
Figure: 3.1 Cumulative distribution of F- statistics for false positives. We 
normalize our F-test scores to get s values, and plot the corresponding 
probability of false positives (α) from the order statistics. E.g. There is 
<1% false positives for s > 0.55 of normalized F scores. Note s is not a 
probability, but a normalized F-score. False positives α is a probability. 
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In our preliminary analysis, Rayleigh’s phase test, which carries phase information, 

complements F-test that builds on amplitude information. However, the improvement 

from combining the tests was not worth the computational complexity added. More 

importantly, as more subjects were analyzed, the F-test stood out as the best, least 

expensive test.  

An improvement to the F-test was suggested by [18], where complex values were 

projected onto an expected phase, creating a t-test. For our MEG data, we used 

neighboring channels to compute the expected phase. This weighting method did not 

improve on the F-test, and typically had less power. This is consistent with noise 

contamination whose phase is spatially coherent. 

Receiver Operating Characteristics (ROC) 

We plotted receiver operating characteristics for the three most prominent tests that 

we explored. For each number of false positives, we counted the number of true 

positives that were detected. We averaged across six subjects and show results for all 

five modulation frequencies (Figure 3.2). Note that the F-test consistently 

outperforms other tests. 
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Significance Head Map 

We calculated significance tests for all channels then plotted the head map by 

showing amplitude and phase information for each channel. A channel is labeled as 

significant by drawing a circle around it. 

Figure 3.3 (left) shows the complex field distribution at 3.5 Hz for a stimulus 

modulated at 3.5 Hz. Arrows represent the magnetic field response, at each of the 157 

channels, as phasors: the length of the arrow denotes amplitude and the orientation 

denotes phase. Circles mark those channels identified as significant by the F-test 

(α < 1/157). It is clear that many of the channels strong in magnitude are not 

significant (see especially the frontal channels in the right hemisphere). Figure 3.3 
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Figure 3.2: Receiver operating characteristics comparison for F, Hotelling’s, and 
phase coherence significance tests averaged across six different subjects for 
signals after removing external noise. The F-test, on average, is better than all 
other tests; Hotelling’s test ranks second, and phase coherence third across all 
frequencies tested. Low detection at frequencies at and below 15.5Hz is an 
indication of the high noise corruption. 
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(right) shows the response at the same frequency (3.5 Hz) but from a stimulus whose 

modulation frequency was 1.5 Hz, and so only noise is expected. One significant 

channel is found, which is consistent with α < 1/157 for 157 channels. Notice the 

apparent spatial coherence of the phase structure. It is neural but not stimulus driven.  

 

Analogous maps for the 7.5 Hz (and 15.5 Hz) cases are shown in Figure 3.4. The 

number of significant channels may be higher in either hemisphere. In Figure 3.4 

(right), there are two false positives. Recall that the test is designed so that there is, on 

average, one false positive for all responses in which there is no signal expected. 

 

True Detection   False Detection 

 
 

Figure 3.3: Head map plots for all 157 neural channels. Arrows represent 
amplitude (arrow’s length) and phase (arrow’s direction) of signals at the stimulus 
frequency. Red circles denote significant channels. (Left) Response at 3.5 Hz for a 
3.5 Hz modulated stimulus. 31 significant channels. The structure of the dipole, 
distribution, and number of significant channels are evidence that this is indeed an 
auditory response. (Right) Response at 3.5 Hz for a 1.5 Hz modulated stimulus. The 
single circle is a false positive labeled as “significant”. Note the strength and 
structure of the arrows; there is rich activity, but it is not auditory by experimental 
design. These head map plots were created after using Fast LMS. 
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To test how well the algorithm performed compared to other methods of selecting 

significant channels, we applied a permutation test to the magnetic distribution shown 

in Figure 3.4 (left). From the right hemisphere, 30 channels were chosen at random 

and labeled “significant”, a dipole was fit to those channels, and its goodness of fit 

(GOF) was calculated. This process was repeated 1000 times in order to compute a 

cumulative distribution function of the GOF. The GOF of the dipole for the 

significant channels based on a joint test of F, and a phase coherence test, 84%, was 

not achieved in any of the 1000 permutations (i.e. α 0.1%≤ )  

Summary 

The F-test outperformed other tests in detecting significant channels for measuring 

MEG responses. Phase coherence tests performed well, but did not add valuable 

significance to the F-test with a reasonable cost of implementation.  Expected-phase 

weighted tests fared more poorly, presumably because the expected phase used was 

True Detection          False Detection 

 
 
 
Figure 3.4: (Left) Response at 7.5 Hz for a 7.5 Hz modulated stimulus. 35 
significant channels. The dipole on the left hemisphere is not formed; more noise 
suppression is needed. (Right) Response at 7.5 Hz for a 15.5 Hz modulated 
stimulus: two false positives. The constraint to allow only one false positive was 
on average across all 16 off diagonal stimuli from Table3.1. 
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the local spatial average, which was typically coherent even when no signal was 

present. For this reason and because of similar properties of the noise, the null 

hypothesis of Gaussian noise, independent across channels, was not appropriate, 

leading us to rescale the probability distributions in order to match the measured false 

positive rate. For the purpose of fitting dipoles to auditory responses stimulated by 

SAM tones, using significant channels determined by the F-test yielded better 

goodness of fit.  
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Chapter 4: Evaluation of Fast LMS 
 
“Experience does not err. Only your judgments err by expecting from her what is not in her power.”

         Leonardo da Vinci 

 

Earlier we developed an adaptive algorithm to suppress external noise. Next, we 

need a performance measure to be able to validate the algorithm. Several techniques 

are explored. We first use the significance tests described in the previous chapter to 

show that Fast LMS indeed increases the number of true positives and reduces 

variability among false positives. Comparison of the raw data with the filtered data 

shows substantial improvement in many significant channels and a decrease in 

number and variability of false positives. Then we look at receiver operating 

characteristics, and we show that Fast LMS increases the probability of detection for 

fixed false positive. 

Fast LMS and Significance 

Fast LMS increases SNR on multiple dimensions. As illustrated in Figure 4.1 (left), 

we show the complex field distribution at 3.5 Hz for a stimulus modulated at 3.5 Hz. 

Arrows represent the magnetic field response, at each of 157 channels, as phasors: the 

length of the arrow denotes amplitude and the orientation denotes phase. Circles mark 

those channels identified as significant by the joint balanced test (α < 1/157) [2]. Note 

that many of the channels, though strong in magnitude, are not found to be 

significant. Figure 4.1 (right), on the other hand, shows the response at the same 

frequency (3.5 Hz) after applying the noise suppression. The number of significant 

channels is increased, the structure of the background of the head map is established, 



 

 32 
 

and most of the strong signals over the temporal lobes (where robust signals are 

expected in response to auditory stimuli) are de-noised. 

Fast LMS also reduced the variability of false positives. In Figure 4.2, we illustrate 

the effects of Fast LMS on false positives by looking at responses at 15.5Hz for a 

3.5Hz modulated stimulus. In the left plot, eight false positives are identified, and 

after applying the de-noising algorithm (Figure 4.2, right side) the number of false 

positives drops to two. Note that the test is designed so that there is, on average, one 

false positive for all responses in which there is no signal expected. Even so, the 

variance of the false positives among different responses per stimulus frequency is 

reduced after applying Fast LMS, providing more evidence of the value of the noise 

suppression. 

 
 

 
 
 

       Raw Data  True detection    After Fast LMS 

Figure 4.1Both stimulus and response are at 3.5Hz. (Left) Raw data. Although there 
are many significant channels, noise level hides the structure of the dipole. (Right) 
Filtered data using Fast LMS with the three external noise references. Note that the 
number of significant channels is increased, with dipoles both on the left and right 
hemispheres established; in addition the strong responses on the peripheral contour 
are suppressed. 
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ROC curve 
 

Receiver operating characteristics is a classical measure of performance in any 

detection problem. For any false detection probability (α value), there is a 

corresponding probability of detection. For any given false positive, we like to 

maximize our detection. We adopt a non-parametric approach in computing these 

probabilities, based on Table 3.1, which sets the threshold to find true positives for 

diagonal elements.   

 
The ROC curve before and after applying the de-noising algorithm is plotted in 

Figure 4.3. ROC for 1.5Hz is almost linear; this is due to low number of detection 

with poor SNR. Averaging more subjects might smooth out some of the irregularities 

such as those found in stimulus 15.5Hz at (~α =0.5). For all frequencies, however, 

       Raw Data    False detection  After Fast LMS 

 
Figure 4.2 Stimulus presented at (3.5 Hz), response analyzed at 15.5Hz. (Left) 
Raw data. Note the many scattered false positives with random structures. 
(Right) Filtered data using Fast LMS.  The number of false positives is reduced. 
Signal strengths are boosted after suppressing external noise but are comprised 
of artifacts and neural background noise. No auditory response is expected. 
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there is an increase in probability of true detection for any particular α probability. 

Hence, Fast LMS increases the probability of detection. 

 

 
 
 

In addition, our quantitative measures (Table 2.1) showed that Fast LMS removed 

many of the narrowband noise that is classified as environmental, for example, the 

180Hz power line source, while leaving our response at the stimulus frequency  

uncompromised. 

In summary, Fast LMS improved SNR, increased the number of significant 

neuronal channels, and suppressed and regularized false positives. 
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Figure4.3 Receiver Operating Characteristics curves comparison between raw 
and externally de-noised signals for one subject. Fast LMS improved significant 
detection for all frequencies. For example, a one percent false positive detection 
(α) threshold increases the number of significant channels identified from 
two(1.5Hz) to ten(31.5Hz) percent.  
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Chapter 5:  De-noising Biological Noise 

 
“Life is pretty simple: You do some stuff. Most fails. Some works. You do more of what works. If it 

works big, others quickly copy it. Then you do something else. The trick is the doing something else.”  

Leonardo da Vinci 

 

Having successfully suppressed external noise, we next look for ways to replicate 

the same process for biological noise. Now that we are equipped with a powerful 

adaptive algorithm, the problem is reduced to finding a reference channel, if it exists, 

that measures biological signals generated outside the brain, such as heartbeats, eye 

blinks, and other artifacts. It is even more valuable if this putative channel can also 

record neural brain activities that are not auditory. For our MEG-KIT system, there 

was no reference channel dedicated solely to this purpose; however, we have 157 

channels, and the outermost (along the external contour) have a chance at capturing 

artifact noise. We conduct a brute force search for the channel that best measure such 

noise, apply the de-noising algorithm already developed and validate how acceptable 

the results are. 

The remaining question is to what extent we can eliminate non-auditory brain- 

generated neural noise. We show that with some intelligent observation, we can 

reduce the non-relevant brain background noise with tolerable loss to our signals. Our 

approach should not be limited to auditory signal, it could generalize to other sensory 

modalities (e.g. visual, motor) as well. 
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Artifact Removal 
 

Two widely used artifact suppression techniques for MEG are principal components 

analysis (PCA) and independent components analysis (ICA). The general idea is to 

transform the multi-channel dataset into another domain where the signal and noise 

are statistically independent or orthogonal (they contain no shared information). PCA 

can effectively remove artifacts from EEG signals; however, when the artifacts are an 

order of magnitude stronger than the signal, as in the case of MEG, PCA does not 

perform well. ICA, on the other hand, is sensitive enough to be able to pick out very 

small signals buried in noise. ICA tries to minimize the mutual information between 

mixed signals by maximizing the entropy between signals [14]. ICA is a powerful 

technique; however, it is still not applied effectively in MEG research.  

Rather than solve the whole problem, we relax many of the constraints and try to 

identify a single noise channel rich in artifact that could be de-correlated from all 

other channels. The Fast LMS developed earlier is a de-correlation tool. We want to 

find sensors that are the most prone to noise, the least significant, and the most distant 

from our signals. We then subtract any correlation between our signals and the 

reference sensor channels. We are interested in maximum suppression of noise and 

minimum interference with our auditory signal without the need to separate different 

components. 
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Our brute force search for the channels most prone to artifact noise led us to two 

candidates: channels 0 and 23 in Figure 5.1. These channels are furthest away from 

auditory signals and spatially best localized to contain primarily artifacts. Out of all 

the available neural sensors, these two channels, when de-correlated from other 

channels, yielded the highest SNR without hampering our SSR signal. ICA results 

confirm [29] that these two channels contributed most power to two major 

components of the heartbeat. Further validation would require looking at significance 

tests and ROC curves.  Note that the nearest neighboring channels could yield similar 

results. 

 

We demonstrate the effectiveness of our method through head map and spectrum 

plot examples.  

On the left side of Figure 5.2, we have only six significant channels with no clear 

auditory dipole fit. After applying reference channels 0 and 23 using Fast LMS 

 
 
Figure5.1: (Left) 2D isofield contour map showing all 157 channels. Channels 0 
and 23 are the top left and right on both hemispheres. We group channels on the 
peripheral contour and midline as potential reference channels for removing 
artifacts and background neural noise generated in the brain. They are furthest 
apart from neural brain activity and most susceptible to biological noise. (Right) 
3D isofield contour map for same group of channels. 
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(right), the number of significant channels increases, and there is the possibility of 

fitting a dipole on the left hemisphere. There is no noticeable change in the structure 

or flow of responses, indicating that the significance increases are due to noise 

removal that boosted SNR and hence lowered the threshold for true positives. 

 

A hierarchy of noise removal effects can be seen in Figure 5.3. The top figure 

shows the effect of removing external noise. This operation increased the number of 

significant channels and established ground for a dipole on the right hemisphere. 

However, in the left hemisphere, there is powerful peripheral noise impeding a dipole 

pattern. When we apply de-noising based on the reference channels 0 and 23 (left 

bottom), we can see that the number of significant channels decreased, but so did the 

noise on the two sides of the head, triggering the concern that these channels might be 

recording only noise. Note that the stimulus frequency is 1.5 Hz, rich in artifacts. It is 

an extremely noisy band.  

 

    After Fast LMS  After Artifact Supp. (Ref. chan 0&23) 

 
Figure 5.2 Head map plot for stimulus and response at 7.5Hz. (Left) After 
removing environmental noise. Note there are only six channels total with no 
dipole. (Right) After removing correlated noise with channels 0 and 23. Note how 
strong signals on the frontal side of the head are wiped out. In addition, number of 
significant channels increase, a dipole is forming on the left hemisphere. 



 

 39 
 

 

 

 

 

To show the effect of such de-noising in the Fourier domain, see Figures 5.4 and 

5.5. In the first figure, an already significant signal is minimally reduced while 

removing noise at 9, 17, and 31Hz in addition to other bands. In the other case 

       Raw Data     After Fast LMS 

 
   After Artifact Supp. (Ref. chan 0&23)     After Artifact Supp. (Ref. Front) 

 
Figure 5.3 Head map plot for stimulus and response at 1.5Hz, an extremely noisy 
band. (Left top) Raw signal, 13 significant channels, poorly structured with no 
clear dipole to fit to. (Right top) Environmental noise is suppressed. The left 
hemisphere channels labeled significant lack the structure of a dipole; peripheral 
signals are strong. (Left bottom) After removing correlation with channels 0 and 
23, which are rich in artifact noise, note that strong signals on the frontal side of 
the head are wiped out. In addition, what was labeled as significant on the left 
hemisphere is dropped out. On the other hand, the dipole on the right hemisphere 
is enhanced. (Right bottom) We remove correlation with frontal channels 101 to 
107, rich in both artifact and neural background noise. The dipole on the left 
hemisphere is recovered, right hemisphere dipole is enhanced further. 
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(Figure 5.5), the stimulus response signal was already buried in noise. The de-noising 

operation reduced power to all frequencies below 40 Hz. However, more noise was 

removed, and significant channels reemerged. 
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Figure 5.4: Artifact removal based on channels 0 and 23. Stimuli modulation 
frequency is 7.5 Hz. Peaks at 9, 17, and 31 Hz are suppressed. The signal is mildly 
affected. On the other hand, the 5Hz peak is not removed; further de-noising could 
yield better SNR.  
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Figure 5.5: Removing correlation based on channels 0 and 23 for a stimulus 
modulated at 15.5Hz. The response was buried until we removed enough noise, then 
it emerged again. For most of the spectrum, the magnitude of the signal dropped, 
but unevenly, concentrated in narrow bands. In this case, a mixture of artifact and 
neural noise generated in the brain is suppressed.  
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The time series waveform in Figure 5.6 shows the effect of removing artifacts based 

on channels 0 and 23. We are plotting the difference between two neighboring 

channels to our reference channels, one on each side (before and after applying Fast 

LMS). The de-noising removed what looks like heartbeat in our signal and some 

other burst (at ~82sec.) that could be associated with eye movement. 

 
 

 
 

 

In some cases, valuable signal that exists in a potential reference channel could be 

filtered out from other channels. So far, we argue that the auditory contribution to this 

channel is very small. Nevertheless, we do not want to de-correlate such information 

from other neural channels. Indeed, it is possible to do the de-correlation with 

minimal or no loss to the signal, at the price of introducing a new filtering stage. First, 

we choose multi-reference channels that are corrupted with noise, such as channels 0 
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Figure5.6 Waveform of 50 concatenated responses at 31.5Hz for the difference 
between channels 1 and 22 before and after removing artifacts correlated with 
the two neighboring reference channels 0 and 23. Note the heartbeat and eye 
movement were filtered out. This operation was even consistently removing 
artifact from most channels on the peripheral contour map.  
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and 23. Instead of de-correlating the two, we look for common ground by correlating 

them and estimating the shared noise. This new constructed signal will be our new 

reference channel. It contains only noise information. It is very uncommon that an 

auditory signal from the same source will be significant in two distant channels with 

the same phase information. In other words, this new method will maximize noise 

presence in the new reference channel and suppress unidentified signals with different 

characteristics among multi-reference channels. This new reference channel is then 

cleared to be de-correlated from all other neural channels. In Figure 5.7, we plot the 

time waveform of the channel neighboring channel 0 (blue), then we contrast it with a 

filtered version (red) that is the result of de-correlating it with a reference channel 

constructed as we described earlier (reference channel is the filtered version of 

correlating channels 0 and 23). Note the suppression of heartbeat and other artifacts. 

It is important to state that we cannot distinguish between biological artifact noise 

and neural brain background noise. Some channels, like 0 and 23, are more prone to 

artifacts because of their spatial location, but they could also be a source of brain 

noise. We separate de-noising artifact from suppressing brain noise to simplify the 

problem and divide it into 2 stages: In the first stage, we look for channels with 

mostly artifact, and in the second, we focus more on channels that could potentially 

be used to filter neural brain noise. The localized channels are used as references. It is 

evident that each stage could remove any biological noise as all 157 channels are in 

the magnetic field of such noise. Our goal is achieved when SNR improves regardless 

of the identity of the noise removed. 
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Finding a reference channel that captures noise and poses minimal threat to our 

signal is crucial for de-noising biological signals. We identify four criteria to find a 

reference channel in order to remove neural noise from other auditory channels: 

1- Distance: channels should be apart from each other, 

2- Significance: choose channels that are least significant, i.e., strong in noise, to 

subtract, 

3- Correlation: The signal channels should have some correlation with the 

channel to de-noise, 
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Figure 5.7 Waveform of 50 concatenated responses at 31.5Hz for channel 1 
(neighbor of channel 0) before and  after removing artifacts correlated with the 
reference channel constructed by capturing noise in channel 0 present in 
channel 23, i.e. the reference channel is correlated noise between channels 0 
and 23. Note heartbeat and eye movement were filtered out. This operation is 
noninvasive to our signal because it is based on correlated noise between two 
channels on opposite sides of the hemisphere. 
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4- Masking: Exclude those channels where we know that there might be auditory 

activity. For example, we look for reference channels in the visual cortex, 

frontal, left and right contour, and midline (Figure 5.1). 

A case study: searching for reference channels 
 

Here, we propose a method for finding noise reference channels. They are used to 

de-correlate from potential auditory neural channels. We plot in Figure 5.8 a 

correlation head map for a single channel. We identify the most significant channel 

with F-statistics (blue), and then we compute the correlation for this channel with all 

other channels.  

 
 
Positive correlations are in green, and negative correlations are in red. After removing 

much of the peripheral noise with reference channels 0 and 23, the cluster of red 

     After External Noise Supp.           After Artifact Supp. (Ref. chan 0&23) 

 
Figure 5.8 Correlation head map for channel 66 (most significant according to F 
statistics circled in blue) with all other channels. Positive (green) and negative (red) 
correlation with all other channels is computed. Larger circles correspond to higher 
correlation (only correlations above certain absolute threshold are plotted). 
Numbers indicate order statistics of correlation. One is most positively correlated, 
while 157 is most negatively correlated. (Left) Before applying artifact de-noising, 
with respect to channels 0 and 23. (Right) After applying artifact denoising. Many of 
the peripheral channels are de-correlated with our most significant channel. The 
cluster of channels that represent a dipole relocate to a more meaningful location. 
Note also the single outlier uncovered on the left hemisphere that is positively 
correlated with our channel on the right hemisphere. This could be due to artifacts. 
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channels moves to the right, leaving an outlier close to the left ear positively 

correlated with blue channel.  

 
 

We pursue this channel further by plotting the correlation head map of this outlier 

with all other channels (Figure 5.9, top left) next to a significance head map (Figure 

5.9, bottom left). The right hemisphere is overpopulated with significant channels that 

put constraints on a dipole fit due to the channels close to the right ear; their 

orientation is not in harmony with most other significant channels that are 180 

   After Artifact Supp. (Ref. chan 0&23)     After Artifact Supp. (Ref. chan 4) 
       Correlation 

 
       Significance 

 
Figure5.9 (Top left) Correlation of channel 4 (blue) after de-noising based on 
channels 0 and 23. The correlation head map reveals that it could be rich in noise. 
(Top right) We suppress the correlation between channel 4 and all other channels. 
(Bottom left), Stimulus at 31.5Hz. The right hemisphere dipole is over fitted with 
noise prone signals labeled as significant. (Bottom right) After removing 
correlation with channel 4, the left hemisphere is enhanced, while the right 
hemisphere is more consistent after dropping outliers. Correlation threshold =0.2. 
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degrees out of phase. In other words, we have a multi-dipole source. We are only 

interested in the dipole due to our stimulus. We label our outlier as a reference 

channel and de-correlate it from all other channels. Figure 5.9, bottom right, shows 

that the right hemisphere is cleaner for a dipole fit, strong noise is suppressed on the 

right contour, and the left hemisphere is slightly enhanced in significance. This 

disproves that the outlier was mostly measuring a neural signal. 

 
Figure 5.10 is a time waveform plot for a channel neighboring our outlier. It 

appears that some artifacts not correlated with channels 0 and 23 are removed. 

 
 

Brain Background Noise Removal 
 

If we are willing to sacrifice some of the strength of our auditory signal, it is 

possible to suppress much interference from other sources of non-auditory neural 

signal. We can compute a covariance matrix for all 157 channels and look at those 

with high correlation coefficients. We already know that two sources can be separated 
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Figure 5.10 We remove correlation using channel 4 as a reference. The adjacent 
channel is plotted before and after noise suppression; it shows some artifact 
remaining from the previous de-noising process being removed. 
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only if the inter-source distance is at least of the same order of magnitude as the 

distance between sources and measurement locations [13]. Therefore, we can pick far 

distant channels. It is preferable to choose the most significant channels (those with 

the highest F-statistics), whether using order statistics for F-distribution based on SSR 

responses or using the most prominent M100 (in power) waveform channel. 

Figure 5.11 shows the spectrum using frontal channels to de-noise our signal. Our 

auditory signal is uncompromised; noise removal was minimal in general, but of 

higher value at lower frequencies around 4 Hz.  

 

 

 

Regardless the four criteria, it is still possible that the reference channel we find has 

some correlation with the auditory signal, and so we risk subtracting some valuable 

signal.  As in the case of artifact removal, we construct a reference channel that is an 
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Figure 5.11: Removing correlation using frontal channels as references for 
biological noise for stimulus frequency at 15.5Hz. Minor improvements are 
recorded at low frequencies. Head map (not shown) revealed that this channel 
was not significant prior to de-correlation with frontal channels. This is the result 
of a drop in threshold level due to de-noising rather than an increase in signal 
power that remains the same (the channel is a neighbor of the channel in Figure 
5.5; the latter was already significant before de-noising with frontal channels).  
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estimate of the noise shared by multiple references rich in background noise. This 

will minimize signal loss. 

Finally, a comparison of all de-noising stages using ROC curves (Figure 5.12) is 

consistent for all stimuli frequencies. Except for the 1.5Hz, which was very unstable 

for this particular subject, each stage increases in detection compared to the previous 

one. At high frequencies, the signal is already significant; hence, no valuable 

improvement is recorded.  

Again, the results we present here are at an early stage of research; the tools and 

methods introduced in this chapter have great potential but need further refinement 

and investigation with more subjects. 
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Figure 5.12 ROC curves comparison for all suppression stages for all modulation 
frequencies. In general, each de-noising process added some improvements to the 
detection of significance channels.  The higher the frequency, the less 
improvement we get from suppressing biological noise. For stimuli at 1.5 Hz, it is 
very noisy and detection is very narrow, and hence one should avoid drawing any 
conclusion at that rate based on this single subject. 
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Conclusion 
 

We have designed two powerful building blocks that form the foundation of a noise 

suppression model that addresses environmental noise, biological artifacts, and non-

auditory brain activities. The first algorithm was a frequency domain adaptive 

filtering that exploits fast FFT and fast correlation to build an efficient de-noising 

tool. The second algorithm is a significance test that classifies every channel as a true 

positive or a false positive. As a result, we improved SNR by removing external noise 

as a first step. Various tests we conducted validated the universal application of the 

tools developed; however, these tests were spectral, not temporal. 

Later, we expanded our de-noising to include artifacts and neural noise generated in 

the brain. Our results show that it is feasible to suppress such noise by de-correlating 

with respect to a noisy available or constructed reference channel. We constructed 

such a reference channel by estimating correlated noise in channels most susceptible 

to such noise. In the case of artifacts, because of the order of magnitude of the noise 

in comparison to our signal, our auditory signal is still intact, especially when using 

the constructed reference channel, although there is always a slight risk of 

compromise. In the case of background noise generated in the brain, the risk of 

compromise is higher because of the proximity of the auditory source and the source 

of noise; however, by respecting the 4 criteria described (significance, correlation, 

distance, and masking), the risk is reduced. Although we present de-noising modules 

as separate, there is crisscrossing between them. It is not necessary, though it is 

desirable, to separate different kinds of noise.  
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The purpose of the last chapter was to explore and introduce some potential 

techniques in suppressing biological noise. These novel, yet powerful tools still need 

to be investigated, especially in terms of replicating our findings in more subjects and 

turning the subjective solution into a general one.  

In conclusion, by applying our de-noising algorithm, we improved SNR to a level 

where other techniques, such as ICA, are more capable of separating auditory 

components. 
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 Appendices 

A- Matlab code 
------------------------------------------------------------------------------------------------------- 

A.1 Fast LMS 
function filtinfo = 
adapt_noise_supp_fix(srce,dest,blksize,num_blk_cte,forgetfact,adaptcte) 
% filtinfo = adapt_noise_supp(srce, dest, blksize, num_blk_cte, forgetfact, adaptcte) 
% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This file reads in from a sqd file: 157 neuronal channels, 3 reference channels, 
% 32 trigger channels (and all other information). It filters the neuronal channels 
% based on the 3 reference channels, then creates a new sqd file with the filtered 
% neuronal data and everything else unmodified. 
% The method is the Fast LMS adaptive filter. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% srce : raw sqd file (if not specified, a sqd file is requested) 
% dest : filtered sqd file (srce + '-filtered.sqd' is the default) 
% blksize : size of LMS block in samples; typical: 64, 128(default), 256, 512 
% num_blk_cte : number of blocks (weighted by sampling frequency in kHz) to filter 
at 
%   once (reduce if 'out of memory' errors occur); typical: 0.25, 0.5, 1(default), 2, 
4 
% forgetfact : forgetting factor,  0 < gamma < 1, (0.94 default) 
% adaptcte : adaptation constant, 0 < alpha < 0.5 (0.01 default) 
% filtinfo = filtering parameters and times 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Author: Nayef Ahmar aenayef@glue.umd.edu 
% 
% for the Computational Sensorimotor Systems Lab (CSSL) UMCP 
% http://www.isr.umd.edu/Labs/CSSL/ 
% Version 0.91 Dec. 1 2005 
% 
% Latest version at 
% http://www.isr.umd.edu/Labs/CSSL/simonlab/resources/resources.html 
% 
if nargin == 0, 
    [fn, pn] = uigetfile('*.sqd','Select your SQD file source'); 
    if sum(fn==0)&&sum(pn==0),return,end 
    srce = fullfile(pn,fn); 
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end 
info = sqdread(srce,'info');%extract info 
sf = info.SampleRate;%sampling frequency in HZ 
  
if nargin < 6, adaptcte = 0.01; end; 
if nargin < 5, forgetfact = 0.94; end; 
if nargin < 4, num_blk_cte = 500/sf; end; 
if nargin < 3, blksize = 2^ceil(log2(2*sf/8));end %128; 
if nargin < 2, [pathstr,name,ext] = fileparts(srce); dest = fullfile(pathstr,[name '-
filtered' ext ]); end; 
  
if exist(dest,'file'),delete(dest),end %delete any existing file because we use append 
%command in sqdwrite 
t0 = clock; 
num_samples = info.SamplesAvailable;%total number of samples 
tot_num_chan = info.ChannelCount; 
%create a destination sqd file and write first sample 
data = sqdread(srce,'Channels',[0:tot_num_chan-1],'Samples',[1 1]); 
sqdwrite(srce,dest,data); 
  
%Input parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
alpha = adaptcte;%0.01;%0.005;%adaptation constant 
gamma = forgetfact;%0.94;%forgetting factor 
M = blksize;%64;%Block size 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cte = floor(1000*64/blksize); 
num_blks = num_blk_cte*cte;%1000;%reduce if have out of memory problems 
N = floor((num_samples-1)/M/num_blks);%number of blocks to pass to fast_lms, 
should %be integer 
blk_len = M*num_blks; 
  
infoc.sf = sf; 
infoc.blocksze = M; 
infoc.forgetfact = gamma; 
infoc.adaptcte = alpha; 
infoc.multiblk = blk_len; 
infoc.source = srce; 
infoc.destin = dest; 
%initialize P and W 
P_chan = gamma*ones(2*M,3,157); 
W_chan = zeros(2*M,3,157); 
U = ones(M,3);%@for in between block transition update 
h = waitbar(0,'Please wait...'); 
  
for blk = 1:N, 
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    blk_lb = (blk-1)*blk_len + 2;%start at 2 because we already copied first sample 
    blk_ub = blk*blk_len + 1; 
    data = sqdread(srce,'Channels',[0:tot_num_chan-1],'Samples',[blk_lb blk_ub]); 
    data_chan = data; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Warnings%@ 
    if max(abs(mean(data_chan(:,1:160)))) > 1000,%need to verify this threshold 
        display('Warning: For better filtering, remove Dc before applying noise 
suppression'); 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    u = data_chan(:,158:160); 
    for chan = 1:157, 
        P = P_chan(:,:,chan); 
        W = W_chan(:,:,chan); 
        d = data_chan(:,chan); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        [E,p,w]=fastlms3ref(alpha,M,u,d,gamma,P,W,U); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        % Input arguments: 
        % alpha =step size, dim 1x1 
        % M =filter length, dim 1x1 
        % u =input signal, dim Nx3 
        % d =desired signal, dim Nx1 
        % gamma =forgetting factor, dim 1x1 
        % P =initial value, energy, dim 2Mx3 
        % W =final filter vector from previous iteration, dim 2*Mx3 only last half is 
used 
        % U = previous input reference channel from previous multi-block, dim Mx3 
        % 
        % Output arguments: 
        % e =estimation error, or filtered signal dim Nx1 
        % P =output value, energy, dim 2Mx3 
        % w =final filter vector, dim 2*Mx3 only last half is used 
        data_chan(:,chan) = E; 
        P_chan(:,:,chan) = p; 
        W_chan(:,:,chan) = w; 
    end %chan 
    U = u(end-M+1:end,:);%@for in between block transition 
    %sqdwrite goes here 
    putdata(info,dest,'Action','Append','Data',data_chan); 
    waitbar(blk/N,h); 
end %blk 
%append last fraction of a block if there is any 
if blk_ub < num_samples, 
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    data = sqdread(srce,'Channels',[0:tot_num_chan-1],'Samples',[blk_ub+1 
num_samples]); 
    num_samp_fract = num_samples - blk_ub; 
    num_app_zeros = blk_len - num_samp_fract; 
    data_chan = [data; zeros(num_app_zeros,tot_num_chan)]; 
    u = data_chan(:,158:160); 
    for chan = 1:157, 
        P = P_chan(:,:,chan); 
        W = W_chan(:,:,chan); 
        d = data_chan(:,chan); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        [E,p,w]=fastlms3ref(alpha,M,u,d,gamma,P,W,U); 
        data_chan_f(:,chan) = E(1:num_samp_fract,:); 
    end %chan 
    %sqdwrite goes here 
    data_chan_f(:,158:160) = u(1:num_samp_fract,:); 
    data_chan_f(:,161:tot_num_chan) = data(1:num_samp_fract,161:tot_num_chan); 
    putdata(info,dest,'Action','Append','Data',data_chan_f); 
end 
close(h); 
deltat = etime(clock,t0) 
infoc.processtime = deltat; 
filtinfo = infoc; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [E,p,w]=fastlms3ref(alpha,M,u,d,gamma,P,W,U); 
% [e,p,w]=fastlms_3ref(alpha,M,u,d,gamma,P,W,U); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Input arguments: 
% alpha =step size, dim 1x1 
% M =filter length, dim 1x1 
% u =input signal, dim Nx3 
% d =desired signal, dim Nx1 
% gamma =forgetting factor, dim 1x1 
% P =initial value, energy, dim 2Mx3 
% W =final filter vector from previous iteration, dim 2*Mx3 
% U = previous input reference channel from previous multi-block, dim Mx3 
% 
% Output arguments: 
% e =estimation error, or filtered signal dim Nx1 
% P =output value, energy, dim 2Mx3 
% w =final filter vector, dim 2*Mx3 only last half is used 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
% initialization 
N=length(u); 
E=d;%Initially, the recovered signal is set to observed signal 
zero1 = zeros(M,1); 
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zero3 = zeros(M,3); 
twoM = 2*M; 
% no.of blocks 
Blocks=N/M; 
ref = [1:3]; 
for k=0:Blocks-1 
    if k>0, 
        Uvec=fft([u((k-1)*M+1:(k+1)*M,ref)],twoM); 
    else%in between multiblock 
        Uvec = fft([U;u(1:M,:)]);%concatenate last block from previous multiblock, and 
first block from current multiblock 
    end 
    yvec=real(ifft(Uvec(:,ref).*W(:,ref))); 
    yvec2=yvec(M+1:twoM,ref); 
    % block k; desired and error signal 
    dvec=d(k*M+1:(k+1)*M); 
    E(k*M+1:(k+1)*M,1)=dvec-sum(yvec2(:,ref),2); 
    % FFT of estimation error 
    Evec=fft([zero1;E(k*M+1:(k+1)*M)],twoM); 
    % estimated power 
    P=gamma*P(:,ref)+(1-gamma)*abs(Uvec(:,ref)).^2; 
    % block k, inverse of power 
    Dvec=1./P(:,ref); 
    % estimated gradient 
    phivec=ifft(Dvec(:,ref).*conj(Uvec(:,ref)).*[Evec Evec Evec],twoM); 
    phivec=phivec(1:M,ref); 
    % update of weights of filter coefficients 
    W=W+alpha*fft([phivec;zero3],twoM); 
end % no.of blocks 
w=W;%save filter coefficient(fourier domain) to use in the next multiblock 
p = P; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 

A.2 F and Hotelling Significance test 
 
function [sig_cell,sig_cell_tot] = 
FH_sig_tests(srce,trigdirname,sig_test,p_indx,latency,stimlist); 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%Significance test for F-test and Hotelling test 
%The output is a cell of significant channels for all trigger files 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%srce : raw sqd file (if not specified, a sqd file is requested) 
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%trigdirname: path for trigger files 
%sig_test: 1: F-test, 2: Hotelling test, 3: both F and Hotelling test 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if nargin == 0, 
    [fn, pn] = uigetfile('*.sqd','Select SQD file source'); 
    if sum(fn==0)&&sum(pn==0),return,end 
    srce = fullfile(pn,fn); 
end 
if nargin < 6, stimlist = [1.5 1.5 1.5 1.5 3.5 3.5 3.5 3.5 7.5 7.5 7.5 7.5 15.5 15.5 15.5 
15.5 31.5 31.5 31.5 31.5];end ; 
if nargin < 5, latency = 0.3;end ;%steady state response 
if nargin < 4, p_indx = 1;end ;% number of false positives on average 
if nargin < 3, sig_test = 1;end ; 
if nargin < 2, trigdirname = uigetdir( 'Pick a Directory for trigger files'); end; 
info = sqdread(srce,'info');%extract info 
sf = info.SampleRate;%sampling frequency in HZ 
t0 = clock; 
num_stim = length(stimlist); 
freqlist = unique(stimlist); 
numfreq = length(freqlist); 
num_false_pve = p_indx*16; 
test_trig_sam_cube = zeros(2,num_stim,numfreq,157); %@initialize cube of all data 
inc = 1;%matlab start at zero hence add one 
pretrigger = 0; 
posttrigger = 0; 
stim_duration = 2;%stimulus duration in seconds 
len = length(textread([trigdirname,'/trig_160.txt'])); 
epoc_samples = stim_duration*sf; 
channel = 1:157; 
fftw('planner','patient');%Choose fastest FFT 
h = waitbar(0,'Please wait...'); 
for trigch = 160:179,%[160:175,178:181], 
    triggerfile = [trigdirname,'/trig_',int2str(trigch),'.txt']; 
    trigger = textread(triggerfile); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Extract and concatenate sample paths of filtered data for all channels 
    %maxtrig =  trigger(len)*sf + latency*sf + epoc_samples + posttrigger*sf ; 
    %data_stim = zeros(1:maxtrig,157); 
    data_stim = []; 
    for j = 1:len, 
        lowtrig = round(trigger(j)*sf - pretrigger*sf + latency*sf + 1) ;%trigger -
(pretrigger) + 1(matlab starts at 1 vs meg160 at 0) 
        hightrig = round(lowtrig + pretrigger*sf + epoc_samples + posttrigger*sf -1);%  
(pretrigger) + 1s recorded data +  (posttrigger) 
        datain = getdata(info,'Channels',0:156,'Samples',[lowtrig hightrig]); 
        data_stim = [data_stim; datain]; 
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    end 
    for sami = 1:numfreq, 
        sam = freqlist(sami);%[1.5,3.5,7.5,15.5,31.5], 
        amf = sam*stim_duration; 
        am_freq = amf*len + inc; 
  
        for chan = channel, 
            data_ch = data_stim(:,chan); 
  
            if sig_test ~= 2, 
                fft_data_ch = fft(data_ch); 
                fft_data_ch(1) = 0; 
                fft_data_amf(chan) = fft_data_ch(am_freq,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                %F test for hidden periodicity(Simplified) 
                denom_f = sum(abs(fft_data_ch(am_freq-60:am_freq-
1)).^2)+sum(abs(fft_data_ch(am_freq+1:am_freq+60)).^2); 
                num_f = 120*abs(fft_data_ch(am_freq))^2; 
                R_f_test = num_f/denom_f; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                R_f_test_chlist(chan,:) = R_f_test; 
            end 
            if sig_test ~= 1, 
                data_ch = data_ch - mean(data_ch);% 
                %Hotelling 
                for k = 1:len, 
                    lb = (k-1)*epoc_samples + 1; 
                    ub = k*epoc_samples; 
                    datafft_1pr = fft(data_ch(lb:ub)); 
                    sam_complex_50(k) = datafft_1pr(amf+inc); 
                end 
                sam_50epoch = sam_complex_50; 
                sam_50epoch = sam_50epoch(:); 
                sam_realandimg(:,1) = real(sam_50epoch); 
                sam_realandimg(:,2) = imag(sam_50epoch); 
                [nr,nc] = size(sam_realandimg); 
                mu0 = [0;0]; 
                sam_realandimg_mean=mean(sam_realandimg); 
                dev = sam_realandimg-kron(ones(nr,1),sam_realandimg_mean); 
                s=dev'*dev/(nr-1); 
                sinv=inv(s); 
                wrk = sam_realandimg_mean'-mu0; 
                tst = nr*wrk'*sinv*wrk; 
                R_hot = tst*(nr-nc)/(nc*(nr-1)); 
                R_hotelling_chlist(chan,:) = R_hot; 
            end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        end%channel 
        %To extract all possible values of all scenarios(#trig, #sam) 
        trigi = trigch-159;%@ 
        if sig_test ~= 2, test_trig_sam_cube(1,trigi,sami,:)= R_f_test_chlist; end      
%@%F-test 
        if sig_test ~= 1, test_trig_sam_cube(2,trigi,sami,:)= R_hotelling_chlist; end   
%@%Hotelling  
    end%for sam 
    trigch 
    waitbar((trigch-159)/num_stim,h); 
end%for trigch 
sig_cell = cell(num_stim,2); 
sig_cell_tot = cell(numfreq,num_stim,2); 
for trig_in = 1:num_stim,%5:8,%1:20, 
    for stimf_in = 1:numfreq,%2,%1:5, 
        [freq_bnd,bound] = find(freqlist(stimf_in)~=stimlist); 
        %F-Test 
        if sig_test ~= 2, 
            flist_fp = test_trig_sam_cube(1,bound,stimf_in,:); 
            flist_fp = sort(flist_fp(:)); 
            f_thresh = flist_fp(length(flist_fp)-num_false_pve+1); 
            flist_tp = test_trig_sam_cube(1,trig_in,stimf_in,:); 
            [flist_sig,ind_F] = find(flist_tp>f_thresh); 
            roc_f(num_false_pve,trig_in,stimf_in) = length(flist_sig); 
            sig_cell_tot(stimf_in,trig_in,1) = {[ind_F]};  
        end 
        %Hotelling 
        if sig_test ~= 1, 
            hlist_fp = test_trig_sam_cube(2,bound,stimf_in,:); 
            hlist_fp = sort(hlist_fp(:)); 
            h_thresh = hlist_fp(length(hlist_fp)-num_false_pve+1); 
            hlist_tp = test_trig_sam_cube(2,trig_in,stimf_in,:); 
            [hlist_sig,ind_H] = find(hlist_tp>h_thresh); 
            roc_h(num_false_pve,trig_in,stimf_in) = length(hlist_sig); 
            sig_cell_tot(stimf_in,trig_in,2) = {[ind_H]};  
        end 
    end 
    [aa,stim_ind] = find(freqlist == stimlist(trig_in)); 
    sig_cell(trig_in,1) = sig_cell_tot(stim_ind,trig_in,1); 
    sig_cell(trig_in,2) = sig_cell_tot(stim_ind,trig_in,2); 
end 
sig_cell 
sig_cell_tot 
deltat = etime(clock,t0) 
close(h); 
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B- Table summarizing Fast Block LMS algorithm 
 

Dimensions: 
r=0,…,R ; reference channels, e.g. R = 3. 
M; block size (e.g. 1024 samples) 
i=0,…,2M-1 
 

Initialization: 
ˆ (0) (2 , )rW zeros M R= ; Filter coefficients initialized to zero 

, (0)i r iP δ= ; average signal power per Reference channel,  
    initialized to small positive constant δ . 
 

Computation: For each block of M input samples: 
Filtering: 

{ }( ) [ ( ),..., ( 1), ( ),..., ( 1)]T
r r r r rU k diag FFT u kM M u kM u kM u kM M= − − + −  

( )T
ry k = last M elements of IFFT ˆ[ ( ) ( )]r rU k W k  

Error estimation: 

1

( ) ( ) - ( )
R

r
r

e k d k y k
=

= ∑  

E(k)=FFT
0
( )e k

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Signal-power estimation: 
2

, , ,( ) ( 1) (1 ) ( )i r i r i rP k P k U kγ γ= − + −  
1 1 1

0 1 2 1( ) [ ( ), ( ),..., ( )]MD k diag P k P k P k− − −
−=  

Tap-weight adaptation: 
( )r kΦ  = first M elements of [ ( ) ( ) ( )]H

rIFFT D k U k E k  

( )ˆ ˆ( 1) ( )
0r r

k
W k W k FFTα

Φ⎡ ⎤
+ = + ⎢ ⎥

⎣ ⎦
 

 

FFT : Fast Fourier Transform, IFFT: Inverse Fourier Transform, 
α : adaptation constant <1/2 

 

Table b.1: Multi-reference Fast LMS adopted from [10] and modified for multiple 
references. The algorithm operates in the Fourier domain by slicing the spectrum in 
small block with slowly changing envelope. It takes advantage of the efficient 
implementation of convolution and correlation. 
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C- Significance Tests 

C.1 Rayleigh’s Phase Coherence Test 
 

For each of the 2 seconds responses per stimulus (there are N=50 presentations), a 

DFT was performed and the phase at the stimulus frequency was measured. Then the 

projections onto the real and imaginary axes are summed separately for all 

presentations. The phase coherence, denoted R, ranges between zero and one where 

zero is uniformly random and 1 is most significant [4.10, 4.5, 4.12, and 4.2]. The 

phase coherence is formally: 

 2 2

1 1

1 ( cos ) ( sin )
N N

P i i
i i

R
N

θ θ
= =

= +∑ ∑  (c.1) 

The significance of the result was assessed using approximation formula suggested by 

[6]: 

 
2

e PNRP −=  (c.2)  

C.2 Multitaper DPSS 
 

Based on Karhun loeve expansion, a multitaper method uses windows from the 

discrete prolate spheroid sequences (DPSS). It is also used to detect sinusoids 

embedded in noise based on their amplitude [17]. It is very similar to the F-test, but 

because of the nature of the DPSS windows, it averages over neighboring frequency 

bins. For our data, it has less power than the simpler F-test. This is consistent with our 

experimental design, which puts all the power of the signal into a single frequency 

bin, with no spectral splatter or frequency widening. In this design, smoothing in the 
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frequency domain serves little purpose and only allows additional noise into the 

signal’s frequency bin. 

C3. Hotelling's T2 distribution 
 

Hotelling’s T2 statistic is a generalization of Student’s t statistic that is used in 

multivariate hypothesis testing. It is defined as follows:  

For X1 to Xn px1 column vector let X be the sample mean, and W the sample 

variance, 

1

1

n

in
i

X X
=

= ∑      (c.3) 

( )( )
1

1
1

n T

i i
i

W X X X X
n =

= − −
− ∑  (c.4) 

Let μ be some known px1 column vector that is a hypothesized value of a mean. To 

be compared with the sample mean. Then the Hotelling’s T2 statistic can be 

determined for any matrix of rank ≥ p and is defined as: 

( ) ( )2 1T
T n X W Xμ μ−= − −   (c.5) 
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