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This dissertation explores the efficacy of large-footprint, waveform-digitizing lidar 

for the inventory and mapping of canopy fuels for utilization in fire behavior 

simulation models.  Because of its ability to measure the vertical structure of forest 

canopies lidar is uniquely suited among remote sensing instruments to observe the 

canopy structure characteristics relevant to fuels characterization and may help 

address the lack of high-quality fuels data for many regions, especially in more 

remote areas.  Lidar data were collected by the Laser Vegetation Imaging Sensor 

(LVIS) over the Sierra National Forest in California.  Various waveform metrics were 

calculated from the waveforms.  Field data were collected at 135 plots co-located 

with a subset of the lidar footprints.  The field data were used to calculate ground-

based observations of canopy bulk density (CBD) and canopy base height (CBH).  

These observed values of CBD and CBH were used as dependent variables in a series 

of regression analyses using the derived lidar metrics as independent variables.  



Comparisons of observed and predicted resulted in an r2 of 0.71 for CBD and an r2 of 

0.59 for CBH.  These regression models were then used to generate grids of CBD and 

CBH from all of the lidar waveform data in the study area.  These grids, along with 

lidar-derived grids of canopy height, were then used as inputs to the FARSITE (Fire 

Area Simulator-Model) fire behavior model in a series of simulations.  Comparisons 

between conventionally derived and lidar-based model inputs showed differences 

between the two sets of data.  Specifically, the lidar-derived inputs contained much 

more spatial heterogeneity.  Outputs from FARSITE using the lidar-derived inputs 

were also compared to outputs using input maps of CBD and CBH generated from 

field observations.  There were significant differences between the two sets of 

outputs, especially in the frequency and spatial distribution of crown fire.  

Experiments in manipulating the effective resolution of the lidar-based inputs 

confirmed that FARSITE outputs are affected by the spatial variability of the input 

data.  Furthermore, a sensitivity analysis demonstrated that FARSITE is sensitive to 

potential errors in the canopy structure input grids.  The results of this dissertation 

show that lidar can be used effectively to predict CBD and CBH for the purpose of 

fire behavior modeling and that investment in these lidar-based canopy structure data 

is worthwhile, especially for forests characterized by significant heterogeneity.  This 

work affirms that lidar is a useful tool for future canopy fuels inventory and mapping. 
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Chapter 1: Introduction 
 

1.1  Canopy Fuels: The Evolving Need for Data

Recent years have been marked by severe fire seasons in the western United 

States, especially the summers of 2000, 2002 and 2003.  According to the National 

Interagency Fire Center (NIFC) in 2004 77,534 fires burned 6,790,692 acres; these 

fires burned 315 primary residence dwellings, 18 commercial buildings and 762 

outbuildings and the fire suppression costs for Federal agencies totaled over $880 

million (www.nifc.gov).  These fires have an enormous impact ecologically and 

economically (Butry et al. 2001; Graham et al. 2004).  They damage or kill a large 

portion of vegetation, produce large amounts of smoke and exacerbate soil erosion 

(Graham et al. 2004).  They also can cause significant economic devastation to an 

area, by destroying homes and businesses, negatively impacting recreational use of an 

area and burning marketable timber (Butry et al. 2001).    

It is now widely accepted that altered fuel loads due to past management 

practices (i.e. fire suppression over the last 60-70 years) have increased fire risk and 

promoted the occurrence of large and intense wildland fires (Weatherspoon 1996; 

Skinner and Chang 1996; Chang 1996).  For example, fire suppression combined with 

the selective felling of large trees has altered the state of Sierra Nevadan forests so 

that they currently are denser, smaller, more homogenous in structure and of a 

different species composition than they have been historically (i.e. pre-European) 

(McKelvey et al.  1996; Weatherspoon 1996).  These changes have caused an 
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increase in live and dead fuel loads and can make the affected stands more vulnerable 

to damage from fires (McKelvey et al. 1996; Weatherspoon 1996).  According to 

Keane et al. (2001) fuels are typically defined as the physical characteristics (e.g. 

loading, size and bulk density) of the live and dead biomass that affect the spread, 

intensity and severity of wildland fire.   

Awareness of changing risks has spawned growing interest in mapping fire 

hazard potential (Sapsis et al. 1996, Scott and Reinhardt 2001).  Of the different 

wildland fire types canopy fire behavior is of particular interest to forest managers 

because canopy fires are difficult to control, spread rapidly and their post-fire effects 

can be severe (Scott and Reinhardt 2001).  Furthermore, there has been an increase in 

the incidence of canopy fires in areas not typically susceptible to them in the past 

(Scott and Reinhardt 2001).  Though they are often addressed separately canopy fires 

are dependent on surface fires and typically occur when surface fuels are sufficient to 

ignite ladder fuels or the lower crowns of trees (Scott and Reinhardt 2001; Graham et 

al. 2004). 

Accurate measurement of canopy fuel loads over large areas is essential for 

predicting fire hazard potential.  An understanding of the spatial distribution of 

wildland fuels is critical to evaluating fire hazard and risk over the landscape and to 

how management options should be prioritized (Chuvieco and Congalton 1989).  

Forest managers’ overall picture of where canopy fires are likely to occur and how 

they might behave becomes clearer when they are provided with detailed fuels 

information.  This is because fire behavior is predicted based on three variables: fuels, 

weather and static topography.  While weather and topography are beyond their 
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control, forest managers can exert influence over fuel loads (e.g. through prescribed 

fire and mechanical thinning).  Therefore, information about canopy fuel conditions 

can lead to better management decisions and mitigation practices.  Unfortunately, in 

many cases the quality of spatial data regarding fuels distribution needed to make 

informed decisions is simply not available (Keane et al. 2001; Miller and Landres 

2004).  Miller and Landres (2004), for example, examine the results of a workshop 

designed to identify the information needs for wildland fire and fuels management.  

They found that most managers described the availability of data regarding the fuels 

complex as well as fuels maps as ‘low’.  Furthermore, the authors found that while 

most managers rely on computerized tools or models for planning purposes the data 

needed to make full use of these tools is still lacking at the landscape scale.   

Because detailed quantitative fuels data are difficult to obtain generalized 

descriptions to the fuel load in a given area are applied (Keane et al. 2001); these 

descriptions are called ‘fuel models’ (Anderson 1982; Scott and Burgan 2005).  A 

fuel model essentially serves as a template of fuel distributions and loadings for a 

forest stand, focusing on surface fuels.  The fuel models are predefined (e.g. 

Anderson 1982) though custom models can be created for unique situations.  The 

model that best describes a forest stand is then used to represent that area.  However, 

applying the fuel models correctly requires a great amount of experience and skill. 

Forest managers have various tools available to them to aid the development 

of policy and strategy regarding fire in the landscape, however such tools are 

typically dependent on accurate fuels data for them to yield good results.  Fire 

behavior models represent one such tool.  As policy has changed from one of total 
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suppression of wildfires to letting fire resume a role in maintaining the health of 

forest ecosystems there has been a growing interest in improving knowledge of fire 

behavior – especially at landscape scales.  Understanding how fire behaves under 

different conditions is vital to developing appropriate management plans (van 

Wagtendonk 1996).  Fire behavior models have been developed to promote a better 

understanding of wildland fire and its effect on ecosystems.  Progress in computer 

technology has fostered the development of spatially explicit fire growth models 

which has significantly advanced fire management planning and decision making 

(Keane et al. 2001).   

Fire behavior models can be used to predict the behavior of ongoing wildfires 

and also to study the effects of potential mitigation strategies.  In the latter case, 

models can be used to test different fuel treatments (e.g. prescribed burning, 

biomassing, cutting and scattering) (van Wagtendonk 1996, Stratton 2004).  

However, for the models to be used appropriately the existing fuels complex must be 

quantified.  This requires information about the amount and location (both horizontal 

and vertical) of available fuel in the canopy.  Canopy fuels are defined as the aerial 

live and dead biomass located within tree crowns (Keane et al. 2001).  Two canopy 

structure characteristics have been identified that help quantify these fuel loads: 

canopy bulk density (CBD) and canopy base height (CBH) and have been adopted for 

fire behavior modeling (Sando and Wick 1972, Scott and Reinhardt 2001). CBD is 

the mass of available canopy fuel per unit canopy volume and CBH is the lowest 

height in the canopy where there is sufficient fuel to propagate fire vertically into the 

canopy (Scott and Reinhardt 2001). This dissertation examines the use of large-
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footprint, waveform-digitizing lidar data to predict and create maps of CBD and CBH 

as well as the use of lidar-derived products to run a fire behavior model.  Lidar 

metrics are compared to field-based estimates of CBD and CBH and, based on the 

regression models resulting from these comparisons, maps of CBD and CBH are 

generated that are then tested as inputs into a fire behavior model.   

 The remainder of this introductory chapter is organized as follows.  The next 

sections provide (1) a background to fire behavior models, focusing specifically on 

FARSITE (Fire Area Simulator-Model); (2) a review of field- and remote-sensing-

based collection of wildland fuels data; (3) a synopsis of the previous use of remote-

sensing-derived fuels data as input into fire behavior models; (4) a summary of the 

current state of the utilization of lidar to predict fuels and (5) an overview of the 

research objectives addressed in the remaining chapters.  

 

1.2 Background to Fire Behavior Modeling 

Fire behavior has been studied for decades (van Wagner 1969; Albini 1976; 

Rothermel 1972; Rothermel 1991; van Wagner 1977; van Wagner 1993; Xu and 

Lathrop 1994).  Early research studied surface fires independent of canopy fires while 

later studies explored the links between the two (Finney 1998; Scott and Reinhardt 

2001).   Current research is leading to a better understanding as to how all the 

different factors affecting fire behavior are interlinked.  Advances in computer 

technology and increased speed with which large data sets and complex computations 

can be processed stimulated the development of fire behavior models (Keane et al. 
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2000; Keane et al. 2001).  However, these models are based on the fundamental 

principles governing fire behavior that were laid forth by earlier work (Finney 1998).  

Given uniform conditions (e.g. fuels, terrain, winds) fire is assumed to spread 

in a predictable pattern or shape (Finney 1998).  The most common shape model 

assigned to fire spread is the ellipse (Finney 1998).  Computer models have been 

developed that automate the application of fire shape models to realistic, non-uniform 

fire conditions (Finney 1998).  This is done by assuming that conditions at points 

along the fire perimeter are uniform (though point-to-point conditions can vary) and 

govern fire spread (Finney 1998).  One method of doing so is the vector approach to 

fire growth modeling – or Huygens’ principle.  In this approach the perimeter of the 

fire front is represented as a series of two-dimensional vertices (Finney 1998).  A 

detailed description and equations are provided in Finney (1998) but Figure 1 gives a 

brief overview of the concept. 

Figure 1: Diagram showing the concept of Huygens' principle.  A) Under uniform 
conditions wavelets of a constant size and shape are used to model a consistent fire 
shape over time.  B) Under non-uniform conditions wavelet size depends on the local 
fuel type while wavelet shape and orientation are dictated by the local wind-slope 
vector.  (From Finney 1998) 
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Several models have been developed to predict fire behavior.  These include 

BEHAVE (Burgan and Rothermel 1984; Andrews 1986), NEXUS (Scott 1999) and 

FARSITE (Finney 1998).  FARSITE has been identified by Federal land management 

agencies as the best model for predicting fire growth (Keane et al. 2000).  Most fire 

models in use today are geared to predict the behavior of specific types of fires 

(Finney 1998).  Surface fires, crown fires, spotting and point-source fire acceleration 

are all modeled separately (Finney 1998).  The surface fire spread model used by 

FARSITE is the Rothermel (1972) spread equation and the crown fire model used 

was developed by van Wagner (Finney 1998).  Rothermel’s model (adjusted by 

Albini (1976)) has also been used to simulate surface fire in other behavior models 

such as BEHAVE (Andrews 1986) and NEXUS (Scott 1999).  The crown fire model 

determines whether the fire continues to burn only at the surface or makes a transition 

into canopy fuels and whether the fire spreads actively through tree crowns or torches 

only individual trees (Finney 1998).  In the model the threshold for crown fire 

transition depends on foliar moisture content and CBH (Finney 1998).  Crown fire 

type (active or passive) depends on the threshold for active crown fire spread rate 

(conventionally referred to as RAC) which is defined as: RAC = 3.0 kg m-2 min-

1/CBD kg m-3, where 3.0 is a predetermined constant (Finney 1998).  A passive 

canopy fire occurs when individual tree or small groups flame out but no solid flame 

is sustained and an active crown fire occurs when the entire surface-canopy fuel 

complex becomes involved and is typically characterized by a solid wall of flame 

extending from the surface through the top of the canopy (Scott and Reinhardt 2001).  
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CBH and CBD are therefore key parameters for determining the transition to and 

spread of fire through the canopy. 

Although there are several fire behavior models that integrate the principles 

described above in use by the USFS and other Federal agencies, the focus of this 

dissertation will be on the FARSITE model because of its ability to model crown 

fires.  FARSITE is a GIS-based fire model with eight spatial input layers (Finney 

1998).  The first five: elevation, slope, aspect, fuel model and canopy cover are all 

that are needed to simulate surface fires.  The last three: canopy height, CBD and 

CBH are needed to model crown fires.  Accurate predictions of fire growth (surface 

and canopy) depend on “the consistency and accuracy of the input data layers needed 

to execute spatially explicit fire behavior models” (Keane et al. 2000).  Having input 

parameters derived from high quality remote sensing data would therefore be a great 

asset to fire modeling endeavors.  CBD and CBH are particularly difficult to measure 

in the field.  Therefore, there is interest in overcoming these difficulties and 

improving methods through which these two canopy structure measurements can be 

made. 

 

1.3 Collecting Fuels Data: Field Sampling and Remote Sensing Methods

Forest canopy structure is one of the least studied aspects of the forest 

ecosystem (Yang et al. 1999).  This is because of the complexity of forest canopy 

structure and to the difficulty of working in forest canopies, which are not easily 

accessible (Parker et al. 1992; Weishampel et al. 1996; Lefsky 1997; Yang et al. 

1999).  However, effort has been placed in measuring canopy structure.  
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Conventional measurements rely on ground-based observation, which are well 

established.  Over the last decades remote sensing tools have also been used to 

estimate canopy structure variables with varying degrees of success.  Both of these 

measurement approaches to measuring canopy structure (in general and for fire 

behavior modeling specifically) are discussed below. 

1.3.1 Ground-Based Measurement 
 

Traditional methods of measuring canopy structure require intensive field 

work.  Height, branch diameter and foliage density (among others) can be measured 

directly by climbing trees, but this approach is limited by the height of canopy.  

Biomass can be measured through destructive sampling involving either stratified 

clipping techniques or the felling of the tree.  Allometric equations are also derived 

through this process.  Canopy cover is frequently measured using relatively simple 

technologies such as densiometers and hemispherical photography.  Instrument 

development has lead to newer field sampling techniques.  For example, hand-held 

laser range finders have expedited the ground-based measurement of tree height.  

Optical sensors such as LAI instruments and ceptometers have aided the 

measurement of canopy cover and light transmittance. 

Considerable effort is put into the collection of data regarding the vertical 

component of canopy structure – the most difficult measurement to acquire.  Point-

quadrat sampling methods have been developed that estimate foliage profiles in forest 

canopies by combining measurements (i.e. no leaf contact or height to first leaf 

contact) taken along random vertical lines through the canopy (Warren-Wilson 1959, 

MacArthur and Horn 1969).  Aber (1979) modified the two-dimensional point-
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quadrat method developed by MacArthur and Horn by using a telephoto lens as a 

sampling device.  Other methods (e.g. probe cylinder method) have been used to 

estimate the vertical and horizontal distribution of canopy material (Sumida 1995).  

Tanaka et al. (1998) measured forest canopy structure with a laser plane range finder 

with good results.  Meir et al. (2000) used side-looking hemispherical photography to 

estimate extinction coefficients at various levels in different tropical rainforest 

canopies.  Parker et al. (1996) developed a balloon-based method for obtaining light 

profiles throughout the depth of the canopy by mounting a PAR (photosynthetically 

active radiation) sensor and hemispherical lens to the top of a balloon to take 

measurements at regular intervals as the balloon rises through the canopy.  These data 

are integrated to acquire profiles of light transmittance through the canopy, which can 

then be used to develop a vertical characterization of the canopy.  Canopy towers and 

cranes have been used to gain access to remote parts of the canopy (Parker 1992).  

Cranes and towers allow researchers to sample canopy elements directly and with a 

minimum impact on the forest systems itself, but these tools lack mobility and are 

therefore site-specific (Parker et al. 1992). 

 The two components of vertical structure of interest here, CBD and CBH, 

have been estimated using ground-based methods.  Optical sensors are used to 

measure LAI, which is then used in conjunction with measurements of specific leaf 

area and canopy depth to derive CBD (Scott and Reinhardt 2002).  Alternatively, 

CBD is estimated using tree-based, allometrically-derived biomass divided by canopy 

depth, which works reasonably well for uniform canopies (Scott and Reinhardt 2001).  

For canopies with uneven vertical distribution of biomass, vertical profiles of CBD 
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(foliar biomass/canopy volume) are generated.  Then, the maximum of a 4.5 m-deep 

running average of the profile is identified as the CBD (Scott and Reinhardt 2001).  

CBD is also sometimes estimated heuristically based on expert opinion (Scott and 

Reinhardt 2002).   

In contrast, CBH is more difficult to define and measure (Scott and Reinhardt 

2001).  CBH is “the lowest height above the ground at which there is sufficient 

canopy fuel to propagate fire vertically through the canopy (Scott and Reinhardt 

2001)” and is commonly defined as the lowest height above which a threshold 

(commonly at least 0.011 kg/m3) of available canopy fuels is present (see Scott and 

Reinhardt (2001) for more detail on how this threshold was derived).  A study 

currently being conducted by Scott and Reinhardt (2002) is exploring the accuracy of 

the various types of measurement. 

 Even with the aid of sophisticated equipment, however, field-based 

measurement of canopy fuels is labor intensive, expensive and site-specific.  Because 

the field measurements of canopy structure are point data, they must be extrapolated 

to cover an entire study area.  For example, in fire behavior modeling sampled, plot-

based CBD and CBH values for a given forest type are applied to entire stands of the 

same forest type.  Therefore, within-stand variability of CBD and CBH is not 

adequately represented in the model.   

1.3.2 Remote Sensing 
 

One of the main limitations of ground-based sampling is that it is difficult to 

cover a large area.  Remote sensing technology is rapidly changing this situation 

(Leckie 1990).  Remote sensing of forest canopy structure overcomes many of the 



12 
 

obstacles inherent in ground-based sampling and has been identified as a valid 

method for obtaining a variety of canopy data for regions all over the world 

(Weishampel et al. 1996; Hyyppä et al. 2000).  Indeed, remote sensing has been 

described as a practical way of operationally acquiring quantitative and spatially 

explicit information about the biophysical properties of forest canopies (Leckie 1990; 

Weishampel 1996).  Both airborne and space-borne instruments can repeatedly 

monitor large surface areas.  The utility of remote sensing for forest canopy structure 

measurement is examined briefly below.  The remote sensing techniques are divided 

into three categories: passive-optical, radar and lidar.   

 

1.3.2.1 Passive-optical Remote Sensing of Forest Canopy Structure 
 

Passive-optical sensors are most frequently used to derive forest canopy 

information (Lefsky et al. 2001).  Many passive-optical sensors are designed for 

vegetation monitoring; their spectral bands are placed so as to be sensitive to 

chlorophyll and other pigment absorption, green biomass and water content 

(Lillesand and Kiefer 1994).  Over the last twenty years that passive-optical data have 

been available indices (e.g. NDVI (normalized difference vegetation index)) have 

been derived that are used to determine green vegetation amount and structure-

dependent characteristics such as leaf area index (LAI) (Lillesand and Kiefer 1994, 

Jensen 1996).  These efforts to relate simple vegetation indexes to specific canopy 

biophysical characteristics (such as LAI) have lacked basis in physical principles.  

Other studies have tried to directly infer canopy structure characteristics such as 

height and crown size from passive optical data (Franklin 1986, Cohen and Spies 
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1992).  Exploring another approach, studies have looked at how forest structure 

affects surface reflectance and have used inversions of canopy reflectance models to 

predict canopy architecture (Li and Strahler 1985; Kuusk 1991; Hall et al. 1995).  

Although the results of these inversions may yield accurate estimates of canopy 

structure, successful model inversion is typically complex, computationally intense 

and site specific (Li and Strahler 1985; Woodcock et al. 1994; Woodcock et al. 1997).  

Furthermore, model inversion still requires field-measured parameters and models 

typically need to be calibrated for each vegetation type or stand. 

 Passive optical data has been used to generate inputs for fire behavior models.  

Typically the remote sensing data are used to generate vegetation classifications to 

which appropriate fuel models are assigned (Burgen et al. 1998; Keane et al. 2000).  

For example, Wilson et al. (1994) assigned Canadian Forest Fire Behaviour 

Prediction System fuel types to vegetation classes derived from Landsat MSS data for 

Wood Buffalo National Park.  Hardwick et al. (1996) assigned Anderson (1982) fuel 

models to vegetation classes from Landsat TM-derived CALVEG vegetation map to 

generate a fuel map for Lassen National Forest.  However, CBD and CBH values 

were not directly generated from the passive-optical data. 

 

1.3.2.2 Radar Remote Sensing of Forest Canopy Structure 
 

Radar has also been used successfully to recover vegetation canopy metrics.  

Radar’s ability to penetrate even dense atmospheres makes it a valuable tool for 

measuring surface characteristics, especially in high-overcast, cloudy areas.  Imaging 

radars map the surface by outputting energy that is reflected by the surface to the 
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sensor’s receiver.  This reflection is commonly referred to as ‘backscatter’.  In 

contrast to passive-optical sensors that respond to pigment, structure and water at the 

cellular level, radars interact with the larger structural components of forest stands 

(Bergen and Dobson 1999).  Longer wavelengths reflect off of trunks and other large 

woody elements while shorter wavelengths give greater backscatter from smaller 

elements such as leaves and twigs.  Backscatter is also determined by the orientation 

and number of scattering elements (Bergen and Dobson 1999).  Radar backscatter has 

been related to the age, height, basal area and biomass of forest stands (Imhoff 1995; 

Hyyppä et al. 1997; Bergen and Dobson 1999; Martinez et al. 2000).  Because of 

radar’s ability to measure canopy structure it would appear to be well-suited for 

deriving CBD and CBH.   

Airborne profiling radar systems in particular have provided accurate small-

area inventories (Hyyppä et al. 1997; Hyyppä et al. 2000; Martinez et al. 2000).  The 

application of satellite-based radar systems may be restricted because of current 

limitations in radar sensor technology.  For example, at a given wavelength and 

polarization, backscatter amount is also determined by growth form, crown 

architecture and the dialectic properties of the vegetation and ground surface.  This 

means that inversion algorithms of backscatter must be locally derived for each type 

of forest stand (Bergen and Dobson 1999).  Another limitation of radar sensors 

appears to be backscatter saturation in heterogeneous forests with more than 250 

Mg/ha of aboveground biomass (Imhoff 1995; Kasischke et al. 1997; Lefsky et al. 

2001).  These limitations indicate that most of the successful applications of radar to 

forest inventory are site-specific and time-dependent, which limits the large-scale 
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application of this technology. 

 

1.3.2.3 Lidar Remote Sensing of Forest Canopy Structure 
 

In contrast to passive optical and radar remote sensing, lidar (frequently used 

synonymously with the term ‘laser altimetry’) provides a direct and elegant means to 

measure the structure of vegetation canopies (Dubayah and Drake 2000).  Lidar is an 

active remote sensing technique in which a pulse of light is sent to the Earth’s surface 

from an airborne or space-borne laser.  The pulse reflects off of canopy materials 

such as leaves and branches.  The returned energy is collected back at the instrument 

by a telescope.  The time taken for the pulse to travel from the instrument, reflect off 

of the surface and be collected at the telescope is recorded.  From this ranging 

information various structure metrics can be calculated, inferred or modeled.  A 

variety of lidar systems have been used to measure vegetation characteristics.  Most 

of these are small-footprint, high pulse rate, first- or last-return-only airborne systems 

that fly at low altitudes.  Other, experimental lidar systems are large-footprint and 

full-waveform-digitizing and provide greater vertical detail about the vegetation 

canopy.   

Canopy height, basal area, timber volume and biomass have all been 

successfully derived from lidar data (Nelson et al. 1984; Maclean and Krabill 1986; 

Nelson et al. 1988; Nilsson 1996; Naesset 1997; Nelson 1997; Magnussen and 

Boudewyn 1998; Means et al. 1999; Lefsky et al. 1999a; Lefsky et al. 1999b, 

Peterson 2000; Drake et al. 2002a; Drake et al. 2002b; Clark et al. 2004; Patenaude et 
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al. 2004; Hyde et al. 2005).  Many of these studies rely on small-footprint systems 

and the results aid in understanding the concepts underlying the application of lidar 

for forest canopy measurement.  Small-footprint lidars have the advantage of 

providing very detailed measurements of the canopy top topography.  However, a 

limitation of most profiling small-footprint systems is that they tend to oversample 

the shoulders of tree crowns relative to the crown tops, which may result in a 

consistent underestimation of the canopy height (Nelson 1997).  Furthermore, 

because most small-footprint systems are first- or last-return-only, they require a 

completely clear path to the ground to measure the subcanopy elevation.  This is 

important because the canopy height is calculated relative to the ground elevation.  

Most small-footprint (5 cm - 1 m) systems are low-flying and have a high sampling 

frequency (1000-10000 Hz).  Although, small-footprint systems typically do not 

digitize the return waveforms, the high frequency sampling produces a dense 

coverage of the overflown area.  This can provide a very detailed view of the 

vegetation canopy topography; however, the internal structure of the canopy is 

difficult to reconstruct because data from the canopy interior are sparse. 

Recently, lidars have been developed that are optimized for the measurement 

of vegetation (Blair et al. 1994 and Blair et al. 1999).  These systems have larger 

footprints and are fully waveform-digitizing, meaning that the complete reflected 

laser pulse return is collected by the system.  Lidar remote sensing using waveform 

digitization records the vertical distribution of surface areas between the canopy top 

and the ground (Figure 2).   
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Figure 2: Schematic of an individual lidar footprint waveform return.  A pulse of laser 
energy reflects off canopy (e.g. needles, leaves and branches) and the ground beneath.  
The amplitudes of individual peaks in the waveform are a function of the number of 
reflecting surfaces at that height.  Elevation is defined as the peak of the ground return.  
Canopy height is the difference between the ground elevation and the canopy top (i.e. the 
first signal above the background noise level). 
 

For any particular height in the canopy, the waveform denotes the amount of 

energy (i.e. the amplitude of the waveform) returned for that layer.  The amplitude is 

related to the volume and density of canopy material located at that height (Figure 3).  

Studies have validated the use of these next-generation systems for forest 

characterization.   
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Figure 3: Illustrations showing sample waveforms for different cover types in the 
Sierra Nevada.  A) Waveform return from bare ground – no canopy return.  B) 
Waveform return for a short, dense forest stand.  The canopy return blends in with the 
ground return.  C) Waveform return for a tall, dense forest stand.  The waveform shows 
layering in the canopy and the ground return is clearly defined.  D) Waveform return 
for a tall, sparse forest stand.  The waveform shows a distinct upper canopy layer and a 
layer of low-lying vegetation that mixes in with the ground return.  The stand diagrams 
were created with the Stand Visualization System based on field measurements.    
 

Subcanopy topography, canopy height, basal area, canopy cover and biomass 

have all been successfully derived from large-footprint lidar waveform data in a 

variety of forest types (Hofton et al. 2002; Lefsky et al. 1999a; Lefsky et al. 1999b; 

Means et al. 1999; Dubayah and Drake 2000; Peterson 2000; Drake et al. 2002a; 

Hyde et al. 2005).  For example, results from Hofton et al. (2002) show that large-

footprint lidar measured subcanopy topography in a dense, wet tropical rainforest 

with an accuracy better than that of the best operational digital elevation models (such 

as USGS 30 m DEM products).  Means et al. (1999) used large-footprint lidar to 

recover mean stand height (r2 = 0.95) for conifer stands of various ages in the 

Western Cascades of Oregon.  Drake et al. (2002a) found that metrics from a large-

footprint lidar system were able to model plot-level biomass (r2 = 0.93) for a wet 
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tropical rainforest.  Dubayah et al. (2000), Dubayah and Drake (2000) and Lefsky 

(2002) provide a thorough overview of forest structure derived using large-footprint 

lidar. 

In sum, lidar is a proven method for deriving many important fire behavior 

modeling inputs: elevation, slope and aspect (derived from DEM), canopy cover and 

canopy height.  Because CBD and CBH are also measures of canopy structure, lidar 

derived metrics are expected to correlate with them as well (Keane et al. 2001, 

Schmidt et al. 2002).   

 

1.4 Use of Remote Sensing in Fire Behavior Studies

Remote sensing data have been recognized as a valuable source of data for 

fuels mapping.  Foremost, remote sensing provides a comprehensive spatial coverage 

at adequate resolutions to create or update fuel maps (Riaño et al. 2002).  

Furthermore, most remote sensing systems provide data in digital, raster format that 

can readily be ingested into GIS databases or fire models.  However, mapping fuels 

from remotely sensed data is not easy.  The major source of difficulty is the fact that 

most of the passive optical data sources used to map fuels are unable to measure 

surface fuels because near-surface vegetation is obscured by material at higher 

elevations in the canopy (Keane et al. 2001).  These same sensors are unable to 

distinguish between fuels located in the canopy as opposed to on the ground even if 

the sensors are able to see through the canopy to the surface beneath (Keane et al. 

2001).  Also, ideally for modeling purposes one should avoid mapping fuel 
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characteristics independently otherwise illogical combinations of variables (e.g. CBH 

values greater than canopy height) may result. 

There have been several studies that have used remote sensing data to either 

directly predict fuels or characteristics related to fuel properties.  Some of the most 

recent studies using remote sensing to estimate fuels and other fire-related surface 

characteristics are described below.  As briefly mentioned above, Wilson et al. (1994) 

used Landsat MSS data to create a vegetation map of landcover for Wood Buffalo 

National Park, Canada.  The digital version of the map was to be used as a data layer 

in a GIS-based fire evaluation management system.  Riaño et al. (2002) assessed the 

use of Landsat TM spectral bands in combination with ancillary data to identify 

Mediterranean fuel types and to develop a methodology to operatively derive fuel 

maps for fire prevention and fire behavior modeling.  Their work used supervised 

classification of the spectral data and also relied on extensive field work to provide 

training data for the classification.   

Fraser and Li (2002) explored the use of SPOT VEGETATION imagery to 

estimate fire related parameters in a boreal forest for burn mapping, postfire 

regeneration detection and biomass mapping.  Biomass density is related to fuel 

loading and accurate estimations of biomass will aid in predicting fuel loads (Fraser 

and Li 2002).  The authors compared SPOT reflectance values to inventory data from 

Canada’s 1991 forest inventory.  Their prediction of biomass was relatively weak but 

error was attributed to the seven year difference in collection dates between the field 

sampling and the image acquisition.   
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Schmidt et al. (2002) integrated biophysical and remote sensing data with 

disturbance and succession information in a GIS by assigning specific characteristics 

to different associations of spatial data sets of biophysical variables, current 

vegetation and historical fire regime.  Their goal was create coarse-scale (1 km) 

spatial data for wildland fire and fuels management for the conterminous United 

States.  The authors incorporated remote sensing by using previously generated maps 

of cover type and forest density derived from AVHRR and Landsat TM data.  One 

weakness they described in their study is the use of forest density as a surrogate for 

structural stage but explain that mapping accurate forest structure over large areas is 

difficult.    

Hiers et al. (2003) developed a spatial modeling tool for prioritizing 

prescribed burning activities on and around Eglin Air Force Base in Florida.  They 

used remote sensing data to create several of the data layers the model requires 

including landcover type and species density.  However, Miller et al. (2003) point out 

that although maps of vegetation type are easy to generate from remote sensing data, 

they are limited in usefulness as the variability of fuels within a vegetation type can 

be larger than the variation between types.  Differences in the structure of the 

vegetation within a given type, caused for example by edaphic effects, topography or 

disturbance history, affect fuel load variables (Miller et al. 2003).  Remote sensing 

data have been used to map structural characteristics related to fuels (e.g. height, 

biomass) for forest canopies.  However, the process used to derive these 

characteristics can be complex and is often not appropriate for studying the lower 

portions of the canopy important for determining fuel loading (Miller et al. 2003).  
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Miller et al. (2003) developed a method for predicting structural classes within a 

vegetation type using cluster analysis to define structural stages of field plots and then 

use these to train the classification of the remotely sensed data.  Though the results 

were very encouraging this method still relied very heavily on comprehensive field 

data collection. 

Keane et al. (1998) created the input data layers for FARSITE for the Selway-

Bitterroot Wilderness Complex (Montana and Idaho).  The fuels layers were derived 

from three primary vegetation layers: potential vegetation type, cover type and 

structural stage.  Their concept rested on the assumption that various ecosystem 

characteristics can be estimated from this “classification triplet” (Keane et al. 1998).  

Satellite imagery was used to create the three base layers and ancillary and field data 

were used in conjunction with these to create the FARSITE input layers.  Keane et al. 

(2000) focused on developing all the spatial data layers needed by FARSITE to 

simulate fire behavior in and around the Gila National Forest, New Mexico.  They 

used a complex combination of remote sensing data (Landsat TM), field data, terrain 

modeling and ancillary data to ultimately derive the vegetation layers required by 

FARSITE.  Building on the work of Keane et al. (2001), Rollins et al. (2004) 

developed method that combines field data, remote sensing data, ecosystems 

simulation and biophysical gradient modeling to map fuels and fire regimes for a 

large area in Montana.  Using this approach Rollins et al. (2004) were not only able to 

map fuel model and fuel load but also fire severity and frequency. 

Attempts to derive fuels-related canopy structure from passive optical data 

through the incorporation of radiative transfer models have been made.  For example, 
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Kötz et al. (2004) successfully used data from an imaging spectrometer and two 

canopy reflectance models (GeoSAIL and FLIGHT) to estimate canopy structure 

parameters and moisture content. 

 There have been several studies that have used small-footprint lidar systems to 

estimate fuels.  Riaño et al. (2003) used data from an airborne laser scanner to 

measure vegetation height, cover and CBD for an area near Ravensburg, Germany.  

The goal was to derive the necessary inputs for FARSITE.  The lidar sensor was a 

single return system.  Tree height, tree cover, CBH and surface cover were directly 

inferred from tree and surface canopy returns.  CBD was derived from calculations of 

foliar biomass and crown volume using empirical equations to derive foliage biomass.  

Subsequently, Riano et al. (2004) used a discrete return, small-footprint system to 

derive tree height, crown volume, CBD and other canpopy structure variables for a 

study site in Spain, also with good results. 

 Seielstad and Queen (2003) used airborne lidar to determine fuel models.  The 

nominal footprint size in this study was 2.95 m with a density of approximately one 

return for every 8 square feet.  Lidar data were collected over field plots for which 

fuels characteristics had been sampled on the ground.  Seielstad and Queen (2003) 

used a metric called obstacle density to predict total fuel load and from that inferred 

fuel model.  There was a strong linear relationship between obstacle density and total 

dead-plus-live fuel load.  The authors note that the results of their study indicate that 

lidar is more effective for measuring larger fuels that contribute to crowning, spotting 

and post-frontal effects than for estimating the fine fuels that dictate rates of spread. 
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Morsdorf et al. (2004) used a small-footprint system that recorded both first 

and last returns.  They used a clustering technique to organize the canopy returns into 

discrete tree crowns.  The clustered data were matched to field data and lidar-derived 

tree heights were compared to field sampled heights.  Crown diameter, crown volume 

and CBH were also derived from the canopy clusters using more sophisticated 

techniques and they also calculated crown fractional cover.  The results showed how 

fire behavior-related parameters could be derived on a tree-level basis from lidar data. 

 Andersen et al. (2005) derived canopy fuel parameters, including CBD and 

CBH, using small-footprint lidar data for a study area in Capitol State Forest in 

Washington.  They used lidar height, a series of quantile-based height metrics and a 

canopy density metric in a multiple linear regression analysis and had success 

deriving CBD and CBH (r2 of 0.84 and 0.77 respectively). 

 

1.5 Exploring the Use of Large-Footprint Lidar for Fuels Monitoring

Small-footprint systems have been used successfully to obtain fuels related to 

canopy structure.  However, large-footprint, waveform-digitizing systems are just 

beginning to be used to collect information relevant to fire management.  Therefore, a 

comprehensive study of how well lidar waveform data can measure structural 

characteristics pertinent to fuels assessment and fire behavior modeling (e.g. CBD 

and CBH) is still missing.  Using large-footprint lidar offers advantages over small-

footprint systems for mapping canopy fuels.  For example, large-footprint systems 

can map larger areas, require less processing and interpretation of the data and 
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provide a complete record of vertical structure – thereby simplifying the process of 

obtaining multiple canopy structure measurements.   

A comprehensive validation study of the use of large-footprint lidar to derive 

CBD and CBH needs to be conducted and is the goal of this dissertation.  Different 

methods for extracting CBD and CBH measurements from waveform data need to be 

explored and comparisons of various lidar metrics to measurements of CBD and CBH 

derived from field data need to be made.  Because CBD and CBH are important in 

determining such factors as the presence or absence of fuel ladders and the thresholds 

for achieving transition to canopy fire or active canopy fire, determining the accuracy 

of these inputs is critical.  Salmon (2002) presents some initial results using large-

footprint lidar data from the LVIS (Laser Vegetation Imaging System) instrument to 

derive inputs for the FARSITE fire behavior model, including CBD and CBH.  They 

show that LVIS data could be used to map canopy height (r2 = 0.75) and CBD (as a 

function of LVIS-derived height and canopy cover) (r2 = 0.62).  They had less success 

deriving CBH from LVIS metrics (r2 = 0.01).  The methods and results in Salmon and 

Dubayah (2002) provide a good reference point for continuing research into the 

derivation of CBD and CBH from LVIS data.  As mentioned above other studies have 

validated the use of LVIS data to derive topographic data (Hofton et al. 2002), canopy 

height (Peterson 2000, Hyde et al. 2005) and canopy cover (Hyde et al. 2005).  

This dissertation will explore the use of lidar waveform data for deriving CBD 

and CBH for a study area in the Sierra Nevada and the utilization of lidar-derived 

products for the generation of input data for the FARSITE model.  This is a broad 

objective that is divided into separate research goals to present a better overview of 
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the data, analysis methods and results involved.  Therefore, the remainder of this 

dissertation is organized as follows: 

Chapter 2 provides a description of the study area in the Sierra Nevada and of 

the lidar data and field data used in this dissertation.  The vegetation and terrain of the 

study area are characterized and the methods used to collect the field data are 

explained in detail and a brief overview of the instrument used to collect the lidar is 

also presented. 

The focus of Chapter 3 is predicting CBD from lidar waveform metrics.  The 

lidar waveforms are compared to profiles of canopy volume to show how well they 

represent canopy structure.  Different structure-dependent metrics are then derived 

from the lidar waveform data that are compared to field-based estimates of CBD.  

Various combinations of the lidar metrics are used to generate regression equations 

from which the one providing the best overall prediction of CBD will be selected to 

generate the input data layer for FARSITE.  The effects of factors such as vegetation 

type, slope and stem density on the regression results are also explored. 

In Chapter 4 CBH is estimated from lidar waveform metrics.  Using 

regression techniques individual lidar metrics, and combinations thereof, are utilized 

to predict CBH through comparison with field-derived measurements of CBH.  The 

regression model providing the best fit between observed and predicted CBH is 

identified to produce the FARSITE input data.  As with CBD above, the sources of 

error and bias in the regression results are examined. 

In Chapter 5 the incorporation of lidar-derived products in FARSITE for the 

prediction of fire behavior is assessed.  Maps of CBD and CBH are generated based 
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on the results of the two previous chapters, which are then converted into input data 

for FARSITE.  These inputs are compared to inputs conventionally used by the 

USFS.  FARSITE is then run using these lidar-derived input data.  The outputs from 

this model run are compared to model outputs generated when running the model 

with conventional inputs of CBD and CBH.  The effects of spatial variability on the 

model outputs and the sensitivity of FARSITE to potential errors in the lidar-derived 

canopy structure inputs is also examined.   

Chapter 6 provides a conclusion to the dissertation in which the results of the 

previous chapters are summarized and integrated.  The implications of these results 

for the status of fire behavior modeling are also discussed as well as possibilities for 

future research. 

The work outlined above the results of this dissertation will provide a better 

understanding of how large-footprint lidar can be most effectively deployed as a tool 

for collecting fuels data and generating inputs for fire behavior modeling as well as 

other wildland fire management decision-making.  Large-footprint lidar provides a 

dataset that is uniquely suited to fuels mapping because it can describe both 

horizontal and vertical fuel continuity.   
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Chapter 2: Study Area and Data Description 
 
2.1 Study Site

The study area is located in the Sierra National Forest in the Sierra Nevada 

mountains of California near Fresno and covers a wide range of vegetation types (e.g. 

fir, pine, mixed conifer, mixed hardwood/conifer, meadow (Figure 4)), canopy cover 

and elevation.  Common species of the region include red fir, white fir, ponderosa 

pine, Jeffrey pine and incense cedar, among others.  Canopy cover can range from 

completely open in meadows or ridge tops to very dense, especially in fir stands.  The 

study area extends over nearly 18,000 ha of Forest Service and privately owned lands.  

The topography varies considerably with some areas characterized by very steep 

slopes and an elevation range between approximately 850 m and 2,700 m.   

Figure 4: Photos showing two of the different sampling environments found within the study 
site.  The sites ranged from very open, with sparse vegetation cover (A) to denser stands on 
sloping terrain with more understory vegetation (B). 
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2.2  Lidar Data

The lidar data used in this study were collected by the Laser Vegetation 

Imaging Sensor (LVIS) (Blair et al 1999).  LVIS is a large-footprint lidar system 

optimized to measure canopy structure characteristics.  LVIS mapped a 25 km x 6 km 

area of the Sierra National Forest in October of 1999 in a series of flight tracks 

(Figure 5).  Flying onboard a NASA C-130 at 8 km above ground level and operating 

at 320 Hz, LVIS produced thousands of 25 m-diameter footprints at the surface.   

 

Figure 5: Schematic showing the location of the study site, plot distribution 
and footprint-centered plot design.  A: Locator map of the study area in the 
Sierra Nevada, northeast of Fresno.  B: The study area was delimited by 
swaths of LVIS data covering the region.  The combined area of the swaths 
is approximately 25 km x 6 km.  C:  The individual plots were co-located 
with the LVIS footprints.  Each circular plot (15 m radius) is centered on an 
LVIS footprint with its own waveform. 
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2.3  Field Data

Field data were collected in the summers of 2000 – 2002 in the Sierra 

National Forest.  Circular plots were centered on lidar footprints and measured 15 m 

in radius (Figure 6).  The 15 radius was chosen to ensure complete overlap with the 

LVIS footprint and to account for trees located beyond the12.5 m radius of the 

footprint with overhanging the footprint.  Within these plots all trees over 10 cm 

DBH (diameter at breast height) were sampled.  Measurements included (Figure 6): 

tree height, height to partial crown, partial crown wedge angle, height to full crown, 

four crown radius measurements and distance and azimuth relative to the plot center.  

Tree crown shape and species were also recorded.  All the height measurements were 

made with a hand-held laser range finder (Impulse XL, Laser Technology Inc.).  Use 

of the laser range finder required a clear view of the trunk of the tree as well as the 

highest leaf of the crown from the same spot on the ground.  This was because a 

distance measurement from the measurement spot to the center of the trunk of the tree 

and two angle measurements (to the base and top of the tree) were needed for the 

instrument to calculate height.  The use of the filter mode on the range finder and the 

placement of a reflector at the center of the trunk of the tree ensured that the laser 

ranged off the intended target rather than obstructing, low-lying vegetation.  The 

measurement spot was also far enough away from the base of the tree to avoid height 

errors due to steep measurement angles to the crown top.  Stem mapping was done 

with the range finder and a compass.  All other measurements were taken with tape 

measures.   
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Figure 6: Schematic showing the sampling protocol within each 15 m-radius plot and 
the different field measurements that were collected for all the plots in the study site.  
The field data were used to calculate crown volume profiles, CBH and CBD. 
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Chapter 3: Predicting CBD from Lidar Metrics 
 

3.1 Chapter Summary

In this chapter the use of large-footprint, waveform-digitizing lidar data to 

identify the horizontal and vertical distribution of canopy fuels is explored.  

Knowledge of these distributions will benefit the derivation of key fire modeling 

variables used by fire behavior models such as FARSITE.   The research presented in 

this chapter focuses on the use of large-footprint lidar for the derivation of canopy 

bulk density (CBD).  First the lidar waveforms are compared to vertical profiles of 

canopy volume to show how well the waveforms capture the distribution of canopy 

material.  Then lidar-derived metrics are compared to field-derived estimates of CBD.  

The results show some correlation between the waveforms and canopy volume 

profiles with 35% of Pearson’s r values ≥ 0.6, indicating that the waveform is 

capturing the structure of the canopy and may aid in the assignment of appropriate 

fuel models.  The results also show that lidar metrics derived from waveform data can 

be used to predict canopy bulk density (r2 = 0.71).  These  results suggest that lidar-

derived canopy structure measurements are an asset for the estimation of the amount 

and distribution of canopy fuels and will make a valuable contribution to fuels 

assessment and fire behavior modeling efforts. 
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3.2 Introduction

Fuel loads in a given forest stand are frequently described in terms of CBD  – 

i.e. high versus low values of CBD help in making assessments about the potential 

fire hazard of an area.  This alone makes it a valuable characteristic to observe and 

monitor for any forest prone to wildfire.  CBD is the dry weight of available canopy 

fuel per unit canopy volume (including spaces between tree crowns (Scott and 

Reinhardt 2001)).  Available fuel refers to that part of the canopy material that can 

burn in the flaming front of a crown fire – this includes foliage and branch wood 

smaller than 0.6 cm in diameter (Scott and Reinhardt 2001).  Typical ranges for CBD 

are from 0 to about 0.4 kg/m3 for very dense stands (Scott and Reinhardt 2002).  CBD 

is an important variable that, in combination with other factors such as wind speed, 

fuel moisture, topography and CBH, helps determine the propagation of fire through 

the canopy as well as crown fire cessation (Finney 1998).  Furthermore, it is 

understood to have an effect on the spread rate of fire though its exact impact is still 

being studied.  CBD measurements are also critical inputs for fire behavior models 

such as FARSITE.   

In uniform stands with a homogeneous vertical structure predicting CBD is 

relatively straight-forward.  It is estimated by dividing the available canopy fuel by 

canopy depth (Scott and Reinhardt 2001).  However, this method assumes that the 

canopy material is spread uniformly though the canopy, which is seldom, if ever, the 

case.  A method to estimate CBD in heterogeneous stands was initially proposed by 

Sando and Wick (1972) and subsequently modified by Beukema et al. (1997) for 

incorporation into the Fire and Fuels Extension to the Forest Vegetation Simulator 
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(FFE-FVS).  This approach uses a running mean to locate the maximum value in a 

vertical profile of canopy weight per volume (Scott and Reinhardt 2001).   

The disadvantage of these established methods is that they obtain CBD data 

using ground-based methods that are difficult and time-consuming to conduct and are 

also point-specific.  Measuring CBD with airborne lidar would greatly facilitate 

mapping CBD at the landscape level.  The vertical canopy structure information 

represented by the waveform describes the distribution of canopy fuels.  The 

utilization of remote sensing technology will enable the quick and consistent 

measurement of CBD in large or inaccessible areas of forest.  This, in turn, enables 

the long-term monitoring of areas for changes in fuel loads and can rapidly reassess 

fuel loads after fuel reduction activities or other disturbances have taken place.  It is 

therefore a worthwhile task to explore the efficacy of estimating CBD with lidar.   

 

3.3 Objective

The objective of this chapter is to derive CBD from large footprint, 

waveform-digitizing lidar in an effort to facilitate canopy fuels mapping.  First, lidar 

waveforms are compared to field-based profiles of the vertical distribution of canopy 

material to demonstrate how well they correlate.  Such comparisons are important 

because the Forest Service uses field-based methodologies to derive CBD that are 

partly based on the vertical distribution of canopy material.  Next, CBD is predicted 

from a set of lidar metrics in a series of multiple linear regression analyses and the 

lidar-derived CBD values are compared to those calculated from the field data.  The 

goal is to derive regression models and the corresponding lidar metrics that can be 



35 
 

used to predict CBD from lidar data collected over the entire study area.  The 

resulting maps of CBD can then be used to generate the input data layer necessary for 

fire behavior modeling using FARSITE.  Lastly, a discussion is provided in which the 

results are interpreted and issues arising during the analyses are addressed, especially 

potential sources of error that may affect the derivation of CBD from the lidar 

waveform data. 

3.4 Methods

3.4.1 Comparison of Lidar Waveforms and Crown Volume Profiles 

To examine how well the waveform captures the vertical distribution of 

canopy material the canopy return portion of the waveform was compared to crown 

volume profiles calculated from the field data.  Crown volume profiles were 

generated for all 135 plots.  The crown volume profiles were calculated by using the 

average crown radius and canopy depth measured for each tree to calculate its total 

crown volume.  All crowns were assumed to be cylindrical in shape (Figure 7).    The 

volumes are sectioned into 30 cm vertical bins and the crown volumes of the 

individual trees are summed for each bin.  Both the crown volume profiles and 

waveforms were smoothed to reflect the running mean used in calculating CBD from 

field data (see below).   The profiles were visually compared by plotting crown 

volume over the LVIS waveforms for each plot.   

Two goodness-of-fit statistics were calculated for each waveform-profile pair 

to provide a quantitative impression of the similarity between them.  These two 

statistics were Pearson’s r and an area of overlap index (AOI).  The Pearson’s 
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correlation was calculated for each pair of profiles to determine how well they 

compared.  The Pearson’s correlation values indicate how well the trends of the two 

profiles match, i.e. whether or not the amplitudes of both are either rising or falling at 

a given height.  AOI is a metric introduced in Drake et al. 2002b to compare 

waveforms and profile data.  AOI is the fraction of area shared by the waveform and 

canopy profiles and ranges between 0 and 1. 

Figure 7: Schematic showing how crown volume profiles are derived from field data.  
Field measurements (A) are used to calculate cylinders to represent the volume of 
each crown in the plot (B).  The crown volumes are then segmented into vertical 
sections that are 30 cm deep (C).  The crown volumes for each segment are then 
summed, resulting in the vertical profile of canopy volume (D).   
 

A transformation was also applied to the LVIS waveforms.  Some previous 

studies (Means et al. 1999; Lefsky et al. 1999) have maintained that lidar waveform 

data need to be adjusted to correct for shading of lower foliage and branches by 
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higher foliage and branches.  This adjustment consists of applying an exponential 

transform to the waveform (modified MacArthur-Horn (1969) method) and is 

described in detail in Lefsky et al. (1999).  The transform has the effect of increasing 

the amplitude of the waveform return that is in the lower part of the canopy (Figure 

8). 

Figure 8: Example canopy returns from an untransformed (black) and transformed (red) LVIS 
waveform.  The transformed waveform retains the overall shape of the original waveform, 
however, the lower portion of the return has an increased amplitude.  The effect of the 
tranform is strongest at lowest portion on the canopy return where, in this case, the amplitude 
of the return is doubled. 

 

3.4.2 Derivation of CBD from Lidar 

The use of large-footprint lidar data for obtaining CBD was assessed by 

comparing various lidar metrics to field-based measurements of CBD.  Field-based 

measurements of CBD and lidar metrics were derived separately and then compared 

using regression analysis.  The methods used to derive the metrics from the field data 

and the lidar data are described in detail below. 
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3.4.2.1 Field-Based Canopy Bulk Density 
 

The field data from the 135 plots were used to calculate CBD according to an 

inventory-based method.  The original methodology was proposed by Sando and 

Wick (1972) and relied on conventional field-sampled data (e.g. height, DBH, stem 

count density) to derive quantitative observations of canopy fuels.  This method was 

subsequently modified (Scott and Reinhardt 2001) for inclusion in FFE-FVS.  Scott 

and Reinhardt (2001) describe how this method has been used to determine effective 

CBD for non-uniform stands.  In this approach, a vertical profile of bulk density is 

derived by first calculating the foliage and fine branch biomass for each tree in the 

plot, then dividing that fuel equally into 1 foot (0.3048 m) horizontal layers from the 

base of the tree’s crown through to the maximum tree height and finally summing the 

fuel loads contributed by each tree in the plot for all 1-foot segments (Figure 7).  

CBD is estimated by finding the maximum of a 4.5 m-deep running average for the 

horizontal layers of CBD.   

 For this study the field sampled inventory data were used to calculate CBD by 

individuals with the Forest Service (Tahoe National Forest, Grass Valley, CA) who 

had experience with programs designed to implement this methodology.  The derived 

CBD data were then made available for comparison to the LVIS waveform data. 

 

3.4.2.2 Lidar Metrics 
 

CBD was derived from lidar data for waveforms that were coincident with the 

study’s field plots.  This process involved several steps.  First, lidar metrics were 
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identified as potential predictors of CBD based on previous work done to derive other 

biophysical characteristics from waveform data such as canopy cover, basal area and 

biomass.  The lidar metrics selected to predict CBD were: canopy height (HT), 

canopy height squared (HT2), canopy energy (CE), canopy energy/ground energy 

ratio (CE/GE), lowest canopy return (L), canopy depth (D), peak amplitude (MAX) 

and the height of median cumulative canopy energy (HMCE) (Figure 9).  

Figure 9:  Schematic of an individual lidar waveform showing lidar metrics.  A pulse 
of laser energy reflects off canopy (e.g. leaves and branches) and the ground beneath, 
resulting in a waveform.  The amplitudes of individual peaks in the waveform are a 
function of the number of reflecting surfaces at that height.  The different lidar 
metrics used in this study are superimposed on the waveform.   

 

Second, individual waveforms were normalized by dividing the energy 

present in each waveform bin (representing the energy returned for each vertical 

resolution unit, in this case approximately 30 cm deep) by the total energy in the 

waveform.  The normalization process accounts for flight-to-flight as well as 

footprint-to-footprint variations in energy in the waveform, caused, for example, by 

flying at day versus night (when there is no passive reflection of solar energy) or by 
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the incident angle of the laser beam.  Normalization allows for easier comparison of 

waveform-derived metrics. 

Third, the waveform metrics listed above were calculated for each of the 

normalized waveforms.  HT was determined by subtracting the range to the ground 

(defined as the midpoint of the last peak) from that of the first detectable canopy 

return above noise.  HT2 is the squared value of HT.  CE and GE are derived by 

separating the waveform into a canopy portion and a ground portion and then 

summing the bin values for those portions of the waveform.  L is the bottom of the 

canopy portion of the waveform.  D is the vertical extent of the canopy portion of the 

waveform.  MAX is the highest amplitude value in the canopy portion of the 

waveform.  HMCE is the height at which the cumulative energy in the canopy portion 

of the waveform reaches the 50th percentile.  

Once the lidar metrics were calculated, they were used as explanatory 

variables in multiple linear regression analyses, to determine which set of metrics best 

predicted CBD.  Initially, only one regression equation was calculated using all of the 

data.  Then separate regression equations were derived for different vegetation types.  

The vegetation type categories used in this study were: red fir (ABMA), white fir 

(ABCO), ponderosa pine (PIPO), miscellaneous pine (Misc. Pine) comprised of 

Jeffrey pine, sugar pine and lodgepole pine, Sierra mixed conifer (MCON), mixed 

hardwood conifer/mixed hardwood (MHC/MH) and meadow/bare ground 

(MEDW/BG).  Because the number of plots in four of the vegetation classes was 

small (for ABCO n=8, for PIPO n=10), some explanatory variables were dropped out 

of the regression equations for these classes.  Stepwise regression techniques were 
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used to determine which variables should be dropped because they had relatively low 

explanatory power.   

The same suite of lidar metrics were recalculated form the waveforms once 

the modified MacArthur-Horn transformation was applied.  The metrics derived from 

the transformed waveforms were then used as variables in the same series of 

regression analyses for the different vegetation types as described above.   

3.5 Results

3.5.1 Comparison of Lidar Waveforms and Crown Volume Profiles 

The Pearson’s r values for the correlations between lidar waveforms and 

crown volume profile pairs (Figure 10) ranged between -0.623 and 0.977 (mean = 

0.35, σ = 0.43 (Figure 11)).  Out of the 135 pairs being compared 47 had values ≥ 0.6.

For the set of comparisons between the transformed waveforms and the crown 

volume profiles the correlations varied between -0.661 and 0.945 (mean = 0.39, σ =

0.42) and 51 had values ≥ 0.6. The distribution of correlation values for both the 

untransformed and transformed waveforms are shown in Figure 11.  Limiting the 

pairs to only those for which the difference between the field- measured height and 

the lidar-derived height was ≤ 2 m (thereby eliminating waveforms with large 

potential errors associated with locating the ground or the canopy top (n = 31)) 

changed the range of Pearson’s r values to between -0.388 and 0.962 (mean = 0.36, σ

= 0.36) and 8 correlation values were ≥ 0.6 for the untransformed waveforms.  Hyde 

et al. (2005) show that the accuracy of the lidar-measured canopy heights depended 

on the distance of the trees from the center of the footprint.  Therefore, to address this 
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other potential source of error, the total set of waveform-profile pairs were restricted 

to only those for which the distance of the tallest tree measured in the field was ≤ 9 m

from the plot center (thereby eliminating waveforms where the actual footprint size 

was less than the nominal 12.5 m-diameter (n = 35)).  This changed the range of 

Pearson’s r values to between -0.172 and 0.977 (mean = 0.42, σ = 0.35 and 12 values 

were ≥ 0.6) for the untransformed waveforms.  

 
Figure 10: Example of waveform return (black) with canopy volume profile (gray) 
overplotted.   The canopy volume profile was calucated from the field data collected 
at the plot.  The same data were used to generate the SVS figure at the left.  Though 
they do not match perfectly, the wavefrom and the profile do show the same general 
trend in amplitude. 
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Figure 11: Results of comparison of lidar waveforms and crown volume profiles.  A) 
Distribution of Pearson’s r values between waveforms and crown volume profiles.  
B) Distribution of AOI values between waveforms and crown volume profiles.  C) 
Distribution of Pearson’s r values between transformed waveforms and crown 
volume profiles.  D) Distribution of AOI values between transformed waveforms and 
crown volume profiles. 
 

The AOI values for the waveform-profile pairs ranged between 0 and 0.814 

(mean = 0.45, σ = 0.23) and 40 had values ≥ 0.6 when comparing the untransformed 

waveforms and values between 0 and 0.895 (mean = 0.57, σ = 0.23) with 69 ≥ 0.6

when using the transformed waveforms (Figure 11).  For this analysis as well, the 

waveform-profile pairs were limited to those for which the height difference was ≤ 2

m.  This altered the range of AOI values to between 0.022 and 0.814 (mean = 0.52, σ

= 0.21) and 11 values were ≥ 0.6) for the untransformed waveforms.  The waveform-

profile pairs were then also limited to those for which the distance of the tallest tree to 

the plot center was ≤ 9 m.  This altered the range of AOI values to between 0.018 and 
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0.776 (mean = 0.52, σ = 0.20 and 14 values were ≥ 0.6) for the untransformed 

waveforms.  

3.5.2 Validation of CBD Derivation from Lidar 

The results of the multiple linear regression analysis predicting CBD from the 

lidar metrics for the data in all of the 135 plots are shown in Figure 12.  Although the 

scatterplot does show a trend in the data, the relationship is not very strong (r2 = 0.34,

p < 0.0001, RSE = 0.055).  In particular, the predicted CBD considerably 

underestimates the CBD values for a higher end of range calculated from field 

measurements.  At the lower end of this range the predicted values are slightly too 

high.  

Figure 12: Scatterplot showing the relationship between observed CBD (derived 
from field measurements) and predicted CBD (derived from lidar metrics) for all 135 
plots in the Sierra Nevada study site.   
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In an effort to improve the relationship between observed and predicted CBD 

the data were divided into classes by vegetation type.  Separate regression analyses 

were performed for each of the vegetation types.  Table 1 summarizes the r2 and RSE 

values and the regression models calculated for each of the seven different vegetation 

types found in the Sierra Nevada study site comparing field-derived and lidar-derived 

CBD.  To achieve the highest r2 values all eight explanatory variables were 

maintained in the regression models.  The two exceptions were for the ABCO and 

PIPO vegetation classes.  Because the sample size of for these classes was small (n=8 

and n=10, respectively) the number of explanatory variables was limited to 5 and 7, 

respectively, to avoid overfitting the regression. 

Table 1: Results of CBD Regression Analysis 
Type N r2 RSE Regression Model 
ABMA 32 0.6293 0.046 -0.0032HT-0.00003HT2+0.0207CE/GE-0.1055CE+0.0033D+0.0037L+0.0003HMCE  

+8.1795MAX +0.083 
ABCO 8 0.9669 0.027 0.00005HT2-0.078CE/GE+1.2568CE-0.0141HMCE-31.8328MAX+0.3148 
PIPO 10 0.8702 0.063 -0.0939HT+0.0014HT2-0.3614CE/GE+3.5059CE+0.03013L-0.0071HMCE-61.5161MAX 

+1.0572 
Misc. Pine 12 0.7488 0.050 -0.0345HT-0.000002HT2-0.4027CE/GE+0.6552CE+0.0399D+0.0044L-0.0026HMCE-

3.8566MAX+0.1333 
MCON 44 0.3811 0.052 0.014HT-0.00004HT2-0.0001CE/GE+0.2281CE-0.0103D-0.0043L-0.0052HMCE-

2.7117MAX+0.0319 
MHC/MH 15 0.7897 0.026 0.0016HT+0.0001HT2-0.0023CE/GE+0.0223CE-

0.0045D+0.0005L+0.0015HMCE+3.9416MAX+0.0045 
MEDW/BG 14 0.8155 0.023 0.0107HT-0.0007HT2-2.7559CE/GE+5.2813CE-0.052D-0.0088L+0.0358HMCE-

6.1618MAX+0.0182 

Figure 13 shows the results of the comparison between lidar-predicted and 

field-derived CBD.  The best-fit line for each regression is also shown.  The r2 value 

of 0.71 (p < 0.0001, RSE = 0.036) is based on the correlation between the collective 

observed and predicted estimates of CBD.  The regression analyses were repeated for 

all vegetation types using the transformed lidar data.  The r2s decreased and RSEs 
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increased for all vegetation types and the overall r2 value of all observed and 

predicted values of CBD dropped to 0.67 (p < 0.0001, RSE = 0.036).   

Figure 13: Comparison of observed CBD (derived from field measurements) and predicted 
CBD (derived from lidar metrics) for seven vegetation types found in the Sierra Nevada study 
site.  Separate regression analyses were performed for each of the vegetation types.  The r2

value shown is based on the correlation of the collective observed and predicted values of 
CBD from all of the vegetation types.   
 

Given the rugged terrain throughout the study area, it was considered possible 

that the errors in deriving CBD from the LVIS metrics could be attributed to reduced 

footprint size (because of the high elevation of some plots), steep slope angles or 

canopy density.  To determine if these factors significantly affected the errors in 

predicting CBD the absolute values of the residuals of the regressions (those shown in 

Figure 13) were compared to the slope of the plot, the distance of the tallest measured 

tree from the plot center and the number of measured stems in the plot.  Slope was 

calculated from an LVIS-generated DEM and the slope for each plot location was 

found.  Distance of the tallest tree from the plot center was calculated from the field 
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data.  The results of these comparisons are shown in Figures 14-16.  No clear 

relationship was found between the steepness of the slope and the magnitude of the 

error (r2 = 0.01614, p = 0.1513), indicating that slope does not have an effect on the 

ability of lidar to predict CBD.  Neither was there a correlation between the distance 

of the tallest tree from the footprint center and error (r2 = 0.00288, p = 0.5724).  There 

was also no clear relationship between the density of stems in a plot and the values of 

the CBD residuals (r2 = 0.03281, p = 0.03996).    

Figure 14:  Scatterplot showing the relationship between LVIS derived slope and the error 
between field- and LVIS-derived CBD. 
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Figure 15: Scatterplot showing the relationship between the distance of the tallest 
tree from the plot center and the error between field- and LVIS-derived CBD.   

 

Figure 16:  Scatterplot showing the relationship between the stem density in a plot and the 
error between field- and LIVS-derived CBD. 
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The results of the comparison between field and LVIS-derived CBD are 

greatly improved when the data are stratified by vegetation type.  This implies that 

there are structural difference among the stand types found in the study area and that 

they affect the CBD retrieval.  The field data for the different plots were summarized 

to see if there were any key differences between the vegetation types.  Histograms of 

height, DBH and average crown radius were calculated for all trees within a given 

vegetation type (Figures 17-19).   

3.5.3 PCA 

A principle components analysis (PCA, Splus statistical software) was 

performed on the lidar metrics data in an attempt to improve the r2 without having to 

rely on categorizing the data into vegetation types and thereby reduce the reliance on 

field or other ancillary data.  The PCA was conducted using a correlation matrix 

because the lidar metrics are on differing scales.  A plot of the loadings of the eight 

principle components was generated (Figure 20) which showed that the first four 

principle components explained 95% of the variance.  These four components were 

then used in a regression analysis to determine how well they could predict CBD 

(Figure 21).  This regression resulted in an r2 of 0.24 (p = 0.6508, RSE = 0.059).  

When the data were again divided into vegetation classes and separate regression 

were applied the overall r2 improved to 0.51 (p < 0.0001, RSE = 0.047).   
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Figure 17: Histograms of field measured heights for all trees sampled in a given vegetation 
type.  MEDW/BG is not shown because of the small number of trees measured in that 
vegetation type. 
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Figure 18: Histograms of the field measured DBH for all trees in a given vegetation type.  
MEDW/BG is not shown because of the small number of trees sampled in that vegetation 
type. 
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Figure 19: Histograms of field measured average crown radius for all trees in a given 
vegetation type.  MEDW/BG is not shown because of the small number of trees measured in 
that vegetation type. 
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Figure 20: Bar graph showing the loadings of the eight principle components.  The 
graph shows that only the first four components are needed to model 95% of the 
variance in the data. 

 

Figure 21: Scatterplot showing the relationship between observed CBD and CBD 
modeled from the first four principle components derived from a PCA of the eight 
lidar waveform metrics. 
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3.6 Discussion

3.6.1 Comparison of Lidar Waveform to Crown Volume Profiles 

The results of the comparisons between the LVIS waveforms and canopy 

volume profiles show considerable variability.  Some of the profile pairs correlate 

very well while others show little similarity.  The distribution of correlation values 

indicates that a significant portion of the profile pairs had values of Pearson’s r ≥ 0.6

and AOI ≥ 0.6. The poor correlations are likely explained by several factors.  Some 

of the deviation between the waveforms and the canopy height profiles can be 

attributed to the model that was used to calculate canopy volume because it assumed 

that all contributing crowns were cylindrical in shape.  This could lead to errors in 

calculating canopy volume especially at the top (where crowns tend to taper, 

especially in coniferous species) or at the bottom (where crowding among stems can 

lead to gaps in foliage for individual trees).   Furthermore, although the field data 

collected were quite extensive it is impossible to capture the high degree of variability 

and complexity in the canopy through field measurements, nor are the field 

measurements devoid of error.  The canopy volume profiles therefore represent a very 

simplified picture of the vertical structure of the canopy.  In contrast, the waveform 

captures the complete vertical distribution of all canopy elements and canopy gaps.  

Repeating this exercise in a forest with a more uniform or plantation-like canopy, or 

averaging waveforms and crown volume profiles for a given vegetation type over 

small areas would probably yield better correlations between canopy volume profiles 

and lidar waveforms.  Indeed, for a dense, neotropical rainforest setting where data 

were collected from spatially contiguous waveforms Drake et al. (2002b) found better 
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correlation between waveforms and crown volume profiles (e.g. mean r=0.88 and 

r=0.60 for secondary and primary rainforest, respectively).  In some plots, the energy 

returns from the shorter vegetation convolves with the returns from the ground 

making them difficult to separate.  Also, the angle of the incident lidar pulse is 

expected to have an effect on the shape of the waveform, potentially more than can be 

accounted for in the normalization process.  Though this effect may be small, it can 

still affect the relative amplitudes of the canopy returns, especially for footprints that 

are near the swath edges.     

Applying the modified MacArthur-Horn transformation to the waveforms did 

not appear to have an impact on the correlation of waveforms and crown volume 

profiles.  The transform has the effect of increasing the amplitude of the lower portion 

of the waveform, but does not change the location or frequency of the various peaks 

in the waveform.  The correlation values compared the trends in amplitude through 

the vertical profiles rather than the absolute values of amplitude.  Therefore one 

would not expect the transform to significantly change the results of this series of 

comparisons.  

The ability of lidar waveforms to capture the distribution of canopy material 

in forest stands will aid foresters in determining the appropriate fuel model to assign a 

forest stand.  Fire models function as templates that relate a general description of 

stand structure relevant to the prediction of fire initiation and spread and are an 

important component of fire behavior modeling (Anderson, 1982).  Typically these 

fuel models are assigned by conducting field observations.  The results presented here 
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suggest that lidar waveform data may enhance field observations by collecting current 

data consistently over large and remote areas. 

3.6.2 Derivation of CBD from Lidar 

The results show that LVIS metrics were better able to predict CBD once the 

data were divided according to the different vegetation types found in the study area.  

The differences between the various regression models most likely reflect structural 

differences among the various forest stands included in the study.  The histograms of 

height, DBH and average crown radius distribution show that all of the vegetation 

types are characterized by larger populations of smaller trees and smaller numbers of 

large trees.  However, the ratio of large-to-small trees varies.  The DBH histograms 

for red fir and mixed conifer, for example, shows a somewhat more even distribution 

of tree sizes for the red fir plots, while the mixed conifer type has a very large number 

of small trees and very few large ones.  For most of the vegetation types the 

relationship between the lidar-metrics and field-derived CBD is fairly strong (i.e. r2 >

0.6), the exception being the mixed conifer class (r2 = 0.3811), where, in the higher 

range of values, the predicted CBD was lower than the observed CBD.  Most of the 

plots in question were in stands characterized by a dense canopy layer of mid- and 

under-story trees with a few dominant tree crowns interspersed.  The equations used 

to calculate CBD from the field data could be overestimating the canopy loads of the 

codominant and subdominant trees.  The algorithms assume that all tree canopies are 

perfect cylinders.  In reality, however, this is rarely the case for trees in denser stands 

where tree crowns are often irregular in shape, meaning that actual fuel load for these 

trees is likely much lower than predicted.  Additionally, the equations also assume 
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uniformity among the species in crown shape when in truth there is considerable 

variation.  White fir, for example, tends to be rather cone shaped while sugar or 

ponderosa pine crowns are more parabolic.  Furthermore, the field-based estimates of 

CBD only consider the fraction of fuels made up of fine (e.g. foliar) material (because 

these are more apt to ignite and burn) rather than the total biomass in the plot, which 

is recorded by the lidar waveform; they also fail to take into account the actual crown 

height or crown base of individual trees.   

In contrast to the derivation of CBD, Hyde et al. (2005) showed good 

correlation between field-based biomass and lidar metrics for the same set of sample 

plots and waveform data without having to stratify by vegetation type.  Therefore, it 

may be possible to use lidar-derived biomass to determine CBD and thereby avoid the 

need to identify vegetation type when mapping a given area.  However, this approach 

could potentially require the incorporation of an additional set of allometries to 

calculate foliar and branch biomass although from the lidar-derived biomass values.  

For this study site the direct relationship between field-derived CBD and biomass 

(equations from Jenkins et al. 2004) was weak (r2 = 0.13), indicating the need for 

species-specific allometries to determine CBD from biomass.   

Applying the modified MacArthur-Horn transformation to the waveforms 

before deriving the lidar metrics did not improve the overall results of the CBD 

regression results.  This is attributed to the fact that CBD is related to the maximum 

density of the canopy which is assumed to correspond to the strongest canopy return 

in the waveform.  For the waveforms in the Sierra Nevada this typically occurs higher 
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up in the canopy and not close to the ground, where the transform has its greatest 

effect.   

There were certain lidar metrics that had more overall power for predicting 

CBD than others.  These were HT, HT2, CE and CE/GE.  In previous studies, HT and 

HT2 have been used to predict total aboveground biomass (Means et al. 1999, Lefsky 

et al 2001), which, in turn, is an important component of CBD.  Other studies have 

also shown the importance of the CE/GE relationship in predicting canopy cover from 

lidar metrics (Means et al. 1999, Lefsky et al. 1999, Hyde et al. 2005).  Canopy cover 

has also been used as a surrogate measure of CBD when other field-based data are not 

available (Salmon 2002).  Therefore, it is not surprising that these particular variables 

are among the best lidar-based predictors of CBD. 

Slope, variability in footprint size and stem density were examined as 

potential sources of error in predicting CBD.  The results show that these factors have 

little effect on the derivation of CBD from lidar waveforms.  Because the lidar-

derived CBD values are modeled from a multiple metrics it is possible that factors 

that affect more direct measurements such as height (Hyde et al. 2005) may not have 

as much influence on the prediction of CBD.   

The results of the PCA showed that the number of variables could be reduced 

to four principle components and still yield relatively good results (r2 = 0.51) 

predicting CBD from lidar if the data were again stratified be vegetation type.  

However, the intended goal of the PCA was to reduce reliance on ancillary data such 

as vegetation type.  When no stratification was used the r2 drops to 0.24.  The use of 
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PCA is counterproductive in this instance because the r2 is lower than when using the 

original data and because it introduces an unnecessary abstraction to the analysis. 

Although it is included in this study, it should be noted that there are some 

issues concerning the use of MAX as a predictor variable.  MAX will vary depending 

on the angle of the incident laser beam.  Although the variation in angle is relatively 

small it can still impact MAX because it changes the thickness of the canopy layer the 

beam must pass through.  This is not accounted for in the normalization process.  

Further work will need to be done to fully understand how MAX is affected by 

incidence angle and how this in turn affects the results of the CBD and CBH 

derivation. 

Finally, it is important to note that CBD has not yet been directly measured in 

the field.  The algorithms used in this study to derive these characteristics make 

several assumptions that may lead to incorrect estimates of CBD.  Particularly, the 

assumptions that tree crowns are all cylindrical in shape and that biomass is 

distributed evenly through the canopy can lead to erroneous estimates of CBD.  

Furthermore, because there are limited allometric equations specific to California 

species, for some of the species in this study equations from surrogate species from 

the Pacific northwest were applied.  An ongoing study (Scott and Reinhardt 2002) is 

addressing this issue by collecting direct measurements of canopy fuels and 

comparing them to indirect or allometrically derived measures.  Future study should 

explore how well lidar-derived CBD estimates compare to these direct measurements. 

The results of this chapter show that CBD can be derived from lidar waveform 

data in a relatively simple manner.  Using the regression models developed in this 
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chapter maps of CBD can be generated for the entire study area that can be used as 

input into fire behavior models such as FARSITE (see Chapter 5).  Furthermore, in 

contrast to data layers derived from passive-optical sensors the input layers derived 

from the LVIS metrics capture the spatial heterogeneity of the actual CBD 

distribution.   

 

3.7 Conclusion

Given the destructive potential of wildland fires, being able to map canopy 

fuels with reasonable accuracy will continue to be of great importance.  The results of 

this study show that lidar will be a valuable tool for measuring canopy fuels.  Large-

footprint, waveform-digitizing lidar provides a means of measuring vertical stand 

structure characteristics required for fuels mapping, fulfilling a need not yet met by 

other remote sensing systems (Keane et al. 2001).   CBD is well-established method 

of quantifying canopy fuels and the results demonstrate that lidar can recover these 

for a variety of vegetation types in remote, rugged terrain.  Furthermore, lidar 

measurements offer the ability to capture the variability of canopy structure within 

stands, rather than extrapolating field-sampled, plot-based measurements over larger 

areas, providing measurements for entire forests with accuracy and consistency.  

Finally, large-footprint lidar data, and products derived from them, meet the 

FARSITE data requirement standards: a spatial resolution of about 30 m, spatially 

congruent data layers, and data easily converted into the raster format required by 

FARSITE using GIS, thus enabling a simple integration of data and model. 
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Chapter 4: Predicting CBH from Lidar Metrics 
 

4.1 Chapter Summary

In this chapter the use of large-footprint, waveform-digitizing lidar data to 

identify the fuel conditions in the lower portion of the canopy is explored.  

Specifically, metrics calculated from lidar waveform data are used to predict canopy 

base height (CBH) in a series of single and multiple linear regression analyses.  

Lidar-derived CBH values are compared to field-derived estimates of CBH and the 

results of these analyses show that the metrics derived from the waveforms can be 

used to model CBH (r2 = 0.59).  The chapter also explores the relationship between 

various lidar metrics and other field-based measurements of lower canopy structure. 

The results indicate that lidar promises to become a key instrument for the remote 

measurement and mapping of the structure of the lower portion of the forest canopy 

and detecting the presence of potential fuel ladders.  The composition of this part of 

the canopy is integral to fire modeling as it represents the transition zone between 

surface and canopy fires.    

 

4.2 Introduction

Previous research has established CBH as a metric that aids in summarizing 

and describing the fuel conditions in the lower portion of the canopy (Scott and 

Reinhardt 2001).  Specifically, the values of CBH provide information about whether 

or not the near-surface canopy is open or closed and also addresses the presence or 
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absence of fuel ladders.  CBH is a threshold condition that determines whether or not 

there is enough fuel present at such a height so as to spread fire from the surface to 

the canopy above (Scott and Reinhardt 2001).  CBH is therefore a critical parameter 

in calculating crown fire ignition and is a key input into fire behavior models such as 

FARSITE (Finney 1998). 

Because it represents a threshold, measuring CBH in the field is not easy; as 

Scott and Reinhardt (2001) explain, it is not a simple matter of measuring the lowest 

crown base in a stand or even averaging crown base height.  Rather, the vertical 

distribution of the fuel load must be considered.  To address this, a method to 

generate vertical profiles of canopy fuel was introduced by Sando and Wick (1972) 

and subsequently modified by Beukema et al. (1997) to derive CBH from field-

sampled inventory data.   

 The disadvantage of this approach for deriving CBH is that it relies heavily 

on field sampling which is frequently costly in terms of both time and money.  

Furthermore, the data that are collected are point-specific and difficult to extrapolate 

to large areas.  Measuring CBH with lidar could greatly simplify data collection by 

automating the process and allowing sampling over large, remote areas of forested 

lands.  As explained in the previous chapter, this in turn could potentially enable the 

regular monitoring of areas for changes in canopy fire hazard potential (i.e. the 

presence of fuel ladders).  Therefore this chapter explores the applicability of large-

footprint lidar for deriving CBH.   
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4.3 Objective

The objective of this chapter is to derive CBH using large-footprint, 

waveform-digitizing lidar to aid canopy fuel mapping and fire behavior modeling.  

First, an effort is made to identify a single lidar metric that can predict CBH with 

adequate accuracy.  Next, various multiple linear regression approaches are tested to 

determine which results in the best prediction of CBH from lidar.  Finally, lidar 

metrics are compared to other field-based estimates of canopy base to better 

understand the relationship between the lidar signal and canopy structure related to 

CBH.  The goal is to derive regression models and identify lidar metrics that can be 

used to predict CBH from lidar data collected over the entire study area.  Maps of 

CBH can then be generated that can be used as input into FARSITE.  Lastly, a 

discussion is provided in which the results are analyzed and likely sources of error are 

presented. 

 

4.4 Methods

4.4.1 Field-Based Canopy Base Height 

Field-based estimates of CBH in this study were calculated by experts with 

the USFS.  The methodology builds on the profile of CBD generated in the previous 

chapter, which is also used to derive CBH (Figure 22).  CBH is typically defined as 

the height in the profile at which the CBD reaches a pre-determined threshold value.  

In this study, CBH is defined as the height in the profile at which the bulk density 

equals or exceeds 0.011 kg/m3.
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Figure 22: Schematic showing how CBH is derived from the field inventory data.  Field 
measurements are used to calculate crown volume and foliage and fine branch biomass for 
each crown in the plot which are used to derive canopy bulk density.  This is then segmented 
into 1' layers and a running mean applied.  The height at which the running mean first reaches 
the 0.011 kg/m3 threshold is defined as CBH. 

 

4.4.2 Lidar Metrics 

Three different approaches were used to derive lidar metrics from the 

waveform data.  The first approach was essentially as the same as the multiple linear 

regression methods used to predict CBD in the previous chapter.  The same metrics 

(HT, HT2, CE, CE/GE, L, D, HMCE and MAX) were calculated from all 135 

normalized waveforms that were coincident with the field plots.  Several additional 

metrics were derived to predict CBH from the cumulative canopy energy profile. The 

additional lidar-derived CBH metrics include the 0.5th-, 1st-, 5th-, and 10th-percentile 

heights of the cumulative canopy energy. 

In the second approach CBH lidar metrics were derived by using an algorithm 

that fits Gaussians to the waveform (Figure 23).  The concept of fitting Gaussians to 
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the waveform to find CBH assumes that that first return above the ground forms the 

lowest return peak of the canopy.  The algorithm finds the location of the peak of that 

Gaussian (G1PEAK) as well as its standard deviation (SIG) and amplitude.  Five 

additional lidar metrics were calculating using these parameters: the heights of 

G1PEAK, G1PEAK-SIG, G1PEAK-0.5×SIG, G1PEAK-1.5×SIG and G1PEAK-

2×SIG.  In a few cases subtracting a value greater than SIG resulted in a negative 

value.  This occurred when the algorithm fit a large Gaussian as the first return above 

ground, possibly combining several smaller peaks.  This problem could potentially be 

resolved in the future by adjusting the algorithm.  For this study the negative values 

were changed to 0.   

Figure 23: Schematic showing how the Gaussian-fitting method was used to derive 
CBH from LVIS waveform data.  The lowest Gaussian above the ground (red) is 
assumed to represent the lowest canopy return.  Different CBH values were 
calculated based on the height of the peak of the lowest Gaussian as well as multiples 
of its standard deviation. 
 



67 
 

In the third method the LVIS waveforms were converted into CBD profiles.  

The maximum return in the canopy portion of the waveform was found and then 

assigned the LVIS-derived CBD value (Figure 24).  This value was then used to 

rescale the remaining canopy return, thereby converting the waveform into a CBD 

profile.  Once this profile was created the same field-based threshold (0.011 kg/m3)

was applied to derive CBH.  A smoothing function was also applied to the waveform-

derived CBD profile to emulate the running mean applied to the field-derived CBD 

profile and then applied the threshold to the smoothed profile.   

Once the various lidar metrics were calculated they were used as explanatory 

variables in single and multiple linear regression analyses to identify the best linear 

combination of metrics for predicting CBH.  Additionally, as in the previous chapter, 

a PCA was performed with the lidar metrics data in an attempt to reduce the reliance 

on vegetation type information and ancillary data.  The PCA was conducted using a 

correlation matrix because the lidar metrics are on differing scales and the results 

plotted to determine how many principle components were needed to explain 95% of 

the variance.  These components were then used in a linear regression model to 

predict CBH.   
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Figure 24: Schematic showing how CBH was derived from lidar-derived CBD profile.  The 
maximum return in the canopy return was found and then assigned the LVIS-derived CBD 
value (A).  Then, this value was used to rescale the remaining canopy return, thereby 
converting the waveform into a CBD profile.  We then applied the same field-based threshold 
(0.011 kg m-3) in order to derive CBH (B).   

 

4.5 Results

4.5.1 Single Linear Regression Approach 

It was initially assumed that there would be good correlation between a single 

lidar metric and CBH.  Therefore single linear regressions were performed between 

each lidar metric and field-based observation of CBH to determine which metric 
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provided the best fit.  No CBH was calculated for the MEDW/BG class because for 

many plots there was no canopy and in several others the canopy was so sparse that 

the threshold of 0.011 kg m-3 was never reached.  This left a sample size too small on 

which to perform a regression.  Several plots from other vegetation classes were 

omitted for the same reasons.  The results generally showed poor correlation between 

observed CBH and any single lidar-based metric (untransformed and transformed).  

Most of the r2 values were below 0.1000 (Table 2). 

 
Table 2: R2 and P-Values for Comparisons between  

Field-Derived CBH and Various Lidar-Derived Metrics  
 

Lidar-Based Metric r2 p-value
HMCE10 0.0182 0.1524 
HMCE5 0.0293 0.06851 
HMCE1 0.0212 0.1222 
HMCE05 0.0231 0.1065 
D 0.0033 0.5413 
L 0.0285 0.07283 
CE/GE 0.0027 0.5787 
G1PEAK 0.0337 0.06083 
G1PEAK-SIG 0.0283 0.08657 
G1PEAK-0.5*SIG 0.0327 0.06511 
G1PEAK-1.5*SIG 0.0223  0.1288 
G1PEAK-2*SIG 0.0176  0.1774 
CBD-Profile Threshold 0.0949 0.0009 
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A comparison between the CBH values calculated from the LVIS-derived 

CBD profile and the field-based CBH values show the best results between any single 

lidar-based metric and observed CBH.  The correlation with the smoothed waveform 

is slightly stronger than the correlation with the unsmoothed waveform (r2= 0.1032 (p 

= 0.00049) and r2=0.0949 (p = 0.00085), respectively).  When the samples are 

divided into categories of low-slope and high-slope (divided by the mean LVIS- 

derived slope value for the study area) the r2 for the low-slope plots was 0.1823 (p = 

0.00035) while that of the high-sloped plots was only 0.0224 (p = 0.3103).  When the 

samples were divided into categories of low- and high-stem density (divided by the 

mean density value) the r2s were 0.0998 (p = 0.0077) and 0.0554 (p = 0.1241), 

respectively (again using the smoothed waveform). 

4.5.2 Multiple Linear Regression Approach 

A multiple linear regression was first performed using the untransformed lidar 

metrics and including all the 135 data points from all of the different vegetation types 

in the study area (Figure 25).  The predicted and observed CBH values showed no 

correlation (r2 = 0.062, p = 0.5435, RSE = 0.9857).  In an attempt to improve the 

results the data were divided into vegetation types and separate regression analyses 

were performed for each of the vegetation classes (Figure 26).  This resulted in an 

overall r2 of 0.48 (p < 0.0001, RSE = 0.661) based on the correlation between the 

collective observed and predicted estimates of CBH.   
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Figure 25: Comparison of observed CBH (derived from field measurements) and predicted 
CBH (derived from lidar metrics) for the 135 plots in the Sierra Nevada study site.  Data were 
combined for a single regression analysis.    
 

Figure 26: Comparison of observed CBH (derived from field measurements) and predicted 
CBH (derived from untransformed lidar metrics) for six vegetation types found in the Sierra 
Nevada study site.  Separate regression analyses were performed for each of the vegetation 
types.  The r2 value shown is based on the correlation of the collective observed and predicted 
values of CBH from all of the vegetation types.   
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The regression analyses were then repeated for the six vegetation types using 

the transformed lidar data (see Chapter 3).  The r2s increased and RSEs decreased for 

all vegetation types and the overall r2 value of all observed and predicted values of 

CBH improved to 0.59.  Table 3 summarizes the r2 and RSE values and the multiple 

linear regression models for the different vegetation types that resulted in the best 

overall fit between observed CBH and transformed lidar metrics.   

 

Table 3: Results of CBH Regression Analysis 
Type N r2 RSE Regression Model 

ABMA 30 0.4643 0.4017 -0.1297HT + 0.0009HT2 - 0.0506CE/GE -0.0001CE+0.0799D+0.0187L+0.0175HMCE -
0.0374MAX +1.2229 

ABCO 8 0.6986 1.004 -1.1609HT+0.257CE/GE-0.0003CE+1.1191D+12.8309MAX+6.841 

PIPO 9 0.8777 0.3608 -0.461HT+0.0094 HT2-0.4343CE/GE+0.0007CE-0.1722HMCE-18.2584MAX +7.3919 

Misc. Pine 9 0.8629 0.3388 -0.0222HT+4.0582CE/GE-0.0006CE-0.0345D+0.1334L+10.833MAX+0.7753 

MCON 41 0.2764 0.9084 0.0332HT-0.0003HT2+0.0603CE/GE-0.0005CE-0.04D+0.1556L+0.0717HMCE -
2.0624MAX+0.9467 

MHC/MH 11 0.8933 1.1680 0.3467HT-0.0098HT2+0.4709CE/GE-0.0004CE+0.5037D+0.7063L-0.6791HMCE 
+25.3688MAX-8.7172 

Figure 27 shows the results of the comparison between lidar-predicted 

(transformed waveforms) and field-derived CBH.  The r2 value of 0.59 (p < 0.0001, 

RSE = 0.573) is based on the correlation between the collective observed and 

predicted estimates of CBH.   
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Figure 27: Comparison of observed CBH (derived from field measurements) and 
predicted CBH (derived from transformed lidar metrics) for six vegetation types 
found in the Sierra Nevada study site.  Separate regression analyses were performed 
for each of the vegetation types.  The r2 value shown is based on the correlation of 
the collective observed and predicted values of CBH from all of the vegetation types.   
 

As in the previous chapter, it was considered likely that the errors in 

estimating CBH from lidar could be attributed to the variability of the terrain or 

vegetation cover in the study area.  The absolute values of the residuals of the 

regression models were therefore compared to values of previously calculated plot 

slope, distance of the tallest tree to the plot center and stem count for the plot.  No 

clear relationship was found between any of these factors and the magnitude of the 

error (Figures 28-30).  The r2 values between these factors and the values of the 

residuals were weak: 0.01272 (p = 0.2387), 0.01522 (p = 0.02262) and 0.03604 (p = 

0.04597) for slope, tree distance and stem density, respectively. 
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Figure 28: Scatterplot showing the relationship between LVIS derived slope and error 
between field- and LVIS-derived CBH.   

Figure 29:  Scatterplot showing the relationship between the distance of the tallest 
tree from the plot center and the error between field- and LVIS-derived CBH. 
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Figure 30: Scatterplot showing the relationship between the density of the stems in the plot 
and the error between field- and LVIS-derived CBH. 
 

4.5.3 PCA 

A plot of the loadings of the eight principle components calculated by the 

PCA was used to identify how many of the principle components would be needed to 

explain 95% of the variance in the data (Figure 31).  The loadings indicated that only 

the first three principle components would be needed.  These three components were 

then used in a regression analysis to determine how well they predicted CBH (Figure 

32).  The regression resulted in an r2 of 0.015 (p = 0.6508, RSE = 3.237).  When the 

data were divided by vegetation type and separate regressions using the same three 

components were performed for each, the overall r2 improved to 0.27 (p < 0.0001, 

RSE = 2.565). 
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Figure 31: Bar graph showing the loads of eight principle components calculated by 
the PCA of the eight lidar metrics.  The plot shows that only the first three 
components are needed to explain 95% of the variance in the data. 

 

Figure 32: Scatterplot showing the results of a regression analysis between observed 
CBH and the first three principle components calculated in the PCA. 
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To help interpret the results the relationships between CBH, canopy structure 

and the lidar metrics were examined.  In general, it was expected that metrics derived 

from waveforms to relate to specific biophysical characteristics of the forest canopy.  

However, CBH itself represents a threshold condition and is not a parameter that can 

be measured directly on a tree or in a stand; it must instead be inferred from other 

measurements.  Therefore the relationships between CBH and direct measurements of 

the canopy bottom were examined, as these would arguably be easier to obtain from 

lidar.  The field measurements used for comparison were: the lowest of all lowest 

branch measurements, i.e. partial or full crown height (LBRANCH), the average 

height of the bottom of the partial crowns (AVPART) and the average height of the 

bottom of the full crown (AVFULL).  The results of these analyses were: CBH vs. 

LBRANCH: r2 = 0.0331 (p=0.05389), CBH vs. AVPART: r2 =0.0108 (p=0.2741), 

CBH vs. AVFULL: r2 = 0.0703 (p=0.004537).  CBH did not correlate well with any 

of these field metrics. 

The lidar metrics were also compared to the different field measurement of the 

canopy bottom listed described above (LBRANCH, AVPART and AVFULL). The r2

and p-values of these comparisons are shown in Table 4.   Additional lidar metrics 

calculated from the cumulative energy profile of the waveform (HMCE15, HMCE20 

and HMCE25).  As they increased in height in the canopy the different HMCE 

metrics compared better to AVFULL.  HMCE20 compared the best with an r2 value 

of 0.4255 (Figure 33).  The lidar metrics D and L compared very poorly to all of the 

field-based estimates of canopy bottom. 
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Table 4: R2 and P-Values of Field Measured Estimates of Canopy Bottom to 
Lidar-Derived Metrics 

 
LBRANCH AVPART AVFULL 

r2 p-value r2 p-value R2 p-value 
HMCE05 0.0343  0.03625 0.1076  0.00016  0.1353  <0.0001  
HMCE1 0.0375  0.02862 0.1292  <0.0001  0.1961  <0.0001  
HMCE5 0.0261  0.06869 0.1811  <0.0001  0.3171  <0.0001  
HMCE10 0.0119  0.2205  0.2431  <0.0001  0.3888  <0.0001  
HMCE15 0.0126  0.2078  0.2535  <0.0001  0.4110  <0.0001  
HMCE20 0.0126  0.2072  0.2604  <0.0001  0.4255  <0.0001  
HMCE25 0.0116  0.226   0.2526  <0.0001  0.4063  <0.0001  

L 0.0251  0.07394 0.00006  0.9318  0.0176  0.1355  
CE/GE 0.0194  0.1166  0.1822  <0.0001  0.0905  0.0006  

D 0.0060  0.3838  0.2011  <0.0001  0.2375  <0.0001  

Figure 33: Scatterplot showing the relationship between the field measurement-based 
AVFULL and the lidar-derived HMCE20 metric.  Of the different combinations of field-
based estimates of canopy bottom and various lidar-derived metrics these two compared the 
best overall. 
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4.6 Discussion

None of the metrics used the single linear regression approach result in a good 

prediction of CBH from the lidar data.  This was not surprising considering the 

limitations of the field-based methods for deriving fuels parameters such as CBH.  

Many of these are discussed in detail in the previous chapter.  Altering any of the 

assumptions that are implicit in the algorithms used to calculate CBH, for example, 

the threshold value which is used to locate CBH in the bulk density profile, will have 

an effect on the resulting CBH value.  The best single LVIS-based predictor of CBH 

proved to be the estimate derived from the lidar based CBD profile.  This method 

most closely resembles the procedure used to derive CBH from the field data.  By 

creating CBD profiles from the waveform data and applying the CBH threshold more 

of the information contained in the waveform shape could be utilized than when using 

a discrete set of metrics.  This may make this approach more robust than the others 

because it is less susceptible to errors incurred by assuming that the metrics in the 

waveform match the measurements in the field.  

The results of the multiple linear regression approach show that LVIS metrics 

that were derived from waveforms transformed using the modified MacArthur-Horn 

method were better able to predict CBH (r2 = 0.59) than the untransformed metrics (r2

= 0.48).   The transform increases the amplitude of the return in the lower portion of 

the waveform and therefore it has a greater impact on the metrics derived from that 

part of the waveform.  The overall effect of the transform was to lower the height of 

several metrics.  This caused the correlation between predicted and observed CBH at 
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the shorter end of the range (0-2 m) to improve thereby also improving the overall r2.

The poorest results were for the mixed conifer class.   

Though it was not possible to link the error to a specific environmental 

variable (e.g. slope or stem density) it is assumed that at least part of the error can be 

attributed to the fact that the field sampling protocol omitted trees with a DBH of <10 

cm.  This would potentially leave out a significant number of smaller stems in some 

of the plots and would, in turn, lead to an erroneously high derivation of CBH from 

the field data.  The omission of smaller trees will cause the amount of canopy 

material assigned to the lower part of the density profile to be less than it should be.  

Because the CBH algorithm refers to a threshold value of bulk density this omission 

of smaller trees can result in an erroneous calculation.  Furthermore, the assumption 

of cylindrical shapes for all crowns in the algorithm used to calculate CBH from the 

field data inaccurately skews a running-mean based approach higher.   

Slope, variability in footprint size and tree density were examined as potential 

sources of error in predicting CBH.  The results show that these factors had little 

effect on the retrieval of CBH from the lidar waveforms.  Because the lidar-derived 

CBH value are modeled from multiple metrics it is likely that factors that affect direct 

lidar measurements, such as height (Hyde et al. 2005), may not have as much impact 

on the estimation of CBH.   

The results of the PCA demonstrated that the eight variables could be reduced 

to three principle components and but would produce relatively poor estimations of 

CBH (r2 = 0.27) even if the data were stratified by vegetation type.  Using the same 

three principle components but leaving the data unstratified resulted in very weak 
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correlation (r2 = 0.015).  This indicates that the PCA approach is not viable for 

reducing the reliance on ancillary data such as vegetation type when predicting CBH 

from the lidar metrics used in this study.   

The results of the series of comparisons between lidar-derived metrics and 

field-based estimates of canopy bottom underscore the observation that identifying 

the lowest portion of the canopy is not simple.  Various field-based estimates of 

canopy bottom can be calculated.  Of these, AVFULL was the one to best match the 

LVIS-derived measurements of the canopy bottom.  AVFULL compared best to the 

height of the 20th-percentile of the cumulative canopy energy.  It is assumed that the 

main reason for the low correlations between the lower estimates of field- and lidar-

based canopy bottom is because of the difficulty of distinguishing low-lying 

vegetation from ground return in the waveform.  Of the different field-based 

estimates of canopy bottom AVFULL was the highest in the canopy which may have 

eliminated this difficulty.   

Finally, in discussing the results of this study, it is important to note that CBH, 

like CBD, has also not yet been directly measured in the field.  The algorithms used 

in this study to derive these characteristics make several assumptions that may lead to 

incorrect estimates of CBH.  Particularly, the assumptions that tree crowns are all 

cylindrical in shape and that biomass is distributed evenly through the canopy can 

lead to erroneous estimates of CBH.  An ongoing study (Scott and Reinhardt 2002) is 

addressing this missing link and will hopefully resolve this issue.  That study is 

collecting direct measurements of canopy fuels and is comparing them to indirect or 
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allometrically derived measures.  Future study should be done to explore how well 

the lidar-derived estimates of CBH compare to these direct measurements. 

 If possible, in a future study (potentially linked to one similar to Scott and 

Reinhardt (2002)) it would be very beneficial to compare lidar data collected before 

and after either an actual wildfire has burned through or a prescribed burn or other 

fuel reduction techniques have been applied to a well-characterized forest stand.  This 

would allow for a detailed exploration of the structural parameters of the lower 

canopy that control the value of CBH (as calculated from field observations) and how 

changes in these parameters affect waveform shape.  Identifying those characteristics 

of the lower waveform that are altered by the change in fuel load will lead to a better 

estimation of CBH from lidar, especially if the data can be input into models such as 

FARSITE and used to backmodel the actual fire.  This may lead to a possible 

adjustment to the current definition of CBH that more accurately describes the fuel 

conditions of the lower canopy and the presence or absence of fuel ladders.   

 The results of this study show that there is a relationship between field-

measured CBH and CBH as derived from lidar waveform data (r2 = 0.59).  Using the 

regression models that resulted in the best overall prediction of CBH, maps of CBH 

can be created for the entire study by applying the models to the complete set of lidar 

footprints.  These maps can be used as input into fire behavior models such as 

FARSITE (see Chapter 5). These maps also represent an improvement over those 

typically generated from passive-optical remote sensing data in that they more 

accurately portray the spatial heterogeneity of the CBH values.    
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4.7 Conclusion

This chapter demonstrates how CBH can be modeled from lidar waveform 

data.  The results show that lidar will be a useful tool for measuring and monitoring 

fuel conditions in the lower portion of the canopy and for deriving fuel characteristics 

such as CBH.  Obtaining accurate information about the structure of the lower 

portions of the forest canopy is important for identifying the presence of conditions 

that are conducive to spreading fire from the surface to the canopy, i.e. fuel ladders.  

Large-footprint, waveform-digitizing lidar provides a means of measuring vertical 

stand structure characteristics, including conditions near the ground surface – an area 

in which other remote sensing systems have shown less promise.  CBH is a 

recognized method of quantifying canopy fuel conditions in the lower canopy and our 

results demonstrate that lidar can recover CBH with moderate success for a variety of 

vegetation types over a large area of highly varying terrain.  Additionally, lidar 

measurements offer the ability to capture the variability of CBH within stands, rather 

than extrapolating field-sampled, plot-based measurements over larger areas, 

providing measurements over a large area with accuracy and consistency and thereby 

overcoming some of the limitations of field-based observations of CBH. 
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Chapter 5: FARSITE Simulations using Lidar-Derived Inputs 
 

5.1 Chapter Summary

This chapter explores the incorporation of lidar-derived maps of CBD and 

CBH as input into the FARSITE fire behavior model.  The regression models 

developed in the previous two chapters are used to generate grids of CBD and CBH 

for a subset of the study area.  These two grids, as well as a grid of canopy height 

derived from LVIS (Hyde et al. 2005), are compared to data layers typically used by 

the USFS and other land management agencies to drive FARSITE as well as to run 

actual model simulations.  The two sets of model inputs are compared to each other as 

are FARSITE outputs generated using both the conventional USFS and LVIS-derived 

canopy structure inputs.  These comparisons showed both similarities and 

discrepancies between the two data sets.  The effects of spatial heterogeneity and bias 

in the LVIS-derived input data are also examined as well as their influence on the 

model simulation results.  These evaluations show that the LVIS-derived inputs 

express far more spatial variability than conventional inputs commonly used by the 

USFS and other land management agencies.  Furthermore, these evaluations show 

that these differences in spatial variability as well as the degree of bias in the input 

data impact the outputs of FARSITE simulation runs.  The results of this chapter 

indicate that for forests that are characterized by a high degree of spatial variability 

and where potential sources of error in lidar-derived estimates of canopy structure are 

well understood, input layers generated from lidar data could be an asset for fire 
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behavior modeling and that lidar can be successfully applied to the fuels inventory 

and mapping of Sierra Nevadan forests.  

 

5.2 Introduction

Forest managers typically bear the responsibility for the administration of 

large, remote areas often covered by a variety of vegetation types.  Proper oversight 

of such areas requires considerable information about the condition of the forest 

within, particularly for the mitigation and combating of large fire events.  Often, 

forest managers are expected to respond quickly and effectively to disastrous 

conditions, such as fire, which makes having the necessary tools and required data 

already in place essential.  Because environmental systems are complex forest 

managers frequently rely on models for planning and predicting management issues 

on a forest.  Fire behavior models such as FARSITE are therefore frequently used to 

assess appropriate mitigation efforts in a particular forest or strategies for combating a 

potential fire (van Wagtendonk 1996; Hiers et al. 2003; Stratton 2004).   

Fire behavior models can be used for a variety of purposes but their most 

common application is for the planning and evaluation of fuel hazard reduction 

treatments by predicting potential fire behavior.  Models such as FARSITE have been 

used to determine changes in fire potential for a given area and are therefore valuable 

tools for forest managers (Keane et al. 1998; Schmidt et al. 2002; van Wagtendonk 

1996).   

The information that models such as FARSITE can provide is greatly 

influenced by the availability of accurate and up-to-date input data (Keane et al. 1998; 
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Keane et al. 2001).  When assimilating data for forest management, particularly for 

ingestion into models such as FARSITE, it is important to consider the data 

requirements of the model to ensure that the appropriate data are being collected.  For 

fire modeling purposes the input data need to be spatially continuous, and in recent 

years much effort has been placed into creating reliable maps of the vegetation 

structure data required to run FARSITE and similar models.  Part of the LANDFIRE 

project (www.landfire.org), for example, is focused on generating maps of canopy 

height, canopy cover, CBD and CBH for all of the U.S.  Although these data can be 

used for a variety of applications, within the context of LANDFIRE these structure 

maps are targeted at addressing the data needs of FARSITE.   

Adequate canopy fuels data for informing land management decisions and for 

driving FARSITE and other fire behavior models has been lacking (Miller and 

Landres 2004), making the testing of the canopy fire portion of FARSITE more 

difficult.  The canopy structure variables required by FARSITE are canopy height, 

CBD and CBH (Finney 1998).  Together, they describe the vertical and horizontal 

continuity of the fuels complex.  These variables are important for simulating canopy 

fire initiation and propagation and affect the model’s calculations and outputs (Finney 

1998, Scott and Reinhardt 2001).  Where the complex is more homogenous the risk of  

fire is greater (McKelvy et al. 1996). 

The use of remote sensing technology to acquire the needed inputs has been 

explored because it can estimate forest structure characteristics over large, remote 

areas quickly and consistently.  Studies have successfully used passive optical data to 

develop input layers for fire behavior models, including FARSITE (Keane et al. 1998; 



87 
 

Keane et al. 2000; Rollins 2004).  Most commonly remote sensing imagery is used to 

create maps of existing vegetation – often in combination with other ancillary data 

such as DEMs, model-generated biophysical gradients and field data (Keane et al. 

1998; Keane et al. 2000; Rollins 2004).  These efforts produced adequate results but 

are very data intense and require many processing steps and often mask the spatial 

heterogeneity of the variables being mapped because of the methods used to 

extrapolate from measured values.  

Lidar has been identified as a promising remote sensing tool for obtaining the 

required structure-related fuels data because of its unique ability to measure canopy 

characteristics (Riaño 2003; Morsdorf 2004; Andersen 2005).  As shown in the two 

preceding chapters, large-footprint, waveform digitizing lidar can successfully 

recover two important structure-dependent fire behavior model variables: CBD and 

CBH.   

Models such as FARSITE require grids, or maps, of CBD and CBH to run.  

Therefore the regression models used to derive CBD and CBH from lidar at discrete 

points in the previous chapters must be applicable to all footprints within the study 

area so that continuous layers can be created.  These input layers must also be 

consistent among themselves.  For example, CBH cannot be higher than canopy 

height at any point.  Even once these lidar-derived vegetation structure grids are 

created, their suitability for use in fire behavior models must still be tested.  

There is also a need to understand how errors or biases in the input layers can 

affect the model outputs.  This is particularly true for the CBD and CBH input layers 

because these are modeled rather than directly measured by the lidar instrument.  
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Although the modeling of CBD and CBH yielded good results when compared to 

field estimates of these metrics, the modeling process itself, even if well understood, 

invites uncertainty in the derived measurements.  Therefore the propagation of these 

potential errors and biases through the fire behavior modeling process must be 

investigated.   

 Deriving all of the necessary canopy structure data from lidar data would 

simplify the generation of the FARSITE canopy structure inputs.  Therefore, this 

chapter explores the implementation of lidar-derived CBD, CBH and canopy height 

inputs for the FARSITE fire behavior model.  Lidar-derived canopy height is 

included in this analysis because it is the third canopy structure characteristic required 

to model canopy fire in FARSITE. 

 

5.3 Objectives

The objective of this chapter is to determine the efficacy of using lidar-derived 

input data to drive FARSITE for the Sierra Nevada study site.  To accomplish this 

objective four separate questions are addressed: 

1. How do FARSITE canopy structure input layers (i.e. canopy height, CBD 

and CBH) derived from lidar compare to conventional USFS inputs? 

2. How do FARSITE outputs generated from both sets of input data compare? 

3. How does the degree of spatial variability in canopy structure in the 

FARSITE inputs affect the fire simulation results? 

4. How sensitive is FARSITE to potential biases in lidar-derived canopy 

structure inputs? 
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5.4 Methods

5.4.1 Generation and Comparison of FARSITE Input Data Layers 

The regression models developed in the two previous chapters for predicting 

CBD and CBH were used to calculate CBD and CBH from all of the LVIS 

waveforms in the study area.  First, the required lidar metrics were calculated from 

the waveforms.  Then the LVIS data were classified by landcover type (according to 

an MLRC vegetation classification map) and the vegetation type-specific regression 

models were applied.  This created point data of CBD and CBH for the entire study 

area.  These point data were then gridded into 25 m raster layers using ArcInfo.  

These grids are hereafter referred to as “LVIS25” grids.  An IDW (inverse difference 

weighting) technique was used for gridding and to compensate for gaps in the data 

caused by irregularities in the flight lines.  Hyde et al. (2005) validated the LVIS 

canopy height measurement for the Sierra Nevada study site.  For this study, the 

height data were also gridded to 25 m using the IDW technique. 

Once the LVIS25 grids were created they were first compared to canopy 

height, CBD and CBH data layers generated using conventional methods by the 

USFS, referred to hereafter as “USFS” grids.  The USFS grids were only available for 

a smaller part of the study area – at the far southeastern end of the flight lines (Figure 

34).  Therefore, the LVIS25 grids were clipped to match the extent of the USFS grids.  

The LVIS25 and USFS grids of CBD, CBH and canopy height were then differenced 

to determine the similarities between the two data sets and to examine possible spatial 

patterns in the differences. 
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Figure 34:  Locator map showing the location of the subset area used in the FARSITE 
simulations and the location of the three ignition points. 

 

5.4.2 FARSITE Simulation and Output Comparison 

The USFS and LVIS25 canopy structure grids were then used as inputs to run 

FARSITE and compare the outputs.  Prior to running FARSITE the input data were 

exported from ArcINFO into ASCII format as required by the model.  The cell size 

and grid extents of all spatial inputs were verified for consistency.  As mentioned 

previously, FARSITE requires a total of eight data layers to predict surface and 

canopy fire behavior.  The additional layers are: elevation, slope, aspect, fuel model 

and canopy cover.  (The fuel model layer provides information about the surface fuel 

complex and is used to calculate surface fire behavior (Finney 1998)).  Existing layers 

of these inputs were made available through the USFS and were used for all model 

runs (Figure 35).   

In addition, FARSITE requires ancillary data regarding weather, wind, 

potential fuel model adjustment factors and initial fuel moisture conditions.  The 

weather data consist of an ASCII text file which contains daily observations regarding 
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temperature, precipitation and humidity.  The weather data for this study represent 

conditions that are associated with high fire risk (warm and dry).  The wind file 

includes information about wind speed, wind direction and cloud cover.  The 

adjustment factors enable an experienced modeler to apply expert opinion or a priori 

knowledge by changing the rate of fire spread for the different fuel models thereby 

tuning the model (no adjustments were made to the fuel models for the analyses 

described in this study).  The initial fuel moisture file is set for each fuel model and 

provides information about moisture content for each fuel type.  All of the ancillary 

data inputs were kept constant for all of the model runs in this study and are shown in 

Appendix A. 

Various input parameters also need to be set prior to running FARSITE.  

These include time step, visible step, perimeter resolution, distance resolution and 

various fire behavior options.  These were set to 30 minutes, 2 hours, 20 m, 20 m and 

default values based on guidelines given in the FARSITE documentation.  The 

simulation duration must also be set; for the model runs in this study the fire was to 

last from 0600 June 4th to 2200 June 5th, with a 2-day conditioning period before.   
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Figure 35: Grids of the inputs held constant for all of the FARSITE simulations and locations 
of features of interest in the study area landscape. 

 

Finally, ignition points must be specified.  For the simulations in this study 

three ignition points were selected, each located in a different part of the study site, 

and are referred to as IG1, IG2 and IG3 (Figure 34).  The ignition points were created 

in ArcInfo and were imported into FARSITE as shapefiles.  The characteristics of the 

vegetation and topography at the different ignition points are varied.    IG1 is located 

approximately 1 km from the Kings River Canyon (see Figures 34 and 35 for 

reference).  There is an open area with short, sparse vegetation located directly to the 

south of the ignition point.  The slope values range between 5º and 20º in the vicinity 

of the ignition point.  IG2 is near a pipeline right-of-way (see Figures 34 and 35 for 

reference) where the vegetation had been cleared (canopy cover is approximately 5 

%).  There is fairly dense (approximately 55-85% cover) vegetation with canopy 

heights ranging between 30 m and 50 m adjacent to the right-of-way and the area is 
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relatively flat.  IG3 is located in a more heterogeneous area in terms of vegetation 

height and canopy cover (Figure 34).  There are some open gaps interspersed with the 

forested area.  The slope values range between 15º and 20º in the area immediately 

surrounding the ignition point.   

Close-up views of the CBD, CBH and canopy height USFS and LVIS25 grids 

centered on the three ignition points are shown in Figures 36, 37 and 38.  Though 

both sets of input layers are gridded to 25 m, the difference in the spatial 

heterogeneity represented by the grid values is immediately apparent.  The LVIS25 

grids show variation in structure on a nearly cell-by-cell basis while the USFS data 

are characterized by large, stand-like clusters.   

Once all the input data were compiled FARSITE was first run using the USFS 

grids and then again using LVIS25 grids of canopy height, CBD and CBH.  Several 

outputs were selected for analysis.  These were crown fire state (CFR), flame length 

(FML), heat per area (HPA) and time of arrival (TOA).  Crown fire state refers to the 

presence of surface or crown fire.  These outputs were chosen because they either 

related to the spread of canopy fire (CFR and FML) or were simple metrics that did 

not require expertise in fire modeling to interpret (HPA and TOA).  The output values 

were mapped as grids and summarized in histograms.  The output grids of the two 

model runs were differenced to determine where the outputs diverged.  
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Figure 36: Close-up views of the USFS and LVIS25 canopy structure (canopy height, CBD 
and CBH) grids generated for FARSITE near Ignition Point 1. 
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Figure 37: Close-up views of the USFS and LVIS25 canopy structure (canopy height, CBD 
 and CBH) grids generated for FARSITE near Ignition Point 2. 
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Figure 38: Close-up views of the USFS and LVIS25 canopy structure (canopy height, CBD 
 and CBH) grids generated for FARSITE near Ignition Point 3. 
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5.4.3 Spatial Variability Analysis 
 

To explore the effect of the difference in the spatial variability between the 

USFS and LVIS25 input grids a series of focal functions was applied to the LVIS25 

grids that effectively coarsened the resolution of the data in an attempt to emulate the 

USFS grids.  The function that was applied averaged the values of 3x3, 5x5 and 7x7 

kernels in the LVIS25 grids.  These modified grids are referred to as LVISx3, 

LVISx5 and LVISx7.  The function reduced the spatial variability of the data while 

retaining the 25 m cell size which kept all input layers consistent.  FARSITE was run 

with the modified input layers and the outputs were compared to the previous model 

runs to determine if the reduction in spatial variability in the canopy inputs had any 

significant effect. 

5.4.4 Sensitivity Analysis 
 

The sensitivity analysis was performed by separately varying the canopy 

height, CBD and CBH values of the LVIS25 grids while keeping all other layers – 

including other canopy structure layers – constant.  This variation consisted of 

introducing bias to the LVIS25 grids.  The bias was added by determining the 

maximum values of the LVIS25 canopy height, CBD and CBH grids.  10%, 20%, 

30% (for canopy height, CBD and CBH) and 40% (for CBD and CBH only) of the 

maximum value was then added to (positive bias) or subtracted from (negative bias) 

the original value of a given grid cell.  The resulting values were not allowed to be 

negative.  FARSITE was then run repeatedly with the modified input data.  The 

FARSITE outputs were compared to each other as well as to the outputs generated by 
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using the original LVIS25 input.   This analysis was to be performed for IG1 only to 

constrain the output data volume.   

 

5.5 Results

5.5.1 Comparison of Input Data 

 The USFS and LVIS25 input grids are shown in Figure 39.  The USFS canopy 

height grid shows little spatial variability throughout most of the study area.  

However, there is a clear demarcation between the forested area where the canopy 

height is between 20 m and 30 m and the Kings River Canyon area where the heights 

are < 20 m.  The pipeline right-of-way is also clearly visible as a linear feature 

characterized by low height values (0 -10 m).  The USFS CBD grid shows somewhat 

more spatial variability than the canopy height grid.  The highest CBD values (~ 

0.125 kg/m3 – 0.15 kg/m3) are located near or within the Teakettle Experimental 

Forest (see Figure 35 for reference) and the values are lower (0 – 0.075 kg/m3) in the 

Kings River Canyon.  The pipeline right-of-way is also discernable in the gridded 

CBD data where the CBD values are low (< 0.025 kg/m3).  The USFS CBH grid 

shows some degree of spatial variability in the values.  The boundary between the 

forest and the canyon is not as distinct as in the canopy height or CBD grids though 

the pipeline right-of-way is discernable (CBH values < 2 m).  Also notable is the 

correlation between the lower CBH values and the higher CBD and canopy height 

values in the forested area located near the center of the grid.   

 The LVIS25 canopy height grid shows a high degree of spatial variability.  

Many of the higher values (65 m - 85 m) occur near the center of the grid within the 
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Teakettle Experimental Forest.  Lower heights (< 15 m) are found in the King River 

Canyon though some clusters of mid-range tree heights (~ 25 m- 45 m) are present in 

the canyon.  The pipeline right-of-way is visible in the gridded canopy height data 

(values < 15 m).  The LVIS25 CBD grid also shows a considerable spatial 

heterogeneity.  Lower values (~ 0.025 kg/m3 – 0.1 kg/m3) are associated with some of 

the higher canopy height values near the grid center, in contrast to the pattern 

observed in the USFS grids.  However, isolated, high values of CBD (up to 0.225 

kg/m3) are associated with the relatively tall canopy heights in the canyon.  The 

pipeline right-of-way is not distinct; mid-range values of CBD are shown for the 

areas in and around the right-of-way.  The LVIS25 CBH grid indicates higher values 

towards the center of the grid and very low values associated with the canyon area.  

The pipeline right-of-way is not clearly visible in the data because the lower CBH 

values (< 4 m) extend further south all long the pipeline pathway. 

The distributions of USFS and LVIS25 height, CBD and CBH data for the 

subset area are shown in a set of histograms in Figure 40.  The histogram of LVIS25 

height shows a continuous, bimodal distribution with a mean of 28.51 m.  The canopy 

heights range between 0 and 80 m.  In contrast, the histogram of USFS canopy 

heights shows discrete clustering of the values, an artifact of the sampling and 

mapping process used to create the USFS input data that is also apparent in the CBD 

and CBH data.  There is a peak at approximately 27 m and the heights range between 

0 and 30 m.  The mean is 22.03 m.  In the histogram of LVIS25 CBD the data range 

between 0 and 0.225 kg/m3 with a mean of 0.075 kg/m3. The USFS CBD data range 

between 0 and 0.13 kg/m3 with several discrete peaks in the distribution.  The mean 
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value is 0.075 kg/m3. The histogram of LVIS25 CBH shows a continuous but skewed 

distribution of values between 0 and 40 m with the most of the values between 0 and 

10 m.  The mean is 1.55 m.  The distribution of USFS CBH also ranges between 0 

and 40 m with a mean of 2.10 m.  Most of the values are ≤ 6 m.  

Figure 39: USFS and LVIS25 FARSITE input grids of canopy height, CBD and CBH for the 
entire subset study area. 
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Figure 40: Histograms of canopy height, CBD and CBH values from the USFS and LVIS25 
FARSITE input grids of the subset study area. 
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The differenced grids of canopy height, CBD and CBH are shown in Figure 

41.  The largest area with significant differences in height is located near the center of 

the grid where the LVIS25 data values were frequently ≥ 15 m greater than the USFS 

canopy heights.  Similarly, the pattern of differences for the CBD data shows that the 

greatest divergences are near the center of the grid where the LVIS25 values are 

approximately 0.05 kg/m3 or more lower than the USFS grid values.  However, as 

shown in Figure 41B, in and around the pipeline right-of-way and in the canyon the 

LVIS25 values were greater than the USFS values.  In contrast, the spatial 

distribution of differenced CBH values is more homogenous and the differenced 

values are of relatively low magnitude (± 5 m).  The distributions of the difference 

values for the three pairs of canopy structure grids are also shown in a series of 

histograms (Figure 41).  The histogram of the height differences shows that the 

distribution ranges between -30 m and 60 m and the mean is 6.48 m.  For the CBD 

and CBH differences the distributions range between -0.12 kg/m3 and 0.12 kg/m3 and 

-10 m and 10 m and the means are 0.00027 kg/m3 and -0.54 m, respectively. 
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Figure 41: Grids and histograms of the LVIS-USFS difference values of the canopy height, 
CBD and CBH input grids for the subset study area. 
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5.5.2 FARSITE Output Using USFS Data 

The gridded outputs of CRF, FML, HPA and TOA generated by running 

FARSITE with the USFS data for the three ignition points are shown in Figure 42.  

The CFR grids show that crown fire was concentrated along a continuous band of 

cells in the central part of the burned area for IG1 and along the pipeline right-of-way 

for IG2.  For IG3 crown fire was aggregated into small, discrete clusters of cells 

primarily along the southern perimeter.  The HPA grid for IG1 shows some of the 

highest values (> 9000 kJ/m2) located near the edges of the burned area and inversely 

related to the location of the crown fire.  In contrast, the higher FML values (> 0.7 m) 

are located nearer the center of the output grid and correspond rather well to the  

crown fire pattern.  Similar trends are visible in the grids of HPA and FML for IG2.  

For IG3 most the cells with higher HPA values (> 9000 kJ/m2) correspond to the 

general locations crown fire, though the HPA clusters are larger.  Most of the higher 

values of FML (> 0.7 m) are located in the northwest portion of the burned area and 

do not correspond to any crown fire clusters.  The TOA grids for the three ignitions 

sites indicate how rapidly the fire spread outward from the various ignition points and 

how the fire progressed.  For example, for IG1 the TOA data indicate that the fire first 

spread equally in all directions and then relatively rapidly to the east and west.  In 

contrast, the TOA data for IG2 show that the fire initially spread quickly along an 

east-west band and then rather slowly outward to the perimeter. 
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The outputs for this model run are also shown as a series of histograms 

showing the ranges and distributions of the CFR, FML and HPA values (Appendix 

B).  The CFR histograms for these model runs show that for all three ignition 

locations surface fire is much more prevalent than crown fire.  The range of FML 

values is between 0 and 1.3 m; 0 and 1.5 m; and 0 and 0.9 m with means of 0.45 m, 

0.51 m, and 0.43 m for IG1, IG2 and IG3, respectively.  The shape of the FML 

distributions is similar for all three ignitions, skewed to the lower end of the 

distribution. The range of HPA extends from 0 to approximately 17500 kJ/m2 with 

means of 8719.46 kJ/m2, 7851.67 kJ/m2, and 8622.64 kJ/m2 for IG1, IG2 and IG3, 

respectively.  The shapes of these distributions are characterized by values falling into 

three clusters (approximately 0-4000 kJ/m2, 4000 kJ/m2 -10000 kJ/m2 and 10000 

kJ/m2 -17000 kJ/m2) for all three ignition points with peaks at approximately 2500 

kJ/m2, 9000 kJ/m2 and 13500 kJ/m2.
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Figure 42: FARSITE output grids of CFR (1=surface, 2=crown), FML, HPA and TOA for all 
three ignition points generated using the USFS input data for canopy structure. 

 
5.5.3 Output Using LVIS25 Data 

 The four output grids generated by running FARSITE with the LVIS25 data 

for IG1, IG2 and IG3 are shown in Figures 43A-46A.  The spatial distribution of CFR 

values shows that crown fire for IG1 is evenly distributed throughout the grid.   For 

IG2 crown fire cells are also evenly distributed throughout most of the burned area 

although a pattern emerges near the pipeline right-of-way.  For IG3 crown fire again 

is fairly evenly distributed throughout the grid, however, few crown fire cells are 
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located in the northwestern part of the burned area.  The FML grids show that flame 

length values are highest (> 0.7 m) along a continuous, east-west running band for 

IG1, near the pipeline right-of-way for IG2 and concentrated in two clusters in the 

northwestern part of the IG3 burned area.  The HPA grids indicate that the values are 

high (> 9000 kJ/m2) in the northwestern and southern portions of the burned area for 

IG1, to the north of the pipeline right-of-way and in a large cluster in the southern 

area for IG2 and clustered in discrete patches towards the center and southeastern 

parts of the IG3 burned area.  The patterns of TOA values for IG1, IG2 and IG3 are 

very similar to the USFS TOA grids. 

These FARSITE outputs are also summarized in a series of histograms 

showing the ranges and distributions of the CFR, FML and HPA values for the model 

runs using the LVIS25 input data (Appendix B).  The CFR histograms for these 

model runs show that surface fire is again much more prevalent than crown fire for all 

ignition points.  The FML values range between 0 and 1.1 m; 0 and 1.9 m; and 0 and 

0.9 m with means of 0.46 m, 0.51 m, and 0.42 m for IG1, IG2 and IG3, respectively.  

The shape of the FML distributions is similar for all three ignitions, skewed to the 

lower end of the distribution. The HPA values range from 0 to approximately 17500 

kJ/m2 with means of 9079.13 kJ/m2, 7935.06 kJ/m2 and 8658.99 kJ/m2 for IG1, IG2 

and IG3, respectively.  The values of the HPA distributions for all three ignition 

points are organized into three clusters at approximately 0-4000 kJ/m2, 4000 kJ/m2 -

11500 kJ/m2 and 11500 kJ/m2 -17500 kJ/m2 with peaks at approximately 3000 kJ/m2,

8500 kJ/m2 and14000 kJ/m2.
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Figure 43: FARSITE outputs of CFR (1=surface, 2=crown) for all three ignition points using 
the LVIS25 (A), LVISx3 (B), LVISx5 (C) and LVISx7 (D) input data layers. 
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Figure 44: FARSITE outputs of FML for all three ignition points using the LVIS25 (A), 
LVISx3 (B), LVISx5 (C) and LVISx7 (D) input data layers. 
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Figure 45: FARSITE outputs of HPA for all three ignition points using the LVIS25 (A), 
LVISx3 (B), LVISx5 (C) and LVISx7 (D) input data layers. 
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Figure 46: FARSITE outputs of TOA for all three ignition points using the LVIS25 (A), 
LVISx3 (B), LVISx5 (C) and LVISx7 (D) input data layers. 
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5.5.4 Spatial Variability Analysis 

5.5.4.1 FARSITE Inputs 
 

The effects of coarsening the resolution of the LVIS data are shown in a series 

of grids depicting the changes in canopy height, CBD and CBH (Figure 47).  For 

canopy height the general spatial distribution pattern remains fairly constant, with 

distinct boundaries between tall and short canopies.  Smaller, open areas 

characterized by shorter canopy are heights seen clearly in all grids.   The CBD and 

CBH grids are similarly affected although some of the small-scale variability in the 

input values is lost as the spatial resolution decreases.   

 Histograms of the modified grids are shown in Figure 48.  The histograms 

show that for canopy height, CBD and CBH the range of values becomes somewhat 

smaller (the standard deviations for all three inputs decreases as the resolution 

decreases), though the mean values remain fairly constant (28.48 m, 28.46 m and 

28.45 m for height; 0.076 kg/m3, 0.076 kg/m3 and 0.076 kg/m3; and 2.38 m, 2.36 m 

and 2.46 m for canopy height, CBD and CBH, respectively).  For height the 

distribution also tends to become more unimodal.  
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Figure 47: Canopy height, CBD and CBH input grids using the LVISx3 (A), LVISx5 (B) and 
LVISx7 (C) data. 
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Figure 48: Histograms of the values in the LVISX3, LVISx5 and LVISx7 input grids of 
canopy height, CBD and CBH. 

 

5.5.4.2 FARSITE Outputs 
 

The most noticeable difference between the CFR outputs generated from the 

LVIS25 data and those from the modified LVIS input grids is the clustering of the 

crown fire cells (Figure 43).  As the effective spatial resolution decreases, the crown 

fire cells aggregate into distinct clusters, leaving other areas of the output grid mostly 

devoid of crown fire cells.  Furthermore, the number of crown fire cells decreases 

continuously as the effective spatial resolution decreases.  These two trends are 

present in the CFR grids for all three ignition sites.   For IG1 the primary cluster is 

located in the southeastern part of the CFR grid.  For IG2 the cluster of crown fire 
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cells is relatively large and follows the spatial pattern of the pipeline right-of-way.  

For IG3 the primary cluster is located in the northeastern part for the grid, with some 

smaller clusters located along the southern perimeter. 

In contrast to the CFR grids, the FML, HPA and TOA grids generated by the 

model runs using the LVISx3, LVISx5 and LVISx7 input data are all very similar to 

their counterparts from the original LVIS25 model run (Figures 44-46).  The spatial 

distribution of the FML and HPA cell values calculated from the LVISx3, LVISx5 

and LVISx7 model runs also appear very similar to those predicted by the LVIS25 

model run.  Using the LVISx3, LVISx5 and LVISx7 model runs the extent of the 

CFR, FML, HPA and TOA output grids for IG2 nearly matches of that generated by 

the USFS model run.   

A series of histograms summarizing the ranges and distributions of the CFR, 

FML and HPA values for the model runs using the LVISx3, LVISx5 and LVISx7 

input data is shown in Appendix B.  The CFR histograms for these model runs show 

that the proportion of crown fire generally decreased as the grid resolution became 

coarser.  For IG2, however, the change in resolution initially resulted in a large 

increase in the proportion of crown fire to approximately 50%.  For IG1 the FML 

values range from 0 to 1.4 m using the LVISx3 grids, from 0 to 1.1 m using the 

LVISx5 grids and from 0 to 1.15 m using the LVISx7 grids with the mean remaining 

constant for all at 0.47 m.  For IG2 the FML values range from 0 to 2.4 m using the 

LVISx3 grids, from 0 to 2.3 m using the LVISx5 grids and from 0 to 2.5 m using the 

LVISx7 grids with means of 0.58 m, 0.56 m and 059 m, respectively.  For IG3 the 

FML values range from 0 to 0.9 m for all the modified LVIS grids.  The mean values 
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are 0.42 m, 0.43 m and 0.43 m.  For IG1 the HPA values range from 0 to 15500 kJ/m2

using the modified LVIS grids and the mean values are 8992.27 kJ/m2, 8948.60 kJ/m2

and 8930.93 kJ/m2. For IG2 the HPA values range from 0 to 15000 kJ/m2 using the 

LVISx3 grids, from 0 to 17000 kJ/m2 using the LVISx5 grids and from 500 kJ/m2 to 

15500 kJ/m2 using the LVISx7 grids.  The mean values are 8094.71 kJ/m2, 8341.02 

kJ/m2 and 8087.82 kJ/m2. For IG3 the HPA values range from 1000 kJ/m2 to 16000 

kJ/m2 using the LVISx3 and LVISx5 grids and from 500 kJ/m2 to 16000 kJ/m2 using 

the LVISx7 grids.  The mean values are 8702.03 kJ/m2, 8667.01 kJ/m2 and 8650.16 

kJ/m2. The shapes of all of the HPA distributions are very similar as those described 

for the HPA outputs using the USFS and LVIS25 input data. 

5.5.5 Differences Between USFS and LVIS Output 

 The gridded FML and HPA outputs of the USFS and various LVIS model 

runs were differenced and the resulting difference grids are shown in Figures 49 and 

50.  For IG1 the FML difference grids show little variation as the effective spatial 

resolution decreases.  For example, there is a distinct cluster of cells near the center of 

the grid that remains nearly constant in each model run where the outputs using the 

LVIS data generated FML values higher by 1 – 2 m.   There are also several smaller 

clusters where the USFS FML values are consistently higher by > ~0.3 m.  The 

northwestern area of the grid shows a number of cells being alternately affected by 

change in effective resolution – the difference values alternate between -0.1 m and 

+0.1 m.  The spatial distribution of differences also remains fairly constant in the 

HPA difference grids.  For example, at the eastern end of the grid there is a relatively 

large cluster of cells where the HPA values from the LVIS model runs consistently  



117 
 

are higher (> ~500 kJ/m2) than those of the USFS model run.  As with the FML grids, 

the northwestern area of the HPA grids show the greatest variation, where decreasing 

effective resolution has an inconsistent effect on the difference values, alternating 

between -1000 kJ/m2 and +300 kJ/m2.

The FML difference grids for IG2 show little variation in spatial distribution 

as the resolution decreases.  For example, a distinct band of cells running east to west 

where the output using the LVIS data generate higher FML values (difference values 

between 0 and -2 m) is present in all of the difference grids.  This band corresponds to 

the pipeline right-of-way.  The perimeter of the output grid area shows some 

variability where the extents of the USFS and LVIS25 outputs did not match.  In the 

HPA difference grids generated using the modified LVIS input grids there is a 

distinct band in the center running east-to-west where the HPA values from the LVIS 

model run are higher (difference values -500 kJ/m2 – (-20000 kJ/m2)) than those from 

the USFS model run.  This band is not present when the LVIS25 data are used, where 

there is a concentration of values between +1 kJ/m2 and +300 kJ/m2 where the 

LVIS25 model run calculated lower HPA values.    
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Figure 49: USFS-LVIS FML difference grids.  These grids were created from the FARSITE 
FML outputs generated from the model runs using the standard USFS and various LVIS input 
data layers.  Difference grids were calculated for all three ignition points. 
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Figure 50: USFS-LVIS HPA difference grids.  These grids were created from the FARSITE 
FML outputs generated from the model runs using the standard USFS and various LVIS input 
data layers.  Difference grids were calculated for all three ignition points. 
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For IG3 the FML difference grids also show little variation as the resolution 

decreases and the magnitude of the differences is relatively low (almost all ≤ 0.3 m).  

The northwestern area of the grid shows the most variability and the outputs  

generated using the modified LVIS input grids cause inverse difference values (e.g. 

cells that have positive FML difference values using the LVIS25 data have negative 

values when using the other sets of LVIS inputs).  For the HPA grids the 

northwestern area again shows the most variability and the same pattern as the FML 

values.  The difference grids representing the model runs incorporating the modified 

LVIS data are relatively consistent amongst themselves in this region. The remaining 

area of the FML and HPA difference grids displays little change among the four 

iterations.   

 Histograms of the data shown in all of the FML and HPA difference grids are 

presented in Figure 51.  For IG1 the FML difference values are concentrated between 

-0.3 m and +0.3 m.  For IG2 the FML difference values are also centered between -

0.3 m and +0.3 m.  For IG3 the FML difference values are largely centered between -

0.1 m and +0.1 m.  For all three ignitions the FML difference values are rather evenly 

distributed about 0.  For IG1 most of the HPA differences are relatively small (-300 

kJ/m2 to +300 kJ/m2) but the extremes of the distribution also represent a significant 

number of the cells and a large proportion of the difference values are negative.  The 

pattern of HPA difference distribution is similar for IG2 though the negative tail 

values (-100 kJ/m2 to -20000 kJ/m2) have a large amplitude.  For IG3 the pattern was 

also similar to IG1. 
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Figure 51: Histograms of the values in the FML and HPA difference grids shown in Figures 
49 and 50. 
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Figure 51 (continued): Histograms of the values in the FML and HPA difference grids shown 
in Figures 49 and 50. 
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Figure 51 (continued): Histograms of the values in the FML and HPA difference grids shown 
in Figures 49 and 50. 
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5.5.6 Sensitivity Analysis 

The CFR, FML and HPA output grids generated by the sensitivity analysis all 

showed little or no change as the positive and negative biases were added to the CBD 

input grid and were also similar to the original outputs using the LVIS25 input data 

(Figures 52 and 53).  Adding negative bias to the CBH grid caused slightly more 

spatial variation in the FML and HPA output grids and dramatically increased the rate 

of crown fire (Figure 54).  Adding positive bias to the CBH grid effectively 

eliminated all clusters of crown fire in the CFR grid (Figure 55).  The addition of 

positive CBH bias had little effect on the FML or HPA outputs.  When positive bias 

was added to the canopy height input grid there was very little effect on any of the 

outputs grids (Figure 57).  However adding negative bias to the height input grid 

resulted in a significantly larger fire spread (Figure 56).  Specifically, the output grids 

show that the fire spread farther to the south and east towards the Kings River 

Canyon area.  The CFR output grid shows that the proportion of crown fire cells 

remains fairly constant.  The FML and HPA output grids show that some of the 

higher FML values occur in the additional area of fire spread and the HPA values 

remain fairly low.  The addition of bias to the canopy structure grids had little effect 

on the TOA grids, except for the larger spread area when adding negative bias to 

canopy height. 

 To help determine at what level of added bias to the CBH and canopy height 

grids the model outputs were affected additional increments of bias were calculated 

and added to the input data.  Even small additions in bias (± 2.5%) affected the 

outputs when modifying the CBH grid (Figure 58).  Adding 2.5% bias to the CBH 
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grid caused a clear increase in the number of crown fire cells while subtracting 2.5% 

bias caused an almost complete disappearance of crown fire cells. Subtracting 5% 

bias from the input canopy height grid resulted in a slight increase in the area affected 

by fire towards the east (Figure 59).  This area became more pronounced when 7.5% 

bias was subtracted. 

Figure 52: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 1 using input data with negative bias added to the LVIS25 CBD grid. 
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Figure 53: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 1 using input data with positive bias added to the LVIS25 CBD grid. 
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Figure 54: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 1 using input data with negative bias added to the LVIS25 CBH grid. 
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Figure 55: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 1 using input data with positive bias added to the LVIS25 CBH grid. 
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Figure 56: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 1 using input data with negative bias added to the LVIS25 canopy height grid. 
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Figure 57: FARSITE outputs of CFR, (1=surface, 2=crown), FML, HPA and TOA for 
Ignition Point 1 using input data with positive bias added to the LVIS25 canopy height grid. 
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Figure 58: FARSITE outputs of CFR (1=surface, 2=crown),  for Ignition Point 1 using input 
data with smaller increments of positive and negative bias added to the LVIS25 CBH grid. 

Figure 59: FARSITE outputs of CFR (1=surface, 2=crown), for Ignition Point 1 using input 
data with smaller increments of negative bias added to the LVIS25 canopy height grid. 
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A series of histograms showing the ranges and distributions of the FML and 

HPA values for the model runs using the input data with positive and negative bias 

added were generated (Appendix B).  The shapes of these distributions are similar to 

those described previously. The histograms are summarized in Table 5.     

 

Table 5: Summary of Histogram Data for Sensitivity Analysis for IG1 

FML HPA
range mean range mean 

CBD     
(+) 40% 0-2.30 0.55 0-42000 11153.22
(+) 30% 0-2.00 0.53 0-32000 10449.22
(+) 20% 0-1.50 0.50 0-22000 9855.66 
(+) 10% 0-1.15 0.48 0-18000 9403.94 
(-) 10 % 0-1.00 0.45 0-16000 8896.98 
(-) 20% 0-1.00 0.45 0-16000 8840.42 
(-) 30% 0-1.00 0.45 0-16000 8837.80 
(-) 40% 0-1.00 0.45 0-16000 8837.80 

CBH     
(+) 40% 0-1.00 0.46 0-15500 8834.99 
(+) 30% 0-1.00 0.46 0-15500 8834.99 
(+) 20% 0-1.00 0.46 0-15500 8834.99 
(+) 10% 0-1.00 0.46 0-15500 8834.99 
(-) 10 % 0-1.40 0.44 0-16500 9502.61 
(-) 20% 0-1.40 0.43 0-16500 9615.88 
(-) 30% 0-1.40 0.43 0-17000 9652.81 
(-) 40% 0-1.40 0.43 0-17000 9654.17 
Height     

(+) 30% 0-1.40 0.46 0-16500 9133.59 
(+) 20% 0-1.20 0.46 0-16000 9206.72 
(+) 10% 0-1.40 0.47 0-16500 9129.22 
(-) 10 % 0-1.40 0.54 0-17000 7367.80 
(-) 20% 0-1.90 0.63 0-16500 6420.78 
(-) 30% 0-1.90 0.62 0-16500 6329.45 
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To determine whether or not the effects of adding bias to the input layers 

(especially the height layer) was isolated to IG1 because of its location near the 

canyon edge, the same set of model runs was repeated for IG3.  The output grids for 

these model runs showed similar patterns as those generated for IG1 and are shown in 

Figures 60-65.  Adding positive and negative bias to the CBD input layers had 

negligible effect on the output grids.  Modifying the CBH grids again affected the 

frequency of crown fire.  Adding positive bias to canopy height input grid had little 

effect, however, as with IG1, the results of adding negative bias to the height layer 

showed a significant amount of change to the fire spread pattern and the fire 

spreading into a larger area.   
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Figure 60: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 3 using input data with negative bias added to the LVIS25 CBD grid. 
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Figure 61: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 3 using input data with positive bias added to the LVIS25 CBD grid. 
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Figure 62: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 3 using input data with negative bias added to the LVIS25 CBH grid. 
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Figure 63: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 3 using input data with positive bias added to the LVIS25 CBH grid. 
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Figure 64: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 3 using input data with negative bias added to the LVIS25 canopy height grid. 
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Figure 65: FARSITE outputs of CFR (1=surface, 2=crown), FML, HPA and TOA for Ignition 
Point 3 using input data with positive bias added to the LVIS25 canopy height grid. 
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5.6 Discussion

5.6.1 LVIS25-USFS Input Comparison 

 There are distinct differences between the USFS and the LVIS25 inputs. The 

USFS data show much less spatial variability.  This is likely an artifact of the 

methods used to create the grids from field data collected at discrete points from 

which values were extrapolated to represent entire stands.  There is significantly more 

spatial variability in the LVIS25 data.  The lidar data essentially provided at least one 

sample point for nearly every grid cell in the study area.  The greatest similarity in 

spatial distribution is between the USFS and LVIS25 canopy height grids.  For 

example, both grids show relatively tall canopies in the Teakettle Experimental Forest 

area and low canopies in the Kings River Canyon area.  However, there is 

considerable discrepancy between the ranges of height values in the two grids, in 

particular, the USFS heights are frequently not as tall as those in the LVIS25 grid.  

For example, within the Teakettle area the maximum height in the USFS grid is 

approximately 30 m while the LVIS25 grid indicates heights > 80 m.   The LVIS25 

height measurements have been validated (Hyde et al. 2005) and field measurements 

in the area confirm the presence of very tall trees in these forest stands.  

This discrepancy in height values is either linked to the process by which the 

USFS field data were scaled up to represent whole forest stands or the field data used 

to generate these grids (collected separately from the field data otherwise described in 

this dissertation) contain errors.  Figure 66 shows a comparison between field-based 

canopy structure values and canopy height, CBD and CBH values extracted from the 

corresponding USFS grids for those plots located within the subset of the study area.  
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The LVIS25 height measurement reflects actual conditions more accurately than the 

USFS grid.   

Figure 66: Comparison of A) canopy height, B) CBD and C) CBH field-based 
values to values extracted from the USFS grids of canopy height, CBD and CBH 
for the plot locations. 

 
There is less similarity between the USFS and LVIS CBD layers.  The 

LVIS25 grid shows far more spatial variability than the USFS grid.  The CBD 

difference grid highlights areas that have the greatest divergence in values.  The 

USFS estimates of CBD are greater near the center of the study area, while the 

LVIS25 measurements are lower – essentially the inverse of what is observed in the 

height difference grid.  It should be noted that the center region where the USFS CBD 

estimates are greater is the same forested location where the USFS heights are much 
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shorter than the LVIS25 heights.  The differences between the two grids may again be 

attributed to the processes used to generate them.  As mentioned above, the USFS 

grid extrapolates data over whole stand areas, while LVIS25 provides almost 

continuous sampling.  The USFS and LVIS25 CBH input grids also show a 

significant amount of discrepancy in values.  Again, the USFS estimate is higher than 

the LVIS25 value at the same location where the USFS grid underestimated the 

canopy height.  The patterns in the CBH difference grid are similar to those seen in 

the CBD difference grid and may potentially be attributed to the sampling and 

extrapolation methods as well. 

 When examining the difference between the USFS and LVIS25 input grids it 

is important to note again that CBD and CBH are modeled using algorithms and are 

not measured in the field nor directly captured in the LVIS waveforms and that there 

are certain issues that may explain some of the differences between the USFS and 

LVIS25 CBD and CBH grids.  The previous two chapters explained the methods used 

to obtain these metrics from field data and lidar waveforms.  Obtaining CBD and 

CBH from field data is a modeling process that makes considerable assumptions 

regarding the shape and extent of tree crowns (see previous chapters).  Furthermore, 

the algorithms used depend on canopy height as an input.  Therefore, any error in the 

USFS canopy height could have influenced the CBD and CBH estimates as well. 

Furthermore, obtaining CBD and CBH from the LVIS waveform data requires the 

application of regression models.  These models are specific to vegetation type.  In 

this study, the waveforms are categorized into vegetation types according to an 

MRLC (Multi-Resolution Land Characteristics) classification map.  Discrepancies 



143 
 

between class assignments in this map and actual surface conditions were observed in 

the field and therefore it is likely that for some areas of the CBD and CBH grids an 

inappropriate model was applied.  This issue could be addressed by generating grids 

based on other classifications that are more specific to the area.   

In general, the high degree of spatial variability shown in the LVIS25 canopy 

height, CBD and CBH grids agrees with the non-uniformity in the forest canopy as 

observed from the field.  This area of the Sierra National Forest is very heterogeneous 

(varying topography, different forest types, human activity impacts, etc.) and canopy 

conditions can change rapidly over small distances.  The area is also impacted by 

disturbance.  For example, both small- (e.g. from tree-fall) and large- (e.g. from 

cutting or fire) scale gaps in the canopy are frequent.  The LVIS25 grid captures the 

small-scale variablities that are obscured in the USFS grid.   

5.6.2 LVIS25-USFS FARSITE Output Comparison 

 For IG1 and IG3 the perimeter of the fire-affected area is almost identical.  

However, for IG2 a significantly larger area is affected when using the LVIS25 input 

data.  The area is adjacent to and south of the pipeline right-of-way.  Both the USFS 

and LVIS25 input grids show short canopies within the pipeline right-of-way and 

taller canopies along its edges.  The USFS CBD and CBH grids indicate low values 

within the right-of-way and higher values for the adjacent vegetation.  In contrast to 

the USFS grids, the LVIS25 CBD grid shows higher values both within and in cells 

adjacent to the right-of-way.  The LVIS25 grid also shows lower CBH values to the 

south of the pipeline right-of-way.  It is possible that the combination of higher CBD 

values and lower CBH values in the LVIS25 input grid initiated a greater rate of 
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spread of the fire through this area.  Rate of spread is largely controlled by surface 

fuels rather than canopy fuels and in this location the combination of high CBD 

values and low CBH values with the coincident height values and fuel model may 

have set up conditions for an intense and rapidly spreading fire. 

The occurrence of crown fire as discrete clusters in the LVIS25 CFR output is 

very different from the larger, continuous areas of crown fire shown in the USFS 

CFR grid, especially for IG1 and IG2.  In the USFS CFR grids the bands of canopy 

fire match very well to areas with low canopy height, CBD and CBH values, 

especially for IG1 and IG2.  In the LVIS25 CFR grids the crown fire clusters appear 

to be associated with the presence of higher CBD values (> 0.2 kg/m3) and lower 

CBH values which theoretically promote the propagation of fire through the canopy.   

In general, when using the USFS input data higher FML values are spatially 

correlated with the patterns in crown fire, with one exception in the northern part of 

IG3.  This correlation is not as strong when using the LVIS25 input data to run 

FARSITE.  A distinct pattern is not apparent in the USFS HPA outputs though higher 

HPA values are somewhat negatively correlated with higher FML values as well as 

higher CBD, CBH and canopy height values.  Again this correlation is not as strong 

in the outputs generated using LVIS25 data.   

 The contrasts between the two sets of outputs indicate that FARSITE is 

sensitive to differences in the input data.  The patterns of surface and crown fire 

distribution in particular seem to be impacted by these differences.  The patterns that 

emerge in this study are attributed to the dependence establishment of a continuous 

crown fire over a relatively large area on a comparatively continuous fuels complex.  



145 
 

This is better represented in the spatial distribution of the USFS canopy height, CBD 

and CBH input data which is characterized by larger areas that are relatively 

homogenous in structure. 

5.6.3 Spatial Variability Analysis 

 Applying the focal functions to the LVIS25 canopy height, CBD and CBH 

grids reduces the spatial variability in the input layers and results in a more smoothed 

appearance to the data.  The extreme high values of CBD and CBH in particular are 

removed from the input grids as the effective cell size is increased.  This resulted in 

input grids that better resemble the USFS grids in terms of spatial variability though 

the actual values at individual grid cells do not necessarily correspond and the 

differences between the two sets of input data remained.  The general pattern of high 

and low values in the various canopy height, CBD and CBH grids remained the same 

and similar to that in the original LVIS25 grid.   

 The decreased effective resolution of the LVIS input data layers does not 

appear to have a significant effect on the FML, HPA or TOA model outputs for any 

of the ignition locations. The values of these output grids remain rather constant as 

the effective cell size is increased.  This may be attributed to the fact that these 

outputs are largely determined by surface fuel conditions and may not be influenced 

by the subtle changes in the canopy structure input data caused by the increased 

effective cell size.    

An important observation is that the total area affected by fire in IG2 is 

dramatically reduced when compared to the LVIS25 output and more closely 

resembles the area of the fire predicted using the USFS inputs.  This may be caused 
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by fine-scale differences in cell values adjacent to the pipeline right-of-way.  The 

high and low extremes of the CBD and CBH values are removed and may affect the 

model rate of spread calculations.  However, no large-scale difference in the inputs is 

noticeable in this area.   

 The CFR output grids are clearly affected by the increased cell size.  For IG1 

the cells with crown fire become more concentrated in well-defined areas rather than 

spread throughout the grid in small, isolated clusters and the number of crown fire 

cells decreases.  For IG2 the number of crown fire cells does not significantly change 

but the cells become more concentrated within and around the area of the pipeline 

right-of-way, which again better matches the crown fire distribution predicted using 

the USFS data.  For IG3 the same trends are observed though a secondary cluster of 

crown fire cells remains in the northwestern corner of the grid where none are located 

in the USFS output.   

 The trends in CFR are interesting especially considering the lack of change in 

the FML and HPA outputs.  The occurrence of surface or crown fire is apparently 

greatly influenced by changes in the canopy structure.  Because the cell values should 

not have changed significantly, the decrease in spatial heterogeneity must be the 

underlying factor.  For example, where CBH is uniformly low there will be less 

opportunity for fire to spread to the canopy or where CBD values are consistently 

high crown fire can establish.  The relatively large effect on CFR caused by a 

relatively small change in gridding has implications for the collection, processing and 

application of future lidar data for fuels-related canopy structure mapping.    
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5.6.4 Sensitivity Analysis 

The sensitivity analysis was conducted to test how sensitive FARSITE is to 

changes in input values and to determine how potential errors in the input data 

propagate through the modeling process.  The introduction of bias to the data has a 

significant effect on certain of the FARSITE outputs.  For IG1 the addition of positive 

bias to the CBD grid causes minor increases in the mean values of FML and HPA.  

Increased values of CBD imply that there is more fuel available which could certainly 

lead to increases in the FML and HPA values.  However, the CFR output grid is not 

affected indicating that increased CBD alone does not lead to a greater risk of a 

crown fire.  The addition of bias increases the overall variability in the CBD data, 

therefore the heterogeneity in the grid could have hindered the establishment of large 

areas of crown fire.  Adding negative bias to the CBD values had no apparent effect 

on the CFR outputs and FML and HPA also remained constant.  This could indicate 

that below a certain threshold FML and HPA are controlled more by other factors 

(e.g. fuel model, topography or wind conditions) than available canopy fuel.   

The introduction of positive bias to the CBH grid resulted in a dramatic 

decrease in the number of crown fire cells while FML and HPA remained constant.  

This indicates that the model is very sensitive to CBH values, and that where these 

are high crown fire is far less likely to become established.  The number of crown fire 

cells rapidly increased with the addition of negative bias.  The lower CBH would 

promote the transition of surface fire to canopy fire so crown fire may become 

established in many locations simultaneously and then spread locally, thereby 

explaining the observed pattern.   
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While adding positive bias to the height grid had little effect on the FARSITE 

outputs, the addition of negative bias led to a large increase in the surface area 

affected by the fire.  The values of CFR, FML and HPA remain constant within the 

original burn area.  The only significant effect is the spread of the fire.   Fire spread is 

largely controlled by the wind, weather and moisture inputs and the surface fuel 

conditions with the exception of lofting of embers that can ignite a canopy well ahead 

of the established flaming front.  The shortening of the canopy reduces the wind 

resistance and would cause embers to spread farther downwind.   

Future studies should examine the effects of varying multiple canopy structure 

input variables simultaneously.  Such experimentation will help determine the extent 

and implications of error propagation through the model and will represent actual 

modeling conditions where all canopy structure inputs are affected by some degree of 

uncertainty. 

 

5.7 Conclusion

This chapter has shown how large-footprint lidar can be implemented to 

address fire behavior modeling data needs that are linked to canopy structure.  Lidar-

derived input data layers of CBD, CBH and canopy height were used to successfully 

run the FARSITE model.  The results of the USFS-LVIS25 set of comparisons 

showed that a high degree of spatial variability in the lidar-based input layers does 

affect the FARSITE outputs, especially the prediction of crown fire.  Though other 

outputs were also affected, the greatest affect was on the spatial distribution of crown 

fire.  This is not surprising given the direct dependence of crown fire state on canopy 
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structure inputs.  While the crown fire predicted using the conventional USFS inputs 

resulted in relatively large, continuous bands, using the lidar-derived inputs at the 

same spatial resolution caused a crown fire distribution pattern that was more broken 

and widely distributed.  This observation is underscored by the results of the spatial 

variability analysis in which the effective resolution of the lidar data was coarsened.  

The most significant effect again was on the spatial distribution of crown fire which 

became increasingly more clustered as resolution decreased.  This demonstrates that 

detailed information about structure-dependent fuels characteristics may well result in 

a more fine-scaled simulation result which may, in turn, more accurately reflect actual 

field conditions.  Though observation on an actual fire would be the crucial test, the 

clearest consequence of these differing FARSITE outputs would be the development 

and implementation of alternate fire mitigation and fuel reduction strategies. 

The sensitivity analysis showed how errors in the input layers can propagate 

through the fire behavior model and impact simulation results.  Possible modeling 

errors in CBD derivation did not appear to have a great effect on the FARSITE 

outputs, indicating that the model may not be sensitive to biases in CBD input.  

However, every effort should still be made to improve CBD recovery from lidar and 

reduce potential sources of error.  In contrast, FARSITE was sensitive to the bias 

added to the CBH input grid.  This is significant because of the greater difficulty in 

deriving CBH from lidar.  However, given the assumptions upon which the field-

based observations of CBH rely, the lidar-derived estimates may yet prove to be a 

more accurate representation of field conditions, as discussed in the previous chapter.  

FARSITE also appeared to be sensitive to the addition of bias to the height input.  
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Although canopy height is directly measured by lidar and not modeled it is still 

subject to potential sources of error (e.g. slope, elevation).   

Finally, the results presented in this chapter may have an implication for the 

development of the FARSITE model.  Because of the lack of canopy structure and 

fuels data the canopy fire modeling component of FARSITE has been relatively 

untested.  With the advent of canopy fuels inventory through lidar the advancement of 

canopy fire modeling may be fostered. 
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Chapter 6: Conclusions 
 

This dissertation explored the efficacy of large-footprint, lidar waveform data 

for the derivation of canopy structure characteristics that are relevant to fire behavior 

modeling.  The motivation for this study was the information gap regarding the 

location and distribution of canopy fuels in forested areas and to address the failure of 

current methods for creating spatial data sets of canopy structure characteristics to 

capture the spatial variability that CBD and CBH display in the natural landscape.  

The results of Chapters 3 and 4 show that CBD and CBH can be successfully derived 

from lidar waveform data and (as also shown in Chapter 5), lidar-derived predictions 

of CBD and CBH capture the heterogeneity of these characteristics in the landscape.  

The results of Chapter 5 underscore the relevance of the spatial distribution of the 

CBD and CBH values by demonstrating how the spatial resolution of input data 

affects the output of fire behavior models such as FARSITE.  Chapter 5 also explored 

the effect of potential errors or biases in the lidar-derived estimates of CBD and CBH 

on FARSITE simulation results and further demonstrated that effort must be placed in 

obtaining accurate inputs of canopy structure.   

The relationships between observed CBD and CBH and lidar-derived CBD 

and CBH (r2 = 0.76 and r2 = 0.59, respectively) shown in this dissertation are 

significant because they indicate that lidar data alone can be used to map these 

canopy structure relevant to fire behavior, without any additional remote sensing 

imagery or biophysical modeling.  In a relatively simple manner, CBD and CBH 

information can be acquired over large, remote areas consistently and at a practical 
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spatial resolution.  Furthermore, given the limitations of current CBD and CBH map 

products lidar-derived fuels information presents an alternative source of input data 

for fire behavior models that may be more representative of actual field conditions.  

Though these results may well be improved upon through further research they 

indicate that large-footprint lidar can be used to detect the presence of high canopy 

fuel loads and fuel ladders, both critical to determining the fire hazard potential for a 

given area and indicating the implementation of fire mitigation treatments. 

The methods developed in this dissertation to derive CBD and CBH from lidar 

data relied on a relatively large number of inputs in the regression models and also on 

the availability of field data to model the regressions.  Operationally, given the 

availability of lidar waveform data the metrics used in the analyses presented in this 

dissertation are relatively easy to derive.  Once identified, they are simple metrics that 

are easily calculated from the waveform.  For the purpose of creating maps of CBD 

and CBH to measure and monitor fuel loadings on a forest this data processing step 

should not hinder the functional use of lidar for fuels inventory.  The reliance on site-

specific field data to derive CBD and CBH from lidar in this dissertation limits the 

direct applicability of the regression models.  However, given the availability of high-

quality field data on many of the forested lands in the U.S. these models may be 

adapted to local conditions and extended to include areas beyond the study site in the 

Sierra Nevada.  Furthermore, future work should examine the viability of more 

generalized models for deriving CBD and CBH from lidar by identifying metrics and 

coefficients that are relatively constant over a wide range of vegetation types.   
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Because there was no actual fire data to incorporate into the FARSITE 

simulations and test how well the lidar-derived  CBD and CBH values reflected 

actual fire behavior, the relative effects of the inputs were examined through 

comparison to model simulations run with conventionally derived inputs and through 

the spatial variability and sensitivity analyses.  These evaluations showed how 

FARSITE outputs are affected by changes in the canopy structure inputs.  The 

opportunity to incorporate real fire data into this or another similar study would be 

invaluable.  The results of such a study would help resolve important issues, 

especially regarding the discrepancies between conventionally derived and lidar-

based estimates of CBD and CBH.  Given the number of assumptions that are made 

in calculating CBD and CBH from field data it may well be that the lidar-derived 

inputs better capture the key components of canopy structure relevant to fire behavior 

modeling.  

The results of this dissertation also indicate that the detailed canopy structure 

information that is available from lidar may lead to changes in the implementation of 

fire mitigation strategies.  Detailed maps of CBD and CBH would better inform forest 

managers about the local fuel load conditions and could enable the targeting of 

smaller, specific areas for fuels reduction efforts.  Furthermore, more detailed canopy 

structure maps combined with fire behavior modeling would indicate how the 

creation of a more heterogeneous distribution of the fuels in the canopy would 

potentially suppress crown fires.  For example, the elimination of individual trees in 

the canopy would possibly inhibit the establishment of a crown fire.   Such scenarios 

could be tested in FARSITE given model inputs with enough spatial detail.   
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The results of this dissertation support the incorporation of lidar into a 

regional or national effort to map fuels.  Although in the near future there is no viable 

method for obtaining wall-to-wall lidar coverage for the whole U.S., lidar can be 

assimilated into a nationwide scheme by targeting specific areas that are known to 

have undergone change (e.g. though disturbances from weather or disease) or that are 

particularly sensitive (e.g. habitat areas for rare species or developed areas) for 

mapping with lidar.  This would provide accurate canopy structure data where they 

are most immediately needed and would enable regular updating of existing canopy 

fuels maps.  

Lidar would be a cost-effective way of obtaining canopy structure data for 

targeted areas, especially where lidar data better capture the spatial heterogeneity of 

key characteristics better than conventional data assimilation methods.  Firstly, 

although there are significant costs associated with data acquisition (instrument 

transport and installation, flight planning and flight time, etc.) and processing, once 

the raw data have been collected and examined there is little additional cost in 

deriving the inputs needed for fire behavior modeling.  Secondly, any lidar data 

acquired can be used for other studies not necessarily related to fire.  For example, 

hydrologic studies would benefit from accurate subcanopy DEMs; biodiversity 

studies and habitat analysis would gain from the information about canopy structure 

data; and carbon studies as well as the timber industry would utilize the height data 

acquired from lidar to predict biomass and timber volume.  Thirdly, the increased use 

of lidar data to measure forest canopy structure characteristics could potentially 

reduce the current reliance on field sampling.  Although field sampling provides high-
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quality data, the coordination and implementation of field campaigns are typically 

costly, both in time and money.  This is especially true if field locations are remote or 

conditions are difficult to work in, e.g. areas characterized by rugged terrain, dense 

forest and few access roads.  Once it has been demonstrated that lidar can 

successfully predict the metrics needed to derive structure related characteristics in a 

broad range of vegetation types and the models used to calculate these characteristics 

have been more rigorously tested researchers and forest managers can comfortably 

rely solely on lidar data to obtain basic canopy structure information.  

The work in this dissertation has also identified issues or questions that bare 

further exploration in the future, several of which are closely linked with one another.  

First, an effort should be made to replicate this study in different regions to determine 

whether or not the same lidar waveform metrics can be used to predict CBD and CBH 

in other forest types.  Because forest types have varying structure patterns it may be 

that additional metrics may be necessary to accurately derive CBD and CBH for 

canopies that are significantly different.  In such cases new models for calculating 

CBD and CBH from lidar waveforms would also need to be developed and applied.  

Second, the feasibility of using lidar waveform data to determine the appropriate fuel 

model should be tested.  The waveform shape is expected to be related to fuel model 

which is assigned according to the distribution of fuels from the surface through the 

canopy.  If lidar can be used to determine fuel model, then all inputs needed for fire 

behavior modeling with FARSITE could conceivably be obtained from a single 

instrument – greatly simplifying the collection and processing of the necessary input 

data.  Some work has been done deriving fuel models from small-footprint systems.  
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Third, the success shown in this study indicates potential for incorporating data from 

a satellite-borne, global lidar mission as such data become available.  Because such a 

mission would likely be sampling (collecting data at discrete point or along transects) 

rather than mapping (providing wall-to-wall coverage for a given area), it would be 

advantageous to explore the effects of different sampling schemes and how they 

affect the derivation of canopy fuels.  There may be some need to link imagery with 

the lidar data through fusion techniques to map unsampled areas.  Fourth, because 

small-footprint lidar systems are commercially available future work should continue 

examining the use of data from small-footprint systems for the generation of canopy 

fuels information.  Furthermore, the use of large- and small-footprint in conjunction 

should be explored.  In the foreseeable future small-footprint systems will be the 

more readily available and establishing linkages between the two types of data sets 

may expand the usefulness of both.  Fifth, as the ability to map larger and more 

remote areas with lidar grows, effort should be placed into developing methods of 

predicting fuels and other derived products from lidar data that do not rely on field 

data.  This may involve the coupling or fusion of lidar with other remote sensing data 

sets or the incorporation of more sophisticated statistical modeling.  Sixth, now that 

reliable canopy fuels data are available more work can be done to explore the 

modeling of crown fire behavior which is less well represented than surface fire 

behavior.  The effect of canopy structure on the spread of crown fire can now be 

better analyzed using models because the data are more representative of actual 

conditions in a forest.  
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In conclusion, the results presented in this dissertation demonstrate lidar’s 

potential for providing forest managers with the data they need to make critical 

decisions regarding not only fire but forest health and sustainability in general.  Lidar 

data can also extend the application of fire behavior models such as FARSITE by 

providing structural data in the form of CBD and CBH that would not otherwise be 

available.  Lidar’s ability to map the vertical and horizontal distribution of canopy 

material makes it ideal for predicting the heterogeneity of the fuels complex which is 

an important component of fire behavior modeling.  Repeated mapping of given areas 

will aid the monitoring changing conditions (e.g. the effects of mechanical thinning 

on the fuel complex or post-burn vegetation regeneration).  Incorporation of these 

data into fire behavior models will help determine if fire mitigation treatment should 

be initiated, continued or discontinued.  During an actual fire running the model with 

a realistic input of canopy fuels data can potentially improve the effectiveness of fire 

fighting capabilities.  Therefore, the work in this dissertation sets forth an effective 

method for obtaining canopy fuels information and filling a known gap in the fuels 

data set. 
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Appendices 
 

A

FARSITE Non-Gridded Input Data 
 

Weather File 
 
ENGLISH 
Month Day Precip. Hour1 Hour2 MinT MaxT MaxH MinH Elevation 
6 1 0 429  1529   53   80   91   34     5000 
6 2 0 429  1429   49   66   99   54     5000 
6 3 0 129  1529   50   75   99   46     5000 
6 4 0 329  1429   46   74   97   37     5000 
6 5 0 629  1429   41   60   99   41     5000 
6 6 0 229  1429   40   58   57   26     5000 
6 7 1 229  1629   39   61   77   34     5000 
6 8 0 229  1529   44   68   64   32     5000 
6 9 0 229  1529   47   73   69   38     5000 
6 10  0  329  1429   51   76   70   32     5000 
6 11  0  229  1529   51   77   68   37     5000 
6 12  0  429  1529   55   80   56   23     5000 
6 13  0  429  1529   53   78   57   19     5000 
6 14   47  829  1529   43   55   99   24     5000 
6 15  0  259  1529   36   45   99   99     5000 
6 16  1  329  1529   35   52   99   83     5000 
6 17  2  329  1529   42   57   99   81     5000 
6 18  3  429  1629   40   55   99   95     5000 
6 19  0  129  1429   40   65   99   46     5000 
6 20  0  429  1229   42   68   89   34     5000 
6 21  0  329  1329   50   76   68   33     5000 
6 22  0  329  1429   56   82   66   36     5000 
6 23  0  229  1429   66   77   59   31     5000 
6 24  0  229  1229   67   90   66   33     5000 
6 25  0  129  1529   69   94   56   31     5000 
6 26  0  329  1229   69   91   74   38     5000 
6 27  0  329  1429   69   89   69   29     5000 
6 28  0  329  1529   66   89   68   23     5000 
6 29  0  329  1429   66   86   69   31     5000 
6 30  0  429  1429   61   81   77   40     5000 
 

Precipitation: rain amount in hundredths of an inch 
Hour1: time at which minimum temperature was recorded 
Hour2: time at which maximum temperature was recorded 
MinT: minimum temperature 
MaxT: maximum temperature 
MaxH: maximum humidity 
MinH: minimum humidity 
Elevation: feet above sea level
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Wind File 
 
ENGLISH 
Month Day Hour Speed Direction CloudCover 
6 1 29 6 71 0 
6 1 129 4 49 0 
6 1 229 9 60 0 
6 1 329 10 64 0 
6 1 429 8 67 0 
6 1 529 7 84 0 
6 1 629 7 81 0 
6 1 729 5 68 0 
6 1 829 2 62 0 
6 1 929 2 228 0 
6 1 1029 2 236 0 
6 1 1129 2 248 0 
6 1 1229 3 303 0 
6 1 1329 2 265 0 
6 1 1429 4 285 0 
6 1 1529 2 265 0 
6 1 1629 2 266 0 
6 1 1729 3 211 0 
6 1 1829 5 193 0 
6 1 1929 6 178 0 
6 1 2029 5 158 0 
6 1 2129 4 143 0 
6 1 2229 5 158 0 
6 1 2329 5 189 0 
6 2 29 5 172 0 
6 2 129 4 162 0 
6 2 229 4 138 0 
6 2 329 3 139 0 
6 2 429 2 128 0 
6 2 529 4 77 0 
6 2 629 2 120 0 
6 2 729 1 95 0 
6 2 829 2 186 0 
6 2 929 4 200 0 
6 2 1029 4 198 0 
6 2 1129 4 212 0 
6 2 1229 5 195 0 
6 2 1329 4 193 0 
6 2 1429 3 193 0 
6 2 1529 4 206 0 
6 2 1629 3 204 0 
6 2 1729 3 179 0 
6 2 1829 1 167 0 
6 2 1929 3 119 0 
6 2 2029 3 89 0 
6 2 2129 4 75 0 
6 2 2229 3 90 0 
6 2 2329 1 106 0 
6 3 29 3 3 0 
6 3 129 4 57 0 
6 3 229 5 62 0 
6 3 329 3 34 0 
6 3 429 3 5 0 
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6 3 529 3 29 0 
6 3 629 3 33 0 
6 3 729 2 33 0 
6 3 829 2 325 0 
6 3 929 2 235 0 
6 3 1029 3 236 0 
6 3 1129 2 222 0 
6 3 1229 2 246 0 
6 3 1329 3 259 0 
6 3 1429 3 262 0 
6 3 1529 3 271 0 
6 3 1629 2 252 0 
6 3 1729 2 254 0 
6 3 1829 1 256 0 
6 3 1929 1 186 0 
6 3 2029 4 78 0 
6 3 2129 4 58 0 
6 3 2229 5 63 0 
6 3 2329 5 82 0 
6 4 29 3 179 0 
6 4 129 5 157 0 
6 4 229 6 193 0 
6 4 329 4 179 0 
6 4 429 4 155 0 
6 4 529 4 150 0 
6 4 629 4 114 0 
6 4 729 4 160 0 
6 4 829 3 190 0 
6 4 929 5 196 0 
6 4 1029 6 195 0 
6 4 1129 6 198 0 
6 4 1229 6 196 0 
6 4 1329 5 190 0 
6 4 1429 4 208 0 
6 4 1529 4 215 0 
6 4 1629 4 199 0 
6 4 1729 5 205 0 
6 4 1829 4 203 0 
6 4 1929 6 198 0 
6 4 2029 5 183 0 
6 4 2129 6 171 0 
6 4 2229 5 170 0 
6 4 2329 5 191 0 
6 5 29 6 199 0 
6 5 129 5 189 0 
6 5 229 4 190 0 
6 5 329 4 172 0 
6 5 429 5 163 0 
6 5 529 7 190 0 
6 5 629 6 195 0 
6 5 729 3 193 0 
6 5 829 4 199 0 
6 5 929 4 197 0 
6 5 1029 2 198 0 
6 5 1129 2 220 0 
6 5 1229 4 303 0 
6 5 1329 3 311 0 
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6 5 1429 4 299 0 
6 5 1529 4 307 0 
6 5 1629 5 340 0 
6 5 1729 4 307 0 
6 5 1829 2 296 0 
6 5 1929 5 327 0 
6 5 2029 6 342 0 
6 5 2129 4 329 0 
6 5 2229 6 354 0 
6 5 2329 5 14 0 
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Initial Fuel Moistures File 
 
FuelModel 1hr 10hr 100hr LiveHerbaceous LiveWoody 
1 3 4 6 70    70 
2 3 4 6 70    70 
3 3 4 6 70    70 
4 3 4 6 70    70 
5 3 4 6 70    70 
6 3 4 6 70    70 
7 10   19    20  125   125 
8 3 4 6 80    80 
9 3 4 6 70    70 
10   3    4     6   70    70 
11   3    4     6   70    70 
12       10   19    20  125   125 
13       10   19    20  125   125 
14   3    4     6  100   100 
16   3    4     6   80    80 
26   3    4     6   80    80 
28   3    4     6  100   100 
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Adjustment File 
FuelModel AdjustmentFactor 
1 1.000000 
2 1.000000 
3 1.000000 
4 1.000000 
5 1.000000 
6 1.000000 
7 1.000000 
8 1.000000 
9 1.000000 
10   1.000000 
11   1.000000 
12   1.000000 
13   1.000000 
14   1.000000 
15   1.000000 
16   1.000000 
17   1.000000 
18  1.000000 
19  1.000000 
20   1.000000 
21   1.000000 
22   1.000000 
23   1.000000 
24   1.000000 
25   1.000000 
26   1.000000 
27   1.000000 
28   1.000000 
29   1.000000 
30   1.000000 
31   1.000000 
32   1.000000 
33   1.000000 
34   1.000000 
35   1.000000 
36   1.000000 
37   1.000000 
38   1.000000 
39   1.000000 
40   1.000000 
41   1.000000 
42   1.000000 
43   1.000000 
44   1.000000 
45   1.000000 
46   1.000000 
47   1.000000 
48   1.000000 
49   1.000000 
50   1.000000 
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B
FARSITE Output Histograms 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (-10%) 
and (-20%) bias to CBD. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (-30%) 
and (-40%) bias to CBD. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (+10%) 
and (+20%) bias to CBD. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (+30%) 
and (+40%) bias to CBD. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (-10%) 
and (-20%) bias to CBH. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (-30%) 
and (-40%) bias to CBH. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (+10%) 
and (+20%) bias to CBH. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (+30%) 
and (+40%) bias to CBH. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (-10%) 
and (-20%) bias to canopy height. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (-30%) 
bias to canopy height. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (+10%) 
and (+10%) bias to canopy height. 
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Histograms of FARSITE FML and HPA outputs for Ignition Point 1 adding (+30%)  
to canopy height. 
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