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In this work, piezoelectric resonators based on single crystal Al0.3Ga0.7As films

are implemented. The combination of Si doped Al0.3Ga0.7As as electrode layers

and moderate piezoelectric properties of updoped Al0.3Ga0.7As film leads to lattice

matched single crystal resonators with high attainable quality factors and capability

of integration with high speed circuits.

To validate the fabrication process, simple cantilever beam structures are developed

and characterized by laser Doppler vibrometry. In order to achieve higher center

frequencies, a clamped-clamped (c-c) beam design is explored. Important resonator

parameters including resonance frequency, quality factor, and power handling abil-

ity are investigated. Measured quality factors of c-c beams were found to be limited

by anchor losses to the substrate. A free-free (f-f) beam design is proposed in order

to alleviate the energy dissipation due to anchor losses. Fabricated f-f beam devices

show increased quality factors compared to the c-c beam design. Another improve-

ment is the adoption of bimorph configuration instead of unimorph configuration.



Compared to unimorph cantilever beam design, bimorph cantilevers showed 80% to

120% of increase in displacement with the same driving voltage without significant

change in quality factors.

The quality factors of flexural mode resonators in atmospheric pressure are low

due to the effect of air damping. For this reason, proper working of flexural mode

resonators requires a vacuum package which imposes unwanted complexity in pack-

aging. To solve this problem, length-extensional mode resonators (bar resonators)

are proposed to take advantage of low air shear damping. Bar resonators with

lengths ranging from 1000µm to 100µm have been fabricated and tested. Measured

resonant frequencies range from 2.5 MHz to 72 MHz with good matching to the-

oretical predictions. The quality factors of bar resonators at their first resonant

frequency are measured in air and in high vacuum, showing values between 4,300

– 8,900 and 8,000 – 17,000, respectively, with corresponding measured motional re-

sistances of 7.3 kΩ – 10.5 kΩ and 4.0 kΩ – 7.8 kΩ, respectively. The developed bar

resonators showed excellent power handling ability up to -10 dBm which is much

higher than equivalent electrostatic resonators.
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Chapter 1

Introduction

1.1 Motivation

Filters are important elements in radio communication systems. Proper oper-

ation of receivers and transmitters requires filters in the VHF (30 MHz to 300 MHz)

and UHF (300 MHz to 1 GHz) range with low insertion loss and high quality factors

to protect receivers from adjacent channel interference and limit the bandwidth of

transmitter noise [1]. Fig. 1.1 shows the frequency response of a typical bandpass

filter as well as definitions of some important parameters for bandpass filters. The

ongoing development in wireless communication technology requires high perfor-

mance frequency control devices as spectrum crowding increases, with additional

requirements including a higher level integration and low cost.

Discrete RLC circuits are used extensively as a building block of bandpass filters.

However, traditional RLC circuits become increasingly unable to provide adequate

quality factors at high frequencies because required component values are often im-

practical to realize using VLSI technology. Taking a bandpass filter with center

frequency of 1 MHz and quality factor of 100,000 as an example, the required in-

ductor and capacitor values are about 8 H and 3.2 fF, respectively, which is difficult

to realize with traditional IC technology [2]. Bulk Acoustic Wave (BAW) and Sur-
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Figure 1.1: Frequency response of a typical bandpass filter.

face Acoustic Wave (SAW) resonators are widely used as an option to replace RLC

circuits, but they still suffer from problems including large volumes, and difficulty

with circuit integration [3]. Film Bulk Acoustic Resonators (FBAR) overcome the

size issue and have GHz frequencies, but still have problems of integration with

circuits. Also, multiple frequency devices cannot be implemented on the same chip

because the center frequency is dependent on the thickness longitudinal vibration

of the piezoelectric film [4].

Similarly, mechanical filters have been used where narrow bandwidth, low loss, and

good stability are required. Mechanical filters transform electrical signals into me-

chanical energy, perform a filtering function, then transform mechanical energy back

to electrical energy. Ever since the first reported mechanical filters in 1946 by Robert

Adler of Zenith [5], mechanical filters found wide spread use in telephone technol-
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ogy. The reason behind the rapid development of mechanical filters lies in their

inherent characteristics such as a high Q, good temperature stability, and good ag-

ing properties, which are all critical in achieving low-loss, narrow bandwidth, stable

bandpass filters. The early macroscopic mechanical filters have typical center fre-

quencies lower than 600 kHz due to their size and manufacturing capability. The

insertion losses are typically about 2 dB. Apparently, these macroscopic mechanical

filters have little use in modern day communication applications, due to their low

center frequencies, difficulty of integration, and large volume they occupy [5].

In contrast, micromechanical resonators offer the potential to alleviate many of the

key problems with existing filter technology. With reduced dimensions produced by

modern MEMS technology, micromechanical resonators have emerged as a promis-

ing candidate for future RF filters. In fact, micromechanical resonator based filters

have been the subject of extensive interest and exploration over recent years. The

motivation for developing micromechanical resonator filters lies on the potential to

fabricate high center frequency, low volume, low power consumption, high Q on-chip

filters. A number of approaches to micromechanical resonators have been investi-

gated in the context of MEMS technology. The most widely investigated resonators

include devices based on electrostatic and piezoelectric transduction.

Electrostatic resonators have been successfully reported by taking advantage of low

loss nature of polycrystalline silicon and well-developed integrated circuit (IC) pro-

cesses [6]. In one recent report, an electrostatically actuated disk resonator fabri-
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cated in poly-Si, provided a quality factor of 40,000 in vacuum with a 148 MHz

center frequency [7]. As the frequency range goes higher, the desired gap between

the electrode and the resonator will shrink down to nanometer range in order to

achieve adequate electromechanical coupling force and will pose a main challenge to

their future application.

Piezoelectric micromachined beam resonators offer an alternative for high-frequency

filters because of the following factors: first their power consumption is very low,

and they also need a low input voltage, normally smaller than 5V; second, piezoelec-

tric transduction of thin films, when designed in certain modes, creates a moment

at the beam’s boundaries while in contrast, electrostatic transduction creates a dis-

tributed force across the beam length. For this reason, compared to electrostatic

resonators, it is suggested that piezoelectric resonators can provide higher electrome-

chanical strength at higher frequency range, yet they have better scalability down

to nanoscale [8]. This increased electromechanical coupling coefficient linking elec-

trical and mechanical sides of a transducer will manifest itself when desired center

frequencies increase. For these reasons, various groups are starting to pay attention

to the development of piezoelectric micromechanical resonators for bandpass filter

applications. Various piezoelectric materials including ZnO [8, 9], PZT [10], and

AlN [11, 12] have been utilized in piezoelectric resonator applications.
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1.2 Dissertation Objective

The main objective of this dissertation work is to realize high-Q piezoelectric

resonators based on single crystal thin film Al0.3Ga0.7As material. Both piezo-

electric and electrode layers are based on lattice matched thin film Al0.3Ga0.7As.

The combination of low damping single crystal nature inherent in this material and

lattice matched heterostructures will potentially result in high quality factors obtain-

able with this approach. Various design schemes including flexural mode resonators

such as cantilever, clamped-clamped, and free-free beam resonators, longitudinal

and disk resonators are explored. The developed resonators are first analyzed, both

theoretically and with finite element method, and then compared to experimental

results. The experimental methods include optical characterization based on Laser

Doppler Vibrometer (LDV) and electrical characterization with circuits developed

uniquely for this project.

1.3 Dissertation Organization

Chapter 1 gives an introduction to this dissertation work, including the back-

ground of filter technology, and the purpose of this work. Chapter 2 gives a liter-

ature review. In this chapter, different kinds of microelectromechanical resonators

are compared and the benefits of the approach conducted in this work, namely

piezoelectric resonators based on single crystal Al0.3Ga0.7As, are explained. In chap-

ter 3, details of the fabrication processes used for realizing Al0.3Ga0.7As resonators

based on inductively coupled plasma reactive ion etching (ICPRIE) combined with

5



wet etching release, or focused ion beam etching (FIB) combined with wet etching

release process, are presented. In chapter 4, following a theoretical analysis of the

piezoelectric properties of Al0.3Ga0.7As, analytical models for micro beam resonators

including flexural mode resonators and longitudinal mode resonators are compared

with finite element results obtained with ANSYS simulation. In chapter 5, the prin-

ciple of the optical and electrical characterization methods used in this work are

described, including impedance measurement, charge amplification, and self-sensing

measurement. In chapter 6, the characterization results for flexural mode resonators

including cantilever, clamped–clamped beam, and free–free beam resonators are pro-

vided. In chapter 7, the results from bimorph cantilever resonators are compared

to unimorph cantilever resonators to show the benefits of bimorph configuration.

In chapter 8, the measurement results from length extensional mode bar resonators

are presented and compared to the results from flexural mode resonators to extract

their inherent characteristics. In chapter 9, a discussion of the results from this work

is presented, and potential future directions for exploring the full potential of single

crystal Al0.3Ga0.7As piezoelectric resonators are described.
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Chapter 2

Literature Review

To work as electrical bandpass filters, micromechanical resonators need to

transform energy between the mechanical domain and electrical domain. Many dif-

ferent electromechanical transduction mechanisms have been shown to be suitable

for excitation and detection of the vibration of microelectromechanical resonators.

In this chapter, electrostatic, piezoelectric and electromagnetic microelectromechan-

ical resonators are introduced, compared, and summarized. Finally, the approach

conduced in this project is detailed.

2.1 Electrostatic Resonators

Fig. 2.1 shows the configuration of a typical electrostatic resonator. A sinu-

soidal voltage is applied between the beam and the substrate and the beam is excited

by Coulomb forces between the two electrodes. If C is the capacitance of between

the beam and the substrate, d is the gap between the beam and the substrate, and

V is applied voltage, then the electrostatic force can be calculated as 1
2

CV 2

d
. From

the expression of electrostatic force two things are clear: electrostatic actuation is

inherently nonlinear to the applied force; electrostatic forces are inversely propor-

tional to the gap between the beam and the substrate. In application, a high DC

voltage is added between two electrodes of the beam to set a proper working zone;
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the gap between two electrodes are very small (often in submicron range) to get

high electrostatic forces.

The sensing of small displacement in electrostatic resonators are often implemented

by measuring capacitance change between two electrodes. Capacitive sensing has

many attractive features such as good sensitivity, excellent temperature stability.

Also, the capacitive sensing circuit can be implemented with CMOS circuit, which

is especially attractive for electrostatic resonators sensing.

Figure 2.1: Configuration of an electrostatic resonator [13].

Most of the reported electrostatic resonators are based on silicon material due to

the low loss nature inherent in this material and also, because of the well developed

micromachining technology based on silicon material. Various design schemes such

as clamped-clamped beam [14], disk [7, 15], and free-free beam [15] resonators have

been reported.

Fig. 2.2 shows an SEM picture of a disk resonator based on single crystal silicon
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Figure 2.2: SEM of a reported electrostatic disk resonator [7].

fabricated by Ayazi et al. The resonator has diameter of 30 µm and thickness of 3

µm and is supported by a 1.7 µm wide, 2.7 µm long support at one resonance node

point. The frequency response of this resonator is given in Fig. 2.3 which shows

center frequency of 148 MHz and quality factor of 39,300 in vacuum.

The fabrication process of Si based electrostatic resonators is compatible with stan-

dard IC processing, making electrostatic resonators relatively easy to integrate with

circuits. The low loss nature of Si and poly-Si contributes to high quality factors

with these resonators.

On the other hand, the electrostatic resonators have many drawbacks which will

put difficulty in application. First, the transduction strength of electrostatic res-

onators is weak distributed forces and suffer from a fast degradation; Second, the
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Figure 2.3: Frequency response of the disk resonator [7].

required size of air-gap for electrostatic resonators normally lies in submicron or

nanometer range and tends to decrease as the center frequency increase, putting

complexity in fabrication process; third, the driving force F is proportional to E2

and for this reason, the electrostatic resonators are inherently nonlinear. Most of-

ten, in order to get a proper working zone, a DC bias voltage higher than 10V is

added which makes electrostatic resonators not compatible with traditional CMOS

circuits.

2.2 Electromagnetic Resonators

The operational configuration of electromagnetic resonators is shown in Fig.

2.4 [13]. In this configuration, a beam resonator is placed perpendicular to a homo-
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geneous magnetic filed. An alternating current along the resonant beam generates

a Lorentz force which drives the beam. When the driving frequency matches the

resonance frequency of the beam, resonant motion occurs in the beam, which, in

turn, induces an electromotive force (EMF) at the output terminal.

Figure 2.4: Configuration of the electromagnetic resonators.

Electromagnetic beam resonators based on single crystal 3C-SiC films [16] and Si

[17] have been reported. Fig. 2.5 shows an SEM picture and frequency response

of a 3C-SiC resonator realized by Roukes et al. The beam under test is positioned

perpendicular to a strong magnetic field (1 to 8T) in vacuum at cryogenic temper-

atures. The natural frequency for clamped-clamped and free-free beam resonators

are 174 MHz and 178 MHz respectively and their quality factors are about 4,500

and 11,000 respectively.

Electromagnetic resonators showed a good scalability down to nano-scale. The elec-

tromechanical coupling factor in this case, is depend on the strength of magnetic

field. In order to get enough force to drive the beam, the beam must be placed in
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Figure 2.5: (a) SEM micrograph of SiC resonator, (b) frequency spectrum of free-free

beam resonator, and (c) frequency spectrum of clamped-clamped beam resonator

[16].

a strong magnetic field (larger than 1T) which must be generated by a supercon-

ducting solenoid. For this reason, the application of electromagnetic resonators in

bandpass filters for communication systems and related applications is not realistic

at this moment.

2.3 Piezoelectric Beam Resonators

A piezoelectrically operated resonator consists of a piezoelectric film sand-

wiched between two electrodes. The piezoelectric film develops a mechanical strain

when it is subject to an input voltage by reverse piezoelectric effect, thus perform-

ing the function of actuating the resonator; on the other hand, the piezoelectric film

generates au output electric voltage when it is subjected to an input mechanical
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strain by forward effect, thus sensing the vibration of the resonator.

Piezoelectric resonators based on ZnO [8, 9, 18], PZT [10], and AlN [11, 12] have

been reported. Fig. 2.6 shows configuration of a clamped-clamped beam piezoelec-

tric resonator reported by DeVoe [8]. A piezoelectric film (ZnO) is deposited on a Si

based elastic beam which is anchored to the substrate at each end. The piezoelectric

film provides input moment to drive the beam. On the other hand, the resulting

motion is sensed by the piezoelectric film on the other side of the beam. The top

electrode is clipped at the quarter length of the beam on both sides to realize a max-

imum driving moment at driving port, and maximum sensitivity at sensing port.

 

Anchor 
Substrate Piezoelectric 

film
Electrode

Figure 2.6: Schematic of a piezoelectric clamped-clamped beam resonator.

Clamped-clamped micromechanical resonators using ZnO as piezoelectric layer have

been reported with measured center frequencies ranging from 158 kHz to 1.18 MHz

and quality factors as high as 3,700 at lower frequencies [8], while resonators with

sol-gel PZT as the piezoelectric material have been realized with center frequencies
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up to 9.2 MHz and quality factors greater than 1,000 in vacuum and greater than

400 in air [10]. Resonators employing AlN as piezoelectric film showed resonance

frequencies above 80 MHz, and quality factors in excess of 20,000 [11]. Recently,

Pisano et al. reported ring-shaped piezoelectric resonators based on AlN film with

Qs of 2,900 for center frequency of 472.7 MHz in air [12], and Ayazi et al. have re-

ported length longitudinal resonators based on ZnO film deposited on SOI substrate

with a resonance frequency as high as 210 MHz with a Q of 4,100 under vacuum [9].

A summary of reported micromechanical resonators is presented in table 2.1.

Because piezoelectric resonators are designed to be driven by driving moment pro-

vided by piezoelectric material, piezoelectric resonators provide relatively strong

electromechanical coupling force at higher frequency range compared to electro-

static resonators. For instance, DeVoe [8] compared electromechanical coupling

factors between a piezoelectric resonators and a comb drive electrostatic resonator,

and found the coupling strength of the modeled piezoelectric resonator is an order

of magnitude larger than the comb drive case. By further comparison of electrome-

chanical coupling factor of piezoelectric resonators and parallel plate electrostatic

resonators with boundary condition of clamped-clamped case, it is shown that

ηpiezo

ηplate

∝ ω2
1 (2.1)

For this reason, bending-mode piezoelectric resonators features better scalability.

Also, the low driving voltage and linear relationship between driving voltage and

amplitude of vibration makes the piezoelectric resonator a good candidate for the
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future on chip band pass filter building elements.

However, the fabrication of piezoelectric resonators were normally not compatible

with standard IC fabrication process, and it was also hard to integrate traditional

piezoelectric material, including ZnO, PZT ceramics, AlN etc. to traditional IC

circuits. Also, the use of metal layers as electrodes limited their attainable quality

factors.

2.4 AlGaAs Resonators

The motivation behind this project is to develop piezoelectric micro resonators

for high-Q filter arrays with center frequencies in HF and VHF range, high quality

factors, low power consumption and motional resistance. The developed resonators

should have a good scalability to RF frequency range, and also should have capa-

bility of integration with IC circuits in the future.

In order to achieve the goals stated previously, single crystal Al0.3Ga0.7As films

grown on GaAs substrates by Molecular Beam Epitaxy (MBE) is chosen as con-

structing fabrication for the following reasons: first, the high quality of epitaxial

Al0.3Ga0.7As thin films may offer low internal loss, thus minimizing the energy loss

due to internal damping; second, thin film Al0.3Ga0.7As grown by well-characterized

epitaxial growth process is capable of nanometer patterning for future GHz range

resonators; third, moderate piezoelectric coupling factor of undoped of Al0.3Ga0.7As
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Table 2.1: Summary of recently-reported MEMS resonators.

Type Resonator mode fmax Q Material Ref.

electrostatic clamped-clamped 34.5 MHz NA poly Si [6]

free-free beam 92 MHz 8,000 (vacuum) poly Si [6]

contour mode 156 MHz 94,000 (vacuum) poly Si [15]

flexural disk 148 MHz 40,000 (vacuum) SOI [7]

electromagnetic free-free beam 174 MHz 11,000 (vacuum) 3C-SiC [16]

clamped-clamped 170 MHz 4,500 (vacuum) 3C-SiC [16]

clamped-clamped 70.7 MHz 20,000 (vacuum) SC Si [17]

piezoelectric clamped-clamped 1.18 MHz 930 (vacuum) ZnO [8]

clamped-clamped 9.2 MHz 1,000 (vacuum) PZT [10]

clamped-clamped 80 MHz 20,000 (vacuum) AlN [11]

longitudinal 210 MHz 4,100 (vacuum) ZnO [9]

contour mode 472.7 MHz 2,900 (air) AlN [12]

film is suitable of both excitation and sense of the resonator; third; the developed

resonators can be integrated into high-speed IC circuits in future; last not least,

conductivity of Al0.3Ga0.7As films can be changed by adding dopants during film

growth process, giving the possibility of replacing conventional high-loss amorphous

metal electrode layers with lattice matched single crystal electrode layers.
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Different mode resonators including clamped-clamped beam, cantilever beam, free-

free beam resonators, and bar resonators are investigated. The developed resonators

are characterized in air or under vacuum in order to minimize the effect of air damp-

ing. Optical characterization based on laser Doppler vibrometer (LDV) is conducted

on resonators with resonance frequencies lower than 2 MHz. For resonators with

center frequencies beyond this region, a customized sensing circuit is developed to

characterize these higher frequency resonators.
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Chapter 3

Fabrication

In this chapter, a general overview of III-V MEMS technology is given first,

followed by fabrication process of resonators developed in this project. Two different

fabrication processes based on different sacrificial etching are developed. Resonators

based on GaAs sacrificial etching are restricted to certain orientation due to the

anisotropic nature of the etching process. Those resonators based on Al0.7Ga0.3As

sacrificial etching can be placed in any direction because the wet etching process is

isotropic in this case.

3.1 III-V MEMS Summary

3.1.1 General Overview

Si (also including polysilicon, oxide, nitride, etc.) based MEMS are now well

understood and widely used in micro sensors and micro actuators. In addition to

this, gallium arsenide (GaAs) based MEMS offers some material-related and tech-

nological advantages over Si. Some well-known properties of GaAs include direct

band gap transition and high mobility of electrons [19]. GaAs is also a good mate-

rial for high temperature electronics due to its large band gap [19]. GaAs also has

piezoelectric properties comparable with those of quartz [19][20], and piezoresistive

characteristics with piezoresistive values higher than those of Si [19][23].
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Ever since the first report of GaAs integrated circuit in 1974, various III-V ma-

terial based devices including heterojunction bipolar transistors, stripe lasers and

vertical cavity surface emitting lasers, or VCSELs are developed [24]. GaAs thermal

based sensors including infrared sensors, themoconverters, gas-flow sensors are under

investigations [26]. GaAs pressure sensors based on piezoelectricity, piezoresistivity,

piezooptic and resonant tunneling diodes have been investigated in order to take ad-

vantage of GaAs intrinsic characteristics [19][27][23]. Another useful III-V material

is aluminum nitride. Surface acoustic wave (SAW) devices, thin-film bulk acoustic

resonators (TFBAR) [28][29] and solidly mounted resonators [28] based on thin film

AlN have been developed to take advantage of wide-band gap, high electrical resis-

tance, high breakdown voltage, and low dielectric loss characteristics of AlN. Other

reported micromechanical sensors in III-Vs include fiber optic accelerometers, ther-

mopile devices such as anemometers, and IR-sensors, and microwave effect sensors

[30].

3.1.2 Fabrication Techniques

A great number of micromachining techniques have been developed for III-V

MEMS micromachining, such as selective etch stops for hetero and homostructure of

varying electrical properties, sacrificial layer techniques with etch rate selectivities

up to 106 , and dry and wet etching for isotropic and anisotropic shaping [30]. Basi-

cally, the micromachining techniques are based on two factors. First is the selective
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characteristic etching of heterostructures and damaged layers, due to different etch

rates of GaAs and its alloys. Second is the unique profile presented by III-V com-

pounds (zinc blende crystals) when preferential etching solutions are applied [26].

For example, sacrificial etching of III-Vs is frequently used in lift-off epitaxy, and

etch free standing III-V based micro structures for fluidic self-assembly on a host

substrate [30].

Another important technology for III-V micromachining is heteroepitaxy. Het-

eroepitaxy of III-Vs provide a multitude of combinations of cubic alloys with Ga,

Al, and In as group-III elements; and As, P and Sb as group-V elements [30]. Com-

pounds with direct and indirect bandgaps are possible. Most epitaxy layers are

lattice matched to the substrates and for this reason, internal strain level is low.

Also, the thickness of each layer can be controlled very precisely (one or two mono-

layers), thus gives more precision in micromachining. For GaAs substrates, the

lattice matched alloy by far most commonly used is AlxGa1−xAs [25]. It is also

in this system that one may find most work and applications of sacrificial etching

[24]. For InP substrates, the most common lattice-matched alloys are the InGaAsP

quaternaries and their ternaries.

3.2 Fabrication Process Flows

The developed resonators in this project are based on single crystal AlxGa1−xAs

films grown on GaAs substrates by Molecular Beam Epitaxy (MBE). Sequential lay-
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ers of AlxGa1−xAs films with different Al more fraction and doping levels are grown

on 3-inch (100) GaAs substrates. Depending on sacrificial layers envolved, two dif-

ferent structures are developed.

3.2.1 GaAs as Sacrificial Layer

The constructing material in this case is undoped piezoelectric Al0.3Ga0.7As

layer sandwitched between two Si doped Al0.3Ga0.7As electrode layers. GaAs sub-

strate is etched at final step to release free standing structures.

The doping levels of Si in both the top and bottom electrode layers are on the

order of 1018 atoms/cm3. The typical measured resistivities of top and bottom

Al0.3Ga0.7As: Si are 0.05 ohm-cm and 0.07 ohm-cm respectively. The slightly higher

resistivity of bottom electrode layer is believed to be due to the Si redistribution

during epitaxial growth of the following Al0.3Ga0.7As and Al0.3Ga0.7As : Si layers.

The fabrication process consists of Inductively Coupled Plasma Reactive Ion Etch-

ing (ICP RIE) of Al0.3Ga0.7As layers, metalizaiton on conductive Al0.3Ga0.7As: Si

layers to ensure good ohmic contact, and selective wet etching of GaAs substrate to

release free standing structures. Fig. 3.1 gives schematics of cross sectional view of

fabrication process.

The first step is etching down to bottom Al0.3Ga0.7As: Si layers by ICP RIE to get
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access to the bottom Al0.3Ga0.7As electrode layer as well as to get rid of parasitic

capacitance. Metalization using a multilayer stack of Pd/Ge/Ni/Au (with thick-

ness of 50nm, 40nm, 20nm, 100nm, respectively) is performed on selected top and

bottom Al0.3Ga0.7As: Si electrode areas using a lift-off process, followed by rapid

thermal annealing at 380 ◦C for 30 sec to provide a good ohmic contact. Next,

regions of the top Al0.3Ga0.7As: Si layer are patterned by ICP RIE to define top

electrode geometries. The full Al0.3Ga0.7As stack layers are patterned by ICP RIE

to define the structural beam elements. Finally the patterned beams are released

by bulk wet etching of GaAs substrate. Since the beam is released by wet etching

process, the supercritical drying is required to prevent the beams from adhering to

the substrate due to capillary forces.

The use of ICP enables extremely high ion flux and at the same time, keep the

ion energy low to reduce surface damage. With optimized ICP etching process,

the resulting sidewalls are smooth and vertical. The etch selectivity among doped

and undoped Al0.3Ga0.7As and GaAs substrate is poor, therefore timed etching with

endpoint detection is required to accurately control etch stops. The anisotropic

nature of GaAs wet etching makes it impossible to release free standing structure

in <110> direction. Only structures oriented at 15◦ to 45◦ with respect to <110>

direction could be released using this technology. Fig. 3.2 gives SEM image of a

typical developed cantilever beam resonator with beam length of 60 µm. The island

structure due to anisotropic etching of GaAs substrate is clearly visible from the

figure. The resulting sidewalls of ICP etching is shown to be straight and smooth,
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rendering nanoscale resonator fabrication capability with this fabrication process.

The round curves on the edge of the beam, and the anchor points are due to the

poor quality of employed mask and low resolution from contact lithogrphy process.

The future patterning of beam structures with projection lithograpy process and

thin photoresist should be able to overcome this problem.

In addition to ICP RIE , focused ion-beam (FIB) milling is used to etch Al0.3Ga0.7As

layers. Although not as effective as ICP RIE, the FIB process provides the potential

to realize nano-scale piezoelectric Al0.3Ga0.7As resonators for ultra-high frequency

applications for future work. Fig. 3.3 shows the SEM image of a typical beam

structure fabricated by FIB/GaAs wet etching release method. The constructing

three different doping levels of Al0.3Ga0.7As layers are clearly visible. The resulting

sidewalls in this case is also clean and smooth. One important thing in FIB fabri-

cation is the redepotion of etched material on the sidewalls which will potentially

lead to short circuit and lower the attainable quality factor. One can partly solve

this problem by lowering ion current level for etching, and using gas assisted FIB

etching.

3.2.2 Al0.7Ga0.3As as Sacrificial Layer

In order to get free standing structures in <110> direction where the maxi-

mum electromechanical coupling factor lies, resonator fabrication process based on

sacrificial wet etching of Al0.7Ga0.3As has been developed.
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The typical starting material from substrate is 0.5 µm Al0.3Ga0.7As as etch stop

layer, 2 µm Al0.7Ga0.3As as sacrificial layer, followed by Si doped Al0.3Ga0.7As lay-

ers as bottom electrode layer, piezoelectric Al0.3Ga0.7As layer, and again Si doped

Al0.3Ga0.7As as top electrode layer. The fabrication step is similar to the case

of GaAs as sacrificial layer, except for the final release step. In this case, the

free standing structures are obtained by selective etching between Al0.7Ga0.3As and

Al0.3Ga0.7As. The sacrificial etching of Al0.7Ga0.3As is isotropic. Therefore, struc-

tures in any orientation can be released. Fig. 3.4 gives the schematics of fabrication

process. Fig. 3.5 gives the SEM image of a 200 µm long clamped-clamped beam

after release.
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Figure 3.1: Fabrication process of resonators by GaAs sacrificial etching.
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Figure 3.2: SEM image of a fabricated clamped-clamped beam resonator.

Figure 3.3: SEM picture of a beam fabricated by FIB/Wet etching release.
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Figure 3.4: Fabrication process of resonators by Al0.7Ga0.3As sacrificial etching.
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Figure 3.5: SEM image of fabricated clamped-clamped beam resonator.
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Chapter 4

Design and Modeling of Al0.3Ga0.7As Microresonators

The use of Al0.3Ga0.7As as a piezoelectric material has received little atten-

tion in the literature. Thus, before designing and fabricating Al0.3Ga0.7As based

resonators, the piezoelectric properties of Al0.3Ga0.7As were first evaluated to in-

vestigate the potential actuation and sensing modes, and effectiveness with respect

to resonator orientation. Next, flexural mode resonators with various boundary

conditions such as cantilever beam, clamped-clamped beam, and free-free beam res-

onators are analyzed and compared to simulated results obtained from finite element

analysis. Finally, in-plane length-extensional mode resonators are introduced and

their resonance frequencies and mode shapes are predicted by analytical mode and

finite element analysis.

4.1 Piezoelectric Properties of Al0.3Ga0.7As

Piezoelectric materials generate an output voltage when subject to an input

mechanical stress through the direct piezoelectric effect. Similarly, the material

develops an output mechanical stress when an input electric voltage is applied across

its surfaces by the converse piezoelectric effect. The linear constitutive relations

between mechanical and electrical parameters are given by

S1 = sE
11T1 + d31E3 (4.1)

29



D3 = d31T1 + εT
33E3 (4.2)

where T1 and S1 are the mechanical stress and strain in x-axis respectively, E3 and

D3 are electric field and electric displacement in the z-axis, sE
11 is the mechanical

compliance at constant electric field, d31 is the piezoelectric linear coupling coeffi-

cient describing the relationship between electric field in the z-axis and strain in the

x-axis, and εT
33 is the permittivity of the piezoelectric element at constant stress.

For a (100) GaAs wafer, let the direction normal to (100) surface be the x3 axis, let

the [01̄1] direction be the x1 axis (φ=0), and let φ be a rotation of the coordination

system around the x3 axis. This gives [20]

dik(φ) =
d14

2



0 0 0 2a2 −2b2 0

0 0 0 2b2 −2a2 0

−b2 b2 0 0 0 2a2


(4.3)

where −d14 = 2.69±1.13x pC/N for AlxGa1−xAs, and a2 = sin 2φ , and b2 = cos 2φ.

For the materials used in this project, the most natural way of applying an electric

field is across the thickness of piezoelectric film, i.e., x3 axis. For this reason, d3k

is the main parameter of concern. From the tensor form of dik, it is obvious that

by adding voltage between top and bottom electrode layers, one can activate the

flexural, longitudinal, as well as face shear mode vibration piezoelectrically. The

electromechanical coupling factor d31 is shown in Fig. 4.1 to show the actuation

effectiveness in each direction. Transduction is most efficient when the beam is

along a 〈110〉 direction, i.e. φ = nπ
2 , while there will be no transduction in the

〈100〉 direction, i.e. φ = nπ
2 + π

4 .
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Figure 4.1: Theoretical d31 values of Al0.3Ga0.7As.

4.2 Al0.3Ga0.7As Flexural Mode Resonators

Flexural vibration of resonators are widely used for low frequency resonators

because they are relatively easy to implement and also can give a relatively large

amplitude of vibration. To date, clamped-clamped beam resonators have been ex-

tensively exploited due to the relative ease of fabrication and ability to attain large

frequency with same geometry compared to other beam designs such as cantilever

beam resonators. However, for the case of clamped-clamped beam designs, larger

stiffness often comes at the cost of increased anchor dissipation and, for this reason,

lower resonator Q. As the beam dimension shrinks, i.e., when target frequency goes

higher, this restriction limits the application of clamped-clamped resonators in filter
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implementation area.

The free-free beam configuration offers as an alternative to clamped-clamped beam

resonators at high frequency. Instead of anchoring the two ends of the resonator

to the substrate directly like in clamped-clamped beam design, the free-free beam

is supported by support beams at its node points, and the effects of energy loss

throught the anchors are greatly suppressed. The support beams can operate in

different modes, such as torsional or flexural modes. The mechanical impedance of

the system is minimum when the resonance frequency of designed free-free beam

matches with that of support beams, leading to maximum attainable Q factors.

4.2.1 Analytical Model of Flexural Mode Resonators

Consider a viscously damped beam resonator vibrating in the flexural mode

with small transverse movements. When the beam is subject to an axial force of

N , and a driving load of P (x, t), the partial differential equation for flexural mode

vibration of the beam is in the following form [21]

EI
∂4v(x, t)

∂x4
−N

∂2v(x, t)

∂x2
+ ρA

∂2v(x, t)

∂t2
+ c

∂v(x, t)

∂t
= P (x, t) (4.4)

where v(x, t) is the transverse deflection of the beam, E the Young’s modulus, I

the moment of inertia, c the viscous damping parameter, ρ the density of the beam

and A the cross-sectional area of the beam. By assuming that separation of space

and time coordinates is possible, the resonance frequencies for beams with different
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boundary conditions can be calculated by

fi =
λ2

i

2πL2

√√√√Et2

12ρ
(4.5)

where λi is a function of boundary conditions, t is the thickness of the beam, L is

the length of beam.

Material properties of Al0.3Ga0.7As resonators are listed in table 4.1 [25]. The res-

onators are all in the plane of {100} in this work. In order to extract the theoretical

resonance frequencies of resonators at different orientation, the Young’s modulus in

{100} need to be calculated first. The Young’s modulus is given by [22]

1

E
= S11 − 2(S11 − S12 −

1

2
S44)[cos2(φ) sin2(φ) + 1] (4.6)

Where φ is the angle respect to 〈110〉 direction. Based on this equation, the Young’s

modulus in {100} plane is shown in Fig. 4.2. Listed in Fig. 4.3 is the calculated

resonance frequency of flexural mode beam resonators in 〈110〉 direction with dif-

ferent beam lengths assuming the constructing materials of 2 µm Al0.3Ga0.7As: Si

as bottom electrode layer, 1 µm Al0.3Ga0.7As as piezoelectric layer, and 0.5 µm

Al0.3Ga0.7As: Si as top electrode layer.

4.2.2 Finite Element Analysis of Flexural Mode Beam Resonators

Finite element analysis of flexural mode beam resonators was conducted to

verify the analytical models using ANSYS 5.7.1. To simplify the problem, a 2-

dimensional analysis was conducted for different boundary condition problems. The
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Figure 4.2: Young’s modulus of Al0.3Ga0.7As in {100} plane.

plot shown in Fig. 4.4 shows excellent agreement between analytical model and

ANSYS simulation results for all designs. The increased error between two methods

at small beam length scale results from the failure of Euler-Bernoulli beam theory.

To further verify the result of ANSYS simulation, the mode shape of each boundary

condition case is extracted. Fig. 4.5–Fig. 4.7 show the simulated mode shapes of

cantilever, clamped-clamped, and free-free beams, respectively.
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Table 4.1: Material properties of Al0.3Ga0.7As.

Elastic stiffness constant Cij C11 = 119.22 GPa

C12 = 54.76 GPa

C44 = 59.25 GPa

Elastic compliance constant Sij S11 = 1.179×10−11 /Pa

S12 = 0.376×10−11 /Pa

S44 = 1.686×10−11 /Pa

Density 4.88× 103 kg/m3

Thermal expansion coefficient αth 6.04× 10−6/◦C

Dielectric constant ε 10.071
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Figure 4.3: Resonance frequencies of flexural mode resonators.

36



0 100 200 300 400-4

-2

0

2

4

6

8

10

Beam length (µm)

Fr
eq

ue
nc

y 
er

ro
r (

%
)

Cantilever beam
C-C beam
F-F beam

Figure 4.4: Frequency error between analytical model and ANSYS simulation.

Figure 4.5: First mode shape of 400 µm long cantilever beam.
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Figure 4.6: First mode shape of 400 µm long clamped-clamped beam.

Figure 4.7: First mode shape of 400 µm long free-free beam.

38



4.3 In-Plane Length-Extensional Mode Resonators

Flexural mode resonators are relatively easy to implement and also can give a

relatively high degree of vibration. The large amplitude of vibration will also result

in a large degree of air damping if the flexural mode resonators are not operated

under vacuum conditions. Also, the large degree of displacement in flexural mode

resonators can result in nonlinear behavior which will limit the applicable driving

voltage. For these reasons, flexural beam resonators must be placed in vacuum to

achieve high quality factors, and the input voltage must be restricted to avoid non-

linearities, thereby reducing the achievable power handling.

In order to avoid the problem encountered by flexural mode resonators, in-plane

length extensional mode resonators (bar resonators) were also developed in this

work. The combination of small displacements, and shear damping mechanism in

bar resonators (in contrast to squeeze film damping mechanism in flexural mode

resonators) are expected to result in resonators with high attainable quality factors

even in atmospheric pressure. Therefore, vacuum packaging of extensional mode

resonators may not be necessary.

Consider an elastic bar of length L with uniform cross-sectional area of A. If f(x, t)

denotes the external force per unit length, u(x, t) denotes the axial displacement,

then the equation of motion for the forced longitudinal vibration of the bar can be
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expressed as [21]

EA
∂2u

∂x2
(x, t) + f(x, t) = ρA

∂2u

∂t2
(x, t) (4.7)

The definition of E and ρ is the same as flexural mode resonators. Again, by

assuming that separation of space and time coordinates is possible, the resonance

frequency and mode shape can be extracted. Specifically, for bars with free-free

boundary conditions, the resonance frequencies are given by

fn =
n

L

√
E

ρ
(4.8)

From this equation, it is clear that resonance frequency of bar resonators only de-

pends on material properties and length of the beam structure. The immunity of

resonance frequency to beam width and thickness is amenable to the control of res-

onance frequency in fabrication process. In order to verify the analytical model,

ANSYS simulation of free-free bar resonators was conducted. Fig. 4.8 gives the

comparison of theoretical and ANSYS simulated resonance frequencies of bar res-

onators. The deviation between theoretical and simulated results is less than 2%

over the full range of frequencies. From the analytical model, the modal shape of

bar resonators can be extracted. Fig. 4.9 and 4.10 gives the normalized 1st and 3rd

mode shape together with corresponding strain. For reference, Fig. 4.11 and Fig.

4.12 gives the mode shape of a 400 µm long free-free bar resonator at 1st and 3rd

resonance frequencies simulated by ANSYS.
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Figure 4.9: Displacement and strain of the resonator at 1st extensional mode.
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Figure 4.10: Displacement and strain of the resonator at 3rd extensional mode.
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Figure 4.11: ANSYS simulated 1st mode shape of a 400 µm f-f bar resonator.

Figure 4.12: ANSYS simulated 3rd mode shape of a 400 µm f-f bar resonator.
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Fig. 4.13 shows a schematic of a length extensional mode free-free bar res-

onator. The resonator is supported at its center points by two support tethers.

It is clear from the figure that all odd number of modes can be excited from the

configuration given in Fig. 4.13. However, since the top electrode covers the full

bar surface, the higher order vibration modes will produce an attenuated output

because the charge output in different areas will partially cancel each other.

 
 
 

Figure 4.13: Schematics of length extensional mode resonators.

In order to avoid the flexural mode vibration, the top and bottom Al0.3Ga0.7As: Si

layers have the same thickness, making the central line of piezoelectric layer coin-

cide with the neutral line of the whole structure. A typical thickness configuration

is 0.5 µm Al0.3Ga0.7As: Si as the bottom electrode layer, 4 µm Al0.3Ga0.7As as the

piezoelectric layer, and 0.5 µm Al0.3Ga0.7As: Si as the top electrode layer.
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Chapter 5

Characterization Approaches

In this chapter, the experimental apparatus and characterization methods used

for measuring the performance of fabricated piezoelectric resonators are presented.

Two different methods, i.e. optical characterization and electrical characterization,

are developed. Optical characterization based on laser Doppler vibrometry is suit-

able for flexural mode resonators with a frequency range of 2 MHz or below. For

devices with higher center frequencies or in-plane vibration modes, direct electri-

cal characterization is necessary. Three different configurations, namely electrical

impedance analysis, charge amplification, and self sensing circuits were evaluated.

Based on the unique properties of piezoelectric resonators developed in this project,

a self sensing circuit topology was chosen to perform electrical characterization of

fabricated resonators.

5.1 Optical Characterization by LDV

An optical measurement method, consisted of a single point laser Doppler vi-

brometer (LDV) mounted on a high magnification probe station and connected to a

network analyzer (HP 4395A) was employed to characterize low frequency flexural

mode resonators. The schematic setup for optical measurement is shown in Fig. 5.1.
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Figure 5.1: Schematics of optical measurement setup.

Figure 5.2: Schematics of LDV[32].

The key element in this setup is the LDV. which is an optical instrument employing

laser interferometry to perform non-contact displacement and velocity measurement.

The schematics of LDV is shown in Fig. 5.2.

Besides the merit of non-contact measurements, optical measurement based on LDV

is also not affected by properties of the test surface and environmental conditions

such as temperature or pressure. One important factor of LDV measurement is that
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it is electrically inert and do not introduce mechanical artifacts. For this reason,

one can easily determine whether the observed behavior is purely mechanical, purely

electrical, or inherently electro-mechanical [31]. For flexural resonators with reso-

nance frequencies smaller than 2 MHz, optical characterization yields stable results

with high sensitivity.

The LDV employed in this work is OFV-511 fiber optic single point LDV from Poly-

tec PI. This LDV is easy to work with probe station with integrated C-mount. The

LDV is equipped with velocity and displacement decoder, and can provide output

voltage proportional to either the displacement or the velocity of the vibration of the

target. For the resonators developed in this work, the frequency range is normally

beyond the frequency range of displacement decoder even for those low frequency

resonators. Also, the vibration amplitude is often in the range of nanometer scale.

For this reason, velocity output is often used instead of displacement output.

5.2 Electrical Characterization

Although, optical characterization showed a high resolution and stable results

over frequency range up to 2 MHz, in order to characterize higher resonance fre-

quency flexural mode resonators or non-flexural mode resonators, a true electrical

characterization method must be explored.
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5.2.1 Electrical Equivalent Circuit of Al0.3Ga0.7As Resonators

Interfacing Piezo Film to Electronics

The first step of an interface circuit design is to understand the piezo film as

a part of an electrical circuit. Fig. 5.3 shows a simplified equivalent circuit of piezo

Figure 5.3: Simplified equivalent circuits of piezo film.

film. It consists of a series capacitance with a voltage source. The series capacitance

represents piezo film capacitance, which is proportional to the active electrode area

A and inversely proportional to the film thickness d and can be calculated by the

following equation:

Cf =
εrε0A

d
(5.1)

Where εr is relative permittivity of the piezoelectric film. The voltage source am-

plitude is equal to the open circuit voltage of piezo film and inversely proportional

to the piezo film capacitance. This simplified equivalent circuit is suitable for most

applications but is of limited value for very high frequency applications.
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Butterworth-Van Dyke-Dye’s Model for Piezoelectric Resonators

The simplified equivalent circuit of piezo film is of limited use for the res-

onators near the resonance frequency. Instead, Butterworth-Van Dyke-Dye’s model

is used to develop electrical equivalent circuit of Al0.3Ga0.7As resonators.

Rf Cf

C1

R1

C2

R2

L1 L2 L3

C3

R3

Figure 5.4: Equivalent circuits of resonators.

Fig. 5.4 shows the equivalent circuit of piezoelectric resonators. In this model, Rf

and Cf represent the resistance and capacitance of piezo film. Each RnCnLn branch

represents mechanical behavior of the resonator close to nth resonance frequency.

Assuming pure second-order system behavior from a given resonance mode, the con-

ductance between output current I2 and input voltage V1 near the modal resonance

can be written as:

I2(jω)

V1(jω)
= (jω)

1

Mω2
i (1− (ω/ωi)2 + j(ω/ωi)(1/Q))

η2 (5.2)
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Where M, Q, and ωi are generalized mass, quality factor, and resonane frequency

of the ith mode respectively. By comparing this conductance with the conductance

of R1L1C1 branch which is given in eq. (5.3), one can obtain the values of circuit

elements as

Y1(jω) =
jωC1

1− ω2L1C1 + jωR1C1

(5.3)

C1 =
η2

K
(5.4)

R1 =

√
KM

Qη2
(5.5)

L1 =
M

η2
(5.6)

Here η stands for the electromechanical coupling factor, K stands for modal stiffness

and can be calculated as

η =
I(jω)

jωX(jω)
(5.7)

K = Mω2
1 (5.8)

Where I(jω) and X(jω) is output current and modal displacement of the resonator

respectively.

5.2.2 Impedance Analysis

The impedance change of piezoelectric resonators near resonance frequencies

can act as a characteristic method for resonators. From equivalent circuit of piezo-

electric resonators, the theoretical impedance curve for resonators near resonance

frequencies can be obtained. Taking a 200 µm long 20 µm wide bar resonator

with constructing material of 0.5 µm/ 4 µm/ 0.5 µm as an example, the simulated
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Figure 5.5: Theoretical impedance curve of a 200µm long bar resonator.

impedance curve near first resonance frequency is shown in Fig. 5.5. Two different

measurement methods, namely RF I–V method and network analysis method is

available for impedance measurement of developed resonators.

The network analysis method measures the reflection coefficient value of the un-

known device and calculate the impedance of unknown device from the following

equation:

Zx = Z0
1− Γx

1 + Γx

(−1 ≤ Γ ≤ 1) (5.9)
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Where, Z0 is the characteristic impedance of the measurement circuit (in this case,

Z0 = 50Ω), and Zx is impedance of unknown device. The measured value of Γx

varies from -1 to +1 according tho the impedance value Zx. If Zx equals Z0, there

is no reflection, i.e., Γx = 0, if the unknown device is open or short circuit, the

reflection coefficient is -1 or +1 respectively. The highest accuracy of impedance

measurement is obtained when when Zx equals Z0. The accuracy of impedance

measurement is decreased when Zx is away from Z0.

In contrast, the principle of RF I–V method is based on linear relationship between

voltage and current. For this reason, the theoretical impedance measurement sensi-

tivity is constant, regardless of measured impedance. Taking a resistive impedance

as an example, the impedance measurement sensitivity of both methods is shown in

Fig. 5.6. The simplified diagram for RF I–V method is given at Fig. 5.7. Compared

to network analysis measurement method, RF I–V measurement provides better ac-

curacy and wider impedance range.

Although, the impedance measurement method is straightforward and easy to im-

plement, the impedance accuracy provided by Impedance analyzer is from 2 Ω to

5 kΩ. The estimated impedance of fabricated resonator near resonance frequency

is beyond this range. Therefore, impedance measurement can not be used as a

characterizing method in this project.
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Figure 5.6: Impedance sensitivity of both methods.

5.2.3 Charge Amplifier

Charge amplifier produce an output voltage that is proportional to the charge

input. Fig. 5.8 shows an equivalent circuit for a piezoelectric resonator connected

to a charge amplifier. Where

Qr = Charge generated by piezoelectric film

Rr = Resistance or resonator

Cr = Capacitance of resonator

Rf = Feedback resistance

Cf = Freedback capacitance

Vout = Voltage output of the charge amplifier
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Figure 5.7: Block diagram of RF I–V method [35].

The output voltage is dependent on the ratio of the input charge to the feedback

capacitance as shown in Equation (5.10). Note that the capacitance due to the

sensor, cable, and amplifier do not affect the system sensitivity, major advantage of

charge amplifier.

Vout =
Qr

Cf

(5.10)

Although, the cable capacitance does not affect the system sensitivity, low noise,

shielded cable should be used to reduce charge generated by cable motion and to

reduce electrical noise induced by RFI and EMI.

The high cutoff frequency of charge amplifier must be set to higher than resonance
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Figure 5.8: Schematics of charge amplifier circuit.

frequency of resonator and is defined by the following equation.

fh = GB × Cf

Cr

(5.11)

For the resonators developed in this project, the moderate electromechanical cou-

pling factor together with the parasitic capacitance will prohibit us from getting

a good signal out of charge amplifier. A typical output from the charge amplifier

connected with a clamped–clamped beam resonator is shown in Fig. 5.9.

5.2.4 Self-Sensing Circuit [36]

Fig. 5.10 shows schematics of the so called self-sensing actuator (SSA) circuit.

In this figure, Cp represents the capacitance of piezoelectric film, and voltage Vp

represents the voltage output generated from the strain of the beam. When Cm = Cp

, we can get

V1 − V2 =
Cp

Cp + Cr

Vp (5.12)
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Figure 5.9: Output of charge amplifier connected to a 120 µm C–C beam.

For the initial implementation, the capacitors used in SSA are all discrete devices. In

order to get an exact matching of capacitance in eq. (5.12), the capacitor Cm in Fig.

5.10 is fabricated on chip with similar geometrical size to the measured resonator

to have a better control over the capacitance values. In self sensing circuit, the

piezoelectric film is performing dual function of sensing and actuation. Self-sensing

circuit can be used to characterize one port resonators such as cantilever resonators

or one port longitudinal bar resonators. With the self sensing circuit design, the

problems associated with parasitic capacitance can be alleviated to some extent.

Therefore, the self-sensing circuit was chosen as the primary electrical characteriza-

tion method in this project.
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Figure 5.10: Schematics of self-sensing circuit.

In order to accommodate the impedance mismatch due to variations between each

component in the self-sensing circuit, a potentiometer is used as one of the feedback

resistors in the following differential amplifier. The schematic of the differential

voltage amplifier is shown in Fig. 5.11. The selected operational amplifier (AD8138

from Analog Devices) features a large input impedance with high common-mode

rejection ratio (CMRR) for best performance of the circuit. Fig. 5.12 gives the

frequency response of the self sensing circuit with a 3 dB bandwidth of around 70

MHz. The effect of impedance mismatch is clearly shown in Fig. 5.13 for the case

of testing a 200 µm long bar resonator.
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Figure 5.12: Frequency response of self sensing circuit.
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Chapter 6

Unimorph Flexural Mode Resonator Characterization Results

In this chapter, the results from developed flexural mode resonators are pre-

sented. First, the d31 values of Al0.3Ga0.7As in different orientations are calculated by

quasi-static deflection measurement of cantilever beam and resonance curve match-

ing of clamped-clamped beam. Both results showed good matching to theoretical

predictions. Next, measurement results of cantilever beam, clamped-clamped beam,

and free-free beam resonators including resonance frequency, quality factors, linear-

ity, and temperature stability are provided.

6.1 Extraction of Al0.3Ga0.7As Film d31 Values from Low Frequency

Resonators

Although, the d31 values for bulk Al0.3Ga0.7As material has been reported,

the d31 values of thin film Al0.3Ga0.7As at different orientations are still remained a

question. The quasi-static and dynamic response of developed low frequency flexural

mode resonators provided a method of characterizing d31 values in different angles.

6.1.1 d31 Values from Quasi-Static Measurement

The quasi-static deflections of cantilever beams have been investigated in or-

der to extract the d31 values at different orientations. The calculation of d31 values
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was performed from measured quasi-static deflections of cantilever beams combined

with an analytic model for the quasi-static response of multilayer piezoelectric mi-

croactuators [34]. Consider a uniform width cantilever beam consisted of m different

layers. By employing the principle of static equilibrium and strain compatibility,

the deflection of the cantilever beam as a function of distance from the anchor point

x can be computed as

δ(x) =
x2

2r
= x2

[
d31DA−1C

2−DA−1B

]
(6.1)

Where r stands for radius of curvature, A, B, C, D are matrices and can be

expressed as

A =



1
A1E1

−1
A2E2

0 · · · 0

0 1
A2E2

−1
A3E3

0 · · ·

· · · 0 · · · · · · 0

0 · · · 0 1
Am−1Em−1

−1
AmEm

1 1 · · · 1 1



(6.2)

B =



t1 + t2

t2 + t3

· · ·

tm−1 + tm

0



(6.3)
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C =



E2 − E1

E3 − E2

· · ·

Em − Em−1

0



(6.4)

D =
1

m∑
i=1

EiIi

[(
t1
2

)(
t1 +

t2
2

)
· · ·

(
m−1∑
i=1

ti +
tm
2

)]
(6.5)

Where Ai, Ei, ti, Ii is cross sectional area, Young’s modulus, thickness and moment

of inertia of ith layer, and Ei is the electrical field applied to ith layer. A sinusoical

voltage signal with a fixed frequency is generated by a function generator and added

to the electrode layers of cantilevers to stimulate quasi-static vibration of the can-

tilevers. The displacement at the tip of cantilevers are measured by LDV and used

to calculate the d31 factors of piezoelectric Al0.3Ga0.7As film.

6.1.2 d31 Values from Resonance Matching

Another approach conducted to extract d31 values of Al0.3Ga0.7As film is

resonance matching. In this method, d31 values are calculated by matching the

measured resonance curves of resonators with the theoretical predictions. For the

works presented here, the resonators used is clamped-clamped beam resonators with

constructing material of 2 µm Al0.3Ga0.7As: Si as bottom electrode layer, 1 µm

Al0.3Ga0.7As as piezoelectric layer, and 0.5 µm Al0.3Ga0.7As: Si as top electrode

layer. The top electrode is clipped at quarter length of the beam on both sides to

get a maximum driving moment. The clamped-clamped beams are oriented from
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15◦ to 45◦ with respect to 〈110〉 direction per the restriction imposed by GaAs sac-

rificial wet etching release step. The output from the LDV is proportional to the

velocity of the beam vibration. The transfer function between the driving voltage

V1 and the output voltage from LDV V2 is given by [8]

T (jω) =
V 2(jω)

V 1(jω)
= kjω

Z(jω)

V 1(jω)
(6.6)

Where k is the sensitivity of LDV, Z(jω) is generalized beam displacement. If we

denote F (jω) as the mechanical force, then the transfer function can be expressed

as

T (jω) = kjω
Z(jω)

F (jω)

F (jω)

V 1(jω)
(6.7)

The fist term in eq. (6.7) is the term describing the force–displacement transfer

function of the clamped-clamped beam. By assuming linear second order behavior,

this term can be written as

Z(jω)

F (jω)
=

1

Mω2
1 [1− (ω/ω1)2 + j(ω/ω1)(1/Q)]

(6.8)

Where M, Q, and ω1 are generalized mass, quality factor, and resonance frequency

respectively. Assuming a clamped-clamped beam with dimension of length L, width

b, thickness h, the generalized mass M can be calculated as

M =
∫ L

0
ρbhφ2(x)dx ∼= 1.036ρbhL (6.9)

Where ρ is material density, and φ(x) is the mode shape function for clamped-

clamped beam, and can be expressed as

φ(x) = sinh(βx)− sin(βx) + α[cosh(βx)− cos(βx)] (6.10)
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In eq. (6.10), βL and α are constants for clamped-clamped beam and are given by

βL = 4.73 and α = −1.018 for the first resonance mode.

The second term in eq. (6.7) is electromechanical coupling factor for the drive

electrode and can be calculated as [8]

F (jω)

V 1(jω)
=

d31Ehe

2

∫ l

0
b
′′

1(x)φ(x)dx (6.11)

Where E is Young’s modulus, he is the distance between the center plane of piezo-

electric layer and neutral axis of the beam. For the case of quarter length clipped

clamped-clamped beam, the following equation stands.

∫ l

0
b
′′

1(x)φ(x)dx =
−4.92b

L
(6.12)

Therefore, the second term in eq. (6.7) can be written as

F (jω)

V 1(jω)
=
−2.46d31Eheb

L
(6.13)

The overall transfer function T (jω) becomes

T (jω) =
−jωkd31Eheb/L

Mω2
1 [1− (ω/ω1)2 + j(ω/ω1)(1/Q)]

(6.14)

The value of ω1 and Q can be obtained by measurement, other parameters except

for d31 are known. Therefore, by comparing the theoretical resonance curve with the

measured curve, one can obtain the electromechanical coupling factor, in this case

d31. As an example, Fig. 6.1 gives the frequency response of optical measurement

and matched curve.
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Figure 6.1: Theoretical and measured frequency response of a 400 µm long c-c beam.

6.1.3 d31 Measurement Results

Fig. 6.2 summarizes the theoretical and measured d31 values at different ori-

entations by both methods. Although slightly different from theoretical predictions,

the measured values compare favorably with the theoretical bulk value.
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Figure 6.2: d31 values at different orientations.
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6.2 Unimorph Cantilever Beam Resonators

Low frequency unimorph flexural mode cantilever resonators are developed

with constructing material of 0.5 µm Al0.3Ga0.7As: Si/ 1 µm Al0.3Ga0.7As/ 2 µm

Al0.3Ga0.7As: Si. The developed cantilever resonators have resonance frequencies

smaller than 2 MHz. Therefore, optical characterization is conducted for the mea-

surement task.

6.2.1 Resonance Frequency

The resonance frequency of cantilever resonators are measured by LDV com-

bined with network analyzer and compared with theoretical predictions. Fig. 6.3

gives the results of measured resonance frequencies of cantilevers at atmospheric

pressure in comparison with theoretical values.

In general, the measured resonance frequencies showed a good matching to theoret-

ical predictions for those beams with length larger than 100 µm. For those beams

with smaller lengths, the discrepancy between measured values and theory can be

explained by the failure of Euler-Bernoulli beam equation.

6.2.2 Dynamic Response

The dynamic responses of cantilever resonators are measured by LDV. Fig.

6.4 gives the frequency response of a 100 µm long cantilever beam resonator at at-

mospheric pressure near the resonance frequency. In comparison, Fig. 6.5 gives the
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Figure 6.3: Theoretical and experimental resonance frequencies of cantilever beams.

measured dynamic response of the same resonator at vacuum to exclude the effect

of air damping. As evident from the figures, the resonance displacement amplitude

at vacuum is about 6.5 times of that in 1 atm, and quality factor showed an increase

from 105 at 1 atm to 2,064 in vacuum.

The quality factors of developed cantilever beam resonators have been measured and

results are shown in Fig. 6.6. At atmospheric pressure, air damping is a dominant

factor defining attainable quality factor. From the figure it is clear that at atmo-

spheric pressure, the quality factor is linear with center frequency of the resonators.

At vacuum level of 1.7 × 10−4, the effect of air damping is negligible compared to
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Figure 6.4: Frequency response of a 100 µm long cantilever beam at 1 atm.

thermoelastic damping and anchor loss. For this reason, at this vacuum level the

quality factors did not show a dependence on center frequencies.

Because the attainable quality factors of cantilever resonators at atmospheric pres-

sure are low, they must be operated in vacuum in order to achieve high enough

quality factors. The packaging requirement makes the application of cantilever res-

onators to filter industry less friendly.

69



298.2 298.4 298.6 298.8 299 299.2 299.4
-200

-100

0

100

Frequency (kHz)

P
ha

se
 (d

eg
)

298.2 298.4 298.6 298.8 299 299.2 299.4
2

4

6

8 x 10-7

Frequency (kHz)

D
is

pl
ac

em
en

t (
m

/V
) L=100 µm

 Q=2644

Figure 6.5: Frequency response of a 100 µm long cantilever beam in vacuum.

6.2.3 Linearity

To test working voltage range for the low frequency cantilever beam resonators,

the output linearity of fabricated cantilever beam resonators has also been explored.

For example, as shown in Fig. 6.7, a 100 µm cantilever beam with a resonance

frequency of 298.65 kHz is driven at different driving voltage levels with a quasi-

static frequency fixed to 10 kHz in this case. The displacement at the tip of the

cantilever beam is measured at 1 atm by LDV. The measured result suggested a

good linearity up to 1.5 Vp−p inputs. At increased voltages, the beam started to
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Figure 6.6: Quality factor vs. 1st mode resonance frequency for fabricated cantilever

beam resonators.

show nonlinearity. It is clear from this experiment, the driving voltage for these low

frequency cantilever beam resonators should be restricted to 1.5 Vp−p or under. In

comparison, Fig. 6.8 gives the displacement of the same beam driven at resonance

frequency. Compared to quasi-static frequency activation, the displacement is 2

orders of magnitude higher. But the linear range is remained to 1.5 Vp−p or under.
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Figure 6.7: Quasistatic displacement vs. driving signal for a 100 µm long cantilever

beam.

6.2.4 Temperature Stability of resonance frequency

The temperature stability of resonance frequency is inspected. Fig. 6.9 gives

the resonance frequency of a 100 µm long cantilever beam resonator at different

temperature levels. The temperature is controlled by heating the wafer chuck hold-

ing the cantilever beam chip. The measurement result gives a TCF value of -53.9

ppm/◦C.

In order to analyze the temperature dependence of resonance frequency, the theo-
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retical resonance frequency of cantilever beam resonators are rewritten in eq. 6.15.

f =
1.87312t

2πL2

√
E

12ρ
(6.15)

The temperature dependence of resonance frequency is determined by the temper-

ature dependence of E, ρ, t, L as given by eq. 6.16.

∂f

∂T
=

∂f

∂t

∂t

∂T
+

∂f

∂L

∂L

∂T
+

∂f

∂E

∂E

∂T
+

∂f

∂ρ

∂ρ

∂T
(6.16)

The temperature dependency of t, L, ρ is shown in the following equations.

∂t

∂T
= αTf × t (6.17)

∂L

∂T
= αTf × L (6.18)
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Figure 6.9: Resonance frequency of a 100 µm cantilever beam as a function of

temperature.

∂ρ

∂T
= −3αTf × ρ (6.19)

Where αTf is thermal expansion coefficients of Al0.3Ga0.7As) and have value of

6.04× 10−6/◦C. Finally, eq. 6.20 can be obtained.

∂f/∂T

f
=

1

2

∂E

∂T

1

E
+

1

2
αTf (6.20)

The dependence of Young’s modulus on temperature is not reported. Actually, the

measurement of resonance frequency of cantilever beam resonators at different tem-

peratures provides a method of extracting the temperature dependence of Young’s
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modulus on temperature, which from the measurement suggested the following value

for Al0.3Ga0.7As.

∂E

∂T

1

E
= −56.92 × 10−6/◦C (6.21)

6.3 Unimorph Clamped-Clamped Beam Resonators

Cantilever resonators are easy to implement and have larger amplitude com-

pared to other configurations which will lead to higher signal to noise ratio (SNR).

However, compared to other resonators with the same geometry but different bound-

ary conditions, the resonance frequency of cantilever resonators are much lower.

Therefore, cantilever resonators have a limited use in the microwave filter imple-

mentation area. Clamped-clamped resonators have resonance frequencies 5.3 times

higher than those of cantilever resonators with same geometry and they are also easy

to implement. For these reasons, the implementation of filters by clamped-clamped

resonators are more realistic.

In this project, clamped-clamped beam resonators are fabricated from a 0.5 µm

Al0.3Ga0.7As: Si/ 1 µm Al0.3Ga0.7As/ 2 µm Al0.3Ga0.7As: Si stack. Two different

fabrication method, i.e. GaAs sacrificial etching and Al0.7Ga0.3As sacrificial etching,

have been explored. Those beams based on GaAs sacrificial etching are positioned

at different orientation to measure the d31 values at different direction. Those beams

based on Al0.7Ga0.3As etching, are only positioned at 〈110〉 direction in order to take

advantage of highest d31 values in this direction.
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6.3.1 Resonance frequency

Fig. 6.10 gives the theoretical and measured resonance frequencies of clamped-

clamped resonators with different lengths. In general, they exhibit good matching

with a difference smaller than 3.8% for those beams having lengths in the range of

200 µm to 80 µm. Those beams outside of this range showed about 12% difference

with theoretical predictions. This can be explained by two factors: for those having

length larger than 200 µm, the internal stress must be considered when calculating

the resonance frequency; for those with length smaller than 80 µm, failure of Euler-

Bernoulli beam theory is a likely reason for the discrepancy.
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Figure 6.10: Theoretical and experimental resonance frequencies of clamped-

clamped beams.
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6.3.2 Dynamic Response

Fig. 6.11 shows frequency response of 100 µm long clamped-clamped beam

resonators at different orientations. As expected, beams oriented closer to 〈110〉 di-

rection showed higher amplitude of vibration. Another trend clear from the figure is

that beams oriented closer to 〈110〉 direction showed a slightly higher resonance fre-

quency. This can be explained by the following facts: first, the constituting material

of Al0.3Ga0.7As is anisotropic and the Young’s modulus itself is changing with direc-

tion, i.e., the Young’s modulus E at the direction of 〈110〉 is highest and decreases

when the orientation changes to 〈100〉 direction; second, the extent of undercut is

most severe when the orientation is along 〈100〉 direction, making the beam oriented

closer to 〈110〉 direction has a shorter beam length, thus result in higher resonance

frequency.

Fig. 6.12 gives measured quality factors of clamped-clamped resonators at atmo-

spheric pressure and in vacuum. Similar to cantilever resonators, the attainable

quality factors at atmospheric pressure is quite low due to the effect of air damping.

6.3.3 Linearity

The driving voltage range for linear behavior of developed clamped-clamped

beam resonators are extracted by examining displacement of the center point of the

beam at both quasi-static and resonance frequency. Similar to the cantilever beam

resonators, clamped-clamped beam resonators should operate in a driving voltage
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Figure 6.11: Frequency response of 100 µm long clamped-clamped beam resonators

at different orientations. (Optical measurement).

range of 1.5 Vp−p or smaller.

6.3.4 Temperature Stability of Resonance Frequency

The resonance frequency temperature sensitivity of clamped-clamped Al0.3Ga0.7As

beam resonators has been analyzed and compared to the measured value in order to

analyze the temperature stability of beam resonators. Fig. 6.15 gives the measured

resonance frequency of a 150 µm clamped-clamped beam resonator at different tem-

peratures.
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Figure 6.12: Quality factors vs. 1st mod resonance frequency for fabricated clamped-

clamped beam resonators.

In order to analyze the temperature dependence of clamped-clamped beam reso-

nance frequency, the equation for the resonance frequency including the effect of

residual stress is given in eq. 6.22.

f =
3.56t

L2

√
E

12ρ

√
1 +

0.295σL2

Et2
(6.22)
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Figure 6.13: Quasistatic displacement vs. driving signal for a 250 µm long clamped-

clamped beam.

Here σ represents internal stress. The temperature sensitivity of natural frequency

can be calculated from the following equation.

∂f

∂T
=

∂f

∂t

∂t

∂T
+

∂f

∂L

∂L

∂T
+

∂f

∂E

∂E

∂T
+

∂f

∂ρ

∂ρ

∂T
+

∂f

∂σ

∂σ

∂T
(6.23)

By taking partial differential of Eq. 6.23, the following equations are obtained:

∂f

∂t
=

f

t
× 1

1 + 0.295σL2

Et2

(6.24)

∂f

∂L
=

f

L
×
−2− 0.295σL2

Et2

1 + 0.295σL2

Et2

(6.25)

∂f

∂E
=

f

E
× 1

2(1 + 0.295σL2

Et2
)

(6.26)
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Figure 6.14: Resonance displacement vs. driving signal for a 250 µm long clamped-

clamped beam.

∂f

∂ρ
= −1

2

f

ρ
(6.27)

∂f

∂σ
=

1

2

f

σ
×

0.295σL2

Et2

1 + 0.295σL2

Et2

(6.28)

Assuming the change in internal stress is mainly due to thermal mismatch between

the Al0.3Ga0.7As thin film and GaAs substrate, the temperature dependency of 5

parameters is shown in following equations:

∂t

∂T
= αTf × t (6.29)

∂L

∂T
= αTs × L (6.30)

∂E

∂T
= −4.84× 10−3 GPa/◦C (6.31)
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Figure 6.15: Resonance frequency of a 150 µm long clamped-clamped beam as a

functiong of temperature.

∂ρ

∂T
= −(αTs + 2× αTf )× ρ (6.32)

∂σ

∂T
= (αTf − αTs)×

E

1− ν
(6.33)

In conclusion, the following equation is obtained to calculate the temperature de-

pendency of resonance frequency of clamped-clamped beam resonator.

∂f/∂T

f
=

1

1 + 0.295σL2

Et2

× αTf −
2 + 0.295σL2

Et2

1 + 0.295σL2

Et2

× αTs

+
1

2(1 + 0.295σL2

Et2
)

∂E/∂T

E
+

1

2
(αTs + 2αTf )
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+
1

2

0.295σL2

Et2

1 + 0.295σL2

Et2

∂σ/∂T

σ

By putting in the corresponding material properties of constructing material and

estimated internal stress level of -80 MPa, the calculated TCF is 234 ppm/◦C. The

discrepancy between the theoretical prediction is believed to be mainly due to the

error in internal stress measurement and other factors affecting the internal stress

level with temperature change.

6.4 Unimorph Free-Free Beam Resonators

Cantilever and clamped-clamped resonators developed in this project showed

quality factors of less than 3,500 for resonance frequencies in the 100 kHz–2 MHz

range when placed in vacuum. The energy losses through their anchors is the main

factor limiting the attainable quality factors in vacuum. In order to alleviate the

high loss associated with these beams, free-free beam designs are explored.

6.4.1 Free-Free Beam Design

The schematic of the free-free beam structure used in this work is shown in

Fig. 6.16. The designed structure consists of a free-free beam supported by 4 sup-

port beams attached at the resonant beam’s node points. The support beams are

designed to work in their fundamental torsional mode. In theory, the highest quality

factor will occur when the resonance frequency of free-free beam matches with the

torsional resonance frequency of the support beams [16].
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Figure 6.16: Schematics of the free-free beam structure used in this work.

The resonance frequency of the free-free beam is calculated form the following equa-

tion.

fi =
λ2

i

2πL2

√√√√Et2

12ρ
(6.34)

The definition of each parameters are given previously. For the first resonance

frequency, the eigenvalue λ1 has the value of 4.730. The expression of the generalized

modal shapes of the free free beams are given in eq. 6.35.

r(ξ) = sin(λiξ) + sinh(λiξ) + γ(cos(λiξ) + cosh(λiξ)) (6.35)

Where

γi =
sin(λi)− sinh(λi)

cosh(λi)− cos(λi)
(6.36)

The normalized first modal shape of the free-free beam is plotted in Fig. 6.17.

The nodal points for the first mode free-free beams are located in ξ = 0.2242 and

ξ = 0.7759. The torsional support beams must join the free-free beams in nodal

points in order to insure impedance matching and minimal energy losses.
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Figure 6.17: Length normalized 1st mode shape of a free-free beam.

The supporting beams are designed to work on their first resonant torsional mode.

Consider a clamped-clamped torsional beam, the torsional resonance frequency can

be calculated as

fi =
λ

2πL

√
GJ

ρJp

(6.37)

Where λi is eigenvalues and has values of λi = nπ for nth mode, G is shear modulus

of elasticity of the material and can be obtained by G = E
2(1 + ν)

, J is the torsional

moment of inetia, Jp is the polar moment of inertia.

The free-free beams developed are fabricated from 0.5 µm Al0.3Ga0.7As: Si/ 1 µm

Al0.3Ga0.7As/ 2 µm Al0.3Ga0.7As: Si heterostructures. The fabrication is the same

as that of clamped-clamped beams. The SEM image of full structure after release is
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shown in Fig. 6.18. Resonators with frequencies ranging from 400 kHz to 2.5 MHz

have been fabricated. The length of the torsional support beams ranged form 30%

to 130% of the optimal value to evaluate the effect of imperfect support impedance

matching between the resonant beam and torsional support beams.

Figure 6.18: SEM of a 100µm long free-free beam after release.

86



6.4.2 Dynamic Response

The developed free-free beam resonators were first characterized by LDV. In

order to investigate the effect of torsional support on the quality factor, the quality

factors of free-free beam with different support beams were measured. Fig. 6.19

summarized the quality factors of free-free beam at different support beam length.

The designed free-free beam resonance frequency is 2 MHz. However, due to the

effect of smaller length to width ratio (in this case 4), and attached support beams,

the measured resonance frequency shifted to 2.3 MHz. The increased resonance

frequency means the length of support beam should be decreased for impedance

matching. Thus, highest quality factor is obtained when support beams are some-

what shorter than the theoretical value. The displacement spectra of different

points of free-free shown in Fig. 6.20. As expected, the edge of the free-free beam

showed greater displacement compared to the center point of free-free beam. Also,

the node point showed approximately no movement at resonance frequency con-

firming the free-free beam modal shpape. Plotted in Fig. 6.21 is the frequency

response of the displacement at the edge of resonant beam in high vaccum. The

measured quality factor is 11,341. Compared to quality factors obtained from can-

tilever and clamped-clamped beam resonators, the quality factor of free-free beam

is much higher. The increased Q values are expected due to reduced anchor losses

compared to the previous configurations.
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Figure 6.19: Quality factors of free-free beams vs. support beam length.
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free-free beam.
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6.4.3 Linearity

The linearity of free-free beam resonators is inspected. Fig. 6.22 gives displace-

ment of center point of free-free beam at resonance frequency. The displacement

showed linear response to driving voltage of 1.5 Vp−p.
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Figure 6.22: Displacement vs. driving signal for a 200µm long free-free beam.

The linearity of the free-free beam structure showed similar characteristics compared

to cantilever and c-c beam configurations.
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6.4.4 Temperature Stability of Resonance Frequency

The resonance frequency of developed free-free beam resonator is measured

at different temperature in order to investigate temperature stability of resonance

frequency. Fig. 6.23 gives the measured results with TCF of −53.68 ppm/◦C. Again,

most of this value is from temperature dependence of Young’s modulus of thin film

Al0.3Ga0.7As.
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Figure 6.23: Resonance frequency of an 86µm long free-free beam as a function of

temperature.
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Chapter 7

Piezoelectric Bimorph Cantilevers

Although, piezoelectric cantilevers have limited use in high-frequency filter

implementations, they are a good candidate for micro actuators. Piezoelectric ac-

tuators are widely studied for their inherent characteristics including high force

and large bandwidth. Micro actuators based on piezoelectric materials have been

demonstrated by using a variety of thin film materials, including ZnO [34] and PZT

[41]. In these examples, the piezoelectric micro actuators are all based on unimorph

configurations, where a single piezoelectric layer is positioned with an offset from

the beam’s neutral axis to provide bending momentum to the actuator. In com-

parison, true bimorph design commonly consists of two identical piezoelectric layers

positioned symmetrically about the neutral axis. Despite of the increased efficiency

provided by bimorph configurations compared to unimorph with identical geome-

try, reported piezoelectric micro actuators are all based on unimorph configurations

due to the constraints imposed by fabrication processes. The implementation of

bimorph micro actuators require three electrodes to provide electrical potentials to

two separate piezoelectric layers. The fabrication of bimorph micro actuators with

common piezoelectric thin films such as ZnO and PZT is prohibited by thermal

budgets which preclude the integration of more than two electrodes, or poor sub-

strate conditions imposed by electrode materials which prevent further growth of
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Figure 7.1: Schematic of bimorph Al0.3Ga0.7As actuators.

high quality piezoelectric films.

In contrast, the fabrication process developed in this project can be used to realize

bimorph piezoelectric micro actuators based on single crystal Al0.3Ga0.7As material.

Fig. 7.1 gives schematic view of developed bimorph micro actuators. From bot-

tom to top, the deposited heterostructure consists of 0.5 µm Al0.3Ga0.7As: Si, 1µm

Al0.3Ga0.7As, 0.5 µm Al0.3Ga0.7As: Si, 1µm Al0.3Ga0.7As, and 0.5 µm Al0.3Ga0.7As:

Si. The fabrication process is similar to that of unimorph cantilevers except for pat-

terning of additional electrode layers by ICP. Fig. 7.2 shows schematic cross-section

and SEM image of a typical bimorph cantilever beam.
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Figure 7.2: (a) Schematic of bimorph cantilever cross-section, and (b) SEM image

of a fabricated bimorph cantilever.

7.1 Resonance Frequency

Cantilever bimorph actuators are fabricated with lengths ranging from 500 µm

to 20 µm with fixed width of 10 µm. The corresponding measured resonance frequen-

cies are from 9.1 kHz to 5.7 MHz with good agreement with theoretical predictions

as shown in Fig. 7.3. The low frequency bimorph resonators are characterized

by LDV for quasistatic and broadband response. Measured resonance frequencies

matched well with theoretical predictions, with deviations of 3.6% or less.
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Figure 7.3: 1st Resonance frequency of bimorph cantilevers.

7.2 Dynamic Response

Typical frequency response spectra for the fabricated bimorph actuators are

shown in Fig. 7.4 for the case of 150 µm long cantilever beam in vacuum to reduce

air damping. The middle electrode layer for the bimorph resonator is grounded, and

a sweeping sinusoidal input is added to the top electrode only, the bottom electrode

only, and top and bottom electrode at the same time. As expected, the bimorph

excitation resulted in increased vibration amplitude compared to the top or bottom

excitation only configuration.
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Figure 7.4: Frequency response of a 150 µm long cantilever beam in vacuum.

7.3 Displacement and Gain

For comparison of bimorph and unimorph excitation, Fig. 7.5 gives the dis-

placement of bimorph cantilevers at resonance under vacuum for different driving

conditions. Fig. 7.6 summarizes the quasistatic (5 kHz) displacement of bimorph

cantilevers at different driving condition. For both case, bimorph actuation pro-

vided 80–120% of increased displacement compared to top piezoelectric layer only,

or bottom piezoelectric only actuation of the same device.
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Figure 7.5: (a) Displacement of bimorph cantilever beams at resonance under vac-

uum for varying driving condition, and (b) displacement gain.

7.4 Linearity

The linearity of the bimorph cantilevers are investigated in order to define

the driving voltage range for the proper activation of the developed actuators. Fig.

7.7 gives the displacement of a 100 µm long bimorph cantilever actuator at dif-

ferent driving levels when placed in atmospheric pressure. Both the quasistatic

and resonance displacement results are suggesting driving voltage of less than 3.5 V

peak-peak in order to avoid nonlinearity in the beam. The working voltage range for
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Figure 7.6: (a) Quasistatic displacement, and (b) displacement gain for a range of

bimorph cantilever lengths.

bimorph canitlevers are much higher than those of unimorph cantilevers which is 1.5

Vp−p. The possible reason for this phenomenon comes from symmetrical actuation

in bimorph actuators whereas the unimorph cantilevers features an asymmetrical

actuation.

99



0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3 x 10-9

Driving voltage (Vp-p)

Q
ua

si
-s

ta
tic

  d
is

pl
ac

em
en

t (
m

) 100 µm bimorph cantilever at 1 atm

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2 x 10-6

Driving voltage (Vp-p)

R
es

on
an

ce
 d

is
pl

ac
em

en
t (

m
)

Top excitation
Bottom excitation
Top+Bottom excitation

Top excitation
Bottom excitation
Top+Bottom excitation

Figure 7.7: (a) Displacement of bimorph cantilever beams at resonance under vac-

uum for varying driving condition, (b) displacement gain.

7.5 Temperature Stability

The resonance frequency of developed bimorph cantilever actuators are mea-

sured at different temperatures in order to investigate the effect of temperature

change on the resonance frequency of the actuators. Fig. 7.8 gives the resonance

frequency of a 100 µm long cantilever beam at temperature range of 30◦C to 100◦C.

The experiment result showed a TCF of −50.6 ppm/◦C with most of this coming

from the temperature dependence of Young’s modulus for the Al0.3Ga0.7As film.
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Figure 7.8: Resonance frequency of a 100 µm long bimorph cantilever beam at

different temperatures.

7.6 Quality Factors

The effect of increased interfacial layers are investigated by comparing the

quality factors of bimorph and unimorph cantilevers. All quality factors are mea-

sured under vacuum to reduce the effect of air damping. The bimorph configuration

had 5 different layers whereas unimorph configuration had 3 different layers. The

effect of increased interfacial layers can be found from Fig. 7.9 where the quality

factors for bimorph and unimorph cantilevers under vacuum are shown. It is clear
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from the figure that bimorph cantilevers did not show a reduced quality factors

compared to geometrically same unimorphs, which means the increased interfacial

layers had little impact on the quality factors.
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Figure 7.9: Measured quality factors for bimorph and unimorph cantilevers under

vacuum.

The quality factors of the bimorphs at different pressure are measured to see the

effect of air damping as shown in Fig. 7.10. It is clear from this figure that air damp-

ing has very little effect on the quality factor of bimorph actuators when vacuum

level is lower than 10−2 Torr.
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Chapter 8

Length Extensional Mode Resonators

The flexural mode resonators described in previous chapters all feature rela-

tively large displacements. As a result, the flexural mode resonators are sensitive

to air damping. In order to achieve higher quality factors, vacuum packaging is

necessary for those resonators, putting complexity in fabrication.

In contrast, the resonators presented in this chapter works in length extensional

mode and have a relatively small displacement. Therefore, they are less sensitive to

the presence of air damping.

The schematics of the free-free bar resonators used in this work is shown in Fig.

8.1. The free-free beam anchored at its midpoint is driven into longitudinal vibra-

tion by signals applied to the continuous electrode surfaces on either side of the

piezoelectric layer. It is possible to excite all odd modes of vibration with this con-

figuration, although signal from higher modes will suffer from attenuation due to

the cancellation of charge on areas of the beam with opposite strain.
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Figure 8.1: Schematics of bar resonators.

8.1 Bar Resonator Model

The nth mode resonance frequency is given by

fn =
n

2L

√
E

ρ
(8.1)

where n, L, E and ρ represent mode number, beam length, elastic stiffness in the

direction of vibration, and beam density, respectively. The output current resulting

from strain of the piezoelectric layer is given by [21]:

I(jω) = jω
∫

D3dA (8.2)
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where D3 is the electric displacement on the top electrode, defined through the linear

piezoelectric constitutive equations as:

D3 = d31EbS1(x) (8.3)

where d31 is the transverse piezoelectric coupling coefficient, b is the beam width,

and S1(x) is the strain field along the beam length. The strain field can be written in

terms of the longitudinal displacement, given by u = X(jω)φ(x), as S1(x) = du/dx.

Here, X(jω) is the modal displacement and φ(x) is the mode shape. For a free-free

beam, the mode shape is given by [21]:

φ(x) = cos(
nπ

L
x) (8.4)

Thus, for all odd modes (n=1,3,5,), the output current may then be written as:

I(jω) = −2jωd31EbX(jω) (8.5)

The electromechanical coupling parameter η is defined as the ratio of output charge

to modal displacement. From equation 8.5, η is found to be:

η =
I(jω)

jωX(jω)
= −2d31Eb (8.6)

Following a Butterworth-Van Dyke equivalent circuit approach for piezoelectric res-

onators, the single-port device shown in Fig. 8.1 may be modeled by a motional

RLC branch with component values defined by the coupled electromechanical behav-

ior of the piezoelectric structure, in parallel with a static capacitive branch defined

by the parasitic capacitance of the piezoelectric film. Higher order modes are in-

cluded by placing additional motional branches in parallel with the fundamental
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mode motional branch. The motional resistance is a critical parameter in resonator

design, since it represents the effective impedance of the structure at resonance. The

motional resistance for the nth longitudinal vibration mode, Rx,n, is given by [47]:

Rx,n =
Mωn

Qη2
(8.7)

The modal mass for the beam, M, may be derived as:

M =
∫ L

0
ρbtφ2(x)dx =

ρbtL

2
(8.8)

Therefore, the motional resistance for all odd modes of a bar resonator is given by:

Rx,n =
nπρ0.5t

8d2
31E

1.5bQ
(8.9)

8.2 Experimental Results

Electrical device characterization was performed using the same circuit de-

scribed in chapter 5, in which a resonator is used as a branch of a capacitive bridge

as depicted schematically in Fig. 8.2. The non-active branches of the bridge are

composed of matched on-chip capacitors with impedance equal to that of the res-

onator far from resonance.

The fabricated bar resonators were tested using an Agilent 4395A network ana-

lyzer. Both atmospheric and vacuum measurements were conducted to observe the

effects of air damping on quality factor, motional resistance, and power handling.

For measurement in atmospheric pressure, devices were placed on an RF-1 probe

station (Cascade Microtech, Beaverton OR). The electrical contacts to the devices
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Figure 8.2: Schematic of capacitive bridge interface circuit.

are accomplished by coaxial probes to reduce cross talk between probes. A table top

vacuum probe station (Desert Cryogenics, Tuscon AZ) equipped with 50 Ω BeCu-

tipped stripline probes was used for resonator characterization at reduced pressures.

Bar resonators were fabricated with a width of 20 µm and lengths ranging from

100 µm to 1000 µm, corresponding to measured first-mode resonance frequencies

between 2.5 MHz and 25 MHz. As shown in Fig. 8.3, the measured resonance

frequencies show excellent agreement with theoretical values determined from Eqn.

8.2 for the first 5 odd modes, with deviations smaller than 1% observed for all mea-

surements.

The quality factors of bar resonators were measured at both atmospheric pressure

and moderate vacuum levels. Experimental quality factors are summarized for at-

mospheric pressure measurements in Fig. 8.4(a), and for 70 µTorr measurements
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Figure 8.3: Theoretical and measured resonance frequencies. Experimental results

match theoretical values to within 1% for all measurements.

in Fig. 8.4(b), for the 1st through 9th odd modes of vibration. As expected, the

vacuum measurements exhibit higher Qs. Measured Q values at 70 Torr are on av-

erage 2 times higher than their corresponding atmospheric pressure measurements,

indicating that air damping remains a dominant loss mechanism for these devices.

Both sets of measurements display a similar trend, with Q values increasing nearly

linearly with resonance frequency up to 25 MHz. This observed increase may be

the result of higher losses at low frequencies due to excitation of spurious modes

in devices with large length-to-width ratios. The maximum Q value was measured

from a 900 µm long bar resonator operating in its 7th resonant mode at 21.8 MHz.
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Fig. 8.5 shows the frequency spectra for this measurement, with a quality factor of

25,390 in vacuum.

For measurements beyond 25 MHz, limitations in the capacitive bridge interface

often prevented the collection of good data due to poor signal-to-noise. However,

in some measurements Qs were observed to level off and drop as the resonance fre-

quency increased. For example, a 9th mode resonator in vacuum provided a Q of

5,331 at 56.3 MHz, dropping to only 1,621 at 75.2 MHz. Assuming thermoelastic

damping is the dominant loss mechanism [54] at higher frequencies, Q is expected

to be inversely proportional to resonance frequency. However, it is also possible that

increased losses occur due to failure of Euler-Bernoulli beam theory as the modal

vibration period nears the beam width in higher frequency devices. While Euler-

Bernoulli beam theory is valid for length to width ratios above 10, rolloff in Q is

observed to begin when the modal period is around 100 µm, or 5 times the beam

width. Maintaining a length to width ratio above 10 may improve high frequency

Qs in future designs.

8.2.1 Motional Resistance

Resonator motional resistance, given by the ratio of voltage and current at

the resonance frequency, should ideally be as close to 50 Ω as possible in order to

provide impedance matching to typical 50 Ω RF circuits. The motional resistance

of fabricated piezoelectric resonators was determined by directly connecting the
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bar resonators to 50 Ω impedance of the input and output ports of the network

analyzer. From the measured insertion loss (IL) of the devices at resonance, the

motional resistance can be calculated as:

Rx,n = 50× 10
IL
20 (8.10)

Fig. 8.6 shows the measured motional resistance of bar resonators operating in their

1st and 3rd modes. Measurements of Rx for higher modes are not reported here

since the impedance of the static piezoelectric capacitance at higher frequencies is

comparable to the theoretical motional resistance, preventing accurate measurement

of Rx. The lowest measured motional resistance was Rx = 4.3 kΩ at 12.78 MHz for

a device resonating in its 1st longitudinal mode. Although higher than the desired

50 Ω value, measured motional resistances are comparable with reported values for

electrostatic resonators [47] or showing improvement compared to other piezoelectric

bar resonators [9] within a similar resonance frequency range.

8.2.2 Power Handling

The ability of a resonator to handle practical power levels is an important

parameter when considering real-world applications of microscale resonators. To

assess power handling limits, devices were driven with gradually increasing power

levels until nonlinear behavior became apparent in the resonant response. For ex-

ample, Fig. 8.7(a) presents the transmission curve of a 300 µm long bar resonator

at various input power levels. The power levels shown in this figure are the set
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power levels from network analyzer. The set power is applied through a 50 Ω source

resistance (Rs) within the network analyzer, which generates an appropriate driving

signal based on the assumption of an equal 50 Ω load resistance. In reality the

effective load is substantially higher due to the motional resistance of the resonator,

and the actual power through the resonator (PR) is lower than the set power (Pset)

by a factor which is inversely proportional to the motional resistance (Rx):

PR ≈ 4Pset
Rs

Rx

for Rx � Rs (8.11)

For the device shown in Fig. 8.7(a), the motional resistance of the resonator was

measured at approximately 8 kΩ. Due to the impedance mismatch between this

resonator and the 50 Ω source and load impedances of network analyzer, the power

dissipated in the resonator is approximately -6 dBm when the power output of the

network analyzer is set to 10 dBm. Power handling levels for 1st and 3rd mode

operation of all fabricated devices is shown in Fig. 8.7(b). As with Rx measure-

ments, power handling values are not reported for higher modes since the static

feedthrough capacitance of the piezoelectric film shunts the majority of the input

power at higher frequencies, leading to artificially high values of apparent power

handling capacity using the measurement technique described above. Overall, the

measured 1st and 3rd mode values compare favorably against power handling levels

reported for comparable electrostatic bar resonators, which exhibit a typical oper-

ational range between about -40 and 20 dBm [47]. Further improvements in power

handling can be realized by increasing resonator thickness, although at the expense

of increased motional resistance.
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8.2.3 Temperature Stability

Uncompensated temperature stability has been measured at atmospheric pres-

sure. Variation in the 1st resonant frequency of an 800 µmm long bar resonator is

shown in Fig. 8.8 over a temperature range of 30− 100◦C. The resulting tempera-

ture coefficient of frequency (TCF) is 45 ppm/◦C and mainly due to the temperature

dependence of Young’s modulus of the Al0.3Ga0.7As films. This value is substantially

higher than that of AT-cut quartz crystal resonators (on the order of -1.7 ppm/◦C

[55]) but compares favorably with other MEMS resonators. For example, bar res-

onators fabricated using a piezo-on-silicon technology exhibited an uncompensated

TCF of -40 ppm/◦C [9].
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resonator over a temperature range from 30◦C to 100◦C.
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Chapter 9

Conclusion and Future Work

9.1 Resonator Results

Piezoelectric resonators based on single crystal Al0.3Ga0.7As have been real-

ized to take advantage of moderate piezoelectric coupling factor inherent in thin

film Al0.3Ga0.7As, low loss single crystal nature of Al0.3Ga0.7As as both piezoelec-

tric and electrode layers, and low interfacial damping between piezoelectric layer

and electrode layers, i.e. undoped Al0.3Ga0.7As piezoelectric layer and Si doped

Al0.3Ga0.7As electrode layers. To this end, four different types of resonators are

developed. Namely, cantilever beam, clamped–clamped beam, free–free beam and

in–plane length extensional mode bar resonators. All resonators have been analyzed

by theoretical model, and FEA modeling, and compared to the measurement results.

The measured quality factors of cantilever beam, clamped–clamped beam, and bar

resonators in air and vacuum is shown in Fig. 9.1 and Fig. 9.2 respectively. By com-

paring the quality factors obtained in air and vacuum, it is clear that flexural mode

resonators, including cantilever and clamped–clamped beam, must be operated in

vacuum in order to achieve a reasonable quality factors for filter implementation.

In contrast, bar resonators exhibited a sufficiently high quality factors even without

vacuum. For this reason, the application of bar resonators in filter implementation

is more realistic. In conclusion, table 9.1 summarizes important results from all
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resonator types.

104 105 106 107 108101

102

103

104

Resonance frequency (Hz)

Q
ua

lit
y 

fa
ct

or

Freq. vs. Qs at 1atm

Cantilever Beam
C-C Beam
Free-free Beam
Bars @ 3rd mode

Figure 9.1: Quality factors of resonators at 1 atm.
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Figure 9.2: Quality factors of resonators in vacuum.

Table 9.1: Results of developed resonators.

Resonator type Qmax freq. @ Q max fmax Q @ fmax TCF

Cantilever beam 5,277 35.21 kHz 1.62 MHz 5,033 -53.9 ppm/◦C

C–C beam 3,700 3.1 MHz 3.1 MHz 3,700 176.5 ppm/◦C

F-F Beam 11,341 2.3 MHz 2.3 MHz 11,341 -53.68 ppm/◦C

Bar resonator 25,207 19.3 MHz 75.1 MHz 1,621 -45 ppm/◦C
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9.2 Future Work

The developed resonator in this work covers frequency range of 15 kHz to

71 MHz with Qs less than 25,000. In order to meet the requirement of wireless

communication industry, higher resonant frequency and higher quality factors are

desired. In order to get higher resonant frequency, the resonator dimensions need

to be shrinked accordingly. But in order to detect higher resonant frequency, the

problems associated with parasitic capacitance must be solved. Fig. 9.3 gives the

impedance of 200 long bar resonators in case of internal capacitance only and in-

ternal capacitance together with 5 pF of parasitic capacitance assuming a quality

factor of 10,000. The figure clearly shows the effect of parasitic capacitance. One

of the proposed solution is get rid of parallel capacitance associated with probe pad

which in on the order of 100 times of the area of the resonator itself by using metal

bridge design. The fabrication process for metal bridge is still under investigation.

Another approach is to reduce the parasitic capacitance caused by connection cables.

Proposed solution for this problem is wire bonding the resonator chips to sockets or

further integrate a buffer units on substrate.

In order to get higher quality factors, efforts should be given to the control of

surface quality, reduce anchor width for bar and free–free beam resonators etc.. The

ultimate quality factors of resonators are determined by losses due to thermoelastic

current and anchor loss.
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Figure 9.3: Impedance of the bar resonator with existence of parasitic capacitance.

Another design for future high frequency resonators is 2-D disk resonators. In

this design, the disk is vibrating in bi–axial breathing mode. 4 support beams are

attached to the disk at its node points. So far, the fabricated disk resonators have

frequency range of 19.5 MHz to 29 MHz with excellent agreement to the theoretical

predictions. The measured quality factors are up to 11,000 in air. Fig. 9.4 gives

the SEM view of developed disk resonator. Fig. 9.5 gives transmission spectra of

resonator when directly connected to network analyzer.

Based on the developed resonators in this work, bandpass filters can be imple-
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Figure 9.4: SEM image of a typical developed disk resonator.

mented. For low frequency filters, this can be done by mechanical coupling of res-

onators. When the frequency range goes higher, the required mechanical coupling

element will need submicron feature size and accurate positioning, putting com-

plexity in lithography. As an alternative method, electrical coupling of resonators

including capacitive coupling and electrical cascading can be adopted to avoid sub-

micron or even nanometer lithography and get more design flexibility [46]. The

electrical coupling can first implemented with wire bonded resonators and discrete

electrical parts, and can further implemented with integrated circuits.
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Figure 9.5: Frequency spectra of a disk resonator near resonant frequency.
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