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We describe a content-based audio classification algorithm based on novel multiscale spectro-

temporal modulation features inspired by a model of auditory cortical processing. The task ex-

plored is to discriminate speech from non-speech consisting of animal vocalizations, music and

environmental sounds. Although this is a relatively easy task for humans, it is still difficult to

automate well, especially in noisy and reverberant environments. The auditory model captures

basic processes occurring from the early cochlear stages to the central cortical areas. The model

generates a multidimensional spectro-temporal representation of the sound, which is then analyzed

by a multi-linear dimensionality reduction technique and classified by a Support Vector Machine

(SVM). Generalization of the system to signals in high level of additive noise and reverberation is

evaluated and compared to two existing approaches [1] [2]. The results demonstrate the advantages

of the auditory model over the other two systems, especially at low SNRs and high reverberation.
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Chapter 1

Introduction

Audio segmentation and classification have important applications in audio data retrieval, archive

management, modern human-computer interfaces, and in entertainment and security tasks. In

speech recognition systems designed for real world conditions, a robust discrimination of speech

from other sounds is a crucial step. Speech discrimination can also be used for coding or telecom-

munication applications where non-speech sounds are not of interest and hence bandwidth is saved

by not transmitting them or by assigning them a low resolution code. Finally, as the amount of

available audio data increases, manual segmentation of audio sounds has become more difficult

and impractical and alternative automated procedures are much needed.

Speech is a sequence of consonants and vowels, non-harmonic and harmonic sounds, and

natural silences between words and phonemes. Discriminating speech from non-speech is often

complicated by the similarity of many sounds to speech, such as animal vocalizations. As with

other pattern recognition tasks, the first step in this audio classification is to extract and repre-

sent the sound by its relevant features. To achieve good performance and generalize well to novel

sounds, this representation should be able both to capture the discriminative properties of the

sound, and to resist distortion under various noisy conditions.

Research into content-based audio classification is relatively new. Among the earliest is the

work of Pfeiffer et al. [3] where a 256 phase-compensated gammaphone filter bank was used to

extract audio features that mapped the sound to response probabilities. Wold et al. [4] adopted

instead a statistical model of time-frequency measurements to represent perceptual values of the

sound. A common alternative approach involves the extraction of different higher level features to

classify audio, such as Mel-frequency cepstral coefficients (MFCCs) along with a vector quantizer

(Foote [5]), or noise frame ratios and band periodicity along with K-nearest neighbor and linear

spectral pair-vector quantization (Lu [6]), and average zero-crossing rate and energy with a simple

threshold to discriminate between speech and music (Saunders [7]).

Two more elaborate systems have been proposed, against which we shall compare our sys-

tem. The first is proposed by Scheirer and Slaney [1] in which thirteen features in time, Frequency,

and cepstrum domain are used to model speech and music. Several classification techniques (e.g.,

MAP, GMM, KNN) are then employed to achieve a robust performance. The second system is a

speech/non-speech segmentation technique [2] in which frame-by-frame maximum autocorrelation

and log-energy features are measured, sorted and then followed by linear discriminant analysis and

a diagonalization transform.

The novel aspect of our proposed system is a feature set inspired by investigations of various

stages of the auditory system [8][9][10][11]. The features are computed using a model of the audi-

tory cortex that maps a given sound to a high-dimensional representation of its spectro-temporal
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modulations. A key component that makes this approach practical is a multilinear dimensional-

ity reduction method that by making use of multimodal characteristic of cortical representation,

effectively removes redundancies in the measurements in each subspace separately, producing a

compact feature vector suitable for classification (section III).

We shall briefly review the auditory model in section II and then outline in section III the

mathematical foundation of the analysis of the auditory model’s outputs. In section IV, exper-

imental results and performance evaluation of our proposed system are presented, followed by a

comparison against two different approaches that represent the best of breed in the literature [1][2].
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Chapter 2

Auditory Model

The computational auditory model is based on neurophysiological, biophysical, and psychoacousti-

cal investigations at various stages of the auditory system [8][9][10]. It consists of two basic stages.

An early stage models the transformation of the acoustic signal into an internal neural representa-

tion referred to as an auditory spectrogram. A central stage analyzes the spectrogram to estimate

the content of its spectral and temporal modulations using a bank of modulation selective filters

mimicking those described in a model of the mammalian primary auditory cortex [8]. This stage

is responsible for extracting the key features upon what the classification is based.

2.1 Early auditory system

The stages of the early auditory model are illustrated in Figure 2.1. The acoustic signal entering

the ear produces a complex spatio-temporal pattern of vibrations along the basilar membrane of

the cochlea. The maximal displacement at each cochlear point corresponds to a distinct tone

frequency in the stimulus, creating a tonotopically-ordered response axis along the length of the

cochlea. Thus, the basilar membrane can be thought of as a bank of constant-Q highly asymmetric

bandpass filters (Q = 4) equally spaced on a logarithmic frequency axis. In brief, this operation

is an affine wavelet transform of the acoustic signal s(t). This analysis stage is implemented by

a bank of 128 overlapping constant-Q (QERB = 5.88) bandpass filters with center frequencies

(CF) that are uniformly distributed along a logarithmic frequency axis (f), over 5.3 octaves (24

filters/octave). The impulse response of each filter is denoted by hcochlea(t; f). The cochlear fil-

ter outputs ycochlea(t, f) are then transduced into auditory-nerve patterns yan(t, f) by a hair cell

stage which converted cochlear outputs into inner hair cell intra-cellular potentials. This process

is modeled as a 3-step operation: a highpass filter (the fluid-cilia coupling), followed by an instan-

taneous nonlinear compression (gated ionic channels) ghc(·), and then a lowpass filter (hair cell

membrane leakage) µhc(t). Finally, a Lateral Inhibitory Network (LIN) detects discontinuities in

the responses across the tonotopic axis of the auditory nerve array [12]. The LIN is simply approx-

imated by a first-order derivative with respect to the tonotopic axis and followed by a half-wave

rectifier to produce yLIN (t, f). The final output of this stage is obtained by integrating yLIN (t, f)

over a short window, µmidbrain(t, τ), with time constant τ = 8 msec mimicking the further loss

of phase-locking observed in the midbrain. This stage effectively sharpens the bandwidth of the

cochlear filters from about Q = 4 to 12 [8].
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Figure 2.1: Schematic of the early stages of auditory processing. (1) Sound is analyzed by a model

of the cochlea consisting of a bank of 128 constant-Q bandpass filters with center frequencies equally

spaced on a logarithmic frequency axis (tonotopic axis). (2) Each filter output is then transduced

into auditory-nerve patterns by a hair cell stage which is modeled as a 3-step operation: a highpass

filter (the fluid-cilia coupling), followed by an instantaneous nonlinear compression (gated ionic

channels) and then a lowpass filter (hair cell membrane leakage). (3) Finally, a lateral inhibitory

network detects discontinuities in the responses across the tonotopic axis of the auditory nerve

array by a first-order derivative with respect to the tonotopic axis and followed by a half-wave

rectification. The final output of this stage (auditory spectrogram) is obtained by integrating

YLIN over a short window, mimicking the further loss of phase-locking observed in the midbrain.

The mathematical formulation for this stage can be summarized as followed:

ycochlea(t, f) = s(t) ∗ hcochlea(t; f) (2.1)

yan(t, f) = ghc(∂tycochlea(t, f)) ∗ µhc(t) (2.2)

yLIN (t, f) = max(∂fyan(t, f), 0) (2.3)

y(t, f) = yLIN (t, f) ∗ µmidbrain(t; τ) (2.4)

where ∗ denotes convolution in time.

The above sequence of operations effectively computes a spectrogram of the speech signal

(Figure 2.1, right) using a bank of constant-Q filters, with a bandwidth tuning Q of about 12 (or

just under 10% of the center frequency of each filter). Dynamically, the spectrogram also encodes

explicitly all temporal envelope modulations due to interactions between the spectral components

that fall within the bandwidth of each filter. The frequencies of these modulations are naturally

limited by the maximum bandwidth of the cochlear filters.
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Figure 2.2: (A) The cortical multi-scale representation of speech. The auditory spectrogram (the

output of the early stage) is analyzed by a bank of spectro-temporal modulation selective filters.

The spectro-temporal response field (STRF) of one such filter is shown which corresponds to a

neuron that responds well to a ripple of 4Hz rate and 0.5 cycle/octave scale. The output from

such a filter is computed by convolving the STRF with the input spectrogram. The total output

as a function of time from the model is therefore indexed by three parameters: scale, rate, and

frequency. (B) Average rate-scale modulation of speech obtained by summing over all frequencies

and averaging over each time window (equations 2.21 and 2.22). The right panel with positive

rates is the response of downward filters (u+) and the right panel with negative rates is the upward

ones (u−).

2.2 Central auditory system

Higher central auditory stages (especially the primary auditory cortex) further analyze the audi-

tory spectrum into more elaborate representations, interpret them, and separate the different cues

and features associated with different sound percepts. Specifically, the auditory cortical model

employed here is mathematically equivalent to a two-dimensional affine wavelet transform of the

auditory spectrogram, with a spectro-temporal mother wavelet resembling a 2-D spectro-temporal

Gabor function. Computationally, this stage estimates the spectral and temporal modulation con-

tent of the auditory spectrogram via a bank of modulation-selective filters (the wavelets) centered

at each frequency along the tonotopic axis. Each filter is tuned (Q = 1) to a range of temporal

modulations , also referred to as rates or velocities (ω in Hz) and spectral modulations, also re-

ferred to as densities or scales (Ω in cycles/octave). A typical Gabor-like spectro-temporal impulse

response or wavelet (usually called Spectro-temporal Response Field - STRF) is shown in Figure

2.2.

We assume a bank of directional selective STRF’s (downward [−] and upward [+]) that are

real functions formed by combining two complex functions of time and frequency. This is consis-

tent with physiological finding that most STRF’s in primary auditory cortex have the quadrant
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separability property [13].

STRF+ = �{Hrate(t;ω, θ) · Hscale(f ; Ω, φ)} (2.5)

STRF− = �{H∗
rate(t;ω, θ) · Hscale(f ; Ω, φ)} (2.6)

where � denotes the real part, ∗ the complex conjugate, ω and Ω the velocity (Rate) and spectral

density (Scale) parameters of the filters, and θ and φ are characteristic phases that determine

the degree of asymmetry along time and frequency respectively. Functions Hrate and Hscale are

analytic signals (a signal which has no negative frequency components) obtained from hrate and

hscale:

Hrate(t;ω, θ) = hrate(t;ω, θ) + jĥrate(t;ω, θ) (2.7)

Hscale(f ; Ω, φ) = hscale(f ; Ω, φ) + jĥscale(f ; Ω, φ) (2.8)

where ·̂ denotes Hilbert transformation. hrate and hscale are temporal and spectral impulse re-

sponses defined by sinusoidally interpolating seed functions hr(·) (second derivative of a Gaussian

function) and hs(·) (Gamma function), and their Hilbert transforms:

hrate(t;ω, θ) = hr(t;ω)cosθ + ĥr(t;ω)sinθ (2.9)

hscale(f ; Ω, φ) = hs(f ; Ω)cosφ + ĥs(f ; Ω)sinφ (2.10)

The impulse responses for different scales and rates are given by dilation

hr(t;ω) = ωhr(ωt) (2.11)

hs(f ; Ω) = Ωhs(Ωf) (2.12)

Therefore, the spectro-temporal response for an input spectrogram y(t, f) is given by

r+(t, f ;ω,Ω; θ, φ) = y(t, f) ∗t,f STRF+(t, f ;ω,Ω; θ, φ) (2.13)

r−(t, f ;ω,Ω; θ, φ) = y(t, f) ∗t,f STRF−(t, f ;ω,Ω; θ, φ) (2.14)

where ∗tf denotes convolution with respect to both t and f . Its useful to compute the spectro-

temporal response r±(·) in terms of the output magnitude and phase of the downward (+) and

upward (−) selective filters. For this, the temporal and spatial filters, hrate and hscale can be

equivalently expressed in the wavelet-based analytical forms hrw(·) and hsw(·) as:

hrw(t;ω) = hr(t;ω) + jĥr(t;ω) (2.15)

hsw(f ; Ω) = hs(f ; Ω) + jĥs(f ; Ω) (2.16)

The complex response to downward and upward selective filters, z+(·) and z−(·) is then defined

as:

z+(t, f ; Ω, ω) = y(t, f) ∗tf [h∗
rw(t;ω)hsw(f ; Ω)] (2.17)
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z−(t, f ; Ω, ω) = y(t, f) ∗tf [hrw(t;ω)hsw(f ; Ω)] (2.18)

where ∗ denotes the complex conjugate. The cortical response (equations 2.13 and 2.14) for all

characteristic phases θ and φ can be easily obtained from z+(·) and z−(·) as follows:

r+(t, f ;ω,Ω; θ, φ) = |z+|cos(� z+ − θ − φ) (2.19)

r−(t, f ;ω,Ω; θ, φ) = |z−|cos(� z− + θ − φ) (2.20)

Where | · | denotes the magnitude and � · the phase. The magnitude and the phase of z+ and z−

have a physical interpretation: at any time t and for all the STRF’s tuned to the same (f, ω,Ω),

the ones with θ = 1
2 (� z+ + � z−) and φ = 1

2 (� z+ − z−) symmetries have the maximal downward

and upward responses of |z+| and |z−|.
These maximal responses, the magnitude of z+ and z−, are used throughout the paper

for classification purpose. Where the spectro-temporal modulation content of the spectrogram

is of particular interest, we obtain the summed output from all filters with identical modulation

selectivity or STRF’s to generate the rate-scale plots: (as shown in Figure 2.2B for speech)

u+(ω,Ω) =
∑

t

∑

f

|z+(t, f ;ω,Ω)| (2.21)

u−(ω,Ω) =
∑

t

∑

f

|z−(t, f ;ω,Ω)| (2.22)

The final view that emerges is that of a continuously updated estimate of the spectral and temporal

modulation content of the auditory spectrogram. All parameters of this model are derived from

physiological data in animals and psychoacoustical data in human subjects as explained in detail

in [11][13][14].

Unlike conventional features, our auditory based features have multiple scales of time and

spectral resolution. Some respond to fast changes while others are tuned to slower modulation

patterns; A subset are selective to broadband spectra, and others are more narrowly tuned. For

this study, temporal filters (Rate) ranging from 1 to 32Hz, and spectral filters (Scale) from 0.5 to

8.00 Cycle/Octave, were used to represent the spectro-temporal modulations of the sound.

2.3 Models of modulation filter

The importance of slow temporal modulations of sound in speech intelligibility has been emphasized

for a long time [15]. Kingsbury et.al. [16] showed the advantage of using modulation spectrogram

in improving the robustness of ASR systems to noise and reverberation. Temporal modulation

filter banks inspired by psycoacoustical experiments [17] have been successfully used in a variety of

audio processing tasks such as automatic speech recognition [18]. Spectro-Temporal features have

recently also been used in speech enhancement [19], speech coding [20] and speech recognition to

provide more robustness [21].
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Chapter 3

Multilinear Tensor Analysis

The output of auditory model is a multidimensional array in which modulations are presented

along the four dimensions of time, frequency, rate and scale. For our purpose here, the time

axis is averaged over a given time window which results in a three mode tensor for each time

window with each element representing the overall modulations at corresponding frequency, rate

and scale. In order to obtain a good resolution, sufficient number of filters in each mode are

required. As a consequence, the dimensions of the feature space are very large (5 (scale filters)×12

(rate filters)×128 (frequency channels)=7680). Working in this feature space directly is impractical

because a sizable number of training samples is required to characterize the space adequately

[22]. Traditional dimensionality reduction methods like principal component analysis (PCA) are

inefficient for multi-dimensional data because they treat all the elements of the feature space

similarly without considering the varying degrees of redundancy and discriminative contribution

of each mode.

Instead, it is possible using multidimensional PCA to tailor the amount of reduction in each

subspace independently of others based on the relative magnitude of corresponding singular values.

Furthermore, it is also feasible to reduce the amount of training samples and computational load

significantly since each subspace is considered separately. We shall demonstrate here the utility of

a generalized method for the PCA of multidimensional data based on higher-order singular-value

decomposition (HOSVD) [23].

3.1 Basic tensor definitions

Multilinear algebra is the algebra of tensors. Tensors are generalizations of scalars (no indices),

vectors (single index), and matrices (two indices) to an arbitrary number of indices. They pro-

vide a natural way of representing information along many dimensions. Substantial results have

already been achieved in this field. Tucker first formulated the three-mode data model [24], while

Kroonenberg formulated alternating least-square (ALS) method to implement three mode factor

analysis [25]. Lathauwer et al. established a generalization of singular value decomposition (SVD)

to higher order tensors [23], and also introduced an iterative method for optimizing the best rank

(R1, R2, , RN ) approximation of tensors [26]. Tensor algebra and HOSVD have been applied suc-

cessfully in wide variety of fields including Higher-order-only ICA [27], face recognition [28] and

selective image compression along a desired dimension [29].

A Tensor A ∈ RI1×I2×...×IN is a multi-index array of numerical values whose elements are

denoted by ai1i2...iN
. Matrix column vectors are referred to as mode-1 vectors and row vectors as

mode-2 vectors. The mode-n vectors of an Nth order tensor A are the vectors with In components

obtained from A by varying index In while keeping the other indices fixed. Matrix representation

8



of a tensor is obtained by stacking all the columns (rows,. . . ) of the tensor one after the other. The

mode-n matrix unfolding of A ∈ RI1×I2×...×IN denoted by A(n) is the (In × I1I2...In−1In+1...IN )

matrix whose columns are n−mode vectors of tensor A.

An Nth-order tensor A has rank−1 when it is expressible as the outer product of N vectors:

A = U1 ◦ U2 ◦ ... ◦ UN (3.1)

The rank of an arbitrary Nth-order tensor A, denoted by r = rank(A) is the minimal number

of rank−1 tensors that yield A in a linear combination. The n−rank of A ∈ RI1×I2×...×IN denoted

by rN , is defined as the dimension of the vector space generated by the mode − n vectors

Rn = rankn(A) = rank(A(n)) (3.2)

The n−mode product of a tensor A ∈ RI1×I2×...×IN by a matrix U ∈ RJn×In , denoted by A×n U ,

is an (I1 × I2 × ... × Jn... × IN )-tensor given by

(A ×n U)i1i2...jn...iN
=

∑

in

ai1i2...in...iN
ujnin

(3.3)

for all index values.

3.2 Multilinear SVD and PCA

Matrix Singular-Value Decomposition orthogonalizes the space spanned by column and rows of

the matrix. In general, every matrix D can be written as the product

D = U · S · V T = S ×1 U ×2 V (3.4)

in which U and V are unitary matrices contains the left- and right-singular vectors of D. S is a

pseudo-diagonal matrix with ordered singular values of D on the diagonal.

If D is a data matrix in which each column represents a data sample, then the left singular

vectors of D (matrix U) are the principal axes of the data space. Keeping only the coefficients

corresponding to the largest singular values of D (Principal Components or PCs) is an effective

means of approximating the data in a low-dimensional subspace. To generalize this concept to

multidimensional data, we consider a generalization of SVD to tensors [23] . Every (I1×I2×...×IN )-

tensor A can be written as the product

A = S ×1 U (1) ×2 U (2)... ×N U (N) (3.5)

in which U (n) is a unitary matrix containing left singular vectors of mode-n unfolding of tensor A,

and S is a (I1 × I2 × ... × IN ) tensor which has the properties of all-orthogonality and ordering.

The matrix representation of the HOSVD can be written as

A(n) = U (n) · S(n) · (U (n+1) ⊗ ...

⊗U (N) ⊗ U (1) ⊗ U (2) ⊗ ... ⊗ U (n−1))T (3.6)

9



in which ⊗ denotes the Kronecker product. The above equation can also be expressed as

A(n) = U (n) · Σ(n) · V (n)T
(3.7)

in which Σ(n) is a diagonal matrix made by singular values of A(n) and

V (n) = (U (n+1) ⊗ ... ⊗ U (N) ⊗ U (1) ⊗ U (2) ⊗ ... ⊗ U (n−1)) (3.8)

This shows that, at matrix level, the HOSVD conditions lead to an SVD of the matrix

unfolding. Lathauwer et al. shows [23] that the left-singular matrices of the different matrix

unfolding of A correspond to unitary transformations that induce the HOSVD structure which in

turn ensures that the HOSVD inherits all the classical space properties from the matrix SVD.

HOSVD results in a new ordered orthogonal bases for representation of the data in subspaces

spanned by each mode of the tensor. Dimensionality reduction in each space is obtained by

projecting data samples on principal axes and keeping only the components that correspond to the

largest singular values of that subspace. However, unlike the matrix case in which the best rank-R

approximation of a given matrix is obtained from the truncated SVD, this procedure does not result

in optimal approximation in the case of tensors. Instead, the optimal best rank-(R1, R2, ...RN )

approximation of a tensor can be obtained by an iterative algorithm in which HOSVD provides

the initial values [26].

3.3 Multi-linear analysis of cortical representation

The auditory model transforms a sound signal to its corresponding time-varying cortical repre-

sentation. Averaging over a given time window results in a cube of data in rate-scale-frequency

space. Although the dimension of this space is large, its elements are highly correlated making

it possible to reduce the dimension significantly using a comprehensive data set, and finding new

multilinear and mutually orthogonal principal axes that approximate the real space spanned by

these data. The assembled training set is described in detail in section 4.1 which contains 1223

samples from speech and non-speech classes. The resulting data tensor D, obtained by stacking

all training tensors is a 5 × 12 × 128 × 1223 tensor. Next, tensor D is decomposed to its mode-n

singular vectors:

D = S ×1 Ufrequency ×2 Urate ×3 Uscale ×4 Usamples (3.9)

in which Ufrequency, Urate and Uscale are orthonormal ordered matrices containing subspace singu-

lar vectors, obtained by unfolding D along its corresponding modes. Tensor S is the core tensor

with the same dimensions as D.

Each singular matrix is then truncated by setting a predetermined threshold so as retain

only the desired number of principal axes in each mode. New sound samples are first transformed

10



Figure 3.1: Illustration of equation 3.10

to their cortical representation, A, and are then projected onto these truncated orthonormal axes

U
′
freq., U

′
rate, U

′
scale (as shown in Figure 3.1):

Z = A ×1 U
′
freq.

T ×2 U
′
rate

T ×3 U
′
scale

T
(3.10)

The resulting tensor Z whose dimension is equal to the total number of retained singular

vectors in each mode thus contains the multilinear cortical principal components of the sound

sample. Z is then vectorized and normalized by subtracting its mean and dividing by its norm to

obtain a compact feature vector for classification.

3.4 Classification

Classification was performed using a Support Vector Machine (SVM) [30][31]. SVMs find the

optimal boundary that separates two classes in such a way as to maximize the margin between

separating boundary and closest samples to it (support vectors). This in general results in improv-

ing generalization from training to test data [30]. Radial basis function (RBF) were used as SVM

kernel.

11



Chapter 4

Experimental results

4.1 Audio Database

An audio database was assembled from five publicly available corpora. Details of the database are

as follows.

Speech samples were taken from TIMIT Acoustic-Phonetic Continues Speech Corpus [32]

which contains short sentences spoken by male and female native English speakers with 8 dialects.

299 different sentences spoken by different speakers (male and female) were selected for training

and 160 different sentences spoken by different speakers (male and female) were selected for test

purpose. Sentences and speakers in training and test sets were also different.

To make the non-speech class as comprehensive as possible, sounds from animal vocaliza-

tions, music and environmental sounds were assembled together. Animal vocalization were taken

from BBC Sound Effects audio CD collection [33] (263 for training, 139 for test). Music samples

that covered a large variety of musical styles were selected from RWC Genre Database [34] (349

for training, 185 for test). Environmental sounds were assembled from Noisex [35] and Auroa [36]

databases which have stationary and non-stationary sounds including white and pink noise, fac-

tory, jets, destroyer engine, military vehicles, cars and several speech babble recorded in different

environments like restaurant, airport and exhibition (312 for training, 167 for test).

The training set included 299 speech and 924 non-speech samples and the test set consisted

of 160 speech and 491 non-speech samples. The length of each utterance in training and test is

equal to the selected time window (e.g. one one-second sample per sound file).

4.2 Number of principal components

The number of retained principal components (PCs) in each subspace is determined by analyzing

the contribution of each PC to the representation of associated subspace. The contribution of jth

principal component of subspace Si whose corresponding eigenvalue is λi,j is defined as

αi,j =
λi,j∑Ni

k=1 λi,k

(4.1)

where Ni denotes the dimension of Si (128 for frequency, 12 for rate and 5 for scale). The number of

PCs in each subspace then can be specified by including only the PCs whose α is larger than some

threshold. Figure 4.1 shows the number of principal components in each of the three subspaces as a

function of threshold on the percentage of contribution. In Figure 4.2, the classification accuracy is

demonstrated as a function of threshold. Based on this analysis, the minimum number of principal

components to achieve 100% accuracy was specified to be 7 for frequency, 5 for rate and 4 for scale

subspace which includes PCs that have contribution of 3.5% or more.
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Figure 4.1: Total number of retained Principal Components (PCs) in each of the subspaces of

frequency, rate and scale as a function of threshold on contribution percentage. The Y axis

indicates the number of PCs in each subspace that have contribution (α from equation 4.1) more

than the threshold.
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Figure 4.2: Percentage of correctly classified samples as a function of threshold on contribution

percentage.

4.3 Comparison and results

To evaluate the robustness and the ability of system to generalize to unseen noisy conditions,

we conducted a comparison with two state-of-the-art studies, one from generic-audio analysis

community by Scheirer and Slaney [1] and one from automatic-speech-recognition community by

Kingsbery et al. [2].

Multifeature [1]: The first system, which was originally designed to distinguish speech

13



Auditory Model Multifeature[1] Voicing-Energy [2]

Correct Speech 100% 99.3% 91.2%

Correct Non-speech 100% 100% 96.3%

Table 4.1: Percentage of correct classification for window length of one second

Auditory Model Multifeature[1] Voicing-Energy[2]

Correct Speech 99.4% 98.7% 90.0%

Correct Non-speech 99.4% 99.5% 94.9%

Table 4.2: Percentage of correct classification for window length of half a second

from music, derived thirteen features in time, frequency and cepstrum domain to represent speech

and music. The features were 4Hz modulation energy, percentage of ”low-energy” frames, spectral

rolloff point, spectral centroid, spectral flux, zero-crossing rate, cepstrum resynthesis residual and

their variances. The thirteenth feature, pulse metric, was neglected for this comparison since its

latency was too long (more than two seconds).

In original system, two models were formed for speech and music in the feature space.

Classification was performed using a likelihood estimate of a given sample for each model.To elim-

inate performance differences due to the use of different classifiers, an SVM with an RBF kernel

was used in all comparisons. Our implementation of the system was first evaluated on the original

database and similar or better results were obtained with SVM compared to the original publica-

tion [1].

Voicing-Energy [2]: A second system was tested that was based on an audio segmentation

algorithm from the ASR work [2]. In the proposed technique, the feature vector used in the seg-

mentation incorporated information about the degree of voicing and frame-level log-energy value.

Degree of voicing is computed by finding the maximum of autocorrelation in a specified range,

whereas log-energy was computed for every short frame of sound weighted with a hanning window.

Several frames of these features were then concatenated and sorted in increasing order, and the re-

sulting feature vector was reduced to two dimensions by a linear discriminant analysis followed by

diagonalizing transform. The reason for sorting the elements was to eliminate details of temporal

evolutions which were not relevant for this task. Our evaluation of Kingsbury’s system suggested

that direct classification of the original sorted vector with an SVM classifier similar to the other

two systems outperformed the one in reduced dimension. For this reason, the classification was

performed in the original feature space.

Our auditory model and the two benchmark algorithms from the literature were trained

and tested on the same database. One of the important parameters in any such speech detec-

14
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Figure 4.3: Effect of window length on the percentage of correctly classified speech
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Figure 4.4: Effect of window length on the percentage of correctly classified non-speech

tion/discrimination task is the time window or duration of the signal to be classified, because it

directly affects the resolution and accuracy of the system. Figures 4.3 and 4.4 demonstrate the

effect of window length on the percentage of correctly classified speech and non-speech. In all

three methods, some features may not give a meaningful measurement when the time window is

too short. The classification performance of the three systems for two window length of 1 and

0.5 second is shown in Tables 4.1 and 4.2. The accuracy of all three systems improve as the time

window increases.

Audio processing systems designed for realistic applications must be robust in a variety of

conditions because training the systems for all possible situations is impractical. A series of tests

were conducted to evaluate the generalization of the three methods to unseen noisy and reverber-

ant sound. Classifiers were trained solely to discriminate clean speech from non-speech and then
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Figure 4.5: Effects of white noise on percentage of correctly classified speech for auditory model,

multifeature[1] and voicing-energy[2] methods.
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Figure 4.6: Effects of white noise on percentage of correctly classified non-speech for auditory

model, multifeature[1] and voicing-energy[2] methods.

tested in three conditions in which speech was distorted with noise or reverberation. In each test,

the percentage of correctly detected speech and non-speech was considered as the measure of per-

formance. For the first two tests, white and pink noise were added to speech with specified signal

to noise ratio (SNR). White and pink noise were not included in the training set as non-speech

samples. SNR was measured from the average power of speech and noise:

SNR = 10 log
Ps

Pn
(4.2)

Figures 4.11 and 4.12 illustrate the effect of white and pink noise on the average spectro-

temporal modulations of speech. The spectro-temporal representation of noisy speech preserves
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Figure 4.7: Effects of pink noise on percentage of correctly classified speech for auditory model,

multifeature[1] and voicing-energy[2] methods.

−20 −10 0 10 20 30 40 50 60
70

75

80

85

90

95

100

P
er

ce
nt

ag
e 

of
 c

or
re

ct
ly

 c
la

ss
ifi

ed
 n

on
−

sp
ee

ch

SNR (dB)

Auditory Model
Multifeature [1]
Voicing−Energy [2]

Figure 4.8: Effects of pink noise on percentage of correctly classified non-speech for auditory model,

multifeature[1] and voicing-energy[2] methods.

the speech specific features (e.g. near 4Hz, 2Cyc/Oct) even at SNR as low as 0 dB (Figures 4.11

and 4.12, middle). The detection results for speech in white noise (Figures 4.5, 4.6) demonstrate

that while the three systems have comparable performance in clean conditions, the auditory fea-

tures remain robust down to fairy low SNRs. This pattern is repeated with additive pink noise

although performance degradation for all systems occurs at higher SNRs (Figures 4.7 and 4.8)

because of more overlap between speech and noise energy.

Reverberation is another widely encountered distortion in realistic applications. To exam-

ine the effect of different levels of reverberation on the performance of these systems, a realistic

reverberation condition was simulated by convolving the signal with a random gaussian noise with

17



0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

of
 c

or
re

ct
ly

 c
la

ss
ifi

ed
 s

pe
ec

h

Time Delay (ms)

Auditory Model
Multifeature [1]
Voicing−Energy [2]

Figure 4.9: Effects of reverberation on percentage of correctly classified speech for auditory model,

multifeature[1] and voicing-energy[2] methods.
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Figure 4.10: Effects of reverberation on percentage of correctly classified non-speech for auditory

model, multifeature[1] and voicing-energy[2] methods.

exponential decay. The effect on the average spectro-temporal modulations of speech are shown in

Figure 4.13. Increasing the time delay results in gradual loss of high-rate temporal modulations of

speech. Figures 4.9 and 4.10 demonstrate the effect of reverberation on the classification accuracy.

On the whole, these tests demonstrate the significant robustness of the auditory model.
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Figure 4.11: Effect of white noise on average spectro-temporal modulations of speech for SNRs

−15dB, 0dB and 15dB. The spectro-temporal representation of noisy speech preserves the speech

specific spectro-temporal features (e.g. near 4Hz, 2Cyc/Oct) even at SNR as low as 0 dB.

Figure 4.12: Effects of pink noise on average spectro-temporal modulations of speech for differ-

ent SNRs −15dB, 0dB and 15dB. The speech specific spectro-temporal features (e.g. near 4Hz,

2Cyc/Oct) are preserved even at SNR as low as 0 dB.

Figure 4.13: Effects of reverberation on average spectro-temporal modulations of speech for time

delays 200ms, 400ms and 600ms. Increasing the time delay results in gradual loss of high-rate

temporal modulations of speech.
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Chapter 5

Summary and Conclusions

A Spectro-Temporal Auditory method for audio classification and segmentation has been described,

tested and compared to two state-of-the-art alternative approaches. The method employs features

extracted by a biologically inspired auditory model of auditory processing in the cortex. Unlike

conventional features, auditory based features have multiple-scales of time and spectral resolution.

The drawback of such a representation is its high dimensionality, and hence to utilize it, we applied

an efficient multilinear dimensionality reduction algorithm based on HOSVD of multimodal data.

The performance of the proposed auditory system was tested in noise and reverberation,

and compared favorably with alternative systems, thus demonstrating that the proposed system

generalizes well to novel situations, an ability that is generally lacking in many of today’s audio

and speech recognition and classification systems.

This work is but one in a series of efforts at incorporating multiscale cortical representations

(and more broadly, perceptual insights) in a variety of audio and speech processing applications.

For example, the deterioration of the spectro-temporal modulations of speech in noise and re-

verberation (e.g. Figures 4.11,4.12 and 4.13), or indeed under any kind of linear or non-linear

distortion, can be used as an indicator of predicted speech intelligibility [14]. Similarly, the multi-

scale rate-scale-frequency representation can account for the perception of complex sounds and

perceptual thresholds in a variety of settings [37]. Finally, the auditory model can be adapted and

expanded for a wide range of applications such as the speech enhancement [19], or the efficient

encoding of speech and music [20].
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