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In an attempt to capture the complexity of the economic system many 

economists were led to the formulation of complex nonlinear rational expectations 

models that in many cases can not be solved analytically. In such cases, numerical 

methods need to be employed. In chapter one I review several numerical methods that 

have been used in the economic literature to solve non-linear rational expectations 

models. I provide a classification of these methodologies and point out their strengths 

and weaknesses. I conclude by discussing several approaches used to measure 

accuracy of numerical methods. 

In the presence of uncertainty, the multistage stochastic optimization literature 

has advanced the idea of decomposing a multiperiod optimization problem into many 

subproblems, each corresponding to a scenario. Finding a solution to the original 

problem involves aggregating in some form the solutions to each scenario and hence 

its name, scenario aggregation. In chapter two, I study the viability of scenario 

aggregation methodology for solving rational expectation models. Specifically, I 

apply the scenario aggregation method to obtain a solution to a finite horizon life 



   

cycle model of consumption. I discuss the characteristics of the methodology and 

compare its solution to the analytical solution of the model. 

A growing literature in macroeconomics is tweaking the unbounded 

rationality assumption in an attempt to find alternative approaches to modeling the 

decision making process, that may explain observed facts better or easier. Following 

this line of research, in chapter three, I study the impact of bounded rationality on the 

level of precautionary savings in a finite horizon life-cycle model of consumption. I 

introduce bounded rationality by assuming that the consumer does not have either the 

resources or the sophistication to consider all possible future events and to optimize 

accordingly over a long horizon. Consequently, he focuses on choosing a 

consumption plan over a short span by considering a limited number of possible 

scenarios. While under these assumptions the level of precautionary saving in many 

cases is below the level that a rational expectations model would predict, there are 

also parameterizations of the model for which the reverse is true. 
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Chapter I. Review of Methods Used for Solving Non-Linear 

Rational Expectations Models 

 

I.1. Introduction 

Limitations faced by most linear macroeconomic models coupled with the 

growing importance of rational expectations have led many economists, in an attempt to 

capture the complexity of the economic system, to turn to non-linear rational expectation 

models. Since the majority of these models can not be solved analytically, researchers 

have to employ numerical methods in order to be able to compute a solution. 

Consequently, the use of numerical methods for solving nonlinear rational expectations 

models has been growing substantially in recent years. 

For the past decade, several strategies have been used to compute the solutions to 

nonlinear rational expectations models. The available numerical methods have several 

common features as well as differences, and depending on the criteria used, they may be 

grouped in various ways. Following is an ad-hoc categorization1 that will be used 

throughout this chapter.  

The first group of methods I consider has as a common feature the fact that the 

assumption of certainty equivalence is used at some point in the computation of the 

solution.  

                                                 
1 This classification draws on Binder et al. (2000), Burnside (1999.), Marcet et al. (1999), 
McGrattan (1999), Novales et al. (1999), Uhlig (1999) and Judd (1992, 1998). 
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The second group of methods has as a common denominator the use of a discrete 

state space, or the discretization of an otherwise continuous space of the state variables2. 

The methods falling into this category are often referred to as discrete state-space 

methods. They work well for models with a low number of state variables. 

The next set of methods is generically known as the class of perturbation 

methods. Since perturbation methods make heavy use of local approximations, in this 

presentation, I group them along with some other techniques that use local 

approximations under the heading of local approximations and perturbation methods. 

The fourth group, labeled here as projection methods consists of a collection of 

methodologies that approximate the true value of the conditional expectations of 

nonlinear functions with some finite parameterization and then evaluate the initially 

undetermined parameters. Several methods included in this group have recently become 

very popular in solving nonlinear rational expectations models containing a relatively 

small number of state variables3.   

The layout of the chapter contains the presentation of a generic non-linear rational 

expectations model followed by a description of the methods mentioned above. 

Throughout the chapter, special cases of the model described in section 2 are used to 

show how one can apply the methods discussed here.  

 

                                                 
2 Examples include Baxter et al. (1990), Christiano (1990a, 1990b), Coleman (1990), 
Tauchen (1990) and Taylor and Uhlig (1990), Tauchen and Hussey (1991), Deaton and 
Laroque (1992), and Rust (1996) 

3 This approach is used, for example, by Binder et al. (2000), Christiano and Fisher 
(2000), Judd (1992) and Miranda and Rui (1997). 
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I.2. Generic Model 

I start by presenting a generic model in discrete time that will be used along the 

way to exemplify the application of some of the methods discussed in this chapter. I 

assume that the problem consists of maximizing the expected present discounted value of 

an objective function: 

 ( ) 0
0

max
t

t
tu t

E uβ π
∞

=

⎧ ⎫Ω⎨ ⎬
⎩ ⎭
∑  (1.2.1) 

subject to 

 ( )1, ,t t t tx h x u y-=  (1.2.2) 

 1( , ) 0t tf x x − ≥  (1.2.3) 

where tu  and tx  denote the values of the control and state variables u  and x  

respectively, at the beginning of period t . ty  is a vector of forcing variables, (0,1)β ∈  a 

constant discount factor while π  represents the objective function. I further assume that 

( )π ⋅  is twice continuously differentiable, strictly increasing, and strictly concave with 

respect to tu . ( )0E ⋅ Ω  denotes the mathematical expectations operator, conditional on 

the information set at the beginning of period 0, 0Ω . At any point in time, t , the 

information set is given by { }1 1 1, ,...; , ,...; , ,...t t t t t t tu u x x y y− − −Ω = 4. Finally, ty  is assumed 

to be generated by a first-order process 

  ( )1,t t ty q y z−= ,  (1.2.4) 

                                                 
4 The elements of the information set point to the fact that variables become known at the 
beginning of the period. During the chapter this assumption may change to allow for an 
easier setup of the problem. 
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where the elements of tz  are distributed independently and identically across t  and are 

drawn from a distribution with a finite number of parameters. 

The preceding generic optimization problem covers various examples of models 

in economics, including the life-cycle model of consumption under uncertainty with or 

without liquidity constraints, stochastic growth model with or without irreversible 

investment and certain versions of asset pricing models. The present specification does 

not cover models that have more than one control variable. However, some of the 

techniques presented in this chapter could be used to solve such models. 

If the underlying assumptions are such that the Bellman principle holds, one can 

use the Bellman equation method to solve the dynamic programming problem. The 

Bellman equation for the problem described by (1.2.1) - (1.2.2) is given by 

 ( ) ( ) ( )( ){ }1 1 1, max , , , |
t

t t t t t t t tu
V x y u E V h x u y yπ β + + +⎡ ⎤= + Ω⎣ ⎦  (1.2.5) 

where ( )V ⋅  is the value function. An alternative way to solve the model is to use the 

Euler equation method. If u  can be expressed as a function of x , i.e. ( )1, ,t t t tu g x x y-= , 

the Euler equation for period t  for the same problem is: 

 
( ) ( )

( ) ( ){ }

' '
1 1

' '
1 1 1 1

, , , ,

                    , , , , | 0
t

t

u t t t x t t t

u t t t x t t t t

g x x y g x x y

E g x x y g x x y

π

β π

− −

+ + + +

+⎡ ⎤⎣ ⎦

+ Ω =⎡ ⎤⎣ ⎦
  (1.2.6) 

So far, it has been assumed that the inequality constraint was not binding. If one 

considers the possibility of constraint (1.2.3) being binding, then one must employ either 

the Kuhn-Tucker method or the penalty function method. In the case of the former, the 

Euler equation for period t  becomes: 

 
( ) ( ) ( ) ( )

( ) ( ){ }

' ' ' '
1 1 1 1 1

' '
1 1 1 1

, , , , , , +

                               , , , , | 0
t t t

t

u t t t x t t t t x t t t x t t

u t t t x t t t t

g x x y g x x y f x x f x x

E g x x y g x x y

π µ µ

β π

− − − + +

+ + + +

+ +⎡ ⎤⎣ ⎦

+ Ω =⎡ ⎤⎣ ⎦
 (1.2.7) 
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where tµ  and 1tµ +  are Lagrange multipliers. The additional Kuhn-Tucker conditions are 

given by: 

 ( ) ( )1 10,    , 0,     , 0t t t t t tf x x f x xµ µ− −≥ ≥ =  (1.2.8) 

Alternatively, one can use penalty methods to account for the inequality constraint. One 

approach is to modify the objective function by introducing a penalty term5. Then the 

new objective function becomes: 

 ( ) ( )( )3

1 0
0

min , ,0t
t t t t

t

E u f x xb p m
•

-
=

Ï ¸È ˘+ WÌ ˝Í ˙Î ˚Ó ˛
Â  

where µ  is the penalty parameter. Consequently, the Bellman equation is given by: 

 ( ) ( ) ( )( ) ( )( ){ }3
1 1 1 1, max min , ,0 , , , |

t
t t t t t t t t t tu

V x y u f x x E V h x u y yπ µ β− + + +⎡ ⎤= + + Ω⎣ ⎦  

  (1.2.9) 

Let ( )* ,t t tu d x y=  denote the solution of the problem. When an analytical solution 

for ( )d ⋅  can not be computed, numerical techniques need to be used. Three main 

approaches have been used in the literature to solve the problem (1.2.1) - (1.2.4) and to 

obtain an approximation of the solution. First approach consists of modifying the 

specification of the problem (1.2.1) - (1.2.2) so that it becomes easier to solve, as is the 

case with the linear quadratic approximation6. Second approach is to employ methods 

that seek to approximate the value and policy functions by using the Bellman equation7. 

                                                 
5 This approach is used by McGrattan (1990). 

6 This approach has been used, among others, by Christiano (1990b) and McGrattan 
(1990). 

7 Examples of this approach are: Christiano (1990a), Rust (1997), Santos and Vigo 
(1998), Tauchen (1990). 
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Finally, the third approach focuses on approximating certain terms appearing in the Euler 

equation such as decision functions or expectations8.  

These approaches have shaped the design of numerical algorithms used in solving 

dynamic non-linear rational expectation models. In the next few sections, I will present 

several of the numerical methods employed by researchers in their attempt to solve 

functional equations such as the Euler and Bellman equations (1.2.5) - (1.2.9) presented 

above. 

 
 

I.3. Using Certainty Equivalence; The Extended Path Method 

Certainty equivalence has been used especially for its convenience since it may 

allow researchers to compute an analytical solution for their models. It has also been used 

to compute the steady state of a model as a prerequisite for applying some linearization or 

log-linearization around its equilibrium state9 or to provide a starting point for more 

complex algorithms10. One methodology that received a lot of attention in the literature is 

the extended path method developed by Fair and Taylor (1983). Solving a model such as 

(1.2.1) - (1.2.3) usually leads to a functional equation such as a Bellman or an Euler 

equation. 

                                                 
8 Examples of this approach are Binder et al. (2000), Christiano and Fisher (2000), Judd 
(1992), Marcet (1994), Mc-Grattan (1996). 

9 This is the case in the linear quadratic approach where the law of motion is linearized 
and the objective function is replaced by a quadratic approximation around the 
deterministic steady state. 

10 Certainty equivalence has also been used to provide starting values or temporary values 
in algorithms used to solve models leading to nonlinear stochastic equations as in early 
work by Chow (1973, 1976), Bitros and Kelejian (1976) and Prucha and Nadiri (1984). 
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Let  

 ( ){ } ( )( )'
1 1 1 1 1 1 1, , , , , , , , ' , , , 0

tt t t t t t t t t t x t t t tF x x u u y y E h x x y h E h x x yπ π− − − + + + + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

  (1.3.1) 

denote such a functional equation for period t . As before, tx  is the state variable, tu  is 

the control variable, ty  is a vector of forcing variables, ( )π ⋅  is the objective function, 'π  

is the derivative of π  with respect to the control variable, and tE  is the conditional 

expectations operator based on information available through period t . F  is a function 

that may be nonlinear in variables and expectations. For numerous models if the 

expectations terms appearing in F  were known, (1.3.1) could be easily solved. Since that 

is not the case, the approach of the extended path method is to first set current and future 

values of the forcing variables to their expected values. This is equivalent to assuming 

that all future values of tz  in equation (1.2.4) are zero. Then equation (1.3.1) becomes: 

( ) ( )( )'
1 1 1 1 1 1 1, , , , , , , , ' , , , ,... 0

tt t t t t t t t t t x t t t tF x x u u y y h x x E y h h x x E yπ π− − − + + + + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦   

           (1.3.2) 

Then, the idea is to expand the horizon and iterate over solution paths. Let us consider an 

example to see how this method can be applied. 

I.3.1. Example11 

Consider the following problem where the social planner or a representative agent 

maximizes an objective function 

 ( ) 0
0

max
t

t
tu t

E ub p
•

=

Ï ¸WÌ ˝
Ó ˛
Â  (1.3.3) 

                                                 
11 The application of the extended path method in this example draws to some extent on 
the model presented in Gagnon (1990). 
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subject to 

 ( )1, ,t t t tx h x u y-=  (1.3.4) 

where ty  is a Gaussian ( )1AR  process with the law of motion 1t t ty y zr -= +  where tz  

is i.i.d. ( )20,N s . It is further assumed that u  can be expressed as a function of x , i.e. 

( )1, ,t t t tu g x x y-= . Then the Euler equation for period t  is: 

 
( ) ( )

( ) ( ){ }
1 1

1 1 1 1

0 ' , , ' , ,

     ' , , ' , ,
t

t

t t t x t t t

t t t x t t t t

g x x y g x x y

E g x x y g x x y

π

β π

− −

+ + + +

= ⋅⎡ ⎤⎣ ⎦

+ ⋅ Ω⎡ ⎤⎣ ⎦
 (1.3.5) 

If the expectation term were known in equation (1.3.5), it would be easy to find a 

solution. The idea of the extended path method is to expand the horizon and then iterate 

over solution paths. As in Fair and Taylor (1983), I consider the horizon ,..., 1t t k+ +  and 

assume that 1tx -  and 1ty -  are given and that 0t sz + =  for 1,..., 1s k= + . Following is an 

algorithm that would implement the extended path methodology. The first step is to 

choose initial values for t sx +  and t sy +  for 1,..., 1s k= +  and denote them by  ˆt sx +  and 

ˆt sy + . Then, for period t , the Euler equation becomes: 

 
( ) ( )

( ) ( )
1 1

1 1 1 1

0 ' , , ' , ,

ˆ ˆ ˆ ˆ     ' , , ' , ,
t

t

t t t x t t t

t t t x t t t

g x x y g x x y

g x x y g x x y

π

βπ
− −

+ + + +

= ⋅⎡ ⎤⎣ ⎦
+ ⋅⎡ ⎤⎣ ⎦

 (1.3.6) 

Similarly, for period t s+ , the Euler equation is given by: 

 
( ) ( )

( ) ( )
1 1

1 1 1 1

0 ' , , ' , ,

ˆ ˆ ˆ ˆ     ' , , ' , ,
t s

t s

t s t s t s x t s t s t s

t s t s t s x t t s t s

g x x y g x x y

g x x y g x x y

π

βπ
+

+

+ + − + + + − +

+ + + + + + + + +

= ⋅⎡ ⎤⎣ ⎦
+ ⋅⎡ ⎤⎣ ⎦

 (1.3.7) 

In addition,  

 1t s t s t sy y zr+ + - += +  (1.3.8) 

 ( )1, ,t s t s t s t su g x x y+ + + - +=  (1.3.9) 
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Therefore, for period t s+ , equations (1.3.7) - (1.3.9) define a system where 1t sx + - , 1t sy + - , 

1ˆt sx + + , 1ˆt sy + +  are known so one can determine the unknowns t sx + , t sy +  and t su + . Let j
t sx + , 

j
t sy +  and j

t su +  denote the solutions of the system for 0,..., 1s k= + , where j  represents the 

iteration for a fixed horizon, in this case ,..., 1t t k+ + . If the solutions { } 1

0

kj
t s s

x
+

+ =
, { } 1

0

kj
t s s

y
+

+ =
 

and { } 1

0

kj
t s s

u
+

+ =
 obtained in iteration j  are not satisfactory then proceed with the next 

iteration where { } { }1 11

1 1
ˆ

k kj j
t s t ss s

x x
+ ++

+ += =
= , { } { }1 11

1 1
ˆ

k kj j
t s t ss s

y y
+ ++

+ += =
= . Notice that the horizon remains 

the same for iteration 1j + . The iterations will continue until a satisfactory solution is 

obtained. At this point, the methodology calls for the extension of the horizon without 

modifying the starting period. Fair and Taylor extend the horizon by a number of periods 

that is limited to the number of endogenous variables. This is in essence an ad-hoc rule. 

In the present example, the horizon is extended by 2 periods, that is, ,..., 3t t k+ + . The 

same steps are followed for the new horizon with the exception of the end criterion, 

which should consist of a comparison between the last obtained solution, using the 

,..., 3t t k+ +  horizon, and the solution provided using the previous horizon, ,..., 1t t k+ + . 

The expansion of the horizon continues until a satisfactory solution is obtained. At that 

point, the procedure will start over with a new starting period and a new horizon. In our 

example the next starting period should be 1t +  and the initial horizon 1,..., 2t t k+ + + . 

One of the less mentioned caveats of this method is that no general convergence 

proofs for the algorithm are available. In addition, the method relies on the certainty 

equivalence assumption even though the model is nonlinear. Since expectations of 

functions are treated as functions of the expectations in future periods in equation (1.3.2), 
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the solution is only approximate unless function F  is linear. This assumption is similar 

to the one used in the case of linear-quadratic approximation to rational expectations 

models that has been proposed, for example, by Kydland and Prescott (1982).  

In the spirit of Fair and Taylor, Fuhrer and Bleakley (1996), following an 

algorithm from an unpublished paper by Anderson and Moore (1986), sketch a 

methodology for finding the solution for nonlinear dynamic rational expectations models. 

 

I.3.2. Notes on Certainty Equivalence Methods 

 All the methods that use certainty equivalence either as a main step or as a 

preliminary step in finding a solution, incur an approximation error due to the assumption 

of perfect foresight. The magnitude of this error depends on the degree of nonlinearity of 

the model being solved. Fair (2003), while acknowledging its limitations, argues that the 

use of certainty equivalence may provide good approximations for many 

macroeconometric models. 

In the case of the extended path algorithm, the error propagates through each level 

of iteration and therefore it forces the use of strong convergence criteria. Due to this fact, 

the extended path algorithm tends to be computationally intensive. Other methodologies 

that only use certainty equivalence as a preliminary step as in the case of linearization 

methods or linear quadratic approaches are not subject to the same computational burden. 

In conclusion, while there are cases where certainty equivalence may be used to 

obtain good approximations, one needs to be careful when using this methodology since 

there are no guarantees when it comes to accuracy. 
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I.4. Local Approximation and Perturbation Methods 

 Economic modeling problems have used a variety of approximation methods in 

the absence of a closed form solution. One of the most used approximation methods, 

coming in different flavors, is the local approximation. In particular, the first order 

approximation has been extensively used in economic modeling. Formally, a function 

( )a x  is a first order approximation of ( )b x  around 0x  if 0 0( ) ( )a x b x=  and the 

derivatives at 0x  are the same, 0 0'( ) '( )a x b x= . In certain instances, first order 

approximations may not be enough so one would have to compute higher order 

approximations. Perturbation methods often use high order local approximation and 

therefore rely heavily on two very well own theorems, Taylor’s theorem and implicit 

function theorem.  

 

I.4.1. Regular and General Perturbation Methods 

Perturbation methods are formally addressed by Judd (1998). In this section, 

following Judd’s framework, I try to highlight the basic idea of regular perturbation 

methods. I start by assuming that the Euler equation of the model under consideration is 

given by:  

 ( ), 0F u ε =  (1.4.1) 

where ( )u ε  is the policy I want to solve for and ε  is a parameter. Further on, I assume 

that a solution to (1.4.1) exists, that F  is differentiable, ( )u ε  is a smooth function and 

( )0u  can be easily determined or is known. Differentiating equation (1.4.1) leads to:   

 ( )( ) ( ) ( )( ), ' , 0uF u u F uεε ε ε ε ε+ =  (1.4.2) 
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Making  0ε =  in equation (1.4.2) allows one to compute ( )' 0u : 

 ( ) ( )( )
( )( )
0 ,0

' 0
0 ,0u

F u
u

F u
ε= −  (1.4.3) 

The necessary condition for the computation of ( )' 0u  is that ( )( )0 ,0 0uF u ≠ . Assuming 

that indeed ( )( )0 ,0 0uF u ≠ , it means that now ( )' 0u  is known and one can compute the 

first order Taylor expansion, of ( )u ε  around 0ε = : 

  ( ) ( ) ( )( )
( )( )
0 ,0

0
0 ,0u

F u
u u

F u
εε ε≅ −  (1.4.4) 

This is a linear approximation of ( )u ε  around 0ε = . In order to be able to compute 

higher order approximations of ( )u ε  one needs to know at least the value of ( )'' 0u . That 

can be found by differentiating (1.4.2): 

 ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )
( )( )

2
0 ,0 ' 0 2 0 ,0 ' 0 0 ,0

'' 0
0 ,0

uu u

u

F u u F u u F u
u

F u
ε εε+ +

= −  (1.4.5) 

The necessary condition for the computation of ( )'' 0u  is, once again, that 

( )( )0 ,0 0uF u ≠ . In addition, second order derivatives shall exist. Then the second order 

approximation of ( )u ε  around 0ε =  is given by: 

( ) ( ) ( )( )
( )( )

( )( ) ( )( ) ( )( ) ( ) ( )( )
( )( )

2

20 ,0 0 ,0 ' 0 2 0 ,0 ' 0 0 ,010
20 ,0 0 ,0

uu u

u u

F u F u u F u u F u
u u

F u F u
ε ε εεε ε ε

+ +
≅ − −

 In general, higher order approximations of ( )u ε  can be computed if higher 

derivatives of ( ),F u ε  with respect with u  exist and if ( )( )0 ,0 0uF u ≠ . The advantage 

of regular perturbation methods based on an implicit function formulation is that one 
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directly computes the Taylor expansions in terms of whatever variables one wants to use, 

and that expansion is the best possible asymptotically.  

 

I.4.2. Example 

Consider the following optimization problem 

 ( ) 0
0

max |
t

t
tu t

E ub p
•

=

Ï ¸WÌ ˝
Ó ˛
Â  (1.4.6) 

subject to 
 ( )1 1, ,t t t tx h x u y- -=  (1.4.7) 

with 1t t ty y zε−= + , where tu  is the control variable, tx  is the state variable, e  is a scalar 

parameter and tz  is a stochastic variable drawn from a distribution with zero mean and 

unit variance. tx , tu , e  and tz  are all scalars. The Bellman equation is given by: 

 ( ) ( )( ){ }1 1( ) max , , |
t

t t t t t tu
V x u E V h x u zπ β ε+ +⎡ ⎤= + Ω⎣ ⎦  (1.4.8) 

Then the first order condition is:  

 ( ) ( )( ) ( )1 10 ' , , , ,u t t t t u t t tu E V h x u z h x u zπ β ε ε+ +⎡ ⎤= + ⎣ ⎦  (1.4.9) 

Differentiating the Bellman equation with respect to tx , one obtains: 

 ( )( ) ( )' '
1 1( ) , , , ,t t t t x t t tV x E V h x u z h x u zβ ε ε+ +⎡ ⎤= ⎣ ⎦  (1.4.10) 

Let the control law ( ),U x ε  be the solution of this problem. Then the above equation 

becomes: 

( )( )( )' '( ) , , , xV x E V h x U x z hβ ε ε⎡ ⎤= ⎣ ⎦  

 The idea is to first solve for steady state in the deterministic case, which here is 

equivalent to 0e = , and then find a Taylor expansion for ( ),U x ε  around 0e = . 
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Assuming that there exists a steady state defined by ( )** ,ux  such that ( )* * *,x h x u= ,  one 

can use the following system to obtain steady state solutions:  

 ( )* * *,x h x u=  (1.4.11) 

 ( ) ( )( ) ( )* * * * *0 ' , ,u uu V h x u h x up b= +  (1.4.12) 

 ( ) ( )( ) ( )* * * * *' ' , ,xV x V h x u h x ub=  (1.4.13) 

 ( ) ( ) ( )* * *V x u V xp b= +  (1.4.14) 

Further assuming local uniqueness and stability for the steady state, equations (1.4.11)-

(1.4.14) provide the solutions for the four steady state quantities ( )* * *, , ,x u V x  and 

( )*'V x . Given that the time subscript for all variables is the same, I drop it for the 

moment. Going back to equations (1.4.9) - (1.4.10), in the deterministic case, that is, for 

0ε = , one obtains: 

 ( )( ) ( )( ) ( )( )0 ' , ,u uU x V h x U x h x U xπ β ⎡ ⎤= + ⎣ ⎦  (1.4.15) 

 ( )( ) ( )( )' '( ) , ,xV x V h x U x h x U xβ ⎡ ⎤= ⎣ ⎦  (1.4.16) 

Differentiating (1.4.15) and (1.4.16) with respect to x  yields 

 ( )( ) ( )( )' ' '0 " 'uu x x u x u ux uu xU V h h h U h V h h h Uπ β β= + + + +  (1.4.17) 

 ( )( ) ( )( )' '" " 'x u x x xx xu xV V h h h U h V h h h Uβ β= + + +  (1.4.18) 

Therefore, the steady state version of the system (1.4.17) - (1.4.18) is given by: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
* * ' * * * *

* * ' * * * * * * * * ' *

0 , " ,

, , ' , ,

uu x x

u x u ux uu x

x u U x V x h x u

h x u U x h x u V x h x u h x u U x

p b

b

È= + Î
˘ È ˘+ + +˚ Î ˚

 (1.4.19) 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
* * * * * * ' * * *

* * * * * ' *

" " , , ,

' , ,

x u x x

xx xu x

V x V x h x u h x u U x h x u

V x h x u h x u U x

b

b

È ˘= +Î ˚
È ˘+ +Î ˚

 (1.4.20) 

These equations define a quadratic system for the unknowns ( )*" xV  and ( )' *
xU x . 
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Going back to the stochastic case, the first order condition with respect to u  is given by: 

 ( )( ) ( )( )( ) ( )( ){ }1 1  0 , ' , , , , , , |u t u t tU x E V h x U x z h x U x zπ ε β ε ε ε ε+ += + Ω (1.4.21) 

Taking the derivative of the Bellman equation with respect to x  yields: 

 ( )( )( ) ( )( ){ }' '
1 1( ) , , , , , , |t x t tV x E V h x U x z h x U x zb e e e e+ += W  (1.4.22) 

In order to obtain a local approximation of the control law around 0e = , its derivatives 

with respect to e  must exist and be known. To find these values one needs to 

differentiate equations (1.4.21) - (1.4.22) with respect to e , make 0ε =  and solve the 

resulting system for the values of the derivatives of U  with respect to e  when 0ε = , 

i.e., for ( )' * , 0U xε . Once that value is found, one can compute a Taylor expansion for 

( ),U x ε  around ( )*,0x . 

If the model requires the addition of an inequality constraint such as (1.2.3) which 

could be the representation of a liquidity constraint or a gross investment constraint, the 

Bellman equation (1.4.8) becomes:  

 ( ) ( )( ) ( )( ){ }3
1( ) max min , ,0 , , |

t
t t t t t t t tu

V x u f x x E V h x u zπ µ β ε− ⎡ ⎤= + + Ω⎣ ⎦  (1.4.23) 

where µ  is the penalty parameter. 

 

I.4.3. Flavors of Perturbation Methods 

 Economic modeling problems have used a variety of approximation methods that 

may be characterized as perturbation methods. The most common use of perturbation 

methods is the method of linearization around the steady state. Such linearization 

provides a description on how a dynamical system evolves near its steady state. It has 

often been used to compute the reaction of a system to shocks. While the first-order 
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perturbation method exactly corresponds to the solution obtained by standard 

linearization of first-order conditions, one well known drawback of such a solution, 

especially in the case of asset pricing models, is that it does not take advantage of any 

piece of information contained in the distribution of the shocks. Collard and Juillard 

(2001) use higher order perturbation methods and apply a fixed-point algorithm, which 

they call “bias reduction procedure”, to capture the fact that the policy function depends 

on the variance of the underlying shocks. Similarly, Schmitt-Grohé and Uribe (2004) 

derive a second-order approximation to the policy function of a general class of dynamic, 

discrete-time, rational expectations models using a perturbation method that incorporates 

a scale parameter for the standard deviations of the exogenous shocks as an argument of 

the policy function. 

 

I.4.4. Alternative Local Approximation Methods 

 There are also certain local approximations techniques used in the literature that 

may look like perturbation methods when in fact they are not. One frequently used 

approach is to find the deterministic steady state and then to replace the original nonlinear 

problem with a linear-quadratic problem that is similar to the original problem. The 

linear-quadratic problem can then be solved using standard methods. This method differs 

from the perturbation method in that the idea here is to replace the nonlinear problem 

with a linear-quadratic problem, whereas the perturbation approach focuses on computing 

derivatives of the nonlinear problem. Let me consider again the problem defined by 

equations (1.2.1) - (1.2.2). The idea is to approximate the original problem by a 
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combination of a quadratic objective and a linear constraint, which would take the 

following form: 

  ( )2
0

0

max |
t

t
t tu t

E Q Wu Ruβ
∞

=

⎧ ⎫+ + Ω⎨ ⎬
⎩ ⎭
∑  (1.4.24) 

 1s.t.  t t t tx Ax Bu Cy D−= + + +  (1.4.25) 

where  ,  ,  ,  ,  ,  and Q R W A B C D  are scalars.  

In order to obtain the new specification, the first step is to compute the steady 

state for the deterministic problem (which means 0tz =  in equation (1.2.4)). Therefore, 

one has to formulate the Lagrangian: 

 ( ) ( ){ }1 0
0

, ,t
t t t t t

t
u x h x u yβ π λ

∞

−
=

= − −⎡ ⎤⎣ ⎦∑L  (1.4.26) 

The first order conditions for (1.4.26) is a system of 3  equations with unknowns 

,  and x u λ . The solution of the system represents the steady state, ( )* * *, ,x u λ . The next 

step is to take the second order Taylor expansion for ( )tuπ and first order Taylor 

expansion for ( )1, ,t t th x u y-  around ( )* *
0, ,x u y . Thus,  

 ( ) ( ) ( )( ) ( ) ( )2*
* * * *' "

2
t

t t

u u
u u u u u uπ π π π

−
= + − +  (1.4.27) 

 
( ) ( ) ( )( )

( )( ) ( )( )

* * ' * * *
1 0 0 1

' * * * ' * *
0 0 0

, , , , , ,

                   , , , ,

t t t x t

u t y t

h x u y h x u y h x u y x x

h x u y u u h x u y y y

− −= + − +

+ − + −
 (1.4.28) 

These expansions allow one to identify the parameters ,  ,  ,  ,  ,  and Q R W A B C D . 

Specifically, 

 
( ) ( ) ( )

( ) ( ) ( )

*2
* * * *

*
* * *

' "
2

"
' "          

2

uQ u u u u

u
W u u u R

π π π

π
π π

= − +

= − =

 (1.4.29) 



 

 18 
 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

' * * ' * * ' * *
0 0 0

* * ' * * * ' * * * ' * *
0 0 0 0 0

, ,    , ,    , ,

, , , , , , , ,

x u y

x u y

A h x u y B h x u y C h x u y

D h x u y h x u y x h x u y u h x u y y

= = =

= − − −
 (1.4.30) 

Once the parameters have been identified, the problem can be written in the form 

described by (1.4.24) and (1.4.25) which has a quadratic objective function and linear 

constraints12.  

 If the model needs to account for an additional inequality constraint such as 

(1.2.3), the Lagrangian (1.4.26) becomes 

 ( ) ( ) ( ){ }1 0 1
0

, , ,t
t t t t t t t t

t
u x h x u y f x xβ π λ µ

∞

− −
=

= − − +⎡ ⎤⎣ ⎦∑L  (1.4.31) 

and the additional Kuhn-Tucker conditions have to be taken into account. 

 

I.4.5. Notes on Local Approximation Methods 

The perturbation methods provide a good alternative for dealing with the major 

drawback of the method of linearization around steady state, that is, its lack of accuracy 

in the case of high volatility of shocks or high curvature of the objective function. While 

the first order perturbation method coincides with the standard linearization, the higher 

order perturbation methods offer a much higher accuracy13.  

Some of the local approximation implementations such as the linear-quadratic 

method 14 do fairly well when it comes to modeling movements of quantities, but not as 

                                                 
12 There are some other variations of this approach used in the literature such as 
Christiano (1990b). 

13 See Collard and Juillard (2001) for a study on the accuracy of perturbation methods in 
the case of an asset-pricing model. 

14 Dotsey and Mao (1992), Christiano (1990b) and McGrattan (1990) have documented 
the quality of some implementations of the macroeconomic linear-quadratic approach. 
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well with asset prices. The reason behind this result is that approximation of quantity 

movements depends only on linear-quadratic terms whereas asset-pricing movements are 

more likely to involve higher-order terms.  

 

I.5. Discrete State-Space Methods15 

These methods can be applied in several situations. In the case where the state 

space of the model is given by a finite set of discrete points these methods may provide 

an “exact” solution16. In addition, these methods are frequently applied by discretizing an 

otherwise continuous state space. The use of discrete state-space methods in models with 

a continuous state space is based on the result17 that the fixed point of a discretized 

dynamic programming problem may converge point wise to its continuous equivalent18. 

The discrete state-space methods sometimes prove to be a useful alternative to 

linearization and log-linear approximations to the first order necessary conditions, 

especially for certain model specifications. 

 

                                                 
15 This section draws heavily on Burnside (1999) and on Tauchen and Hussey (1991) 

16 This may be the case in models without endogenous state variables, especially when 
there is only one state variable that follows a simple finite state process. Examples are 
Mehra and Prescott (1985) and Cecchetti, Lam and Mark (1993).  

17 As documented in Burnside (1999), Atkinson (1976) and Baker (1977) present 
convergence results related to the use of discrete state spaces to solve integral equations. 
Results concerning pointwise and absolute convergence of solutions to asset pricing 
models obtained using discrete state spaces are presented in Tauchen and Hussey (1991) 
and Burnside (1993).  

18 The procedure employed by discrete state-space methods in models with a continuous 
state space is sometimes referred to as ‘brute force discretization’. 
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I.5.1. Example. Discrete State-Space Approximation Using Value-Function Iteration 

As before, I consider the following maximization problem: 

 ( ) 0
0

max |
t

t
tu t

E uβ π
∞

=

⎧ ⎫Ω⎨ ⎬
⎩ ⎭
∑  (1.5.1) 

subject to 

 ( )1 , ,t t t tx h x u y+ =  (1.5.2) 

where ty  is a realization from an n -state Markov chain, tu  is the control variable and tx  

is the state variable. Let { }, ,..., n= 1 2 �Y��Y Y Y  be the set of all possible realizations for ty .  

In order to be able to apply the above mentioned methodology one has to establish a grid 

for the state variable. Let the ordered set { }, ,..., k= 1 2X X X X  be the grid for tx . 

Assuming that the control variable tu  can be explicitly determined from equation (1.5.2) 

as a function of tx , 1tx +  and ty , then the dynamic programming problem can be 

expressed as: 

 ( ) ( ){ }
1

1 1 1( , ) max , , , |
t

t t t t t t t tx
V x y x x y E V x yπ β

+
+ + +∈

= + Ω⎡ ⎤⎣ ⎦X
 (1.5.3) 

Let  ( , )t tx yH  be the Cartesian product of Y� and X , that is, the set of all possible 

m n k= ⋅  pairs ( , )i jx y . Formally, { }( , ) ( , ) |  and k n
t t i j i jx y x y x yXH Y= Œ Ã¬ Œ Ã¬ .  

Hence ( , ) k n m
t tx yH Ã¬ ¥¬ = ¬ . If equation (1.5.3) is discretized using the grid given 

by ( , )t tx yH  one can think of function ( )V ⋅  as a point in m¬ . Similarly, the expression 

( ) ( )( )1 1 1, , , |t t t t t tx x y E V x yp b+ + ++ W  can be thought of as a mapping M  from m¬  into 

m¬ . In this context ( )V ⋅  is a fixed point for M , that is, ( )V M V= . One of the methods 

commonly used to solve for the fixed point in these situations is the value function 

iteration.  
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In order to solve the maximization problem one can use various algorithms. The 

algorithm I am going to present follows, to some degree, Christiano (1990a). Let 

( ),j
p qS X Y  be the value of 1tx +  that maximizes ( )jM V  for given values of tx  and ty , 

( ) ( ), ,t t p qx y = ⊂X Y H . Formally, 

 ( ) ( ) ( ){ }
1

1 1 1 1, arg max , , , |
t

j
t p q p t q j t t t

x
S x E V x yπ β

+

+ + + +
∈

⎡ ⎤= + Ω⎣ ⎦
X

X XY Y  (1.5.4) 

where j  represents the iteration. The idea is to go through all the possible values for 1tx + , 

that is, the set X , and find the value that maximizes the right hand side of (1.5.4). That 

will become the value assigned to ( ),j
p qS X Y . Then the procedure will be repeated for a 

different value of the pair tx  and ty  belonging to set ( , )t tx yH  and, finally, a global 

maximum will be found. The exposition of the algorithm so far implies an exhaustive 

search of the grid. The speed of the algorithm can be improved by choosing a starting 

point for the search in every iteration and continue the search only until the first decrease 

in the value function is encountered19. The decision rule for tu  can then be derived by 

substituting 1tS +  for 1tx +  in the law of motion.  

 

I.5.2. Fredholm Equations and Numerical Quadratures 

 Let me consider the model specified by (1.2.1) - (1.2.2). Then the Bellman 

equation is given by:  

 ( ) ( ) ( ){ }1 1, max , |
t

t t t t t tu
V x y u E V x yπ β + += + Ω⎡ ⎤⎣ ⎦  (1.5.5) 

                                                 
19 This change in the algorithm, as presented by Christiano (1990a), is valid only when 
the value function is globally concave.  
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If ty  follows a process such as (1.2.4), one can rewrite the conditional expectation  and 

consequently the whole equation (1.5.5) as: 

 ( ) ( ) ( ) ( ){ }1 1 1 1, max , |
t

t t t t t t t tu
V x y u V x y q y y dyπ β + + + += + ∫  (1.5.6) 

In the above equation, the term needing approximation is the integral  

 ( ) ( )1 1 1 1, |t t t t tV x y q y y dy+ + + +∫  

If 1 1( , )t tV x y+ +  is continuous in 1ty +  for every x , the integral can be replaced by an N-

point quadrature approximation. An N-point quadrature method is based on the notion 

that one can find some points ,i Ny  and some weights ,i Nw  in order to obtain the following 

approximation 

 ( ) ( ) ( )1 . , 1 1 1 1
1

, , |
N

t i N i N t t t t tY
i

V x y w V x y q y y dy+ + + + +
=

≈∑ ∫  (1.5.7) 

where the points , , 1, ,i Ny Y i N∈ = K , are chosen according to some rule, while the weight 

given to each point, ,i Nw , relates to the density function ( )q y  in the neighborhood of 

those points. In general, a quadrature method requires a rule for choosing the points, ,i Ny , 

and a rule for choosing the weights, ,i Nw . The abscissa ,i Ny  and weights ,i Nw  depend only 

on the density ( )q y , and not directly on the function V .  

Quadrature methods differ in their choice of nodes and weights. Possible choices 

are Newton-Cotes, Gauss, Gauss-Legendre and Gauss-Hermite approximations. For a 

classical N-point Gauss rule along the real line, the abscissa ,i Ny  and weights ,i Nw  are 

determined by forcing the rule to be exact for all polynomials of degree less than or equal 

to 2 1N - . 
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For most rational expectation models, integral equations are a very common 

occurrence both in Bellman equations such as (1.5.6), as well as in Euler equations. One 

of the most common forms of integral equations mentioned in the literature is the 

Fredholm equation20. Therefore, in this section I will present an algorithm similar to the 

one used by Tauchen and Hussey (1991) for solving such equation. 

Now let me assume for a moment that the Euler equation of the model is given by 

a Fredholm equation of the second kind: 

 1 1 1 1( ) ( , ) ( ) ( ) ( )t t t t t t t tv y y y v y q y y dy yy g+ + + += +Ú   (1.5.8) 

where ty  is an n-dimensional vector of  variables, tE  is the conditional expectations 

operator based on information available through period t , and ( )1,t ty yy +  and ( )tyg  are 

functions of ty  and 1ty +  that depend upon the specific structure of the economic model, 

and where ( )tv y  is the solution function of the model. The process { }ty  is characterized 

by a conditional density, 1( )t tq y y+ . 

Following Tauchen and Hussey (1991), let the [ ]T ◊  operator define the integral 

term in equation (1.5.8). Then (1.5.8) can be written as: 

 [ ]v T v g= +  (1.5.9) 

Under regularity conditions, the operator 1[ ]I T --  exists, where I  denotes the identity 

operator, and the exact solution is: 

 1[ ]v I T g-= -  (1.5.10) 

                                                 
20 One example where this form of integral equation appears is a version of the asset 
pricing model. See Tauchen and Hussey (1991) and Burnside (1999) for more details. 
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An approximate solution is obtained using NT  in place of T , where NT  is an 

approximation of T  using quadrature methods for large N . Then  [ ]NI T-  can be 

inverted. 

 1[ ]N Nv I T g-= -  (1.5.11) 

In some cases, the function g  is of the form 0[ ]Tg g=  and then the approximate solution 

is taken as 1
0[ ] [ ]N NI T T g-- . 

 

I.5.3. Example. Using Quadrature Approximations 

This is an example of discrete state-space approximation using quadrature 

approximations and value-function iterations. I consider a similar model to the one 

described in section I.5.1 with the difference that ty  is a Gaussian ( )1AR  process as 

opposed to a Markov chain. Again, the representative agent solves the following 

optimization problem 

 ( ) 0
0

max
t

t
tu t

E uβ π
∞

=

⎧ ⎫Ω⎨ ⎬
⎩ ⎭
∑  (1.5.12) 

subject to 

 ( )1 , ,t t t tx h x u y+ =  (1.5.13) 

where ty  is a Gaussian ( )1AR  process with the law of motion 1t t ty y zr -= +  where tz  

is i.i.d. ( )20,N s . I assume that tu  can be expressed as a function of x , i.e. 

( )1, ,t t t tu g x x y+= . Then the Bellman equation for the dynamic programming is given by 

 ( ) ( )( ) ( ){ }
1

1 1 1 1, max , , ,
t

t t t t t t t tx
V x y g x x y E V x yπ β

+
+ + + += + Ω  (1.5.14) 
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Writing the expectation term explicitly, equation (1.5.14) becomes: 

 ( ) ( )( ) ( ) ( )
1

1 1 1 1 1, max , , ,
t

t t t t t t t t tx
V x y g x x y V x y f y y dyπ β

+
+ + + + += + ∫  (1.5.15) 

where  

 1 1t t ty y zr+ += +  (1.5.16) 

 To convert the dynamic programming problem in (1.5.15) to one involving 

discrete state spaces one needs first to approximate the law of motion of ty  using a 

discrete state-space process. That is, redefine ty  to be a process which lies in a set 

{ }, 1

N

i N i
Y y

=
=  with , ,i N i Ny as= , where { }, 1

N

i N i
a

=
 is the set of quadrature points 

corresponding to an N-point rule for a standard normal distribution21. Let the probability 

that 1 ,t i Ny y+ =  conditional on ,t j Ny y=  be given by  

 
( )
( )

, , ,

, 0

i N j N i N
ji

ji N

f y y w
p

sf y
=  (1.5.17) 

where 

 
( )
( )

, ,

,
1 , 0

N i N j N

j i N
i i N

f y y
s w

f y=

= Â  (1.5.18) 

and { }N
iNiw

1, =
 are the quadrature weights as described in section I.5.2.. With this 

approximation, the Bellman equation can be written as: 

 ( ) ( )( ) ( )
1

1 1
1

, max , , ,
t

N

t t t t j t i jix i

V x y g x x y V x y pπ β
+

+ +
=

⎧ ⎫= +⎨ ⎬
⎩ ⎭

∑  (1.5.19) 

given , 1,...,t jy y j N= = . 

                                                 
21 This is in fact the approach used by Tauchen and Hussey (1991) and Burnside (1999), 
among others. 
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The next step is to replace the state space by a discrete domain X  from which the 

solution is chosen. There is no universal recipe for choosing a discrete domain and 

therefore it is usually done on a priori knowledge of possible values of the state 

variable22. The maximization problem can now be solved by value function iteration as 

presented in section I.5.1.. 

 

I.5.4. Notes on Discrete State-Space Methods 

Discrete state-space methods tend to work well for models with a low number of 

state variables. As the number of variables increases, this approach becomes numerically 

intractable, suffering from what the literature usually refers to as the curse of 

dimensionality. In addition, as pointed out in Baxter et al. (1990), when the method is 

used to solve continuous models there are two sources of approximation error. One is due 

to forcing a discrete grid on continuous state variables and second from using a discrete 

approximation of the true distribution of the underlying shocks. There are also instances 

where the use of discrete state-space methods is entirely inappropriate since the 

discretization process transforms an infinite state space into a finite one and in the 

process is changing the information structure. This may not be an issue in most models, 

but it definitely has an impact in models with partially revealing rational expectations 

equilibria23.  

 

                                                 
22 See Tauchen (1990) for an example. 

23 See Judd (1998) pp. 578-581 for an example. 
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I.6. Projection Methods24 

 As opposed to the previously presented numerical methods, the techniques that 

are going to be presented in this section have a high degree of generality. Projection 

methods appear to be applicable to solving a wide variety of economic problems. In fact, 

projection methods can be described as general numerical methods that make use of 

global approximation techniques25 to solve equations involving unknown functions. 

The idea is to replace the quantity that needs to be approximated by parameterized 

functions with arbitrary coefficients that are to be determined later on26, or to represent 

the approximate solution to the functional equation as a linear combination of known 

basis functions whose coefficients need to be determined27. In either case, there are 

coefficients to be computed in order to obtain the approximate solution. These 

coefficients are found by minimizing some form of a residual function.  

Further on, a step by step description of the general projection method is 

presented, followed by a discussion of the parameterized expectations approach. 

 

                                                 
24 I borrow this terminology from Judd (1992, 1998). These methods are also called 
weighted residual methods by some authors (for example Rust (1996), McGrattan (1999), 
Binder et al. (2000)). In fact, one can argue that weighted residual methods are just a 
subset of the projection methods with a given norm and inner product. 

25 In some cases local approximations are used on subsets of the original domain and then 
they are pieced together to give a global approximation. One such case is the finite 
element method. 

26 See Marcet and Marshall (1994a), Marcet and Lorenzoni (1999), Wright and Williams 
(1982a, 1982b, 1984) and Miranda and Helmberger (1988) 

27 See McGrattan (1999) 
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I.6.1. The Concept of Projection Methods 

 Suppose that the functional equation can be described by: 

 ( ) 0F d =  (1.6.1) 

where F  is a continuous map, 1 2:F C C→  with 1C  and 2C  complete normed function 

spaces and : k md D ⊂ℜ →ℜ  is the solution to the optimization problem. More generally, 

d  is a list of functions that enter in the equations that define the equilibrium of a model, 

such as decision rules, value functions, and conditional expectations functions, while the 

F  operator expresses equilibrium conditions such as Euler equations or Bellman 

equations. 

I.6.1.1. Defining the Problem 

 The problem is to find : k md D ⊂ℜ →ℜ  that satisfies equation (1.6.1). This 

translates into finding an approximation ˆ( ; )d x θ  which depends on a finite-dimensional 

vector of parameters [ ]1 2, , , nθ θ θ θ= K  such that ( )( )ˆ ;F d x θ  is as close as possible to 

zero. 

I.6.1.1.1. Example28 

Consider the following finite horizon problem where the social planner or a 

representative agent maximizes 

 ( ) 0
0

T
t

t
t

E ub p
=

Ï ¸WÌ ˝
Ó ˛
Â  (1.6.2) 

subject to 

 ( )1, ,t t t tx h x u y-=  (1.6.3) 

                                                 
28 The example in section I.6.1 draws heavily on Binder et al. (2000) 
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with 0x  and Tx  given. ty  is an ( )1AR  process with the law of motion  

 1t t ty y zρ −= +  (1.6.4) 

 and tz  are i.i.d. with ( )2~ 0,t yz N s . I assume that u  can be expressed as a function of 

x , i.e. ( )1, ,t t t tu g x x y-= . Then the Euler equation for period 1T -  is given by 

 
( )( ) ( )

( )( ) ( ){ }
1

1

2 1 1 2 1 1

1 1 1

0 ' , , ' , ,

     ' , , ' , ,
T

T

T T T x T T T

T T T x T T T T

g x x y g x x y

E g x x y g x x y

p

b p
-

-

- - - - - -

- - -

= ◊

+ ◊ W
 (1.6.5) 

Let the optimal decision rule for 1Tx -  be given by ( )*
1 1 2 1,T T T Tx d x y- - - -=  where 

( )d ◊  is a smooth function. The projection methodology consists of approximating ( )d ◊  

by ( )ˆ ,d q◊ , where q  represents an unknown parameter matrix. The unknown parameters 

are computed such that the Euler equation also holds for ( )ˆ ,d q◊ . 

Further on in this section I present the necessary steps one needs to take when 

applying the projection methods, drawing heavily on the formalization provided by Judd 

(1998)29. As I mentioned above, the methodology consists of finding an approximation 

ˆ( ; )d x θ  such that ( )( )ˆ ;F d x θ  is as close as possible to zero. It becomes obvious that 

there are a few issues that need to be addressed: what form of approximation to choose 

for ˆ( ; )d x θ ; does the operator F  need to be approximated; what does one understand by, 

or in other words, what is the formal representation of  “as close as possible to zero”. 

 

                                                 
29 Judd provides a five step check list for applying the projection methods. 
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I.6.1.2. Finding a Functional Form 

 The first step comes quite naturally from the need to address the question on how 

to represent ( ; )d x θ . In general d̂  is defined as a finite linear combination of basis 

functions, ( ), 0, ,i x i nϕ = K : 

 0
1

ˆ( ; ) ( ) ( )
n

i i
i

d x x xθ ϕ θ ϕ
=

= +∑  (1.6.6) 

Therefore, the first step consists of choosing a basis over 1C .  

 Functions ( ), 0, ,i x i nϕ = K  are typically simple functions. Standard examples of 

basis functions include simple polynomials (such as 0 ( ) 1, ( ) i
ix x xϕ ϕ= = ), orthogonal 

polynomials (for example, Chebyshev polynomials), and piecewise linear functions. 

Choosing a basis is not a straightforward task. For example, ordinary polynomials are 

sometimes adequate in simple cases where they may provide a good solution with only a 

few terms. However, since they are not orthogonal on R+  and they are all monotonically 

increasing and positive for x R+Œ , for x  big enough, they are almost indistinguishable 

and hence they tend to reduce numerical accuracy30. Consequently, orthogonal bases are 

usually preferred to avoid the shortcomings just mentioned.  

 One of the more popular orthogonal bases is formed by Chebyshev polynomials. 

They constitute a set of orthogonal polynomials with respect to the weight function 

                                                 
30 In order to solve for the unknown coefficients iq  one needs to solve linear systems of 
equations. The accuracy of these solutions depends on the properties of the matrices 
involved in the computation, i.e. linear independence of rows and columns. Due to the 
properties already mentioned, regular polynomials tend to lead to ill-conditioned 
matrices. 
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2( ) 1 1x xω = − ,  that is, 
1

1
( ) ( ) ( ) 0i jp x p x x dxω

−
=∫  for all i j≠ . Chebyshev polynomials 

are defined on the closed interval [ ]1, 1−  and can be computed recursively as follows:  

 1 2( ) 2 ( ) ( ), 2, 3, 4,i i ip x xp x p x i− −= − = K  (1.6.7) 

with 0 ( ) 1p x =  and 1( )p x x=  or, non-recursively, as: 

 ( )( )( ) cos arccosip x i x=  (1.6.8) 

 Another set of possible basis functions that can be used to construct a piecewise 

linear representation for d̂  is given by: 

 

[ ]

[ ]

1
1

1

1
1

1

,

( ) ,

0

i
i i

i i

i
i i i

i i

x x if x x x
x x
x xx if x x x
x x

elsewhere

ϕ

−
−

−

+
+

+

−⎧ ∈⎪ −⎪
⎪ −

= ∈⎨ −⎪
⎪
⎪
⎩

 (1.6.9) 

The points , 1, ,ix i n= K  that divide the domain D ⊂ℜ  need not be equally spaced. If, 

for example, it is known that the function to be approximated has large gradients or kinks 

in certain places then the subdivisions can be smaller and clustered in those regions. On 

the other hand, in areas where the function is near-linear the subdivisions can be larger 

and hence fewer. 

 Once the basis is chosen, the next step is to choose how many terms and 

consequently how many parameters the functional form will have. In general, if the 

choice of the basis is good, the higher the number of terms the better the approximations. 

However, due to the fact that the more terms are chosen the more parameters have to be 

computed, one should choose the smallest number of terms, n , that yields an acceptable 
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approximation. One possible approach is to begin with a small n  and then increase its 

value until some approximation threshold is reached. 

 

I.6.1.2.1. Example 

Going back to the model defined by equations (1.6.2) and (1.6.3) the next step is 

choosing a base. I assume that Chebyshev polynomials are used in constructing the 

functional form for ( )1
ˆ ,Td q- ◊ . Then: 

 ( ) ( ) ( )
, 1, 1

1 2 1 1 1, 1 1 1 1
1 1

ˆ , ;
y Tx T nn

T T T T T sq s T q T
s q

d x y p x p y% %q q
--

- - - - - - - - -
= =

= Â Â  (1.6.10) 

where 1,T sqq - is the ( ),s q  element of 1Tq - , ( )lp ◊  is the l -th order Chebyshev polynomial 

as defined in (1.6.7) - (1.6.8), while , 1x Tn -  and , 1y Tn -  are the maximum order of the 

Chebyshev polynomials assumed for 1Tx -%  and 1Ty% -  respectively. In order to restrict the 

domain of the polynomials to the unit interval the following transformation is applied: 

 
min

1 1
1 max min

1 1

2 1T T
T

T T

x x
x

x x
- -

-
- -

-
= -

-
%  (1.6.11) 

 
min

1 1
1 max min

1 1

2 1T T
T

T T

y yy
y y
%

% - -
-

- -

-= -
-

 (1.6.12) 

 

I.6.1.3. Choosing a Residual Function 

 In many cases, computing ˆ( )F d  may require the use of numerical approximations 

such as when ( )F d  involves integration of d . In those cases, the F  operator has to be 

approximated. In addition, once the methodology for approximating d  and F  has been 
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established, one needs to choose a residual function. Therefore, the third step consists of 

defining the residual function and an approximation criterion. Let 

 ˆˆ( ; ) ( ( , ))( )R x F d xq q∫ ◊  (1.6.13) 

be the residual function. At this point, a decision has to be made on how an acceptable 

approximation is defined. That is accomplished by choosing an approximation criterion. 

One choice is to compute the sum of squared residuals, ( ; ) ( ; ), ( ; )R R Rq q q◊ ∫ ◊ ◊  and 

then determine q  such that ( ; )R q◊  is minimized. An alternative would be to choose a 

collection of n test functions in 2C , : , 1,...,m
ip D R i nÆ = , and for each guess of q  to 

compute the n projections, ( ) ( ; ), ( )i iP R pq◊ ∫ ◊ ◊ 31. It is obvious that this step creates the 

projections that will be used to determine the value of the unknown coefficients, q . 

Another popular choice in the literature is the weighted residual criterion defined as32: 

 ( ) ( ; ) 0, 1, ,iD
x R x dx i nKy q = =Ú  (1.6.14) 

where ( ), 1, ,i x i nKy =  are weight functions. Alternatively, the set of equations (1.6.14)  

can be written as 

 ( ) ( ; ) 0
D

x R x dxw q =Ú  (1.6.15) 

where D  is the domain for function d , 
1

( ) ( )
n

i i
i

x xw wy
=

=Â  and (1.6.15) must hold for 

any non-zero weights , 1, ,i i nω = K . Therefore, the method sets a weighted integral of 

( ; )R x θ  to zero as the criterion for determining q . 

                                                 
31 The choice of the criterion gives the method its name. That is why in the literature the 
method appears both under the name “projection method” and “weighted residual 
method”. 

32 See McGrattan (1999). 
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I.6.1.3.1. Example 

Going back to the example, recall that Chebyshev polynomials were used in 

constructing the functional form for ( )1
ˆ ,Td q- ◊ : 

 ( ) ( ) ( )
, 1, 1

1 2 1 1 1, 1 1 1 1
1 1

ˆ , ;
y Tx T nn

T T T T T sq s T q T
s q

d x y p x p y% %q q
--

- - - - - - - - -
= =

= Â Â  

As mentioned above, the Euler equation (1.6.5) needs to hold for ( )ˆ ,d q◊ . Therefore, its 

right hand side is a prime candidate for defining the residuals function. Let 2
1

1

T
T

T

x
v

y
-

-
-

Ê ˆ
= Á ˜Ë ¯

. 

With this notation, the residual function is given by: 

( )( ) ( )( )
( ) ( )( ) ( )( ){ }

1

1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1
1 1 1 1 1 1

ˆ; ( ; )

ˆ ˆ              , ; , ' , ; ,

ˆ ˆ             ' ' ; , , ' ; , ,

T

T

T T T T T

T T T T T x T T T T T

T T T T T x T T T T T

R v d v

g v d v y g v d v y

E g d v x y g d v x y

θ

θ θ

π βπ θ θ

−

−

− − − − −

− − − − − − − − − −

−
− − − − − −

⎡ ⎤ =⎣ ⎦

⋅

⎡ ⎤+ ⋅⎣ ⎦

(1.6.16) 

Then the criterion for computing 1Tq -
%  is given by the weighted residual integral equation: 

 
1

1 1 1 1 1 1 1
ˆ ˆ; ( ; ) ( ) 0

T
T T T T T T Tv

R v d v W v dvq
-

- - - - - - -
È ˘ =Î ˚Ú  (1.6.17) 

where W  is a weighting function. In the next section it will become clear why the choice 

of  W  is important in the computation of 1Tq -
% .  

 

I.6.1.4. Methods Used for Estimating the Parameters 

 Evidently, the next step is to find nRq Œ  that minimizes the chosen criterion. In 

order to determine the coefficients 1, , nθ θK  several methods can be used, depending on 

the criterion chosen.  
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 If the projection criterion is chosen, finding the n  components of q  means 

solving the n  equations ( ), , 0iR x pq =  for some specified collection of test functions, 

ip . The choice of the test functions ip  defines the implementation of the projection 

method. In the least squares implementation the projection directions are given by the 

gradients of the residual function. Therefore, the problem is reduced to solving the 

nonlinear set of equations generated by ( ) ( ),
, , 0 1,...,

i

R x
R x i n

q
q

q
∂

= =
∂

.  

 One alternative is to choose the first n  elements of the basis F , that is, 

( ) 1,...,i x i nϕ = , as the weight functions, ( ), 1, ,i x i nKy = . In other words, n  elements of 

the basis used to approximate ˆ( ; )d x θ  are also used as test functions to define the 

projection direction, ( ) ( ), 1, ,i ix x i nKy j= = . This technique is known as the Galerkin 

method. As a result of this choice, the Galerkin method forces the residual to be 

orthogonal to each of the basis functions. Therefore q  is chosen to solve the following 

set of equations: 

 ( ) ( ) ( ), , 0 1,...,i iP R x x i nq q j= = =  (1.6.18) 

As long as the basis functions are chosen from a complete set of functions, system 

(1.6.18) provides the exact solution, given that enough terms are included. If the basis 

consists of monomials, the method is also known as the method of moments. Then q is 

the solution to the system: 

 ( ) ( ) 1, , 0 1,...,i
iP R x x i nq q -= = =  (1.6.19) 

 The collocation method chooses q  so that the functional equation holds exactly at 

n  fixed points, ix , called the collocation points. That is, q is the solution to: 
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 ( ; ) 0, 1,...,iR x i nq = =  (1.6.20) 

where { } 1

n
i i

x
=

 are n  fixed points from D . It is easy to see that this is a special case of the 

projection approach, since ( ; ), ( ) ( ; )i iR x x x R xq d q- = , where ( )ix xd -  is the Dirac 

function at ix . If the collocation points ix  are chosen as the n  roots of the nth orthogonal 

polynomial basis element and the basis elements are orthogonal with respect to the inner 

product, the method is called orthogonal collocation. The Chebyshev polynomial basis is 

a very popular choice for an orthogonal collocation method.  

 

I.6.1.4.1. Example 

Going back to the example, it was established that the criterion for computing 

1Tq -
%  is given by the following integral equation: 

 
1

1 1 1 1 1 1 1
ˆ ˆ; ( ; ) ( ) 0

T
T T T T T T Tv

R v d v W v dvq
-

- - - - - - -
È ˘ =Î ˚Ú  

As discussed in this section, given this criterion, the collocation method is a 

sensible choice for computing 1Tq -
% . Then the choice for the weighting functions, as used 

in Binder et al. (2000), is the , 1 , 1,x T y Tn n- -  Dirac delta functions ( )1 1 1 1,i i
T T T Tx x y yd - - - -- - ,  

where 1
i
Tx -  and 1

i
Ty -  are chosen such that 1

i
Tx -%  and 1

i
Ty% -  are the , 1x Tn -  and , 1y Tn -  zeros of 

the Chebyshev polynomials forming the basis of the approximation ( )1 1 1
ˆ ;T T Td v q- - - . The 

zeros for the Chebyshev polynomials are given by 

 , 1
1

, 1

(2 1)cos
2

(2 1)cos
2

x Ti
T

y T

i
n

v
i
n

π

π
−

−

−

−⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

%  (1.6.21) 
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Then the integral equation can be reduced to: 

 ( )1 1 1
ˆ; 0ij ij

T T TR v d- - - =  (1.6.22) 

for all  

 ( )1 1 1 , 1 , 1, , 1, 2,..., , 1, 2,...,ij i j
T T T x T y Tv x y i n j n- - - - -= = =  (1.6.23) 

and  

 ( )1 1 1 1
ˆ ˆ ˆ;ij ij

T T T Td d v q- - - -=  (1.6.24) 

The discrete orthogonality of Chebyshev polynomials implies that: 

 ( ) ( ) ( ) ( )
, 1, 1

1 1 1 1 1 1 1 1
1 1

0
y Tx T nn

i j i j
w T p T s T q T

i j

p x p y p x p y% % % %
--

- - - - - - - -
= =

È ˘ È ˘ =Î ˚ Î ˚Â Â  (1.6.25) 

for w sπ  and /or p qπ , and  

 ( ) ( ) ( ) ( ) ( )
, 1, 1

1 1 1 1 1 1 1 1 , 1 , 1
1 1

,
y Tx T nn

i j i j
w T p T s T q T sq x T y T

i j

p x p y p x p y c n n% % % %
--

- - - - - - - - - -
= =

È ˘ È ˘ =Î ˚ Î ˚Â Â  (1.6.26) 

for w s=  and p q= , with 

 ( ) ( )

( )

, 1 , 1

, 1 , 1 , 1 , 1

, 1 , 1

, 1

1 1,
, / 2,

1 1,

/ 4, 1 1

x T y T

sq x T y T x T y T

x T y T

n n w s p q

w s and p q
c n n n n or

w s and p q

n n w s and p q

− −

− − − −

− −

⎧ = = = =
⎪
⎪ = = = ≠⎧
⎪ ⎪= ⎨ ⎨
⎪ ⎪ = ≠ = =⎩⎪
⎪ = ≠ = ≠⎩

 (1.6.27) 

Then q is given by:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }( )

, 1, 1

2

1

1, 1 1 1 1 1 1 1 1 1 1
1 1, 1 , 1

1
1 1 1

1 ˆ ˆˆ , , ' , ,
,

ˆ ˆ             ' ' , , ' , ,

y Tx T

T

T

nn
i j ij ij

T sq s T q T T T T x T T T
i jsq x T y T

ij ij
T T T x T T T T

p x p y g v d y g v d y
c n n

E g d x y g d x y v

% %

%

q

p bp

--

-

-

- - - - - - - - - - -
= =- -

-
- - -

È= ◊ ◊Î

˘È ˘+ ◊ ˙Î ˚ ˚

Â Â

  (1.6.28) 

for , 11, 2,..., ,x Ts n -=  , 11, 2,..., y Tq n -= . 
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The conditional expectation from the above equation needs to be computed 

numerically. In order to compute the integral one can use some of the quadrature methods 

such as the Gauss quadrature presented in section I.5.2. All that remains is to solve 

equation (1.6.28) for 1, , 1 , 1,   1, 2,..., ,   1, 2,...,T sq x T y Ts n q nq - - -= = . Once ( )1 1 1
ˆ ˆ;T T Td v q- - -  is 

computed, one can proceed recursively backwards to period 2T - . Note that 

( )*
1 1 1 1

ˆ ˆ;T T T Tx d v q- - - -=  will be used in the definition of ( )2 2 2
ˆ;ij ij

T T TR v d- - - . The computation 

of 2T̂q -  can now follow the same logic as the computation of 1T̂q - . 

 So far the flavors of the projection methodology have been categorized either with 

respect to the choice of the approximation criterion or with respect to the method 

employed for estimating the parameters. The choice of basis functions for the 

representation in (1.6.6) can be used to further divide projection methods into two 

categories: spectral methods and finite-element methods. Spectral methods use basis 

functions that are smooth and non-zero on most of the domain of x  such as Chebyshev 

polynomials and the same functions are used on all regions of the state space. Finite-

element methods use basis functions that are equal to zero on most of the domain and 

non-zero on only a few subdivisions of the domain of x  (these are in general piecewise 

linear functions such as those defined in (1.6.9)) and they provide different 

approximations in different regions of the state space. For problems with many state 

variables, there are typically many coefficients to compute and it implies the inversion of 

a large, dense matrix. With the finite-element method, however, the same matrix is sparse 

and its structure can typically be exploited. For the above-mentioned reasons McGrattan 
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(1996, 1999) argues that a finite-element method is better suited to problems in which the 

solution is nonlinear or kinked in certain regions. 

 

I.6.2. Parameterized Expectations 

 While Marcet (1988) is largely credited in the literature with the introduction of 

the parameterized expectations approach, Christiano and Fisher (2000) point out that the 

underlying idea of parameterized expectations seems to have surfaced earlier in the work 

of Wright and Williams (1982a, 1982b, 1984), and then in the work of Miranda and 

Helmberger (1988). Marcet (1988)33 implemented a variation of that idea and the 

approach finally caught on with the publication of Den Haan and Marcet (1990). 

In this section, I will concentrate on what Christiano and Fisher (2000) call the 

conventional parameterized expectations approach due to Marcet (1988). While one may 

argue that this methodology does not belong under the label of projection methods, I 

believe that it can be viewed as a special case of projection methods by virtue of its use of 

parameterized functions to approximate an unknown quantity, of an implicit choice of a 

residual function and an approximation criterion similar to projection methods. In 

addition, the techniques used to estimate the parameters are also common to projection 

methods. The assumption is that the functional equation has the following form: 

 ( )( )1 1, , , , 0t t t t t tg E zφ η η η η+ − =⎡ ⎤⎣ ⎦  (1.6.29) 

where tη  includes all the endogenous and exogenous variables and tz  is a vector of 

exogenous shocks. As it has been repeatedly asserted in this chapter, the reason why 

                                                 
33 For more information of this variant of the parameterized expectations approach, see 
the references cited in Marcet and Marshall (1994b). 
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many dynamic models are difficult to solve is that conditional expectations often appear 

in the equilibrium conditions. The assumption under which this methodology operates is 

that conditional expectations are a time-invariant function ε  of some state variables: 

 [ ]1( ) ( , )t t t tEε υ φ η η+=  (1.6.30) 

where [ ]1 1( , ) ( , )t t t t t tE Eφ η η φ η η υ+ += ⎡ ⎤⎣ ⎦  is the conditional expectation based on the 

available information at time t , l
t Rυ ∈  where tυ  is a subset of ( )1,t tzη − . As Marcet and 

Lorenzoni (1999) point out, a key property of ε  is that under rational expectations, if 

agents use ε  to form their decisions, the series generated is such that ε  is precisely the 

best predictor of the future variables inside the conditional expectations. So, if ε  were 

known, one could easily simulate the model and check whether this is actually the 

conditional expectation. 

 The basic approach of Marcet and Marshall (1994a) is to substitute the 

conditional expectations in equation (1.6.29) by parameterized functions of the state 

variables with arbitrary coefficients. Then (1.6.29) is used to generate simulations for tυ  

consistent with the parameterized expectations. With these simulations, one can iterate on 

the parameterized expectations until they are consistent with the solution they generate. 

In this fashion, the process of estimating the parameters is reduced to a fixed-point 

problem.  

 

I.6.2.1. Example 

Consider again the model specified by (1.6.2) - (1.6.3) with the Euler equation for 

period t  given by: 
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( )( ) ( )

( )( ) ( ){ }
1 1

1 1 1 1

0 ' , , ' , ,

     ' , , ' , ,
t

t

t t t x t t t

t t t x t t t t

g x x y g x x y

E g x x y g x x y

p

b p
- -

+ + + +

= ◊

+ ◊ W
 (1.6.31) 

The idea is to substitute  

 ( )( ) ( ){ }1 1 1 1' , , ' , ,
tt t t t x t t tE g x x y g x x yp + + + +◊  

by a parameterized function ( )1, ;t tx yψ θ−  where θ  is a vector of parameters. For 

simplicity, let the function ψ  be given by: 

 ( )1 1 2 1 1 2, ; ,t t t t tx y x yψ θ θ θ θ− −= +  (1.6.32) 

The next step is to generate a series { } 1

T
t t

z
=

 as draws from a Gaussian distribution and to 

choose starting values for the elements of θ , 0 ,  1, 2i iθ = . Then, for 0
î iθ θ=  and assuming 

that the initial values for tx  and ty , that is, 1x−  and 0y  are given, one can use the 

following system 

 

( )( ) ( )
( )

1 1 1 1 2

1 1

1

ˆ ˆ' , , ' , , 0  for 0,..., 1

, ,                                      for 0,..., ,  with  given
                                          for 

tt t t x t t t t t

t t t t

t t t

g x x y g x x y x y t T

x h x u y t T x
y y z t

p q q

r

- - -

- -

-

◊ + + = = -

= =
= + = 01,..., ,  with  givenT y

 (1.6.33) 

to generate series { }
0

ˆ
Tj

tt t
x

=
, { }

1
ˆ

Tj
t t

y
=

 and { }
0

ˆ
Tj

t t
u

=
 where j  represents the iteration. In order 

to estimate the parameters θ , proponents of this methodology run a regression of  

 ( ) ( )( ) ( )1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ' , , ' , ,

t

j j j j j j j j
t t t t x t t tg x x y g x x yθ π − −ϒ = ⋅  (1.6.34) 

on tψ . Formally, the regression can be written as: 

 ( ) 1 1 2
ˆ ˆ ˆj j j j

t t t ta x a yθ ξ−ϒ = + +  

where tξ  is the error term. The estimates for 1a  and 2a  provide a new set of values for θ  

for the next iteration. With those values new series will be generated for { }1
0

ˆ
Tj

t t
x +

=
 and 
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{ }1
0

ˆ
Tj

t t
u +

=
. In this particular case, there is no need to generate new series for { }1

1
ˆ

Tj
t t

y +

=
 if the 

same vector of shocks { } 1

T
t t

z
=

 is used. In addition, note that 1a  and 2a  are in fact 

functions of θ̂ . Specifically, for iteration j , the vector of parameters a  is a function of  

ˆ jθ , ( )ˆ ja G θ= . Hence the final step is to find the fixed point ( )Gθ θ= . One approach 

suggested by Marcet and Lorenzoni (1999) is to compute the values of θ̂  for iteration 

1j +  using the following expression ( ) ( )1ˆ ˆ ˆ1  where 0j j jb bG bθ θ θ+ = − + > . The iteration 

process should stop when ˆ jθ  and ( )ˆ jG θ  are sufficiently close. 

 

I.6.3. Notes on Projection Methods 

As Judd (1992) points out, the advantage of the projection method framework is 

that one can easily generate several different implementations by choosing among 

different basis, residual functions or methods for estimating the parameters. Obviously, 

the many choices also imply some trade-offs among speed, accuracy, and reliability. For 

example, the orthogonal collocation method tends to be faster than the Galerkin method, 

while the Galerkin method tends to offer more accuracy34.  

The generality of the projection techniques can also be seen from the fact that 

even methods that discretize the state space can be thought of as projection methods that 

are using step function bases.  

While throughout this section I emphasized the wide applicability of projection 

methods, there is an aspect that has been overshadowed. Recall that the idea is to replace 

                                                 
34 See Judd (1992) for more details. 
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the quantity that needs to be approximated by parameterized functions (basis functions 

( )i xϕ ) with arbitrary coefficients ( ia ). In projection methods, the coefficients are chosen 

to be the best possible choices relative to the basis ( )i xϕ  and relative to some criterion. 

However, the bases are usually chosen to satisfy some general criteria, such as 

smoothness and orthogonality conditions. Such bases may be good but very rarely are 

they the best possible for the problem under consideration.  

An important advantage of parameterized expectations approach is that, for 

specific models, it may implicitly deal with the presence of inequality constraints 

eliminating the need to constantly check whether the Kuhn-Tucker conditions are 

satisfied35.  

A key component of the conventional parameterized expectations approach 

presented in this section is a cumbersome nonlinear regression step. The regression step 

implies simulations involving a huge amount of synthetic data points. The problem with 

this approach is that it inefficiently concentrates on a residual amount that is obtained 

from visiting only high probability points of the invariant distribution of the model. As 

Pointed out by Judd (1992) and Christiano and Fisher (2000), it is important to consider 

the tail areas of the distribution as well. Christiano and Fisher (2000) offer a modified 

version of the parameterized expectations approach that they call the Chebyshev 

parameterized expectations approach, specifically designed to eliminate the shortcoming 

discussed above. In fact, Christiano and Fisher (2000) explicitly transform the 

parameterized expectations approach into a projection method that they refer to as the 

weighted residual parameterized expectations approach. As mentioned above, expressing 
                                                 
35 See Christiano and Fisher (2000) for details. 
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the parameterized expectations approach as a projection method opens the door to a 

variety of possible implementations.36. 

 

I.7. Comparing Numerical Methods: Accuracy and Computational Burden 

It is difficult to define the global criteria of success for numerical methods. 

Accuracy is in general at the top of the checklist in defining a good numerical method. 

However, it may not always be the most important criterion when choosing a numerical 

method. For example, even though a method may not provide the best approximation for 

the policy function, it may still be preferred to other methods as long as the loss in 

accuracy relative to the policy function does not affect too much the value of the 

objective function. In such cases, speed or ease of implementation may take precedence.  

There does not seem to be a general agreement in the literature on how to evaluate 

the accuracy of numerical methods. Consequently, a number of criteria have been 

proposed in order to asses the performance of numerical algorithms.  

One widely used strategy for determining accuracy is to test the outcome of a 

computational algorithm in a particular case where the model displays an analytical 

solution. For example, Collard and Juillard (2001) use an average relative error and a 

maximal relative error criterion in order to asses the accuracy of several numerical 

methods. While this approach may be useful for certain specifications, the problem is that 

for alternative parameterizations of the model the approximation error of the computed 

decision and value functions may change substantially. Changes in the curvature of the 

objective function and in the discount factor are the usual culprits in influencing 
                                                 
36 In fact, Christiano and Fisher (2000) provide two other modified versions of the 
parameterized expectations approach (PEA): PEA Galerkin and PEA collocation.  
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considerably the accuracy of the algorithm. Collard and Juillard (2001) determine that for 

an asset pricing model the Galerkin method using fourth order Chebyshev polynomials 

clearly outperforms linearization methods as well as lower order perturbation methods. 

However, higher order (order four and higher) perturbation methods prove to be quite 

accurate.  

Another strategy used for analyzing the accuracy of numerical methods is to look 

at the residuals of the Euler equation. This seems like a natural choice especially for 

approaches that are based on approximating certain terms entering, or the whole, Euler 

equation37.  

A procedure for checking accuracy of numerical solutions based on the Euler 

equation residuals was proposed by den Haan and Marcet (1990, 1994). It consists of a 

test for the orthogonality of the Euler equation residuals over current and past 

information. The idea behind this test is to compute simulated time series for all the 

choice and state variables as well as Euler equation residuals, based on a candidate 

approximation. Then, using estimated values of the coefficients resulting from regressing 

the Euler equation residuals on lagged simulated time series, one can construct measures 

of accuracy. As pointed out by Santos (2000), the problem with this approach is that 

orthogonal Euler equation residuals may be compatible with large deviations from the 

optimal policy. In addition, as referenced by Judd (1992), Klenow (1991) found that the 

procedure failed to reject candidate solutions that resulted in relatively high errors for the 

choice variable while rejecting solutions resulting in occasional high large errors but 

without any discernible pattern.  
                                                 
37 For a detailed discussion on criteria involving Euler equation residuals, please see 
Reiter (2000) and Santos (2000). 
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Judd (1992, 1998) suggested an alternative test that consists of computing a one 

period optimization error relative to the decision rule. The error is obtained by dividing 

the current residual of the Euler equation to the value of next period’s decision function. 

Subsequently, two different norms are applied to the error term: one gives the average 

and the other supplies the maximum. 

In a study aimed at comparing various approximation methods, Taylor and Uhlig 

(1990) found that performance varies greatly depending on the criterion used for 

assessing accuracy. For example, the decision rules indicated that some of the easier to 

implement methods such as the linear-quadratic method and the extended-path method 

were fairly close to the “exact” decision rule38 as given by the quadrature-value-function-

grid method of Tauchen (1990) or the Euler-equation grid method of Coleman (1990). 

However, neither the linear-quadratic nor the extended-path method performed well 

when using the martingale-difference tests for the Euler-equation residual. Not 

surprisingly, the parameterized expectations approach performed well when using the den 

Haan and Marcet criterion but not as well when measured against the exact decision rule. 

While accuracy is very important, computational time may also play an important 

role in the eyes of some researchers. While the extended-path method has relatively low 

cost when compared to grid methods, it is fair to state that both grid methods and the 

extended-path method are computationally quite involved, whereas linear-quadratic 

methods are typically quite fast. Most projection methods also fare well in terms of 

                                                 
38 Solutions obtained through discretization methods are sometimes referred to as 
“exact”. The reason behind this labeling is that models obtained as a result of 
discretization may be solved exactly by finite-state dynamic programming methods. 
However, one has to keep in mind that reducing a continuous-state problem to a finite-
state problem still involves an approximation error. 
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computational burden when compared to discretization methods or even parameterized 

expectations methods. As the state space increases, discretization methods suffer heavily 

from the curse of dimensionality.  

The fact that none of the methods outperforms the others does not mean that every 

method could be applied to any model out there with a good degree of success39. One has 

to use good judgment when deciding on using a certain numerical method. 

 

I.8. Concluding Remarks 

As it has become clear over the course of this chapter, there are quite a few 

methodologies available for solving non-linear rational expectations models. However, if 

one looks closer, it becomes obvious that all methods share some common elements. For 

example, certainty equivalence is at the core of the extended path method but it can also 

be used in perturbation methods to find the equilibrium of a (deterministic) system 

similar to the one under investigation. The discrete state space approach can be viewed as 

a projection method with step functions as a basis. Similarly, the first order perturbation 

method is nothing more than a simple linearization around steady state. In addition, the 

parameterized expectations approach can be easily transformed into a projection method. 

Moreover, since all the functional equations for rational expectations models imply the 

existence of some integrals, the quadrature approximation may make an appearance in 

almost every methodology.  

                                                 
39 Judd (1998) contains an example of a partially revealing rational expectations problem 
which cannot be solved by discretizing the state space, but which can be approximated by 
more general projection methods. 
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Several studies have tried to asses the performance of these numerical methods. 

However, even for relatively simple models their performance may vary greatly40. 

Despite all of their sophistication, none of these methods can consistently outperform the 

others.  

Even comparing the methods is not a walk in the park. Several authors including 

Judd (1992), Den Haan and Marcet (1994), Collard and Juillard (2001), Santos (2000) 

and Reiter (2000) proposed different criteria for evaluating the performance of numerical 

solutions. Unfortunately, each criterion has its caveats and it has to be applied selectively, 

based on the specificity of the model under investigation. Therefore, one has to choose 

carefully the proper methodology when in need of numerical solutions. 

 
 
 

 

 

                                                 
40 See the studies by Taylor and Uhlig (1990), Judd (1992), Rust (1997), Christiano and 
Fischer (2000), Santos (2000), Collard and Juillard (2001), Fair (2003), Schmitt-Grohé 
and Uribe (2004). 
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Chapter II.  Using Scenario Aggregation Method to Solve a Finite 

Horizon Life Cycle Model of Consumption 

 

II.1. Introduction 

Multistage optimization problems are a very common occurrence in the economic 

literature. While there exist other approaches to solving such problems, many economic 

models involving intertemporal optimizing agents assume that the representative agent 

chooses its actions as a result of solving some dynamic programming problem. Lately, an 

increasing number of researchers have investigated alternative approaches to modeling 

the representative agent, in an attempt to find one that may explain observed facts better 

or easier. Following the same line of research, I explore the suitability of scenario 

aggregation method as an alternative to describe the decision making process of an 

optimizing agent in economic models. The idea is that this methodology offers a different 

approach that might be more consistent with the observation that agents are more likely 

to behave like chess players, making decisions based only on a subset of all possible 

outcomes and using a relatively short horizon41. The advantage of scenario aggregation 

methodology is that, while it presents attractive features for use in models assuming 

bounded rationality, it can also be seen as an alternative numerical method that can be 

used for obtaining approximate solutions for rational expectation models. Therefore, I 

start by studying in this chapter the viability of the scenario aggregation method, as 

                                                 
41 In the next chapter I will focus more on the length of the span over which the decision 
making process takes place. 
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presented by Rockafellar and Wets (1991), to provide a good approximation for the 

optimal solution of a simple finite horizon life-cycle model of consumption with 

precautionary savings. In the next chapter, I will use scenario aggregation to model the 

decision making of the rationally bounded consumer.  

The layout of this chapter is as follows. First, I present the setup of a simple life-

cycle consumption model with precautionary saving. Then, I introduce the notion of 

scenarios followed by a description of the aggregation method. Next, I introduce the 

progressive hedging algorithm followed by its application to a finite horizon life-cycle 

consumption model. Then, I present simulation results and conclude the chapter with 

final remarks. 

 

II.2. A Simple Life-Cycle Model with Precautionary Saving 

I consider the following version of a life-cycle model. Suppose an individual 

agent is faced with the following intertemporal optimization problem: 

 ( )
0

0
{ } 0

max |
T

t t

T
t

t t
c t

E F c Ib
= =

È ˘
Í ˙
Î ˚
Â  (2.2.1) 

where tF  is a utility function which has the typical properties assumed in the literature, 

i.e. it is twice differentiable, it is increasing with consumption and exhibits negative 

second derivative. The information set 0I  contains the level of consumption, assets, labor 

income and interest rate for period zero and all previous periods. 

Maximization is subject to the following transition equation: 

 ( ) 11 ,    0,1,..., 1,t t t t tA r A y c t T−= + + − = −  (2.2.2) 

 -1,    with  A ,  givent TA b A≥ −  (2.2.3) 
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where tA  represents the level of assets at the beginning of period t , ty  the labor income 

at time t , and tc  represents consumption in period t . The initial and terminal conditions, 

1  and  TA A− , are given. Uncertainty is introduced in the model through the labor income. 

The realizations of the labor income are described by the following process: 

 1 ,   1,..., ,   with  givent t t oy y t T yx-= + =  (2.2.4) 

and tx  being drawn from a normal distribution, ( )2~ 0,t yNξ σ . For now, I will not make 

any particular assumption about the process generating the interest rate, tr . Therefore, to 

summarize the model, a representative consumer derives utility in period t  from 

consuming tc , discounts future utility at a rate β  and wants, in period zero, to maximize 

his present discounted value of future utilities for a horizon of 1T +  periods. At the 

beginning of each period t  the consumer receives a stochastic labor income ty , and 

based on the return on his assets 1tA - , from the beginning of period 1t -  to the beginning 

of period t , he chooses the consumption level tc , and thus determines the level of assets 

tA  according to equation (2.2.2).  

Of particular importance in this problem is the random variable tx . In the 

standard formulation of the problem, tx  is assumed to be distributed normally with mean 

zero and some variance 2
yσ . Instead of making the standard assumption, if I assume that 

tx ’s sample space has only a few elements, then the optimization problem (2.2.1) - 

(2.2.4) is a perfect candidate for being solved using the scenario aggregation method. Let 

me assume for the moment that the sample space is given by { }1 2, ,..., nw w w  with the 

associated probabilities { }1 2, ,..., np p p . If S  is the set of all scenarios then its cardinal is 
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given by Tn . It is obvious that as the sample space for the forcing variable increases, the 

number of scenarios increases proportional with power T . Therefore, applying the 

scenario aggregation method to find an approximate solution for this problem may only 

be feasible when T  and  n  are relatively small. In the next chapter, I will present a 

solution for T relatively large. 

 

II.3. The Concept of Scenarios 

II.3.1. The Problem 

    In this section, I formally introduce a multistage optimization problem and then, 

in the following sections, I will present the idea of scenario aggregation and how it can be 

applied to such a problem. 

 The multistage stochastic optimization problem consists of minimizing an 

objective function, : mF R RÆ  subject to some constraints, which usually describe the 

dynamic links between stages. 

 The objective function F  is time separable and is given by a sum of functions,  

0

T

t
t

F F
=

=Â  with each function tF , : m
tF R RÆ  corresponding to stage t  of the 

optimization problem. These functions depend on a set of variables tu , which in turn 

represent the decisions that need to be made at each stage t . For simplicity I assume that 

tu  is a 1um ¥  vector, with um  independent of t , that is, the same number of decisions is 

to be made at each stage. 



 

 53 
 

If ( )U t  represents the set of all feasible actions at stage t , then tu  has to be part 

of the set ( )U t , that is, ( ), 0,..., , ( ) um
tu U t t T U t RÃ = Õ . The temporal dimension of 

the problem is characterized by stages t  and state variables ( )X t . 

The link between stages is given by:  

 1 1( , , )t t t t tx G x u u+ += . 

 Hence, the problem can be formulated as: 

 ( ) 0
0

min , |
T

t t t
t

E F x u I
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  (2.3.1) 

subject to:  

 1 1( , , , )t t t t t tx G x u u ξ+ +=  (2.3.2) 

where 0I  is the information set at time 0t =  and tξ  is the forcing variable.  

In the next few sections, I will present the concept of scenarios as well as possible 

decomposition methods along with the idea of scenario aggregation. 

 

II.3.2. Scenarios and the Event Tree 

In this section, I present an intuitive description for the concept of scenarios. A 

formal description is presented in Appendix, section A1. Suppose the world can be 

described at each point in time by the vector of state variables tx . In the case of a 

multistage optimization problem, let tu  denote the control variable and let tξ  be the 

forcing variable. I assume that an agent makes decisions reflected in the control variable 

tu . For simplicity let tξ  be a random variable witch can take two values aξ  and  bξ  with 

probabilities ap  and 1 ap− .  
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If the horizon has 1T +  time periods and { },a bx x  is the set of possible 

realizations for  tξ   then the sequence 

( )0 1, , ,s s s s
TKx x x x=  

is called a scenario42. From now on, for notation simplification, I will refer to a scenario 

s  simply by sx  or by the index s . Given that the set of all realizations for tξ  is finite, 

one can define an event tree { },N A  characterized by the set of nodes N  and the set of 

arcs A . In this representation, the nodes of the tree are decision points and the arcs are 

realizations of the forcing variables. The arcs join nodes from consecutive levels such 

that a node j
tn  at level t  is linked to 1tN +  nodes, 1 1, 1,...,k

t tn k N+ +=  at level 1t + . In 

Figure 1 I represent such a tree for a span of 3T =  periods. As mentioned above, the 

forcing variable takes only two values, { },a bx x  and hence the tree has 15 nodes. The arcs 

that join nodes from consecutive levels represent realizations of the forcing variable and 

are labeled accordingly. 

The set of nodes N  can be divided into subsets corresponding to each level 

(period). Suppose that at time t  there are tN  nodes. For example, for 1t = , there are two 

nodes, node2 and node3. The arcs reaching these two nodes belong each to several 

scenarios s . The bundle of scenarios that go through one node plays a very important 

role in the decomposition as well as in the aggregation process. The term equivalence 

class has been used in the literature to describe the set of scenarios going through a 

particular node. 

                                                 
42 Other definitions of scenarios can be found in Helgason and Wallace (1991a, 1991b ) 
and Rosa and Ruszczynski (1994). 
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Figure 1 Event tree 

 
By definition, an equivalence class at time t  is the set of all scenarios having the 

first 1t +  realizations common. As mentioned in the above description of the event tree, 

at time t  there are tN  nodes. Every node is associated with an equivalence class. Then, 

the number of distinct equivalence classes at time t  is also tN .  

In Figure 2  one can see that for 1t =  there are two nodes and consequently two 

equivalence classes, { }1 2 3 4, , ,s s s s  and { }5 6 7 8, , ,s s s s . The number of elements of an 

equivalence class is given by the number of leaves stemming from the node associated 

with it. In this example, the number of leaves stemming from both nodes is four, which is 

also the number of scenarios belonging to each class. 
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Figure 2 Equivalence classes 

 

The transition from a state at time t  to one at time 1+t  is governed by the control 

variable tu  but is also dependent on the realization of the forcing variable, that is, on a 

particular scenario s . Since scenarios will be viewed in terms of a stochastic vector ξ  

with stochastic components s
T

ss ξξξ ,,, 10 K , it is natural to attach probabilities to each 

scenario. I denote the probability of a particular realization of a scenario, s , with  

( ) ( )sp s prob x= . 

Let us consider the case of the event trees represented in Figure 1 and Figure 2 and 

assume the probability of realization ax  is ( )t a aprob px x= =  while the probability of 

realization  bx , is ( )t b bprob px x= = , with 1a bp p+ = . Then, due to independence 
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across time, one can compute the probability of realization for scenario 1s , 

3
1( )s

aprob s px = = . Similarly, the probability of realization for scenario 2s  is 

2
2( )s

a bprob s p px = = , or ( )2
2( ) 1s

a aprob s p px = = - . 

Further on, I define43 the probabilities associated with a scenario conditional upon 

belonging to a certain equivalence class at time t . For example, the probability associated 

with scenario 1s , conditional on 1s  belonging to equivalence class { }1 2 3 4, , ,s s s s  is given 

by { }( ) 2
1 1 1 2 3 4| , , , aprob s s s s s s p∈ =  

 

II.4. Scenario Aggregation44 

In this section, I will show how a solution can be obtained by using special 

decomposition methods, which exploit the structure of the problem by splitting it into 

manageable pieces, and then aggregate their solutions. In the multistage stochastic 

optimization literature, there are two groups of methods that have been discussed: primal 

decomposition methods that work with subproblems that are assigned to time stages45  

and dual methods, in which subproblems correspond to scenarios46. Most of the methods, 

regardless of which group belong to, use the general theory of augmented Lagrangian 

decomposition. In this chapter I will concentrate on a methodology that belongs to the 

second group and has been derived from the work of Rockafellar and Wets (1991). 

                                                 
43 For a more formal definition, see the Appendix, section A1. 

44Section A2 in the Appendix offers a more formal description of scenario aggregation. 

45 See the work of Birge (1985), Ruszczynski (1986, 1993), Van Slyke and Wets (1969). 

46 See the work of Mulvey and Ruszczynski (1992), Rockafellar and Wets (1991), 
Ruszczynski (1989), Wets (1988). 
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Let us assume for a moment that the original problem can be decomposed into 

subproblems, each corresponding to a scenario. Then the subproblems can be described 

as:  

 ( )
1

min , ,
mu

t t

T
s s

t t t
u U R t

F x u s S
Œ Õ =

ŒÂ  (2.4.1) 

where s
tu  and s

tx  are the control and the state variable respectively, conditional on the 

realization of scenario s  while S  is a finite, relatively small set of scenarios. Moreover, 

suppose that each individual subproblem can be solved relatively easy. The question then 

becomes how to blend the individual solutions into a global optimal solution. Let the 

term policy47 describe a set of chosen control variables for each scenario and indexed by 

the time dimension.    

The policy function has to satisfy certain constraints if two different scenarios s  

and 's  are indistinguishable at time t  on information available about them at the time. 

Then 's s
t tu u= , that is, a policy can not require different actions at time t  relative to 

scenarios s  and 's  if there is no way to tell at time t which of the two scenarios will be 

followed. In the literature, this constraint is sometimes referred to as the non-

anticipativity constraint. Going back to Figure 2, for 1t = , if the realization of tξ  is aξ , 

the decision maker will find himself at the decision point node2. There are four scenarios 

that pass through node2 and the non-anticipativity constraint requires that only one 

decision be made at that point since the four scenarios are indistinguishable. A policy is 

                                                 
47 A formal description of the policy function is presented in Appendix. 



 

 59 
 

defined as implementable if it satisfies the non-anticipativity constraint, that is, tu  must 

be the same for all scenarios that have common past and present48.  

In addition, a policy has to be admissible. A policy is admissible if it always 

satisfies the constraints imposed by the definition of the problem. It is clear that not all 

admissible policies are also implementable. 

By definition, a contingent policy49 is the solution, su , to a scenario subproblem. 

It is obvious that a contingent policy is always admissible but not necessarily 

implementable. Therefore, the goal is to find a policy that is both admissible and 

implementable. Such a policy is referred to as a feasible policy. One way to create a 

feasible policy from a set on contingent policies is to assign weights (or probabilities) to 

each scenario and then aggregate the contingent policies according to these weights.  

The question that the scenario aggregation methodology answers is how to obtain 

the optimal solution U  from a collection of implementable policies Û . In this chapter, I 

will present a version of the progressive hedging algorithm originally developed by 

Rockafellar and Wets (1991). 

 

                                                 
48 For certain problems the non-anticipativity constraint can also be defined in terms of 
the state variable, that is, ( )tx w  must be the same for all scenarios that have common past 
and present. 

49 I borrow this term from Rockafeller and Wets (1991).  
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II.5. The Progressive Hedging Algorithm 

The algorithm is based on the principle of progressive hedging50 which consists of 

starting with an implementable policy and creating sequences of improved policies in an 

attempt to reach the optimal policy.  

Let us go back to the definition of an implementable policy. By computing  

 { }( ) { }( )
{ }

{ }' 'ˆ |    for all 
t

i

s t s s t t
t t ti i i

s s

u p s s u E u s s s
′∈

′= = ∈∑  (2.5.1) 

for all scenarios s S∈  and all periods 1,...,t T= , one creates a starting collection of 

implementable policies, denoted by 0Û . In equation (2.5.1) E  represents the expectation 

operator. Therefore, in order to obtain an initial collection of implementable policies one 

should first compute some contingent policies for each scenario and then apply the 

expectation operator for each period t  and each scenario s  conditional on it belonging to 

the corresponding equivalence class, { }t
i

s .  

The progressive hedging algorithm finds a path from 0Û , the set of 

implementable policies, to U , the set of optimal policies, by solving a sequence of 

problems in which the scenarios subproblems are not the original ones, but a modified 

version of those by including some penalty terms. The algorithm is an iterative process 

starting from 0Û  and computing at each iteration k  a collection of contingent policies 

kU  which are then aggregated into a collection of implementable policies ˆ kU  that are 

supposed to converge to the optimal solution U . The contingent policies kU  are found as 

optimal solutions to the modified scenario subproblems: 

                                                 
50 This term was coined by Rockafellar and Wets (1991). The idea is based on the theory 
of the proximal point algorithm in nonlinear programming. 
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 ( ) 21 ˆmin ,
2

s s s s s s sF x u w u u uρ+ + −  (2.5.2) 

where ⋅  is the ordinary Euclidian norm, ρ  is a penalty parameter and sw  is an 

information price51 . The use of ρ  is justified by the fact that the new contingent policy 

should not depart too much from the implementable policy found in the previous 

iteration. The modified scenario subproblems (2.5.2) have the form of an augmented 

Lagrangian.  

In the next subsection, I present a detailed description of the progressive hedging 

algorithm, which uses subproblems in the form of an augmented Lagrangian as shown 

above. 

 

II.5.1. Description of the Progressive Hedging Algorithm 

The optimal solution of the problem described by equations (2.3.1) - (2.3.2), U , 

represents the best response an optimizing agent can come up with in the presence of 

uncertainty. An advantage of this algorithm is that one does not necessarily need to solve 

subproblems (2.5.2) exactly. A good approximation52 of the solution is enough in 

allowing one to solve for the solution of the global problem. 

Let kU  denote a collection of admissible policies and kW  a collection of 

information prices corresponding to iteration k . The progressive hedging algorithm, as 

designed by Rockafellar and Wets (1991), consists of the following steps: 

                                                 
51 I borrow this term from Rockafellar and Wets (1991).  

52 One can envision transforming the scenario subproblems into quadratic problems by 
using second order Taylor approximations. 
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Step 0. Choose a value for ρ , 0W  and for 0U . The value of ρ  may remain 

constant throughout the algorithm but it can also be adjusted from iteration to iteration53. 

Changing the value of ρ  may improve the speed of convergence. Throughout this 

chapter, I will consider ρ  as being constant. 0U  can be composed of the contingent 

policies ( ) ( ) ( ) ( )( )0 0 0 0
1 1, ,...,s s s s

Tu u u u=  obtained from solving all the scenarios subproblems, 

whether modified or not. 0W  can be initialized to zero, 0 0W = . Calculate the collection 

of implementable policies, 0 0Û JU= , where J  is the aggregation operator54.  

Step 1.  For every scenario s S∈ , solve the subproblem: 

 ( ) 2

1

1 ˆmin ,
2

T
s s s s s s s

t t t t t t t
t

F x u w u u uρ
=

⎡ ⎤+ + −⎢ ⎥⎣ ⎦
∑  (2.5.3) 

For iteration 1k + , let ( ) ( ) ( ) ( )( )1 1 1 1
1 2, ,...,s k s k s k s k

Tu u u u+ + + += denote the solution to the 

subproblem corresponding to scenario s . This contingent policy is admissible but not 

necessarily implementable. Let 1kU +  be the collection of all contingent policies ( )1s ku + . 

Step2. Calculate the collection of implementable policies, 1 1ˆ k kU JU+ += . While 

these policies are implementable, they are not necessarily admissible in some cases55. If 

the policies obtained are deemed a good approximation, the algorithm can stop. A 

stopping criterion should be employed in this step. 
                                                 
53 See Rockafeller and Wets (1991) and Helgason and Wallace (1991a, 1991b) for a 
discussion on the values of ρ . Rosa and Ruszczynski (1994) also provide some 
algorithm for updating similar penalty parameters. 

54 See the appendix for more details on the aggregation operator. 

55 Contingent policies are always admissible. If the domain of admissible policies is 
convex then any linear combination of the contingent policies will also belong to that 
domain. As noted above, by definition, the aggregation operator is linear. Therefore, for a 
convex problem the implementable policies computed in step 1 are also admissible. 



 

 63 
 

Step3. Update the collection of information prices 1kW +  by the following rule: 

 ( )1 ˆk k k kW W U Uρ+ = + −  (2.5.4) 

For each scenario s S∈  rule (2.5.4) translates into: 

 ( ) ( ) ( )( )1 ( )ˆ  for   1,...,s k s k s k s k
t t t tw w u u t Tρ+ = + − =  (2.5.5) 

This updating rule is derived from the augmented Lagrangian theory. In principle, the 

rule can be changed with something else as long as the decomposition properties are not 

altered. 

Step 4. Reassign : 1k k= +  and go back to step one. 

Next, I investigate how this methodology can be applied to a type of dynamic 

programming problem closed to what is often employed by economists for their models. 

 

II.6. Using Scenario Aggregation to Solve a Finite Horizon Life Cycle Model 

In this section, I will take a closer look at the viability of scenario aggregation in 

approximating a rational expectations model. I choose a standard finite horizon life cycle 

model that has an analytical solution, which will be used as a benchmark for the 

performance of the scenario aggregation method.  

I start by presenting an algorithm for solving the problem given by (2.2.1) - 

(2.2.4) under the assumption that the length of the horizon, T , and the number of 

realizations of the forcing variable, n , are relatively small. The algorithm used is similar 

to that developed by Rockefeller and Wets (1991). As mentioned above, the idea is to 

split the problem into many smaller problems based on scenario decomposition and solve 

those problems iteratively imposing the non-anticipativity constraint. For computational 

convenience, I will reformulate the problem (2.2.1) - (2.2.4) as a minimization rather than 
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maximization. Hence, for each scenario s S∈ , represented by the sequence of 

realizations ( )0 1, , ,s s s s
Ty y y yK= , the problem becomes: 

 ( ) ( )2

0

1min
2t

T
t s s s s s

t t t t t tc t

F c w c c cβ ρ
=

⎧ ⎫⎡ ⎤− + + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑  (2.6.1) 

subject to 

 ( ) 11 ,    0,1,...,s s s s s
t t t t tA r A y c t T-= + + - =  (2.6.2) 

Expressing s
tc  and s

tc  as a function of s
tA  and s

tA , the augmented Lagrangian function, 

for a fixed scenario s , becomes: 

 
( ) ( ){

( ) ( )( )

1 1
0

2

1 1

1 1

1                               + 1 1  
2

T
t s s s s s s s s s

t t t t t t t t t t
t

s s s s s s s s
t t t t t t t t

L F r A y A w r A y A

r A y A r A y A

β

ρ

− −
=

− −

⎡ ⎤ ⎡ ⎤= − + + − + + + − +⎣ ⎦ ⎣ ⎦

⎫⎡ ⎤+ + − − + + − ⎬⎣ ⎦ ⎭

∑
(2.6.3) 

All the underlined variables in the above equations represent implementable policies or 

states derived from applying implementable policies. 

Before going through the steps of the algorithm, I will make a few assumptions 

about the functional form of the utility function as well as about the interest rate. First, it 

is assumed that preferences are described by a negative exponential utility function. 

Hence: 

 ( ) ( )1 expt t tF c cθ
θ

= − −  (2.6.4) 

where θ  is the risk aversion coefficient. Secondly, the interest rate, tr , is taken to be 

constant. Finally, the distribution of the forcing variable is approximated by a discrete 

counterpart. The realizations as well as the associated probabilities are obtained using a 

Gauss-Hermite quadrature and matching the moments up to order two. The number of 

points used to approximate the original distribution determines the number of scenarios. 
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By decomposing the original problem into scenarios, the subproblems become 

deterministic versions of the original model. 

II.6.1. The Algorithm 

Given the assumptions made in the previous section, problem (2.6.1) becomes: 

 ( ) ( )2

0

1 1min exp
2t

T
t s s s s s

t t t t tc t

c w c c cβ θ ρ
θ=

⎧ ⎫⎡ ⎤− + + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑  (2.6.5) 

Consequently the Lagrangian for scenario s  is: 

( )( ) ( )

( ) ( )( )

1 1
0

2

1 1

1 exp 1 1

1                                      1 1  
2

T
t s s s s s s s

t t t t t t t
t

s s s s
t t t t t t

L r A y A w r A y A

r A y A r A y A

β θ
θ

ρ

− −
=

− −

⎧ ⎡ ⎤ ⎡ ⎤= − + + − + + + − +⎨ ⎣ ⎦⎣ ⎦⎩
⎫⎡ ⎤+ + + − − + + − ⎬⎣ ⎦ ⎭

∑
 (2.6.6) 

Since the consumption variable was replaced by a function of the asset level, the 

algorithm will be presented in terms of solving for the level of assets. 

Step 0. Initialization: Set 0s
tw =  for all stages t  and scenarios s . Choose a value 

for ρ  that remains constant throughout the algorithm, let it be 5ρ = . Later on, in this 

chapter, I will discuss the impact the value of ρ  has on the convergence process. At this 

point, one needs a first set of policies. The convergence process, and implicitly the speed 

of the algorithm, is impacted by the choice of the first set of policies. 

One suggestion made in the literature by Helgason and Wallace (1991a, 1991b) is 

to use the solution to the deterministic version of the model. This would amount to using 

the certainty equivalence solution in this case. I will first implement the algorithm using 

as starting point the certainty equivalence solution and then I will take advantage of the 

fact that for certain specifications of the model each scenario subproblem has an exact 

solution. I will then compare the convergence properties of the algorithm in these two 

cases. 
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Let { }
0

Tceq
t t

c
=

 denote the solution to the deterministic problem. Then, using the 

transition equation (2.6.2) one can compute the level of assets for each scenario s , 

( ) ( ) ( ) ( ){ }0 0 0 0
0 1 1, ,...,s s s s

TA A A A −= . Next, it becomes possible to compute the implementable 

states ( ) ( ) ( ) ( ){ }0 0 0 0
0 1 1, ,..., TA A A A −=  as a weighted average of ( )0

0
sA  corresponding to all 

scenarios s , using as weights the probabilities of realization for each scenario. 

Alternatively, one can compute the first set of contingent policies by solving a 

deterministic life cycle consumption model for each scenario s : 

 ( ){ }1
0

1min exp 1
s
t

T
t s s s

t t t
A t

r A y Aβ θ
θ −

=

⎡ ⎤− + + −⎣ ⎦∑  (2.6.7) 

with ( )
1
sA−  and ( )s

TA  given. As before, let ( ) ( ) ( ) ( ){ }0 0 0 0
0 1 1, ,...,s s s s

TA A A A −=  denote the solution 

to this problem. This solution is admissible but not implementable. The implementable 

solution for each period t , 0
tA , is computed as the weighted average of all the contingent 

solutions for period t , ( )0s
tA , with the weights being given by the probability of 

realization for each particular scenario s . 

Step 1. For every scenario s S∈ , solve the subproblem: 

( ){ }
( )

( ) ( ){ }

1
0

1

2

1 1

1min exp 1

                       1

1                       1 1
2

s
t

T
t s s s

t t t
A t

s s s s
t t t t

s s s s
t t t t t t

r A y A

W r A y A

r A y A r A y A

β θ
θ

ρ

−
=

−

− −

⎧ ⎡ ⎤− + + − +⎨ ⎣ ⎦⎩
⎡ ⎤+ + + − +⎣ ⎦

⎫⎡ ⎤+ + + − − + + − ⎬⎣ ⎦ ⎭

∑
 (2.6.8) 

A detailed description of how the solution is computed can be found in the Appendix. 

The advantage of the scenario aggregation method is that the solution to problem (2.6.8) 

does not have to be computed exactly. 
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Let ( ) ( ) ( ) ( ){ }0 1 1, ,...,s k s k s k s k
TA A A A −=  denote the contingent solution to this problem, 

where k  denotes the iteration. Based on this solution I also compute the consumption 

path for each scenario, ( )s kc . This solution is admissible but not implementable and 

therefore the next step is to compute the implementable solution based on the contingent 

solutions ( )s kA .  

Step 2. First, compute the implementable states kA . As it was mentioned in step 

0, k
tA  is computed as the weighted average of all the contingent solutions for period t , 

( )s k
tA , with the weights being given by the probability of realization for each particular 

scenario s . Since the space of the solutions for the problem being solved is convex, the 

implementable solution is also admissible. At this point, if solution kA  is considered 

good enough, the algorithm can stop and kA  becomes officially the solution of the 

problem described by (2.2.1) - (2.2.4). In order to make a decision on the viability of kA  

as the optimal solution, one needs to define a stopping criterion. Based on the value of 

kA  I compute the implementable consumption path kc and then use the following error 

sequence56: 

 ( ) ( ) ( )( )22 1( ) ( ) ( 1)

0

T
k kk t k k

t t t t
t

c c A Aε β −−

=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑  (2.6.9) 

where k  is the iteration number. The termination criterion is ( )k de <  where d  is 

arbitrarily chosen. In the next section, I will discuss the importance of the stopping 

criterion in determining the accuracy of the method. 

                                                 
56 This is similar to what Helgason and Wallace (1990a) proposed. Later on in this 
chapter we will discuss the impact the choice of the value for d  has on the results. 
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Step 3. For 0,1,...,t T=  and all scenarios s update the information prices: 

 ( ) ( ) ( ) ( )( ) ( )( )1 ( ) ( )
1 11   for   1,...,s k s k s k s kk k

t t t t t tw w r A A A A t Tρ+
− −

⎡ ⎤= + + − − − =⎣ ⎦  

Step 4. Reassign : 1k k= +  and go back to step one. 

 

II.6.2. Simulation Results 

In this section, I present a brief picture of the results obtained by the 

implementation of the scenario aggregation method compared to the analytical solution. 

These results show that the numerical approximation obtained through scenario 

aggregation is close to the analytical solution for certain parameterizations of the model. 

In order to asses the accuracy of the scenario aggregation method I will use several 

criteria put forward in the literature. First, I compare the decision rule, i.e. the 

consumption path obtained through scenario aggregation with the values obtained from 

the analytical solution. In this context, I use two relative criteria similar to what Collard 

and Juillard (2001) use. One, a
RE , gives the average departure from the analytical solution 

and is defined as:  

 
*

*
0

1
1

T
a t t
R

t t

c cE
T c=

−
=

+ ∑  (2.6.10) 

The other, m
RE , represents the maximal relative error and is defined as: 

 
*

*
0

max
T

m t t
R

t t

c cE
c

=

⎧ ⎫−⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (2.6.11) 

where *
tc  is the analytical solution and tc  is the value obtained through scenario 

aggregation. Alternatively, since the problem is ultimately solved in terms of the level of 

assets, the two criteria could also be expressed using the level of assets:  
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1* *1

* *
0 0

1 ,  max
T

T
a mt t t t
R R

t t t t

A A A AE E
T A A

−
−

= =

⎧ ⎫− −⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

∑  

where *
tA  is given by the analytical solution and tA  by the scenario aggregation. Even 

though the scenario aggregation methodology does not use the Euler equation in 

obtaining the solution, I will use the Euler equation based criteria proposed by Judd 

(1998) as an alternative for determining the accuracy of the approximation. The criterion 

is defined as a one period optimization error relative to the decision rule. The measure is 

obtained by dividing the current residual of the Euler equation to the value of next 

period’s decision function. Subsequently, two different norms are applied to the error 

term: one, a
EE , gives the average and the other, m

EE , supplies the maximum. Judd (1998) 

labeled these criteria as measures of bounded rationality. 

The simulations were done using the following common set of parameter values: 

the discount factor 0.96β = ; the initial and terminal values for the level of assets 

1 500A− =  and 1000TA = ; the income generating process has a starting value of 

0 200y = . In addition, the interest rate is assumed deterministic. I used two values for the 

interest rate, 0.04r =  and 0.06r = . The distribution of the forcing variable was 

approximated by a 3 point discrete distribution. As I mentioned in the description of the 

progressive hedging algorithm, a few factors can influence the performance of the 

scenario aggregation method. Let us first look at how the starting values and stopping 

criterion influence the results. 
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II.6.2.1. Starting Values and Stopping Criterion 

As I mentioned above, the starting values and the stopping criterion are very 

important elements in the implementation of the algorithm. I consider for the moment 

that the starting values are given by the certainty equivalence solution of the life cycle 

consumption model. I analyze the case where the value for the coefficient of risk aversion 

is 0.01θ = , the variance for the income process is 2 100yσ =  and the interest rate is 

0.06r = . The stopping criterion is given by the sequence ( )kε  as defined in (2.6.9) and I 

arbitrarily choose 0.004d = . Therefore when ( )kε becomes smaller than 0.004d =  I stop 

and declare the solution obtained in iteration k  as the solution to the problem described 

by (2.2.1) - (2.2.4). In Table 1 I provide the values for the accuracy measures discussed 

above, using the level of assets, as opposed to the level of consumption. One can see that 

the approximation to the analytical solution obtained by stopping when ( )kε  is smaller 

than the arbitrarily chosen d  is very good.  

Table 1. Accuracy measures for d=.004 
θ  

0.01 
2
yσ  

a
RE  m

RE  a
EE  m

EE  

100 0.001445515 0.002392885 0.000005019 0.000008735
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The results presented in Table 1 are obtained after 159 iterations. Next, I will look 

at the behavior of the sequence ( )kε  for the case presented above. 
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Figure 3. Evolution of the ( )kε  sequence and the value of the objective for .01θ =  and 2 100yσ =  

 

One can see in Figure 3 that the value for sequence ( )kε  continues to decrease 

until iteration 250 when it attains the minimum value. At the same time, the value of the 

objective continues to increase until iteration 266 when it attains its maximum. It is worth 

noting that the value of the objective is computed as in equation (2.6.12). Based on these 

observations one may elect to choose as stopping criterion the point where ( )kε  attains its 

minimum or when the objective function attains its maximum as opposed to an arbitrary 

value d . Next, I look at how close is the approximation to the analytical solution when 
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using these criteria. In Table 2 one can see that there is not much difference between the 

last two criteria when compared to the analytical solution. The only difference is that the 

value of the expected utility is marginally higher in the second case.   

Table 2. Accuracy measures for various stopping criteria 
θ  

0.01 
2
yσ  

a
RE  m

RE  a
EE  m

EE  Stopping criterion 

100 0.001445515 0.002392885 0.000005019 0.000008735 Arbitrary 0.004d =

100 0.002137894 0.002691210 0.000007190 0.000013733 Minimum of ( )kε  

100 0.002137894 0.002691210 0.000007190 0.000013733 Maximum objective

 

A somewhat interesting result is that the ad-hoc stopping criterion 0.004d =  

leads to a better approximation of the analytical solution. This is explained by the fact 

that the progressive hedging algorithm leads to the solution that would be obtained 

through the aggregation of the exact solutions for every scenario. Here the starting point 

is the certainty equivalent solution and the path to convergence, at some point, is very 

close to the analytical solution.  

 

II.6.3.  The Role of the Penalty Parameter 

In the implementation of the progressive hedging algorithm, I chose the penalty 

parameter to be constant. Its role is to keep the contingent solution for each iteration close 

to the previous implementable policy. However, its value also has an impact on the speed 

of convergence. I will now consider the previous parameterization of the model and I am 
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going to change the value of the penalty parameter to see how it changes the speed of 

convergence. In Figure 4 one can see that as ρ  increases so does the number of iterations 

needed to achieve convergence. While a higher value of the penalty parameter helps the 

convergence of contingent policies to the implementable policy, it also slows the global 

convergence process, requiring more iterations.  
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Figure 4. Convergence for different values of the penalty parameter. 
 

For 0.1ρ = , 250 iterations are needed to achieve convergence, while for 0.5ρ = , 

1780 iterations are needed. For higher values, such as 5ρ = , the number of iterations 

needed to achieve convergence increases to over 25000 iterations. 
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II.6.4. More simulations 

In this section I investigate how close the scenario aggregation solution is to the 

analytical solution for various parameters. Table 3 shows the values for the four criteria 

enumerated above for different values of the coefficient of risk aversion and of the 

variance of the random variable entering the income process. All the simulations whose 

results are presented in Table 3 were done using a three point approximation of the 

distribution of the random variable entering the income process. The relative measures 

are computed using the level of assets. 

Table 3. Accuracy measures for various parameters when interest rate r=0.04  
θ  

0.01 0.05 0.1 2
yσ  

a
RE  m

RE  a
EE  m

EE  a
RE  m

RE  a
EE  m

EE  a
RE  m

RE  a
EE  m

EE  

1 .0000 .0000 .0000 .0000 .0001 .0001 .0000 .0000 .0002 .0003 .0000 .0000

4 .0000 .0001 .0000 .0000 .0004 .0005 .0000 .0000 .0009 .0011 .0000 .0000

25 .0005 .0007 .0000 .0000 .0029 .0037 .0000 .0000 .0058 .0074 .0000 .0000

100 .0023 .0029 .0000 .0000 .0116 .0147 .0000 .0000 .0230 .0290 .0000 .0000

 
 
For lower values of the coefficient of risk aversion the approximation is relatively good. 

As the coefficient of risk aversion increases in tandem with the variance of the income 

process, the accuracy suffers when looking at relative measures. The Euler equation 

measure still indicates a very good approximation. 

Let us now look at how this approximation affects the value of the original 

objective, i.e. the expected discounted utility over the lifetime horizon. Table 4 shows the 
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ratio of the expected utilities for the whole horizon with the scenario aggregation as the 

as the denominator and the analytical solution as the numerator.  

Table 4. The ratio of lifetime expected utilities as

sc

F
F  

θ  

2
yσ  0.01 0.03 0.05 0.1 

1 1.00000 1.00000 1.00000 1.00003

4 1.00000 1.00001 1.00003 1.00058

25 1.00000 1.00002 1.00141 1.02027

100 1.00003 1.00051 1.02273 1.39364

 

The discounted utilities are computed as in the original formulation of the problem:  

 ( ) 
1 0

1 1 exp
N T

t i
sc t

i t

F c
N

β θ
θ= =

⎧ ⎫⎡ ⎤= − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ∑  (2.6.12) 

and  

 ( )*

1 0

1 1 exp
N T

t i
as t

i t

F c
N

β θ
θ= =

⎧ ⎫⎡ ⎤= − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ∑  (2.6.13) 

where N  is the number of simulations, scF  is the discounted utility obtained with 

scenario aggregation and  asF  is the discounted utility obtained with the analytical 

solution. In this formulation, both quantities are negative so their ratio is positive. Note 

however that the initial formulation of the problem using the objective function specified 

in (2.6.12) and (2.6.13) was a maximization. Therefore, higher ratio in Table 4 means that 

the solution obtained through scenario aggregation leads to higher discounted lifetime 

utility than the analytical solution. I simulate 2000 realizations of the income process and 

then I average the discounted utilities over this sample. The result shows that the solution 
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obtained through scenario aggregation leads to higher overall expected utility as the 

coefficient of risk aversion increases. This is explained by the fact that the level of 

consumption in the first few periods is higher in the case of scenario aggregation. In the 

context of a short horizon, this leads to higher levels of discounted utility.  

 

II.7. Final Remarks 

The results show that scenario aggregation can be used to provide a good 

approximation to the solution of a life-cycle model for certain values of the parameters. 

There are a few remarks to be made regarding the convergence. As pointed out earlier in 

this chapter the value of ρ  has an impact on the speed of convergence. Higher values of 

ρ  lead to faster convergence of the contingent policies towards an implementable policy 

but that also means that the overall convergence is slower and hence it impacts the 

accuracy if an ad-hoc stopping criterion is used. Therefore, one needs to choose carefully 

the values of the ad-hoc parameters. On the other hand, if the scenario problems have an 

exact solution then the final implementable policy can be obtained through a simple 

weighted average with the weights being the probabilities of realization for each scenario. 
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Chapter III. Impact of Bounded Rationality57 on the Magnitude of 

Precautionary Saving 

III.1. Introduction 

It is fair to say that nowadays the assumption of rational expectations has become 

routine in most economic models. Recently, however, there has been an increasing 

number of papers, such as Gali et al. (2004), Allen and Carroll (2001), Krusell and Smith 

(1996), that have modeled consumers using assumptions that depart from the standard 

rational expectations paradigm. Although they are not explicitly identified as modeling 

bounded rationality, these assumptions clearly take a bite from the unbounded rationality, 

which is the standard endowment of the representative agent. The practice of imposing 

limits on the rationality of agents in economic models is part of the attempts made in the 

literature to circumvent some of the limitations associated with the rational expectations 

assumption. Aware of its shortcomings, even some of the most ardent supporters58 of the 

rational expectations paradigm have been looking for possible alterations of the standard 

set of assumptions. As a result, a growing literature in macroeconomics is tweaking the 

unbounded rationality assumption resulting in alternative approaches that are usually 

presented under the umbrella of bounded rationality.  

                                                 
57 The concept of bounded rationality in this chapter should be understood as a set of 
assumptions that departs from the usual rational expectation paradigm. Its meaning will 
become clear later in the chapter when the underlying assumptions are spelled out.  

58 Sargent (1993) for example, identifies several areas in which bounded rationality can 
potentially help, such as equilibrium selection in the case of multiple possible equilibria 
and behavior under “regime changes”. 
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One may ask why is there a need to even consider bounded rationality. First,  

individual rationality tests led various researchers to “hypothesize that subjects make 

systematic errors by using ... rules of thumb which fail to accommodate the full logic of a 

decision” (J. Conlisk, 1996). Secondly, some models assuming rational expectations fail 

to explain observed facts, or their results may not match empirical evidence. Since most 

of the time models include other hypotheses besides the unbounded rationality 

assumption, the inability of such models to explain certain observed facts could not be 

blamed solely on rational expectations. Yet, it is worth investigating whether bounded 

rationality plays an important role in such cases. Finally, as Allen and Carroll (2001) 

point out, even when results of models assuming rational expectations match the data, it 

is still worth asking the question of how can an average individual find the solution to 

complex optimization problems that until recently economists could not solve. To 

summarize, the main idea behind this literature is to investigate what happens if one 

changes the assumption that agents being modeled have a deeper understanding of the 

economy than researchers do, as most rational expectations theories assume. Therefore, 

instead of using rational expectations, it is assumed that economic agents make decisions 

behaving in a rational manner but being constrained by the availability of data and their 

ability to process the available information. 

While the vast literature on bounded rationality continues to grow, there is yet to 

be found an agreed upon approach to modeling rationally bounded economic agents. 

Among the myriad of methods being used, one can identify decision theory, simulation-

based models, artificial intelligence based methodologies such as neural networks and 

genetic algorithms, evolutionary models drawing their roots from biology, behavioral 
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models, learning models and so on. Since there is no standard approach to modeling 

bounded rationality, most of the current research focuses on investigating the importance 

of imposing limits on rationality, as well as on choosing the methods to be used in a 

particular context. When modeling consumers, the method of choice so far seems to be 

the assumption that they follow some rules of thumb59. Instead of imposing some rules of 

thumb, my approach in modeling bounded rationality focuses on the decision making 

process. I borrow the idea of scenario aggregation from the multistage optimization 

literature and I adapt it to fit, what I believe to be, a reasonable description of the decision 

making process for a representative consumer. Besides the decision making process per 

se, I also add a few other elements of bounded rationality that have to do with the ability 

to gather and process information. 

 In the previous chapter, the method of scenario aggregation was introduced as an 

alternative method for solving non-linear rational expectation models. Even though it 

performs well in certain circumstances, the real advantage of the scenario aggregation 

lays in a different area. Its structure presents itself as a natural way to describe the 

process through which a rationally bounded agent, faced with uncertainty, makes his 

decision. In this chapter, I consider several versions of a life-cycle consumption model 

with the purpose of investigating how the magnitude of precautionary saving changes 

with the underlying assumptions on the (bounded) rationality of the consumer. 

 

                                                 
59 Some of the examples are Gali et al. (2004), Allen and Carroll (2001), Lettau and 
Uhlig (1999) and Ingram (1990). 
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III.2. Empirical Results on Precautionary Saving 

There seems to be little agreement in the empirical literature on precautionary 

saving, especially when it comes to its relationship to uncertainty. Skinner (1988) found 

that saving was lower than average for certain groups60 of households that are perceived 

to have higher than average income uncertainty. In the same camp, Guiso, Jappelli and 

Terlizzese (1992), using data from the 1989 Italian Survey of Household Income and 

Wealth, found little correlation between the level of future income uncertainty and the 

level of consumption61. In addition, Dynan (1993), using data from the Consumer 

Expenditure Survey, estimated the coefficient of relative prudence and found it to be “too 

small to be consistent with widely accepted beliefs about risk aversion”.  

On the other hand, Dardanoni (1991) basing his analysis on the 1984 cross-

section of the UK FES (Family Expenditure Survey) suggested that the majority of 

saving in the sample arises for precautionary motives. He found that average 

consumption across occupation and industry groups was negatively related to the within 

group variance of income. Carroll (1994) found that income uncertainty was statistically 

important in regressions of current consumption on current income, future income and 

uncertainty. Using UK FES data, Merrigan and Normandin (1996) estimated a model 

where expected consumption growth is a function of expected squared consumption 

growth and demographic variables and their results, based on the period 1968-1986, 

                                                 
60 Specifically, the groups identified were farmers and self-employed.  

61 In fact the study on Italian consumers did find that consumption was marginally lower 
while wealth was marginally higher for those who were facing higher income uncertainty 
in the near future.  
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indicate that precautionary saving is an important part of household behavior. Miles 

(1997), using several years of cross-sections of the UK micro data and regressing 

consumption on several proxies for permanent income and uncertainty, found that, for 

each cross-section, the latter variable played a statistically significant role in determining 

consumption. In a study trying to measure the impact of income uncertainty on household 

wealth, Carroll and Samwick (1997), using the Panel Study of Income Dynamics, found 

that about a third of the wealth is attributable to greater uncertainty. Later on, Banks et al. 

(2001), exploiting not only the cross-sectional, but also the time-series dimension of their 

data set, find that section specific income uncertainty as opposed to aggregate income 

uncertainty plays a role in precautionary saving. Finally, Guariglia (2001) finds that 

various measures of income uncertainty have a statistically significant effect on savings 

decisions. 

In this chapter, I am going to show that, by introducing bounded rationality in a 

standard life cycle model, one can increase the richness of the possible results. Even if 

the setup of the model would imply the existence of precautionary savings, under certain 

parameter values and rules followed by consumers, the precautionary saving is apparently 

almost inexistent. As opposed to most of the literature62 studying precautionary savings, I 

introduce uncertainty in the interest rate, beside income uncertainty. In this context, the 

size of precautionary saving no longer depends exclusively on income uncertainty. 

                                                 
62 A notable exception is Binder et al. (2000). 
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III.3. The Model 

I start this section by presenting the formulation of a standard finite horizon life-

cycle consumption model. Then I will introduce a form of bounded rationality63 and 

investigate the path for consumption and savings.  

Consider the finite-horizon life-cycle model under negative exponential utility. 

Suppose an individual agent is faced with the following intertemporal optimization 

problem: 

 ( )
0

0
{ } 0

1max exp |
T

t t

T
t

t
c t

E c Iβ θ
θ= =

⎡ ⎤− −⎢ ⎥⎣ ⎦
∑  (3.3.1) 

subject to 

 ( ) 11 ,    0,1,..., 1,t t t t tA r A y c t T−= + + − = −  (3.3.2) 

 -1,    with  A ,  givent TA b A≥ −  (3.3.3) 

where θ  is the coefficient of risk aversion, tA  represents the level of assets at the 

beginning of period t , ty  the labor income at time t , and tc  represents consumption in 

period t . The initial and terminal conditions, 1 and   TA A- are given. The information set 

0I  contains the level of consumption, assets, labor income and interest rate for period 

zero and all previous periods. The labor income is assumed to follow an arithmetic 

random walk: 

                                                 
63 As it was already mentioned above, the approach in defining bounded rationality in this 
chapter has some similarities to the approach followed by Lettau and Uhlig (1999) in the 
sense that several rules are used to account for the inability of the boundedly rational 
agent to optimize over long horizons.    
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 1 ,   1,..., ,   with  givent t t oy y t T yx-= + =  (3.3.4) 

and tx  being drawn from a normal distribution, ( )2~ 0,t yNξ σ . When the interest rate is 

deterministic, this problem has an analytical solution64. However, if the interest rate is 

stochastic, the solution of this finite horizon life cycle model becomes more complicated 

and it can not be computed analytically. For now, I will not make any particular 

assumption about the process generating the interest rate. Therefore, to summarize the 

model, a representative consumer derives utility in period  t  from consuming tc , 

discounts future utility at a rate β  and wants, in period zero, to maximize his present 

discounted value of future utilities for a horizon of 1T +  periods. At the beginning of 

each period t  the consumer receives a stochastic labor income ty , finds out the return tr  

on his assets 1tA - , from the beginning of period 1t -  to the beginning of period t , and, by 

choosing tc , determines the level of assets tA  according to equation (3.3.2).  

Now, I introduce a rationally bounded agent in the following way. First, I assume 

that the agent does not have either the resources or the sophistication to be able to 

optimize over a long horizon. For example, if the agent enters the labor force at time zero 

and faces the problem described by (3.3.1) - (3.3.4) over a time span extending until his 

retirement, let it be period T , the assumption is that the agent does not have the ability to 

optimally choose, at time zero, a consumption plan over that span. Instead, he focuses on 

choosing a consumption plan over a shorter horizon, let it be 1hT +  periods.  

Secondly, because of his limited ability to process large amounts of information 

he repeats this process every period in order to take advantage of any new available 

                                                 
64 See the appendix for a detailed description of the analytical solution. 
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information. This idea of a shorter and shifting optimization horizon is similar to the 

approach taken by Prucha and Nadiri65 (1984, 1986, and 1991). Now, the question is how 

an individual who lacks sophistication, can optimally66 choose a consumption plan even 

for a short time span. In order to model the decision process I make use of the scenario 

aggregation method. Under this assumption, the agent evaluates several possible paths 

based on the realization of the forcing variables specified in the model. By assigning 

probabilities to each of the possible paths, the agent is in the position to aggregate the 

scenarios (paths), i.e., to compute the expected value for his decision.  

In order to be able to use the scenario aggregation method, the forcing variables 

need to have a discrete distribution but in the model presented above, they are described 

as being drawn from a normal distribution. This leads to the third element that can be 

brought under the umbrella of bounded rationality. Since the agent has limited 

computational ability, the distribution of the forcing variable is approximated by a 

discrete distribution with the same mean and variance as the original distribution. This 

approximation does not necessarily have to be viewed as a bounded rationality element 

since similar approaches have been employed repeatedly in numerical solutions using 

state space discretization67.  

Given the assumptions made about the abilities of the rationally bounded 

representative agent, I will now go through the details of solving the problem described 

                                                 
65 In their work, a finite and shifting optimization horizon is used to approximate an 
infinite horizon model.  

66 Optimality here means the best possible solution given the level of ability.   

67 Tauchen, among others, used this kind of approximation on various occasions, such as 
Tauchen (1990), Tauchen and Hussey (1991). 
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by equations (3.3.1) - (3.3.4). Hence, at every point in time, t , the agent solves the 

problem: 

 ( )
0{ } 0

1max exp |  for 0,1,...,
h

Th
t

T

t t h
c

E c I t T T
τ τ

τ
τ

τ

β θ
θ+ =

+
=

⎡ ⎤
− − = −⎢ ⎥

⎣ ⎦
∑  (3.3.5) 

or 

 ( )
0{ } 0

1max exp |  for 1,..., 1
T t

t

T t

t t h
c

E c I t T T T
τ τ

τ
τ

τ

β θ
θ−

+ =

−

+
=

⎡ ⎤− − = − + −⎢ ⎥⎣ ⎦
∑  (3.3.6) 

subject to 

 
( )

( )
11 ,  

                  0,1,..., 1,   0,...,min ,
t t t t t

h

A r A y c

t T T T t
τ τ τ τ τ

τ
+ + + − + += + + −

= − = −
 (3.3.7) 

 -1 -1with ,  ,  and  given
ht t T TA A A A+  (3.3.8) 

where tA t+  represents the level of assets at the beginning of period t t+ , ty t+  the labor 

income at time t t+ , and tc t+  represents consumption in period t t+ . The initial and 

terminal conditions, -1 1, ,
ht t TA A A− +  and TA  are given. The information set tI  contains the 

level of consumption, assets, labor income and interest rate for period t  and all previous 

periods. The labor income is assumed to follow an arithmetic random walk: 

 
( )1

0

,   1,..., ,    0,..., min ,
                                  with   given

b
t t t hy y t T T T t

y
t t tx t+ + - += + = = -

 (3.3.9) 

b
t tx +  being drawn from a discrete distribution, ( )20, yD σ  with a small number of 

realizations. 

In making the above assumptions, the belief is that they would better describe the 

way individuals make decisions in real life. It is often the case that plans are made for 

shorter horizons, but not entirely forgetting about the big picture.   
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Recalling the results of Skinner (1988) who found that saving was lower than 

average for farmers and self employed, groups that are otherwise perceived to have 

higher than average income uncertainty, one can assume that planning for those groups 

does not follow the recipe given by the standard life cycle model. Given the high level of 

uncertainty, I believe it would be more appropriate to model these consumers as if they 

plan their consumption path only for a short period of time and then reevaluate. This 

would be consistent with the fact that farmers change their crop on a cycle of several 

years and may be influenced by the fluctuations in the commodities markets and other 

government regulations. Similarly, some among the self employed are likely to have 

short term contracts and are more prone to reevaluate their strategy on a high frequency 

basis. Therefore, the model above seems like a good description on how the decision 

making process works. The only detail that remains to be decided is how the consumer 

chooses the short horizon terminal condition, that is, the level of assets, or the wealth. For 

this purpose, I propose three different rules and I investigate their effect on the saving 

behavior. 

So far, no assumption has been made about the process governing the realizations 

of the interest rate. From now on, I assume that the interest rate is also described by an 

arithmetic random walk: 

 1 ,   1,..., ,   with r  givent t t or r t Tυ−= + =  (3.3.10) 

Since in this formulation the problem does not have an analytical solution, the classical 

approach would be to employ numerical methods in order to describe the path of 

consumption, even for a very short horizon. In order to find the solution corresponding to 

the model incorporating the bounded rationality assumption I will use the scenario 
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aggregation68 methodology. Then I will compare this solution with the numerical 

solution69 that would result from the rational expectation version of the model when 

optimizing over the whole T  period horizon. 

III.3.1. Rule 1 

Under rule 1, the consumer considers several possible scenarios for a short 

horizon and assumes that for later periods certainty equivalence holds. In this context, he 

makes a decision for the current period and moves on to the next period when he 

observes the realization of the forcing variables. Then he repeats the process by making a 

decision based on considering all the relevant scenarios for the near future and assuming 

certainty equivalence for the distant future. Hence, the decision making process takes 

place every period. More precisely, when optimizing in period t , the consumer considers 

all the scenarios in the tree event determined by the realizations of the forcing variable 

for the first hT  periods. From period ht T+  he considers that certainty equivalence holds 

for the remaining hT t T− −  periods. This translates specifically to considering that 

income and interest rate are frozen for each existing scenario for the remaining hT t T− −  

periods. To be more specific, for time 0t = , the consumer considers all the scenarios 

available in the event tree for the first hT  periods and assumes certainty equivalence for 
                                                 
68 Since an analytical solution can be obtained when income follows an arithmetic 
random walk and interest rate is deterministic, it is not necessary to discretize both 
forcing variables, but only the interest rate. This approach reduces considerably the 
computational burden. A short description on the methodology used along with the 
solution for one scenario with deterministic, interest rate is presented in the appendix.  
More details on the scenario aggregation methodology can be found in the second 
chapter. 

69 The numerical solution is obtained using projection methods and is due to Binder et al. 
(2000). 
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the remaining hT T−  periods. When it advances to period 1t = , he optimizes again 

considering all the scenarios available in the tree event for periods 1,2,..., 1hT +  and 

assumes certainty equivalence for the remaining 1hT T− −  periods. 

In fact, this rule can be considered as an extension to the scenario aggregation 

method in order to avoid the dimensionality curse. One may recall that due to its 

structure, the number of scenarios in the scenario aggregation method increases 

exponentially with the number of periods. In effect, this rule is limiting the number of 

scenarios considered and it is consistent with a rationally bounded decision maker who 

can only consider a limited and, most likely, low number of possible scenarios.  

Following are some graphical representations of the simulations for rule 1. Each 

graph contains the values for the coefficient of risk aversion, θ . The graphs also contain 

the numerical solution and, for comparison purposes, the evolution of assets if the 

solution were computed in the case of certainty equivalence. I first consider a group of 12 

cases varying certain parameters of the model. For all simulations in this group, the total 

number of periods considered is 40T =  and the optimizing horizon is 6hT = . The 

starting level of income is 0 200y = , the initial level of assets is 1 500A− =  while the 

terminal value is 1000TA = . The discount factor is 0.96β = , the starting value for the 

interest rate, 0 0.06r =  while the standard deviation for the interest process is given by 

0.0025rσ = . I use a discrete distribution with three possible realizations to approximate 

the original distribution of the forcing variable and that implies that in each period t , for 

34ht T T≤ − = , the optimization process goes over 3 729hT =  scenarios. For periods 

34 1 39hT T t T= − < ≤ − =  the number of scenarios considered decreases to 3T t− . The 
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parameters that are changing in the simulations are the variance for the income process 

and the coefficient of risk aversion. I consider all cases obtained combining three values 

for the standard deviation of income, { }1,  5,  10yσ ∈  and four values for the coefficient 

of risk aversion, { }0.005,  0.01,  0.05,  0.1θ ∈ . The results presented in this section as well 

as for the rest of the chapter are based on 1000 simulations. This means that for both the 

income generating process and the interest rate generating process, I consider 1000 

realizations for each period. The decision to use only 1000 realizations was based on the 

observation that the sample drawn provided a good representation of the arithmetic 

random walk process assumed in the model. Specifically, both the mean and the standard 

deviation of the sample were close to their theoretical values. 

Some general results have emerged from all these simulations. First, the path for 

the level of assets for the solution obtained in the bounded rationality case always lies 

below the path for the level of assets for the numeric al solution obtained in the rational 

expectation case. Consequently, the consumption path in the bounded rationality case 

starts with values of consumption higher than in the rational expectations case. 

Eventually the paths cross and the consumption level in the rational expectations case 

ends up being higher toward the end of the horizon. 
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Figure 5. Consumption paths for 1yσ = ,  0 0.06r =  and 0.0025rσ = . 

One can see in Figure 5 that consumption is increasing over time for both 

solutions, with the steepest path corresponding to the lowest value of the coefficient of 

risk aversion. 

When looking at the asset path for the same value of the standard deviation of the 

income process, one notices in Figure 6 that the level of saving in the certainty 

equivalence case is mostly higher than the level of saving obtained in the bounded 

rationality case as well as under the rational expectations assumption.  
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Figure 6. Asset paths for 1yσ = , 0 0.06r =  and 0.0025rσ = . 

While for lower levels of the coefficient of risk aversion { }0.005,  0.01θ ∈ , the 

asset path obtained assuming certainty equivalence crosses under the other two paths in 

the later part of the horizon, the same is not true for higher values of the coefficient of 

risk aversion, { }0.05,  0.1θ ∈ . 

It is not only the relative position of the three paths that changes in the context of 

an increasing coefficient of risk aversion, but also the absolute size of the level of 

savings. Moreover, the shape of the paths for both the rational expectation and bounded 

rationality case changes from concave to convex.  

I present now a new set of simulations with the standard deviation of income 

being increased to 5yσ = . One can see in Figure 7 that the consumption paths for 
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{ }0.005,  0.01θ ∈  are not much different from those presented in Figure 5 while for 

higher values of the risk aversion coefficient, { }0.05,  0.1θ ∈ , the consumption paths are 

steeper than in the previous case. 

Looking now at the level of savings, one notices in Figure 8 a similar change to 

that observed in the case of consumption. While not much has changed for the lower 

values of the coefficient for risk aversion, the asset paths for higher values of the risk 

aversion coefficient, { }0.05,  0.1θ ∈ , have changed, effectively becoming concave, as 

opposed to convex in the previous case. Besides the concavity change, one can observe 

that for 0.1θ =  the level of assets resulting from the numerical approximation of the 

rational expectations model is higher than in the case of certainty equivalence for the 

bigger part of the lifetime horizon.  
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Figure 7. Consumption paths for 5yσ = ,  0 0.06r =  and 0.0025rσ = . 
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Figure 8. Asset paths for 5yσ = , 0 0.06r =  and 0.0025rσ = . 

By raising the variance of the income again, one can see in Figure 9 that the path 

for consumption becomes a lot steeper for { }0.05,  0.1θ ∈ . On the other hand, there 

seems to be little change in the consumption pattern for 0.005θ = .  

On the savings front, the level of precautionary saving increases tremendously for 

the highest coefficient of risk aversion, 0.1θ = , and quite substantially for 0.05θ = . 

Consequently, in these two cases, the level of savings for the rational expectation model, 

as well as the bounded rationality version, becomes noticeably higher than what certainty 

equivalence produces. Yet, the level of savings continues to be higher for the much lower 

coefficient of risk aversion, 0.005θ = , when compared with the savings pattern for 

0.01θ =  and 0.05θ = . 
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Figure 9. Consumption paths for 10yσ = ,  0 0.06r =  and 0.0025rσ = . 

Another interesting observation is that if one compares the level of savings from 

the panel corresponding to 0.05θ =  and 10yσ =  in Figure 10, to the level of savings 

from the panel corresponding to 0.005θ =  and 1yσ =  in Figure 6, the two are almost the 

same, if not the later higher. This is to say that for values of coefficient of risk aversion 

and of standard deviation for income ten times as high as the ones in Figure 6, the level 

of precautionary saving is almost unchanged. 
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Figure 10. Asset paths for 10yσ = , 0 0.06r =  and 0.0025rσ = . 

As a general observation, it seems that the level of precautionary saving derived 

from the rational expectation model is consistently higher, even if not by high margins, 

than the level of savings obtained in the case of bounded rationality. For consumption, 

the paths can be steeper or flatter but the general allure remains the same. The rationally 

bounded consumer tends to start with a higher consumption while after a few periods the 

unboundedly rational consumer tends to take over and continue to consume more until 

the end of the horizon.  
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III.3.2. Rule 2 

Under rule 2, the consumer considers all the relevant scenarios for the immediate 

short horizon and then, for the later periods, he only takes in account what I call the 

extreme cases. Rule 2 is similar to rule 1 in the way the decision maker emphasizes the 

importance of scenarios only for the short term horizon. The difference is that under rule 

2, rather than assuming certainty equivalence for the later periods, the consumer 

considers the extreme case scenarios as a way of hedging against uncertainty in the 

distant future. More precisely, when optimizing in period t , the consumer considers all 

the scenarios in the event tree determined by the realizations of the forcing variable for 

the first hT  periods but then he becomes selective and only considers the extreme cases70 

for the remaining hT t T− −  periods. To be more specific, for time 0t = , the consumer 

considers all the scenarios available in the event tree for the first hT  periods and only the 

extreme cases for the remaining hT T−  periods. When it advances to period 1t = , he 

optimizes again considering all the scenarios available in the tree event for periods 

1,2,..., 1hT +  and only the extreme cases for the remaining 1hT T− −  periods. 

In fact, this rule can also be considered as an extension to the scenario 

aggregation method in an attempt order to avoid the dimensionality curse. One may recall 

that due to its structure, the number of scenarios in the scenario aggregation method 

increases exponentially with the number of periods. This rule is in fact limiting the 

number of scenarios considered by trying to keep intact the possible variation in the 

forcing variable. As opposed to rule 1 where from time ht T+  the assumption is that the 
                                                 
70 The notion of extreme cases covers scenarios for which the realization of the forcing 
variable remains the same. For more details see section 0 in the appendix. 
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forcing variable keeps its unconditional mean value, that is, zero, until the end of the 

horizon, this rule expands the number of scenarios by adding all the extreme case 

scenarios stemming from the nodes existent at time ht T+ . This expansion can also be 

seen as the equivalent of placing more weight on the tails of the original distribution of 

the forcing variable. This rule is consistent with a rationally bounded decision maker who 

can only consider a limited and, most likely, low number of possible scenarios but wants 

to account for the variance in the forcing variable in the later periods of the optimization 

horizon.  

Following are some graphical representations of the simulations for rule 2. The 

graphs depicting the consumption paths contain the bounded rationality solution as well 

as the numerical solution. For comparison purposes, the graph panels containing the 

evolution of assets display the savings pattern resulting from the solution obtained in the 

case of certainty equivalence on top of the solutions for the rational expectations and the 

bounded rationality models. 

As in the case of rule 1, one can see in Figure 11 that consumption is increasing 

over time for both solutions, with the steepest path corresponding to the lowest value of 

the coefficient of risk aversion. 

As opposed to the previous rule, the rationally bounded consumer does not always 

start with a higher level of consumption. In fact, in this panel, for 0.05θ =  and 0.1θ = , 

the solution of the rational expectations model has higher starting values for 

consumption. 
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Figure 11. Consumption paths for 1yσ = ,  0 0.06r =  and 0.0025rσ = . 

Looking at the asset paths for the same value of the standard deviation of the 

income process, one can notice in Figure 12 that the level of saving in the certainty 

equivalence case is mostly higher than the level of saving obtained in the bounded 

rationality case as well as under the rational expectations assumption. While for lower 

levels of the coefficient of risk aversion { }0.005,  0.01θ ∈ , the asset path obtained 

assuming certainty equivalence crosses under the other two paths in the later part of the 

horizon, the same is not true for higher values of the coefficient of risk aversion. For 

{ }0.05,  0.1θ ∈  there is only one period, the one next to last, when the level of savings 

under certainty equivalence is lower than in the other two cases.  



 

 99 
 

0 5 10 15 20 25 30 35 40

400

600

800

1000

1200

1400

1600

Time t (periods)

A
ss

et
 le

ve
l

Level of Assets for θ =0.005

numerical solution
bounded rationality
certainty equivalence

0 5 10 15 20 25 30 35 40

400

600

800

1000

1200

1400

1600

Time t (periods)

A
ss

et
 le

ve
l

Level of Assets for θ =0.01

numerical solution
bounded rationality
certainty equivalence

0 5 10 15 20 25 30 35 40

400

600

800

1000

1200

1400

1600

Time t (periods)

A
ss

et
 le

ve
l

Level of Assets for θ =0.05

numerical solution
bounded rationality
certainty equivalence

0 5 10 15 20 25 30 35 40

400

600

800

1000

1200

1400

1600

Time t (periods)

A
ss

et
 le

ve
l

Level of Assets for θ =0.1

numerical solution
bounded rationality
certainty equivalence

 
Figure 12. Asset paths for 1yσ = , 0 0.06r =  and 0.0025rσ = . 

As it was the case with rule 1, an increase in the coefficient of risk aversion 

results in a decrease of the absolute size of the level of savings. Moreover, the shape of 

the paths for both the rational expectation and bounded rationality cases changes from 

concave to convex. As opposed to rule 1, for { }0.05,  0.1θ ∈  the level of savings under 

bounded rationality is higher than under rational expectations. 

The next set of simulations has the standard deviation of income increased to 

5yσ = . The consumption paths for { }0.005,  0.01θ ∈  in Figure 13 are not much different 

from those presented in Figure 11 while for higher values of the risk aversion coefficient, 

{ }0.05,  0.1θ ∈ , the consumption paths are steeper than in the previous case.  
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Figure 13. Consumption paths for 5yσ = ,  0 0.06r =  and 0.0025rσ = . 

For the level of savings, the change is similar to that observed in the case of 

consumption. In Figure 14 one can see that, while not much has changed for the lower 

values of the coefficient for risk aversion, the asset paths for higher values of the risk 

aversion coefficient, { }0.05,  0.1θ ∈ , have changed, effectively becoming concave, as 

opposed to convex in the previous case. Besides the concavity change, one can observe 

that for 0.1θ =  the level of assets resulting from the numerical approximation of the 

rational expectations model is higher than in the case of certainty equivalence for the 

bigger part of the lifetime horizon. 
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Figure 14. Asset paths for 5yσ = , 0 0.06r =  and 0.0025rσ = . 

For a yet higher variance of income, one can notice in Figure 15 that the path for 

consumption becomes a lot steeper for { }0.05,  0.1θ ∈ . On the other hand, there seems to 

be little change in the consumption pattern for 0.005θ = . On the savings front, the level 

of precautionary saving increases tremendously for the highest value of the coefficient of 

risk aversion considered here, 0.1θ = , and quite substantially for 0.05θ = . As it can be 

easily seen in Figure 16, in these two cases, the level of savings for the rational 

expectation model, as well as the bounded rationality version, becomes noticeably higher 

than what certainty equivalence produces.  
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Figure 15. Consumption paths for 10yσ = ,  0 0.06r =  and 0.0025rσ = . 

Yet, the level of savings continues to be higher for the much lower coefficient of 

risk aversion, 0.005θ = , when compared with the savings pattern for 0.01θ =  and 

0.05θ = . 

As in the case of rule 1, comparing the level of savings from the panel 

corresponding to 0.05θ =  and 10yσ =  in Figure 16, to the level of savings from the 

panel corresponding to   0.005θ =  and 1yσ =  in Figure 12, leads to the observation that 

the two are almost the same. This is to say that for values of the coefficient of risk 

aversion and of standard deviation for income ten times as high as the ones in Figure 12, 

the level of precautionary saving is almost unchanged. 
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Figure 16. Asset paths for 10yσ = , 0 0.06r =  and 0.0025rσ = . 

 As in the case of rule 1 the level of savings under bounded rationality is fairly 

close to the level of precautionary saving derived from the rational expectation model. 

However, in contrast to rule 1, the relative size depends on the parameters of the model 

and hence the level of precautionary saving derived from the rational expectation model 

is no longer consistently higher when compared to the level of savings obtained in the 

case of bounded rationality. Consequently, the rationally bounded consumer no longer 

starts consistently with a higher consumption level. 
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III.3.3. Rule 3 

In this section, I will consider a simpler rule than the previous two, meaning that 

the level of wealth 
ht TA +  is chosen such that, given the number of periods left until time 

T , a constant growth rate would insure that the final level of wealth is TA . 

Following are some graphical representations of the simulations for rule 3. All the 

graphs contain a representation of the numerical solution and, for comparison purposes, 

the graphs detailing the evolution for the level of assets also contain the certainty 

equivalent solution.  

The simulations for rule 3 use the same values of the parameters as in the 

previous two sections. Consequently, the numerical solution for the rational expectations 

model exhibits the same characteristics as discussed before. Therefore, when presenting 

the results in this section I will concentrate on the solution derived from assuming 

bounded rationality.  

As one can see in Figure 17, the consumption paths have kept their upward slope 

but for lower values of the coefficient of risk aversion, the difference between the rational 

expectation and bounded rationality solutions is considerably higher than for the previous 

two rules. The difference can be clearly seen in the picture, with the rationally bounded 

consumer consuming more in the beginning while the unboundedly rational consumers 

consumes more from the 12th period until the end of the horizon. On the other hand, for 

higher values of the coefficient of risk aversion, consumption paths are almost 

indistinguishable.  
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Figure 17. Consumption paths for 1yσ = ,  0 0.06r =  and 0.0025rσ = . 

Looking at the asset paths in Figure 18  one will notice that, for low values of the 

coefficient of risk aversion, the bounded rationality assumption leads to much lower 

levels of precautionary saving than in the case of rational expectations or certainty 

equivalence. However, the surprising result is that for higher values of the coefficient of 

risk aversion, there is almost no difference between the level of savings under rational 

expectations and bounded rationality.  

By increasing the standard deviation of income to 5yσ = , one can see in Figure 

19 a clear difference between the consumption paths for bounded rationality and rational 

expectations for all levels of risk aversion. As before, the two consumption paths have an 

upward slope with the rational expectation solution being the steeper one. 
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Figure 18. Asset paths for 1yσ = ,  0 0.06r =  and 0.0025rσ = . 
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Figure 19. Consumption paths for 5yσ = ,  0 0.06r =  and 0.0025rσ = . 



 

 107 
 

 

The asset paths represented in Figure 20 show clearly a higher level of 

precautionary saving in the case of rational expectations. The path corresponding to 

certainty equivalence produces higher levels of saving than the bounded rationality path. 
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Figure 20. Asset paths for 5yσ = ,  0 0.06r =  and 0.0025rσ = . 

Increasing again the standard deviation for income to 10yσ = , one will notice in 

Figure 21 that there is not much change in the paths for consumption at low levels of risk 

aversion. However, the slope of consumption for 0.1θ =  increases quite a lot. 



 

 108 
 

0 5 10 15 20 25 30 35 40

150

200

250

300

350

400

Time t (periods)

C
on

su
m

pt
io

n 
le

ve
l

Consumption Path for θ =0.005
numerical solution
bounded rationality

0 5 10 15 20 25 30 35 40

150

200

250

300

350

400

Time t (periods)

C
on

su
m

pt
io

n 
le

ve
l

Consumption Path for θ =0.01
numerical solution
bounded rationality

0 5 10 15 20 25 30 35 40

150

200

250

300

350

400

Time t (periods)

C
on

su
m

pt
io

n 
le

ve
l

Consumption Path for θ =0.05
numerical solution
bounded rationality

0 5 10 15 20 25 30 35 40

150

200

250

300

350

400

Time t (periods)
C

on
su

m
pt

io
n 

le
ve

l

Consumption Path for θ =0.1
numerical solution
bounded rationality

 
Figure 21. Consumption paths for 10yσ = ,  0 0.06r =  and 0.0025rσ = . 

On the saving side, one can see in Figure 22 that for the highest coefficient of risk 

aversion, the rational expectations solution provides a much higher level of savings, 

while the rationally bounded consumer still saves less than in the case of certainty 

equivalence for 0.01θ = .  

While the level of precautionary saving depends heavily on the parameter values 

of the model for the unboundedly rational consumer, the same can not be said for the 

rationally bounded consumer in the case of rule 3. The asset path for the rationally 

bounded consumer is barely concave and increasing the variance of income does not 

seem to create the same type of changes as the ones observed for the fully rational 

consumer. This behavior is the result of optimizing for only short periods of time coupled 

with the fact that the intermediary asset level targets are chosen assuming a constant 

growth rate. 
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Figure 22. Asset paths for 10yσ = ,  0 0.06r =  and 0.0025rσ = . 

In conclusion, in the case of rule 3, the rule employed by the rationally bounded 

consumer for the accumulation of assets is overshadowing the precautionary motives 

embedded in the functional specification of the model. 
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III.4. Final Remarks 

The level of precautionary saving under bounded rationality depends quite heavily 

on the behavior assumptions. While in many of the simulations presented in this chapter 

the level of precautionary saving chosen on average by the rationally bounded consumer 

is below that resulting from a rational expectations model, there a few parameterizations 

of the model, under rule 2, for which the rationally bounded consumer saves more. 

The simulations also show that for low coefficients of risk aversion, variation in 

income uncertainty does not affect much the level of saving. If one adds to this 

observation the possibility that self selection exists (individuals with high risk aversion 

choose occupations with low income uncertainty), it is easy to see why some empirical 

studies would find relatively low levels of precautionary saving.  

Another interesting result is that under rule 3, where the rationally bounded 

consumer follows some form of financial planning, there is not much difference for asset 

paths across various levels of risk aversion and income uncertainty. This result is 

consistent with the observation made by Lusardi (1997) that the saving rates do not 

change much across occupations. 

Most of the studies looking to asses the importance of precautionary saving, or the 

impact of income uncertainty on precautionary saving, have assumed that interest rate 

uncertainty does not play an important role in the decision making process. For the model 

discussed in this chapter, the assumption of a constant interest rate would result in an 

asset path that is constant regardless of the realizations for the income process. By 

introducing uncertainty in the interest rate process, that is no longer the case. The 

dynamic of the asset path is especially influenced by the realization of the interest rate 
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process for lower levels of risk aversion. Therefore, the empirical literature should also 

consider the impact of interest rate uncertainty when studying the importance of 

precautionary motives on the level of saving. 

While the results presented in this chapter point to an important role for the 

bounded rationality in the decision making process, it would be difficult to test the 

model’s validity in a standard empirical setting. The problem is that the results depend 

heavily on the rules adopted as well as on the parameterization of the model and it would 

be difficult to distinguish between the effects of the general assumptions corresponding to 

bounded rationality and those specific to a particular rule. Therefore, a more appropriate 

framework for testing the validity of the model would be an experimental setting. In such 

a framework, one can potentially “calibrate” the model by identifying the level of risk 

aversion and the level of patience for each subject. Once these parameters are determined 

it becomes easier to test hypotheses regarding the decision making process. There have 

been several studies in the field of experimental economics investigating consumption 

behavior under uncertainty (Hey and Dardanoni (1988), Ballinger et al. (2003) and 

Carbone and Hey (2004)) that concluded that actual behavior differs significantly from 

what is considered optimal. While these studies provide some insights in the decision 

making process, they do not test for any particular alternative to the optimal behavior 

corresponding to an unboundedly rational individual. Therefore a future area of research 

is the design of an experimental framework that could test the hypotheses regarding the 

decision making process advanced in this chapter. 



 

 112 
 

Appendices 
 
 

 Appendix A. Technical notes to chapter 2 

 

Appendix A1. Definitions for Scenarios, Equivalence Classes and Associated Probabilities 

Suppose the world that can be described at each point in time by the vector of 

state variables tx , and let tu  denote the control variable while tξ  is the forcing variable. 

Suppose tξ  is a random variable, with the underlying probability space71 ( ), , PW S . tξ  is 

defined as :t Rx WÆ  where Ω is countable and finite. If the horizon has 1T +  time 

periods and ( )tx w  is a realization of tξ  for the event w ŒW  in time period t , then the 

sequence 

( ) ( ) ( ) ( )( )0 1, , ,s s s s
Tx w x w x w x w= K  

is called a scenario72. From now on, for notation simplification, I will refer to a scenario 

s  simply by sx  or by the index s  and, in vector form, by ( )0 1, , ,s s s s
Tx x x x= K . 

Let ( )S w  denote the set of all scenarios. Given that W  is finite, the set ( )S w  is 

also finite. Therefore, one can define an event tree { },N A  characterized by the set of 

nodes N  and the set of arcs A . In this representation, the nodes of the tree are decision 

points and the arcs are realizations of the forcing variables. The arcs join nodes from 

                                                 
71 Ω  is the sample space, Σ  is the sigma field and Ρ is the probability measure. 

72 Other definitions of scenarios can be found in Helgason and Wallace (1991a, 1991b) 
and Rosa and Ruszczynski (1994). 
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consecutive levels such that a node i
tn  at level t  is linked to 1tN +  nodes 1 1, 1,...,k

t tn k N+ +=  

at level 1t + . 

The set of nodes N  can be divided into subsets corresponding to each level 

(period). Suppose that at time t  there are tN  nodes. The arcs reaching the nodes 

, 1, ,i
t tn i NK=  belong each to several scenarios ( ),   1,...,q

tq Lx w =  where tL  represents 

the number of leaves stemming from a node at level t . The bundle of scenarios that go 

through one node plays a very important role in the decomposition as well as in the 

aggregation process. The term equivalence class has been used in the literature to 

describe the set of scenarios going through a particular node.  

By definition, the equivalence class { } , 1, ,t
ti

s i N= K  is the set of all scenarios 

having the first 1t +  coordinates, 0 , , tξ ξK  common. This means that for two scenarios 

( )0 1 1, , , , ,...,j j j j j j
t t Tξ ξ ξ ξ ξ ξ−= K  and ( )0 1 1, , , , ,...k k k k k k

t t Tξ ξ ξ ξ ξ ξ−= K  that belong to the 

equivalence class { } , 1, ,t
ti

s i N= K  the first 1t +  elements are common, that is,  

0,...,j k
l l for l tx x= = . Formally, 

 { } { }| 0,...,t k k i
l li

s for l tx x x= = =  

As mentioned in the above description of the event tree, at time t  there are tN  

nodes. Then, the number of distinct equivalence classes { }t
i

s  is also tN , that is, 

1, , ti N= K . Every node , 1, ,i
t tn i NK=  is associated with an equivalence class { }t

i
s . 

The number of elements of the set { }t
i

s  is given by the number of leaves stemming from 

node i , level (stage) t . 
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Since scenarios are viewed in terms of a stochastic vector ξ  with stochastic 

components s
T

ss ξξξ ,,, 10 K , it is natural to attach probabilities to each scenario. I denote 

the probability of a particular realization of a scenario, s , with  

( ) ( )sp s prob x= . 

 These probabilities are non-negative numbers and sum to one. Formally,  

( ) 0p s >  and ( ) 1
s S

p s
Œ

=Â . I assume that for each scenario sξ  the stochastic components 

s
T

ss ξξξ ,,, 10 K  are independent. Then  

 ( )( ) ( )( )
0

( )
T

s s
t

t

p s prob probx w x w
=

= =’  (A.1.1) 

Further on, I define the probabilities associated with a scenario conditional upon 

belonging to a certain equivalence class { }t
i

s  at time t : 

{ }( ) { }( ) { }( )
( )t s s t

i i t
i

p sp s s s prob s
p s

x xŒ = Œ = , 

where { }( )t
i

p s  is the probability mass of all scenarios belonging to the class { }t i
s . 

Under the assumptions outlined above, { }( ) ( )( )
0

t
t s

i
p s prob t

t
x w

=

=’ . Therefore, the 

conditional probability is easily computed as  

 { }( ) { }( ) ( )( )
1

Tit s s t s

i
t

p s s prob s prob τ
τ

ξ ξ ξ ω
= +

= ∈ = ∏  

The transition from the state at time t  to that at time 1+t  is governed by the control 

variable tu  but is also dependent on the realization of the forcing variable, that is, on a 

particular scenario s . 
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Appendix A2. Description of the Scenario Aggregation Theory 

The idea is to show how a solution can be obtained by using special 

decomposition methods that exploit the structure of the problem by splitting it into 

manageable pieces and coordinate their solution.  

Let us assume for a moment that the original problem can be decomposed into 

subproblems, each corresponding to a scenario. Then the subproblems can be described 

as:  

 ( )
1

min , ,
mu

t t

T
s s

t t t
u U R t

F x u s S
Œ Õ =

ŒÂ  (A.2.1) 

where s
tu  and s

tx  are the control and the state variable respectively, conditional on the 

realization of  scenario s  while S  is a finite, relatively small set of scenarios. 

Formally, by definition, a policy is a function or a mapping : mU S R→  assigning 

to each scenario s S∈  a sequence of controls ( )0 1( ) , , , , ,s s s s
t TU s u u u u= K K , where s

tu  

denotes the decision to be made at time t  if the scenario happens to be s . Similarly, the 

state variable at each stage is associated with a particular scenario s . I use the notation 

s
tx  to show the link between the state variable and scenario s  at time t . One can think of 

the mappings : mU S R→  as a set of time linked mappings : tm
tU S R→  with 

1

T

t
t

m m
=

= ∑ . 

The policy function has to satisfy certain constraints if two different scenarios s  

and 's  are indistinguishable at time t  on information available about them at time t . 

Then 's s
t tu u= , that is, a policy can not require different actions at time t  relative to 

scenarios s  and 's  if there is no way to tell at time t which of the two scenarios will be 
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followed. This constraint is referred to as the non-anticipativity constraint. One way to 

model this constraint is to introduce an information structure by bundling scenarios into 

equivalence classes73 as defined above. In this way, the scenario set S  is partitioned at 

each time t  into a finite number of disjoint sets, { }t
i

s . Let the collection of all scenario 

equivalence classes at time t be denoted by tΒ , where { }tt i
i

sΒ =U . In most cases 

partition 1t+Β  is a refinement of partition tΒ , that is, every equivalence class { }t ti
s ∈Β  is 

a union of some equivalence classes { }1 1
t

tj
s +

+∈Β . Formally, { } { }1
1... i

t t

i j
j m

s s +

=

= U . 

Looking back to the event tree representation discussed in the previous section, im  

represents the number of nodes 1
j

tn +  at level 1t +  that are linked to the same node i
tn . 

A policy is defined as implementable if it satisfies the non-anticipativity 

constraint, that is, ( )tu w  must be the same for all scenarios that have common past and 

present74. In other words, a policy is implementable if for all Tt ,,0 K=  the tht  element 

is common to all scenarios in the same class { }t
i

s , i.e. if ( ) ( )i k
t tu uξ ξ=  whenever 

{ } { }t t

i k
s s= . 

Let Σ  be the space of all mappings : nU S R→  with components : tn
tU S R→ . 

Then the subspace  

                                                 
73 Some authors, such as Rockaffeler and Wets (1991), use the term scenario bundle. 

74 For certain problems the non-anticipativity constraint can also be defined in terms of 
the state variable, that is, ( )tx w  must be the same for all scenarios that have common past 
and present. 



 

 117 
 

 { }{ }|  is constant on each class ,  for 1,...,t
t ti

U U s B t TΠ = ∈Σ ∈ =  

 identifies the policies that meet the non-anticipativity constraint. 

A policy is admissible if it always satisfies the constraints imposed by the 

definition of the problem. It is clear that not all admissible policies are also 

implementable. By definition, a contingent policy is the solution, su , to a scenario 

subproblem. It is obvious that a contingent policy is always admissible but not 

necessarily implementable. Therefore, the goal is to find a policy that is both admissible 

and implementable. Such a policy is referred to as a feasible policy. 

One way to create a feasible policy from a set on contingent policies is to assign 

weights (or probabilities) to each scenario and then blend the contingent policies 

according to these weights. Specifically, if the probabilities associated with each scenario 

are defined as in (A.2.1), one calculates for every period t  and for every equivalence 

class { }t ti
s ∈Β  the new policy tu  by computing the expected value: 

 { }( ) { }( )
{ }

( )
t

i

t t
t ti i

s s

u s p s s u s
′∈

′ ′= ∑  (A.2.2) 

Then one defines the new policy for all scenarios s  that belong to the equivalence class 

{ }t ti
s ∈Β  as:  

 { }( ) { }ˆ  for all s t t
tt i i

u u s s s= ∈  (A.2.3) 

Based on its definition, ˆ s
tu  is implementable. The operator ˆ:J U U→  defined by (A.2.2) 

and (A.2.3) is called the aggregation operator. 

 Let us rewrite equation (2.4.1) as: 
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 ( )min , ,
mu

t t

s s s

u U R
F x u s S

∈ ⊆
∈  (A.2.4) 

by defining the functional ( ) ( )
1

, ( ), ( )
T

s s s
t t t

t

F x u F x s u s
=

= ∑ . 

 Then the overall problem can be reformulated as: 

 ( )min ,   over all s s s s

s S
p F x u U

∈

∈Σ Π∑ I  (A.2.5) 

Let us assume for a moment that ˆ su  is an implementable policy obtained as in (A.2.3) 

from contingent policies su  and su is the optimal policy for the particular scenario s  of 

the problem described by (A.2.5). Let Û  and U  be the collections of policies ˆ su  and 

su respectively. One can easily see that U  represents the optimal policy for the problem 

described by (A.2.5). The question that the scenario aggregation methodology answers is 

how to obtain the optimal solution U  from a collection of implementable policies Û .  

 

 

Appendix A3. Solution to a Scenario Subproblem 

In order to take advantage of the fact that scenario aggregation does not require 

the computation of an exact solution for each scenario, I transform the Lagrangian (2.6.8) 

by replacing the utility function with a first order Taylor series expansion around the 

solution obtained in the previous iteration. Hence:  

 
( ) ( )( )1 11

s ks
t t s kc c s

t te e c cθ θ θ
− −− − ⎡ ⎤= − −⎣ ⎦  

From the transition equation, consumption can be expressed as: 

 ( ) 11s s s s
t t t tc r A y A−= + + −  
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Then 
( ) ( ) ( )( ) ( )( ){ }1 1 1

1 11 1
s ks

t t s k s kc c s s
t t t te e r A A A Aθ θ θ

− − −− −
− −

⎡ ⎤= − + − − −⎣ ⎦ .For iteration ( )k  and 

scenario s  the Lagrangian becomes: 

( )

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) }

1

1 1
1 1 1

0

2
1 1

1 1

min 1 1 1

1           1
2

s k
tCT

s k s kt s s s s s s
t t t t t t t t

t

k ks s
t t t t

e r A A A A W r A y A

r A A A A

θ

β θ θ
θ

ρ

−−
− −

− − −
=

− −
− −

⎧⎪ ⎡ ⎤ ⎡ ⎤− + − + − + + + − +⎨ ⎣ ⎦⎣ ⎦⎪⎩

⎡ ⎤+ + − − −⎣ ⎦

∑

Then, the first order condition with respect to s
tA  is given by: 

 

( ) ( ) ( ) ( )( ) ( )( ){ }
( )

( )

( ) ( ) ( ) ( ) ( )( ) ( )( ){ }

1

1
1

1 1
1 1

1 11
1 1 1

1

1 1 1 1 0

s k
t

s k
t

s k k kct s s
t t t t t

s k k kct s s
t t t t t

e W r A A A A

r e r W r r A A A A

θ

θ

β ρ

β ρ

−

−
+

− −−
− −

−−+
+ + +

⎡ ⎤− − + − − − +⎣ ⎦

⎡ ⎤− + + + + + + − − − =⎣ ⎦

 

Rearranging the terms leads to:   

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11
1

1

21 1 1 1
1 1

2
1 1

1 1 1

          1 1 1

                          1 1 1

s ks k
t t s k s kcc

t t

k k k k
t t t t

s s s s
t t t t

e r e W r W

r A A r A r A

r A A r A r A

θθ β β
ρ

β β

β β

−−
+−−

+

− − − −
− +

− +

⎡ ⎤− + − + + +⎢ ⎥⎣ ⎦

+ + − − + + + =

= + − − + + +

 (A.3.1) 

Let 

 ( ) ( ) ( )
( ) ( ) ( ) ( )11
1

1
1 1 1

s ks k
t ts k s k s kcc

t t te r e W r Wθθ β β
ρ

−−
+−−

+
⎡ ⎤Γ = − + − + +⎢ ⎥⎣ ⎦

 (A.3.2) 

Then the first order condition with respect to s
tA  can be written as: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

21 1 1
1 1

2
1 1

1 1 1 1

1 1 1 1

s k k k k
t t t t

s s s
t t t

r A r A r A

r A r A r A

β β

β β

− − −
− +

− +

⎡ ⎤Γ + + − + + + + =⎣ ⎦
⎡ ⎤= + − + + + +⎣ ⎦

 

For 1t T= −  the first order condition becomes: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

21 1 1
1 2 1

2
2 1

1 1 1 1

1 1 1 1

s k k k k
T T T T

s s
T T T

r A r A r A

r A r A r A

β β

β β

− − −
− − −

− −

⎡ ⎤Γ + + − + + + + =⎣ ⎦
⎡ ⎤= + − + + + +⎣ ⎦

 (A.3.3) 
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Noting that ( )1k
T T TA A A− = =  equation (A.3.3) can be written as:   

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 1
1 2 1 2 11 1 1 1 1 1s k k k s s

T T T T Tr A r A r A r Aβ β− −
− − − − −

⎡ ⎤ ⎡ ⎤Γ + + − + + = + − + +⎣ ⎦ ⎣ ⎦  

Similarly, for 0t =  one obtains:  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

21 1 1
0 1 0 1

2
1 0 1

1 1 1 1

1 1 1 1

s k k k k

s s s

r A r A r A

r A r A r A

β β

β β

− − −
−

−

⎡ ⎤Γ + + − + + + + =⎣ ⎦
⎡ ⎤+ − + + + +⎣ ⎦

 (A.3.4) 

Again, noting that 1A−  is given, ( )1
1 1
k sA A−
− −=  so equation (A.3.4) becomes:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 1
0 0 1 0 11 1 1 1 1 1s k k k s sr A r A r A r Aβ β β β− −⎡ ⎤ ⎡ ⎤Γ − + + + + = − + + + +⎣ ⎦ ⎣ ⎦  

Rewriting the system of equations in matrix form, leads to:  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

2

2 0

1
2

2

1
2

2 1
0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0

0 1 1 1 1 0 0

0 0 0 0 1 1 1

1 1 1

                      

s

s

s

s
T

s k k

r r
A

r r r
A

r r r A

A
r r

r A r A

β β

β β

β β

β

β β

−

−

⎡ ⎤⎡ ⎤− + + +⎣ ⎦⎢ ⎥
⎡ ⎤⎢ ⎥⎡ ⎤+ − + + + ⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎢ ⎥

⎡ ⎤ ⎢ ⎥+ − + + + =⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎡ ⎤+ − + +⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤Γ − + + + +⎣ ⎦

=

K

K

K

M
M M M M M M M

K

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1

21 1 1
1 0 1 2

21 1
1 2 1

1 1 1 1

1 1 1

k

s k k k k

s k k k
T T T

r A r A r A

r A r A

β β

β

−

− − −

− −
− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤Γ + + − + + + +⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤Γ + + − + +⎣ ⎦⎣ ⎦

M
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Appendix B. Technical notes to chapter 3 

 

Appendix B1. Analytical Solution for a Scenario with Deterministic Interest Rate 

Consider the problem described by (3.3.1) - (3.3.4). Solving the period-by-period 

budget constraint (3.3.2) for tc , 1t T= -  and t T= , and substituting back into the utility 

function, the period 1T -  optimization problem is given by: 

 

( ){ }

( ){ }
1

1 2 1 1

1
1

exp 1
max

exp 1
               

T

T T T T

A

T T T T
T

r A y A

r A y A
E I

q
q

q
b

q
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subject to  

 1TA b- ≥ -  (B.1.2) 

Taking derivatives with respect to 1TA - , the Euler equation for (B.1.1) is given by:  
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Note that 1T T Ty y ξ−= +  while ( )
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 and hence solving 

(B.1.3) for the optimal wealth level at the beginning of period 1T -  yields: 
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where ( ){ }* log 1 /T Trb qÈ ˘G = G + +Î ˚ , and 2 / 2yqsG = . 

Going now to period 2T - , the optimization problem is given by  
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subject to 

 2TA b- ≥ -  (B.1.6) 

Taking derivatives with respect to 2TA - , and noting that  

( ) ( )* *
1 2 1exp exp ,T T TE A I Aq q- - -

È ˘- = -Î ˚  

the Euler equation for (B.1.5) is given by:   
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 (B.1.7) 

Since 1 2 1T T Ty y ξ− − −= + , (B.1.7) can be rewritten as: 
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 Assuming that liquidity constraint is not binding, solving (B.1.7) for 2TA −  yields: 
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Using the notation from above, equation (B.1.8) can be written as: 

 ( ) ( )* *
1 1 1 2 2 32 1T T T T T TA r A r A- - - - - -G = - + + - +  (B.1.9) 

Similarly, for period t , the equivalent of equation (B.1.9) is given by:  
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 ( ) ( )* *
1 1 1 12 1t t t t t tA r A r A+ + + -G = - + + - +  (B.1.10) 

It is clear that the optimal wealth level at the beginning of period t  does not depend on 

labor income received at the beginning of the period. This result is not general, but is 

rather specific to the life-cycle model with a negative exponential utility function and 

labor income following an arithmetic random walk process. 

Solving for the beginning-of-period wealth levels from 0t =  to 1t T= -  means 

solving the system of linear equations: 
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where D is a tridiagonal coefficient matrix, 
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 (B.1.12) 

Once the values for wealth levels are computed, the consumption levels follow. 

The solution presented in this section is in fact the solution for a scenario obtained by 

discretizing the distribution of the forcing variable for the interest rate. Since an 

analytical solution can be obtained when income follows an arithmetic random walk and 

interest rate is deterministic, it is no longer necessary to discretize both forcing variables, 

but only the interest rate. This approach reduces considerably the computational burden. 
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For different labor income processes, a dual discretization is necessary, that is, for both 

forcing variables. 

 

Appendix B2. Details on the Assumptions in Rule 1 

In period t  the consumer wants to solve the optimization problem given by: 
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  with y  given   t 0,1,..., 1,t

y y t T
T
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= −

 (B.2.3) 

 1 ,   1,..., ,  
with r  given     t 0,1,..., 1,t

r r t T
T

t t tu t-= + = +
= -

 (B.2.4) 

The assumption is that the forcing variable τυ  has three possible realizations, 

{ }, ,a b cυ υ υ . The set of its realizations determines the event tree and consequently the set 

of scenarios. For hT  periods the number of all scenarios is 3 hT . The consumer considers 

all the possible scenarios from period  t  to period ht T+ . From there on it assumes that 

for every leaf the scenario will be determined by τυ  taking its unconditional mean, that 

is, zero. For example, if the short optimizing horizon is given by 4hT =  and the sequence 

of realizations for τυ  up to period 4t + , for a particular scenario, is { }, , ,a c b cυ υ υ υ , the 

assumption made by consumer is that for this particular scenario the realizations of τυ  for 

the rest of the periods will be 0 , that is, the whole scenario is { }, , , ,0,0,...,0a c b cυ υ υ υ .  



 

 125 
 

This process is repeated as the consumer advances to period 1t +  and goes again 

through the optimization procedure. The number of scenarios considered remains the 

same unless hT t T− < , which is to say that there are fewer than hT  periods left until the 

terminal period. 

 

Appendix B3. Details on the Assumptions in Rule 2 

In period t  the consumer wants to solve the optimization problem given by: 
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 (B.3.3) 

 1 ,   1,..., ,  
with r  given     t 0,1,..., 1,t

r r t T
T

t t tu t-= + = +
= -

 (B.3.4) 

The assumption is that the forcing variable τυ  has three possible realizations, 

{ }, ,a b cυ υ υ . The set of its realizations determines the event tree and consequently the set 

of scenarios. For hT  periods the number of all scenarios is 3 hT . The consumer considers 

all the possible scenarios from period  t  to period ht T+ . From there on it assumes that 

for every leaf only three more scenarios emerge, with τυ  taking only one of the three 

values { }, ,a b cυ υ υ every period until the end of the horizon. For example, if the short 

optimizing horizon is given by 4hT =  and the sequence of realizations for τυ  up to 



 

 126 
 

period 4t + , for a particular scenario, is { }, , ,a c b cυ υ υ υ , the assumption made by 

consumer is that only three more scenarios will stem from the leaf corresponding to 

scenario { }, , ,a c b cυ υ υ υ . These three scenarios are given by { }, , , , , ,...,a c b c a a aυ υ υ υ υ υ υ , 

{ }, , , , , ,...,a c b c b b bυ υ υ υ υ υ υ  and { }, , , , , ,...,a c b c c c cυ υ υ υ υ υ υ . Effectively, the total number 

of scenarios considered is 13 hT +  as opposed to 3T t−  which would represent the total 

number of scenarios for the horizon from period t  to period T  . 

This whole process is repeated as the consumer advances to period 1t +  and goes 

again through the optimization procedure. The number of scenarios considered remains 

the same unless hT t T− < , which is to say that there are fewer than hT  periods left until 

the terminal period. 
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